Computergrafik

Matthias Zwicker
Universität Bern
Herbst 2016

Staff

Instructor

- Matthias Zwicker (zwicker@iam.unibe.ch)

Teaching assistant

- Marco Manzi (manzi@iam.unibe.ch)
- Tiziano Portenier (portenier@iam.unibe.ch)

Student teaching assistants

- Adrian Wälchli (adrian.waelchli@students.unibe.ch)
- Paul Frischknecht (paul.frischknecht@students.unibe.ch)

Today

- Course overview
- Course organization
- Vectors and coordinate systems

Computer graphics

Computer graphics

- „Technology to create images using computers"
- Core areas
- Rendering
- Modeling
- Animation

Rendering

- Synthesis of 2D image from 3D scene description
http://en.wikipedia.org/wiki/Rendering_(computer graphics)
- Rendering algorithms interpret data structures that represent scenes using geometric primitives, material properties, and lights
- Input
- Data structures that represent scene (geometry, material properties, lights, virtual camera)
- Output
- 2D image (array of pixels)
- Red, green, blue values for each pixel

Rendering

- Wealth of algorithms with different objectives
- Photorealistic
- Interactive
- Artistic

Photorealistic rendering

See also http://en.wikipedia.org/wiki/Rendering (computer graphics)

Photorealistic rendering

- Physically-based simulation of light, materials, and camera
- Physical model expressed using the rendering equation, http:/len.wikipedia.org/wiki/Rendering equation
- Shadows, realistic illumination, multiple light bounces
- Slow, minutes to hours per image
- Special effects, movies
- Not in this class

Interactive rendering

Interactive rendering

- Focus of this class
- Produce images within milliseconds
- Interactive applications (games, ...)
- Using specialized hardware, graphics processing units (GPUs)
- Standardized APIs (OpenGL, DirectX)
- Often "as photorealistic as possible"
- Hard shadows, fake soft shadows, only single bounce of light

Artistic rendering

- Also "non-photorealistic rendering"
- Stylized
- Artwork, illustrations, data visualization

Modeling

- Creating 3D geometric data
- The "model" or the "scene"
- Modeling techniques
http://en.wikipedia.org/wiki/3D modeling
- Manually, using software tools
- Algorithmic (procedural)
- Physical measurements, 3D scanning

3D modeling tools

- Similar to plastic arts such as sculpting
- Professional tools
- Autodesk (Maya, AutoCAD), LightWave 3D, ...
- Free software
- Blender http://www.blender.org/
- Not as easy to use as Notepad...

Procedural modeling

- By writing programs, algorithms
http://en.wikipedia.org/wiki/Procedural modeling

Procedural city

See also http://www.esri.com/software/cityengine/

Physical measurements

- 3D scanning
http://en.wikipedia.org/wiki/3D scanner
- Other imaging devices
- Tomography
http://en.wikipedia.org/wiki/Ct scan
- Magnetic resonance imaging (MRI scanning)

Surface representation

- Basic 3D models consist of collections of

- Each triangle consists of 3 vertices
- Each vertex contains
- xyz position
- Optionally other attributes such as color, etc.
- Many more sophisticated representations exist
http://en.wikipedia.org/wiki/Nonuniform rational B-spline http://en.wikipedia.org/wiki/Subdivision_surface

Animation

- Deforming or editing the data
- Change over time
- Faces, articulated characters, fire, water, rigid objects, elastic objects, fracturing objects, ...

Animation

http://www.youtube.com/watch?v=bLiX5d3rC6o

Physics simulation

http://www.youtube.com/watch?v=XH28gAb8FiQ

See also http://www.nvidia.com/object/physx new.html

In this class

The Basics...

- Rendering 3D models
- Camera simulation
- Interactive viewing
- Lighting, shading
- Modeling
- Triangle meshes
- Smooth surfaces
- Experience with linear algebra, Java, OpenGL, GPU programming
- Background for advanced topics

Schedule

1. Introduction
2. Homogeneous coordinates, transformations
3. Projection
4. Rasterization
5. Color
6. Shading I
7. Shading II
8. Textures
9. Scene management
10. Curves
11. Surfaces
12. Advanced shading, shadows
13. Virtual reality
14. Reserve

Questions?

Today

- Course overview
- Course organization
- Vectors and coordinate systems

Course organization

Lecture

- Fridays, 14:00-16:00
- Engehaldenstrasse 8, Raum 001

Exercises

- Fridays, 16:00-17:00
- Engehaldenstrasse 8, Raum 001

Class web page

- Overview of topics
http://www.cgg.unibe.ch/teaching/computergrafik

- Search for "Computergrafik HS2016" in https://ksl.unibe.ch, Ilias link provided
- Use your campus account to log in
- Join without password
- All relevant content for the class
- Schedule
- Slides
- Project descriptions
- Scanned chapters from textbook
- Online forum for questions and discussion
- Take advantage of online forum to get advice!

Textbooks

- Fundamentals of Computer Graphics, Peter Shirley, $2^{\text {nd }}$ or $3^{\text {rd }}$ edition (recommended)
- Available in the student bookstore
- Scanned chapters on Ilias
- Opengl Shading Language, Rost, Addison Wesley, $2^{\text {nd }}$ edition (optional)

Exercises

- Six programming projects
- Two exercise series on paper
- Successful completion of exercises is requirement for exam
- Each assignment is worth 10 points
- Total 80 points
- Requirement is 75\% (60 points)
- Late penalty
- 50\% of original score
- Exceptions for military service, illness

Programming Projects

- Assignments and schedule on Ilias
- Java base code and documentation on github
https://github.com/mzwicker/Computergrafik-Basecode
- Turn-in electronically on Ilias and demonstration to TA in ExWi pool
- More details, how to sign-up in exercise session

Programming Projects

- Use ExWi pool or your own computer
- Need support of OpenGL 3.0 or later
- Update your graphics driver!
- Older Intel integrated graphics processors do not currently support OpenGL 3.0
- "HD graphics" series, Sandy Bridge processors are first to provide support http://en.wikipedia.org/wiki/Intel_GMA
- For Intel integrated graphics on Linux, drivers may not be available that support our code

Programming Projects

Build your own 3D rendering engine

- Project 1: Matrices, Vectors, and Coordinate Transformations
- Project 2: Interactive Viewing
- Project 3: Rasterization
- Project 4: Lighting and Texturing
- Project 5: Scene Graphs
- Project 6: Curves and Surfaces, Virtual Reality

Exercises on paper

- Two exercise series on paper
- Schedule TBA
- As preparation for exam

Prerequisites

Familiarity with

- Linear algebra (matrix calculations)
- Java
- Object oriented programming

Questions?

Today

- Course overview
- Course organization
- Vectors and coordinate systems

3D scene representation

- Goal: describe 3D scenes
- Position, orientation, motion of objects
- Relation of objects to virtual camera
- Projection of scene onto image plane
- Linear algebra provides mathematical tools
- Vectors, coordinate systems, matrices, etc.
- As little abstract theory as possible in this class

Topics today

Linear algebra \& vector geometry review

- Vectors
- Linear combination, linear dependency
- Coordinate systems
- Dot product, cross product
- Normal vectors
- Representation of planes using vectors

Vectors

- Direction and length in 3D
- No anchor point
- Vectors can describe
- Difference between two 3D points
- Speed of an object
- Vectors are in bold-face

Vectors

Multiplication by scalar

Vectors

Addition

Vectors

Addition

Vectors

Linear combination

$$
\begin{array}{cl}
s \mathbf{a}+t \mathbf{b}, & s, t \in \mathbf{R} \\
\sum_{i=1}^{n} s_{i} \mathbf{a}_{i} & s_{i} \in \mathbf{R}
\end{array}
$$

Vectors

Linear combination

$$
\begin{aligned}
s \mathbf{a}+t \mathbf{b}, & s, t \in \mathbf{R} \\
\sum_{i=1}^{n} s_{i} \mathbf{a}_{i} & s_{i} \in \mathbf{R}
\end{aligned}
$$

Linearly dependent vectors

- A set of vectors $\mathbf{a}_{i}, i=1 \ldots n$ is linearly dependent if there exist scalars s_{i} such that

$$
\mathbf{a}_{j}=\sum_{i=1, i \neq j}^{n} s_{i} \mathbf{a}_{i}
$$

- Otherwise, they are linearly independent

Coordinate systems

- Describe any vector with respect to three basis vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$

- The basis vectors form a coordinate system

Coordinate systems

- Any three vectors that are linearly independent could be used as a basis
- Different lengths
- Not perpendicular to each other

Coordinate systems

- Any three vectors that are linearly independent could be used as a basis
- Different lengths
- Not perpendicular to each other
- Why linearly independent?
-Why exactly three vectors?
- Other coordinate systems?

Coordinate systems

Cartesian coordinate systems

http://en.wikipedia.org/wiki/Cartesian_coordinate_system

- Basis vectors
- Have unit length
- Are perpendicular to each other
- Orthonormal

Coordinate Systems

Handedness

Right handed
Left handed

Vector arithmetic using coordinates

$$
\begin{array}{cc}
\mathbf{a}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right] \\
\mathbf{a}+\mathbf{b}=\left[\begin{array}{l}
a_{x}+b_{x} \\
a_{y}+b_{y} \\
a_{z}+b_{z}
\end{array}\right] \quad \mathbf{a}-\mathbf{b}=\left[\begin{array}{l}
a_{x}-b_{x} \\
a_{y}-b_{y} \\
a_{z}-b_{z}
\end{array}\right] \\
-\mathbf{a}=\left[\begin{array}{l}
-a_{x} \\
-a_{y} \\
-a_{z}
\end{array}\right]
\end{array}
$$

Vector Magnitude

- The magnitude (length) of a vector is:

$$
\begin{aligned}
& |\mathbf{v}|^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2} \\
& |\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}
\end{aligned}
$$

- A vector with length=1.0 is called a unit vector
- We can also normalize a vector to make it a unit vector

$$
\frac{\mathbf{v}}{|\mathbf{v}|}
$$

- Unit vectors are often used as surface normals

Questions?

Dot product

- Scalar value that tells us something about the relationship between two vectors
- Product of lengths of vectors and cosine of angle between vectors
- Definition does not refer to a coordinate system
- Result is independent of Cartesian coordinate system

Dot product

- If $\mathbf{a} \cdot \mathbf{b}>0$ then $\theta<90^{\circ}$
- Vectors point in the same general direction

- If $\mathbf{a} \cdot \mathbf{b}<0$ then $\theta>90^{\circ}$
- Vectors point in opposite direction
- If $\mathbf{a} \cdot \mathbf{b}=0$ then $\theta=90^{\circ}$
- Vectors are perpendicular

- (or one or both of the vectors is degenerate $(0,0,0)$)

Dot product using coordinates

- Result is independent of coordinate system!

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=\sum a_{i} b_{i} \\
& \mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} \\
& \mathbf{a} \cdot \mathbf{b}=|a||b| \cos \theta
\end{aligned}
$$

- What is the meaning of $\mathbf{a} \cdot \mathbf{a}$?

Angle between vectors

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta \\
& \cos \theta=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right) \\
& \theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)
\end{aligned}
$$

Dot products with unit vector

- If $|\mathbf{u}|=1.0$ then $\mathbf{a} \cdot \mathbf{u}$ is the length of the orthogonal projection of a onto u

Dot products with unit vectors

Dot products with unit vectors

$\mathbf{0}<\mathbf{a} \cdot \mathbf{b}<\mathbf{1}$

Dot products with unit vectors

$\mathbf{0}<\mathbf{a} \cdot \mathbf{b}<\mathbf{1}$

Dot products with unit vectors

$\mathbf{0}<\mathbf{a} \cdot \mathbf{b}<\mathbf{1}$

Dot products with unit vectors

$\mathbf{0}<\mathbf{a} \cdot \mathbf{b}<\mathbf{1}$

Surface normals

- Vectors are direction and length in 3D
- Can describe
- Difference between two 3D points
- Speed of an object
- Surface normals: directions perpendicular to tangent plane of surfaces

Normal vector

Surface normals
Surface

Representing planes

- A plane can be defined by
- Its closest distance to the origin
- and its normal vector
- How can we determine if a point lies on the plane using the dot product?

Cross product

- Written as $\mathbf{a} \times \mathbf{b}$
- A vector perpendicular to \mathbf{a} and \mathbf{b}
- In the direction defined by the right hand rule
- Length is area of parallelogram spanned by a and \mathbf{b}
- Definition does not refer to coordinate system!

Cross product

- If vectors \mathbf{a}, \mathbf{b} are unit length and perpendicular, then $\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$ is a right handed coordinate system
- $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$

Cross product

$\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to both \mathbf{a} and \mathbf{b}, in the direction defined by the right hand rule

Vectors a, blie in the plane of the projection screen. Does $\mathbf{a} \times \mathbf{b}$ point towards you or away from you? What about $\mathrm{b} \times \mathrm{a}$?

Cross product

$\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to both \mathbf{a} and \mathbf{b}, in the direction defined by the right hand rule
$|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$
$|\mathbf{a} \times \mathbf{b}|=$ area of parallelogram $\mathbf{a b}$
$|\mathbf{a} \times \mathbf{b}|=0$ if \mathbf{a} and \mathbf{b} are parallel
(or one or both degenerate)

Cross product

- Using coordinates

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{c}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
$$

Questions?

Coming up

Exercise session

- Introduction to the Java base code
- Representation of 3D shapes using triangle meshes

Next class

- Matrices and transformations

