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Abstract
Motivation: The technology of hybridization to DNA ar-
rays is used to obtain the expression levels of many differ-
ent genes simultaneously. It enables searching for genes
that are expressed specifically under certain conditions.
However, the technology produces large amounts of data
demanding computational methods for their analysis. It is
necessary to find ways to compare data from different ex-
periments and to consider the quality and reproducibility
of the data.
Results: Data analyzed in this paper have been generated
by hybridization of radioactively labeled targets to DNA
arrays spotted on nylon membranes. We introduce meth-
ods to compare the intensity values of several hybridiza-
tion experiments. This is essential to find differentially ex-
pressed genes or to do pattern analysis. We also discuss
possibilities for quality control of the acquired data.
Availability: http://www.dkfz.de/ tbi
Contact: M.Vingron@dkfz-heidelberg.de

Introduction
This special issue of Bioinformatics is one of the many
signs of the increasing importance of DNA arrays and
chips for the study of gene expression (Piétu et al.,
1996; DeRisi et al., 1996; Spellman et al., 1998; Khan
et al., 1998; Roth et al., 1998). While the experimental
technology has been developed very rapidly, it appears
that the computational processing of the resulting data is
lagging behind. In this paper, we report on our experience
with the processing of data generated with arrays on nylon
membrane using radioactive hybridization (Lennon and
Lehrach, 1991).

The techniques for simultaneous determination of ex-
pression levels of a large number of genes can be roughly
divided into two categories. In the first approach, a

∗To whom correspondence should be addressed.

sample of the molecules in a library is characterized by
determining certain tags. For example, in EST (expressed
sequence tag) sequencing the sequence read constitutes
such a tag (Adams et al., 1991). In SAGE (serial analysis
of gene expression) very short tags are concatenated
and then sequenced (Velculescu et al., 1995). After
establishing which tags correspond to the same gene, such
techniques give an estimate of the proportion at which a
gene occurred.

The other approach works by immobilizing those genes
whose expression level will be investigated and then
hybridizing the sample under study to the immobilized
genes. The detection of the hybridization signal may
rely on radioactive (Friemert et al., 1989) or fluorescent
labeling (Shalon et al., 1996). In the case of radioactive
labeling, the amount of radioactivity as detected after
exposure is the indicator of the amount of RNA present.
Fluorescent labeling allows the comparison of different
samples by labeling them differently. The resulting com-
petitive hybridization makes the ratio between the two
signals an indicator of the ratio at which particular genes
are expressed in the two samples (DeRisi et al., 1996;
Chen et al., 1997).

Nylon filters that are used for hybridization with ra-
dioactively labeled samples are at the moment easier to
produce and do not require specialized hardware for the
read-out of the signal. At our center, several groups have
been working with this set-up, and this paper describes
the lessons we learned from analyzing data produced with
those filters. Arrays for yeast have already been described
by Hauser et al. (1998). With similar technology, arrays
containing clones from Arabidopsis were produced. In the
context of the German Human Genome Project, clones
selected from Unigene clusters have been spotted to ob-
tain a comprehensive filter of human genes. Additionally,
commercially available filters for mouse have been used
(see Systems and methods).

1014 c© Oxford University Press 2000



Processing DNA array data

Commercial software is available for detecting spots and
quantifying their intensity. Typically, such software will
generate a table of intensities assigned to the individual
spots. Many problems may arise at that point. Most promi-
nently, spots may be missed due to incorrect grid assign-
ment. Such software, however, is not the focus of our at-
tention here and we assume that these problems have been
solved. Nevertheless, a range of other problems will fol-
low. Questions arise like: which genes are actually ‘turned
on’, i.e. which genes are indeed expressed although per-
haps at a low level? How reproducible are experiments?
How do possible variations in the efficacy of experimental
procedures influence the outcome?

Comparison of the results from different hybridizations
requires standardization. Because of different background
intensities, different labeling efficiencies or differing
exposure times, two (or more) hybridization experiments
are not readily comparable without prior standardization.
Here, we will provide methods to deal with questions of
additive and multiplicative distortion automatically. This
is based on a physical model and has been successfully
applied to several hundred hybridizations. We will show
that a subpopulation of hybridization intensities across
an array can be modeled by lognormal distribution.
This distribution can be used to determine a threshold
of reliability for these intensities. Because of the poor
reproducibility of measured values one has to apply
filtering in order to exclude highly variant spots in an
array from further analysis. We will provide methods for
quantifying the quality of spots.

This paper does not deal with the detection of corre-
lations among genes in large numbers of experiments.
Rather, we view the methods discussed here as a prereq-
uisite for subsequent analysis of the data.

Systems and methods
The data analyzed in this paper were generated using
complementary DNA arrays produced by PCR from
6116 ORFs (open reading frames) of Saccharomyces
cerevisiae (Hauser et al., 1998), representative Homo
sapiens ESTs from the Unigene Collection Build 17, Au-
gust 1997, representative Arabidopsis thaliana ESTs, and
commercially available arrays from Mus musculus (Gene
Discovery Array, Genome Systems, Inc., MO, USA). The
cDNA samples were spotted onto nylon membranes. The
radioactively labeled cDNA representation of the mRNA
pool of a biological sample was then hybridized to the
array.

The amount of radioactivity on the membrane was
measured by means of a phosphorimager and converted
into corresponding gray levels of an image. The gray
levels are supposed to be linearly correlated to the amount
of radioactivity on the filter. Every spot of the array

needs to be recognized and assigned to its position in
the array, i.e. to the corresponding clone number. For
each of the spots in the array an intensity value needs
to be assigned. Due to the large number of spots only
automatic or semiautomatic procedures are suitable for
this task. The data presented here have been obtained using
the commercially available image analysis software Array
Vision (Imaging Research, Ontario, Canada). Data were
obtained as a list of intensity values and array positions
for all the spots in the array.

Statistical analysis routines have been realized in MAT-
LAB 5.3 (MathWorks Inc., MA, USA) and are available
through a web-based interface (http://www.dkfz.de/tbi).

Definitions. We refer to the spots on the membrane as
‘probe’ and to the sample hybridized to the membrane-
bound array as ‘target’, according to Nature Genet. 21
(Suppl.), 1999, p. 1. The target cDNA is derived from
the total RNA or from poly-A+ RNA prepared from a
biological sample, referred to as ‘mRNA pool’. Probe
cDNA species are spotted in duplicate on the membrane.
These spots are denoted ‘primary’ and ‘secondary’ spot,
solely to indicate that there are two spots for each
cDNA species. These cDNA species are either amplified
fragments of an ORF (for S.cerevisiae) or PCR products
derived from ESTs.

By the phrase ‘hybridization’ we refer only to the
technical procedure of hybridizing and not to the complete
experiment. Thus, ‘repeated hybridization’ will mean that
the hybridization protocol has been repeated. There is
no sharp definition of the term ‘experiment’. This could
either mean the process of transcribing and labeling a
target mRNA sample followed by hybridization, or it
could include additionally culturing of organisms or cells
and subsequent RNA preparation. The term ‘genome-
wide array’ refers to arrays that contain all available gene
representatives of an organism. Except for yeast, which
has been completely sequenced, this comprises only a
portion of all genes of a genome.

Results
Data analysis
Methods to analyze data from a single filter. Typically,
the first problem one encounters when dealing with
data from radioactive hybridizations is the presence
of a background signal. Phosphorimager screens are
particularly sensitive and will make non-zero background
intensity visible. The background may be inhomoge-
neously distributed, in which case we refer to it as ‘local
background’. In order to obtain a value for background
intensity the following controls may be present on the
filter and can be used for correction. At some positions
in the array there could be array positions without DNA.
These empty spots can be used to obtain a value for
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Fig. 1. Histogram of gray level distribution across an array of 17 280
EST clones (Human Unigene Collection) hybridized to a complex
target. A fitted normal probability distribution is shown overlaid.

background intensity (and hence be subtracted from
all other intensities). Intensities of spots representing
supposedly non-expressed genes in the target mRNA pool
provide another estimate of the signal intensity due to
cross hybridization. Below we describe how to model
these values. Heterologous DNA may be spotted on the
filter to probe for unspecific hybridization. The value
obtained for these spots can be used to define a threshold
of reliability to mark which values we want to trust in the
later analysis.

Generally, in a genome-wide array, for most spots there
will be no complementary mRNA species in the complex
target simply because only a comparatively small number
of genes is expressed in the biological sample under
investigation. Yet, such spots may display a marked signal
intensity in the hybridization. Looking at the histogram of
gray level distributions for all spots on an array (Figure 1),
we frequently observe two populations of spots. On a
logarithmic scale, the gray levels in the low-intensity
region follow a normal distribution comprising for most
arrays more than 80% of all genes. This means that
the majority of signals roughly follows a log-normal
distribution typical for data that are centered at a minimum
near zero and cannot extend below zero (Sachs, 1984).
The logarithms of the remaining intensities extend to
the right of the Gaussian curve; this gives the histogram
a much heavier tail than expected from random data
alone. We interpret the population that displays a normal
distribution of intensities as the set of those spots that
do not have a complement in the target or where the
number of transcripts is below the detection limit. What
we observe would then be the distribution of the signals
for this population, mainly due to unspecific interaction

with target DNA fragments, overlaid on the distribution
of expression levels of all genes. We might not be able to
distinguish lowly expressed genes from genes which are
not expressed. From SAGE analysis it is expected that—
for most tissues—only 10–20% of all genes are expressed
under a given condition (Zhang et al., 1997; Velculescu
et al., 1999). Therefore, it is not suprising to see that the
signals of most genes fall into the background region. It
should be noticed that genome-wide arrays based on ESTs
might still have a bias towards highly expressed genes.

To characterize the dispersion of intensities, a normal
distribution function can be fitted to the values of the low-
intensity class. Since this is only a subset of all values,
a method is needed for estimating which values belong
to this class. We use an algorithm which starts by fitting
a Gauss normal distribution function to the histogram by
means of non-linear regression. To distinguish between
‘noise’ that needs to be modeled and signal that does not
obey the normal distribution, the data set used for fitting is
then iteratively reduced by truncating above a threshold.
This threshold is calculated by adding one standard
deviation to the mean of the calculated distribution. This
is followed by a new fitting based on the reduced data
set. The iteration stops when the mean of the distribution
stays constant. We wish to emphasize that the mean of
this distribution is not identical with the average of the
logarithms of the entire data set, and it is clearly separated
from the mean of the non-logarithmic data transformed
to the same scale. The latter value is so far away from
the center of the distribution of intensities that we do not
ascribe meaning to it (see Figure 1).

When fitting logarithmic intensities by a normal distri-
bution is successful this also provides a rational approach
to the question of which genes are actually expressed. Ob-
viously, even for higher intensities there is still a positive
probability that such a signal might be due to chance. This
probability is related to the area under the normal distri-
bution above a certain threshold. In Figure 1, e.g. values
above 100 are almost certainly ‘real’ signals.

In our experience this approach usually works well for
most experiments done on genome-wide arrays. However,
there are experimental setups where it does not hold true
that most genes are not expressed, especially when using
arrays made from a small selection of genes. In this case
this method cannot be applied.

Comparison of two data sets. When we compare two
data sets which originate from different hybridization
experiments, we notice certain systematic differences in
the measured intensities. We model two different types of
systematic differences: one type is the background as has
been described in the previous section. We assume that
the influence of the background is additive with respect to
the measured intensities. Further, we observe a constant
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Fig. 2. Scheme of a scatter plot using logarithmic scale. As an
example two hybridization experiments on an array containing
18 432 mouse ESTs are compared. Intensities are plotted from
hybridization to target derived from mouse thymus with (ordinate)
or without (abscissa) stimulation by dexamethason. A schematic
representation of the different regions is given, as well as their
interpretations.

multiplicative factor between the intensities of genes of
two hybridizations, probably due to different labeling rates
of the complex probe used for hybridization or to unequal
exposure times of the filters.

A good way to visualize the comparison of two hy-
bridization experiments is a scatter plot, schematically
shown in Figure 2. The intensity of every spot in Experi-
ment 1 is plotted against its intensity in Experiment 2. It is
appropriate to use logarithmic scale because one is inter-
ested in intensity ratios rather than absolute differences.
The plot can be subdivided into regions with different in-
terpretations: data points in the lower left corner represent
genes which are inactive or are expressed only at a low
level. In our experiments we noticed that these constitute
the vast majority. In the upper left and lower right corner,
points correspond to genes which are only expressed in
one experiment and not (or not discernibly) in the other.
The intensity ratios calculated for these regions are poorly
reproducible. Genes in the channel around the diagonal
are detected as expressed in both experiments. The farther
a gene is away from the diagonal, the higher its intensity
ratio between the measurements in the two experiments.

Frequently, transforming the data sets of either exper-
iment to a standardnormal form is used as a method for
standardization (Piétu et al., 1996). This implies that the
intensities follow a normal distribution as was discussed in
the previous section. We have shown there that this holds
true only for a subpopulation of spots and thus should not

be used for standardization. The spots fall in either one of
two classes, the first of which contains spots that display
low hybridization signal intensities due to unspecific in-
teraction with labeled target DNA fragments. The second
class comprises all spots whose signal intensity is due to
specific hybridization to a complementary target sequence.
We consider it not appropriate to treat both classes as one.

Our preferred way to standardize the data for compar-
ison is based on the linear model we sketched above.
First we have to eliminate the effects of background by
subtracting an additive constant, or offset. This offset has
some influence on the adjusting factor that is calculated.
The influence of background on data sets is outlined in
Figure 3a,b. The scatter plot of two experiments with
highly different background is distorted (Figure 3a) to
yield an arc-shaped cloud of points around the identity
line when plotted on a logarithmic scale. This distortion
is corrected by subtraction of an offset (Figure 3b).
If the image analysis software does reliably measure
background intensity, we use these values for correction.
Otherwise, we robustly and rapidly estimate the offset by
taking the 5% quantile of intensity values in either data set
and subtracting it from all corresponding intensity values.

Intensity values close to background raise additional
problems since they usually display an unfavorable signal-
to-noise ratio, leading to highly unreliable intensity values.
Ratios formed with such values can get very high even
when there is no significant difference in the expression
level of the corresponding genes. It may be useful to define
an intensity threshold in order to exclude these spots from
being marked as ‘differential’ (see Figure 2).

We use the following procedure to determine a rough
estimate of this threshold. If only high-intensity values
are included in the computation, the linear correlation
coefficient of intensities in Experiment 1 relative to
intensities in Experiment 2 will increase when more and
more intensity values are added to the analysis. Including
lower intensity values, the point at which the linear
correlation coefficient starts to decrease is chosen as the
threshold.

Next, we try to find the systematic factor of change.
Therefore, we need a set of genes which we believe
should have an equal or similar expression level in the
experiments we want to compare. For these genes, a
median of the ratios is used as the adjusting factor, such
that the ratio of intensities for these genes becomes 1. The
effect of this calculation is demonstrated in Figure 3c,d.

If a set of housekeeping genes can be defined, these can
be used to adjust the intensity values. These genes are
believed to be expressed constitutively at a constant level,
independent of the conditions of the experiment. However,
aside from the difficulty of finding such genes, they may
not behave uniformly under all conditions and sometimes
display unexpected behavior. Another method relies on
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Fig. 3. Influence of correction for background and multiplicative factor. In (a) and (b) two hybridizations with an oligonucleotide recognizing
all spots are compared, carried out on an array of 13 824 Arabidopsis ESTs at differing temperatures. The hybridizations show highly different
background intensity. The raw data (a) display an arc shape which has been corrected by subtracting the 5% quantile (b). (c) and (d) display a
factor difference in their intensities. The data are from one hybridization of a complex target to a mouse array, with different exposure times
to the phosphorimager screen. Data before (c) and after (d) standardization are shown.

externally added controls, i.e. heterologous DNA spotted
on the filter that hybridizes with a complementary sample
added to the complex target.

Using genome-wide arrays, it is a good assumption
that the expression level, and hence the signal intensity
for most spots does not change when comparing closely
related experiments. When comparing more distantly
related experiments or using arrays which are biased
towards a selection of genes where a lot of changes
are expected this assumption does not hold true. To be
able to compare these kinds of experiments one needs
to be able to define a set of control genes, where no
changes are expected. To estimate the factor of change
between experiments we compute the arithmetic mean
of the logarithmic differences. The intensities of, e.g.
Experiment 2, can then be adjusted to be on the same scale

as the other experiment by subtracting this mean from all
intensities of Experiment 2:

ln e2,k −
∑n

i=1(ln e2,i − ln e1,i )

n

for each intensity e2,k (k = 1, . . . , n). In this equation,
e2,. refers to the intensity data of Set 2, e1,. to those of
Set 1, and n is the number of spots on the filter. To make
the results less sensitive to outliers, the arithmetic mean
may be replaced by the median. Genes below an intensity
threshold, which display a considerable variance in the
intensity ratio, should not be included in the calculation
of the mean or the median.

We have noted that hybridization experiments to be
compared are best performed with the same filter, or
with filters from the same production batch, because we
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Fig. 4. Scatter plot of hybridization intensities obtained with an
array containing PCR fragments from 6103 S.cerevisiae ORFs.
Yeast has been cultured at 30 (abscissa) or 37 ◦ C (ordinate).
Several heat-induced genes have been marked. Explanation of ORF
identifiers is given in Table 1.

observed significant differences with filters from different
batches, often rendering the experiments incomparable.

In Figure 4 we show the comparison of two hybridiza-
tions of S.cerevisiae that has been cultured at 30 and
37 ◦ C, respectively. Standardization is essential to define
the region of heat-induced genes. Some genes known to
be induced by heat shock are marked. These include chap-
erones, cytochrome b5 which is involved in membrane
lipid remodeling, as well as a V-type ATPase subunit
that, when knocked out, will render the null mutant heat
sensitive. Explanation of the ORF identifiers is given in
Table 1. The highest-induced gene (induced by a factor of
21) is HSP12, a small heat shock protein.

Quality control
A convenient way to handle highly variable data is to
repeat an experiment. There are several levels of repetition
one can envisage when dealing with expression array
hybridization data.

The first level of repetition is to have all gene represen-
tatives spotted in duplicate on the membrane. In our ex-
perience, comparison of the intensities of the primary and
secondary spot reveals reading errors due to problems with
image analysis and spotting. Erroneous grid allocation or
overlapping signals produced by very intense spots can be
detected in a scatter plot where the intensities of the sec-
ondary spots are plotted against the intensities of the cor-
responding primary spots. All spots one wishes to rely on
should be located in a narrow zone around the identity line.
Outliers should be excluded from further analysis.
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Fig. 5. Schematic illustration of the proposed quality measures.
Signal intensities are logarithmized.

When comparing two hybridization experiments, four
differences between the intensity values corresponding to
one gene can be formed with the values for primary and
secondary spot on either filter. It is conservative to expect
that, in the case of differentially expressed genes, even the
smallest of these differences should exceed the variance of
the differences. We consider it less informative to calculate
the mean of primary and secondary spot for each filter
prior to comparison because variance information is lost.

The next level of repetition is to repeat parts of or even
entire experiments. Repeated hybridization starting with
the same RNA sample will reflect variations in labeling,
hybridization measurement and intensity assignment.
Repetitions comprising the whole protocol including
culturing, sampling and RNA preparation will reflect
variations in all of the performed steps giving a more
complete image of the variance for each signal observed.
We investigated data comprising up to four replicates,
providing eight intensity values for each probe species in
the array.

To check for reliability in comparison of experiments
under two different conditions, each of which has been
repeated several times, we calculate quality measures
to see whether signals for a spot corresponding to a
putative differentially expressed gene are well separated.
The ‘min–max separation’ is calculated by taking the
minimum of all distances between data points in the
first data set and those in the second data set. Well
separated data sets should not overlap and therefore
display a positive min–max separation (Figure 5). This is
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Table 1. Description of yeast ORFs found to be differentially expressed in heat shock experiment

ORF id Description Factor of induction

YFL014W HSP12, heat shock protein 21.7
YLR327C chaperone, involved in assembly of protein complexes 15.9
YNL111C cytochrome b5, cofactor of fatty acid desaturases 7.0
YOR332W VMA4, V-ATPase subunit, null mutant heat sensitive 5.1
YHR057C CYP2, cyclophilin 1.8
YOR020C HSP10, heat shock protein 1.5
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Fig. 6. Judging quality of several reproductions of hybridizations
with an S.cerevisiae array and yeast cultured at 30 or 37 ◦ C (as
shown in Figure 4). The log2 of the ratio of the median intensities
(abscissa) is plotted vs the min–max separation (ordinate).

a very restrictive measure which is frequently disturbed by
outliers. A less stringent criterion for separation would be
a distance which we call ‘std separation’, defined as the
difference of the means of the two data sets diminished by
one standard deviation of either data set (Figure 5).

In the heat-induction experiment with S.cerevisiae de-
scribed above, three replicates of the condition cultured at
30 ◦ C and two replicates cultured at 37 ◦ C have been gen-
erated. Each gene has two representative values in each
replicate. To evaluate the reproducibility of the results the
measured ratio of the median intensities is plotted versus
the min–max separation (Figure 6). A min–max separation
higher than zero indicates a reliable result. It can be no-
ticed that the highest-induced gene HSP12 also is among

the genes with the highest min–max separation.
The most general level of repetition is to repeat entire

comparisons of experiments. In this case, one can compare
the lists of differentially expressed genes and see whether
certain genes are repeatedly included.

In the comparison of several data sets, e.g. a time-
course, a concentration series or a collection of mutants,
standardization is equally required. Two questions are
of particular importance: first, a standard has to be
defined when a control condition has been repeatedly
analyzed. In this case we use a virtual standard that is
obtained by taking the gene-wise median of intensity
values across all replicates of a hybridization under the
control condition. Second, all values, including those
of the control condition hybridizations, must then be
standardized to this virtual standard. Otherwise, cross-
comparison between conditions or clustering of gene
or experiment profiles will not be possible. Taking the
median from all replicates of a certain condition is only
meaningful after standardizing. This applies also to cases
where each condition is accompanied by its own control
hybridization. Also here, all data sets must be standardized
to the same virtual standard in order to allow inter-
condition comparison.

Discussion
The technique of expression profiling by means of hy-
bridization to high density DNA arrays offers a new tool
to investigate the expression levels of thousands of genes
at the same time. Differentially expressed genes should, in
theory, be detectable by comparisons of hybridization data
from pairs or series of experiments provided that the sig-
nal intensities are precisely related to the proportion of the
complementary mRNA in the mRNA pool. But compari-
son is hampered by the fact that differences in signal in-
tensities might not only be due to true expression changes
but also to experimental variabilities, which are often in
the same range as the differences one expects to occur
by differential expression. Thus, careful correction for the
various influences on the experiment, like incorporation of
radioactive label or exposure time, is needed.
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The most basic data processing techniques, background
correction and linear transformation of the data, have been
described in this paper. There is, however, discrepancy
in the literature about the methods to find an adjusting
factor for standardization. Chen et al. (1997) use a ratio
distribution function derived for two normally distributed
data sets with constant variance to standardize by an
iterative procedure. Piétu et al. (1996) standardize by
subtracting the mean of the logarithmic data and dividing
by their standard deviation. Richmond et al. (1999)
calculate the relative percentage of total signal as a means
of standardization. We have built our standardization
procedure on a linear model of systematic influences
on microarray gene expression data. The assumptions
underlying this model have been tested on several hundred
hybridizations and found to be sound. In contrast, we
have found that intensity values on an array do not in
their entirety follow a lognormal distribution. Hence, this
distribution may be used to define the background on
one array but is not suited to standardize for comparison
between hybridizations.

Correction for background or linear distortion, how-
ever, does not help with respect to the variability of the
experimental data. To reduce this variability it is desirable
to have several repetitions of the same experiment. We
suggest including all data, rather than averaging since the
individual differences give a rough estimate of the data
quality. We would like to visually inspect these differences
if a gene is believed to be differentially expressed. The re-
liability may be judged from the ‘min–max separation’ or
the ‘std separation’. Before calculating ratios of intensity
values, we compute the median of the data because the
median is more robust to outliers than the mean.

We often observed that the data in the low-intensity
region of an array hybridization can be well fitted with a
normal distribution function (Figure 1). The fitted function
may be used to obtain an estimate of the proportion of
spots in a given intensity class belonging to the normal
distribution. This portion is believed to correspond mainly
to non-expressed genes. However, we refrain from setting
a fixed arbitrary threshold using this function as do
Piétu et al. (1996). Rather, the predicted normal density
in a particular interval provides a way to estimate the
probability that an observed intensity is actually due to an
expressed gene, rather than to experimental noise.

The methods introduced in this paper are only a pre-
requisite to a more thorough study of the data in order to
reveal the inherent information. This is of particular inter-
est when dealing with data from a series of experiments,
e.g. with a time-course, a concentration series or differ-
ent tumor stages, where changes in expression levels are
more difficult to detect by pairwise comparison. We have
had very encouraging experiences with various clustering
methods (Carr et al., 1997; Eisen et al., 1998) and with

methods of embedding high-dimensional data in a plane,
or in three dimensional space (Spanakis and Brouty-Boyé,
1997; Khan et al., 1998; Hilsenbeck et al., 1999). Our de-
velopments in these methods will be discussed elsewhere.
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