Introduction: Reproducibility & Irreproducibility

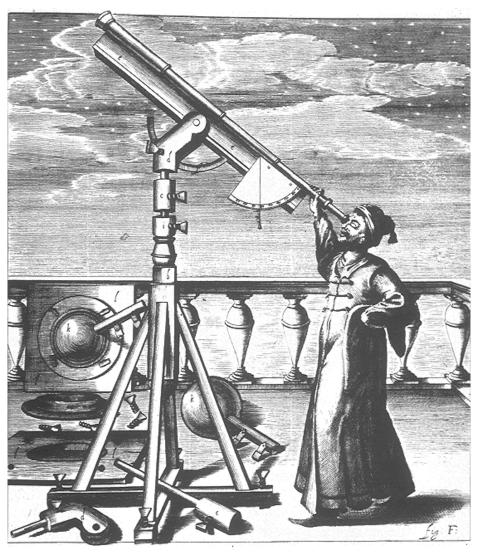
- I. The Duke Scandal
- 2. Reproducibility & Science
- 3. Course Structure

Dan Ellis & Brian McFee

Dept. Electrical Engineering, Columbia University dpwe@ee.columbia.edu <u>brm2132@columbia.edu</u>

I. The Duke Scandal

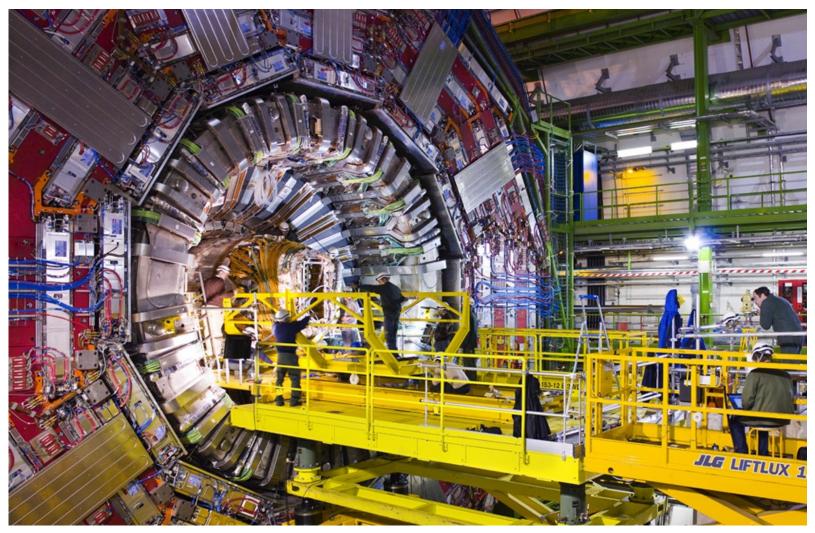
- 2006: Breakthrough in genomics-based personalized cancer treatment
 - o based on large-scale computational analysis
- Independent researchers raise questions
 - o unable to duplicate analysis
- 2010: Duke review clears research
 - based on data provided by researchers
- 2012: Lead researcher agrees data was manipulated
 - o dozens of papers retracted



2. Reproducibility

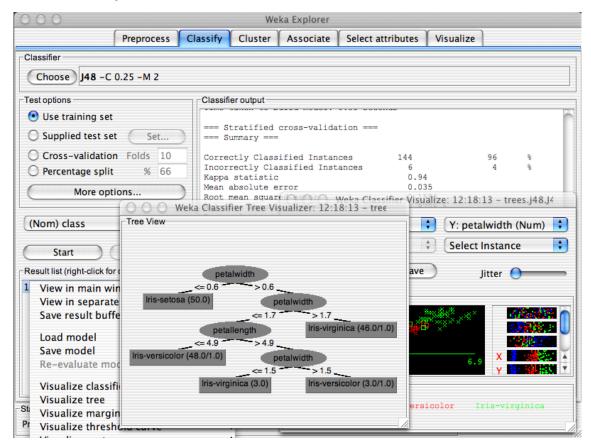
- "The Scientific Method"
 - empirical observation
 - hypothesis
 - o tests
 - confirmation or modification
- Confirmation requires...
 - effective communication of findings
 - o independent reproduction
- Contemporary Computational Research
 - o "tests" involve highly complex software/hardware

17th Century Science


- e.g. Astronomy
 - report observations
 - o anyone can repeat
 - .. given the right equipment

Johannes Hevelius

21st Century Science


Large-scale industrialized science

Large Hadron Collider, CERN

Computational Science

- Software "machinery" can be very complex
 o far beyond the scope of textual description
- But: software is easy to duplicate
 - o your own personal LHC

Benefits of Reproduction

- "Ubiquity of error"
 - o catching the things you didn't realize you got wrong
- Credibility
 - unbiased confirmation
- Identifying invalid results
 - or mistaken explanations
- Validating advances
 - by direct comparisons between different works

Costs of Reproduction

- Costs
 - o time, resources, thinking
- Lowest common denominator
 - only "reproducible" results count
- External constraints
 - e.g. commercially-sensitive or private data
 - Google brain

3. Course Structure

Goals

- Understand the limitations of current practice
- Understand the challenges of ideal practice
- Learn specific tools & techniques
- Reproduce something you want to understand

Methods

- Main project: Reproducing a paper of your choice
- Debugging your "Reproduction package"
- Training in tools/techniques

Project Schedule

- Feb 05:
 Initial presentations of chosen papers
- Mar 12:
 Mid-semester project updates
 Sharing of Reproduction Packages
- Apr 02: Feedback on Reproduction Packages
- Apr 23/30:
 Final presentations
 Final reports

Technical Tools

- Best practices
- How to make good tools
 - programming style
 - testing
 - version control
 - o software analysis
 - documentation
- Evaluation Campaigns
- Presenting Statistical Results
- Open code and data distribution

Summary

- Reproduction is important
 - o for reliable knowledge
- Reproduction is difficult
 - o to enable
 - o to perform
- Enabling reproduction is worthwhile
 - o impact comes from people using your work
 - helps you sleep at night