Micro Motion[®] Auswerteelektronik Modell 1700 mit eigensicheren Ausgängen

Ergänzung zur Konfigurations- und Bedienungsanleitung

Micro Motion Kundenservice

Bereich		Telefonnummer
U.S.A.		800-522-MASS (800-522-6277) (gebührenfrei)
Kanada und Lateinamerika		+1 303-527-5200 (U.S.A.)
Asien	Japan	3 5769-6803
	Alle anderen Länder	+65 6777-8211 (Singapur)
Europa	Innerhalb Deutschlands	0800 182 5347 (gebührenfrei)
	Ausserhalb Deutschlands	+31 (0) 318 495 610
Kunden ausserhalb der U.S.A.	können den Micro Motion Kunde	nservice auch per e-mail erreichen unter flow.support@emerson.com.

Copyrights und Marken

© 2009 Micro Motion, Inc. Alle Rechte vorbehalten. Das Micro Motion und Emerson Logo sind Marken von Emerson Electric Co. Micro Motion, ELITE, MVD, ProLink, MVD Direct Connect und PlantWeb sind Marken eines der Emerson Process Management Unternehmen. Alle anderen Marken sind Eigentum Ihrer jeweiligen Besitzer.

Inhalt

Kapitel 1	Geräteoptionen und Präferenzen konfigurieren 1		1
	1.1	Displayvariablen und Anzeigegenauigkeit konfigurieren	1
Kapitel 2	Messsy	ystem im Steuerungssystem integrieren	3
	2.1	Kanal B konfigurieren	3
	2.2	mA Ausgang konfigurieren	4
	2.3	Frequenzausgang konfigurieren	9
	2.4	Binärausgang konfigurieren	14
	2.5	Digitale Kommunikation konfigurieren	17
	2.6	Ereignisse konfigurieren	22
Anhang A	Display	codes und Abkürzungen	25
	A.1 A.2	Displaycodes für Prozessvariablen Codes und Abkürzungen des Displaymenüs	25 25

Einführung in diese Ergänzung

Diese Ergänzung ist erstellt für die Verwendung mit folgender Betriebsanleitung: *Micro Motion Auswerteelektronik Serie 1000 und Serie 2000: Konfigurations- und Bedienungsanleitung.* Sie ersetzt Abschnitte der Betriebsanleitung mit Abschnitten die für v6.0 der Auswerteelektronik Modell 1700 mit eigensicheren Ausgängen neu oder modifiziert sind. Richtlinen der ersetzten Abschnitte siehe folgende Tabelle.

Richtlinen der ersetzten Abschnitte

Abschnitt in Micro Motion Auswerteelektronik Serie 1000 und Serie 2000: Konfigurations- und Bedienungsanleitung	Ersetzt durch folgenden Abschnitt dieser Ergänzung
6.3.2 Kanal B	Abschnitt 2.1
6.5 mA Ausgänge konfigurieren	Abschnitt 2.2
6.6 Frequenzausgang konfigurieren	Abschnitt 2.3
6.7 Binärausgang konfigurieren	Abschnitt 2.4
8.11 Ereignisse konfigurieren	Abschnitt 2.6
8.14.6 Displayvariablen und Anzeigegenauigkeit konfigurieren	Abschnitt 1.1
8.15 Digitale Kommunikation konfigurieren	Abschnitt 2.5
Tabelle H-1 Displaycodes verwendet für Prozessvariablen	Abschnitt A.1
Tabelle H-2 Displaycodes verwendet im Off-line Menü	Abschnitt A.2

Kommunikations-Hilfsmittel und Versionen

Informationen in dieser Ergeänzung setzen voraus, dass Sie eines der Folgenden zum Konfigurieren Ihrer Auswerteelektronik verwenden:

- Auswerteelektronik Bedieninterface
- ProLink II v2.9
- 375 Handterminal mit folgender Gerätebeschreibung (DD) 1000IMass flo, Dev v6, DD v1

Verwenden Sie eine ältere Version von ProLink II oder der Handterminal Gerätebeschreibung, können einige Funktionen die in dieser Ergänzung beschrieben sind nicht verfügbar sein.

Kapitel 1 Geräteoptionen und Präferenzen konfigurieren

In diesem Kapitel behandelte Themen:

• Displayvariablen und Anzeigegenauigkeit konfigurieren

1.1 Displayvariablen und Anzeigegenauigkeit konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Bedieninterface
Handterminal	5,7,2 Detailed Setup→Display Setup→Display Variables 5,7,3 Detailed Setup→Display Setup→Display Precision

Sie können mit dem Bedieninterface bis zu 15 Prozessvariablen in beliebiger Reihenfolge durchlaufen. Sie können die Prozessvariablen, die Sie ansehen möchten, konfigurieren und die Reihenfolge festlegen, in der sie erscheinen sollen. Sie können Variablen wiederholen und Plätze frei lassen.

Sie können ebenso die Anzeigegenauigkeit für jede Prozessvariable konfigurieren. Die Anzeigegenauigkeit steuert die Anzahl der Digits rechts von der Dezimalstelle, die auf dem Display angezeigt werden, wenn die Prozessvariable als Displayvariable ausgewählt ist. Die Anzeigegenauigkeit kann auf jeden Wert zwischen 0 und 5 gesetzt werden. Je niedriger die Genauigkeit desto größer muss eine Änderung des Prozesses sein, damit dies durch den angezeigten Wert dargestellt wird. Die Anzeigegenauigkeit beinflusst nicht den Wert der Prozessvariablen, die mittels einer anderen Methode ausgegeben wird oder zu Berechnungen verwendet wird.

Einschränkungen

- Sie können die Displayvariable 1 nicht auf Keine setzen. Die Displayvariable 1 muss immer auf eine Prozessvariable gesetzt werden.
- Wenn Sie die Displayvariable 1 auf den primären mA-Ausgang fixiert haben, können Sie die Einstellung der Displayvariable 1 nicht mittels dieser Methode ändern. Um die Einstellung der Displayvariable 1 zu ändern, müssen Sie die Konfiguration der mA-Ausgang-Prozessvariablen für den primären mA-Ausgang ändern.

Anmerkung

Wenn Sie eine Volumen-Prozessvariable als Displayvariable konfiguriert haben und Sie hinterher die Einstellung der Volumen-Durchflussart ändern, wird die Displayvariable automatisch auf die äquivalente Prozessvariable geändert. Wenn zum Beispiel die Displayvariable 2 auf Volumen-Durchfluss gesetzt ist, wird diese auf Gas-Standardvolumen-Durchfluss geändert.

• Beispiel: Displayvariablen-Konfiguration

Displayvariable	Prozessvariablen-Zuordnung
Displayvariable 1	Massedurchfluss
Displayvariable 2	Masse-Summenzähler
Displayvariable 3	Volumendurchfluss
Displayvariable 4	Volumen-Summenzähler
Displayvariable 5	Dichte
Displayvariable 6	Temperatur
Displayvariable 7	Externer Druck
Displayvariable 8	Massedurchfluss
Displayvariable 9	Keine
Displayvariable 10	Keine
Displayvariable 11	Keine
Displayvariable 12	Keine
Displayvariable 13	Keine
Displayvariable 14	Keine
Displayvariable 15	Keine

1.1.1 Displayvariable 1 mittels Displaymenü konfigurieren

Display	OFF-LINE MAINT→OFF-LINE CONFG→DSPLY→VAR 1	
ProLink II	Nicht verfügbar	
Handterminal	Nicht verfügbar	

Falls gewünscht können Sie die Displayvariable 1 vom Displaymenü aus konfigurieren, und zwar durch Fixieren auf die Prozessvariable, die dem primären mA-Ausgang zugeordnet ist, welche ebenso die HART-Primärvariable ist. Wenn Sie dies tun, wird die Displayvariable 1 immer die Prozessvariable sein, die dem primären mA-Ausgang zugeordnet ist. Dies ist die einzige Möglichkeit, eine Displayvariable vom Displaymenü aus zu konfigurieren.

Ist die Displayvariable 1 auf den primären mA-Ausgang fixiert, ist die einzige Möglichkeit, die Displayvariable 1 auf eine andere Prozessvariable zu setzen, die Zuordnung des mA-Ausgangs zu ändern. Wenn Sie die Displayvariable 1 nicht auf den primären mA-Ausgang fixiert haben, müssen Sie ein Kommunikations-Hilfsmittel wie ProLink II oder ein Handterminal verwenden, um die Displayvariable 1 zu ändern.

Ist die Displayvariable 1 fixiert, können Sie die Genauigkeit setzen. Um die Genauigkeit zu setzen, müssen Sie ein Kommunikations-Hilfsmittel verwenden.

Anmerkung

Über diese Option verfügt nur die Displayvariable 1. Um irgendeine andere Displayvariable zu ändern, benötigen Sie immer ein Kommunikations-Hilfsmittel.

Kapitel 2 Messsystem im Steuerungssystem integrieren

In diesem Kapitel behandelte Themen:

- Kanal B konfigurieren
- mA Ausgang konfigurieren
- Frequenzausgang konfigurieren
- Binärausgang konfigurieren
- Digitale Kommunikation konfigurieren
- Ereignisse konfigurieren

2.1 Kanal B konfigurieren

Display	OFF-LINE MAINT \rightarrow OFF-LINE CONFG \rightarrow IO \rightarrow CH B \rightarrow SET FO/SET DO
ProLink II	ProLink→Konfiguration→Frequenz/Binärausgang
Handterminal	5,3,2,1 Detailed Setup→Config Outputs→FO/DO Config→Freq/DO Setup

Die E/A Klemmenpaare an der Auswerteelektronik werden "Kanäle" genannt und identifiziert als Kanal A, Kanal B und Kanal C. Sie können Kanal B konfigurieren als Frequenzausgang oder als Binärausgang zu arbeiten. Die Konfiguration des Kanals muss der Verdrahtung entsprechen.

VORSICHT! Prüfen Sie immer die Ausgangskonfiguration, nachdem Sie die Kanalkonfiguration geändert haben. Wenn die Konfiguration eines Kanals geändert wird, wird das Verhalten des Kanals gesteuert durch die für die ausgewählte Ausgangsart gespeicherte Konfiguration. Diese kann für Ihren Prozess geeignet sein oder auch nicht. Um Prozessfehler zu vermeiden:

- Konfigurieren Sie die Kanäle, bevor Sie die Ausgänge konfigurieren.
- Wenn Sie die Konfiguration des Kanals ändern, stellen Sie sicher, dass alle durch diesen Kanal betroffenen Regelkreise manuell gesteuert werden.
- Bevor Sie zur automatischen Steuerung zurückkehren, stellen Sie sicher, dass der Ausgang für Ihren Prozess korrekt konfiguriert ist.

2.1.1 Optionen für Kanal B

Tabelle 2-1Optionen für Kanal B

Kanal	Betrieb	
Kanal B	Frequenzausgang (FO)	
	Binärausgang (DO)	

2.2 mA Ausgang konfigurieren

Display	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH A
ProLink II	ProLink→Konfiguration→Analogausgang
Handterminal	5,3,1 Detailed Setup→Config Outputs→Analog Output 1

Der mA Ausgang wird zum Ausgeben einer Prozessvariablen verwendet. Die mA Ausgangsparameter steuern wie die Prozessvariable ausgegeben wird. Ihre Auswerteelektronik hat einen mA Ausgang: Kanal A.

Die Parameter des mA Ausgangs enthalten:

- mA Ausgang Prozessvariable
- Messanfang (LRV) und Messende (URV)
- Analogausgang Abschaltung
- Zusätzliche Dämpfung
- Analogausgang-Störaktion und Analogausgang-Störwert

Vorbereitungsverfahren

Wenn Sie vorhaben den mA Ausgang zu konfigurieren Volumendurchfluss auszugeben, stellen Sie sicher, dass Sie die Volumendurchfluss Art wie gewünscht gesetzt haben: Flüssigkeit oder Gas Standard Volumen.

Nachbereitungsverfahren

Wichtig

Immer wenn Sie einen Parameter des mA Ausgangs ändern, prüfen Sie alle anderen Parameter des mA Ausgangs bevor Sie das Durchfluss-Messsystem wieder in Betrieb nehmen. In einigen Situationen lädt die Auswerteelektronik automatisch einige gespeicherten Werte und es kann sein, dass diese Werte nicht passend für Ihre Anwendung sind.

2.2.1 mA Ausgang Prozessvariable konfigurieren

Display	OFF-LINE MAINT \rightarrow OFF-LINE CONFG \rightarrow IO \rightarrow CH A \rightarrow AO SRC
ProLink II	ProLink→Konfiguration→Analogausgang→Primärvariable Is
Handterminal	5,3,1,1 Detailed Setup→Config Outputs→Analog Output 1→PV Is

Die mA Ausgang Prozessvariable steuert die Variable die über den mA Ausgang ausgegeben wird. In Auswerteelektronik Modell 1700 steuert sie ebenso die Einstellung der Frequenzausgang Prozessvariable.

Vorbereitungsverfahren

Wenn Sie die HART Variablen verwenden, seien Sie sich bewusst, dass das Ändern der Konfiguration der mA Ausgang Prozessvariable die Konfiguration der HART Primärvariablen (PV) und die HART Tertiärvariablen (TV) ändert.

Optionen für mA Ausgang Prozessvariable

Prozessvariable	Displaycode	ProLink II Code	Handterminalcode
Massedurchfluss	MFLOW	Massedurchfluss	Mass flo
Volumendurchfluss	VFLOW	Volumendurchfluss	Vol flo
Gas Standard Volumendurchfluss	GSV F	Gas Std Volumendurchfluss	Gas vol flo

Tabelle 2-2 Optionen f ür mA Ausgang Prozessvariable

2.2.2 Messanfang (LRV) und Messende (URV) konfigurieren

Display	OFF-LINE MAINT→OFF-LINE CONFG→CH A→AO 4 mA OFF-LINE MAINT→OFF-LINE CONFG→CH A→AO 20 mA
ProLink II	ProLink→Konfiguration→Analogausgang→Messanfang ProLink→Konfiguration→Analogausgang→Messende
Handterminal	5,3,1,2 Detailed Setup→Config Outputs→Analog Output 1→Range Values

Der Messanfang (LRV) und das Messende (URV) werden dazu verwendet, um den mA Ausgang zu skalieren, d.h. das Verhältnis zwischen der mA Ausgang Prozessvariablen und dem mA Ausgangswert zu definieren.

Der mA Ausgang verwendet einen Bereich von 4 – 20 mA zur Darstellung der mA Ausgang Prozessvariablen:

- URV spezifiziert den Wert der mA Ausgang Prozessvariablen, repräsentiert durch den Ausgang von 20 mA.
- Zwischen LRV und URV ist der mA Ausgang linear zur Prozessvariablen.
- Fällt die Prozessvariable unterhalb von LRV oder steigt über URV, setzt die Auswerteelektronik einen Sättigungsalarm.

Geben Sie die Werte für LRV und URV in den Messeinheiten ein, die für die mA Ausgang Prozessvariablen konfiguriert wurden.

Anmerkungen

- Sie können URV unterhalb von LRV setzen. Zum Beispiel können Sie URV auf 50 und LRV auf 100 setzen.
- Bei Auswerteelektronik Software v5.0 und höher, wenn Sie LRV und URV von den werkseitig voreingestellten Werten ändern und Sie später die mA Ausgang Prozessvariablen ändern, wird LRV und URV nicht auf die voreingestellten Werte zurückgesetzt. Zum Beispiel, wenn Sie die mA Ausgang Prozessvariablen als Massedurchfluss konfigurieren und LRV und URV für Massedurchfluss ändern, dann die mA Ausgang Prozessvariablen als Dichte konfigurieren und letztlich die mA Ausgang Prozessvariablen zurück auf Massedurchfluss ändern, werden LRV und URV für Massedurchfluss auf die konfigurierten Werte zurückgesetzt. In füheren Versionen der Auswerteelektronik Software werden LRV und URV auf die werkseitig voreingestellten Werte zurück gesetzt.

⁽¹⁾ Erfordert Auswerteelektronik Software v5.0 oder höher.

Voreingestelle Werte für Messanfang (LRV) und Messende (URV)

Jede Option für die mA Ausgang Prozessvariable hat ihre eigenen LRV und URV. Wenn Sie die Konfiguration der mA Ausgang Prozessvariable ändern, werden die korrospondierenden LRV und URV geladen und verwendet.

Voreingestellte LRV und URV Einstellungen sind in Tabelle 2-3 aufgelistet.

Tabelle 2-3 Voreingestelle Werte für Messanfang (LRV) und Messende (URV)

Prozessvariable	LRV	URV
Alle Massedurchfluss-Variablen	-200,000 g/s	200,000 g/s
Alle Flüssigkeits-Volumendurchfluss- Variablen	-0,200 l/s	0,200 l/s
Gas-Standardvolumendurchfluss	-423,78 SCFM	423,78 SCFM

2.2.3 Analogausgang-Abschaltung konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Analogausgang→AO-Abschaltung
Handterminal	Detailed Setup→Config Outputs→Analog Output 1→PV AO Cutoff

AO Cutoff (Analogausgang-Abschaltung) spezifiziert den niedrigsten Massedurchfluss, Volumendurchfluss oder Gas Standard Volumendurchfluss der durch den mA Ausgang ausgegeben wird. Jeder Durchfluss unterhalb der Analogausgang-Abschaltung wird als 0 ausgegeben.

Einschränkung

Die AO Abschaltung wird nur angewandt wenn die mA Ausgang Prozessvariable auf Massedurchfluss, Volumendurchfluss oder Gas Standard Volumendurchfluss gesetzt ist. Ist die mA Ausgang Prozessvariable auf eine andere Prozessvariable gesetzt, ist die AO Abschaltung nicht konfigurierbar und die Auswerteelektronik implementiert die Funktion der AO Abschaltung nicht.

Hinweis

Für die meisten Anwendungen sollte der voreingestellte Wert der AO Abschaltung verwendet werden. Bevor Sie die AO Abschaltung ändern, setzen Sie sich mit dem Micro Motion Kundenservice in Verbindung.

Wechselwirkung bei Abschaltung

Wenn die mA-Ausgang-Prozessvariable auf eine Durchflussvariable (Massedurchfluss, Volumendurchfluss oder Gas-Standardvolumen-Durchfluss) gesetzt ist, dann hat die AO-Abschaltung Wechselwirkungen mit der Massedurchfluss-Abschaltung, Volumendurchfluss-Abschaltung oder Gas-Standardvolumen-Durchflussabschaltung. Die Auswerteelektronik setzt die Abschaltung auf den Effekt beim höchsten Durchfluss, bei dem die Abschaltung anwendbar ist.

• Beispiel: Wechselwirkung bei Abschaltung

Konfiguration:

- mA-Ausgang-Prozessvariable = Massedurchfluss
- Frequenzausgang-Prozessvariable = Massedurchfluss
- AO-Abschaltung = 10 g/s
- Massedurchfluss-Abschaltung = 15 g/s

Ergebnis: Fällt der Massedurchfluss unter 15 g/s, geben alle Ausgänge, die den Massedurchfluss repräsentieren, null Durchfluss aus.

Beispiel: Wechselwirkung bei Abschaltung

Konfiguration:

- mA-Ausgang-Prozessvariable = Massedurchfluss
- Frequenzausgang-Prozessvariable = Massedurchfluss
- AO-Abschaltung = 15 g/s
- Massedurchfluss-Abschaltung = 10 g/s

Ergebnis:

- Fällt der Massedurchfluss unter 15 g/s, nicht aber unter 10 g/s,
 - gibt der mA-Ausgang null Durchfluss aus.
 - gibt der Frequenzausgang den aktuellen Durchfluss aus.
- Fällt der Massedurchfluss unter 10 g/s, geben beide Ausgänge null Durchfluss aus.

2.2.4 Zusätzliche Dämpfung konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Analogausgang→AO zusätzliche Dämpfung
Handterminal	5,3,1,4 Detailed Setup→Config Outputs→Analog Output 1→PV AO Added Damping

Die Zusätzliche Dämpfung steuert den Wert der Dämpfung die für den mA Ausgang angewandt werden soll. Sie beeinflusst nur die Ausgabe der mA Ausgang Prozessvariablen durch den mA Ausgang. Sie beeinflusst nicht die Ausgabe der Prozessvariablen mittels einer anderen Methode (z.B. dem Frequenzausgang oder der digitalen Kommunikation) oder den Wert der Prozessvariablen der für die Berechnungen verwendet wird.

Anmerkung

Die Zusätzliche Dämpfung trifft nicht für den mA Ausgang zu, wenn dieser fixiert ist (z.B. während des Messkreistests) oder wenn der mA Ausgang eine Störung ausgibt. Die Zusätzliche Dämpfung wird angewandt während die Sensor Simulation aktiv ist.

Optionen für Zusätzliche Dämpfung

Wenn Sie den Wert für die Zusätzliche Dämpfung setzen, rundet die Auswerteelektronik den Wert automatisch auf den nächsten Wert nach unten ab. Die gültigen Werte sind in der Tabelle 2-4 aufgelistet.

Anmerkung

Die Werte der Zusätzlichen Dämpfung werden beeinflusst durch das Setzen der Messwertaktualisierung und der 100-Hz-Variable.

Tabelle 2-4 Gültige Werte für die Zusätzliche Dämpfung

Einstellung der Mess- wertaktualisierung:	Prozessvariable	Beein- flusste Messwert- aktualisie- rung	Gültige Werte für die Zusätzliche Dämpfung
Normal	Alle	20 Hz	0,0 / 0,1 / 0,3 / 0,75 / 1,6 / 3,3 / 6,5 / 13,5 / 27,5 / 55,0 / 110 / 220 / 440
Spezial	100-Hz-Variable (wenn einem mA-Ausgang zugeordnet)	100 Hz	0,0 / 0,04 / 0,12 / 0,30 / 0,64 / 1,32 / 2,6 / 5,4 / 11,0 / 22,0 / 44 / 88 / 176 / 350
	100-Hz-Variable (keinem mA-Ausgang zugeordnet)	6,25 Hz	0,0 / 0,32 / 0,96 / 2,40 / 5,12 / 10,56 / 20,8 / 43,2 / 88,0 / 176,0 / 352
	Alle anderen Prozessvaria- blen	6,25 Hz	0,0 / 0,32 / 0,96 / 2,40 / 5,12 / 10,56 / 20,8 / 43,2 / 88,0 / 176,0 / 352

Wechselwirkung bei Dämpfungsparametern

Wenn die mA-Ausgang-Prozessvariable auf eine Durchflussvariable, Dichte oder Temperatur gesetzt ist, dann hat die Zusätzliche Dämpfung Wechselwirkungen mit der Durchflussdämpfung, Dichtedämpfung oder Temperaturdämpfung. Wenn mehrere Dämpfungsparameter verwendet werden, wird zuerst der Effekt der Dämpfung der Prozessvariablen berechnet, und die zusätzliche Dämpfung wird auf das Ergebnis dieser Berechnung angewandt.

• Beispiel: Wechselwirkung bei Dämpfung

Konfiguration:

- Durchflussdämpfung = 1 s
- mA-Ausgang-Prozessvariable = Massedurchfluss
- Zusätzliche Dämpfung = 2 s

Ergebnis: Eine Änderung des Massedurchflusses wirkt sich am mA-Ausgang nach mehr als 3 Sekunden aus. Die genaue Zeit wird durch die Auswerteelektronik berechnet, gemäß einem internen Algorithmus, der nicht konfiguriert werden kann.

2.2.5 mA Ausgang Störaktion und mA Ausgang Störwert konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Analogausgang→AO-Störaktion ProLink→Konfiguration→Analogausgang→AO-Störwert
Handterminal	5,3,1,5 Detailed Setup→Config Outputs→Analog Output 1→AO1 Fault Setup

Die mA Ausgang Störaktion steuert das Verhalten des mA Ausgangs, wenn die Auswerteelektronik eine interne Störbedingung erkennt.

Anmerkung

Wenn Zuletzt gemessener Wert – Timeout auf einen Wert ungleich null gesetzt ist, wird die Auswerteelektronik die Störaktion nicht implementieren, bis das Timeout abgelaufen ist.

ProLink II Code	Handterminal- code	mA Ausgang Störwert	mA Ausgang Verhalten
Aufwärts ⁽²⁾	Upscale ⁽²⁾	Voreinstellung: 22 mA Bereich: 21–24 mA	Geht auf den konfigurierten Störwert
Abwärts (Vorein- stellung) (2)	Downscale (Vor- einstellung) (2)	Voreinstellung: 3,2 mA Bereich: 3,2–3,6 mA	Geht auf den konfigurierten Störwert
Intern Null	Intrnl Zero	Nicht anwendbar	Geht auf den mA Ausgangswert der dem Wert der Prozessvariablen von 0 (Null) zugeordnet ist, wie durch die Messanfang und Messende Werte Einstellungen.
Keine	None	Nicht anwendbar	Übertragungsdaten für die zugeordnete Prozessvariable, keine Störaktion

Optionen für mA Ausgang Störaktion und mA Ausgang Störwert

Tabelle 2-5 Optionen für mA Ausgang Störaktion und mA Ausgang Störwert

VORSICHT! Wenn Sie die mA-Ausgang-Störaktion oder

Frequenzausgang-Störaktion auf Keine setzen, stellen Sie sicher, dass auch Digitale Kommunikations-Störaktion auf Keine gesetzt ist. Andernfalls gibt der Ausgang nicht die aktuellen Prozessdaten aus und dies kann einen Messfehler erzeugen oder ungewollte Konsequenzen für Ihren Prozess haben.

VORSICHT! Wenn Sie die Digitale Kommunikations-Störaktion auf NAN setzen, können Sie die mA-Ausgang-Störaktion oder Frequenzausgang-Störaktion nicht auf Keine setzen. Wenn Sie dies versuchen, akzeptiert die Auswerteelektronik die Konfiguration nicht.

2.3 Frequenzausgang konfigurieren

Display	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET FO
ProLink II	ProLink→Konfiguration→Frequenz/Binärausgang
Handterminal	5,3,2 Detailed Setup→Config Outputs→FO/DO Config

Der Frequenzausgang wird zum Ausgeben einer Prozessvariablen verwendet. Die Frequenz Ausgangsparameter steuern wie die Prozessvariable ausgegeben wird. Ihre Auswerteelektronik hat einen Frequenzausgang: Kanal B.

Die Parameter Frequenzausgang enthalten:

- Frequenzausgang Skaliermethode
- Frequenzausgang max. Impulsbreite
- Frequenzausgang Polarität
- Frequenzausgang Störaktion und Frequenzausgang Störwert

Einschränkung

Bei Auswerteelektronik Modell 1700, wird die Prozessvariable die dem primären mA Ausgang zugeordnet ist automatisch dem Frequenzausgang zugeordnet. Sie können keine andere Prozessvariable zuordnen.

⁽²⁾ Wenn Sie Aufwärts oder Abwärts wählen, müssen Sie ebenso den Störwert konfigurieren.

Nachbereitungsverfahren

Wichtig

Immer wenn Sie einen Parameter des Frequenzausgangs ändern, prüfen Sie alle anderen Parameter des Frequenzausgangs bevor Sie das Durchfluss-Messsystem wieder in Betrieb nehmen. In einigen Situationen lädt die Auswerteelektronik automatisch einige gespeicherten Werte und es kann sein, dass diese Werte nicht passend für Ihre Anwendung sind.

2.3.1 Frequenzausgang Skaliermethode konfigurieren

Display	OFF-LINE MAINT \rightarrow OFF-LINE CONFG \rightarrow IO \rightarrow CH B \rightarrow SET FO \rightarrow FO SCALE
ProLink II	$ProLink \rightarrow Konfiguration \rightarrow Frequenz/Binärausgang \rightarrow Skaliermethode$
Handterminal	5,3,2,3 Detailed Setup→Config Outputs→FO/DO Config→FO Scale Method

Die Frequenzausgang-Skalierungmethode definiert das Verhältnis zwischen Ausgangsimpulsen und Durchflusseinheiten. Setzen Sie die Frequenzausgang-Skalierungmethode entsprechend den Anforderungen Ihres frequenzempfangenden Gerätes.

Verfahren

- 1. Setzen Sie den Kanal so, dass er als Frequenzausgang arbeitet, wenn Sie dies noch nicht getan haben.
- 2. Frequenzausgang-Skaliermethode setzen.

Frequenz = Durchfluss	Frequenz berechnet vom Durchfluss
Impulse/Einheit	Eine durch den Anwender spezifizierte Impulszahl repräsentiert eine Durchflusseinheit.
Einheiten/Impuls	Ein Impuls repräsentiert eine durch den Anwender spezifizierte Anzahl an Durchflusseinheiten.

- 3. Setzen Sie zusätzlich erforderlicher Parameter.
 - Wenn Sie die Frequenzausgang-Skaliermethode auf Frequenz = Durchfluss setzen, setzen Sie den Durchflussfaktor und Frequenzfaktor.
 - Wenn Sie die Frequenzausgang-Skaliermethode auf Impulse/Einheit setzen, definieren Sie die Anzahl der Impulse, die eine Durchflusseinheit repräsentieren soll.
 - Wenn Sie die Frequenzausgang-Skaliermethode auf Einheiten/Impuls setzen, definieren Sie die Einheiten, die jeder Impuls anzeigen soll.

Frequenz = Durchfluss

Die Option Frequenz = Durchfluss wird verwendet, um den Frequenzausgang Ihrer Anwendung kundenspezifisch anzupassen, wenn Sie die entsprechenden Werte für Einheiten/Imuls oder Impulse/Einheit nicht kennen.

Wenn Sie Frequenz = Durchfluss wählen, müssen Sie die Werte für Durchflussfaktor und Frequenzfaktor angeben:

Durchflussfaktor	Der max. Durchfluss, den der Frequenzausgang ausgeben soll. Oberhalb dieses Durchflusses gibt die Auswerteelektronik A110 aus: Frequenzausgang gesättigt.
Frequenzfaktor	Ein Wert wird wie folgt berechnet:
	FrequenzFaktor = <u>RateFaktor</u> x N T
	Legende:

т	Faktor zum Umwandeln der gewählten Zeitbasis in Sekunden
Ν	Anzahl der Impulse pro Durchflusseinheit gemäß Konfiguration
	am empfangenden Gerät

Der resultierende Frequenzfaktor muss innerhalb des Frequenzbereichs des Ausgangs liegen (von 0 bis 10 000 Hz).

- Ist der Frequenzfaktor kleiner als 1 Hz, konfigurieren Sie das empfangende Gerät auf einen höheren Wert für Impulse/Einheit.
- Ist der Frequenzfaktor größer als 10 000 Hz, konfigurieren Sie das empfangende Gerät auf einen niedrigeren Wert f
 ür Impulse/Einheit.

Hinweis

Ist die Frequenzausgang Skaliermethode auf Frequenz = Durchfluss gesetzt und Max. Impulsbreite für Frequenzausgang auf einen Wert ungleich Null gesetzt, empfiehlt Micro Motion die Einstellung des Frequenzfaktors auf einen Wert kleiner als 200 Hz.

Beispiel: Frequenz = Durchfluss konfigurieren

Wenn Sie möchten, dass der Frequenzausgang alle Durchflüsse bis 2000 kg/min ausgeben soll.

Das frequenzempfangende Gerät ist auf 10 Impulse/kg konfiguriert.

Lösung:

FrequenzFaktor =
$$\frac{\text{RateFaktor}}{\text{T}}$$
 x N
FrequenzFaktor = $\frac{2000}{60}$ x 10

Setzen Sie die Parameter wie folgt.

- Durchflussfaktor: 2000
- Frequenzfaktor: 333.33

2.3.2 Frequenzausgang max. Impulsbreite konfigurieren

Display	Nicht verfügbar
ProLink II	$\textbf{ProLink} {\rightarrow} \textbf{Konfiguration} {\rightarrow} \textbf{Frequenz/Binärausgang} {\rightarrow} \textbf{Freq-Impulsbreite}$
Handterminal	5,3,2,5/6 Detailed Setup→Config Outputs→FO/DO Config→Max Pulse Width

Die Frequenzausgang max. Impulsbreite stellt sicher, dass die Dauer des EIN Signals lang genug ist damit das Frequenz empfangende Gerät es erkennt.

Das EIN Signal kann die hohe Spannung sein oder 0,0 v, abhängig von der Frequenzausgang Polarität, wie in Tabelle 2-6 dargestellt

Polarität	Impulsbreite
Aktiv Hoch	$\longleftrightarrow \qquad \longleftrightarrow \qquad \longleftrightarrow \qquad \longleftrightarrow$
Aktiv Niedrig	

Tabelle 2-6 Wechselwirkung von Frequenzausgang max. Impulsbreite und Frequenzausgang Polarität

Hinweise

- Für typische Anwendungen ist der voreingestellte Wert (0) geeignet für die Frequenzausgang max. Impulsbreite. Der voreingestellte Wert erzeugt ein Frequenzssignal mit einem Puls/Pause-Verhältnis von 50 %. Hochfrequenz-Zähler wie Frequenz/Spannungswandler, Frequenz/Stromwandler sowie Micro Motion Peripheriegeräte erfordern normalerweise ein Puls/Pause-Verhältnis von ca. 50 %.
- Elektromechanische Z\u00e4hler und SPS mit niedrigen Abfragezyklen verwenden allgemein einen Eingang mit einer festen Statusdauer f\u00fcr ungleich Null und einer variablen Statusdauer f\u00fcr Null. Die meisten niederfrequenten Z\u00e4hler haben spezielle Anforderungen an die Frequenzausgang max. Impulsbreite.

Frequenzausgang – max. Impulsbreite

Sie können die Frequenzausgang – max. Impulsbreite auf 0 setzen oder auf Werte zwischen 0,5 Millisekunden und 277,5 Millisekunden. Der vom Anwender eingegebene Wert wird automatisch auf den nächsten gültigen Wert gesetzt.

 Ist die Frequenzausgang – max. Impulsbreite auf 0 gesetzt (Voreinstellung), hat der Ausgang ein Puls/Pause-Verhältnis von 50 %, unabhängig von der Ausgangsfrequenz. Siehe Abbildung 2-1.

Abbildung 2-1 Puls/Pause-Verhältnis 50 %

 Ist die Frequenzausgang – max. Impulsbreite auf einen Wert ungleich null gesetzt, wird das Puls/Pause-Verhältnis gesteuert durch die Überschneidungsfrequenz.

Die Überschneidungsfrequenz wird wie folgt berechnet:

ÜberschneidungsFrequenz= 1 2 x MaxImpulsbreite

- Bei Frequenzen unterhalb der Überschneidungsfrequenz wird das Puls/Pause-Verhältnis bestimmt durch die Impulsbreite und die Frequenz.
- Bei Frequenzen oberhalb der Überschneidungsfrequenz wechselt der Ausgang auf ein Puls/Pause-Verhältnis von 50 %.
- Beispiel: Frequenzausgang max. Impulsbreite mit speziellen SPS Anforderungen

Das frequenzempfangende Gerät ist eine SPS mit einer speziellen Anforderung für die Impulsbreite von 50 Millisekunden. Die Überschneidungsfrequenz ist 10 Hz.

Lösung: Die Frequenzausgang – max. Impulsbreite auf 50 Millisekunden setzen.

Ergebnis:

- Bei Frequenzen kleiner 10 Hz, hat der Frequenzausgang einen EIN-Status von 50 ms und der AUS-Status wird entsprechend angepasst.
- Bei Frequenzen größer 10 Hz hat der Frequenzausgang ein Rechtecksignal mit einem Puls/Pause-Verhältnis von 50 %.

2.3.3 Frequenzausgang Polarität konfigurieren

Display	OFF-LINE MAINT \rightarrow OFF-LINE CONFG \rightarrow IO \rightarrow CH B \rightarrow SET FO \rightarrow FO POLAR
ProLink II	ProLink→Konfiguration→Frequenz/Binärausgang→Freq-Ausgang-Polarität
Handterminal	5,3,2,6/7 Detailed Setup→Config Outputs→FO/DO Config→Polarity

Die Frequenzausgang Polarität steuert wie der Ausgang einen EIN (aktiv) Status anzeigt. Der voreingestellte Wert Aktiv Hoch ist anwendbar für die meisten Anwendungen. Es kann sein, dass Aktiv Niedrig für Anwendungen mit niederfrequentem Signal benötigt wird.

Optionen für Frequenzausgang Polarität

Tabelle 2-7 Optionen f ür Frequenzausgang Polarit ät

Polarität	Referenzspannung (AUS)	Impulsspannung (EIN)
Aktiv Hoch	0	Bestimmt durch Spannungsversor- gung, Pull-up Widerstand und Bürde (siehe Installationsanleitung Ihrer Auswerteelektronik)
Aktiv Niedrig	Bestimmt durch Spannungsversor- gung, Pull-up Widerstand und Bürde (siehe Installationsanleitung Ihrer Auswerteelektronik)	0

2.3.4 Frequenzausgang Störaktion und Frequenzausgang Störwert konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Frequenz/Binärausgang→Freq-Störaktion ProLink→Konfiguration→Frequenz/Binärausgang→Freq-Störwert
Handterminal	5,3,2,7/8 Detailed Setup→Config Outputs→FO/DO Config→FO Fault Indicator 5,3,2,8/9 Detailed Setup→Config Outputs→FO/DO Config→FO Fault Value

Frequenzausgang Störaktion steuert das Verhalten des Frequenzausgangs, wenn die Auswerteelektronik eine interne Störbedingung erkennt.

Anmerkung

Wenn Zuletzt gemessener Wert – Timeout auf einen Wert ungleich null gesetzt ist, wird die Auswerteelektronik die Störaktion nicht implementieren, bis das Timeout abgelaufen ist.

Optionen für Frequenzausgang Störaktion

Tabelle 2-8Optionen für Frequenzausgang Störaktion

ProLink II Code	Handterminalcode	Frequenzausgang Verhalten
Aufwärts ⁽³⁾	Upscale ⁽³⁾	Geht zum konfigurierten Aufwärts Wert: • Bereich: 10–15000 Hz • Voreinstellung: 15000 Hz
Abwärts	Downscale	0 Hz
Intern Null	Intrnl Zero	0 Hz
Keine (Voreinstellung)	None (Voreinstellung)	Führt die Daten der zugeordneten Prozessvariablen

VORSICHT! Wenn Sie die mA-Ausgang-Störaktion oder

Frequenzausgang-Störaktion auf Keine setzen, stellen Sie sicher, dass auch Digitale Kommunikations-Störaktion auf Keine gesetzt ist. Andernfalls gibt der Ausgang nicht die aktuellen Prozessdaten aus und dies kann einen Messfehler erzeugen oder ungewollte Konsequenzen für Ihren Prozess haben.

VORSICHT! Wenn Sie die Digitale Kommunikations-Störaktion auf NAN setzen, können Sie die mA-Ausgang-Störaktion oder Frequenzausgang-Störaktion nicht auf Keine setzen. Wenn Sie dies versuchen, akzeptiert die Auswerteelektronik die Konfiguration nicht.

2.4 Binärausgang konfigurieren

Display	OFF-LINE MAINT \rightarrow OFF-LINE CONFG \rightarrow IO \rightarrow CH B \rightarrow SET DO
ProLink II	ProLink→Konfiguration→Frequenz/Binärausgang
Handterminal	5,3,2 Detailed Setup→Config Outputs→FO/DO Config

Der Binärausgang wird verwendet, um spezifische Durchfluss-Messsystem oder Prozessbedingungen auszugeben. Die Parameter des Binärausgangs steuern welche Bedingung ausgegeben wird und wie. Ihre Auswerteelektronik kann keinen oder einen Binärausgang haben: Kanal B kann als Frequenzausgang oder Binärausgang konfiguriert werden.

Die Parameter Binärausgang enthält:

- Binärausgang Quelle
- Binärausgang Polarität
- Binärausgang Störaktion

Einschränkung

Bevor Sie den Binärausgang konfigurieren können, müssen Sie einen Kanal konfigurieren der als Binärausgang arbeitet.

⁽³⁾ Wenn Sie Aufwärts wählen, müssen Sie ebenso den Aufwärts Wert konfigurieren.

Nachbereitungsverfahren

Wichtig

Immer wenn Sie einen Parameter des Binärausgangs ändern, prüfen Sie alle anderen Parameter des Binärausgangs bevor Sie das Durchfluss-Messsystem wieder in Betrieb nehmen. In einigen Situationen lädt die Auswerteelektronik automatisch einige gespeicherten Werte und es kann sein, dass diese Werte nicht passend für Ihre Anwendung sind.

2.4.1 Binärausgang Quelle konfigurieren

Display	OFF-LINE MAINT \rightarrow OFF-LINE CONFG \rightarrow IO \rightarrow CH B \rightarrow SET DO \rightarrow DO SRC
ProLink II	ProLink→Konfiguration→Frequenz/Binärausgang→DO-Zuordnung
Handterminal	5,3,2,DO Is Detailed Setup→Config Outputs→FO/DO Config→DO Is

Die Binärausgang Quelle steuert welche Bedingung oder Prozessvariable des Durchfluss-Messsystems über den Binärausgang ausgegeben wird.

Optionen für Binärausgang Quelle

Tabelle 2-9 Optionen f ür Bin ärausgang Quelle

Option	Displaycode	ProLink II Code	Handterminal- code	Zustand	Binärausgang Spannung ⁽⁴⁾
Durchflussschal- ter ^{(5) (6)}	FL SW	Anzeige Durch- flussschalter	Flow Switch	EIN	Anwenderspezi- fisch
				AUS	0 V
Durchflussrich- tung	FLDIR	Anzeige Vor- wärts/Rückwärts	Forward/Reverse	Vorwärtsdurch- fluss	0 V
				Rückwärtsdurch- fluss	Anwenderspezi- fisch

Parameter Durchflussschalter konfigurieren

Display	OFF-LINE MAINT \rightarrow OFF-LINE CONFG \rightarrow IO \rightarrow CH B \rightarrow SET DO \rightarrow CONFIG FL SW
ProLink II	ProLink→Konfiguration→Durchfluss→Durchflussschalter-Sollwert ProLink→Konfiguration→Durchfluss→Durchflussschalter-Variable ProLink→Konfiguration→Durchfluss→Durchflussschalter-Hysterese
Handterminal	5,3,2,Flow Switch Setpoint Detailed Setup→Config Outputs→FO/DO Config→Flow Switch Setpoint 5,3,2,Flow Switch Variable Detailed Setup→Config Outputs→FO/DO Config→Flow Switch Variable 5,3,2,Hysteresis Detailed Setup→Config Outputs→FO/DO Config→Hysteresis

Der Durchflussschalter wird dazu verwendet, anzuzeigen, dass der Durchfluss (gemessen durch die konfigurierte Durchflussvariable) unter den konfigurierten Sollwert gefallen ist. Der Durchflussschalter wird implementiert mit einer anwenderkonfigurierbaren Hysterese.

⁽⁴⁾ Setzt voraus, dass Binärausgang Polarität auf Aktiv Hoch gesetzt ist. Ist die Binärausgang Polarität auf Aktiv Niedrig gesetzt, Spannungswerte umkehren.

⁽⁵⁾ Wenn Sie die Binärausgang Quelle auf Durchflussschalter setzen, müssen Sie ebenso die Durchflussschalter Variable, Durchflussschalter Sollwert und Hysterese konfigurieren.

⁽⁶⁾ Ist Ihre Auswerteelektronik auf zwei Binärausgänge konfiguriert, können Sie beide auf Durchflussschalter Variable setzen. Jedoch verwenden sie die gleichen Einstellungen für Durchflussschalter Variable, Durchflussschalter Sollwert und Hysterese.

Verfahren

- 1. Setzen Sie die Binärausgang Quelle auf Durchflussschalter, wenn Sie dies noch nicht getan haben.
- 2. Setzen Sie die Durchflussschalter Variable auf die Durchflussvariable die zum Steuern des Durchflussschalters verwendet werden soll.
- 3. Setzen Sie den Durchflussschalter Sollwert auf den Durchfluss unterhalb dessen der Durchflussschalter anspringen soll.
- 4. Setzen Sie die Hysterese auf die prozentuale Abweichung oberhalb und unterhalb des Sollwertes, die als Totzone dient.

Die Hysterese definiert einen Bereich um den Sollwert, innerhalb derer sich der Durchflussschalter nicht ändert. Der voreingestellte Wert ist 5 %. Der Bereich ist von 0,1 bis 10 %.

Zum Beispiel, wenn der Durchflussschalter Sollwert = 100 g/s ist und die Hysterese = 5 % ist und der Durchfluss unter 95 g/s fällt, wechselt der Binärausgang auf EIN. Er bleibt auf EIN bis der Durchfluss auf über 105 g/s steigt. An diesem Punkt wechselt er auf AUS und bleibt auf AUS bis der Durchfluss auf unter 95 g/s fällt.

2.4.2 Binärausgang Polarität konfigurieren

Display	OFF-LINE MAINT \rightarrow OFF-LINE CONFG \rightarrow IO \rightarrow CH B \rightarrow SET DO \rightarrow DO POLAR
ProLink II	ProLink→Konfiguration→Frequenz/Binärausgang→DO-Polarität
Handterminal	5,3,2,DO 1 Polarity Detailed Setup→Config Outputs→FO/DO Config→DO 1 Polarity

Die Binärausgänge haben zwei Zustände: EIN (aktiv) und AUS (inaktiv). Zwei unterschiedliche Spannungswerte werden verwendet, um diese Zustände zu repräsentieren. Die Binärausgang Polarität steuert welcher Spannungswert welchen Zustand repräsentiert.

Optionen für Binärausgang Polarität

Tabelle 2-10 Optionen f ür Bin ärausgang Polarit ät

Polarität	Beschreibung
Aktiv Hoch	 Wenn die festgelegte Kondition für den Binärausgang zutrifft, erzeugt der Schaltung eine entsprechende Pull-up Spannung, max. 30 V. Wenn die festgelegte Kondition für den Binärausgang nicht zutrifft, erzeugt die Schaltung 0 V.
Aktiv Niedrig	 Wenn die festgelegte Kondition f ür den Bin ärausgang zutrifft, erzeugt die Schaltung 0 V. Wenn die festgelegte Kondition f ür den Bin ärausgang nicht zutrifft, erzeugt die Schaltung eine entsprechende Pull-up Spannung, max. 30 V.

2.4.3 Binärausgang Störaktion konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Frequenz/Binärausgang→DO-Störaktion
Handterminal	5,3,2,DO Fault Indication Detailed Setup→Config Outputs→FO/DO Config→DO Fault Indication

Binärausgang Störaktion steuert das Verhalten des Binärausgangs, wenn die Auswerteelektronik eine interne Störbedingung erkennt.

Anmerkung

Wenn Zuletzt gemessener Wert – Timeout auf einen Wert ungleich null gesetzt ist, wird die Auswerteelektronik die Störaktion nicht implementieren, bis das Timeout abgelaufen ist.

VORSICHT! Verwenden Sie Binärausgang Störaktion nicht als Störanzeige. Da der Binärausgang immer EIN oder AUS ist, kann es sein, dass Sie nicht zwischen seiner Störaktion vom normalen Betriebsstatus unterscheiden können.

Optionen für Binärausgang Störaktion

Tabelle 2-11	Optionen	für Binärausgang	Störaktion
--------------	----------	------------------	-------------------

			Binärausgang Spannung	
ProLink II Code	Handterminalcode	Störstatus	Polarität=Aktiv Hoch	Polarität=Aktiv Niedrig
Aufwärts	Upscale	Störung	Anwenderspezifisch Spannung	0 V
		Keine Störung:	Binärausgang wird ge Binärausgang Quelle	steuert durch
Abwärts	Downscale	Störung	0 V	Anwenderspezifisch Spannung
		Keine Störung:	Binärausgang wird ge Binärausgang Quelle	steuert durch
Keine (Voreinstel- lung)	None (Voreinstel- lung)	Nicht lieferbar	Binärausgang wird gesteuert durch Binärausgang Quelle	

2.5 Digitale Kommunikation konfigurieren

Display	
ProLink II	ProLink→Konfiguration→Gerät
Handterminal	5,3,3 Detailed Setup→Config Outputs→HART Output

Die Parameter der digitalen Kommunikation steuern die digitale Kommunikation der Auswerteelektronik.

Auswerteelektronik Modell 1700 mit eigensicheren Ausgängen unterstützt die folgenden Arten der digitalen Kommunikation:

- HART/Bell 202 über die primären mA Anschlussklemmen
- Modbus/RS-485 über den Service Port

Digitale Kommunikation Störaktion ist für alle Arten der digitalen Kommunikation anwendbar.

Anmerkung

Der Service Port reagiert automatisch auf eine Vielzahl von Anschlussanfragen. Er ist nicht konfigurierbar.

2.5.1 HART/Bell 202 Kommunikation konfigurieren

Display	
ProLink II	ProLink→Konfiguration→Gerät→Digitale KommEinstellungen
Handterminal	5,3,3 Detailed Setup→Config Outputs→HART Output

Die HART/Bell 202 Kommunikationsparameter unterstützen die HART Kommunikation mittels der primären mA Anschlussklemmen der Auswerteelektronik über ein HART/Bell 202 Netzwerk.

Die HART/Bell 202 Kommunikationsparameter beinhalten:

- HART Adresse (Polling Adresse)
- Messkreis Strommodus (ProLink II) oder mA Ausgang Aktion (Handterminal)
- Burst Parameter (optional)
- HART Variablen (optional)

Verfahren

1. Setzen Sie Protokoll auf HART/Bell 202.

Parität, Stopp Bits und Baud Rate werden automatisch gesetzt.

2. HART-Adresse auf einen Wert zwischen 0 und 15 setzen.

Eine HART Address im Netzwerk muss eindeutig sein. Die voreingestellte Adresse (0) wird normalerweise verwendet, außer in einer Multidrop-Umgebung.

Hinweis

Geräte, die das HART-Protokoll zur Kommunikation mit der Auswerteelektronik verwenden, können entweder die HART-Adresse oder die HART-Kennzeichnung (Software-Kennzeichnung) zur Identifizierung der Auswerteelektronik verwenden. Sie können irgendeine oder beide Adressen konfigurieren, je nachdem was für die anderen HART-Geräte benötigt wird.

3. Prüfen Sie die Einstellungen auf Messkreis Strommodus (mA Ausgang Aktion) und ändern sie falls erforderlich.

Aktiviert	Der primäre mA Ausgang gibt die Prozessdaten wie konfiguriert aus.
Deaktiviert	Der primäre mA Ausgang ist fixiert auf 4 mA und gibt nicht die Prozessdaten aus.

Hinweis

Immer wenn Sie ProLink II verwenden, um die HART Adresse auf 0 zu setzen, aktiviert ProLink II ebenso den Messkreis Strommodus. Immer wenn Sie ProLink II verwenden, um die HART Adresse auf einen anderen Wert zu setzen, deaktiviert ProLink II ebenso den Messkreis Strommodus. Dies erfolgt für eine einfache Konfiguration der Auswerteelektronik zum entsprechenden Verhalten. Stellen Sie sicher, dass Sie den Messkreis Strommodus überprüfen, nachdem Sie die HART Adresse gesetzt haben.

4. (Optional) Aktivieren und konfigurieren der Burst Parameter.

Hinweis

In typischen Installationen ist der Burst-Modus deaktiviert. Aktivieren Sie den Burst-Modus nur dann, wenn andere Geräte im Netzwerk die Burst-Modus-Kommunikation erfordern.

5. (Optional) Konfigurieren der HART Variablen.

Burst Parameter konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Gerät→Burst-Einstellung
Handterminal	5,3,3 Detailed Setup→Config Outputs→HART Output

Der Burst Modus ist ein spezieller Kommunikationsmodus, in dem die Auswerteelektronik in regelmässigen Abständen HART digitale Informationen über den mA Ausgang sendet. Die Burst Parameter steuern die Informationen die gesendet werden wenn der Burst Modus aktiviert ist.

Hinweis

In typischen Installationen ist der Burst-Modus deaktiviert. Aktivieren Sie den Burst-Modus nur dann, wenn andere Geräte im Netzwerk die Burst-Modus-Kommunikation erfordern.

Verfahren

- 1. Burst Modus aktivieren.
- 2. Burst Modus Ausgang setzen.

Primärvariable (ProLink II) PV (Handterminal)	Die Auswerteelektronik sendet die Primärvariable (PV) in den konfigurierten Messeinheiten in jedem Burst (z.B. 14,0 g/s, 13,5 g/s, 12,0 g/s).
PV Strom & % vom Bereich (ProLink II) % Bereich/Strom (Handterminal)	Die Auswerteelektronik sendet die PV in % des Bereichs und den aktuellen mA Wert bei jedem Burst ((z. B. 25 %, 11,0 mA).
Dynam Var & PV Strom(ProLink II) Prozessvariablen/ Strom (Handterminal)	Die Auswerteelektronik sendet die PV, SV, TV und QV Werte in Messeinheiten und den aktuellen mA Wert der PV's in jedem Burst (z.B. 50 g/s, 23 °C, 50 g/s, 0,0023 g/cm ³ , 11,8 mA). ⁽⁷⁾
Auswerteelektronik Var (ProLink II) Fld dev var (Handterminal)	Die Auswerteelektronik sendet vier anwenderspezifizierte Prozessvariablen bei jedem Burst.

- 3. Setzen oder prüfen der Burst Ausgangsvariablen.
 - Wenn Sie ProLink II verwenden und Burst Modus Ausgang auf Auswerteelektronik Var (ProLink II) setzen, setzen Sie die vier Prozessvariablen die bei jedem Burst gesendet werden sollen:

ProLink→Konfiguration→Gerät→Burst Einstellung→Burst Var 1–4

 Wenn Sie das Handterminal verwenden und Burst Mode Output auf Fld Dev Var setzen, setzen Sie die vier Prozessvariablen die bei jedem Burst gesendet werden sollen:

Detailed Setup \rightarrow Config Outputs \rightarrow HART Output \rightarrow Burst Var 1–4

⁽⁷⁾ Diese Burst Modus Einstellungen sind typisch bei Verwendung eines HART Tri-Loop™ Signalkonverters. Weitere Informationen finden Sie in der Tri-Loop Betriebsanleitung.

.

Wenn Sie den Burst Modus Ausgang auf eine andere Option setzen, prüfen Sie ob die HART Variablen entsprechend gesetz sind.

HART Variablen (PV, SV, TV, QV) konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Variablenzuordnung
Handterminal	5,3,3 Detailed Setup→Config Outputs→HART Output

Die HART Variablen sind ein Satz mit vier Variablen, vordefiniert für die HART Verwendung. Die HART Variablen beinhalten die Primärvariable (PV), Sekundärvariable (SV), Tertiärvariable (TV) und Quatärvariable (QV). Sie können den HART Variablen spezielle Prozessvariablen zuordnen und verwenden dann die Standard HART Methoden, um die zugeordneten Prozessdaten zu lesen oder zu senden.

Einschränkung

Die TV ist automatisch gesetzt, um der PV zu entsprechen und kann nicht unabhängig davon konfiguriert werden.

Optionen für HART Variablen

Tabelle 2-12 Optionen f ür HART Variablen

Prozessvariable	PV	sv	тν	QV
Massedurchfluss	✓	✓	✓	✓
Volumendurchfluss	~	✓	~	✓
Masse Summenzähler				✓
Volumen Summenzähler				✓
Masse Gesamtzähler				✓
Volumen Gesamtzähler				✓
Gas Standard Volumendurchfluss	✓	✓	✓	✓
Gas Standard Volumen Summenzähler				✓
Gas Standard Volumen Gesamtzähler				✓

Wechselwirkung zwischen HART-Variablen und Auswerteelektronik-Ausgängen

Die HART-Variablen werden automatisch durch spezielle Ausgänge der Auswerteelektronik ausgegeben, wie in Tabelle 2-13 dargestellt.

Tabelle 2-13 HART-Variablen und Auswerteelektronik-Ausgänge

HART-Variable	Ausgegeben über	Bemerkungen
Primärvariable (PV)	Primärer mA-Ausgang	Hat sich eine Zuordnung geändert, ändert sich die andere automatisch und umgekehrt.
Sekundärvariable (SV)	Nicht mit einem Ausgang verbunden	Die SV muss direkt konfiguriert werden und der Wert der SV ist nur über die digitale Kommunikation verfügbar.
Tertiärvariable (TV)	Frequenzausgang	Hat sich eine Zuordnung geändert, ändert sich die andere automatisch und umgekehrt.
Quartärvariable (QV)	Nicht mit einem Ausgang verbunden	Die QV muss direkt konfiguriert werden und der Wert der QV ist nur über die digitale Kommunikation verfügbar.

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Gerät→Digitale KommEinstellungen→Digitale KommStöreinstellung
Handterminal	5,3,5 Detailed Setup→Config Outputs→Comm Fault Indication

2.5.2 Digitale Kommunikation Störaktion konfigurieren

Die Digitale Kommunikation Störaktion spezifiziert den Wert der mittels digitaler Kommunikation ausgegeben wird, wenn die Auswerteelektronik eine interne Störbedingung erkennt.

Anmerkung

Wenn Zuletzt gemessener Wert – Timeout auf einen Wert ungleich null gesetzt ist, wird die Auswerteelektronik die Störaktion nicht implementieren, bis das Timeout abgelaufen ist.

Optionen für Digitale Kommunikation Störaktion

Tabelle 2-14 Optionen f ür Digitale Kommunikation St öraktion

ProLink II Code	Handterminalcode	Beschreibung
Aufwärts	Upscale	 Die Prozessvariablenwerte zeigen, dass der Wert höher als der obere Sensorgrenzwert ist. Zählerfortschaltung stoppen.
Abwärts	Downscale	 Die Prozessvariablenwerte zeigen, dass der Wert höher als der obere Sensorgrenzwert ist. Zählerfortschaltung stoppen.
Null	IntNull-All 0	 Durchflussvariablen gehen auf einen Wert die Null Durchfluss darstellen. Dichte wird als 0 ausgegeben. Temperatur wird als 0 °C ausgegeben oder äquivalent wenn andere Einheiten verwendet werden (z.B. 32 °F). Antriebsverstärkung wird wie gemessen ausgegeben. Zählerfortschaltung stoppen.
Not-A-Number (NAN)	Not-a-Number	 Prozessvariablen werden als IEEE NAN ausgageben. Antriebsverstärkung wird wie gemessen ausgegeben. Modbus skalierte Integers werden als Max Int ausgegeben. Zählerfortschaltung stoppen.
Durchfluss auf Null	IntZero-Flow 0	 Durchflüsse werden als 0 ausgegeben. Andere Prozessvariablen werden wie gemessen ausgegeben. Zählerfortschaltung stoppen.
Keine (Voreinstellung)	None (Voreinstellung)	 Alle Prozessvariablen werden wie gemessen ausgegeben. Zählerfortschaltung wenn sie laufen.

VORSICHT! Wenn Sie die mA-Ausgang-Störaktion oder

Frequenzausgang-Störaktion auf Keine setzen, stellen Sie sicher, dass auch Digitale Kommunikations-Störaktion auf Keine gesetzt ist. Andernfalls gibt der Ausgang nicht die aktuellen Prozessdaten aus und dies kann einen Messfehler erzeugen oder ungewollte Konsequenzen für Ihren Prozess haben. VORSICHT! Wenn Sie die Digitale Kommunikations-Störaktion auf NAN setzen, können Sie die mA-Ausgang-Störaktion oder Frequenzausgang-Störaktion nicht auf Keine setzen. Wenn Sie dies versuchen, akzeptiert die Auswerteelektronik die Konfiguration nicht.

2.6 Ereignisse konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Ereignisse ProLink→Konfiguration→Binärereignisse
Handterminal	5,6 Detailed Setup→Config Events 5,5 Detailed Setup→Config Discrete Event

Ein Ereignis tritt ein, wenn der Real-Time Wert einer anwenderspezifizierten Prozessvariablen den anwenderspezifizierten Sollwert überschreitet. Ereignisse werden verwendet, um bei Prozessänderungen Meldungen zu erzeugen oder spezifische Aktionen der Auswerteelektronik auszuführen wenn eine Prozessänderung eintritt.

Auswerteelektronik Modell 1700 unterstützt zwei Ereignismodelle:

- Basis Ereignismodell
- Erweitertes Ereignismodell

2.6.1 Basisereignis konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Ereignisse
Handterminal	5,6 Detailed Setup→Config Events

Ein "Basis" Ereignis wird verwendet, um bei Prozessänderungen eine Meldung zu erzeugen. Ein Basisereignis tritt ein (ist EIN), wenn der Real-Time Wert einer anwenderspezifizierten Prozessvariablen den anwenderspezifizierten Sollwert (HI) überschreitet oder (LO) unterschreitet. Sie können bis zu zwei Basisereignisse definieren. Der Ereignisstatus kann mittels digitaler Kommunikation abgefragt werden und es kann ein Binärausgang konfiguriert werden, um den Ereignisstatus auszugeben.

Verfahren

- 1. Wählen Sie Ereignis 1 oder Ereignis 2 von der Ereignisnummer.
- 2. Spezifizieren Sie die Ereignisart.

HI	Das Ereignis tritt ein, wenn der Wert der zugeordneten Prozessvariablen (x) größer ist als der Sollwert (Sollwert A), Endpunkt nicht eingeschlossen. x > A
LO	Das Ereignis tritt ein, wenn der Wert der zugeordneten Prozessvariablen (x) kleiner ist als der Sollwert (Sollwert A), Endpunkt nicht eingeschlossen. x < A

3. Prozessvariable dem Ereignis zuordnen.

- 4. Setzen Sie einen Wert für Sollwert (Sollwert A).
- 5. (Optional) Konfigurieren Sie einen Binärausgang, um den Status entsprechend dem Ereignisstatus zu wechseln.

2.6.2 Erweiterte Ereignis konfigurieren

Display	Nicht verfügbar
ProLink II	ProLink→Konfiguration→Binärereignisse
Handterminal	5,5 Detailed Setup→Config Discrete Event

Ein "Erweitertes" Ereignis wird verwendet, um spezifische Aktionen der Auswerteelektronik auzuführen, wenn ein Ereignis eintritt. Das Erweiterte Ereignis tritt ein (ist EIN), wenn der Real-Time Wert einer anwenderspezifizierten Prozessvariablen den anwenderspezifizierten Sollwert (HI) überschreitet oder (LO) unterschreitet oder im Bereich (IN) oder ausserhalb des Bereichs (OUT) liegt, unter Berücksichtigung zweier anwenderspezifizierten Sollwerte. Sie können bis zu fünf Erweiterte Ereignisse konfigurieren. Für jedes Erweiterte Ereigniss können Sie eine oder mehrere Aktionen zuordnen, die die Auswerteelektronik ausführt, wenn das Erweiterte Ereigniss eintritt.

Verfahren

- 1. Wählen Sie Ereignis 1, Ereignis 2, Ereignis 3, Ereignis 4 oder Ereignis 5 vom Ereignisnamen.
- 2. Spezifizieren Sie die Ereignisart.

HI	Das Ereignis tritt ein, wenn der Wert der zugeordneten Prozessvariablen (x) größer ist als der Sollwert (Sollwert A), Endpunkt nicht eingeschlossen. x > A
LO	Das Ereignis tritt ein, wenn der Wert der zugeordneten Prozessvariablen (x) kleiner ist als der Sollwert (Sollwert A), Endpunkt nicht eingeschlossen. x < A
IN	Das Ereignis tritt ein, wenn der Wert der zugeordneten Prozessvariablen (<i>x</i>) "im Bereich", d.h. zwischen Sollwert A und Sollwert B liegt, Endpunkt eingeschlossen. A $\leq x \leq B$
OUT	Das Ereignis tritt ein, wenn der Wert der zugeordneten Prozessvariablen (x) "außerhalb des Bereichs", d.h. kleiner alsSollwert A oder größer als Sollwert B ist, Endpunkt eingeschlossen. $x \le A$ oder $x \ge B$

- 3. Prozessvariable dem Ereignis zuordnen.
- 4. Setzen Sie die Werte für die erforderlichen Sollwerte.
 - Für HI- oder LO-Ereignisse setzen Sie Sollwert A.
 - Für IN- oder OUT-Ereignisse setzen Sie Sollwert A und Sollwert B.
- 5. (Optional) Konfigurieren Sie einen Binärausgang, um den Status entsprechend dem Ereignisstatus zu wechseln.
- 6. (Optional) Spezifizieren Sie die Aktion oder Aktionen die die Auswerteelektronik ausführen soll, wenn das Ereignis eintritt. Um dies auszuführen:
 - Mit ProLink II: ProLink→Konfiguration→Binäreingang
 - Mit Handterminal: Detailed Setup→Discrete Actions→Assign Discretes

Optionen für Erweitertes Ereignisaktion

Tabelle 2-15 Optionen f ür Erweiterte Ereignisaktion

Aktion	ProLink II Code	Handterminalcode
Keine (Voreinstellung)	Keine	None
Start Sensor Nullpunktkalibrierung	Start Sensor Nullpunktkalibrierung	Start Sensor Zero
Start/Stopp aller Zähler	Start/Stopp aller Zählungen	Start/Stop Totals
Masse-Summenzähler zurücksetzen	Masse-Summenzähler zurücksetzen	Reset Mass Total
Volumen-Summenzähler zurücksetzen	Volumen-Summenzähler zurücksetzen	Reset Volume Total
Gas-Standardvolumen- Summenzähler zurücksetzen	Gas-Standardvolumen- Summenzähler zurücksetzen	Reset Gas Standard Volume Total
Alle Summenzähler zurücksetzen	Alle Summenzähler zurücksetzen	Reset All Totals
Systemverifizierungs-Test starten	Systemverifizierung starten	Nicht verfügbar

VORSICHT! Bevor Sie Aktionen einem erweitertem Ereignis oder einem Binäreingang zuordnen, prüfen Sie den Status des Ereignisses oder des externen Eingangsgerätes. Ist es auf EIN, werden alle Aktionen ausgeführt, wenn die neue Kanalkonfiguration implementiert wird. Ist dies nicht akzeptabel, warten Sie auf einen geeigneten Zeitpunkt, um Aktionen dem Ereignis oder Binäreingang zuzuordnen.

Anhang A Displaycodes und Abkürzungen

In diesem Anhang behandelte Themen:

- Displaycodes f
 ür Prozessvariablen
- Codes und Abkürzungen des Displaymenüs

A.1 Displaycodes für Prozessvariablen

Tabelle A-1 zeigt und definiert die Codes, die für die Prozessvariablen im Bedieninterface verwendet werden.

Tabelle A-1 Displaycodes für Prozessvariablen

Code	Definition	Kommentar oder Referenz
AVE_D	Durchschnittsdichte	
AVE_T	Durchschnittstemperatur	
BRD_T	Platinentemperatur	
DRIVE%	Antriebsverstärkung	
EXT_P	Externer Druck	
EXT_T	Externe Temperatur	
GSV F	Gas-Standardvolumendurchfluss	
GSV I	Gas-Standardvolumen-Gesamtzähler	
GSV T	Gas-Standardvolumen-Summenzähler	
LPO_A	Amplitude linke Aufnehmerspule	
LVOLI	Volumen-Gesamtzähler	
LZERO	Nullpunktwert	
MASSI	Masse-Gesamtzähler	
MTR_T	Gehäusetemperatur (nur Sensoren der T-Serie)	
PWRIN	Eingangsspannung	Bezieht sich auf die Eingangsspan- nung des Core-Prozessors
RPO_A	Amplitude rechte Aufnehmerspule	
SGU	Einheiten für spezifisches Gewicht	
TUBEF	Messrohrfrequenz	
WTAVE	Gewichteter Durchschnitt	

A.2 Codes und Abkürzungen des Displaymenüs

Tabelle A-2 zeigt und definiert die Codes und Abkürzungen, die in den Displaymenüs verwendet werden.

Code oder Abkürzung	Definition	Kommentar oder Referenz
ACK ALARM	Alarm bestätigen	
ACK ALL	Alle Alarme bestätigen	
ACT	Aktion	
ADDR	Adresse	
AO 1 SRC	Fixiert auf die Prozessvariable, die dem Primärausgang zugeordnet ist	
AO1	Analogausgang 1 (primärer mA-Ausgang)	
AO2	Analogausgang 2 (sekundärer mA-Ausgang)	
AUTO SCRLL	Auto Scroll	
BKLT B LIGHT	Hintergrundbeleuchtung	
CAL	Kalibrierung	
CH A	Kanal A	
СН В	Kanal B	
СН С	Kanal C	
CHANGE PASSW CHANGE CODE	Passwort oder Passcode ändern	Passwort oder Passcode ändern, der erforderlich für den Zugriff auf die Funktionen des Bedieninterfaces ist
CONFG	Konfiguration	
CORE	Core-Prozessor	
CUR Z	Aktueller Nullpunktwert	
CUSTODY XFER	Eichfähiger Transfer	
D EV	Binärereignis	Mithilfe des erweiterten Ereignismodells konfigurierte Ereignisse
DICHT	Dichte	
DGAIN, DRIVE %	Antriebsverstärkung	
DI	Binäreingang	
DISBL	Deaktiviert	Auswahl zum Deaktivieren
DO1	Binärausgang 1	
DO2	Binärausgang 2	
DSPLY	Display	
E1OR2	Ereignis 1 oder Ereignis 2	Mithilfe des Basis-Ereignismodells konfigurierte Ereignisse
ENABL	Aktiviert	Auswahl zum Aktivieren
ENABLE ACK	"Alle bestätigen" aktivieren	Aktivieren oder Deaktivieren der ACK ALL-Funktion
ENABLE ALARM	Alarmmenü aktivieren	Zugriff auf das Alarmmenü vom Bedieninterface
ENABLE AUTO	Auto Scroll aktivieren	Auto Scroll-Funktion aktivieren oder deaktivieren

Tabelle A-2 Codes und Abkürzungen des Displaymenüs

Code oder Abkürzung	Definition	Kommentar oder Referenz
ENABLE OFFLN	Offline aktivieren	Zugriff auf das Offline-Menü vom Bedieninterface
ENABLE PASSW	Passwort aktivieren	Aktivieren oder Deaktivieren des Passwortschutzes für Bedieninterfacefunktionen
ENABLE RESET	"Zähler zurücksetzen" aktivieren	Aktivieren oder Deaktivieren der Funktion "Zähler zurücksetzen" vom Bedieninterface
ENABLE START	"Zähler starten" aktivieren	Aktivieren oder Deaktivieren der Funktion "Zähler Start/Stopp" vom Bedieninterface
EVNT1	Ereignis 1	Nur mithilfe des Basis- Ereignismodells konfigurierte Ereignisse
EVNT2	Ereignis 2	Nur mithilfe des Basis- Ereignismodells konfigurierte Ereignisse
EXTRN	Extern	
FAC Z	Werkseitiger Nullpunktwert	
FCF	Durchflusskalibrierfaktor	
FL SW FLSWT	Durchflussschalter	
FLDIR	Durchflussrichtung	
FO	Frequenzausgang	
FO FREQ	Frequenzfaktor	
FO RATE	Durchflussfaktor	
FR FL	Frequenz = Durchfluss	
FREQ	Frequenz	
GSV	Gas-Standardvolumen	
HYSTRSIS	Hysterese	
INTERN	Intern	
E/A	Eingang/Ausgang	
SPRAC	Sprache	
LOCK	Schreibschutz	
LOOP CUR	Messkreisstrom	
MTR F	Gerätefaktor	
M_ASC	Modbus ASCII	
M_RTU	Modbus RTU	
MAO1	mA-Ausgang 1 (primärer mA-Ausgang)	
MAO2	mA-Ausgang 2 (sekundärer mA-Ausgang)	
MASSE	Massedurchfluss	
MBUS	Modbus	
MFLOW	Massedurchfluss	
MESS	Messung	

Tabelle A-2 Codes und Abkürzungen des Displaymenüs Fortsetzung

Code oder Abkürzung	Definition	Kommentar oder Referenz
OFFLN	Offline	
OFF-LINE MAINT	Offline-Wartung	
P/UNT	Impulse/Einheit	
POLAR	Polarität	
PRESS	Druck	
QUAD	Quadrature-Modus	
r.	Revision	
SCALE	Skaliermethode	
SIM	Simulation	Verwendet für Messkreistest, kein Simulationsmodus. Mittels Bedieninterface kein Zugriff auf den Simulationsmodus.
SPECL	Spezial	
SRC	Quelle	Variablenzuordnung
TEMP, TEMPR	Temperatur	
UNT/P	Einheiten/Impuls	
VAR 1	Displayvariable 1	
VER	Version	
VERFY	Verifizierung	
VFLOW	Volumendurchfluss	
VOL	Volumen, Volumendurchfluss	
WRPRO	Schreibschutz	
XMTR	Auswerteelektronik	

Tabelle A-2 Codes und Abkürzungen des Displaymenüs Fortsetzung

© 2009 Micro Motion, Inc. Alle Rechte vorbehalten. P/N MMI-20015892, Rev. AA

Die neuesten Micro Motion Produktinformationen finden Sie unter PRODUKTE, auf unserer Website www.micromotion.com.

MICRO MOTION HOTLINE ZUM NULLTARIF! Tel 0800-182 5347 / Fax 0800-181 8489 (nur innerhalb von Deutschland)

Europa

Emerson Process Management

Neonstraat 1 6718 WX Ede Niederlande T +31 (0) 318 495 610 F +31 (0) 318 495 629 www.emersonprocess.nl

Deutschland

Emerson Process Management GmbH & Co OHG Argelsrieder Feld 3 82234 Wessling Deutschland T +49 (0) 8153 939 - 0 F +49 (0) 8153 939 - 172 www.emersonprocess.de

Schweiz

Emerson Process Management AG Blegistraße 21 6341 Baar-Walterswil Schweiz T +41 (0) 41 768 6111 F +41 (0) 41 761 8740 www.emersonprocess.ch

Österreich

Emerson Process Management AG Industriezentrum NÖ Süd Straße 2a, Objekt M29 2351 Wr. Neudorf Österreich T +43 (0) 2236-607 F +43 (0) 2236-607 44 www.emersonprocess.at

