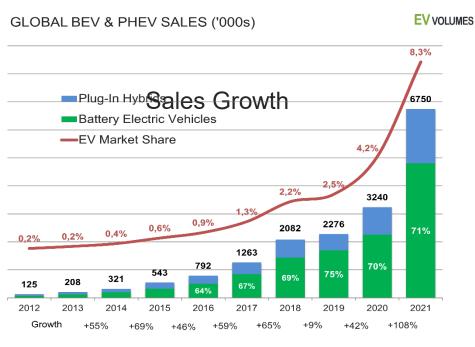

# FREEDIN SYSTEMS CENTER


**Electric Machines and Drives for Transportation Electrification** 

Iqbal Husain Director, FREEDM Systems Center ABB Distinguished Professor, ECE NC State University FREEDM Annual Symposium 2023

# FREEN:

- Market Drivers for Electric Transportation: Energy diversification, environmental concerns and economic growth. Global sale of EVs that include both battery electric vehicles (BEVs) and plug-in hybrid vehicles (PHEVs) exceeded the 6 million mark in 2021
- Innovation Opportunities: Increased telematics, autonomous vehicles, WBG power electronics, lightweight electric machines, energy storage
- Charging Stations: Fast and Extreme Fast Charging Stations that will give the customer similar experience as that in a gas station





#### Source: ev-volumes.com



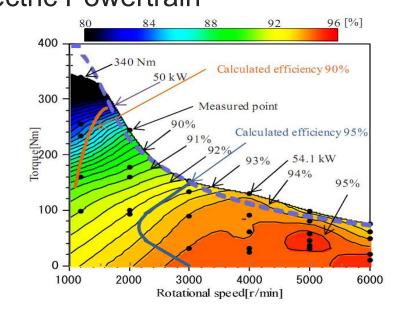
**NC STATE** 

UNIVERSITY

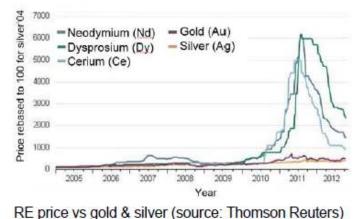
# FREENTS CENTER

Electric Machines and Inverters




## **Objectives for Traction Machines:**

- High density ( $P_{den}, T_{den}$ )
- High efficiency  $(\eta)$
- High speed operation ( $\omega$ )
- Low acoustic noise


- Low torque ripple
- Thermally stable
- Structural integrity
- Low \$/kW design

### Trends:

- IPMSMs: Most popular with Rare Earth (RE) PMs.
- Instability in RE's price drives R&D for alternatives
- Novel magnet and lamination materials, designs, and winding configurations



NC STATE

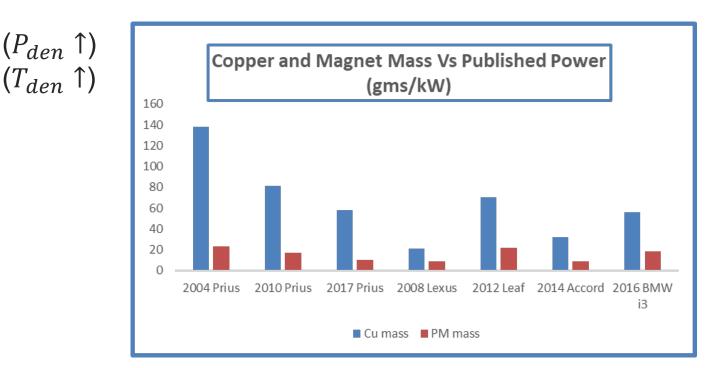


### Electric Machine Design Trends: Increase DC-link Voltage and Machine Speed

### High Pole Design

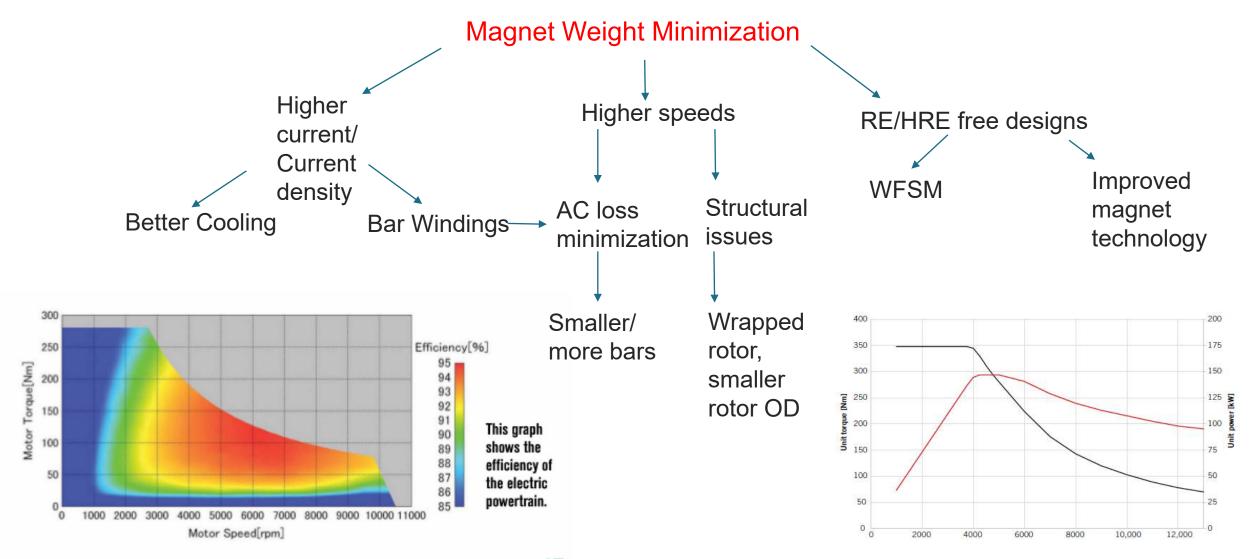
- Increases torque density
- Reduces end turn length
- Reduces cost of PMs

### **High Speed Design**


- Increases power density  $(T \infty D^2 L)$
- Reduces system mass

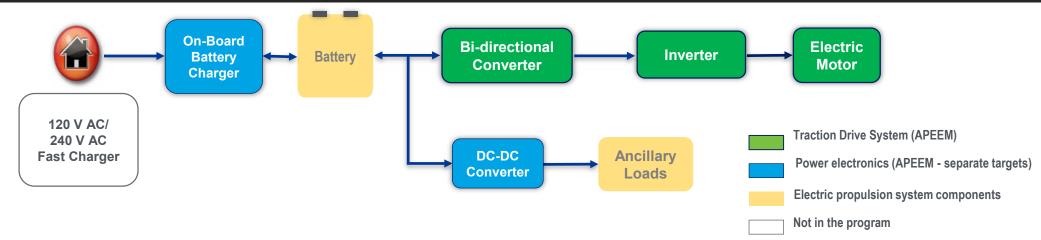
### **Adoption of Hairpin Winding**

- Increases efficiency
- Improves torque-density
- Improves overload capability


### Wide Band Gap (WBG) Drives

- System power density increase
- Better current regulation
- System efficiency increase




## FREEMS CENTER

## Trends in Design Requirements



# FREEMS CENTER

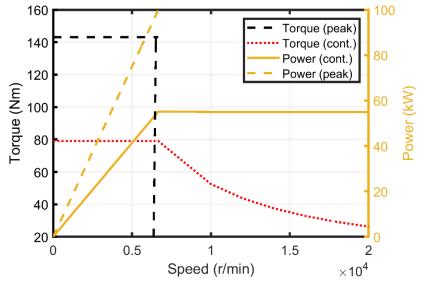
## **Electric Vehicle Powertrain Research**



> US Department of Energy targeted research for reduced rare-earth based electric machines

| Traction Drive Systems (TDS) |                 |                              |                            |  |
|------------------------------|-----------------|------------------------------|----------------------------|--|
| Impact                       | Reduce<br>Cost  | Reduce<br>Weight             | Reduce<br>Volume           |  |
| Year                         | Cost<br>(\$/kW) | Specific<br>Power<br>(kW/kg) | Power<br>Density<br>(kW/I) |  |
| 2010                         | 19              | 1.06                         | 2.6                        |  |
| 2015                         | 12              | 1.2                          | 3.5                        |  |
| 2020                         | 8               | 1.4                          | 4.0                        |  |
| 2025                         | 6               |                              | 33                         |  |

|      | Power Electronics (PE) |         |        |  |
|------|------------------------|---------|--------|--|
|      | (\$/kW)                | (kW/kg) | (kW/l) |  |
| 2010 | 7.9                    | 10.8    | 8.7    |  |
| 2015 | 5                      | 12      | 12     |  |
| 2020 | 3.3                    | 14.1    | 13.4   |  |
| 2025 | 2.7                    |         | 100    |  |


|      | Electric Motors (EM) |         |        |  |
|------|----------------------|---------|--------|--|
|      | (\$/kW)              | (kW/kg) | (kW/l) |  |
| 2010 | 11.1                 | 1.2     | 3.7    |  |
| 2015 | 7                    | 1.3     | 5      |  |
| 2020 | 4.7                  | 1.6     | 5.7    |  |
| 2025 | 3.3                  |         | 50     |  |

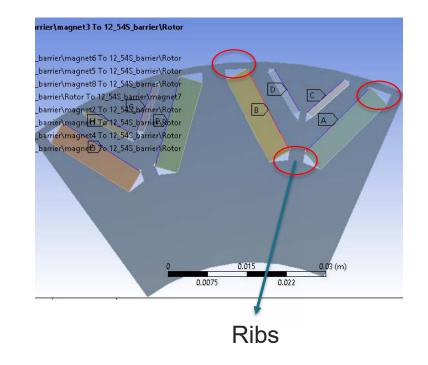
## **Electric Vehicle Machine Design**

Department of Energy's U.S. Drive roadmap 2025 targets a power density of 50 kW/liter for electric vehicle traction motors:

| Design Parameter          | Value |  |
|---------------------------|-------|--|
| Peak Power (kW)           | 100   |  |
| Vol. Power Density (kW/L) | 50    |  |
| CPSR                      | 3     |  |
| Efficiency (%)            | >97   |  |

Target Design Specifications




Target Torque Speed Profile

Design of two motors which meet the target specifications while addressing the issues:

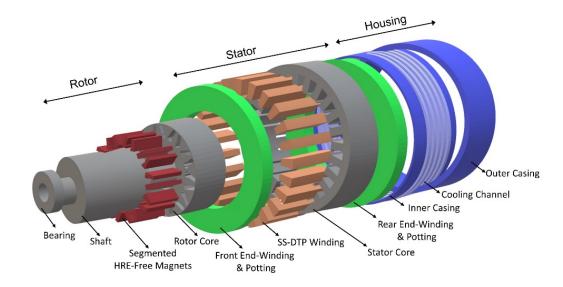
- Design I: Space-shifted Asymmetrical Dual Three Phase IPM Synchronous Machine, SS-ADTP IPMSM
- Design II: Outer Rotor Slotless SPM with Halbach Array and Winding Embedded Liquid Cooling

## **Issues with Next Generation High Speed Electric Machines**

- Excessive magnetic loss (Core and PM)
- High centrifugal forces on rotor pole ribs
- Skin and proximity effects become prominent
- Mechanical power losses increase
- Use of Amorphous Magnetic Material or super core may reduce the core loss of the machines.
- Thinner lamination reduces mechanical strength and maximum flux density

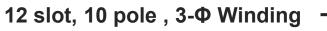


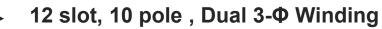
- Magnet demagnetization
- Thermal limits of heavy rare earth free magnet materials
- High dv/dt due to the short rise time and fall time increases the possibility of bearing damage, insulation degradation, and first turn short of the winding

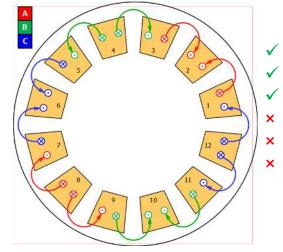

#### Simultaneous Electromagnetic, Structural and Thermal optimizations are essential during design stage

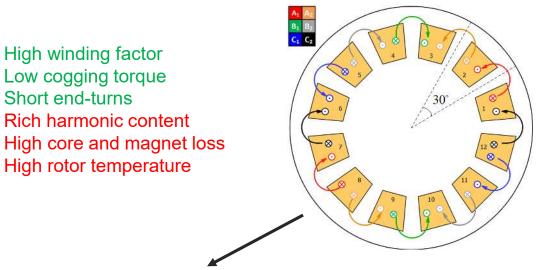


## Design 1: Space-Shifted Asymmetrical Dual Three Phase IPMSM


### **Design 1 Features:**

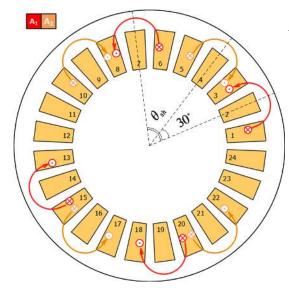

- Dual space-shifted windings
- Segmented magnets and rotor shape optimization
- Hiperco 50 steel laminations
- End winding potting with SC-320




### **Design I: Proposed Winding Arrangement**










- Increase in winding factor  $\checkmark$
- Cancellation of subharmonic content
- Increased fault tolerance
- Slight increase in super harmonics ×

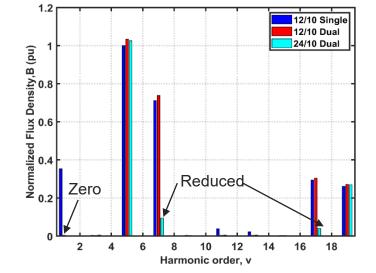




$$MMF = \sum_{\nu=1,-5,7}^{\infty} \frac{12NI}{\nu} \sin\left(\frac{\nu\pi}{12}\right) \sin\left(\frac{(\nu-1)\pi}{12}\right) \cos\left(\frac{\nu\theta_{\rm sh}}{2}\right) \sin\left(\nu\theta - \omega t - \frac{(\nu-1)\pi}{12} - \frac{\nu\theta_{\rm sh}}{2}\right)$$

- 7<sup>th</sup> Harmonic Cancellation :  $\theta_{sh} = 77.15^{\circ}$  (Choose  $\theta_{sh} = 75^{\circ}$ )
- Cancellation of 1<sup>st</sup> order harmonic

High winding factor


Low cogging torque

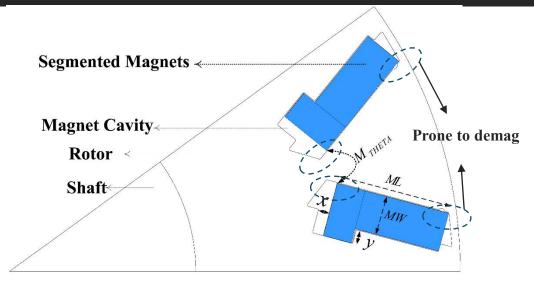
**Rich harmonic content** 

High rotor temperature

Short end-turns

- ✓ Significant reduction of 7<sup>th</sup> and 11<sup>th</sup> order harmonic
- Reduced core loss and eddy current loss  $\checkmark$
- ~2.5% increase in winding factor  $\checkmark$
- Slightly higher copper loss (coil pitch =2) ×




Normalized armature flux density in a 12 slot, 10 pole winding and a 24 slot, 10 pole space shifted dual three phase machine

## **Rotor Design and Optimization**

- Standard V-type magnet arrangement
  - Widely established manufacturing process
- HRE-free Magnets
  - 👍 Low Cost
  - Demagnetization risk at high temperature

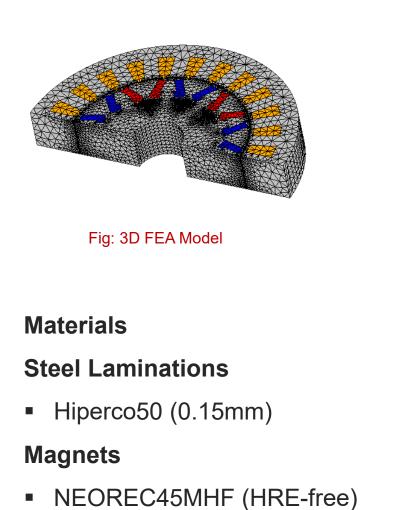
### **Proposed Segmented Magnet Approach**

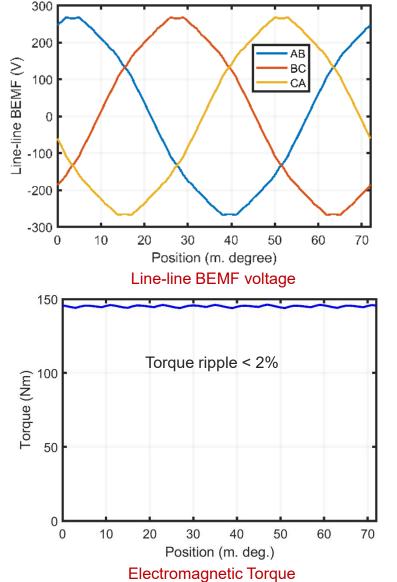
- Segment magnet into several pieces to reduce eddy currents
- Strengthen magnet in sections closest to the d-axis
- Displace magnet in the cavity
- Include demagnetization consideration in the rotor optimization

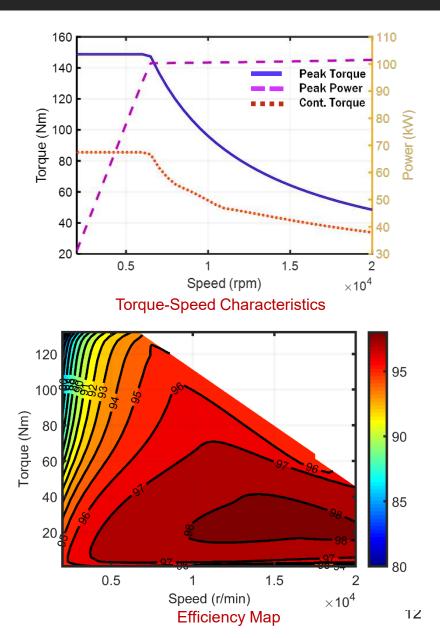




Optimization I: maximize torque and minimize torque ripple


$$Max(T_{avg}), Min(T_{ripple}) = f(ML, MW, M_{THETA}, x, y, TW, \gamma)$$
  
Subject to  $I_{A/mm^2} \le 33.3$   
 $MV(kg) \le 0.75$ 

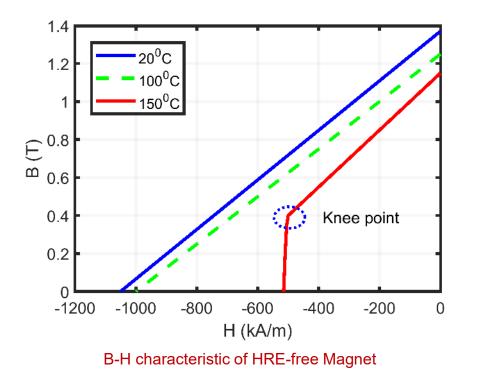

Optimization II: Demagnetization at worst case scenarios

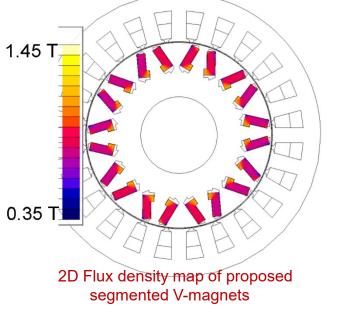

$$Max(B_{cornerMagnet}) = f(ML, MW, M_{THETA}, x, y)$$
  
Subject to  $I_{A/mm^2} = 33.3$   
 $\gamma = 90^{\circ}$ 

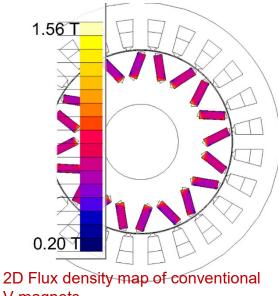
# FREENS CENTER

## **Electromagnetic Performance**

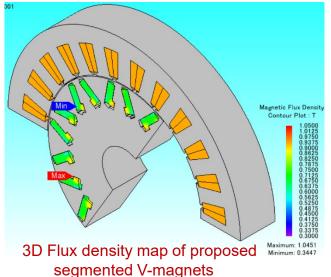






## **Demagnetization Analysis**

#### **Worst Case Scenario**


Maximum Current in the negative d-axis at high temperature of 140°C and maximum speed







V-magnets



## **Cost-Performance Analysis of Core Materials**

SYSTEMS CENTER

H

|                                                  | Case I                 | Case II    | Case III   | Case IV |  |  |
|--------------------------------------------------|------------------------|------------|------------|---------|--|--|
|                                                  | Material               |            |            |         |  |  |
| Stator                                           | Hiperco 50             | Hiperco 50 | HF-10      | HF-10   |  |  |
| Rotor                                            | Hiperco 50             | HF-10      | Hiperco 50 | HF-10   |  |  |
| Electromagnetic Performance                      |                        |            |            |         |  |  |
| Torque @ peak load (Nm)                          | 145                    | 146.9      | 118        | 125     |  |  |
| Output power density (kW/L)                      | 50                     | 51.5       | 41.4       | 43.4    |  |  |
|                                                  | Iron Loss              |            |            |         |  |  |
| Stator core loss @ full load and rated speed (W) | 488.5                  | 439.9      | 1017       | 928.4   |  |  |
| Rotor core loss @ full load and rated speed (W)  | 122.6                  | 308.6      | 96.9       | 256.0   |  |  |
| Electromagnetic I                                | Performance with Therm | nal Limit  |            |         |  |  |
| Torque @ peak load (Nm)                          | 145                    | 132        | 115        | 110     |  |  |
| Output power density (kW/L)                      | 50                     | 46.3       | 40.34      | 38.6    |  |  |
|                                                  | Cost                   |            |            |         |  |  |
| Cost of stator (\$ per-unit )                    | 1                      | 1          | 0.24       | 0.24    |  |  |
| Cost of Rotor (\$ per-unit)                      | 0.75                   | 0.30       | 0.75       | 0.30    |  |  |

### FREEM **Concept Validation with Prototypes**

#### Completed

- Concept verified with a scaled prototype of ADTP winding structure using a model free predictive current controller\*
- Stator and rotor built for fabricating the 100 kW prototype of Design I.
- HRE-Free magnets acquired



SYSTEMS CENTER

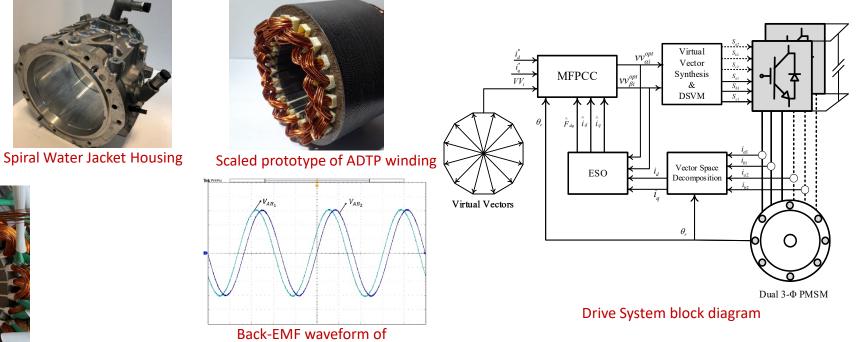
Stator lamination





Rotor lamination




Winding Process



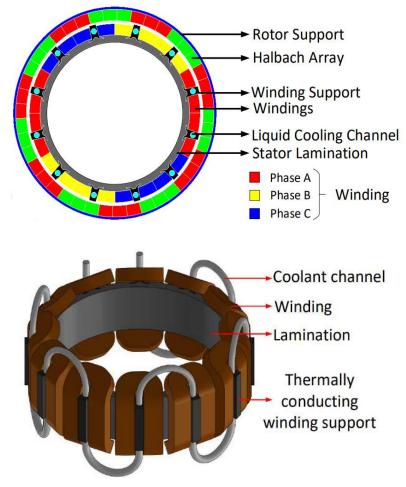
#### prototype ADTP winding

#### **Next Steps**

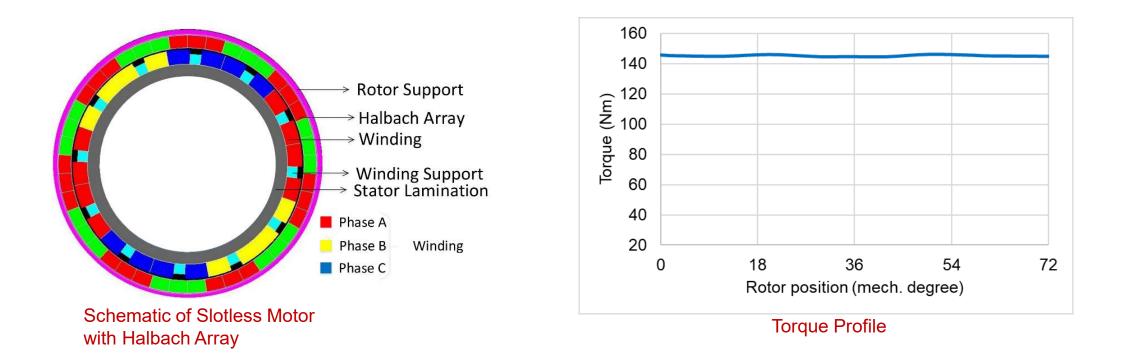
- □ Replace stator of a 2010 Nissan Leaf Motor with the proposed 24-slot asymmetrical dual three-phase winding and HF-10 core.
- □ Pot end winding with SC-324.
- □ Replace the rotor with the proposed 10-pole rotor with HRE-free magnets and HF-10 core.



\*S. Agoro and I. Husain, "Model-Free Predictive Current and Disturbance Rejection Control of Dual Three-Phase PMSM Drives using Optimal 15 Virtual Vector Modulation." in IEEE Journal of Emerging and Selected Topics in Power Electronics: doi: 10.1109/JESTPE.2022.3171166


**Rotor Shaft** 

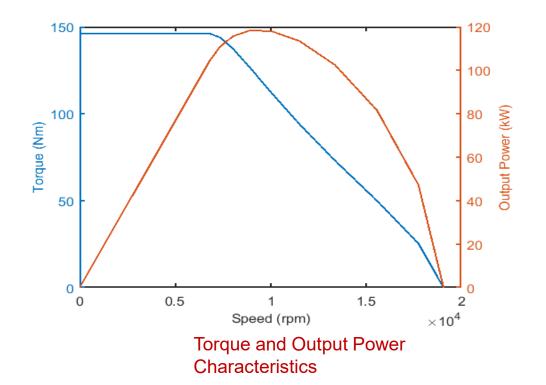


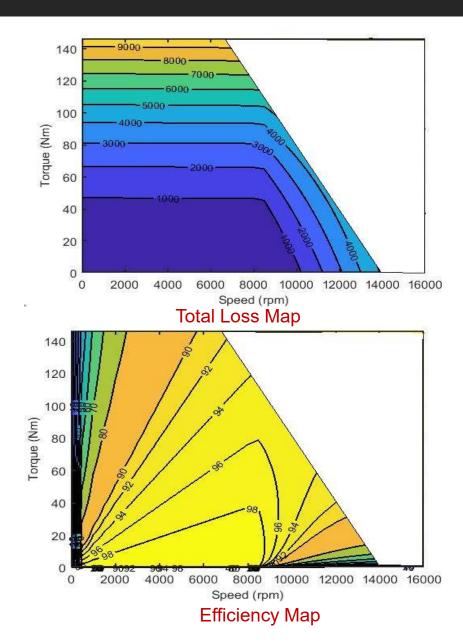

## Design II: Slotless HalBach Permanent Magnet Synchronous Machine with Winding Embedded Liquid Cooling

### **Design II Features:**

- Multi-segment halbach array
- Slotless stator made from Coolpoly D5506 thermally conductive plastic
- Winding embedded liquid cooling

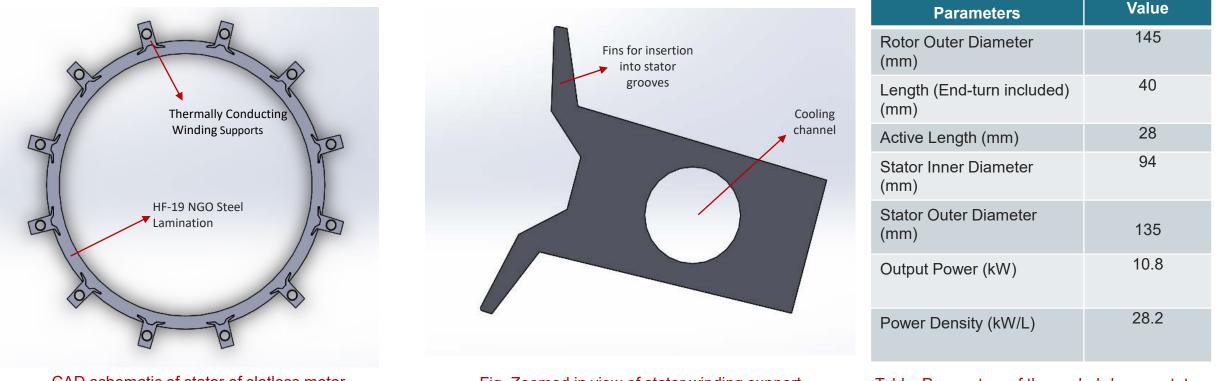



- HRE free PM in Halbach Array Rotor.
- Absence of rotor lamination and reduced stator lamination leads to low thermal mass; needs good thermal management.
- Thermally conducting plastic winding supports with Winding Embedded Liquid Cooling (WELC).




## FREEMS CENTER

### **Electromagnetic Performance**


 The roadmap specifications of output power, power density and efficiency (>=97%) are met.







## Prototype Design for a 10kW Slotless Machine with WELC



CAD schematic of stator of slotless motor with WELC Fig. Zoomed in view of stator winding support showing cooling channel

 Table. Parameters of the scaled-down prototype

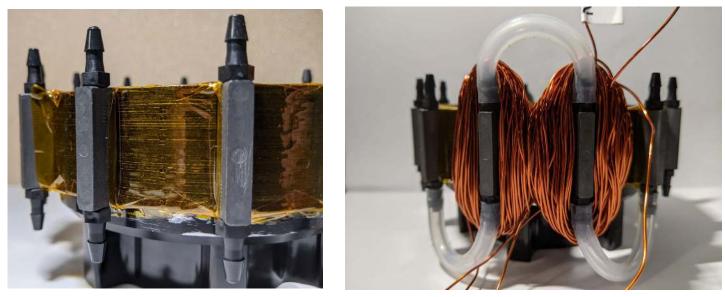
# FREENS CENTER

## **Slotless Machine with WELC**

- Lamination and thermally conducting winding supports have been fabricated.
- Due to absence of laminated teeth, saturation within lamination is low.
- Using FEA, only a 6% difference in iron loss was found between HF-10 and Hiperco laminations at the base speed point.
- Therefore, HF-10 non-oriented cobalt-free steel laminations are used in the prototype.

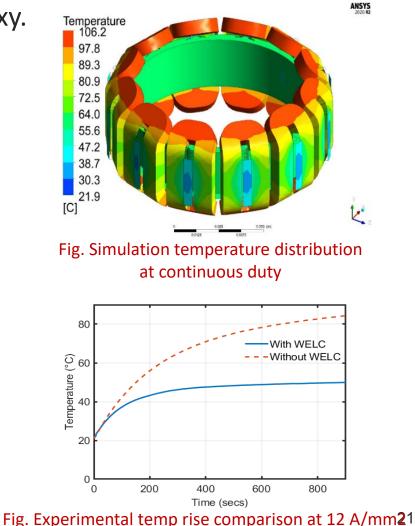


(b)


Fig. Prototype as fabricated: (a) Full stator (b) Lamination and (c) Winding Support with cooling channel

# FREENTS CENTER

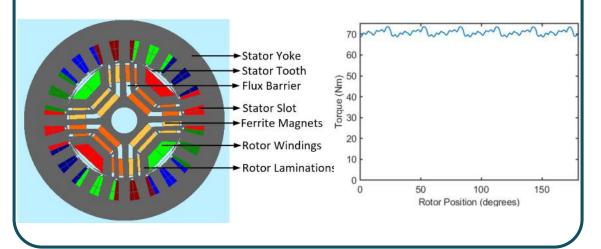
 Winding supports constructed of D5506 thermally conducting polymer (9.6 W/mK) fabricated using injection molding.


(b)

- Windings encapsulated in Resbond 906 (5.8 W/mK) ceramic epoxy.
- WELC concept validated for continuous current densities up to 19 A/mm<sup>2</sup> and peak current densities up to 39 A/mm<sup>2</sup>.

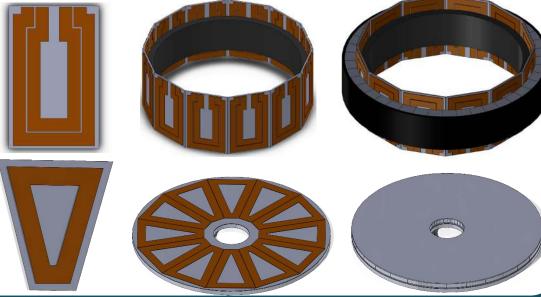


(a)


Fig. Prototype as fabricated: (a) Close up of winding supports, tube fittings, and lamination (b) Coil assembly showing injection molded cooling channels and windings



## **Other Machine Technologies**


### **Bi-axial Excitation Machine**

- Rotor construction similar to WFSM with magnets embedded along q-axis
- Torque density comparable to WFSM (28 Nm/L at 70 Nm)
- Uses non-rare earth ferrite magnets; low cost also comparable to WFSM
- Unity power factor operation leads to inverter size and cost reduction
- 7.5 kW prototype under fabrication



### Ceramic Winding

- Copper on ceramic (DBC, AMB, electroplated) substrate windings allow higher current densities vs. conventional windings
- Highly conductive thermal path from copper to coolant
- Winding volume and weight reduction
- Ideal for slotless radial and axial flux machines



## FREEMS CENTER

## **EV Electric Powertrain**

- Skateboard Chassis with Dual motors is a popular choice in automotive industry
- Si-IGBT inverters is still widely used, but SiC inverters are emerging

#### **Traction Inverter:**

- ✓ 90-350kW+ motor drive inverter
- ✓ Single, dual or in hub drives

#### Why SiC?

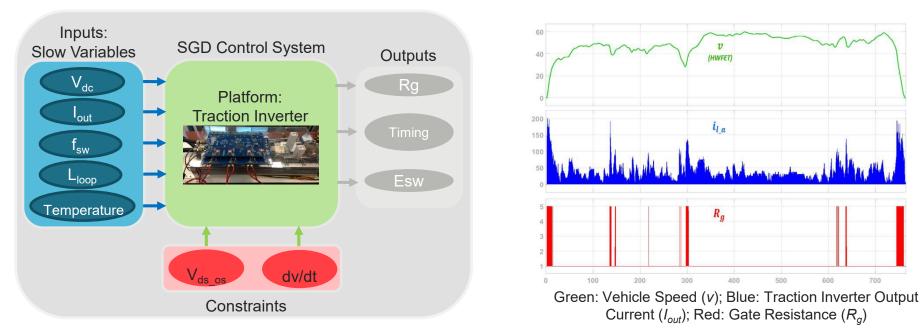
- ✓ Vehicle range extension
- ✓ Battery cost reduction
- ✓ System cost reduction
- Bi-directional energy flow for regenerative breaking

#### SiC Advantages :

- $\checkmark$  ~80% lower drive loss
- ✓ ~30% smaller system size
- ✓ Lower system cost

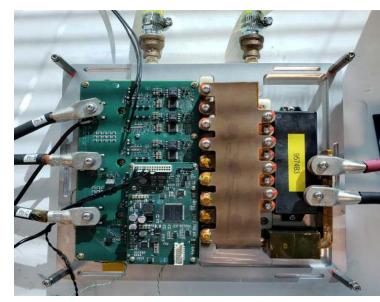
#### SiC Issues to be Solved :

- ✓ Module cost
- ✓ Protection and Reliability
- ✓ System EMI issues

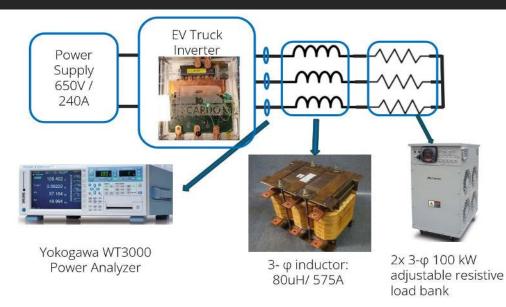



#### **Tesla Model S Skateboard Chassis**

## FREECH SYSTEMS CENTER


## Selective Gate Driver (SGD) for SiC EV Inverter

- SGD: a new strategy is proposed with adjustable Rg for the next switching cycle, according to different inverter operating conditions (V<sub>dc</sub> and I<sub>out</sub>), to minimize the switching loss (E<sub>sw</sub>) and maintain the switching stress (V<sub>ds os</sub> and dv/dt) at the same time.
- Benefits of SGD:
- Maintain the switching stress ( $V_{ds os}$  and dv/dt) and reduce switching loss.
- Feedback on real-time variables (V<sub>dc</sub>, I<sub>out</sub>, and can be extended to Temperature, etc.)
- Slower requirement on dynamic control (us level).
- Good application in EV traction inverter: most of the time, low Rg is needed.




# FREEMS CENTER

## All Electric 250kW SiC Truck Inverter



250kW, 800V SiC Inverter with > 98% efficiency



Inverter Test set-up at FREEDM

- An electric drivetrain is being developed for a Class 8 heavy duty truck funded by DOE-VTO
- The truck must meet DoE specifications for transport of materials to and from a shipping port, with range of approximately 250 miles
- FREEDM provided inverter design and hardware testing support

D. Rahman, M. Kercher, W. Yu and I. Husain, "Comparative Evaluation of Current Sensors for High-Power SiC Converter Applications," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021.

**NC STATE UNIVERSITY** 

## Thank You !

## **Any Questions ?**

Iqbal Husain Email: ihusain2@ncsu.edu