

RESUS

Grundlagen zur Bewertung eines Endlagersystems in einer Tongesteinsformation größerer Mächtigkeit

GRS

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) gGmbH

RESUS

Grundlagen zur Bewertung eines Endlagersystems in einer Tongesteinsformation größerer Mächtigkeit

Anas Alfarra (BGR) Niklas Bertrams (BGE TEC) Wilhelm Bollingerfehr (BGE TEC) Ralf Eickemeier (BGR) Judith Flügge (GRS) Britta Frenzel (BGR) Jobst Maßmann (BGR) Kim-Marisa Mayer (GRS) Jörg Mönig (GRS) Sabine Mrugalla (BGR) Nina Müller-Hoeppe (BGE TEC) Klaus Reinhold (BGR) André Rübel (GRS) Nicole Schubarth-Engelschall (BGR) Eric Simo (BGE TEC) Jan Thiedau (BGR) Tatiana Thiemeyer (BGR) Jan Richard Weber (BGR) Jens Wolf (GRS)

August 2020

Anmerkung:

Der Bericht wude im Auftrag der Bundesgesellschaft für Endlagerung mbH (BGE) unter der BGE-Bestell-Nr. 45183385 durchgeführt.

Die Verantwortung für den Inhalt dieses Berichtes liegt bei den Autoren.

Der Bericht gibt die Auffassung und Meinung des Auftragnehmers wieder und muss nicht mit der Meinung des Auftraggebers übereinstimmen.

Deskriptoren

Abwägungskriterien, Endlager, Radioaktive Abfälle, Standortauswahlverfahren, Tongestein

Kurzfassung

Nach dem Standortauswahlgesetz (StandAG) ist in einem Standortauswahlverfahren der Standort mit der bestmöglichen Sicherheit für das Endlager für hochradioaktive Abfälle zu ermitteln. Dazu ist vom Vorhabenträger Bundesgesellschaft für Endlagerung mbH zunächst zur Ermittlung von Teilgebieten, dann zur Ermittlung potentieller Standortregionen für die übertägige Erkundung, zur Ermittlung potentieller Standorte für die untertägige Erkundung und letztlich beim abschließenden Standortvergleich anhand geowissenschaftlicher Abwägungskriterien zu bewerten, ob nach einer sicherheitsgerichteten Abwägung der Ergebnisse zu allen im StandAG genannten geowissenschaftlichen Abwägungskriterien in einem Gebiet eine aünstiae geologische Gesamtsituation vorliegt.

Voraussetzung für eine solche sicherheitsgerichtete Abwägung sowohl zwischen verschiedenen Merkmalen als auch zwischen unterschiedlichen geologischen Gesamtsituationen ist ein hinreichendes Verständnis, welche Signifikanz die einzelnen geowissenschaftlichen Abwägungskriterien und ihre möglichen Ausprägungen für eine Bewertung der Endlagersicherheit bei den zu betrachtenden Endlagersystemen in Deutschland haben. Um eine derartige Signifikanzbewertung der geowissenschaftlichen Abwägungskriterien vornehmen zu können, werden im Vorhaben "Grundlagenentwicklung für repräsentative vorläufige Sicherheitsuntersuchungen und zur sicherheitsgerichteten Abwägung von Teilgebieten mit besonders günstigen geologischen Voraussetzungen für die sichere Endlagerung hochradioaktiver Abfälle" (RESUS) generische Sicherheitsuntersuchungen durchgeführt.

Im vorliegenden Bericht werden die Grundlagen für die Bewertung eines Endlagersystems in einer Tongesteinsformation größerer Mächtigkeit dokumentiert. Dies umfasst qualitative Betrachtungen zur Bedeutung der bewertungsrelevanten Eigenschaften der Abwägungskriterien für die Langzeitsicherheit in einem derartigen Endlagersystem, bei dem der Einschluss der Radionuklide im Wesentlichen durch die geologische Barriere gewährleistet werden muss. Die Einschlusswirksamkeit dieser Barriere (Integrität) ist für den dauerhaften, nachsorgefreien Einschluss der Radionuklide von zentraler Bedeutung. Deshalb wurden Ergebnisse quantitativer Analysen zur Integrität des Barrieregesteins sowie zum Einschluss der Radionuklide berücksichtigt.

Die Ergebnisse des Vorhabens wurden auf mehreren Fachkonferenzen vorgestellt. Entwürfe der Ergebnisberichte wurden im April 2020 mit der Möglichkeit einer Kommentierung über den Webauftritt der GRS online gestellt. Das Feedback aus diesen Foren wurde bei der Erstellung der finalen Berichtsfassungen berücksichtigt.

Inhaltsverzeichnis

Kurzf	assung		1
Inhal	tsverzeic	hnis	2
Abbil	dungsve	rzeichnis	4
Tabe	llenverze	ichnis	7
Anha	ngsverze	eichnis	8
Abkü	rzungsve	erzeichnis	9
1	Einleitur	ng	11
2	Geologi	scher Hintergrund	15
	2.1	Vorkommen von Tongesteinen in Deutschland	15
	2.2	Geologisches Modell	16
	2.3	Bewertung zukünftiger geologischer und klimatischer Prozesse	22
3	Anwend	ung der geowissenschaftlichen Abwägungskriterien	28
4	Grundla	gen und Elemente von Sicherheitsuntersuchungen	35
	4.1	Zu berücksichtigende radioaktive Abfälle	37
	4.1.1	Abfallmengengerüst	37
	4.1.2	Radionuklidinventar	41
	4.2	Sicherheitskonzept	42
	4.2.1	Zielsetzungen	43
	4.2.2	Maßnahmen	44
	4.3	Technisches Endlagerkonzept	46
	4.3.1	Grundlegende Randbedingungen der Endlagerauslegung	46
	4.3.2	Positionierung des Endlagerbergwerks im geologischen Modell	47
	4.3.3	Thermische Leislung des Ablallinventars	47
	4.3.4	Planung des Grubengebäudes	49 55
	4.3.5	Verfüll- und Verschlusskonzent	55 60
	4.3.0	Entwicklungen des Endlagersystems in der Nachverschlussphase	65
	4.4.1	Zu erwartende Entwicklung	66
	4.4.2	Abweichende Entwicklungen	68
5	Vorgehe	en zur Bewertung der Langzeitsicherheit	69
	5.1	Integrität des Barrieregesteins	69
	5.1.1	Indikator Dilatanz	71
	5.1.2	Indikator Fluiddruck	72
	5.1.3	Indikator Temperatur	73
	5.1.4	Indikator Advektion	73
	5.2	Einschluss von Radionukliden	75
6	Ergebni	sse der generischen Sicherheitsuntersuchungen	76
	6.1	Integrität des Barrieregesteins	76
	6.1.1	Modellierungskonzept	76
	6.1.2	Berechnungsmodell des Basisfalls	83
	6.1.3	Ergebnisse des Basisfalls	90

	6.2	Einschluss von Radionukliden	101			
	6.2.1	Verwendete Rechenmodelle	102			
	6.2.2	Verwendete Daten	103			
	6.2.3	Ergebnisse des Basisfalls	106			
	6.3	Diskussion der Ergebnisse	108			
	6.3.1	Integrität des Barrieregesteins	108			
	6.3.2	Einschluss von Radionukliden	110			
7	Bewertu	ng der Indikatoren der geowissenschaftlichen Abwägungskriterien unter				
	Berücks	ichtigung der generischen Sicherheitsuntersuchungen	111			
	7.1	Signifikanzbewertung	111			
	7.1.1	Parametervariationen zum Kriterium zur Bewertung des Transportes radioaktive	(112			
	712	Diskussion der Signifikanzanaluse	122			
	7.1.2	Überprüfung der Ausprägung der Indikatoren zu den Abwägungskriterien	124			
Anha	ng A: Ge	owissenschaftliche Abwägungskriterien	132			
Bewe	rtung de	s Transportes radioaktiver Stoffe durch Grundwasserbewegungen im ewG	133			
Bewe	rtung de	r Konfiguration der Gesteinskörper	137			
Bewe	rtung de	r räumlichen Charakterisierbarkeit	142			
Bewe	rtung de	r langfristigen Stabilität der günstigen Verhältnisse	147			
Bewe	rtung de	r günstigen gebirgsmechanischen Eigenschaften	150			
Bewe	rtung de	r Neigung zur Bildung von Fluidwegsamkeiten	153			
Bewe	rtung de	r Gasbildung	159			
Bewe	rtung de	r Temperaturverträglichkeit	160			
Bewe	rtung de	s Rückhaltevermögens im ewG	162			
Bewe	rtung de	r hydrochemischen Verhältnisse	165			
Bewe	3ewertung des Schutzes des ewG durch das Deckgebirge 169					
Gloss	ar		171			
Litera	turverzei	chnis	173			

Gesamtseitenzahl: 182

Abbildungsverzeichnis

Abb. 1:	Schematische Verbreitungsgebiete von Tonformationen in Deutschland ohne spezifisc Bewertung, links: Mittel- und Unterjura, rechts: Unter- und Oberkreide	he 16
Abb. 2:	3D-Blockbild der Modelleinheiten im generischen geologischen Modell T1 "Tongestein größerer Mächtigkeit"	17
Abb. 3:	Schnitt Richtung W-E (oben) und N-S (unten) durch das generische geologische Mode für das Endlagersystem T1	ll 18
Abb. 4:	 A = Basis der Modelleinheit Hauterivium (Basis Wirts- bzw. Barrieregestein), B = Mächtigkeit des Wirts- bzw. Barrieregestein, C = Top der Modelleinheit Barremium (Top Wirts- bzw. Barrieregestein) (Gitterlinienabstand 2 km) 	19
Abb. 5:	Schematische Zusammenstellung der Informationen zur maßgeblichen Mächtigkeit, Lithologie und zu den hydraulischen Eigenschaften (ohne die Berücksichtigung der Anisotropie von Sedimentgesteinen) der Modelleinheiten im Endlagersystem T1. Klassifizierung in Grundwasserleiter und -geringleiter nach Ad-Hoc-AG Hydrogeologie (1997), ergänzt um den k _f -Wertebereich nach § 23 Absatz 5 Nr. 1 StandAG	21
Abb. 6:	Ausschnitt aus dem geologischen Modell mit Position des Endlagerbergwerkes	47
Abb. 7:	Thermische Leistung eines DWR-Brennelementes in Abhängigkeit von der Zeit, beladungsäquivalent zu einem DWR-BE (3 SWR-BE oder 2,5 WWER-BE)	48
Abb. 8:	Im Modell verwendete Materialbereiche zur Modellierung der thermischen Ausbreitung im Nahfeld	50
Abb. 9:	BSK mit Brennelementen (oben), Triple-Pack mit CSD-V (unten)	51
Abb. 10:	Temperaturverläufe im Auslegungspunkt für DWR-Mix BE, gewählter Temperaturverla (rote Kurve)	uf 53
Abb. 11:	Temperaturmaximum in Abhängigkeit vom Bohrloch- und Behälterabstand, gewähltes Maximum aus Simulationsfall N° 6 (roter Punkt), schwarze Linie kennzeichnet 100°C- Isotherme	53
Abb 12 [.]	Temperaturverlauf im Auslegungspunkt für verglaste Abfälle (CSD-V)	54
Abb 13	Skizze der Richtstrecken des Endlagerbergwerks	56
Abb. 14	Skizze des Querschnitts einer Bohrlochüberfahrungsstrecke und eines Bohrloch	57
Abb. 15:	Skizze der Einlagerungsstrecke für Brennelementstrukturteile	58
Abb. 16:	Skizze des Grubengebäudeteils mit Einlagerungsbereichen für ausgediente	
	Brennelemente	59
Abb. 17:	Skizze des Grubengebäudeteils mit Infrastrukturbereich und Einlagerungsbereichen fü Abfälle aus der Wiederaufarbeitung, Brennelementstrukturteile und Abfälle aus Versuchs- und Prototypkernkraftwerken sowie Forschungsreaktoren	r 60
Abb. 18:	Schematisierte Skizze der hydraulisch wirksamen Elemente des Verschlusssystems	61
Abb. 19:	Schachtverschlusskonzept für das Referenzprofil	65
Abb. 20:	Prinzipskizze zur Illustration der Prozesse im Bereich eines verfüllten Grubenbaus (ohne geochemische Prozesse)	67
Abb. 21:	Auswertung des Mohr-Coulomb-Kriteriums, dargestellt am Spannungskreis	72
Abb. 22:	Auswertung des Indikators Advektion	74
Abb. 23:	Prozesse und deren Kopplungen	80

Abb. 24:	Modelleinheiten: links: nach geologischer Beschreibung; daneben: für Modellberechnungen mit den Homogenbereichen (HB) 0 bis 10
Abb. 25:	Kapillardruck-Sättigungsbeziehung und relative Permeabilität-Sättigungsbeziehung im Barrieregestein
Abb. 26:	Numerisches Modell für THM-Berechnungen
Abb. 27:	Zeitliche Phasen des Endlagers und der Randbedingungen des numerischen Modells. 89
Abb. 28:	Zeitliche Entwicklung der Temperatur an ausgewählten Punkten im Barrieregestein. Angegeben sind die Entfernungen zur Firste der Strecken, bzw. dem Bohrlochtiefsten. 91
Abb. 29:	Temperaturverteilung nach 500 Jahren92
Abb. 30:	Porenwasserdruck nach 100 Jahren. Negative Werte entsprechen Saugspannungen in der ungesättigten Zone. Die Vektoren zeigen die Strömungsrichtung und qualitativ die Strömungsgeschwindigkeit
Abb. 31:	Zeitliche Entwicklung der Porenwasserdrücke an ausgewählten Punkten über dem Einlagerungsbereich. Angegeben sind die Entfernungen zur Firste der Strecken, bzw. dem Bohrlochtiefsten
Abb. 32:	Zeitliche Entwicklung der vertikalen Verschiebungen an ausgewählten Punkten im Barrieregestein. Angegeben sind die Entfernungen zur Firste der Strecken, bzw. dem Bohrlochtiefsten
Abb. 33:	Vertikale Verschiebungskomponente nach 1.500 Jahren
Abb. 34:	Zeitliche Entwicklung der Spannungen an ausgewählten Punkten über dem Einlagerungsbereich. Angegeben sind die Entfernungen zur Firste der Strecken, bzw. dem Bohrlochtiefsten
Abb. 35:	Örtliche und zeitliche Entwicklung des Indikators Dilatanz im Barrieregestein
Abb. 36:	Örtliche und zeitliche Entwicklung des Indikators Fluiddruck
Abb. 37:	Auswertung des Advektions-Kriteriums im Barrieregestein anhand der Verfolgung von Partikelbahnen. Dargestellt sind die Startpunkte, die Umhüllende und die Partikel 1 Million Jahre nach Einlagerungsbeginn
Abb. 38:	Schematische Darstellung des Modells für das Endlager im Tongestein (links) und der Stratigraphie der Gesteine (rechts) (nicht maßstabsgerecht)
Abb. 39:	Radionuklidstrom aus dem Nahfeld in das Wirtsgestein
Abb. 40:	Zeitverlauf der Indikatoren I1 und I2 am Rand des Barrieregesteins und in der Modelleinheit S1 für den Basisfall
Abb. 41:	Berechnete zeitliche Entwicklung des gekoppelten THM-Systems; beispielhaft dargestellt an einem Punkt im Wirtsgestein
Abb. 42:	Variante P1: Örtliche und zeitliche Entwicklung des Indikators Dilatanz (Durchlässigkeitsbeiwert = $1 \cdot 10^{-12}$ m/s)
Abb. 43:	Variante P2: Örtliche und zeitliche Entwicklung des Indikators Dilatanz (Durchlässigkeitsbeiwert = 1·10 ⁻¹⁰ m/s)
Abb. 44:	Variante P1: Örtliche und zeitliche Entwicklung des Indikators Fluiddruck (Durchlässigkeitsbeiwert = $1 \cdot 10^{-12}$ m/s)
Abb. 45:	Variante P2: Örtliche und zeitliche Entwicklung des Indikators Fluiddruck (Durchlässigkeitsbeiwert = 1·10 ⁻¹⁰ m/s)

Abb. 46:	Variante P1: Auswertung des Indikators Advektion im Barrieregestein anhand der Verfolgung von Partikeln. Dargestellt sind alle Partikel 1 Million Jahre nach Einlagerungsbeginn
Abb. 47:	Variante P2: Auswertung des Indikators Advektion im Wirtsgestein anhand der Verfolgung von Partikeln. Dargestellt sind alle Partikel zum Zeitpunkt 1 Million Jahren 121
Abb. 48:	Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 1 des StandAG133
Abb. 49:	Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 2 des StandAG
Abb. 50:	Indikatoren bei der Konfiguration "ewG im Wirtsgestein" (Typ A in Anlehnung an die im AkEnd und im Kommissionsbericht abgebildeten und erläuterten Konfigurationstypen); H_{BG} = horizontale Ausdehnung des Barrieregesteins; H_{ELB} = horizontale Ausdehnung des Einlagerungsbereichs; schraffierte Bereiche stellen schematisch Zonen dar, die die Anforderungen an einen ewG nicht erfüllen
Abb. 51:	Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 3 des StandAG142
Abb. 52:	Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 6 des StandAG154
Abb. 53:	Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 7 des StandAG
Abb. 54:	Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 9 des StandAG
Abb. 55:	Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 11 des StandAG

Tabellenverzeichnis

Tab. 1:	Vorläufige Bewertung der Indikatoren nach Anlage 1 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1
Tab. 2:	Vorläufige Bewertung der Indikatoren nach Anlage 2 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1
Tab. 3:	Vorläufige Bewertung der Indikatoren nach Anlage 3 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1
Tab. 4:	Vorläufige Bewertung der Indikatoren nach Anlage 4 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1
Tab. 5:	Vorläufige Bewertung der Indikatoren nach Anlage 5 zu § 24 Absatz 4 des StandAG für das Endlagersystem T1
Tab. 6:	Vorläufige Bewertung der Indikatoren nach Anlage 6 zu § 24 Absatz 4 des StandAG für das Endlagersystem T1
Tab. 7:	Vorläufige Bewertung der Indikatoren nach Anlage 7 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1
Tab. 8:	Vorläufige Bewertung der Indikatoren nach Anlage 8 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1
Tab. 9:	Vorläufige Bewertung der Indikatoren nach Anlage 9 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1
Tab. 10:	Vorläufige Bewertung der Indikatoren nach Anlage 10 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1
Tab. 11:	Vorläufige Bewertung der Indikatoren nach Anlage 11 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1
Tab. 12:	Mengengerüst der ausgedienten Brennelemente aus Leistungsreaktoren
Tab. 13:	Mengengerüst der ausgedienten Brennelemente aus Versuchs- und Prototyp- Kernkraftwerken und Forschungsreaktoren
Tab. 14:	Mengengerüst der Wiederaufarbeitungsabfälle ausgedienter Brennelemente aus den Leistungsreaktoren
Tab. 15:	
	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41
Tab. 16:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49
Tab. 16: Tab. 17:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18: Tab. 19:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18: Tab. 19: Tab. 20:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18: Tab. 19: Tab. 20: Tab. 21:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18: Tab. 19: Tab. 20: Tab. 21: Tab. 22:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18: Tab. 19: Tab. 20: Tab. 21: Tab. 22: Tab. 23:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18: Tab. 19: Tab. 20: Tab. 21: Tab. 22: Tab. 22: Tab. 23: Tab. 24:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18: Tab. 19: Tab. 20: Tab. 21: Tab. 22: Tab. 23: Tab. 23: Tab. 24: Tab. 25:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)
Tab. 16: Tab. 17: Tab. 18: Tab. 19: Tab. 20: Tab. 21: Tab. 22: Tab. 23: Tab. 23: Tab. 24: Tab. 25: Tab. 26:	Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013) 41 Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle 49 Materialparameter abgeleitet von Nowak & Maßmann (2013) und Bollingerfehr et al. (2012)

Tab. 28:	Löslichkeitsbegrenzte Elemente und deren Löslichkeitsgrenzen [mol/m³]	105
Tab. 29:	Sorbierende Elemente und deren Sorptionskoeffizienten am Tongestein [m³/kg]	105
Tab. 30:	Transportparameter für das Endlagersystem T1	106
Tab. 31:	Bewertung der Indikatoren nach Anlage 1 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1	125
Tab. 32:	Bewertung der Indikatoren nach Anlage 2 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1	125
Tab. 33:	Bewertung der Indikatoren nach Anlage 3 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1	126
Tab. 34:	Bewertung der Indikatoren nach Anlage 4 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1	127
Tab. 35:	Bewertung der Indikatoren nach Anlage 5 zu § 24 Absatz 4 des StandAG für das Endlagersystem T1	127
Tab. 36:	Bewertung der Indikatoren nach Anlage 6 zu § 24 Absatz 4 des StandAG für das Endlagersystem T1	128
Tab. 37:	Bewertung der Indikatoren nach Anlage 7 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1	129
Tab. 38:	Bewertung der Indikatoren nach Anlage 8 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1	129
Tab. 39:	Bewertung der Indikatoren nach Anlage 9 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1	129
Tab. 40:	Bewertung der Indikatoren nach Anlage 10 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1	130
Tab. 41:	Bewertung der Indikatoren nach Anlage 11 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1	130

Anhangsverzeichnis

Anhang A: Geowissenschaftliche Abwägungskriterien

Abkürzungsverzeichnis

AkEnd	Arbeitskreis Auswahlverfahren Endlagerstandorte			
AVR	Versuchsreaktor Jülich			
BE	Brennelement			
BER II	Berliner Experimentier-Reaktor II			
BGE TEC	BGE TECHNOLOGY			
BGR	Bundesanstalt für Geowissenschaften und Rohstoffe			
BSK	Brennstabkokillen			
CSD	Colis/Conteneur de Standard des Déchets = Abfallgebinde aus der Wiederaufarbeitung in La Hague (F)			
DIN	Deutsches Institut für Normung			
DWR	Druckwasserreaktor			
EB	Einlagerungsbereich			
EDZ	Excavation damaged zone = Auflockerungszone			
EL	Endlager			
ES	Endlagersystem			
ewB	Einschlusswirksamer Bereich			
ewG	Einschlusswirksamer Gebirgsbereich			
FD	Finite Differenzen			
FE	Finite Elemente			
FEP	Features, Events, Processes			
FRM II	Forschungsreaktor München, Garching II			
FRMZ	Forschungsreaktor Mainz			
GOK	Geländeoberkante			
GRS	Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH			
HAW	High Active Waste			
НВ	Homogenbereich			
IRF	Instant Release Fraction			
KNK	Kompakte Natriumgekühlte Kernreaktoranlage Karlsruhe			

mNN	Meter über Normalnull
МОХ	Mischoxid
NaPro	Nationales Entsorgungsprogramm
NEA	Nuclear Energy Agency
RFR	Rossendorfer Forschungsreaktor
SWR	Siedewasserreaktor
T1	Endlagersystem in einer Tongesteinsformation größerer Mächtigkeit
T2	Endlagersystem in einer Tongesteinsformation geringerer Mächtigkeit - Auslegungstemperatur 100 °C
Т3	Endlagersystem in einer Tongesteinsformation geringerer Mächtigkeit – Auslegungstemperatur 150 °C
TLB	Transport- und Lagerbehälter
тм	Thermomechanisch
THTR	Thorium-Hoch-Temperatur-Reaktor Hamm
ТНМ	Thermisch-hydraulisch-mechanisch
tSM	Tonnen Schwermetall
VEK	Verglasungseinrichtung Karlsruhe
VSG	Vorläufige Sicherheitsanalyse für den Standort Gorleben
WAK	Wiederaufarbeitungsanlage Karlsruhe
WWER	Wasser-Wasser-Energie-Reaktor

1 Einleitung

Der Standort für die Anlage zur Endlagerung aller in Deutschland anfallenden hochradioaktiven Abfälle soll im Rahmen eines Standortauswahlverfahrens ermittelt werden, das im "Gesetz zur Suche und Auswahl eines Standortes für ein Endlager für hochradioaktive Abfälle (Standortauswahlgesetz – StandAG)" geregelt ist. Dabei soll derjenige Standort identifiziert werden, der im Vergleich mit allen anderen Alternativen "*die bestmögliche Sicherheit für den dauerhaften Schutz von Mensch und Umwelt vor ionisierender Strahlung und sonstigen schädlichen Wirkungen dieser Abfälle für einen Zeitraum von einer Million Jahren gewährleistet" ¹ (StandAG, § 1 Absatz 2), wobei "<i>grundsätzlich für die Endlagerung hochradioaktiver Abfälle die Wirtsgesteine Steinsalz, Tongestein und Kristallingestein in Betracht*" kommen (StandAG, § 1 Absatz 3).

Im ersten Schritt des Standortauswahlverfahrens hat die Bundesgesellschaft für Endlagerung mbH (BGE) als Vorhabenträger gemäß § 13 StandAG zunächst anhand der in § 22 StandAG aufgeführten Ausschlusskriterien zu klären, in welchen Gebieten in Deutschland ein Endlager nicht errichtet werden kann. Danach sind die Mindestanforderungen gemäß § 23 StandAG auf die verbleibenden Gebiete Deutschlands anzuwenden. Die Ausschlusskriterien und Mindestanforderungen gelten während des gesamten Auswahlverfahrens. Anschließend sind nach § 24 StandAG Gebiete mit einer günstigen geologischen Gesamtsituation anhand "einer sicherheitsgerichteten Abwägung der Ergebnisse zu allen Abwägungskriterien" zu ermitteln. In den Anlagen 1 bis 11 zu § 24 StandAG sind zu den einzelnen Abwägungskriterien jeweils bewertungsrelevante Eigenschaften und zugehörige Bewertungsgrößen bzw. Indikatoren genannt sowie qualitative Merkmale oder Zahlenwerte für deren Zuordnung zu Wertungsgruppen. Darüber hinaus wird das BMU in § 26 Absatz 3 StandAG ermächtigt, "auf Grundlage der Sicherheitsprinzipien nach Absatz 2 Sicherheitsanforderungen für die Endlagerung festzulegen", und in § 27 Absatz 6 ermächtigt "durch Rechtsverordnung zu bestimmen, welche Anforderungen für die Durchführung der vorläufigen Sicherheitsuntersuchungen im Standortauswahlverfahren für die Endlagerung hochradioaktiver Abfälle gelten." Diese müssen spätestens zum Zeitpunkt der Durchführung repräsentativer vorläufiger Sicherheitsuntersuchungen nach § 14 Absatz 1 Satz 2 vorliegen. Die neuen Sicherheitsanforderungen ersetzen nach Veröffentlichung die Sicherheitsanforderungen des BMU aus dem Jahr 2010.

Im weiteren Verlauf werden Standortregionen für die übertägige Erkundung, dann Standorte für die untertägige Erkundung und abschließend der Standort mit der bestmöglichen Sicherheit ermittelt. Dabei sind in jeder Phase auf Basis der geowissenschaftlichen Informationen bzw. der jeweiligen Erkundungsergebnisse entsprechende vorläufige Sicherheitsuntersuchungen durchzuführen. Anhand der Ergebnisse dieser Sicherheitsuntersuchungen und einer erneuten sicherheitsgerichteten Abwägung der Ergebnisse zu allen geowissenschaftlichen Abwägungskriterien erfolgt die weitere Einengung der betrachteten Standortregionen bzw. Standorte.

Um die vom StandAG vorgeschriebenen vorläufigen Sicherheitsuntersuchungen durchführen zu können, muss jeweils ein konkretes Endlagersystem zugrunde gelegt werden, d. h. neben Art und Menge der radioaktiven Abfälle sind auch Vorstellungen zum technischen Endlagerkonzept inkl. möglicher Abfallgebinde erforderlich sowie eine Dimensionierung des Endlagerbergwerks unter Berücksichtigung aller Anforderungen an die Betriebssicherheit eines solchen Bergwerks und ein realisierbares Verfüll- und Verschlusskonzept.

¹ Original übernommene Textstellen aus dem StandAG bzw. den Erläuterungen zum StandAG (Deutscher Bundestag, 2017) sind im vorliegenden Bericht kursiv gekennzeichnet.

Genauso wie die Ausschlusskriterien und Mindestanforderungen sind auch die geowissenschaftlichen Abwägungskriterien in den weiteren Schritten des Standortauswahlverfahrens wiederholt vom Vorhabenträger anzuwenden. Es gibt keine gesetzlichen oder regulatorischen Vorgaben, wie bei der Ermittlung von Teilgebieten, die günstige geologische Voraussetzungen erwarten lassen, oder den weiteren Schritten im Standortauswahlverfahren eine sicherheitsgerichtete Abwägung der Ergebnisse zu allen Abwägungskriterien vorgenommen werden soll. Ein Teil der Arbeiten im Vorhaben RESUS zielt darauf ab, Empfehlungen für die Vorgehensweise bei der sicherheitsgerichteten Abwägung zu entwickeln. Dabei wurden die folgenden übergeordneten Überlegungen zugrunde gelegt:

- In jedem Schritt ist der jeweilige, aktuelle Kenntnisstand zu den geowissenschaftlichen Befunden zu berücksichtigen. Liegen bestimmte bewertungsrelevante Informationen zum Betrachtungsraum² nicht vor, ist dies zu dokumentieren und ein geeigneter Umgang mit dem Informationsdefizit darzulegen.
- Mit der Vorgehensweise zur sicherheitsgerichteten Abwägung soll sichergestellt werden, dass Betrachtungsräume nicht aufgrund fehlender bewertungsrelevanter Informationen aus dem weiteren Verfahren ausgeschlossen werden.
- Falls bei der sicherheitsgerichteten Abwägung der Ergebnisse aller Kriterien bestimmte Kriterien oder Kriteriengruppen hervorgehoben werden, sind die Gründe zu dokumentieren.

Neben den Vorgaben des StandAG wurden bei der Bearbeitung, insbesondere bei den Untersuchungen zur Integrität des Barrieregesteins sowie zum Einschluss der Radionuklide, auch die Sicherheitsanforderungen des BMU aus dem Jahr 2010 berücksichtigt. Die parlamentarische Beratung zu dem am 18.05.2020 vom BMU veröffentlichten Entwurf der Verordnung über Sicherheitsanforderungen und vorläufige Sicherheitsuntersuchungen für die Endlagerung hochradioaktiver Abfälle (Deutscher Bundestag, 2020) war bis zum Zeitpunkt der Erstellung der Berichte zum Vorhaben RESUS noch nicht abgeschlossen.

Eine mögliche Option in Deutschland mit günstigen geologischen Voraussetzungen sind Gebiete mit Tongesteinsformationen, die es auf Grund ihrer Barrierewirksamkeit ermöglichen, einen einschlusswirksamen Gebirgsbereich (ewG) in dieser Formation auszuweisen (Konfigurationstyp A nach AkEnd (2002)). Auf Grund der geologischen Gegebenheiten in Deutschland ist es dabei denkbar, dass es sich um Tonformationen mit unterschiedlichen Eigenschaften und Mächtigkeiten handelt. Im Vorhaben RESUS werden beispielhaft zwei Endlagersysteme untersucht. Der vorliegende Bericht behandelt ein Tongestein mit einer Mächtigkeit im Bereich des Endlagerbergwerks von 500 bis zu 700 m, im Vorhaben RESUS als "Endlagersystem in einer Tongesteinsformation größerer Mächtigkeit (T1)" bezeichnet. Als weiteres Beispiel (Endlagersystem T2) wurde in RESUS ein Endlagersystem mit anderen Eigenschaften und einer Mächtigkeit des Wirtsgesteins von 100 bis 130 m untersucht (Alfarra et al., 2020).

Die Ergebnisse in diesem Bericht beziehen sich nicht auf einen konkreten Standort oder ein Teilgebiet im Sinne des § 13 Absatz 1 StandAG. Vielmehr handelt es sich um generische Betrachtungen, denen plausible Annahmen zu in Deutschland möglichen geologischen Situationen für Gebiete mit Tongesteinsformationen zugrunde liegen.

In Kapitel 2 dieses Berichtes werden Informationen zum Vorkommen von Tongesteinsformationen in Deutschland zusammengestellt und ein generisches geologisches Modell für das betrachtete

² Betrachtungsraum wird hier als allgemeiner Begriff für ein Teilgebiet, eine Standortregion oder einen Standort verwendet. In jedem Schritt des Standortauswahlprozesses werden nur gleichartige Betrachtungsräume bewertet.

Endlagersystem einschließlich der wesentlichen zugehörigen Parameterwerte beschrieben. Des Weiteren werden geologische und klimatische Prozesse dargestellt, die für die Bewertung von Einwirkungen auf die Integrität der einschlusswirksamen geologischen, geotechnischen und technischen Barriere eine Rolle spielen können. Auf das Endlagersystem T1 werden dann in Kapitel 3 die Indikatoren der geowissenschaftlichen Abwägungskriterien einzeln angewendet. Dazu werden die Indikatoren im Anhang A jeweils definiert und es wird beschrieben, welche grundsätzlichen Informationen zu dem betrachteten geologischen System vorliegen. Auf Basis der im StandAG definierten Wertungsgruppen erfolgt mit Hilfe dieser Informationen eine begründete, qualitative Bewertung der Indikatoren der Abwägungskriterien.

In den Kapiteln 4 und 5 werden zentrale Bausteine für im Rahmen des Standortauswahlverfahrens durchzuführende vorläufige Sicherheitsuntersuchungen dargestellt. Diese umfassen neben den beschriebenen geologischen Gegebenheiten die zu berücksichtigenden radioaktiven Abfälle mit dem Abfallmengengerüst und Radionuklidinventar, das Sicherheitskonzept und das technische Endlagerkonzept mit seiner Dimensionierung und den technischen und geotechnischen Barrieren. Diese Grundlagen basieren zu einem großen Teil auf den FUE-Vorhaben ERATO (Pöhler et al., 2010) sowie ANSICHT (Jobmann et al., 2017). Die Dimensionierung des technischen Endlagerkonzeptes erfolgt unter Berücksichtigung der Vorgaben in StandAG § 27 Absatz 4, sodass an der Außenfläche der Behälter maximal eine Temperatur von 100 °C auftritt. Im vorliegenden Bericht werden verschiedene Indikatoren zur Bewertung der Integrität des Barrieregesteins sowie des Einschlusses von Radionukliden im Endlagersystem eingesetzt. Diese Aspekte spielen eine zentrale Rolle bei der Bewertung der Langzeitsicherheit eines Endlagersystems und sind daher wichtige Elemente von Langzeitsicherheitsanalysen. Unter Berücksichtigung der jeweiligen realen Standortgegebenheiten können diese Informationen im Standortauswahlverfahren als Ausgangspunkt zur Bewertung eines solchen Endlagersystems an einem konkreten Standort genutzt werden.

In den Kapiteln 6 und 7 des Berichts werden die Ergebnisse der generischen Sicherheitsuntersuchungen dargestellt und es wird diskutiert, welche Bewertungen sich anhand dieser Ergebnisse zu den geowissenschaftlichen Abwägungskriterien ableiten lassen. Diskutiert wird, wo die Ergebnisse von Modellberechnungen insbesondere zur Integrität des Barrieregesteins und zum Einschluss von Radionukliden bei Überprüfung der qualitativen Bewertungen der Indikatoren der Abwägungskriterien auf Basis allgemeiner Erkenntnisse zum Systemverhalten herangezogen werden können. Außerdem wird dargestellt, inwieweit die Signifikanz für die Langzeitsicherheit des Endlagersystems der im StandAG angegebenen Indikatoren der mit StandAG angegebenen Grenzen bewertet werden kann.

Die in diesem Bericht dargestellten Ergebnisse wurden im Rahmen des FuE-Vorhabens "Grundlagenentwicklung für repräsentative vorläufige Sicherheitsuntersuchungen und zur sicherheitsgerichteten Abwägung von Teilgebieten mit besonders günstigen geologischen Voraussetzungen für die sichere Endlagerung hochradioaktiver Abfälle", RESUS, von der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH im Auftrag der Bundesgesellschaft für Endlagerung mbH sowie von der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) sowie der BGE TECHNOLOGY GmbH erarbeitet.

Der vorliegende Bericht beschreibt die Ergebnisse für das Endlagersystem Tongesteinsformationen größerer Mächtigkeit (T1). Da im Rahmen des Vorhabens RESUS insgesamt zehn Endlagersysteme betrachtet werden, gibt es neun weitere entsprechende Berichte zu den Ergebnissen für die anderen betrachteten Endlagersysteme.

In ihrer Gesamtheit bilden diese Berichte die Grundlage für den Synthesebericht zum FuE-Vorhaben RESUS, der Empfehlungen für eine sicherheitsgerichtete Abwägung der Ergebnisse zu allen geowissenschaftlichen Abwägungskriterien enthält (Mönig et al. 2020).

2 Geologischer Hintergrund

2.1 Vorkommen von Tongesteinen in Deutschland

Tongesteine sind diagenetisch verfestigte klastische Sedimente, die durch eine geringe mediane Korngröße von weniger als 0,002 mm (Tonfraktion) charakterisiert sind und vorwiegend aus einem Gemenge von verschiedenen Tonmineralen bestehen (vgl. auch BGE, 2018). Insbesondere das Verhältnis der unterschiedlichen Tonminerale sowie der Anteil an anderen Mineralen (z. B. Quarz, Karbonat oder organischen Material) prägen die Eigenschaften von Tongesteinen und damit die der geologischen Barriere, wie z. B. die Durchlässigkeit und die Sorptionsfähigkeit. Zusätzlich zur Korngröße und der stofflichen Zusammensetzung bestimmt der Verfestigungs- bzw. Diagenesegrad die Eigenschaften der Tongesteine.

Tongesteine kommen in den verschiedensten stratigraphischen Einheiten in Deutschland vor. Tongesteinsformationen mit größerer Mächtigkeit sind, bedingt durch ihre Ablagerungsgeschichte, meist an marine oder limnisch bis brackische Sequenzen gebunden. Sowohl die Mächtigkeit, die flächenmäßige Verbreitung als auch die stoffliche Zusammensetzung dieser Ablagerungen variieren stark. In der "Regionalen Tonstudie" der BGR (Hoth et al., 2007) wurde die Verbreitung und Mächtigkeit von potenziell geeigneten Tongesteinsformationen für die Endlagerung erstmals durch Anwendung der geowissenschaftlichen Ausschlusskriterien und Mindestanforderungen des Arbeitskreises Auswahlverfahren Endlagerstandorte (AkEnd, 2002) in Deutschland dargestellt. Die Untersuchungen zeigten, dass mächtige und relativ homogene Tongesteine, welche die Anforderungen an Wirts- bzw. Barrieregesteine erfüllen können, vor allem in Gesteinsformationen der Unterkreide sowie des Unter- und Mitteljura Deutschlands vorkommen (Abb. 1).

Abb. 1: Schematische Verbreitungsgebiete von Tonformationen in Deutschland ohne spezifische Bewertung, links: Mittel- und Unterjura, rechts: Unter- und Oberkreide (nach Hoth et al., 2007)

2.2 Geologisches Modell

Basierend auf der "Regionalen Tonstudie" der BGR (Hoth et al., 2007) wurden im Vorhaben ANSICHT (Jobmann et al., 2017) zwei generische geologische Standortmodelle mit unterschiedlichem regionalgeologischen Bezug entwickelt (Reinhold et al., 2013, Jahn & Sönnke, 2013, Nowak & Maßmann, 2013, Reinhold et al., 2016, Jahn et al., 2016, Maßmann, 2016). Eines der Modelle orientiert sich beispielhaft an den geologischen Bedingungen in Norddeutschland, Standortmodell Nord, und umfasst eine Tongesteinsformation mit einer größeren Mächtigkeit als die im Endlagersystem T2 (100 m bis 130 m). Es wird als geologische Basis für das Endlagersystem T1 im Vorhaben RESUS verwendet.

Das geologische Modell des Teilgebietes für das Endlagersystem T1 ist in 17 Modelleinheiten gegliedert, die die Schichtenfolge der stratigraphischen Einheiten Zechstein, Buntsandstein, Muschelkalk, Keuper, Unterjura, Mitteljura, Oberjura, Unterkreide und Quartär abbilden (siehe Abb. 2). Die Modelleinheiten werden als relativ homogen entwickelte und regional gut charakterisierbare geologische Einheiten verstanden und sind in ihrer Raumlage und Lithologie sowie ihren hydrogeologischen Eigenschaften in Reinhold et al. (2013) beschrieben.

Die Ausdehnung des Modells beträgt etwa 70 km² und hat eine Erstreckung in Richtung W-E von ca. 7 km und in Richtung N-S von ca.10 km (Abb. 2). Die topographischen Höhenwerte variieren zwischen etwa 55 m NN und 85 m NN, die Oberfläche weist insgesamt ein Gefälle nach Norden auf.

Für das generische Teilgebiet wird eine geringe Hebungstendenz unterhalb von 0,1 mm/a angenommen. Der Temperaturgradient beträgt 40 K/km und die mittlere Jahrestemperatur an der Erdoberfläche etwa 8 °C.

Abb. 2: 3D-Blockbild der Modelleinheiten im generischen geologischen Modell T1 "Tongestein größerer Mächtigkeit" (Abk. z = Zechstein, su+sm = Unterer und Mittlerer Buntsandstein, so+m = Oberer Buntsandstein und Muschelkalk, k = Keuper, ju = Unterjura, jm = Mitteljura, jo = Oberjura, wd = Wealden, krv = Valanginium, krh = Hauterivium, krb = Barremium, krp = Aptium, krl = Albium, q = Quartär, GOK = Geländeoberkante, S1 = Rhätsandstein, S2 = Aalensandstein, S3 = Hilssandstein) (aus Reinhold et al., 2016)

Die Basis des geologischen Modells liegt größtenteils in Tiefen unter -4.000 mNN bis etwa -4.200 bis -4.200 mNN. Die Basisflächen der Modelleinheiten Oberer Buntsandstein und Muschelkalk, Keuper, Unterjura sowie Mitteljura weisen ein erhebliches Relief auf (Abb. 2, Abb. 3), die Differenz der Tiefenwerte dieser Einheiten variiert um maximal etwa 1.000 m. Ab der Modelleinheit Unterkreide variieren die Tiefenwerte der Basisflächen dagegen im größten Teil der Modellfläche nur noch um maximal etwa 200 m. In etwa -900 mNN beginnt die Modelleinheit Valanginium (krv), dessen Ablagerungen den Beginn der marinen Unterkreide im Teilgebiet kennzeichnen.

Abb. 3: Schnitt Richtung W-E (oben) und N-S (unten) durch das generische geologische Modell für das Endlagersystem T1 (Abkürzungen siehe Abb. 2) (aus Reinhold et al., 2016)

Auch die Modelleinheiten Hauterivium (krh) und Barremium (krb) sind Ablagerungen der marinen Unterkreide. Diese werden zusammen als Wirtsgestein bzw. als der Gebirgsbereich betrachtet, in dem der ewG ausgewiesen werden kann (Abb. 2, Abb. 3). Die Mächtigkeit des Barrieregesteins entspricht der Gesamtmächtigkeit beider Modelleinheiten (Hauterivium, Barremium) mit Werten meist von 500 m bis 600 m (siehe B in Abb. 4). Die Basis des Gebirgsbereiches liegt zwischen - 700 mNN und -1.000 mNN (siehe A in Abb. 4) und die minimalen Tiefenwerte der Oberkante liegen bei -200 mNN bis -225 mNN im Westen des Teilgebietes (siehe C in Abb. 4).

Abb. 4: A = Basis der Modelleinheit Hauterivium (Basis Wirts- bzw. Barrieregestein), B = Mächtigkeit des Wirts- bzw. Barrieregestein, C = Top der Modelleinheit Barremium (Top Wirts- bzw. Barrieregestein) (Gitterlinienabstand 2 km), (aus Reinhold et al., 2016)

Das Wirts- bzw. Barrieregestein besteht aus Tonsteinen (teilweise siltig-feinsandig ausgeprägt) sowie Tonmergelgesteinen. Der Einlagerungsbereich ist vollständig vom Gebirgsbereich, in dem der ewG ausgewiesen werden könnte, umschlossen. Im Unter-Hauterivium treten untergeordnet mikritische Kalkmergelsteinbänke auf und an der Oberkante des Ober-Hauterivium finden sich geringmächtige, siltige bis feinsandige Bereiche. Ausgehend vom Unter-Hauterivium bis zum Ober-Barremium verringert sich der Karbonatgehalt, während der Tonmineralgehalt ansteigt. Der Karbonatgehalt der Tongesteine resultiert überwiegend aus den lagenweise angereicherten Kalkschalen von Mikrofossilien (Foraminiferen und Coccolithen), daneben kommt auch fein verteilter Calcit oder Aragonit vor.

Entsprechend den Angaben zum Standortmodell Nord im Vorhaben ANSICHT (Reinhold et al., 2013) weisen die Modelleinheiten des Barriere- bzw. Wirtsgesteins Barremium und Hauterivium eine Porosität von 21 % bis 28 %, bei einer durchflusswirksamen Porosität n_e von 5 %, auf. Der Durchlässigkeitsbeiwert k_f im Barrieregestein liegt im Bereich von etwa 10⁻¹³ m/s (vertikal) bis 10⁻¹² m/s (horizontal). Für die Festlegung des Diffusionskoeffizienten des Wirts- bzw. Barrieregesteins wurden die Angaben des BfS (2002) zu den Diffusionskoeffizienten der Unterkreide mit 10⁻¹¹ m²s⁻¹ übernommen.

Im Wirts- bzw. Barrieregestein bestehen stabile hydrochemische Verhältnisse bei generell reduzierenden Bedingungen. Anhand der Angaben in Reinhold et al. (2013) wurde für den Einlagerungsbereich ein Salzgehalt von 150 kg/m³ für die wässrige Lösung abgeschätzt. Unter Verwendung dieses Wertes lässt sich über Näherungsgleichungen (in Abhängigkeit von Salzgehalt, Temperatur und Druck, z. B. Chierci, 1994: S. 37) die Dichte einer entsprechenden Salzlösung (bei 25 °C und atmosphärischem Druck) mit etwa 1.095 kg/m³ angeben (vgl. Kapitel 6.1.2).

Der Grundwassergeringleiter Wealden (Modelleinheit wd) unter dem Wirts- bzw. Barrieregestein (siehe Abb. 2) liegt artesisch gespannt vor und weist eine Druckhöhendifferenz zur über dem Wirtsbzw. Barrieregestein liegenden sandigen Schicht S3 von etwa 5,3 m auf. Mit der Mächtigkeit des Barrieregesteins von 500 m ergibt sich der maximale hydraulische Gradient i = 5,3 m / 500 m = 0,01 m/m und bei einer Mächtigkeit von 300 m ein hydraulischer Gradient i = 5,3 m / 300 m = 0,02 m/m. Die maximale senkrecht gerichtete Abstandsgeschwindigkeit v_a des Grundwassers lässt sich nach dem Darcy-Gesetz abschätzen (vgl. Anhang A):

 $V_{a(500m)} = (k_f \cdot i)/n_e = (10^{-12} \text{ m/s} \cdot 0.01 \text{ m/m}) / 0.05 = 2x10^{-13} \text{ m/s} = 0.006 \text{ mm/a bzw}.$

 $V_{a(300m)} = (k_f \cdot i)/n_e = (10^{-12} \text{ m/s} \cdot 0.02 \text{ m/m}) / 0.05 = 4x10^{-13} \text{ m/s} = 0.01 \text{ mm/a}$

Die Festlegungen zum felsmechanischen Materialverhalten basieren auf der Zusammenstellung von Jahn & Sönnke (2013). Gemessen an der Gebirgsdruckfestigkeit sind Tonsteine dem Bereich geringer, Tonmergelsteine sowie Kalkmergelsteine hingegen dem Bereich mittlerer Festigkeiten zuzuordnen. Diese Gesteine sind nicht oder in nur geringem Maße kriechfähig (duktil). Dies deutet auf ein eher sprödes bis nur gering duktiles Materialverhalten der Modelleinheiten Barremium und Hauterivium hin.

In den tonigen Schichten sind organische Substanzen häufig charakteristische Nebengemengteile der Tongesteine. Für die stark bituminösen Schichten der Modelleinheiten in der Unterkreide und im Unterjura wird insgesamt eine kontinuierliche Zunahme des Reifegrades des Kerogens mit der Teufe angenommen. Für die bituminösen Tonsteinlagen der Modelleinheit Unterjura bei etwa -2.000 mNN wird eine Reife angenommen, die zur Ölbildung führen kann.

Die kontinuierliche Zunahme der Reife des Kerogens resultiert aus höheren Temperaturen, denen die Tongesteine in der Vergangenheit verursacht durch eine tiefere Versenkung ausgesetzt waren. Gegenüber der heutigen Tiefenlage wird für die präquartären Modelleinheiten eine um etwa 800 m höhere Paläoversenkung angenommen (vgl. Reiser, 1991).

Aufgrund der unterschiedlichen Lithologie der Modelleinheiten im Endlagersystem T1 wird angenommen, dass die hydraulische Wirksamkeit von Klüften und Störungen in den Einheiten ebenso unterschiedlich ausgeprägt ist. Während für die lagenweise vorkommenden Kalkgesteine und Dolomitgesteine in den Modelleinheiten Oberer Buntsandstein und Muschelkalk, Keuper und Oberjura eventuell hydraulisch wirksame Klüfte erwartet werden, wird im Gegensatz dazu in den von Tongestein dominierten Einheiten, inklusive des Wirts- bzw. Barrieregesteins, ein System von geschlossenen, hydraulisch unwirksamen Klüften angenommen. Dies basiert u.a. auf der Kompaktion der Tongesteine durch die überlagernden Schichtenfolgen.

Für die hydrochemischen Verhältnisse in Norddeutschland gilt häufig, dass ein oberes, Süßwasser führendes Grundwasserstockwerk unterschiedlicher Mächtigkeit von einem Salzwasser führenden unterlagert wird. Im Endlagersystem T1 ist das Süßwasser führende Grundwasserstockwerk an die stratigraphische Einheit bzw. die Modelleinheit Quartär gebunden.

Im Hangenden des Wirtsbzw. Barrieregestein tritt ein Salzwasser führender Grundwassergeringleiter mit einer geringen Durchlässigkeit auf, die Modelleinheit Hilssandstein. Diese Modelleinheit ist eine etwa 35 m mächtige tonig-sandige und diagenetisch verfestigte Schichtenfolge in etwa 200 m Tiefe. Für den Chemismus des salinaren Wassers wird ein Na-Cl-Wassertyp mit einer hohen HCO₃⁻ und SO₄²⁻-Ionenkonzentration angenommen. Im Hangenden wird der Aquifer durch die Tongesteine der Modelleinheit Albium von der Süßwasser führenden Modelleinheit Quartär hydrodynamisch getrennt.

Die hydraulischen Eigenschaften der Modelleinheiten im Endlagersystem T1 sind in Abb. 5 schematisch zusammengestellt.

Modell- Einheit	Mächtigkeit [m] Modell-Einheit	Lithologische Ausprägung	Hohlraum-Typ	Durchlässigkeit
q	50 bis 150	Sande, Kiese sowie Lehm, Mergel, Ton, Schluff	Poren	
krl	100 bis 300	100 bis 300 Ton- und Mergelgestein, zuoberst 25-35 m Flammenmergel		
s3	35	Sandstein	Poren	
krp	50 bis 200	Tonstein, Tonmergel- und Mergelgestein		
krb	200 bis 350 Ton- und Tonmergelgestein, z. T. mit bituminösen Tonsteinlagen			
krh	rh 200 bis 300 Ton- und Tonmergelgestein			
krv	50 bis 100 Ton- und Tonmergelgestein			
wd	wd 100 bis 200 Wechsellagerung von Ton- und Sandstein, z. T bituminösen Tonsteinlagen		Poren	
jo	jo 50 bis 200 Kalkstein, lagenweise Anhydrit (Evapori		Kluft	
jm	200 bis 1000	Ton- und Mergelgestein		
s2	2 20 Sandstein		Poren	
ju	300 bis 600 Ton- und Mergelgestein, z.T. mit bituminösen Tonsteinlagen			
s1	10 Sandstein		Poren	
k	100 bis 700 Ton- und Siltgestein, untergeordnet sandige und evaporitische-tonige-dolomitische Lagen			
so-m	400 bis 700 Kalk- und Mergelgestein, Salz- und Tongestein		Kluft	
su-sm	500 bis 900	500 bis 900 Sand- und Tongestein		
z	50 bis 400	Salzgestein		

Hydraulische Eigenschaften

	Grundwasserleiter			Grundwassergeringleiter				
Durchlässigkeit	sehr hoch	hoch	mittel	mäßig	gering	sehr gering	äußerst gering	
						1111	/////	
k _f -Wert Grenzen (m/s)	>10 ⁻²	>10 ⁻³ - 10 ⁻²	>10 ⁻⁴ - 10 ⁻³	>10 ⁻⁵ - 10 ⁻⁴	>10 ⁻⁷ - 10 ⁻⁵	>10 ⁻⁹ - 10 ⁻⁷	>10 ⁻¹⁰ - 10 ⁻⁹	≤10 ⁻¹⁰

Abb. 5: Schematische Zusammenstellung der Informationen zur maßgeblichen Mächtigkeit, Lithologie und zu den hydraulischen Eigenschaften (ohne die Berücksichtigung der Anisotropie von Sedimentgesteinen) der Modelleinheiten im Endlagersystem T1. Klassifizierung in Grundwasserleiter und -geringleiter nach Ad-Hoc-AG Hydrogeologie (1997), ergänzt um den k_f-Wertebereich nach § 23 Absatz 5 Nr. 1 StandAG (nach Reinhold et al., 2016).

2.3 Bewertung zukünftiger geologischer und klimatischer Prozesse

Eine wesentliche Voraussetzung für die Bewertung der Sicherheit eines Endlagers ist die Identifikation und Bewertung von Einwirkungen auf die Integrität der einschlusswirksamen geologischen, geotechnischen und technischen Barrieren sowie der Prozesse, die zu Freisetzungen beziehungsweise zur Rückhaltung der Radionuklide führen können (Kommission, 2016).

Grundlage dieser Bewertung ist neben den FEP (FEP = features, events, processes) eines Endlagersystems und den Szenarien auch eine geowissenschaftliche Langzeitprognose, die die wesentlichen zu berücksichtigenden geologischen und klimatischen Veränderungen im Nachweiszeitraum von einer Million Jahren beschreibt. Für das Vorhaben RESUS wurde eine Unterlage zur geologischen und klimatischen Langzeitentwicklung mit Relevanz für die Endlagerung hochradioaktiver Abfälle in Deutschland erstellt (Mrugalla, 2020). Sie ergänzt die folgende modellbezogene Zusammenstellung durch Erläuterungen für die anderen möglichen Wirtsgesteine und gibt einen Ausblick auf die möglichen Bandbreiten der Ausprägungen in Deutschland.

Die im Folgenden diskutierten Ausprägungen der geologischen und klimatischen Prozesse basieren auf Zusammenstellungen von als relevant ausgewiesenen FEP, die aus dem Vorhaben ANSICHT für eine Tongesteinsformation mit größerer Mächtigkeit verfügbar sind (Stark et al., 2014). Für diese Prozesse erfolgt auch eine Bewertung der Sicherheitsrelevanz für das Endlagersystem T1. Die Aussagen zur Sicherheitsrelevanz beziehen sich auf die Barrieren, auf denen der sichere Einschluss der radioaktiven Abfälle beruht.

Vertikale Bewegung der Lithosphäre

Die vertikale Bewegung der Lithosphäre (Epirogenese) ist ein in ganz Deutschland permanent ablaufender Prozess, der als Hebung oder Senkung ausgeprägt sein kann. Der Prozess läuft großräumig und langsam ab. Gemäß den Ausschlusskriterien des StandAG ist für einen potenziellen Endlagerstandort eine großräumige geogene Hebung von im Mittel mehr als 1 mm pro Jahr über den Nachweiszeitraum von einer Million Jahren unzulässig.

Endlagersystem T1: Im Endlagersystem wird eine Hebungsrate unterhalb von 0,1 mm/a unterstellt.

Sicherheitsrelevanz: Vertikale Bewegungen werden auch innerhalb der nächsten eine Million Jahre langsam und großflächig ablaufen, ohne das Gesteinsgefüge des Endlagersystems dabei zu verändern. Eine Reduzierung der Gebirgsmächtigkeit über dem Einlagerungsbereich durch Erosion, die in Folge einer Hebung zu betrachten ist, wird unter Erosion beschrieben.

Orogenese

Der Prozess läuft nur unter ganz bestimmten geologischen Bedingungen an Plattengrenzen ab und erstreckt sich über lange geologische Zeiträume. Die Voraussetzungen für neu entstehende Orogene sind in Deutschland für die nächsten eine Million Jahre nicht gegeben.

Isostatische Bewegungen der Lithosphäre

Isostatische Bewegungen der Lithosphäre, auch als Krustendeformation bezeichnet, sind im Vergleich zu den epirogenetischen nicht tektonisch ausgelöst, sondern eine Folge der kaltzeitlichen Gletscherauflast.

Endlagersystem: Das Endlagersystem wurde in der letzten Kaltzeit (Weichsel) nicht vom Inlandeis erreicht. Heute ablaufende isostatische Bewegungen werden für das Endlagersystem nicht angenommen. In intensiveren Kaltzeiten, ähnlich Elster- und Saale-Kaltzeit, wird das Endlagersystem von geringmächtigen Gletscherrändern erreicht (s. Inland- bzw. Vorlandvereisung) es wird angenommen, dass dadurch keine isostatischen Bewegungen ausgelöst werden.

Sicherheitsrelevanz: Keine.

Grabenbildung

Der Prozess läuft nur unter ganz bestimmten geologischen Bedingungen ab und erstreckt sich über lange geologische Zeiträume. Bedingungen zur Entwicklung von neuen tektonischen Gräben sind in Deutschland innerhalb des Nachweiszeitraums nicht gegeben. Die rezenten Grabenzonen in Deutschland, wie z. B. der Oberrheingraben, werden wegen der aktiven Störungszonen und den damit verbundenen Erdbeben durch die Anwendung der Ausschlusskriterien ausselektiert.

Erdbeben

Erdbeben treten auf, wenn es zu einem plötzlichen Abbau von mechanischen Spannungen in der Geosphäre kommt. Dabei entstehen seismische Wellen, die sich im Gebirge ausbreiten und ruckartige Bewegungen oder Erschütterungen erzeugen können. Sowohl am Erdbebenherd als auch in weiterer Entfernung können dadurch bleibende Verschiebungen in der Geosphäre entstehen. Auslöser von Erdbeben können z. B. großräumige tektonische Bewegungen (z. B. Plattentektonik), vulkanische Aktivitäten, Einstürze von Gebirgsholräumen aber auch glazigene und selbst anthropogene Einflüsse sein.

Im Standortauswahlverfahren ist durch ein Ausschlusskriterium festgelegt, dass die örtliche seismische Gefährdung nicht größer als in Erdbebenzone 1 nach DIN EN 1998-1/NA 2011-01 sein darf, woraus eine Einschränkung der an Endlagerstandorten zu erwartenden Intensität resultiert.

Endlagersystem T1: Gemäß Regelwerk (KTA, 2011) ist ein Bemessungserdbeben abzuleiten. Mit dem Bemessungserdbeben sind die zu erwartenden Erdbeben im Endlagersystem T1 abgedeckt.

Sicherheitsrelevanz: Beeinflussungen des Wirtsgesteins in seinem Gesteinsverband durch das angenommene Beben sind als gering einzuschätzen. Die geotechnische Barriere und die weiteren Endlagerkomponenten sind gegen die Intensitäten des Bemessungserdbebens auszulegen.

Magmatismus und hydrothermale Aktivitäten

Gebiete mit vulkanischer Aktivität werden durch die Anwendung der Ausschlusskriterien ausselektiert. Daher können Auswirkungen von Magmatismus und hydrothermalen Aktivitäten an möglichen Endlagerstandorten ausgeschlossen werden.

Gesteinsmetamorphose

Gesteinsmetamorphose läuft unter hohen Drücken und/oder Temperaturen ab, die z. B. vulkanische Aktivitäten, Versenkungen in große Tiefen oder eine Orogenese mit dem Aufbau großer Gebirgsmächtigkeiten als Auslöser voraussetzen. Da nach Anwendung der Ausschlusskriterien keiner der genannten Auslöser an einem Endlagerstandort vorliegen wird, kann der Prozess ausgeschlossen werden.

Erosion

Erosion umfasst Vorgänge, die die Geomorphologie und die oberflächennahe Geosphäre durch lineare und flächenhafte Abtragung verändern. Erosion bewirkt eine Mächtigkeitsverringerung des Deckgebirges, wobei unverfestigte Gesteine leichter abgetragen werden als Festgesteine.

Sonderformen der Erosion, wie glaziale Rinnenbildung oder durch einen Gletscher verursachte flächenhafte Erosion, werden in den entsprechenden Absätzen behandelt.

Endlagersystem: Das Endlagersystem weist ein flaches Oberflächenrelief auf, das nur gering von flächenhafter Erosion betroffen sein wird. Wegen der geringen Hebungsraten und den oberflächennah anstehenden erosionsresistenten Festgesteinen wird auch linienhafte Erosion im Bereich von Fließgewässern gering ausfallen.

Sicherheitsrelevanz: Eine direkte Beeinträchtigung eines ewG wird nicht erwartet, da dieser entsprechend der Mindestanforderungen in einer Tiefe ab 300 m u. GOK liegen muss. In Gebieten mit einer hohen Erosionsrate würde bei Bedarf eine tiefere Lage gewählt werden oder der Standort würde verworfen. Zu berücksichtigen ist außerdem, dass neben der Erosion auch Sedimentation abläuft, die den Schichtabtrag ausgleichen kann. Die Sicherheitsrelevanz des Prozesses kann daher als gering bis nicht gegeben eingeschätzt werden.

Sedimentation

Sedimentation ist das Absetzen von Feststoffen durch die Schwerkraft, und findet permanent in unterschiedlichem Ausmaß statt. Die Feststoffe können zuvor in einem Fluid zum Absetzort transportiert worden sein oder durch chemisches sowie biochemisches Ausscheiden gebildet worden sein. Je nach Ablagerungsbedingungen können verschiedene Sedimentationsarten unterschieden werden. Durch die Sedimentation wird die Mächtigkeit des Deckgebirges erhöht.

Endlagersystem T1: Für das Endlagersystem wird eine geringe Sedimentationsleistung erwartet.

Sicherheitsrelevanz: Aufgrund der angenommenen geringen Sedimentationsleistung ist die Sicherheitsrelevanz des Prozesses vernachlässigbar.

Diagenese

Diagenese ist die Umbildung lockerer Sedimente zu festen Sedimentgesteinen, die z. B. durch Druck- und Temperaturänderungen, chemische Lösung sowie Ausfällung hervorgerufen wird. Nehmen Druck und/oder Temperatur weiter zu geht der Prozess in die Metamorphose über.

Endlagersystem T1: Das Wirtsgestein hat die Diagenese bereits durchlaufen.

Sicherheitsrelevanz: Der Prozess ist nicht sicherheitsrelevant.

Diapirismus/Halokinese

Diapirismus beschreibt den Aufstieg von Salzgesteinen, bei dem das Deckgebirge durchbrochen wird. Voraussetzungen sind Dichteunterschiede zusammen mit einem ausreichenden Überlagerungsdruck, eine ausreichende Mächtigkeit des mobilisierbaren Salzgesteins und tektonische Einflüsse, wie Spannungsänderungen und vorhandene Schwächezonen. Der Prozess erstreckt sich über lange geologische Zeiträume. Übergeordnet werden alle Salzbewegungen als

Halokinese bezeichnet, dazu zählen auch die, die das Deckgebirge nicht durchbrechen und z. B. Salzkissen aufbauen.

Endlagersystem T1: Im Endlagersystem ist das Salinar des Zechstein in benachbarte Salinarstrukturen abgewandert. Dieser Prozess ist abgeschlossen (Reinhold et al., 2013). Für den Nachweiszeitraum sind halokinetische Bewegungen in den geringen Restmächtigkeiten im Bereich des Endlagerstandortmodells deshalb auszuschließen.

Sicherheitsrelevanz: Keine.

Globale klimatische Veränderungen

Unter Anwendung des Aktualitätsprinzips wird angenommen, dass die Klimazyklen der letzten 800.000 Jahre auch in den nächsten eine Million Jahren fortbestehen. Demnach sind zehn Kalt- und Warmzeiten zu erwarten. Die Einwirkung auf den Untergrund ergibt sich über die Temperatur, die sich in der Atmosphäre einstellt und somit die Temperatur an der Geländeoberkante steuert.

Da eine Prognose und/oder Modellierung des genauen Verlaufs des zukünftigen Klimas für eine Million Jahre nicht möglich ist, wird in der Szenarienentwicklung mit sogenannten Klimabildern gearbeitet. Sie geben einen oder mehrere mögliche Klimaverläufe unter Berücksichtigung des vergangenen Klimas vor.

Die von Temperaturveränderungen ausgehenden sicherheitsrelevanten Einwirkungen auf die Geosphäre werden in den klimaabhängigen Prozessen betrachtet.

Permafrost

Durch die Temperaturabsenkung wird sich in zukünftigen Kaltzeiten Permafrost einstellen. Dieser liegt vor, sobald im Boden oder Gestein mindestens zwei Jahre lang Temperaturen unter 0 °C herrschen. Dabei ist es nach neueren Definitionen nicht nötig, dass der Untergrund oder das darin enthaltene Wasser gefroren sind.

Endlagersystem: Im Endlagersystem wird für die zukünftigen Kaltzeiten eine Permafrosttiefe von 200 m u. GOK angenommen.

Sicherheitsrelevanz: Aufgrund seiner Tiefenlage leitet sich für das Wirtsgestein keine Sicherheitsrelevanz des Prozesses ab. Bei den Endlagerkomponenten wird das obere Abdichtelement des Schachtverschlusses vom Permafrost erreicht. Die Sicherheitsrelevanz dieser Einwirkung auf diese Barriere ist zu prüfen.

Inlandvereisung

Inlandvereisung bezeichnet die von Skandinavien ausgehende Vergletscherung in Norddeutschland. Der Gletscher breitet sich ungleichmäßig aus und wird nur untergeordnet vom Relief beeinflusst. Vorlandvereisung ist die Vergletscherung, die im Vorfeld eines Gebirges, wie der Alpen, auftreten kann. Die Ausbreitungsrichtung wird von den Tälern bestimmt.

Endlagersystem T1: Eine Überfahrung des Endlagersystems durch Inlandeis ist möglich. Für das Gebiet wird unterstellt, dass die Eismächtigkeiten sowohl während der Saale- als auch während der Elster-Kaltzeit ca. 500 m betrugen und in gleicher Größenordnung zukünftig auftreten können.

Durch die Eisüberfahrung werden insbesondere die oberflächennahen Lockersedimente erodiert (Exaration) und/oder eistektonisch gestört. Beide Möglichkeiten beinhalten eine Destruktion bestehender Lagerungsverhältnisse. Im Extremfall können völlig andersartig zusammengesetzte Sedimentabfolgen im beeinflussten Gebirgsbereich entstehen. Die Geomorphologie erfährt durch die Eisüberfahrung eine vollständige Umgestaltung. Die Grundwasserverhältnisse können durch Inlandeis eine deutliche Veränderung erfahren. Eine Deformation von Gesteinsschichten und ein Einsinken der Erdkruste aufgrund des Eisgewichts werden wegen der angenommenen kleinen Eismächtigkeit von ca. 500 m gering ausfallen bzw. unwahrscheinlich sein.

Sicherheitsrelevanz: Beeinträchtigungen des Wirtsgesteins werden nicht erwartet.

Glaziale Rinnenbildung

Eine Sonderform der glazialen Erosion ist die Rinnenbildung, die durch eindringende Schmelzwässer unter dem Gletscher abläuft und eine große Tiefenwirkung erreichen kann.

Endlagersystem: Da für das Endlagersystem nur Eismächtigkeiten von etwa 500 m unterstellt werden, sind mögliche Rinnentiefen wegen des geringeren aus den Schmelzwässern resultierenden hydraulischen Potenzials gering. Es wird von glazialen Rinnen mit Tiefen von weniger als 100 m ausgegangen.

Im Zuge der Rinnenbildung wird an der Oberfläche das aus Lockergesteinen bestehende Deckgebirge bis zu einer Tiefe von 100 m vollständig ausgeräumt.

Sicherheitsrelevanz: Beeinträchtigungen des Wirtsgesteins werden nicht erwartet.

Transgression oder Regression

Transgression bezeichnet die landeinwärts gerichtete Verschiebung der Küstenlinie und Regression die seewärts gerichtete. Ausgelöst werden beide Prozesse z. B. durch vertikale Bewegungen der Lithosphäre (Epirogenese), Isostasie, tektonische Einwirkungen verbunden mit der plötzlichen Öffnung von Meeresbecken oder regionalen Absenkungen, globale eustatische Meeresspiegelschwankungen oder verstärkte Sedimentation in Meeresbecken. Als Folge eines Abschmelzens der global vorhandenen Eismassen würde der Meeresspiegel um 65 m steigen.

Endlagersystem: Ausgehend von der heutigen Topographie würde dieser Meeresspiegelanstieg lediglich die Flussniederungen des Endlagerstandortmodells erreichen. Die höheren Lagen wären von Transgression nicht betroffen. Hinzu kommt, dass aufgrund der tektonischen Bewegungen nicht mit einer Absenkung, sondern mit einer Hebung im Bereich des Endlagerstandortmodells zu rechnen ist, was einer Überflutung zusätzlich entgegenwirkt. Deshalb wird angenommen, dass Transgression innerhalb der nächsten eine Million Jahre keine Auswirkungen auf den Modellstandort haben wird.

Durch eine Absenkung des Meeresspiegels wird das Erosionsniveau tiefer gelegt und die Flüsse können sich besonders in Küstennähe tiefer in die Landschaft einschneiden. Das heutige Gefälle der Flüsse im Modellgebiet für das Endlagersystem T1 erhöht sich durch die Verlängerung des Fließweges nicht wesentlich, eine stärkere Erosionsleistung der Flüsse oder andere Auswirkungen ergeben sich durch eine Regression daher nicht.

Sicherheitsrelevanz: Beeinträchtigungen des Wirtsgesteins werden nicht erwartet.

Meteoriteneinschlag

Als Meteoriteneinschlag wird das Auftreffen von Festkörpern extraterrestrischen Ursprungs bezeichnet, die in die Erdatmosphäre eintreten und die Erdoberfläche erreichen. Dort können sie Schäden verursachen, deren Ausmaß vor allem von der kinetischen Energie des Meteoriten, in die seine Masse linear und seine Geschwindigkeit quadratisch eingeht, und seinem Einschlagswinkel abhängig ist. Die Wahrscheinlichkeit für einen Meteoriteneinschlag an einem Ort auf der Erde ist nicht abhängig von dessen geographischer Lage. Für die letzte eine Million Jahre sind weltweit etwa 28 Meteoriteneinschläge bekannt, die einen Krater hinterließen (EID, 2020). Von diesen bekannten Kratern besitzen lediglich acht einen Durchmesser von mindestens ca. 1 km. Solche Kraterdurchmesser sind auf Meteoriten mit einem Durchmesser von mindestens mehreren Zehner Metern und entsprechender Masse zurückzuführen. Bereits Impaktoren dieser Größe können bei ihren Einschlägen die gesteinsphysikalischen Eigenschaften bis in mehrere 100 m Tiefe beeinflussen (Grieve, 1993).

Sicherheitsrelevanz: Der direkte Einschlag eines großen Meteoriten am Endlagerstandort kann die Integrität des Wirtsgesteins und der Endlagerkomponenten gefährden. Bezogen auf die Erdoberfläche ist die Wahrscheinlichkeit eines vergleichbaren Ereignisses an einem Endlagerstandort (Kraterdurchmesser > 1 km) innerhalb der nächsten Million Jahre als gering einzuschätzen. Die Stoßwelle würde das Gestein mehrere hundert Meter tief zerrütten und zusammen mit dem aus dem Krater ausgeworfenen Material und der freiwerdenden thermischen Energie überregionale Zerstörungen an der Oberfläche bewirken.

Da die Auswirkungen des Einschlags eines Meteoriten mit diesen Folgen weitreichende zerstörerische Auswirkungen für Mensch und Umwelt haben würden, ist die hierdurch verursachte Freisetzung von Radionukliden aus dem Endlager als untergeordnet einzustufen und wird daher im Zusammenhang mit der Sicherheit eines Endlagers nicht berücksichtigt.

3 Anwendung der geowissenschaftlichen Abwägungskriterien

Im Standortauswahlgesetz (StandAG, 2017) ist außer der Anwendung der Ausschlusskriterien und Mindestanforderungen auch die Anwendung von geowissenschaftlichen Abwägungskriterien vorgesehen. Anhand der geowissenschaftlichen Abwägungskriterien der Anlagen 1 bis 11 zu § 24 StandAG ist zu bewerten, ob in einem Teilgebiet, einer Standortregion oder an einem Standort eine insgesamt günstige geologische Gesamtsituation vorliegt. Die Bewertung ist aus der sicherheitsgerichteten Abwägung der Ergebnisse zu sämtlichen Abwägungskriterien nachvollziehbar abzuleiten. Im Zuge des Auswahlverfahrens ist diese Aufgabe wiederholt zu bearbeiten:

- Bei der Ermittlung von Teilgebieten (§ 13),
- bei der Ermittlung von Standortregionen für übertägige Erkundung (§ 14),
- bei der übertägigen Erkundung und Vorschlag für untertägige Erkundung (§ 16) und
- bei der untertägigen Erkundung (§ 18).

Für die elf Abwägungskriterien im StandAG sind bewertungsrelevante Eigenschaften mit zugehörigen Indikatoren formuliert. In Anhang A werden diese Indikatoren zu den elf geowissenschaftlichen Abwägungskriterien des StandAG definiert und erläutert.

In diesem Kapitel erfolgt eine vorläufige Bewertung dieser Indikatoren für das Endlagersystems T1. Die Bewertung gilt dabei für die in Kapitel 2 unterstellten geologischen Randbedingungen und stellt keine allgemeingültige Bewertung für den Wirtsgesteinstyp Tongestein dar. Um nicht auf Grund von Kenntnislücken das Endlagersystem vorzeitig als "bedingt günstig", "weniger günstig" oder "ungünstig" einzustufen, wird im Zweifelsfall die günstigere Wertungsgruppe gewählt. Die endgültige Bewertung erfolgt in Kapitel 7 unter Berücksichtigung der Ergebnisse der generischen Sicherheitsuntersuchungen.

Nr.	Indikator	Ausprägung T1	Bewertung
1.1	Abstandsgeschwindigkeit des Grundwassers	< 0,1 mm/a	günstig
1.2	Gebirgsdurchlässigkeit des Gesteinstyps	Gebirgsdurchlässigkeit vertikal 10 ⁻¹³ m/s	günstig
1.3	Effektiver Diffusionskoeffizient	$10^{-10} \text{ m}^2/\text{s} > D_{\text{eff}}$ für tritiiertes Wasser > $10^{-11} \text{ m}^2/\text{s}$	bedingt günstig
1.4a	Absolute Porosität	Absolute Porosität größer 20 %	bedingt günstig
1.4b	Verfestigungsgrad	Die Modelleinheiten krh bzw. krb sind gut verfestigte Tonsteine und Tonmergelsteine	günstig

Tab. 1: Vorläufige Bewertung der Indikatoren nach Anlage 1 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
2.1a	Barrierenmächtigkeit	Mächtigkeit des Gebirgsbereiches, der ewG aufnehmen soll ist größer als 300 m Barrierenmächtigkeit ist größer 150 m	günstig
2.1b	Grad der Umschließung	Vollständig, da es ein Endlagersystem vom Typ A ist	günstig
2.2	Teufe der oberen Begrenzung des ewG	Obere Begrenzung der Modelleinheit krb liegt tiefer als 500 m u. GOK	günstig
2.3	Flächenhafte Ausdehnung	Modellgröße etwa 70 km ² >> 2-facher Flächenbedarf (2 x 10 km ² siehe Anhang A)	günstig
2.4	Potenzialbringer	Kein Grundwasserleiter in unmittelbarer Nachbarschaft zum Wirtsgesteinskörper (siehe Abb. 5)	günstig

Tab. 2:	Vorläufige Bewertung der Indikatoren nach Anlage 2 zu § 24 Absatz 3 des StandAG für
	das Endlagersystem T1

Tab. 3:Vorläufige Bewertung der Indikatoren nach Anlage 3 zu § 24 Absatz 3 des StandAG für
das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
3.1a	Variationsbreite der Eigenschaften der Gesteinstypen	Die Modelleinheiten sind homogen entwickelt und gut charakterisierbar. In den Modelleinheiten krh bzw. krb ist die Variabilität der Fazies und der lithologischen Eigenschaften gering.	günstig
3.1b	Räumliche Verteilung der Gesteinstypen	Modelleinheiten in nahezu horizontaler Lagerung. Die Tongesteinsabfolge ist relativ einheitlich und weist keine Diskordanzen auf, die das Fehlen oder Auskeilen von Schichten bedingen bzw. zu Änderungen der Schichtmächtigkeit führen.	günstig
3.1c	Ausmaß der tektonischen Überprägung	Im Modell sind auf der Fläche von 7 km x 10 km keine	günstig

Nr.	Indikator	Ausprägung T1	Bewertung
		Störungssysteme vorhanden. Dadurch ist gewährleistet, dass ein ewG bei einem Flächenbedarf des Endlagers von 10 km ² so platziert werden kann, dass sich mögliche Störungen in einem Abstand > 3 km zum Rand des ewG befinden.	
3.2	Gesteinsausbildung	Geringe laterale Variabilität der Fazies und der lithologischen Eigenschaften	günstig

Tab. 4:Vorläufige Bewertung der Indikatoren nach Anlage 4 zu § 24 Absatz 3 des StandAG für
das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
4.1a	Zeitspanne über die sich die Mächtigkeit des ewG nicht wesentlich verändert hat	Keine wesentlichen Änderungen seit der Ablagerung und Kompaktion	günstig
4.1b	Zeitspanne über die sich die Ausdehnung des ewG nicht wesentlich verändert hat	Keine wesentlichen Änderungen seit der Ablagerung und Kompaktion	günstig
4.1c	Zeitspanne über die sich die Gebirgsdurchlässigkeit im ewG nicht wesentlich verändert hat	Keine wesentlichen Änderungen seit der Ablagerung und Kompaktion, Dekompaktionsprozesse werden ausgeschlossen	günstig

Tab. 5:	Vorläufige Bewertung der Indikatoren nach Anlage 5 zu § 24 Absatz 4 des StandAG für
	das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
5.1a	Aufnahme der Beanspruchung des Gebirges aus der Auffahrung ohne plan- mäßigen tragenden Aus- bau	Tragender Ausbau notwendig (siehe Anhang A)	nicht in Wertungsgruppe günstig
5.1b	Mechanisch bedingte Sekundärpermeabilitäten	Konturferne Sekundär- permeabilitäten können nicht	nicht in Wertungsgruppe günstig

Nr.	Indikator	Ausprägung T1	Bewertung
		grundsätzlich ausgeschlossen werden (siehe Anhang A)	

Tab. 6:Vorläufige Bewertung der Indikatoren nach Anlage 6 zu § 24 Absatz 4 des StandAG für
das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
6.1a	Verhältnis Gebirgsdurchlässigkeit zu Gesteinsdurchlässigkeit	Die Modelleinheiten krh bzw. krb enthalten keine hydraulisch wirksamen Klüfte, somit sind Gebirgs- und Gesteinsdurchlässigkeit gleich und der Quotient aus beiden beträgt 1.	günstig
6.1b	Erfahrungen über die Barrierewirksamkeit	Die Unterkreidetone können Fallenstrukturen für Kohlen- wasserstofflagerstätten bilden. Sie erfüllen somit die vierte genannte Gegebenheit "unterlagernde Vorkommen flüssiger oder gasförmiger Kohlenwasserstoffe". Darüber hinaus werden für die Unter- kreidetone weitere der genannten Gegebenheiten gefunden, beispielsweise die dritte genannte Gegebenheit "unterlagernde wasserlösliche Gesteine".	günstig
6.1c	Duktilität des Gesteins	Die Modelleinheiten krh bzw. krb verhalten sich spröde-duktil.	bedingt günstig
6.2a	Rückbildung der Sekundärpermeabilität	Rissschließung kann durch mechanische Rissweitenverringerung (Quellen von Tonmineralen) erfolgen.	bedingt günstig
6.2b	Rückbildung der mechanischen Eigenschaften	Ob eine Rissverheilung ohne Sekundärmineralisation auftreten kann, bedarf einer standort- und teufenspezifischen Überprüfung	günstig
6.3	Zusammenfassende Beurteilung	6.1a bis 6.2b mehrheitlich günstig, allenfalls marginale Neigung zur Bildung von Fluidwegsamkeiten	günstig

Tab. 7:Vorläufige Bewertung der Indikatoren nach Anlage 7 zu § 24 Absatz 5 des StandAG für
das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
7.1	Wasserangebot im Einlagerungsbereich	Die Modelleinheiten krh bzw. krb sind feucht und haben eine Gebirgsdurchlässigkeit < 10 ⁻¹¹ m/s.	bedingt günstig

Tab. 8:Vorläufige Bewertung der Indikatoren nach Anlage 8 zu § 24 Absatz 5 des StandAG für
das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
8.1a	Neigung zur Bildung wärmeinduzierter Sekundärpermeabilitäten	Es wird nicht erwartet, dass es im Bereich um die Einlagerungs- hohlräume zu thermomecha- nisch bedingten Festigkeits- überschreitungen kommen kann.	günstig
8.1b	Temperaturstabilität des Wirtsgesteins hinsichtlich Mineralumwandlungen	Bei einer Auslegungstemperatur von 100 °C ist die Temperaturstabilität der gesteinsbildenden Minerale in krh bzw. krb gegeben.	günstig

Tab. 9:Vorläufige Bewertung der Indikatoren nach Anlage 9 zu § 24 Absatz 5 des StandAG für
das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
9.1a	Sorptionsfähigkeit der Gesteine im ewG	In den Modelleinheiten krh bzw. krb ist mit Sorption zu rechnen. Ein Sorptionskoeffizient von 10 ⁻³ m ³ /kg für Jod wird aber nicht erreicht (Anhang A).	bedingt günstig
9.1b	Mineralphasen mit großer reaktiver Oberfläche	Hoher Gehalt an Mineralphasen mit großer reaktiver Oberfläche in Tongestein zu erwarten.	günstig
9.1c	Ionenstärke des Grundwassers im ewG	Die Ionenstärke reicht aus, um die Stabilität der Kolloide zu beeinflussen (Konzentration gelöster Stoffe in der Größenordnung von 100 g/l).	günstig
9.1d	Öffnungsweiten der Gesteinsporen	Tongestein hat generell einen sehr hohen Anteil von Poren mit	günstig

Nr.	Indikator	Ausprägung T1	Bewertung
		geringem Durchmesser im Nanometerbereich.	

Tab. 10:Vorläufige Bewertung der Indikatoren nach Anlage 10 zu § 24 Absatz 5 des StandAG für
das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
10.1a	Chemisches Gleichgewicht zwischen dem Barrieregestein und den darin enthaltenen Lösungen	Aufgrund der geringen Fließgeschwindigkeiten im Tongestein befindet sich der ewG im chemischen Gleichgewicht mit dem Grundwasser.	günstig
10.1b	Neutrale bis leicht alkalische Bedingungen in den im Barrieregestein vorkommenden Lösungen	Die pH-Werte des Porenwassers liegen zwischen 7 und 8.	günstig
10.1c	Anoxisch-reduzierendes Milieu in den im Barriere- gestein vorkommenden Lösungen	In den Modelleinheiten krh bzw. krb wird ein anoxisch- reduzierendes Milieu erwartet.	günstig
10.1d	Geringer Gehalt an Kolloiden und Komplex- bildnern in den im Barrieregestein vor- kommenden Lösungen	Es wird erwartet, dass der Gehalt an Kolloiden auf Grund der hohen Ionenstärke des Porenwassers gering ist. Über den Gehalt an Komplexbildnern liegen keine Informationen vor.	günstig
10.1e	Geringe Karbonat- konzentration in den im Barrieregestein vor- kommenden Lösungen	Der Chemismus des salinaren Wassers wird als Na-Cl-Wasser mit einer hohen HCO_3^- und $SO_4^{2^-}$ -Ionenkonzentration festgelegt.	nicht in Wertungsgruppe günstig

Tab. 11:Vorläufige Bewertung der Indikatoren nach Anlage 11 zu § 24 Absatz 5 des StandAG für
das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
11.1a	Überdeckung des ewG mit grundwasserhemmenden Gesteinen	Grundwasserhemmende Schichten vorhanden, jeweils mit vollständiger und ge- schlossener Überdeckung des ewG (z. B. Modelleinheit krp)	günstig
Nr.	Indikator	Ausprägung T1	Bewertung
-------	---	---	-----------
11.1b	Verbreitung und Mächtigkeit erosionshemmender Gesteine im Deckgebirge des ewG	Deckgebirge mit massigen Sedimentgesteinskörpern mit weit aushaltender Bankmächtigkeit (z. B. die Modelleinheiten krp, krl)	günstig
11.1c	Ausprägung struktureller Komplikationen im Deck- gebirge	Keine strukturellen Komplikationen im Deckgebirge	günstig

4 Grundlagen und Elemente von Sicherheitsuntersuchungen

Neben der Ermittlung und Bewertung von Teilgebieten, Standortregionen und Standorten durch Anwendung der geowissenschaftlichen Abwägungskriterien spielt die Durchführung von Sicherheitsuntersuchungen eine zentrale Rolle im Standortauswahlverfahren. Da es sich während des Verfahrens nicht um abschließende Sicherheitsuntersuchungen in einem Genehmigungsverfahren für einen Standort handeln kann, für den Daten und Kenntnisse umfassend vorliegen, werden diese im StandAG als vorläufige Sicherheitsuntersuchungen bezeichnet und in § 2 wie folgt definiert:

Sicherheitsuntersuchungen, "die auf der Grundlage von § 27 und einer Rechtsverordnung nach § 27 Absatz 6 durchzuführenden Untersuchungen, die in den Verfahrensschritten nach § 14 Absatz 1 auf Grundlage der erhobenen, bei den Behörden des Bundes und der Länder vorliegenden Daten, nach § 16 Absatz 1 auf Grundlage der Ergebnisse der übertägigen Erkundung und nach § 18 Absatz 1 auf Grundlage der Ergebnisse der untertägigen Erkundung sowie auf Grundlage des dem jeweiligen Verfahrensstand entsprechenden konkretisierten Endlagerkonzeptes anzufertigen sind."

Es werden je nach Stand des Verfahrens drei Typen von vorläufigen Sicherheitsuntersuchungen unterschieden:

- 1. Zur Ermittlung von Standortregionen für die übertägige Erkundung müssen **repräsentative** vorläufige Sicherheitsuntersuchungen durchgeführt werden (§ 14 Absatz 1).
- 2. Auf der Grundlage der Ergebnisse der übertägigen Erkundung müssen weiterentwickelte vorläufige Sicherheitsuntersuchungen durchgeführt werden (§ 16 Absatz 1).
- 3. Auf der Grundlage der Ergebnisse der untertägigen Erkundung müssen **umfassende** vorläufige Sicherheitsuntersuchungen durchgeführt werden (§ 18 Absatz 1).

Im StandAG wird in § 26 gefordert: "In den vorläufigen Sicherheitsuntersuchungen […] wird das Endlagersystem in seiner Gesamtheit betrachtet und entsprechend dem Stand von Wissenschaft und Technik hinsichtlich seiner Sicherheit bewertet. Dazu wird das Verhalten des Endlagersystems unter verschiedenen Belastungssituationen und unter Berücksichtigung von Datenunsicherheiten, Fehlfunktionen sowie zukünftigen Entwicklungsmöglichkeiten im Hinblick auf den sicheren Einschluss der radioaktiven Abfälle untersucht." (Absatz 2)

Vorläufige Sicherheitsuntersuchungen werden auf der Grundlage abdeckender Annahmen zu Menge, Art und Eigenschaften der radioaktiven Abfälle durchgeführt. Der Detaillierungsgrad der vorläufigen Sicherheitsuntersuchungen nimmt von Phase zu Phase des Auswahlverfahrens zu." (Absatz 3)

Alle vorläufigen Sicherheitsuntersuchungen müssen in der Lage sein, die Sicherheit eines Endlagers bewerten zu können. Der Detaillierungsgrad der vorläufigen Sicherheitsuntersuchungen und die Aussagekraft ihrer Ergebnisse nehmen entsprechend dem zunehmenden Informationsgewinn im Laufe des Auswahlverfahrens zu. Für bestehende Kenntnislücken sind im Rahmen der Sicherheitsuntersuchungen begründete Annahmen zu treffen. Die Bewertung muss dabei zu Beginn des Auswahlverfahrens nicht zwingend quantitativ sein, auch qualitative Bewertungen, z. B. hinsichtlich des Einschlusses von Radionukliden sind denkbar. Unabhängig von der Vorgehensweise müssen von Beginn an entscheidende Grundlagen und Nachweiselemente verfügbar sein, die auch die Grundlagen für die generischen Sicherheitsuntersuchungen im Vorhaben RESUS sind. Da die Rechtsverordnung gemäß StandAG § 27 Absatz 6, mit der die Anforderungen für die Durchführung der vorläufigen Sicherheitsuntersuchungen durch das BMU bestimmt werden, zum Zeitpunkt der Bearbeitung noch nicht vorlag, basiert die Vorgehensweise für die generischen Sicherheitsuntersuchungen im Vorhaben RESUS auf den Empfehlungen des Abschlussberichtes der Kommission Lagerung hochradioaktiver Abfälle (Kommission, 2016).

In Anlehnung an den Kommissionsbericht sind folgende Grundlagen für die vorläufigen Sicherheitsuntersuchungen notwendig:

- 1. Genaue und frühzeitige Informationen zu Menge, Art und Eigenschaften der radioaktiven Abfälle
- 2. Kenntnisse der geologischen Gegebenheiten in den Teilgebieten, potenziellen Standortregionen beziehungsweise an den Standorten

Die in den Sicherheitsuntersuchungen zu berücksichtigenden radioaktiven Abfälle werden in Kapitel 4.1 zusammengestellt. Die geologischen Grundlagen für das Endlagersystem T1 sind bereits in Kapitel 2 beschrieben worden.

Zusätzlich zu diesen Grundlagen werden im Kommissionsbericht wesentliche Elemente von vorläufigen Sicherheitsuntersuchungen definiert:

- 1. Erstellung eines Sicherheitskonzeptes und eines Nachweiskonzeptes für die jeweilige geologische Situation in Abhängigkeit des Wirtsgesteins
- 2. Erarbeitung eines (vorläufigen) Endlagerkonzeptes
- Geowissenschaftliche und klimatische Langzeitprognose: Identifikation und Bewertung von Einwirkungen auf die Integrität der einschlusswirksamen geologischen, geotechnischen und technischen Barrieren sowie der Prozesse, die zu Freisetzungen beziehungsweise zur Rückhaltung der Radionuklide führen können
- 4. Bewertung möglicher Freisetzungen hinsichtlich der Wahrscheinlichkeit ihres Auftretens und ihres Ausmaßes
- 5. Bewertung von Ungewissheiten und Sicherheitsreserven sowie der Robustheit des Endlagersystems
- 6. Ableitung des Erkundungs- und FuE-Bedarfs sowie von Optimierungsmöglichkeiten für das Endlagerkonzept

Ein Sicherheitskonzept für das Endlagersystem T1 wird in Kapitel 4.2 beschrieben, ein technisches Endlagerkonzept in Kapitel 4.3. Eine Bewertung wichtiger geologischer und klimatischer Prozesse erfolgte bereits in Kapitel 2.3, die weitere Bewertung der Entwicklung des Endlagersystems hinsichtlich der einschlusswirksamen Barrieren erfolgt in Kapitel 4.4.

4.1 Zu berücksichtigende radioaktive Abfälle

In einem Endlager für hochradioaktive Abfälle sind die ausgedienten Brennelemente der Leistungsreaktoren, Versuchs- und Prototyp-Kernkraftwerken und Forschungsreaktoren und die radioaktiven Abfälle aus der Wiederaufarbeitung der Brennelemente aus den Leistungsreaktoren endzulagern.

4.1.1 Abfallmengengerüst

Endzulagern sind die ausgedienten Brennelemente von Leistungsreaktoren, Versuchs- und Prototyp-Kernkraftwerken und Forschungsreaktoren sowie die radioaktiven Abfälle aus der Wiederaufarbeitung von Brennelementen aus Leistungsreaktoren. Bezüglich der einzulagernden radioaktiven Abfälle ist darüber hinaus StandAG § 1 Absatz 6 zu berücksichtigen: "Die Endlagerung schwach- und mittelradioaktiver Abfälle am auszuwählenden Standort ist zulässig, wenn die gleiche bestmögliche Sicherheit des Standortes wie bei der alleinigen Endlagerung hochradioaktiver Abfälle gewährleistet ist."

Gemäß dem "Programm für eine verantwortungsvolle und sichere Entsorgung bestrahlter Brennelemente und radioaktiver Abfälle (Nationales Entsorgungsprogramm)" (NaPro) sollen an zwei Standorten Endlager errichtet werden (BMUB, 2015a): "Das Endlager Konrad für radioaktive Abfälle mit vernachlässigbarer Wärmeentwicklung und ein Endlager nach dem Standortauswahlgesetz für insbesondere Wärme entwickelnde radioaktive Abfälle."

In der Begründung zum StandAG zu § 1 Absatz 2 heißt es dazu (Deutscher Bundestag, 2017): "Das Standortauswahlverfahren ist auf die Suche nach dem Standort für eine Anlage zur Endlagerung insbesondere hochradioaktiver Abfälle ausgerichtet. Die Möglichkeit der zusätzlichen Einlagerung von mittel- und schwachradioaktiven Abfällen ist im Auswahlprozess zu berücksichtigen. Zu den einzulagernden insbesondere hochradioaktiven Abfällen zählen bestrahlte Brennelemente sowie in Glas eingeschmolzene Abfälle aus der Wiederaufarbeitung. Schwach- und mittelradioaktive Abfälle, die möglicherweise zusätzlich eingelagert werden sollen, sind die radioaktiven Abfälle, die aus der Schachtanlage Asse II zurückgeholt wurden, radioaktive Abfälle, die die Annahmebedingungen des Endlagers Konrad nicht erfüllen sowie vorsorglich das angefallene und anfallende abgereicherte Uran aus der Urananreicherung, sollte eine weitere Verwertung nicht erfolgen. Die Auswirkungen einer Endlagerung dieser zusätzlichen radioaktiven Abfälle sind im Rahmen einer vorläufigen Sicherheitsuntersuchung zu prüfen.

Zum jetzigen Zeitpunkt liegen weder belastbare Angaben zu Art und Menge solcher möglicherweise zusätzlich einzulagernden schwach- und mittelradioaktiver Abfälle noch zu den dafür zu nutzenden Abfallgebinden vor. Im Vorhaben RESUS werden daher radioaktive Abfälle mit vernachlässigbarer Wärmeentwicklung nicht berücksichtigt. Die einzige Ausnahme stellen die Strukturteile der ausgedienten Brennelemente aus den Leistungsreaktoren dar, die von Anfang an für die Einlagerung im Endlager für hochradioaktive Abfälle und ausgedienten Brennelemente vorgesehen waren.³

³ Die zusätzliche Einlagerung schwach- und mittelradioaktiver Abfälle im zu errichtenden Endlager für hochradioaktive Abfälle würde in jedem Fall dessen Platzbedarf erheblich erhöhen, was bei einer Bewertung in Frage kommender Standortgebiete zu beachten wäre. Die schwach- und mittelradioaktiven Abfälle weisen allenfalls eine geringe Wärmeentwicklung auf. Auch die mit diesen Abfällen eingebrachte Aktivität ist um Größenordnungen geringer als bei den hochradioaktiven Abfällen.

Im NaPro ist auf Basis des Verzeichnisses radioaktiver Abfälle (BMUB, 2013) der Bestand und die Prognose an ausgedienten Brennelementen aus den Leistungsreaktoren nach Ende der Kernenergienutzung zur Stromerzeugung im Jahr 2022 dargestellt (BMUB, 2015a). Insgesamt wird dann eine Menge von etwa 10.500 tSM an ausgedienten Brennelementen aus den Leistungsreaktoren erwartet. Eine Aufteilung dieser Menge in die einzelnen Leistungsreaktortypen wird nicht vorgenommen.

Diese Menge an ausgedienten Brennelementen aus den Leistungsreaktoren ist identisch mit der prognostizierten Menge im Bericht der Bundesrepublik Deutschland für die fünfte Überprüfungskonferenz im Mai 2015 "Gemeinsames Übereinkommen über die Sicherheit der Behandlung abgebrannter Brennelemente und über die Sicherheit der Behandlung radioaktiver Abfälle" (BMUB, 2015b). Im Bericht der Bundesrepublik Deutschland für die sechste Überprüfungskonferenz im Mai 2018 "Gemeinsames Übereinkommen über die Sicherheit der Behandlung abgebrannter Brennelemente und über die Sicherheit der Behandlung radioaktiver Abfälle" (BMUB, 2015b). Im Bericht der Bundesrepublik Deutschland für die sechste Überprüfungskonferenz im Mai 2018 "Gemeinsames Übereinkommen über die Sicherheit der Behandlung abgebrannter Brennelemente und über die Sicherheit der Behandlung radioaktiver Abfälle" wird die prognostizierte Menge an ausgedienten Brennelementen aus Leistungsreaktoren, die für die Endlagerung zu berücksichtigen ist, mit 10.173 tSM angegeben (BMUB, 2018). Eine Aufteilung dieser Menge in die einzelnen Leistungsreaktortypen wird auch hier nicht vorgenommen.

Mit der oben angegebenen Schwermetallmasse kann nur die Gesamtzahl an Endlagerbehältern abgeschätzt werden, aber keine Aufteilung auf den Reaktortyp erfolgen. Diese genaue Anzahl pro Reaktortyp wird u.a. für die Berechnung der Zwischenlagerzeiten benötigt und diese sind wiederum für die thermische Auslegung des Endlagerkonzepts notwendig. Aus diesem Grund können im Rahmen dieses Vorhabens die Angaben für die ausgedienten Brennelemente aus den Leistungsreaktoren aus dem NaPro und dem Bericht der Bundesrepublik Deutschland für die sechste Überprüfungskonferenz im Mai 2018 "Gemeinsames Übereinkommen über die Sicherheit der Behandlung abgebrannter Brennelemente und über die Sicherheit der Behandlung radioaktiver Abfälle" nicht verwendet werden.

Im Rahmen der Vorläufigen Sicherheitsanalyse für den Standort Gorleben (VSG) wurde ebenfalls ein Mengengerüst zusammengestellt, wobei eine Aufteilung in die einzelnen Reaktortypen vorgenommen wurde. Das Mengengerüst der ausgedienten Brennelemente ist dort mit 10.445 tSM um 272 tSM höher als im Bericht der Bundesrepublik Deutschland für die sechste Überprüfungskonferenz im Mai 2018 (BMUB, 2018). Dies liegt an der neuen Prognose, bei der aktuelle Daten der Kernkraftwerksbetreiber zur Planung der Reststrommengen bis Ende 2022 berücksichtigt wurden. Im Rahmen des Vorhabens RESUS wird das Mengengerüst für die ausgedienten Brennelemente aus der VSG zugrunde gelegt, da dieses auf die einzelnen Leistungsreaktortypen aufgeteilt wurde und damit die Anzahl der Endlagerbehälter pro Reaktortyp berechnet und die Zwischenlagerzeiten für die thermischen Auslegungsrechnungen bestimmt werden können. In der Tab. 12 ist das Mengengerüst der endzulagernden ausgedienten Brennelemente aus Leistungsreaktoren aufgeführt (Bollingerfehr et. al., 2012).

Leistungsreaktoren		Anzahl BE	Schwermetallmasse [tSM]
	UO ₂	12.450	6.415
DVVR	MOX	1.530	765
014/D	UO ₂	14.350	2.465
SVVR	MOX	1.250	220
WWER	UO ₂	5.050	580
	UO ₂	31.850	9.460
Gesamt	MOX	2.780	985
	Gesamt	34.630	10.445

Tab. 12: Mengengerüst der ausgedienten Brennelemente aus Leistungsreaktoren

Mengengerüst der ausgedienten Brennelemente aus Versuchs- und Prototyp-Kernkraftwerken und Forschungsreaktoren

Im NaPro wird keine Angabe über die Art und Menge der ausgedienten Brennelemente aus Versuchs- und Prototyp-Kernkraftwerken und Forschungsreaktoren gemacht.

Im Rahmen der VSG wurde das Mengengerüst für die ausgedienten Brennelemente aus Versuchsund Prototyp-Kernkraftwerken und Forschungsreaktoren zusammengestellt. Allerdings sind dort die Brennelemente des Rossendorfer Forschungsreaktors (RFR) und des Forschungsreaktors Mainz (FRMZ) nicht berücksichtigt worden, da ein Rücktransport der Brennelemente nach Russland bzw. in die USA angenommen wurde. In dem FuE-Vorhaben "Status quo der Lagerung ausgedienter Brennelemente aus stillgelegten/rückgebauten deutschen Forschungsreaktoren und Strategie (Lösungsansatz) zu deren künftigen Behandlung/Lagerung (LABRADOR)" wurde das gesamte Mengengerüst der in Deutschland zu entsorgenden ausgedienten Brennelemente aus den Versuchs- und Prototyp-Kernkraftwerken und Forschungsreaktoren zusammengestellt (Dörr et al., 2011).

Einem Rücktransport der Brennelemente aus dem RFR nach Russland wurde nicht zugestimmt (BMU, 2010b). Eine Zwischenlagerung der Brennelemente des FRMZ ist in Deutschland vorgesehen (BMUB, 2015c). Aus diesen Gründen wird im Vorhaben RESUS das im Vorhaben VSG ermittelte Mengengerüst an ausgedienten Brennelementen aus den Leistungsreaktoren und zusätzlich das Mengengerüst für den RFR und den FRMZ aus dem Vorhaben LABRADOR berücksichtigt. Für die Kompakte Natriumgekühlte Kernreaktoranlage Karlsruhe (KNK) wird das aktuelle Mengengerüst aus dem Verzeichnis radioaktiver Abfälle verwendet (BMUB, 2013). In der Tab. 13 ist das zu berücksichtigende Mengengerüst der ausgedienten Brennelemente aus Versuchs- und Prototyp-Kernkraftwerken und Forschungsreaktoren entsprechend zusammengestellt.

Tab. 13:	Mengengerüst	der	ausgedienten	Brennelemente	aus	Versuchs-	und	Prototyp-
	Kernkraftwerke	n und	Forschungsrea	aktoren				

Versuchs- und Prototyp-Kernkraft-	Anzahl der Brennelemente/Brennstäbe
werke und Forschungsreaktoren	
AVR	288.161 Brennelement-Kugeln
THTR 300	617.606 Brennelement-Kugeln
KNK	2.413 Brennstäbe
Otto-Hahn	52 Brennstäbe

Versuchs- und Prototyp-Kernkraft- werke und Forschungsreaktoren	Anzahl der Brennelemente/Brennstäbe
BER II	120 Brennelemente
FRM II	150 Brennelemente
FRMZ	89 Brennelemente
DED	950 Brennelemente und
	1 Brennstabbehälter mit 16 Brennstäben

Mengengerüst der radioaktiven Abfälle aus der Wiederaufarbeitung ausgedienter Brennelemente aus den Leistungsreaktoren

Bis zum 30.06.2005 war es möglich, die ausgedienten Brennelemente deutscher Leistungsreaktoren zur Wiederaufarbeitung ins Ausland abzugeben. Ein Großteil der Brennelemente wurde in Frankreich (La Hague) und Großbritannien (Sellafield) wiederaufgearbeitet. Ein vergleichsweise geringer Anteil wurde in der Wiederaufarbeitungsanlage Karlsruhe (WAK) zwischen 1971 und 1990 aufgearbeitet und in der Verglasungseinrichtung Karlsruhe (VEK) verglast.

Die bei der Wiederaufarbeitung angefallenen radioaktiven Abfälle sind zurückzunehmen und in Deutschland endzulagern. Bei diesen Abfällen handelt es sich um

- Kokillen mit verglasten hochradioaktiven Spaltprodukten und Feedklärschlämmen (CSD-V, früher auch als HAW-Kokille bezeichnet),
- Kokillen mit verglasten mittelradioaktiven Spülwässern (CSD-B) und
- Kokillen mit kompaktierten mittelradioaktiven Brennelementhülsen, Strukturteilen und Technologieabfällen (CSD-C).

Von Sellafield Ltd. (ehemals British Nuclear Fuels) werden ausschließlich Wiederaufarbeitungsabfälle in Form von CSD-V zurückgeführt. Die schwach- und mittelradioaktiven Abfälle werden vollständig durch CSD-V substituiert.

Von AREVA-NC (ehemals COGEMA, La Hague) sind neben verglasten hochaktiven Abfällen (CSD-V) und kompaktierten mittelradioaktiven festen Abfällen (CSD-C) auch radioaktive Reststoffe aus der Betriebswasseraufbereitung (CSD-B) zurückzuführen.

Im NaPro ist das aktuelle Mengengerüst der radioaktiven Abfälle aus der Wiederaufarbeitung dargestellt. Dies wird im Rahmen dieses Vorhabens berücksichtigt (siehe Tab. 14).

Abfallstrom		Kokillen
	AREVA-NC	3.024
CSD V	Sellaflield Ltd.	571
CSD-V	VEK	140
	Summe	3.735
CSD-B	AREVA-NC	140
CSD-C	AREVA-NC	4.104
Gesamt		7.979

Tab. 14: Mengengerüst der Wiederaufarbeitungsabfälle ausgedienter Brennelemente aus den Leistungsreaktoren

Mengengerüst der Strukturteile ausgedienter Brennelemente aus den Leistungsreaktoren

Bei der direkten Endlagerung ausgedienter Brennelemente aus den Leistungsreaktoren in selbstabschirmenden Behältern (z. B. POLLUX[®]-10-Behälter) oder alternativ in rückholbaren Kokillen werden nur die Brennstäbe der Brennelemente in die Endlagerbehälter verpackt.

Ein Brennelement besteht neben den Brennstäben aus den sogenannten Strukturteilen. Die Brennelemente werden in einer Konditionierungsanlage in Brennstäbe und Strukturteile zerlegt. Aufgrund des Neutronenflusses im Reaktor sind die Strukturteile aktiviert worden. Sie sind somit ebenfalls bei der Endlagerung von radioaktiven Abfällen zu berücksichtigen.

4.1.2 Radionuklidinventar

Die Werte für das Radionuklidinventar der einzelnen Abfallarten basieren auf den Annahmen in den Vorhaben KOSINA (Kindlein et al., 2018) und VSG (Larue et al., 2013). Für die betrachteten Abfallarten ist in Tab. 15 jeweils das Gesamtinventar der gesamten Abfallart angegeben. Dabei werden die verschiedenen Typen von ausgedienten Brennelementen (BE) aus Leistungsreaktoren (vgl. Tab. 12) zu einer Abfallart zusammengefasst (BE-Mix). Gleiches gilt für die zu den ausgedienten Brennelementen zugehörigen Strukturteile (Strukt.). Für die ausgedienten Brennelemente aus Versuchs- und Prototypreaktoren (vgl. Tab. 13) werden die Brennelemente aus AVR und THTR gesondert ausgewiesen, während die Brennelemente aus allen anderen Reaktoren zu einer Abfallart Forschungsreaktor-Brennelemente (FR-BE) zusammengefasst werden. Die Abfallarten aus der Wiederaufarbeitung (vgl. Tab. 14) CSD-V, CSD-C und CSD-B werden getrennt betrachtet. Damit ergeben sich die in Tab. 15 aufgeführten acht Abfallarten zur Berücksichtigung beim Radionuklidinventar. Das Bezugsjahr für die angegebene Aktivität ist 2075.

Nuklid	BE-Mix	Strukt.	CSD-V	CSD-C	CSD-B	AVR	THTR	FR-BE
C-14	3,94.1014	6,23·10 ¹²	6,63·10 ¹³	5,62·10 ¹³		2,99·10 ¹²	1,60·10 ¹²	1,90·10 ¹²
CI-36	1,13.10 ¹³	2,32.1011	1,88·10 ¹²	2,04·10 ¹²		9,26·10 ¹⁰	4,11·10 ¹⁰	
Ca-41	6,28·10 ¹¹	7,46·10 ⁰⁹	1,41·10 ¹¹	6,93·10 ¹⁰			4,49·10 ⁰⁸	
Ni-59	2,20·10 ¹⁵	4,03·10 ¹⁴	3,19·10 ¹¹	9,05·10 ¹⁴		4,11·10 ⁰⁹	1,54·10 ⁰⁹	
Ni-63	2,14.1017	3,76·10 ¹⁶	2,73·10 ¹³	7,15·10 ¹⁶		9,48·10 ⁰⁸	1,20·10 ¹¹	2,83·10 ⁰⁴
Se-79	2,93·10 ¹³	8,81·10 ⁰⁶	8,53·10 ¹²	7,60·10 ⁰⁷		2,75·10 ¹⁰	1,99·10 ¹¹	1,11·10 ¹¹
Sr-90	1,14.10 ¹⁹	3,55·10 ¹¹	2,02·10 ¹⁸	3,45·10 ¹²	4,36·10 ¹⁵	4,08·10 ¹⁵	6,46·10 ¹⁵	1,35·10 ¹⁷
Zr-93	1,20.1015	1,51·10 ¹²	3,41·10 ¹⁴	1,78·10 ¹³		7,42.1011	8,77·10 ¹¹	1,03·10 ¹³
Nb-94	3,52·10 ¹⁵	9,66·10 ¹³	5,71·10 ¹⁰	1,04·10 ¹⁵		2,54·10 ⁰⁷	2,12·10 ¹⁰	1,99·10 ⁰⁹
Mo-93	4,88·10 ¹³	1,75·10 ¹²	1,77·10 ¹¹	1,33·10 ¹³		8,45·10 ⁰⁸	9,10·10 ⁰⁸	
Tc-99	8,97·10 ¹⁵	2,27·10 ¹¹	2,64·10 ¹⁵	1,61·10 ¹²		4,08.1012	5,42·10 ¹²	8,10·10 ¹³
Pd-107	9,18·10 ¹³	5,31·10 ⁰⁶	1,97·10 ¹³	1,61·10 ⁰⁸		6,20·10 ⁰⁹	4,79·10 ⁰⁹	8,07·10 ¹¹
Sn-126	3,84.1014	2,27·10 ⁰⁷	9,60·10 ¹³	6,15·10 ⁰⁸		1,40·10 ¹¹	1,77·10 ¹¹	3,41·10 ¹²
I-129	1,91·10 ¹³	9,98·10 ⁰⁵	4,97·10 ¹²	2,50·10 ⁰⁷		8,01·10 ⁰⁹	1,14·10 ¹⁰	1,68·10 ¹²
Cs-135	3,14.1014	2,12·10 ⁰⁷	8,21·10 ¹³	2,93·10 ⁰⁸		1,43·10 ¹¹	1,34·10 ¹¹	2,31·10 ¹²
Cs-137	1,92·10 ¹⁹	8,86·10 ¹¹	3,08·10 ¹⁸	1,10·10 ¹³	1,44·10 ¹⁶	4,66·10 ¹⁵	6,94·10 ¹⁵	2,19·10 ¹⁷
Sm-151	1,59·10 ¹⁷	1,83·10 ¹⁰	3,49·10 ¹⁶	1,97·10 ¹¹		2,66·10 ¹³	6,40·10 ¹³	1,31·10 ¹⁵
Ra-226	4,01·10 ⁰⁹	7,34·10 ⁰¹	5,33·10 ⁰⁸	1,34·10 ⁰³		$1,39.10^{07}$	4,42·10 ⁰⁸	2,48·10 ⁰⁷

Tab. 15: Inventare der einzelnen Abfallarten zum Jahr 2075 in Becquerel (Larue et al., 2013)

Nuklid	BE-Mix	Strukt.	CSD-V	CSD-C	CSD-B	AVR	THTR	FR-BE
Th-229	6,17·10 ⁰⁹	1,51·10 ⁰⁰	2,74·10 ⁰⁸	9,13·10 ⁰¹	4,22·10 ⁰¹	7,58·10 ¹⁰	3,42.1011	3,04·10 ⁰⁶
Th-230	3,50.1011	6,87·10 ⁰³	1,56·10 ¹⁰	9.96·10 ⁰⁴		1,06·10 ⁰⁹	1,42·10 ¹⁰	2,40·10 ⁰⁹
Th-232	2,27·10 ⁰⁸	3,84·10 ⁻⁰³	1,09·10 ⁰⁸	4,29·10 ⁻⁰²		5,17·10 ⁰⁹	2,56·10 ¹⁰	2,74·10 ⁰³
Pa-231	3,07·10 ¹⁰	6,43·10 ⁰²	7,53·10 ⁰⁹	2,16·10 ⁰³		6,08·10 ⁰⁹	8,00·10 ¹⁰	1,95·10 ⁰⁸
U-232	2,31·10 ¹³	2,23·10 ⁰⁴	8,13·10 ⁰⁹	1,04·10 ⁰⁶		4,55·10 ¹²	2,36·10 ¹³	1,59·10 ¹¹
U-233	1,17·10 ¹²	5,99·10 ⁰²	2,13·10 ¹⁰	3,38·10 ⁰⁴	3,77·10 ⁰⁴	8,91·10 ¹²	4,79·10 ¹³	5,07·10 ⁰⁸
U-234	8,88·10 ¹⁴	1,59·10 ⁰⁷	9,19·10 ¹¹	2,18·10 ⁰⁸		1,22·10 ¹²	3,64·10 ¹²	6,29·10 ¹²
U-235	5,51·10 ¹²	5,31·10 ⁰⁵	6,15·10 ⁰⁹	9,86·10 ⁰⁵		4,73·10 ⁰⁹	2,01·10 ¹⁰	5,56·10 ¹⁰
U-236	1,37·10 ¹⁴	1,64·10 ⁰⁶	7,72·10 ¹⁰	1,12·10 ⁰⁷		9,38·10 ¹⁰	1,50·10 ¹¹	1,10·10 ¹²
U-238	1,26·10 ¹⁴	1,71·10 ⁰⁷	9,11·10 ¹⁰	5,29·10 ⁰⁷		5,12·10 ⁰⁹	5,24·10 ⁰⁸	1,40·10 ¹²
Np-237	2,82·10 ¹⁴	4,08·10 ⁰⁶	6,29·10 ¹³	1,95·10 ⁰⁸	4,51·10 ⁰⁸	8,32·10 ¹⁰	8,02·10 ¹⁰	2,18·10 ¹²
Pu-238	2,73·10 ¹⁸	1,00·10 ¹⁰	2,04·10 ¹⁵	5,90·10 ¹¹		3,40.1014	2,68·10 ¹⁴	1,58·10 ¹⁶
Pu-239	2,05·10 ¹⁷	7,36·10 ¹⁰	4,09.1014	5,34·10 ¹¹		6,31·10 ¹²	1,66·10 ¹²	1,70·10 ¹⁵
Pu-240	4,52·10 ¹⁷	5,16·10 ¹⁰	1,14·10 ¹⁵	4,00.1011		1,29·10 ¹³	4,52·10 ¹²	3,01·10 ¹⁵
Pu-242	2,73·10 ¹⁵	4,13·10 ⁰⁷	2,13·10 ¹²	3,82·10 ⁰⁹		8,60·10 ¹⁰	1,88·10 ¹⁰	1,70·10 ¹³
Pu-244	3,16·10 ¹¹	8,99·10 ⁰¹	8,45·10 ⁰⁹	2,39·10 ⁰⁵		2,35·10 ⁰⁶	2,10·10 ⁰⁵	5,24·10 ⁰⁹
Am-241	4,03.1018	3,06·10 ¹¹	1,55·10 ¹⁷	8,32·10 ¹²	3,56·10 ¹³	1,07·10 ¹⁴	3,33·10 ¹³	2,52·10 ¹⁶
Am-242m	1,33·10 ¹⁶	2,85·10 ⁰⁸	8,42.1014	7,85·10 ⁰⁹		1,42·10 ¹¹	2,03·10 ¹⁰	3,37·10 ¹³
Am-243	3,56·10 ¹⁶	9,32·10 ⁰⁷	2,76·10 ¹⁵	4,58·10 ¹⁰		5,30·10 ¹¹	7,96·10 ¹⁰	1,99·10 ¹⁴
Cm-245	1,54·10 ¹⁵	5,52·10 ⁰⁴	2,41·10 ¹³	7,11·10 ⁰⁸		5,68·10 ⁰⁸	2,01·10 ⁰⁸	3,71·10 ¹²
Cm-246	2,52·10 ¹⁴	3,31·10 ⁰³	3,41·10 ¹²	1,30·10 ⁰⁸		2,60.1008	2,81·10 ⁰⁷	9,58·10 ¹¹
Cm-247	1,40·10 ⁰⁹	1,86·10 ⁻⁰³	8,89·10 ⁰⁶	3,95·10 ⁰²			3,71·10 ⁰¹	3,91·10 ⁰⁶
Cm-248	3,60·10 ⁰⁹	1,11·10 ⁻⁰³	1,70·10 ⁰⁷	1,08·10 ⁰³			4,36·10 ⁰¹	1,22·10 ⁰⁷
Gesamt	4,14-10 ¹⁹	3,81·10 ¹⁶	5,30-10 ¹⁸	7,36-10 ¹⁶	1,88-10 ¹⁶	9,26-10 ¹⁵	1,39-10 ¹⁶	4,01·10 ¹⁷

4.2 Sicherheitskonzept

Das Sicherheitskonzept für Endlager im Tongestein wurde im Vorhaben ANSICHT entwickelt (Rübel & Meleshyn, 2014). Es basiert, ausgehend von den allgemeinen Vorgaben zum Sicherheitskonzept in (BMU, 2010a)⁴, auf folgenden Leitgedanken:

- Es soll ein möglichst weitgehender Einschluss der radioaktiven Abfälle in einem definierten Gebirgsbereich um die Abfälle herum erreicht werden.
- Der Einschluss soll dabei sofort nach Verschluss des Endlagerbergwerks wirksam werden und durch das Endlagersystem dauerhaft und nachsorgefrei sichergestellt sein.
- Der Einschluss der radioaktiven Abfälle des betrachteten Endlagers im Tongestein erfolgt primär durch die Behinderung des Schadstofftransports durch chemische und physikalische Prozesse – der Rückhaltung – innerhalb des ewG. Die Rückhaltung wird vor allem durch Eigenschaften des Tongesteins im ewG im Verbund mit den geotechnischen Barrieren gewährleistet. Als Folge

⁴ Die genauen Inhalte der Sicherheitsanforderungen sind gemäß § 26 StandAG noch in einer Rechtsverordnung zu regeln. Diese Verordnung wird im Jahr 2020 vorliegen. Der vorgelegte Bericht konnte die Inhalte der Verordnung daher noch nicht berücksichtigen.

des langsamen Schadstofftransports wird ein Großteil der Radioaktivität bereits während des Transports innerhalb des ewG durch radioaktiven Zerfall abgebaut.

Diese Leitgedanken gelten gleichermaßen für alle Endlagersysteme im Wirtsgestein Tongestein.

4.2.1 Zielsetzungen

Für eine Konkretisierung und Umsetzung der Sicherheitsprinzipien der Sicherheitsanforderungen werden im Sicherheitskonzept in diesem Kapitel eine Reihe von Zielsetzungen (Z) und im folgenden Kapitel technischen Maßnahmen (M) definiert. Für die Nachverschlussphase werden mit dem Sicherheitskonzept folgende konkrete Zielsetzungen verfolgt:

- Z1: Der ausgewiesene ewG bleibt im Nachweiszeitraum erhalten und seine Barrierenfunktion wird weder durch interne noch durch externe Vorgänge und Prozesse beeinträchtigt. Die über dem ewG liegenden Gesteinsschichten sollen durch ihre Mächtigkeit, ihren strukturellen Aufbau und ihre Zusammensetzung für einen Schutz des ewG gegen Erosion sorgen.
- Z2: Nach einer Mobilisierung von Schadstoffen aus den Abfällen wird der Transport dieser Schadstoffe aus dem ewG durch chemische und physikalische Prozesse behindert bzw. verzögert.

Die Verhinderung des Schadstofftransports wird durch die drei Säulen der Rückhaltung sichergestellt, die gegenüber der Sicherheitsfunktion Einschluss sekundäre Sicherheitsfunktionen darstellen:

- Begrenzung des advektiven Transports: Die Permeabilität der in Betracht gezogenen Tongesteine ist so gering, dass die Ausbreitung von Schadstoffen im ewG durch advektive Transportprozesse allenfalls vergleichbar zur Ausbreitung durch diffusive Die Transportprozesse erfolgt (BMU, 2010a). geringe Permeabilität der Verschlussbauwerke und Versatzmaterialien behindert eine advektive Lösungsbewegung entlang der aufgefahrenen Hohlräume.
- Begrenzung des diffusiven Transports: Die Diffusionskoeffizienten der Schadstoffe im Porenraum der in Betracht gezogenen Tongesteine des Wirtsgesteins, die ein Maß für die Diffusionsgeschwindigkeit darstellen, weisen sehr niedrige Werte auf. Für den Großteil der Schadstoffe wird die Transportgeschwindigkeit zusätzlich durch die geochemische Rückhaltung der Schadstoffe (Sorption) an der Oberfläche der Gesteinsmatrix reduziert. Dies gilt insbesondere für Aktiniden, die eine sehr starke Sorption in Tonsteinen aufweisen. Eine weitere Verringerung des diffusiven Schadstoffstroms ergibt sich durch die Grenzen der maximalen Lösungskonzentration (Löslichkeitsgrenzen) der meisten Schadstoffe zwischen dem Einlagerungsort und der Umgebung gering gehalten und damit auch der diffusive Fluss begrenzt. Die hohe Pufferkapazität des Wirtsgesteins und der Verschluss- und Versatzmaterialien im Endlager bewahrt ein stabiles geochemisches Milieu über den gesamten Nachweiszeitraum. Dadurch werden die positiven Sorptionseigenschaften über den gesamten Nachweiszeitraum erhalten.
- Wiederherstellung der geringen ursprünglichen Permeabilität: Durch die Errichtung des Endlagers wird das Wirtsgestein partiell gestört und die positive Eigenschaft von dessen geringer Permeabilität lokal nachteilig verändert. Die als Wirtsgestein in Betracht gezogenen Tonsteine weisen in Verbindung mit den eingebrachten quellfähigen Versatz-

und Verschlussmaterialien eine hohe Selbstabdichtungskapazität auf. Klüfte oder Risse im Wirtsgestein werden durch die Selbstabdichtung wieder so weit verschlossen, dass die geringe Permeabilität des Wirtsgesteins nicht dauerhaft signifikant erhöht wird. Dies gilt sowohl für Klüfte oder Risse, die durch die Auffahrung des Endlagers und Einlagerung der Abfälle induziert werden, als auch für solche, die in der Nachverschlussphase durch geologische Prozesse entstehen.

- Z3: Eine Kritikalität wird gemäß den Sicherheitsanforderungen durch das technische Endlagerkonzept in jeder Phase der Endlagerentwicklung ausgeschlossen.
- Z4: Auswirkungen bei einem unbeabsichtigten menschlichen Eindringen in das Endlager (Human Intrusion Szenarien) sowie ihre Eintrittswahrscheinlichkeiten werden durch entsprechende Auslegung des Endlagers nach Möglichkeit reduziert. Die Optimierung des Endlagers bezüglich des menschlichen Eindringens wird nachrangig zur Langzeitsicherheit durchgeführt (BMU, 2010a).
- Z5: Die maximalen Temperaturen im Wirtsgestein werden durch eine entsprechende Beladung der Abfallbehälter und angepasste Einlagerungsgeometrien begrenzt, so dass die Barrierewirkung des ewG nicht unzulässig beeinflusst wird.
- Z6: Entsprechend der Sicherheitsanforderungen sollen für eine eventuelle Bergung die eingelagerten Abfallgebinde mindestens 500 Jahre nach dem geplanten Verschluss des Endlagers handhabbar sein und den Einschluss von radioaktiven Aerosolen gewährleisten.
- Z7: Die Gasentwicklung (z. B. durch Korrosionsprozesse) und die Gasdruckaufbaurate in den Grubenbauen sollen durch eine entsprechende Auslegung, wie z. B. die Wahl der Behältermaterialien, so weit beschränkt werden, dass keine Beeinträchtigung des Wirtsgesteins im ewG durch die Bildung von Rissen erfolgt.
- Z8: Mikrobielle Prozesse in den Grubenbauen sollen durch eine entsprechende Auslegung, wie z. B. durch eine geringe Porosität der Versatzmaterialien, so weit wie möglich beschränkt werden.
- Z9: Die Verformung des Wirtsgesteins soll möglichst gering gehalten werden.
- Z10: Die durch die Auffahrung der Grubenbaue geschaffenen Wegsamkeiten sollen verschlossen und ein advektiver Transport kontaminierter Lösungen entlang der Auffahrung aus dem ewG verhindert werden.

4.2.2 Maßnahmen

Zum Erreichen der genannten Zielsetzungen werden über die gesetzlichen Ausschlusskriterien und Mindestanforderungen des StandAG hinaus planerische Festlegungen in Bezug auf die Positionierung und Auslegung der Grubenbaue des Endlagerbergwerks im Wirtsgestein getroffen, sowie verschiedene technische Maßnahmen vorgesehen, die nachfolgend beschrieben sind.

- M1: Das Endlager ist allseitig von Wirtsgestein umschlossen.
- M2: Die Errichtung der Einlagerungsbereiche erfolgt in einer gut charakterisierbaren und möglichst homogenen Tonformation.

M3: Das aufzufahrende Hohlraumvolumen der Grubenbaue wird so klein wie möglich gehalten, und die Auffahrung erfolgt unter dem Einsatz gebirgsschonender Verfahren, um die Auswirkungen auf die Wirtsgesteinsformation zu minimieren.

Ein Teil der technischen Maßnahmen dient dazu die unvermeidbare Durchörterung der geologischen Barriere schnell und wirksam abzudichten, langfristig zur Wiederherstellung ihrer Integrität beizutragen und Systementwicklungen zu vermeiden, bei denen es zu einer Verletzung der Integrität des ewG kommen kann. Im Einzelnen sind dazu folgende Maßnahmen vorgesehen:

M4: Schachtverschlüsse in den Tagesschächten, Streckenverschlüsse in den Zugangsstrecken zu den Schächten, am Eingang der Beschickungs- bzw. Einlagerungsstrecken, sowie in Bereichen von Störungen und Klüften. Die geringe integrale Permeabilität der Verschlussbauwerke verhindert eine advektive Lösungsbewegung entlang der aufgefahrenen Hohlräume.

Die Integrität der geotechnischen Verschlussbauwerke innerhalb des ewG soll nachgewiesenermaßen mindestens so lange erhalten bleiben, bis sich das thermische, hydraulische und mechanische (THM) System in der Umgebung der Verschlussbauwerke wieder dem ursprünglichen natürlichen Zustand angenähert hat und somit potenzielle Antriebsmechanismen für endlagerinduzierte Transportprozesse zum Erliegen kommen. Dies gilt als erfüllt, wenn:

- **T** Das Maximum der Temperatur im gesamten ewG überschritten ist und die Temperatur in der Umgebung der Verschlussbauwerke wieder innerhalb der ursprünglichen natürlichen Bandbreite der Temperatur im ewG liegt.
- **H** Die Gasproduktion im Endlager abgeschlossen ist und der Fluiddruck im ewG wieder überall innerhalb der ursprünglichen natürlichen Bandbreite des Fluiddrucks im ewG liegt.
- **M** Der Spannungszustand im ewG wieder überall innerhalb der ursprünglichen natürlichen Bandbreite des Spannungs- und Verformungszustandes im ewG liegt.

Für diesen Zeitraum muss die Stabilität der Verschlussmaterialien gegen mechanische, hydraulische chemische und biologische Einwirkungen nachgewiesen werden.

M5: Die offenen Hohlräume in den Grubenbauen der Einlagerungsbereiche werden mit quellfähigem, sorptionsfähigem Versatz verfüllt, der bei einer Aufsättigung zu einem Quellen und damit zu einer Verringerung seiner Porosität und Permeabilität, sowie zum Aufbau eines Quelldrucks führt. Die geringe Permeabilität behindert den advektiven Schadstofftransport entlang der Auffahrungen. Der Quelldruck führt zu einer Reduzierung der im Gebirge induzierten Differenzspannungen und zu einer schnelleren Abdichtung der Schädigungszone um die aufgefahrenen Strecken.

4.3 Technisches Endlagerkonzept

Im Endlagersystem T1 ist die Einlagerung von nicht selbst abschirmenden Endlagerbehältern in vertikalen Bohrlöchern in einer mächtigen Tonformation bei einer Auslegungstemperatur von maximal 100 °C an der Behälteroberfläche vorgesehen. Im Folgenden wird dafür ein mögliches technisches Endlagerkonzept beschrieben. Das technische Endlagerkonzept stellt in diesem Vorhaben eine Grundlage der nachfolgenden Sicherheitsuntersuchungen dar. Aus diesem Grund beschränken sich die Arbeiten darauf, auf der Basis einer thermischen Auslegung eine die Auslegungstemperatur einhaltende Verteilung der Endlagergebinde im geologischen Modell vorzunehmen. ein schematisches Grubengebäude dazu zu entwickeln und einen Gesamtflächenbedarf für das Endlagerbergwerk zu ermitteln. Darüber hinaus wird ein Verfüll- und Verschlusskonzept für dieses Grubengebäude beschrieben.

4.3.1 Grundlegende Randbedingungen der Endlagerauslegung

Das geologische Modell der Tongesteinsformation bietet nur geringe Beschränkungen für die horizontale oder vertikale Ausdehnung eines Endlagers. Ein großer Abstand zwischen den eingelagerten Abfällen und den Tageszugängen bietet Vorteile für die Langzeitsicherheit, nämlich in Form einer dadurch erreichbaren Verzögerung einer potenziellen Lösungsmigration von den Abfällen aus entlang der Strecken bis zu den Tageszugängen. Darüber hinaus bieten lange Zugangsstrecken konservativ abdeckend Platz für Verschlussbauwerke von nicht klar definierter Länge, da ihre Auslegung für ein Endlagerbergwerk im Tongestein noch nicht abschließend erfolgt ist.

In Hinblick auf eine potentielle Lösungsmigration entlang der Strecken und zur Vermeidung von Streckenkreuzungen wurde außerdem eine längliche Form des Grubengebäudes gewählt, in der die Einlagerungsbereiche mit den radioaktiven Abfällen in zwei Reihen angeordnet sind und nur von einer geringen Anzahl von Richtstrecken erschlossen werden. Die Einlagerungsbereiche werden einerseits bergtechnisch durch Richtstrecken erschlossen, die jeweils auf der Außenseite der jeweiligen Reihe liegen. Eine Strecke zum Transport der Abfallgebinde befindet sich andererseits in der Mitte zwischen den beiden Reihen aus Einlagerungsbereichen. Über diese Richtstrecke werden alle Abfallgebinde zu den Strecken transportiert, von der die Einlagerungsbohrlöcher geteuft wurden (Bohrlochüberfahrungsstrecken). Dieser Aufbau wird sowohl für die Einlagerungsbereiche für ausgediente Brennelemente als auch für die Einlagerungsbereiche der anderen Abfälle, die sich auf der gegenüberliegenden Seite des Infrastrukturbereichs befinden, gewählt.

Bei der Auslegung des Grubengebäudes wird auf Grund bestehender regulatorischer Vorgaben, etablierter Technik sowie praktischer Erfahrungen von folgenden Randbedingungen ausgegangen:

- Die Breite der Festen zwischen zwei Strecken soll nach überschlägigen gebirgsmechanischen Berechnungen mindestens das Drei- bis Vierfache der Streckenbreite der breiteren der beiden Strecken betragen. Die entsprechende Festenbreite wird als untere erlaubte Grenze des Streckenabstands bei der thermischen Auslegung berücksichtigt.
- Die Querschnitte der Strecken werden entsprechend der in ihnen eingeplanten technischen Einrichtungen ausgelegt. Der Transport von Wettern durch die Strecken und der Transportund Einlagerungsprozess der Endlagerbehälter werden ebenfalls berücksichtigt. Als Arbeitshypothese werden ein Ausbau aus 50 cm armiertem Beton und 250 cm langen Gebirgsankern sowie eine flache Sohle vorgesehen.

- Am Anfang und Ende jedes Querschlags wird ein Streckenabschnitt von 20 m zum Einbau von Einfachen Streckenverschlüsse vorgesehen (s. Kapitel 4.3.6).
- In Blindstrecken (nicht durchschlägigen Strecken) oder Streckenvortrieben, die länger sind als 400 m, schreibt das Bergrecht vor, Schutzräume für Personal vorzusehen. Im Hinblick auf Maßnahme 3 (M3) des Sicherheitskonzepts soll der für die Schutzräume zusätzlich notwendige Hohlraum vermieden werden, indem sich die Breite der Einlagerungsbereiche und die Länge der Einlagerungsstrecken an einem Maximum von etwa 400 m orientieren.
- Die Kurvenradien betragen 25 m für gleisgebundene Förderung und mindestens 10 m für gleislose Fahrzeuge.
- Das Endlager wird im Rückbau betrieben, d. h. die schachtfernsten Grubenteile werden zuerst mit Abfällen beladen und anschließend verfüllt und verschlossen. Während der Betriebszeit ist damit die Einlagerungsrichtung immer zu den Schächten hin.

4.3.2 Positionierung des Endlagerbergwerks im geologischen Modell

Die Positionierung des Grubengebäudes im geologischen Modell basiert auf der Beschreibung des geologischen Endlagersystems. Aufgrund der hohen Mächtigkeit des Wirtsgesteins ist ein Abstand von mindestens 50 m zu den Schichtgrenzen der Wirtsgesteinsformation immer gewährleistet. Der gewählte Standort im geologischen Modell ist in Abb. 6 dargestellt. Die Einlagerungssohle befindet sich bei 700 m u. GOK. Die Position der Schächte ist in der Abbildung ebenfalls gekennzeichnet. Der gesamte Flächenbedarf des Endlagerbergwerks im Endlagersystem T1 beträgt, ohne Berücksichtigung der flächenhaften Ausdehnung des ewG, ca. 8,7 km².

Abb. 6: Ausschnitt aus dem geologischen Modell mit Position des Endlagerbergwerkes

4.3.3 Thermische Leistung des Abfallinventars

Die Konzeption des Endlagerbergwerks hängt im Wesentlichen von der gesamten thermischen Leistung der ausgedienten Brennelemente und der Abfälle aus der Wiederaufarbeitung ab.

Für die Einlagerung von MOX-Brennelementen, die im Vergleich zu UO₂-Brennelementen eine höhere Wärmeproduktion aufweisen, wurde eine Behälterbeladung entwickelt, die zum überwiegenden Anteil aus den Brennstäben von DWR-BE besteht und zu einem geringen Anteil aus denen der MOX-BE (Amelung et al., 2005). Das in Bollingerfehr et al. (2012) verwendete Verhältnis

in der Behälterbeladung von 89 % UO₂-Anteil und 11 % MOX-Anteil entspricht dem Mischungsverhältnis, welches sich aus dem Verhältnis der Gesamtmengen von DWR-UO₂-BE und DWR-MOX-BE ableitet.

In Abb. 7 ist die zeitliche Entwicklung der thermischen Leistung der einzelnen Brennelementtypen in einer zur Beladung mit DWR-BE äquivalenten Bestückung dargestellt. Die gemischte Beladung mit 89% UO₂ und 11% MOX deckt die Wärmefreisetzung der UO₂-Brennelemente aus SWR-Reaktoren und WWER-Reaktoren ab. Die Wärmeleistung für reine Beladungen mit MOX-Brennelementen ist zum Vergleich ebenfalls in der Abbildung dargestellt.

Die zeitliche Entwicklung der thermischen Leistung einer Kokille mit Abfällen aus der Wiederaufarbeitung ist auch in der Abb. 7 wiedergegeben. Sie zeigt ein anderes Abklingverhalten im Vergleich zu den Brennelementen. Die Wärmeleistung solcher Abfälle bleibt zunächst auf dem Niveau der UO₂-Brennelemente und fällt ab 50 Jahren nach Wiederaufarbeitung stärker ab. Aus diesem Grund muss eine separate thermische Auslegung für diese Abfälle durchgeführt werden.

Abb. 7: Thermische Leistung eines DWR-Brennelementes in Abhängigkeit von der Zeit, beladungsäquivalent zu einem DWR-BE (3 SWR-BE oder 2,5 WWER-BE)

Bei den thermischen Auslegungsrechnungen wird die in Abb. 7 dargestellte zeitliche Entwicklung der Wärmeleistung der verschiedenen Abfallklassen vereinfacht über ein reduziertes thermisches Nuklidspektrum abgebildet, das vier Leitnuklide umfasst, deren Parameterwerte in Tab. 16 angegeben sind.

		DWR-Mix 89/11	CSD-V	WWER
Nuklid 1:				
Leistung p	[kW]	1,156	1,480	1,126⋅10 ⁻¹
Halbwertzeit t _{1/2}	[a]	3,220·10 ¹	2,799·10 ¹	3,242·10 ¹
Nuklid 2:				
Leistung p	[kW]	2,267·10 ⁻¹	4,468·10 ⁻²	2,034·10 ⁻²
Halbwertzeit t _{1/2}	[a]	3,968·10 ²	4,172·10 ²	4,306·10 ²
Nuklid 3:				
Leistung p	[kW]	2,151·10 ⁻²	9,507·10 ⁻⁴	2,402·10 ⁻³
Halbwertzeit t _{1/2}	[a]	1,367·10 ⁴	9,649·10 ³	1,701·10 ⁴
Nuklid 4:				
Leistung p	[kW]	9,466·10 ⁻⁴	1,289 ·10 ⁻⁴	8,243·10 ⁻⁵
Halbwertzeit t1/2	[a]	7,593 · 10⁵	2,952·10 ¹⁴	1,090⋅10 ⁶

Tab. 16: Leitnuklide eines Brennelementes bzw. einer Kokille für die hochradioaktiven Abfälle

Gemäß dem Abschlussbericht der Kommission für die Lagerung hoch radioaktiver Abfallstoffe wird ein frühester Einlagerungsbeginn für das Jahr 2050 angenommen (Kommission, 2016). Die Zwischenlagerzeit der Abfälle beträgt zu diesem Zeitpunkt je nach Abfallart und Entstehungszeitpunkt bis zu 60 Jahre. Bei einer angenommenen Einlagerungsdauer von 30 Jahren lässt sich eine kürzeste Zwischenlagerzeit von 57 Jahren für die SWR/DWR-Brennelemente errechnen. Für die Abfälle aus der Wiederaufarbeitung wird konservativ eine Zwischenlagerzeit von 53 Jahren angenommen.

4.3.4 Thermische Auslegung des Grubengebäudes

Das technische Endlagerkonzept für das Endlagersystem T1 ist an das in ANSICHT entwickelte Einlagerungskonzept für den Endlagerstandortmodell NORD angelehnt (Lommerzheim et al., 2015). Die Einlagerungsbehälter mit den Brennstäben aus abgedienten Brennelementen oder mit Abfällen aus der Wiederaufarbeitung werden in Bohrlöchern eingelagert. Im Einlagerungsbohrloch befinden sich drei Einlagerungsbehälter, die in Sand eingebettet sind. Die Stabilität des Bohrlochs wird durch einen Stahlliner gewährleistet. Die Bohrlöcher sind durch eine Überfahrungsstrecke erreichbar. Nach Einlagerung der Behälter werden die Bohrlöcher mithilfe eines Bohrlochverschlusses aus Bentonit und eines Widerlagers aus Beton verschlossen. Die Strecken werden anschließend mit quellfähigen Tonmaterialien versetzt (Abb. 8).

Für das Endlagersystem T1 wurde die Auslegungstemperatur an der Außenfläche des Endlagerbehälters gemäß StandAG § 27 Absatz 4 auf maximal 100 °C festgelegt. Die Berechnungen wurden unter Variation des Behälter-, Strecken- und Bohrlochabstandes in einem parametrisierten Berechnungsmodell durchgeführt. Das Berechnungsmodell, als Abbildung des die thermischen Überlagerungen und die Endlagers, muss daraus resultierenden Temperaturerhöhungen abbilden. Dazu wurde unter Berücksichtigung von thermischen Symmetrierandbedingungen ein Viertelmodell eines Bohrlochs mit dem eingelagerten Behälter, das in einem Teilmodell des Gebirges eingebettet ist, verwendet. Dadurch kann ein horizontal beliebig großer Einlagerungsbereiche mit dem Einlagerungsraster aus Bohrloch- und Streckenabstand simuliert werden. In einem solchen Modell entspricht der Abstand der Bohrlochachse zum Modellrand in Streckenguerrichtung dem halben Streckenabstand und der Abstand der

Bohrlochachse zum Modellrand in Streckenrichtung dem halben Bohrlochabstand. Der Auslegungspunkt befindet sich auf der Behälteroberfläche auf halber Länge der Endlagerbehälter. So eine Modellbildung hat den Vorteil, dass das Endlager nicht in Gänze modelliert werden muss. Das reduziert den zeitlichen und numerischen Aufwand auf ein Minimum.

Abb. 8: Im Modell verwendete Materialbereiche zur Modellierung der thermischen Ausbreitung im Nahfeld

Als Referenzbehälter wurde ein Behälter vom Typ BSK angenommen. Die Brennstabkokille (BSK, siehe Abb. 9) wurde als Alternative zum POLLUX®-Behälter zur Aufnahme der gezogenen Brennstäbe von drei DWR-BE oder neun SWR-BE (in zwei Brennstabbüchsen) entworfen. Unter geometrischen Gesichtspunkten kann die BSK auch die gezogenen Brennstäbe von 7,5 WWER-BE aufnehmen. Durch Anpassung des Innenraumes und Vergrößerung des Durchmessers der BSK ist konzeptionell auch die Einlagerung von jeweils drei CSD in einem sogenannten Triple-Pack möglich. Dabei werden entweder drei CSD-V, CSD-B oder CSD-C in einem zylindrischen Behälterkörper ähnlich wie die BSK (Overpack mit 5mm Wandstärke) gepackt. In Abb. 9 sind beispielhaft eine BSK mit Brennelementen und mit CSD-V illustriert. Die Kokillen werden in dem Overpack durch Abstandshalter fixiert. Die BSK besteht aus einem zylindrischen Behälterkörper mit 40 mm Wandstärke und einem angepressten oder angeschweißten Boden. Der Behälterkörper besteht wie der Primär- und Sekundärdeckel der BSK aus Feinkornbaustahl (Werkstoff 1.6210). Der Innenraum wird zunächst durch Verschrauben mit einem Primärdeckel verschlossen. In einer Aussparung in der Deckelunterseite wird eine Moderatorplatte zur Neutronenabschirmung eingelegt. Über den Primärdeckel wird ein Sekundärdeckel aufgelegt, der mit dem Behälterkörper gasdicht verschweißt wird. Zur Handhabung des Behälters weist der Schweißdeckel einen Tragpilz auf. Der strukturelle Behälteraufbau und die Materialauswahl gewährleisten die grundlegenden Anforderungen hinsichtlich Rückholbarkeit in der Betriebsphase. Hinsichtlich der Anforderung einer Handhabbarkeit des Behälters bis 500 Jahre stehen entsprechende Untersuchungen noch aus. Der Behälter, der diese Analyse zugrunde liegt, hat eine Länge von ca. 5 m und einem Durchmesser von ca. 520 mm. Die Behälter im Bohrloch wirken als Wärmequellen im Modell. Der Auslegungspunkt befindet sich aufgrund von Wärmeüberlagerungseffekten auf der Behälteraußenfläche des mittleren Einlagerungsbehälters im Bohrloch im Kontakt zum Sand (Abb. 8). Der Stahlliner weist eine hohe

Wärmeleitfähigkeit und eine geringere geometrische Ausprägung im Vergleich zu den anderen Materialbereichen im Nahfeld des Einlagerungsbereiches aus und kann deshalb vernachlässigt werden.

Abb. 9: BSK mit Brennelementen (oben), Triple-Pack mit CSD-V (unten) (Bollingerfehr et al., 2011)

Die Berechnungen beschränken sich auf die thermische Prozessklasse. Es wird angenommen, dass der thermische Energietransport ausschließlich durch Wärmeleitung erfolgt. Die Wärmestrahlung und die Konvektion werden vernachlässigt. Damit sind die relevanten Materialparameter festgelegt. Es sind die Dichte, die massenspezifische Wärmekapazität und die Wärmeleitfähigkeit. Die Parameter aller Materialien im Modell sind in Tab. 17 zusammengestellt. Tonstein wird als poröses Medium betrachtet. Seine thermischen Materialeigenschaften im gesättigten Zustand lassen sich aus den folgenden Formeln mit der Porosität n, der Wärmekapazität der Fluidphase c_{pf} , der Dichte der festen Phase ρ_s , der Fluidphase ρ_f und die Wärmekapazität der festen Phase c_{ps} sowie die Wärmeleitfähigkeiten der festen Phase λ_s und Fluidphase λ_f bestimmen. Die Porosität des Tonsteins beträgt 0,05 (Nowak & Maßmann, 2013).

$$c_{pm} = \frac{(1-n)c_{ps}\rho_s + n\rho_f c_{pf}}{(1-n)\rho_s + n\rho_f} ; \ \lambda_m = (1-n)\lambda_s + n\lambda_f$$

Das komplexe Verhalten von Bentonit ist noch Gegenstand laufender Forschungsaktivitäten. Die thermischen Eigenschaften von Bentonit ändern sich infolge Quellen, Aufsättigung und Kompaktion. Für die Auslegung wurden deshalb Richtwerte für Bentonit angenommen.

Tab. 17:	Materialparameter	abgeleitet	von	Nowak	&	Maßmann	(2013)	und	Bollingerfehr	et	al
	(2012)										

Modelleinheiten	Spezifische Wärmekapazität c _{pm} [J/Kg/K]	Wärmeleitfähigkeit λ _m [W/m/K]	Dichte ρ [kg/m³]
Wirtsgestein	1.121,4	⊥1,3 ∥ 1,9	2.340
Beton	880	2,1	2.500
Sand	850	0,75	1.700
Bentonit	1.100	1,0	2.070
Behälter	515	15,0	7.000

Die Berechnungen wurden mit Hilfe des Programms FLAC^{3D} in der Version 5.1 (Itasca, 2013) durchgeführt. Flac^{3D} ist ein Programm zur Berechnung von dreidimensionalen Multiphysics-Modellen auf der Basis der Finite-Differenzen-Methode. Aktuell ist es in der Lage, thermisch (T), mechanisch (M) und hydraulisch (H) gekoppelte Systeme zu modellieren. Innerhalb der Elemente wird ein linearer Ansatz vergleichbar mit der Finite-Elemente-Methode verwendet. Die Lösung des Gleichungssystems erfolgt auf der Basis eines expliziten Zeitschrittverfahrens. Der Code wird weltweit von unterschiedlichsten Unternehmen für verschiedenste geomechanisch relevante Fragestellungen sowohl kommerziell als auch bei der Bearbeitung von FuE-Themen eingesetzt und gilt als hinreichend validiert.

Thermische Auslegung der Einlagerungsbereiche für die Brennelemente

Der zeitliche Temperaturverlauf am Auslegungspunkt eines Behälters im zentralen Bereich eines Einlagerungsbereichs, der mit DWR-Mix-Brennelementen entsprechend der thermischen Leistung in Abb. 7 bestückt ist, ist durch ein Maximum charakterisiert (Abb. 10). Das Maximum wird unmittelbar nach Einlagerung bis spätestens 25 Jahre erreicht. Die Höhe des Temperaturmaximums wird von der Beladung, dem Behälterabstand, dem Streckenabstand und dem Bohrlochabstand gesteuert. Vorläufige Untersuchungen haben ergeben, dass Behälter mit Brennstäben aus zwei Brennelementen bereits zu einer Verletzung der Auslegungstemperatur unabhängig von der Größe der anderen Optimierungsparameter führen. Für die Auslegung der Einlagerungsbereiche für die Brennelemente wurde deshalb die BSK mit Brennstäben aus 1,9 Brennelementen beladen. Ein Streckenabstand oberhalb derjenigen, der aus gebirgsmechanischen Gründen notwendig ist, hat auf die Entwicklung der maximalen Temperatur keinen wesentlichen Einfluss und wird auf 30 m festgelegt.

Die thermische Auslegung erfolgt unter Variation des Bohrloch- und des Behälterabstands. Der Bohrlochabstand wurde im Bereich zwischen 25 und 50 m mit einer Schrittweite von 5 m variiert. Werte von 1 m, 2,5 m, 5 m, 7,5 m und 10 m wurden als Parameter für den Behälterabstand im Bohrloch angenommen. Die zeitlichen Temperaturverläufe am Auslegungspunkt für alle Berechnungen sind in Abb. 10 dargestellt. Die Temperaturmaxima aus Abb. 10 sind in Abhängigkeit von Bohrloch- und Behälterabstand in Abb. 11 als Stützpunkte aufgetragen. Durch Interpolation mittels der Optimierungssoftware Optislang[®] ergibt sich eine dreidimensionale Antwortfläche. Die 100 °C-Isolinie (Auslegungstemperatur) lässt sich mit diesem Programm anschließend ermitteln. Daraus können alle Wertepaare aus Bohrloch- und Behälterabstand ermittelt werden, die zu einer Einhaltung der Auslegungstemperatur führen.

Abb. 10: Temperaturverläufe im Auslegungspunkt für DWR-Mix BE, gewählter Temperaturverlauf (rote Kurve)

Abb. 11: Temperaturmaximum in Abhängigkeit vom Bohrloch- und Behälterabstand, gewähltes Maximum aus Simulationsfall N° 6 (roter Punkt), schwarze Linie kennzeichnet 100°C-Isotherme

Für die Auslegung des Grubengebäudes bei einer Auslegungstemperatur von 100 °C wurden für die Bereiche mit DWR-Mix Brennelementen mit Blick auf die Minimierung der Behälteranzahl und auf

die Anforderungen der Einlagerungstechnik ein Behälterabstand von 7,5 m, ein Bohrlochabstand von 30 m, ein Streckenabstand von 30 m und eine Beladung von 1,9 Brennelementen gewählt. Der dazu korrespondierende Verlauf und das korrespondierende Maximum sind in den Abbildungen erkennbar. Mit den gewählten Parametern beträgt die maximale Temperatur am Wirtsgestein ca. 85 °C. Diese Auslegung deckt die Einlagerung der SWR- und WWER-Brennelemente konservativ ab.

Thermische Auslegung der Einlagerungsbereiche für die verglasten Abfälle aus der Wiederaufarbeitung

Die Auslegung der Einlagerungsbereiche mit CSD-V erfolgt analog zur Auslegung der Endlagerbehälter mit Brennelementen. Der charakteristische Temperaturverlauf ist ähnlich. Der Abfall nach dem Erreichen des Temperaturmaximums ist jedoch stärker.

Die thermische Auslegung der CSV-Einlagerungsbereiche wurde in zwei Iterationen durchgeführt. Zunächst wurde eine Auslegung mit einer Beladung der BSK mit drei CSD-V untersucht. Die Ergebnisse dieser Analyse zeigen, dass die Einhaltung der Auslegungstemperatur von 100 °C im Endlager unter dieser Voraussetzung nicht möglich ist. Die Beladung der Behälter musste deshalb auf zwei Kokillen begrenzt werden. Im nächsten Schritt wurde die maximale Temperatur im Zentrum eines CSD-V-Einlagerungsbereichs mit den minimal möglichen geometrischen Abständen zwischen den Strecken von 30 m und zwischen den Bohrlöchern von 15 m berechnet. Diese Untersuchung zeigt, dass die Auslegungstemperatur schon ab einem Behälterabstand von 1,5 m eingehalten werden kann. Die Temperaturverläufe für die beiden untersuchten Fälle sind in Abb. 12 dargestellt.

Für die Auslegung der CSD-V-Einlagerungsbereiche bei einer Auslegungstemperatur von 100 °C werden deshalb ein Behälterabstand von 1,5 m, ein Streckenabstand von 30 m, ein Bohrlochabstand von 15 m und eine Beladung von zwei Kokillen gewählt. Mit den gewählten Parametern beträgt die maximale Temperatur am Wirtsgestein ca. 87 °C.

Abb. 12: Temperaturverlauf im Auslegungspunkt für verglaste Abfälle (CSD-V)

4.3.5 Planung des Grubengebäudes

Anzahl und Art der Endlagerbehälter

In Deutschland existieren keine abschließenden Nachweise zur Eignung von Endlagerbehältern für hochradioaktive Abfälle. Für diese Abfälle in vertikalen Bohrlöchern bei einer Auslegungstemperatur von 100 °C werden für die Abfalltypen folgende Endlagerbehälter angenommen:

- Brennstäbe ausgedienter Brennelemente aus den Leistungsreaktoren in 11.159 BSK mit einem Mischungsverhältnis der Brennstäbe von 89 % UO2 und 11 % MOX (Brennstäbe aus 1,9 Brennelementen pro BSK)
- Radioaktive Abfälle aus der Wiederaufarbeitung in 1.868 Triple-Packs mit je zwei CSD-V und in 1.415 Triple-Packs mit je drei CSD-B oder CSD-C
- Ausgediente Brennelemente aus Versuchs- und Prototyp-Kernkraftwerken und Forschungsreaktoren in 530 CASTOR[®]-Behältern verschiedenen Typs in Strecken
- Brennelementstrukturteile ausgedienter Brennelemente aus den Leistungsreaktoren in 2.620 Gussbehältern Typ II (MOSAIK[®]-Behälter) in einer Strecke.

Detaillierte Informationen zu den angenommenen Endlagerbehältern sind in (Bollingerfehr et al., 2011) zu finden.

Position der Schächte, des Infrastrukturbereichs und der Einlagerungsbereiche zueinander

Der Infrastrukturbereich, in dem auch die Schächte liegen, ist nur über die zwangsläufig notwendigen Richtstrecken mit den Einlagerungsbereichen verbunden. Abb. 13 zeigt die Querschnitte der beiden Typen von Richtstrecken.

Einlagerungsbereiche für BSK mit Brennstäben aus Leistungsreaktoren

Mit den berechneten Strecken-, Bohrloch- und Behälterabständen entstehen für die Einlagerung der 11.159 BSK 26 Einlagerungsbereiche von ca. 400 m Breite mit je elf parallelen Bohrlochüberfahrungsstrecken nebeneinander mit jeweils 13 Bohrlöchern, in denen jeweils drei BSK eingelagert sind. Zwei Strecken wurden um 30 m verlängert, um je ein zusätzliches Bohrloch aufnehmen zu können mit drei bzw. zwei BSK.

Schnitt C-C, Richtstrecke Überwachungsbereich 22,7 m² lichter Querschnitt; 32,8 m² Auffahrungsquerschnitt

Abb. 13: Skizze der Richtstrecken des Endlagerbergwerks (s. Abb. 16 und Abb. 17 für die Lage der Strecken anhand der Querschnittbezeichnungen)

Abb. 14: Skizze des Querschnitts einer Bohrlochüberfahrungsstrecke und eines Bohrloch (s. Abb. 16 und Abb. 17 für die Lage der Strecken anhand der Querschnittbezeichnungen)

Einlagerungsstrecken für Gussbehälter Typ II mit Brennelementstrukturteilen

Die Gussbehälter werden in zwei Lagen übereinanderstehend gestapelt. Zusätzlich zur Einlagerungslänge ist eine Nische in der Einlagerungsstrecke vorgesehen, in der das Stapelfahrzeug rangieren und parken kann. Es ist insgesamt eine Strecke für die Endlagerung der Gussbehälter Typ II in einem schachtnahen Einlagerungsbereich vorgesehen, da Strukturteile während des gesamten Endlagerbetriebs anfallen und schachtnahe Einlagerungsstrecken bis kurz vor Betriebsende des Endlagers offenstehen können.

Abb. 15 zeigt die Skizze des Querschnitts einer Einlagerungsstrecke für Brennelementstrukturteile.

Abb. 15: Skizze der Einlagerungsstrecke für Brennelementstrukturteile (s. Abb. 16 für die Lage der Strecke anhand der Querschnittbezeichnung)

Einlagerungsbereich für Triple-Packs mit CSD-V-Abfällen

Mit den berechneten Strecken-, Bohrloch- und Behälterabständen entstehen für die Einlagerung der 1.868 Triple-Packs zwei voll beladene Einlagerungsbereiche von ca. 400 m Breite mit elf parallelen Bohrlochüberfahrungsstrecken nebeneinander mit jeweils 25 Bohrlöchern, in denen jeweils drei Triple-Packs eingelagert sind. Hinzu kommen zwei weitere voll beladene Bohrlochüberfahrungsstrecken und eine Strecke mit 22 vollständig beladenen Bohrlöchern und einem Bohrloch mit zwei weiteren Triple-Packs.

Einlagerungsbereich für Triple-Packs mit CSD-B/C-Abfällen

Mit den berechneten Strecken-, Bohrloch- und Behälterabständen entsteht für die Einlagerung der 1.415 Triple-Packs ein 18 beladene Bohrlochüberfahrungsstrecken eine Strecke von 340 m Länge mit 21 vollständig beladenen Bohrlöchern und einem Bohrloch mit zwei weiteren Triple-Packs. Die Bohrlochüberfahrungsstrecken verteilen sich auf zwei Einlagerungsbereiche, wobei eine davon ebenfalls Bohrlöcher zur Einlagerung von CSD-V-Abfällen enthält.

Einlagerungsstrecken CASTOR®-THTR/AVR, -KNK und -MTR2

Für die die Endlagerung der 461 CASTOR[®]-THTR/AVR und -KNK sind vier Strecken mit 92 und eine Strecke mit 93 Behältern vorgesehen.

Für die die Endlagerung der 69 CASTOR[®]-MTR2 ist eine Einlagerungsstrecke vorgesehen.

Vollständiges Grubengebäude in zwei Abbildungen

Abb. 16: Skizze des Grubengebäudeteils mit Einlagerungsbereichen für ausgediente Brennelemente (unten schraffiert: Beginn des Infrastrukturbereichs)

Abb. 17: Skizze des Grubengebäudeteils mit Infrastrukturbereich und Einlagerungsbereichen für Abfälle aus der Wiederaufarbeitung, Brennelementstrukturteile und Abfälle aus Versuchs- und Prototypkernkraftwerken sowie Forschungsreaktoren

4.3.6 Verfüll- und Verschlusskonzept

Bei Endlagern in Tongesteinsformationen wird der langzeitsichere Einschluss des radioaktiven Inventars im ewG in erster Linie durch das Wirtsgestein sichergestellt. Bis die Resthohlräume im Grubengebäude durch die Gebirgskonvergenz und das Aufquellen des Versatzes wieder vollständig verschlossen sind, übernehmen die geotechnischen Barrieren eine bedeutende Abdichtfunktion und verschließen potenzielle Wegsamkeiten entlang der technisch geschaffenen Hohlräume. Das Barrierensystem für das beschriebene Verfüll- und Verschlusskonzept besteht aus den folgenden Komponenten:

Geologische Barriere:

- Tongestein

Geotechnische Barrieren:

- Nahfeldsystem im Bohrloch
- Bohrlochverschluss
- Versatz in den Bohrlochüberfahrungsstrecken, Querschlägen und Richtstrecken (übernimmt erst langfristig eine Barrierefunktion)
- kleine Streckenverschlüsse in den Querschlägen an der Einmündung in die Richtstrecken
- Streckenverschlüsse in den Richtstrecken an der Grenze zum Infrastrukturbereich
- Schachtverschlüsse

Abb. 18 zeigt eine schematisierte Skizze des Verschlusssystems mittels geotechnischer Barrieren basierend auf dem oben beschriebenen Grubengebäude.

Abb. 18: Schematisierte Skizze der hydraulisch wirksamen Elemente des Verschlusssystems

Im Folgenden werden die Funktion und das Design der einzelnen geotechnischen Barrieren näher erläutert.

Nahfeldsystem

Unter dem Nahfeldsystem werden der Bohrlochliner und die Sandverfüllung verstanden. Diese dienen der Stabilisierung des Bohrlochs und der Ermöglichung einer Rückholung. Das Nahfeldsystem hat keine Relevanz für den langzeitsicheren Einschluss.

Bohrlochverschluss

Der Bohrlochverschluss soll den advektiven Lösungstransport sowohl in als auch aus dem Bohrloch behindern und die Auflockerungszone um das Bohrloch und im Sohlenbereich der Einlagerungsstrecke teilweise abdichten. Er soll darüber hinaus eine Rückhaltefunktion gegenüber Radionukliden besitzen. Das Bohrlochverschlusskonzept geht von einem 5,0 m mächtigen Bentonit-Dichtelement aus. Zur Bohrlochüberfahrungsstrecke hin, wird das Dichtelement durch ein 3,0 m mächtiges Betonwiderlager fixiert, das im Bohrlochkeller gegossen wird. Entsprechend den Ungewissheiten für die Entwicklung der hydraulischen Eigenschaften des Streckenversatzes wurde für die Bohrlochverschlüsse zunächst eine Funktionsdauer von 50.000 Jahre festgelegt.

Versatz

Zum Versetzen der Strecken soll arteigenes, aufbereitetes Ausbruchsmaterial verwendet werden. Zum Erreichen eines ausreichenden Stützdruckes gegenüber dem Gebirge sollen ggf. quellfähige Minerale zugemischt werden. Zudem soll der Versatz Radionuklide zurückhalten und durch Quellen und Kompaktion eine langfristige hydraulische Dichtwirkung annehmen. Die Funktionen des Versatzes sind für den gesamten Nachweiszeitraum vorgesehen.

Einfache Streckenverschlüsse

Unmittelbar nach der Verfüllung der Einlagerungsbereiche wird eine Abdichtung der Querschläge vor der Einmündung in die Richtstrecken durch einfache Streckenverschlüsse errichtet. Die Einfachen Streckenverschlüsse sollen vor allem in der frühen Nachverschlussphase eine Barriere für sich entlang der Strecke in einer Firstspalte oder noch nicht geschlossenen Auflockerungszone bewegende Lösungen darstellen. Durch sofortwirksame Abdichtungskomponenten wird den Streckenverschlüssen genügend Zeit verschafft, ihre volle Dichtwirkung zu erreichen, bevor ggf. kontaminierte, aus den Einlagerungsbereichen austretende Fluide diese erreichen. Die Einfachen Streckenverschlüsse bestehen aus einem kurzen Dichtelement aus Bentonit und einem dünnen Element aus Asphalt, welches als sofortwirksame Dichtung dient. Eingefasst sind die beiden Dichtelemente durch zwei Betonwiderlager, diese dienen der Stabilisierung des Streckenverschlusses. Im Bereich der Einfachen Streckenverschlüsse wird der Ausbau entfernt und die Strecke zur Reduzierung der Auflockerungszone nachgeschnitten. Das Bentonitdichtelement wird aus hoch kompaktierten Formsteinen errichtet und erhält seine Dichtwirkung durch Aufsättigung und Quellen. Das Asphaltdichtelement wird ebenfalls aus vorgefertigten Blöcken errichtet. Durch den Quelldruck des Bentonits und die leichten Temperaturerhöhungen durch die eingelagerten hochradioaktiven Abfälle wird das Asphaltelement zusätzlich an die Kontur angepresst und sorgt für eine bessere Abdichtung der Kontaktzone. Für das Bentonitdichtelement ist die leichte Temperaturerhöhung bedeutungslos. Für die einfachen Streckenverschlüsse ist eine Baulänge von 12 m vorgesehen, von denen 6 m für die Abdichtungsfunktion und 6 m für die Widerlagerfunktion angesetzt sind.

Streckenverschlüsse

Die Streckenverschlüsse werden an der Grenze zum Infrastrukturbereich in allen Richtstrecken errichtet. Der Aufbau ist ähnlich zu den Einfachen Streckenverschlüssen. Allerdings wird hier das Bentonitdichtelement in doppelter und damit redundanter Form ausgeführt. Zudem ist dieses deutlich länger als bei den Einfachen Streckenverschlüssen. Entlang der Hohlraumkontur sind mehrere Schlitze gefräst, damit soll die Auflockerungszone entlang der Hohlraumkontur abgedichtet werden. Das Asphaltdichtelement ist hier schachtseitig angeordnet. Der Streckenverschluss ist ebenfalls von Betonwiderlagern eingefasst, zusätzlich ist ein weiteres Betonwiderlager mittig angeordnet. Im Bereich der Streckenverschlüsse werden alle Streckeneinbauten und der Ausbau entfernt. Zudem wird die Streckenkontur dort nachgeschnitten. Die Streckenverschlüsse erfüllen zwei Funktionen. Einerseits wird die Ausbreitung von Lösungen, die über einen eventuell undichten Schachtverschluss eindringen, verhindert. Dies ist bis zur Fluidsättigung des Versatzes und dem damit verbundenen Ausgleich des hydraulischen Druckregimes zu erfüllen. Dazu ist als sofortwirksames Dichtelement das Asphaltelement vorgesehen. Andererseits soll eine Ausbreitung ggf. kontaminierter Fluide aus den Einlagerungsbereichen heraus signifikant verzögert werden. Hier ist eine sofortige Dichtwirkung nicht erforderlich, da diese bereits durch die Einfachen Streckenverschlüsse erfüllt wird. Der Bau der Dichtelemente erfolgt analog zu den Einfachen Streckenverschlüssen aus vorgefertigten Blöcken. Bei den Bentonitblöcken ist eine Zumischung von Sand zur Erhöhung der Gaspermeabilität denkbar. Für die Streckenverschlüsse ist eine Baulänge von 55 m angesetzt, von denen 40 m der Abdichtungsfunktion und 15 m der Widerlagerfunktion zugeordnet werden.

Vor der Errichtung der der Streckenverschlüsse ist vorgesehen, den Ausbau zu entfernen und die Auflockerungszone nachzuschneiden. Eine technische Planung und Umsetzung dieser Maßnahme wurden bisher nicht durchgeführt. Dies gilt auch für eine technische Konzeptplanung und Nachweisführung für die Streckenverschlüsse, bei der die Sicherheitsanforderungen gemäß BMU (2010a) zu berücksichtigen sind. Aufgrund der Vorgabe der Sicherheitsanforderungen lassen sich zwar die wissenschaftlichen und technischen Ergebnisse aus ausländischen Endlagerprojekten nutzen, Integritätsnachweise stehen jedoch bisher aus. Die Materialauswahl lässt jedoch prinzipiell erwarten, dass ein Integritätsnachweis geführt werden kann.

Schachtverschluss

Da durch die Schachtverschlüsse potentielle Wegsamkeiten zwischen der Biosphäre und dem Endlager verschlossen werden, kommt diesen Barrieren eine besondere sicherheits-technische Bedeutung zu. Die Schachtverschlüsse sollen in der frühen Nachverschlussphase Lösungszutritte aus dem Nebengebirge in das Grubengebäude begrenzen. Zu späteren Zeitpunkten soll eine Freisetzung von möglicherweise kontaminierten Fluiden aus dem Grubengebäude verzögert werden. Die Längen der Elemente des Schachtverschlusses, denen Abdicht- und Widerlagerfunktion zugeordnet werden, orientieren sich an der Mächtigkeit der geologischen Barriere sowie der geologischen Einheiten, wobei eine Unterscheidung in Bezug auf die hydraulische Leitfähigkeit der überlagernden Schichten erfolgt. Auf Grund der geologischen Verhältnisse ist der Schacht komplett mit einem Ausbau versehen.

Im Bereich des Wirtsgesteins und des tonigen Nebengebirges wird ein System aus beidseiti-gen Betonwiderlagern und dazwischen liegende Bentonit- Dichtelemente, für die Schacht-verschlüsse verwendet. Die Schachtverschlüsse gliedern sich in die unteren Schachtverschlusselemente, die im Wirtsgestein unterhalb von 600 m u. GOK angeordnet sind und die oberen Schachtverschlusselemente, die sich im überlagernden Nebengebirge befinden (s. Abb. 19).

Die unteren Schachtverschlusselemente bestehen zunächst aus einem umfangreichen unteren Betonwiderlager. Darüber folgt ein ca. 60 m mächtiges Bentonitdichtelement. Oberhalb des Dichtelementes ist ein ca. 20 m mächtiges Betonwiderlager vorgesehen, welches das Dichtelement während der Wiederaufsättigung mit Wasser stabilisiert. Die Betonwiderlager werden so ausgelegt, dass sie einerseits dem Quelldruck des Tons und andererseits dem Gebirgsdruck mechanisch widerstehen. Die Widerlager bestehen aus hoch festem, nicht armiertem Beton, der langzeitstabil ist. Derartige Betone haben eine höhere Dichte und geringere Permeabilität als konventioneller Beton, so dass die Menge des durchdringenden Wassers und damit die Zersetzung des Betons reduziert werden. Die Verfüllsäulen werden mittels Hartgesteinsschotter erstellt. Als Alternative könnte der freie Schachtquerschnitt ggf. auch mit arteigenem Material aus der Auffahrung bzw. Gemischen aus Auffahrungsmaterial und anderen Zuschlägen verfüllt werden. Die Nutzung des Tonge-steins bzw. Gemischen mit einem Tongesteinsanteil als Verfüllsäule im Schacht ist noch nicht erprobt und bedarf weiterer Untersuchungen. Im oberen Schachtverschluss wird das 80 m mächtige Bentonitdichtelement so angeordnet, dass es den ca. 35 m mächtigen Hilssandstein, der als Aguifer ausgebildet sein kann, abdichtet. Das Dichtelement wird durch zwei je 20 m mächtige Beton-Widerlager in seiner Position gehalten. Oberhalb des oberen Betonwiderlagers ist eine ca. 100 m mächtige Asphaltdichtung vorgesehen, die aus Sand- Asphaltgemischen unterschiedlicher Viskosität besteht. Das Eindringen des Asphalts in die Auflockerungszone um den Schacht wird durch ein Bohrungsnetz beschleunigt. Die Asphaltdichtung dient dazu, den unteren Bereich der Schachtsäule gegen das stark wasserführende Quartär abzudichten. Der oberste Schachtbereich (Quartär) wird mit Nebengebirgsmaterial so verfüllt, dass er die Geologie in diesem Profilbereich nachahmt.

Im vorgesehenen Niveau der Schachtverschlusselemente müssen die Schachtausbauten und Teile der Auflockerungszone entfernt werden. Damit werden starkgeschädigte Bereiche in der EDZ entfernt und der direkte Kontakt zwischen Gebirge und den Dichtelementen bzw. der Widerlager ermöglicht. Als Referenzmaterial für die Bentonitdichtelemente ist ein Ca-Bentonit vorgesehen. Eine technische Konzeptplanung und Nachweisführung für einen umfassenden Integritätsnachweis des Schachtverschlusses steht aus. Jedoch lässt auch der vorhandene Kenntnisstand für Schachtverschlüsse im Tongestein erwarten, dass der Integritätsnachweis geführt werden kann. Im laufenden Vorhaben ELSA II wird das Schachtverschlusskonzept anhand eines detaillierteren geologischen Modells überarbeitet.

Versatz des Infrastrukturbereichs

Im Nahbereich der Schächte ist ein Infrastrukturbereich vorgesehen. Dieser kann während der Nachverschlussphase als Speicherraum für Gase und Flüssigkeiten genutzt werden. Dadurch kann der Druckaufbau am unteren Dichtelement des Schachtverschlusses signifikant verzögert werden. Damit erhalten die Bentonitdichtelemente des Schachtverschlusses ausreichend Zeit zur Aufsättigung und damit zur Entwicklung ihrer Abdichteigenschaften. Um ein Speichervolumen vorzuhalten, ist die Verfüllung des Infrastrukturbereiches mit nicht kompaktierendem Material notwendig. Hierzu wird Schotter verwendet. Als Material eignen sich Basalt-, Quarz- oder Diabasschotter.

Abb. 19: Schachtverschlusskonzept für das Referenzprofil

4.4 Entwicklungen des Endlagersystems in der Nachverschlussphase

Die Beschreibung der zukünftigen Entwicklung eines Endlagersystems ist eine elementare Voraussetzung für die Bewertung seiner Sicherheit. In der Realität wird ein Standort mitsamt einem Endlager genau eine Entwicklung durchlaufen. Trotz umfangreicher Kenntnisse der verschiedenen Einflussfaktoren kann diese tatsächliche Entwicklung des Endlagersystems für lange Zeiträume allerdings nicht belastbar in allen Einzelaspekten und Details prognostiziert werden. So sind Zeitpunkte und Ausprägungen bestimmter zukünftiger Ereignisse an einem Standort nicht eindeutig bestimmbar. Die daraus resultierende Ungewissheit bezüglich der tatsächlichen Entwicklung des Endlagersystems kann durch weitere Erkundungs- und Forschungsarbeiten nur in einem begrenzten Maße verringert werden.

Aus diesem Grund wird auf Basis einer Analyse relevanter Einflussfaktoren eine begrenzte Anzahl schlüssiger Zukunftsbilder (Szenarien) entworfen. Dies geschieht mit Hilfe der Identifizierung und ausführlichen Beschreibung von möglichen Entwicklungen des Endlagersystems, die für eine zuverlässige Beurteilung seiner Sicherheit relevant sind. Die abgeleiteten Szenarien stellen Abstraktionen zukünftiger Entwicklungsmöglichkeiten des Endlagersystems dar. Sie sind keine Prognosen und können nur einen bestimmten Zeitbereich oder nur einen Teil des Endlagersystems betreffen. Die Gesamtheit der abgeleiteten Szenarien deckt die Ungewissheiten bezüglich der tatsächlichen Entwicklung des Endlagersystems ab.

Ein Beweis der Vollständigkeit der sicherheitsrelevanten Szenarien ist prinzipiell nicht möglich. Um eine umfassende Analyse nach Stand von Wissenschaft und Technik zu gewährleisten, werden die Entwicklungen – der internationalen Praxis folgend – systematisch auf der Grundlage standort- und endlagerkonzeptspezifischer FEP abgeleitet. In Kapitel 2.3 werden geologische und klimatische FEP für das Endlagersystem T1 erläutert.

Darüber hinaus erscheint es nicht angemessen in vorläufigen Sicherheitsuntersuchungen vor Beginn der Standorterkundung eigenständige Szenarienanalysen durchzuführen, sondern auf bereits vorliegende vergleichbare Sicherheitsanalysen für Endlager in vergleichbaren Wirtsgesteinsformationen zurückzugreifen und zu überprüfen, inwieweit unter Berücksichtigung der jeweiligen Standortgegebenheiten und der vorläufigen geowissenschaftlichen Langzeitprognose die relevanten Einwirkungen und Prozesse übertragen werden können (Kommission, 2016).

Erste Ansätze zur formalisierten Ableitung von zu bewertenden Entwicklungen (Szenarien) für ein Endlager in einer Tongesteinsformation geringer Mächtigkeit wurden im Vorhaben ANSICHT entwickelt (Jobmann et al., 2017). Die folgenden Ausführungen basieren auf den Ergebnissen dieses Vorhabens und aus dem Projekt Opalinuston (Nagra, 2002b).

4.4.1 Zu erwartende Entwicklung

Wichtige Komponenten bei der zu erwartenden Entwicklung des Nahfeldes (Einlagerungsbohrlöcher) sind die Endlagerbehälter (Kapitel 4.3.6) und der die Behälter umgebende Sand. Für die zu erwartende Entwicklung wird davon ausgegangen, dass die Behälter ihre Sicherheitsfunktion länger als für die in den Sicherheitsanforderungen geforderten 500 Jahre erfüllen.

In der Nachverschlussphase wird das Endlagersystem im Nahfeld langsam wieder in einen Gleichgewichtszustand übergehen. Bei diesem Vorgang laufen sehr unterschiedliche, sich gegenseitig beeinflussende Prozesse ab (Abb. 20): Einerseits wirken bei allen Grubenbauen hydraulische Gradienten, die einen Wasserfluss in den verfüllten Grubenbau bewirken. Andererseits sind Saugspannungen im teilweise entsättigten Wirtsgestein und im Versatz wirksam sowie thermische Gradienten bedingt durch die Wärmeentwicklung der Abfälle. Die durch den Wasserfluss und die Aufheizung bedingten Änderungen (Porenwasserdruck, Aufsättigung etc.) bewirken wiederum mechanische Reaktionen wie Entfestigung und zeitabhängige Deformationen (Nagra, 2002b). Der im Tongestein notwendige vollständige Ausbau der Grubenbaue behindert diese Prozesse in der frühen Nachverschlussphase.

Bei der Aufsättigung werden sich im Gestein und im Versatz langsam immer höhere Quelldrücke entwickeln. Im Falle der Korrosion der Stahlbehälter ist zu prüfen, in wie weit die Zunahme der Volumina auf Grund der geringeren Dichte der Korrosionsprodukte zu einer Spannung führt.

Durch die Akkumulation und Ausbreitung von Korrosions- und Degradationsgasen können Gasdrücke entstehen, die einerseits das Deformationsverhalten des Gesteins und andererseits den Wasserfluss und damit den Radionuklidtransport direkt beeinflussen.

Abb. 20: Prinzipskizze zur Illustration der Prozesse im Bereich eines verfüllten Grubenbaus (ohne geochemische Prozesse) (Nagra, 2002b)

Die Strecken- und Schachtverschlüsse sind für eine Funktionsdauer von 50.000 Jahren ausgelegt und werden, trotz Alterations- und Korrosionsprozessen, ihre Funktion in der vorgesehenen Weise erfüllen. Nach 50.000 Jahren soll der Versatz aus arteigenem, aufbereitetem Ausbruchsmaterial die Dichtfunktion und die Radionuklid-Rückhaltung bei einem Transport entlang der Strecken mit übernehmen. Den komplexen hydrogeologischen Verhältnissen in den Schächten (Süß- und Salzwasser) wird durch diversitär und redundant ausgelegte Schachtverschlüsse Rechnung getragen. Außerdem sind hier klimatisch bedingte Temperaturschwankungen von Bedeutung. Für die Funktion der Barrieren ist das gleichmäßige Aufsättigen und Quellen der Bentonit-Dichtelemente wichtig. Alterations- und Korrosionsprozesse werden nicht nur die Verschlussbauwerke, sondern auch Versatz und Streckenausbau beeinflussen.

In der frühen Nachverschlussphase könnte zwischen Streckenausbau und Versatz noch eine Firstspalte vorhanden sein, die – wie die EDZ – als Transportpfad für Fluide dienen könnte. Der schottergefüllte Infrastrukturbereich wirkt über wenige 1.000 Jahre als Speicher für Gase (Grubenluft, Gas aus der Metallkorrosion und aus der mikrobiellen Degradation organischer Komponenten).

Nach der Mobilisierung der Radionuklide im Nahfeld findet ein Radionuklidtransport in Lösung sowie in Gasphase statt. Neben dem zu erwartenden Transport durch das ungestörte Wirtsgestein (s. u.), kann unter Umständen auch ein Transport über potenzielle Transportpfade entlang der Strecken im Grubengebäude durch die EDZ, Firstspalte über dem Versatz sowie entlang dem korrodierten Streckenausbau existieren. Beim Transport durch tonhaltige Materialien findet eine starke Rückhaltung durch Sorption statt. Der Fluiddruck in den wassergesättigten Tongesteinen hängt neben dem hydrostatischen Druck von Strömungsvorgängen und ggf. von Gasbildung, Temperaturänderungen und mikrobiellen Prozessen ab. Die Auflast, die auf das Wirtsgestein wirkt, kann sich z. B. durch Veränderung der Mächtigkeiten der Deckgebirgsschichten oder Eisauflast ändern. Aus der Auffahrung der Grubenbaue und der Einlagerung hochradioaktiver Abfälle resultieren Spannungsänderungen. Klimatisch bedingte Temperaturänderungen erzeugen im Wirtsgestein keine relevanten Spannungsänderungen. Erdbeben führen zu kurzzeitigen Laständerungen.

Der Radionuklidtransport in Lösung und in der Gasphase wird vor allem durch die Transportprozesse Advektion und Diffusion sowie durch den Rückhalteprozess Sorption und Desorption bestimmt. Die Durchströmung des Wirtsgesteins wird durch die Porosität / Permeabilität und den Fluiddruck bestimmt. Advektion findet nur beim Auftreten einer Fluidströmung statt. Die wesentlichen Antriebsmechanismen für Strömungsvorgänge im gesättigten Wirtsgestein sind Potenzialunterschiede, wie z. B. der hydraulische Gradient oder Kapillardrücke. Strömungsvorgänge in der Gasphase erfolgen im Wirtsgestein hauptsächlich dann, wenn Gase aus dem Grubengebäude in das Wirtsgestein eingedrungen sind. Dieses ist vor allem zu Beginn der Nachverschlussphase möglich, wenn die Gasproduktion im Nahfeld entsprechend groß ist. Wenn keine Fluiddruck-Gradienten vorhanden sind, oder die Permeabilität der Materialien sehr gering ist, dann findet überwiegend Diffusion als Transportprozess statt. Diese hängt vor allem vom Konzentrationsgradienten des transportierten Stoffes, dem Diffusionskoeffizienten und der Temperatur ab.

In der erwarteten Entwicklung des Endlagersystems wird das Wirtsgestein nur in der EDZ geringfügig entsättigt. Alle anderen Bereiche des Wirtsgesteins bleiben immer vollständig gesättigt. Der Versatz im Schacht wird bis zum Zeitpunkt des Behälterausfalls auch weitgehend mit Wasser gesättigt sein, so dass kein durchgehender Pfad in der Gasphase vom Grubengebäude bis in das Deckgebirge existiert. Gasförmige Radionuklide müssen deshalb erst gelöst werden müssen, um in das Deckgebirge transportiert zu werden.

Strömungsprozesse treten im Deckgebirge in mehreren separaten Grundwasserleitern auf. Antriebsmechanismus für die Strömungsprozesse ist der Fluiddruck, wobei das regionale Grundwasserdruckpotenzial in erster Linie aus höher gelegenen Gebieten abgeleitet wird. Wenn keine Fluiddruck-Gradienten vorhanden sind, oder die Permeabilität der Materialien sehr gering ist, findet der Stofftransport überwiegend durch Diffusion in Abhängigkeit von Konzentrationsgradienten und Temperatur statt.

Bei der Analyse der Auswirkungen der genannten Prozesse auf den Einschluss der endgelagerten Abfälle sind etwaige Überlagerungen durch die in Kapitel 2.3 genannten geologischen und klimatischen Prozesse zu berücksichtigen.

4.4.2 Abweichende Entwicklungen

Abweichende Entwicklungen eines Endlagersystems einer Tongesteinsformation geringerer Mächtigkeit können z. B. die Einlagerung von Behältern mit unerkannten Defekten oder der Ausfall eines Verschlussbauwerkes sein.

Wie einleitend erwähnt ist eine umfassende formalisierte Ableitung von Szenarien für ein Endlager für hochradioaktive Abfälle in einer Tonformation geringer Mächtigkeit noch nicht durchgeführt worden und ist auch nicht Gegenstand des Vorhabens RESUS.

5 Vorgehen zur Bewertung der Langzeitsicherheit

Basierend auf den vorhandenen nationalen und internationalen Empfehlungen lassen sich Kernelemente ableiten, die Sicherheitsuntersuchungen voraussichtlich bereits in frühen Phasen eines Verfahrens beinhalten:

- Langzeitaussage zur Integrität des einschlusswirksamen Gebirgsbereichs (Integrität des Barrieregesteins, Kapitel 5.1)
- Nachweis der Robustheit technischer Komponenten des Endlagersystems
- Radiologische Langzeitaussage (Einschluss von Radionukliden, Kapitel 5.2)
- Ausschluss von Kritikalität

Eine allgemeine Vorgehensweise zur Bewertung, ob Kritikalität in der Nachverschlussphase für ein Endlager für hochradioaktive Abfälle ausgeschlossen werden kann, ist noch nicht etabliert. Für den Ausschluss einer möglichen kritischen Ansammlung von Radionukliden innerhalb des Behälters oder im Behälterumfeld kann auf Ergebnisse von Forschungsvorhaben oder bestehende Verfahren zurückgegriffen werden, zum Vorgehen einer Bewertung einer möglichen kritischen Ansammlung von Radionukliden entlang eines potenziellen Transportpfades besteht noch Forschungsbedarf. Dies ist nicht Gegenstand des Vorhabens RESUS. Weitere wichtige Elemente von Sicherheitsuntersuchungen für die Nachverschlussphase, die in den Sicherheitsanforderungen (BMU, 2010a) und internationalen Empfehlungen der NEA und IAEA gefordert werden, sind der Umgang mit einem unbeabsichtigten menschlichen Eindringen (Human Intrusion) in den ewG sowie der Umgang mit Ungewissheiten. Die Optimierung des Endlagers mit Blick auf eine zuverlässige Isolation der radioaktiven Stoffe im Endlager vor Human Intrusion ist gemäß BMU (2010a) nachrangig zu den o.g. Elementen durchzuführen und wird daher auch für die Ziele im Vorhaben RESUS als nachrangig eingestuft. Der Umgang mit Ungewissheiten sowie die Bewertung der Robustheit des Endlagersystems ist dagegen unabdingbar, es fehlt aber auch hier eine etablierte Vorgehensweise zum Nachweis einer ausreichenden Würdigung der Ungewissheiten.

Die Ableitung des Erkundungs- und FuE-Bedarfs sowie von Optimierungsmöglichkeiten für das Endlagerkonzept ist nicht Gegenstand des Vorhabens RESUS.

Neben der Integrität des Barrieregesteins ist die Integrität der technischen (Endlagerbehälter) und geotechnischen Barrieren (Verschlussbauwerke) zu bewerten. Zum Erreichen der Ziele des Vorhabens RESUS, in dem die generischen Sicherheitsuntersuchungen dazu dienen sollen, die geologischen Abwägungskriterien zu bewerten, ist die Durchführung eines Nachweises der Integrität der Endlagerbehälter und der Verschlussbauwerke nicht relevant. Die Endlagerbehälter werden für 500 Jahre, die Verschlussbauwerke für 50.000 Jahre als integer angenommen.

5.1 Integrität des Barrieregesteins

Bei der Definition der Indikatoren zur Integrität des Barrieregesteins wird auf die Integritätskriterien zurückgegriffen, deren Grundlagen in den Vorhaben VSG, KOSINA, ANSICHT und dem laufendem Vorhaben CHRISTA-II basierend auf den Sicherheitsanforderungen (BMU, 2010a) abgeleitet wurden. Im Vorhaben RESUS wird kein Nachweis der Integrität geführt, sondern es werden vergleichende Analysen durchgeführt. Die Auswertungen der Integritätskriterien dienen somit als Indikatoren, um Einflüsse der Abwägungskriterien auf die Integrität des Barrieregesteins
darzustellen. Da der ewG noch nicht festgelegt ist, werden die Integritätskriterien im gesamten Barrieregestein untersucht.

Grundlage für die Definition der Integritätskriterien und damit auch für die Indikatoren zur Integrität des Barrieregesteins bilden die Sicherheitsanforderungen (BMU, 2010a). Der Begriff Integrität ist in den Sicherheitsanforderungen wie folgt definiert:

Der Begriff "Integrität" beschreibt den Erhalt der Eigenschaften des Einschlussvermögens des einschlusswirksamen Gebirgsbereichs eines Endlagers.

Im Kapitel 7.2.1 der Sicherheitsanforderungen ist bezüglich der Langzeitaussage zur Integrität des ewG folgendes gesagt:

Für die wahrscheinlichen Entwicklungen ist für den einschlusswirksamen Gebirgsbereich (ewG) auf der Grundlage einer geowissenschaftlichen Langzeitprognose nachzuweisen, dass die Integrität dieses Gebirgsbereichs über den Nachweiszeitraum von einer Million Jahre sichergestellt ist. Hierfür ist vom Antragsteller der einschlusswirksame Gebirgsbereich räumlich und zeitlich eindeutig zu definieren und unter Berücksichtigung der eingelagerten Abfälle und der technischen Barrieren zu zeigen, dass

- 1. die Ausbildung von solchen sekundären Wasserwegsamkeiten innerhalb des einschlusswirksamen Gebirgsbereichs ausgeschlossen ist, die zum Eindringen oder Austreten ggf. schadstoffbelasteter wässriger Lösungen führen können und dass
- 2. gqf. im einschlusswirksamen Gebirgsbereich vorhandenes Porenwasser nicht am hydrogeologischen Kreislauf im Sinne des Wasserrechts außerhalb des einschlusswirksamen Gebirgsbereichs teilnimmt. Dies gilt als erfüllt, wenn die Ausbreitung Schadstoffen im einschlusswirksamen Gebirgsbereich durch advektive von Transportprozesse allenfalls vergleichbar zur Ausbreitung durch diffusive Transportprozesse erfolgt.

Bei Salinar- und Tongesteinen ist die Integrität des einschlusswirksamen Gebirgsbereichs zusätzlich anhand folgender Kriterien zu prüfen:

- 3. die zu erwartenden Beanspruchungen dürfen die Dilatanzfestigkeiten der Gesteinsformationen des einschlusswirksamen Gebirgsbereichs außerhalb der Auflockerungszonen nicht überschreiten.
- 4. Die erwartenden Fluiddrücke dürfen die Fluiddruckbelastbarkeiten der zu Gesteinsformationen des einschlusswirksamen Gebirgsbereichs nicht in einer Weise überschreiten. einem erhöhten Zutritt von Grundwässern diesen die zu in einschlusswirksamen Gebirgsbereich führt.
- 5. Durch die Temperaturentwicklung darf die Barrierewirkung des einschlusswirksamen Gebirgsbereichs nicht unzulässig beeinflusst werden.

Zu diesen Anforderungen sei Folgendes angemerkt:

Zwar sind die Punkte 3 bis 5 in der aktuellen Version der Sicherheitsanforderungen nur für Salinarund Tongesteine zu prüfen, aber es wird davon ausgegangen, dass in der derzeit laufenden Überarbeitung der Sicherheitsanforderungen eine sinngemäße Übertragung auch für kristalline Gesteine erfolgen wird. Bei Überschreiten der Fluiddruckbelastbarkeit der Gesteinsformation kann es nur dann zu einem erhöhten Zutritt von Grundwässern in den ewG kommen, wenn in der Folge nicht nur diffuses Eindringen von Fluid in die Gesteinsformation (Imprägnierung) auftritt, sondern sekundäre Wasserwegsamkeiten entstehen.

Der Punkt 1 beschreibt Schädigungen, die im Detail unter den Punkten 3 und 4 konkretisiert sind und als das **Dilatanz-Kriterium** und **Fluiddruck-Kriterium** bezeichnet werden. Sie zielen grundsätzlich auf die mechanische Unversehrtheit des Barrieregesteins ab. Hiermit wird gewährleistet, dass die Einschlusswirksamkeit (geringe hydraulische Durchlässigkeit) erhalten bleibt. Die Anwendbarkeit dieser Kriterien im Steinsalz (Mönig et al., 2012; Kindlein et al., 2018) und Tongestein (Jobmann et al., 2015) wurde untersucht. Da die Integritätsanalyse unter Berücksichtigung der thermo-hydraulisch-mechanischen Kopplung durchgeführt wird, sind sowohl thermo-mechanische Belastungen als auch Einwirkungen durch Veränderungen der Fluiddrücke implizit berücksichtigt.

Die unter Punkt 2 und 5 beschriebenen Anforderungen werden im Folgenden als Advektions-Kriterium und Temperatur-Kriterium bezeichnet.

Die Integrität gilt in dem Teilbereich des Barrieregesteins als gewährleistet, in dem über den Nachweiszeitraum von einer Million Jahren alle Integritätskriterien eingehalten werden.

In den folgenden Unterkapiteln werden für die vier Kriterien aus den Sicherheitsanforderungen Indikatoren definiert, mit denen diese Kriterien überprüft werden können.

5.1.1 Indikator Dilatanz

Bei mechanischen Beanspruchungen oberhalb der Dilatanzfestigkeit ist mit dilatanten Gebirgsdeformationen und dem Entstehen von sekundären Wasserwegsamkeiten (Sekundärpermeabilitäten) zu rechnen. Hierunter werden Wegsamkeiten verstanden, welche sich entweder durch die Erweiterung vorhandener Fissuren ergeben oder sich durch Rissbildung und Rissvernetzung neu ausbilden (AkEnd, 2002). Der Spannungszustand, bei dem die Volumenänderung positiv wird, also Dilatanz infolge Schädigung eintritt, wird als Dilatanzgrenze (auch: Dilatanzfestigkeit) bezeichnet.

Bis dato liegt keine allgemeingültige und akzeptierte Formulierung einer Dilatanzgrenze für Tongestein vor. Deshalb wird im Vorhaben RESUS für Tongestein dem im Vorhaben ANSICHT dargestellten Ansatz gefolgt (Jobmann et al., 2015, Jobmann et al., 2017; Maßmann & Ziefle, 2017). Danach wird eine spannungsbasierte Formulierung über eine Korrelation der Dilatanzgrenze relativ zur jeweils vorhandenen Bruchfestigkeit verwendet. Für die exemplarischen Analysen wird das Mohr-Coulomb Modell, dargestellt z. B. in Khan & Huang (1995), zur Bestimmung der Schädigungsgrenze aus dem Spannungszustand verwendet:

$$\tau = c - \sigma'_n \tan \phi$$

mit der Schubspannung τ , der Kohäsion c, der effektiven Normalspannung σ_n und dem Winkel der inneren Reibung ϕ . Wie in Abb. 21 dargestellt, wird der Spannungszustand beim Bruch, dargestellt als Mohr'scher Spannungskreis R, mit dem berechneten Spannungszustand r verglichen.

Abb. 21: Auswertung des Mohr-Coulomb-Kriteriums, dargestellt am Spannungskreis

Die drei effektiven Hauptspannungen (Druckspannungen negativ, Zugspannungen positiv) werden wie folgt der Größe nach sortiert:

$$\sigma_{I}^{'} \leq \sigma_{II}^{'} \leq \sigma_{III}^{'}$$

Es gilt hier:

$$r = \frac{\sigma'_{III} - \sigma'_{I}}{2} \quad \text{und}$$
$$R = c \cdot \cos \phi - \frac{(\sigma'_{III} + \sigma'_{I})}{2} \cdot \sin \phi$$

Ausgewertet wird ein Quotient, der angibt, wie weit der berechnete Spannungszustand vom Mohr-Coulomb-Kriterium entfernt ist und damit einen Ausnutzungsgrad bzw. eine Sicherheitsreserve quantifiziert:

Indikator Dilatanz = r/R

Werte des Indikators unter 1 weisen auf eine Einhaltung des Dilatanz-Kriteriums hin. Kleinere Werte des Indikators Dilatanz weisen auf größere Sicherheitsreserven hin.

Die Relevanz des Indikators für die Barrierewirksamkeit kann nur unter Einbeziehung der räumlichen und zeitlichen Ausprägung seiner Werte vor dem Hintergrund des betrachteten Endlagersystems bewertet werden.

5.1.2 Indikator Fluiddruck

Unter sekundären Wasserwegsamkeiten, die zum Eindringen oder Austreten wässriger Lösungen führen können, werden hier offene Makrorisse verstanden. Diese können sich ausbilden, wenn die Zugfestigkeit des Gesteins von der effektiven Spannung überschritten wird. Bei dem Ansatz der effektiven Spannungen, der auf Terzaghi & Fröhlich (1936) zurückgeführt werden kann, stehen die totalen (äußeren) Spannungen σ^{tot} mit den auf dem Korngerüst wirkenden effektiven Spannungen σ^{t} und dem mit dem Biot-Koeffizienten α multiplizierten Porendruck p im Gleichgewicht:

$$\boldsymbol{\sigma}^{tot} = \boldsymbol{\sigma}' - \boldsymbol{\alpha} \cdot \boldsymbol{p} \cdot \boldsymbol{1}$$

Ein positiver Wert des Porendrucks *p* charakterisiert dabei einen allseitig wirkenden Fluiddruck. Dagegen besitzen Druckspannungen (σ^{tot}, σ') ein negatives Vorzeichen (vgl. Kapitel 5.1.1). Konservativ wird bei der Auswertung des Kriteriums keine Zugfestigkeit des Gesteins angenommen und auf eine Abmilderung der Auswirkung der Porenwasserdrücke durch den Biot-Koeffizienten verzichtet, d. h. $\alpha = 1$. Dieses Kriterium deckt den Versagensfall durch Zug ab, wobei neben dem Einfluss der Thermomechanik auch die Porendrücke Berücksichtigung finden. Im Ton- und Kristallingestein wird der Porendruck direkt über den THM-Ansatz berechnet. Im Steinsalz wird ein fiktiver Porendruck, der sich aus einer stehenden Wassersäule an der betrachteten Teufe ergeben würde, verwendet. Es wird eine konstante Dichte der Fluidsäule von 1.100 kg m⁻³ angenommen.

Gemäß der oben in Kapitel 5.1.1 dargestellten Definition der Hauptspannungen wird die größte effektive Hauptspannung σ'_{III} ausgewertet:

Indikator Fluiddruck = $\sigma'_{III} = \sigma_{III}^{tot} + p$

Negative Werte des Indikators weisen auf eine Einhaltung des Fluiddruck-Kriteriums hin. Kleinere Werte sind ein Indikator für höhere Sicherheitsreserven.

Die Relevanz des Indikators für die Barrierewirksamkeit kann nur unter Einbeziehung der räumlichen und zeitlichen Ausprägung seiner Werte vor dem Hintergrund des betrachteten Endlagersystems bewertet werden.

5.1.3 Indikator Temperatur

Die maximale Temperatur T_{GRENZ} , die keine unzulässige Beeinflussung des jeweiligen Barrieregesteins zur Folge hat, ist noch zu ermitteln.

Die Auslegungstemperatur an der Außenfläche der Behälter im Endlagersystem T1 beträgt 100 °C. Nach StandAG § 27 Absatz 4 ist bei dieser Temperatur gegen eine negative Beeinflussung des Wirtsgesteins durch die Temperatur vorgesorgt. Auch wenn T_{GRENZ} für Tongestein wahrscheinlich größer als 100 °C sein wird, wird im Vorhaben RESUS davon ausgegangen, dass die 100 °C der maximal zulässigen Temperatur T_{GRENZ} im Tongestein entsprechen.

Indikator Temperatur = T/T_{GRENZ}

Werte des Indikators unter 1 weisen auf eine Einhaltung des Temperatur-Kriteriums hin.

Die Relevanz des Indikators für die Barrierewirksamkeit kann nur unter Einbeziehung der räumlichen und zeitlichen Ausprägung seiner Werte vor dem Hintergrund des betrachteten Endlagersystems bewertet werden.

5.1.4 Indikator Advektion

Bei der Bewertung des Advektions-Kriteriums wird auf die in Jobmann et al. (2015) dargestellte Interpretation der Sicherheitsanforderungen des BMU (2010a) zurückgegriffen. Demnach gilt das Advektions-Kriterium als eingehalten, wenn "ein gelöster konservativer Tracer innerhalb des Nachweiszeitraums nicht allein auf Grund der Bewegung des Porenwassers vom Einlagerungsbereich bis an den Rand des ewG transportiert werden kann".

Es wird analysiert, wie weit sich ein Wasserteilchen in dem Nachweiszeitraum nur aufgrund von Strömungsprozessen aus dem Einlagerungsbereich durch das Barrieregestein bewegt. Wenn ein Wasserteilchen hierbei den äußeren Rand des Barrieregesteins erreicht, wird das Advektionskriterium verletzt. Eine Barrierewirkung des Nahfeldes, das durch die Auffahrung gestört ist, wird bei der Auswertung des Advektionskriteriums nicht berücksichtigt.

Im Vorhaben RESUS soll eine quantifizierende Auswertung des Kriteriums erfolgen, um einen Indikator zum Vergleich von Berechnungs-Varianten hinsichtlich der Sicherheitsreserven bzw. des Maßes der Überschreitung im Sinne des Advektions-Kriteriums zu ermöglichen.

Die Bestimmung kann über Partikel-Tracking erfolgen. Es werden hierbei Wasserpartikel markiert, um deren Bewegung durch rein advektiven Transport zu analysieren. Hierfür werden an der Grenze des Nahfeldes kontinuierlich Wasserteilchen markiert (in Abb. 22 grün als Startpunkt der Partikel dargestellt). Es kann eine Umhüllende definiert werden, die alle Aufenthaltsorte der markierten Wasserteilchen über eine Million Jahre umschließt (in Abb. 22 als rote Umrandung dargestellt). Für eine quantitative Beschreibung wird der Quotient von zwei Abständen ausgewertet:

- s₀: kleinster Abstand zwischen dem Nahfeld und der äußeren Begrenzung des Barrieregesteins
- s: kleinster Abstand zwischen der Umhüllenden und der äußeren Begrenzung des Barrieregesteins

Abb. 22: Auswertung des Indikators Advektion

Beim Endlagersystem T1 ist die Grundwasserströmung im Endlagerbereich nach oben gerichtet (Kapitel 2.2), Deshalb werden in diesem Endlagersystem die Abstände zur oberen Begrenzung des Barrieregesteins betrachtet.

Wenn bei einer Berechnungs-Variante Wasserteilchen vom Nahfeld des Endlagers aus innerhalb des Nachweiszeitraumes die äußere Begrenzung des Barrieregesteins erreichen, also *s*=0 ist, wird als Indikator die hierfür benötigte Zeit *t*' im Verhältnis zu dem Nachweiszeitraum ausgewertet. Der Indikator ist dann ein Maß für die Stärke der Überschreitung des Advektions-Kriteriums.

Der Indikator berechnet sich wie folgt:

Indikator Advektion =
$$\begin{cases} 1 - \frac{s}{s_0} & \text{wenn } s > 0\\ \frac{10^6 a}{t'} & \text{wenn } s = 0 \end{cases}$$

Im ersten Fall gibt der Quotient $\frac{s}{s_0}$ relativ die verbleibende Barrierenmächtigkeit an. Der Term $1 - \frac{s}{s_0}$ lässt sich dementsprechend als Ausnutzungsgrad der Barriere interpretieren.

Werte des Indikators unter 1 weisen auf eine Einhaltung des Advektionskriteriums hin. Bei dem Vergleich von Indikator-Werten gilt, dass kleinere Werte im Hinblick auf das Advektions-Kriterium ein Indikator für höhere Sicherheitsreserven (bis 1) bzw. eine geringere Überschreitung des Advektionskriteriums (über 1) darstellen.

Die Relevanz des Indikatorwertes für die Barrierewirksamkeit kann nur vor dem Hintergrund des betrachteten Endlagersystems bewertet werden.

5.2 Einschluss von Radionukliden

Zur Bewertung des Einschlusses von Radionukliden werden zwei Indikatoren

- I1: die normierte potenzielle Strahlenexposition am Rand des Barrieregesteins und
- 12: die normierte potenzielle Strahlenexposition im Aquifer

unter Verwendung von Dosiskonversionsfaktoren ermittelt. Dabei wird analog zu dem in dem Vorhaben VSG verwendeten Ansatz (Mönig et al., 2012) vorgegangen.

Im Detail erfolgt die Berechnung der Indikatoren wie folgt: Der Indikator wird aus dem jährlichen Radionuklidstrom *S* [Bq/a] über die gesamte Randfläche des betrachteten Gebirgsbereichs, berechnet. Dieser Radionuklidstrom wird auf einen angenommenen Wasserstrom *W* [m³/a] im Grundwasser verteilt. Mit Hilfe von Dosiskonversionsfaktoren *DKF* [Sv/a / Bq/m³] und dem Bezugswert für eine geringfügige Freisetzung *K* ergibt sich daraus die Berechnungsvorschrift für den Indikator *I*,

$$I = 10 \; \frac{\sum_i S_i \cdot DKF_i}{WK}$$

Dabei wird zusätzlich berücksichtigt, dass:

- der Grundwasserstrom W, in dem die Radionuklide verteilt werden, 5.000 m³ pro Jahr beträgt. Dieser Wert ergibt sich aus der Annahme eines jährlichen Wasserbedarfs pro Person von 500 m³/a und einer Referenzgruppe von zehn Personen,
- die Dosiskonversionsfaktoren *DKF* gemäß der Allgemeinen Verwaltungsvorschrift ermittelt werden,⁵
- der Bezugswert *K* für eine geringfügige Freisetzung, 0,1 Personen-Millisievert pro Jahr beträgt.

⁵ Im Vorhaben RESUS wurden die Dosiskonversionsfaktoren von Pröhl & Gering (2002) verwendet. Eine Ableitung von Dosiskonversionsfaktoren gemäß der aktuellen Allgemeinen Verwaltungsvorschrift steht noch aus. Für vorläufige Sicherheitsuntersuchungen sind aktuelle Dosiskonversionsfaktoren zu verwenden.

6 Ergebnisse der generischen Sicherheitsuntersuchungen

Die verschiedenen geowissenschaftlichen Abwägungskriterien und ihre geologische Ausprägung können in den verschiedenen Endlagersystemen sehr unterschiedliche Bedeutung für die Sicherheit des Endlagers erlangen. Für eine sicherheitsgerichtete Gesamtabwägung ist daher das Verständnis wichtig, wie in den unterschiedlichen Endlagersystemen die verschiedenen Abwägungskriterien und ihre möglichen geologischen Ausprägungen die Endlagersicherheit beeinflussen.

Ziel der im Folgenden durchgeführten Berechnungen ist es, auf Basis der dargelegten Grundlagen Analysen zur Integrität des Barrieregesteins und zum Einschluss von Radionukliden durchzuführen, um Aussagen zur Signifikanz der geowissenschaftlichen Abwägungskriterien und ihre möglichen Ausprägungen in dem hier betrachteten Endlagersystem T1 treffen zu können. Die Bewertung beruht auf den definierten Indikatoren.

6.1 Integrität des Barrieregesteins

6.1.1 Modellierungskonzept

Für die zu betrachtenden Endlagersysteme werden numerische Analysen zur Integrität des Barrieregesteins durchgeführt. Hierbei wird soweit wie möglich auf die in den Vorhaben VSG, ANSICHT und KOSINA (Kock et al., 2012, Maßmann & Ziefle, 2017, Liu et al., 2018) sowie im laufenden Vorhaben CHRISTA-II erarbeiteten Modellierungskonzepte zurückgegriffen. Zunächst werden basierend auf dem geologischen Modell (Kapitel 2.2), dem technischen Endlagerkonzept (Kapitel 4.3) und den zu erwartenden Entwicklungen (Kapitel 4.4.1) ein Basisfall definiert und thermisch-mechanisch (TM) gekoppelte Berechnungen, im Ton- und Kristallingestein zusätzlich gekoppelt mit hydraulischen Prozessen (THM), durchgeführt, die einen Zeitraum von einer Million Jahre abdecken. Ziel ist es, das Systemverhalten zu analysieren und mit Hilfe von Auswertungen der auf den Integritätskriterien basierenden Indikatoren (Kapitel 5) potentielle Versagensmechanismen aufzuzeigen und damit exemplarisch die Vorgehensweise bei der Integritätsanalyse zu illustrieren. Darüber hinaus erfolgen spezifische Auswertungen und ggf. Neuberechnungen mit Parametervariationen, mit denen die Auswirkungen der im StandAG dargestellten Bandbreiten der Indikatoren der Abwägungskriterien auf die Integrität des Barrieregesteins betrachtet werden. Soweit möglich, erfolgt eine quantitative Abschätzung der Sensitivität.

Im Vorhaben ANSICHT wurde von Maßmann & Ziefle (2017) ein Modellierungskonzept für den Nachweis der Integrität vorgeschlagen, das auf drei Berechnungsmodellen, 3D-Gesamtmodell, 2D-Vertikalschnitt, 3D-Detailmodell, basiert. Hierbei dienen die 3D-Modelle zur Verifikation der vereinfachenden Annahmen des 2D-Modells; der Nachweis soll anhand des 2D-Modells geführt werden. Für die oben dargestellten Ziele der numerischen Analysen im Vorhaben RESUS wird ein zweidimensionaler Ansatz als hinreichend betrachtet.

Das Berechnungsmodell bildet einen vertikalen Schnitt durch den zentralen Einlagerungsbereich ab, in dem die Abfälle mit dem größten Wärmeeintrag eingelagert werden und schneidet ihn damit das Endlager senkrecht zu seiner größten Ausdehnung.

Da die Wärmequelle im 2D-Schnitt angesetzt wird, ist diese normal zum Schnitt durchgehend vorhanden und deshalb entsprechend der angesetzten Geometrie in Richtung der Einlagerungsstrecken zu homogenisieren. Dieser Ansatz bewirkt zwar im Nahfeld keine exakte Modellierung des resultierenden Temperaturfeldes, stellt aber im Fernfeld - also auch im Barrieregestein - eine gute Approximation der räumlichen Temperaturverteilung dar, weil der integrale Wärmeeintrag korrekt modelliert wird. Variierende Temperaturverläufe in Streckenlängsrichtung werden durch diesen Ansatz nicht abgebildet. Da die Behälter selbst ebenfalls nicht abgebildet werden, kann auch die Temperatur am Endlagerbehälter in diesen Berechnungen nicht abgelesen werden. Die Temperaturen an den Endlagerbehältern wurden in den 3D-Auslegungsberechnungen (Kapitel 4.3) ermittelt. In größerer Entfernung zur Wärmequelle wird mit dem 2D-Ansatz die Temperatur überschätzt, da ein Wärmestrom senkrecht zum Berechnungsschnitt nicht berücksichtigt wird. Das 2D-Modell stellt also im Hinblick auf die Temperaturausbreitung im Fernfeld einen konservativen Ansatz dar. Somit werden auch Prozesse überschätzt, die von der Temperaturerhöhung abhängen.

Zusammenfassend wird ein zweidimensionaler Modellansatz bei den angestrebten generischen Modellen als zielführend angesehen, da alle für die Fragestellung wesentlichen Prozesse abgebildet werden können.

Im Nahfeld der Behälter wird die Integrität des Barrieregesteins nicht betrachtet. Hier ist das Gestein durch den Auffahrungsprozess und folgende Spannungsumlagerungen stark beeinflusst, sodass eine Verletzung der Integrität in der EDZ anzunehmen ist. Es wird davon ausgegangen, dass Prozesse, die im Nahfeld zu erwarten sind, nicht darüber hinaus die Integrität des Barrieregesteins beeinflussen und deshalb bei den numerischen Analysen zur Integrität des Barrieregesteins nicht berücksichtigt werden müssen. Dies betrifft vor allem auffahrungsbedingte Spannungsumlagerungen, flächenhafte sowie punktuelle Änderungen der Gesteinseigenschaften durch Spannungsumlagerungen, Entsättigung und Änderung der chemischen Verhältnisse, mikrobielle Prozesse, sowie die Einwirkungen durch Gasdruck. Im Nahbereich werden die gleichen Materialeigenschaften wie im Fernfeld angesetzt. Diese Annahmen bedürfen einer Verifizierung, die standortspezifisch zu führen aber nicht Bestandteil im Vorhaben RESUS ist. Im Folgenden werden einige Faktoren zur Festlegung der Größe des Nahfeldes diskutiert.

Die Größe der EDZ wird über Erfahrungen in Untertagelaboren und Bergwerken abgeschätzt; hierzu wird q, der Quotient der Mächtigkeit der EDZ und dem effektiven Radius der Auffahrung, eingeführt (z. B. q = 1 bedeutet EDZ-Mächtigkeit entspricht dem Radius der Auffahrung):

- Mont Terri: q = 1 (Bossart et al., 2004)
- Tournemire: q = 0,6 (Rejeb & Cabrera, 2007)
- Bure: q = 1 (Shao et al., 2008)

Im Endlagersystem T1 werden Bohrlochüberfahrungsstrecken mit einem maximalen Radius von 5 m definiert. Es ergibt sich aus den vorgenannten Werten für q eine Abschätzung der Größe der EDZ von maximal 5 m.

Durch die Auffahrung und anschließender Bewetterung kommt es im Tongestein zu Austrocknungseffekten im Nahfeld. In dieser Zone ist der Porenraum nicht mehr vollständig mit Wasser gefüllt. Dies kann zum Schrumpfen führen und die Eigenschaften des Gesteins dauerhaft beeinflussen. Die Größe dieser Zone kann ebenfalls mit dem Quotienten q dargestellt werden:

- Mont Terri: q = 1,4 (Ziefle et al., 2018)
- AnSicht Süd: q = 1,5 (Maßmann & Ziefle, 2017)

Es ergibt sich eine Abschätzung der Mächtigkeit der entsättigten Zone von maximal 7,5 m.

Durch die Verwendung von zweidimensionalen Berechnungsmodellen wird die Wärmequelle senkrecht zur Betrachtungsebene als gleichmäßig verteilt angenommen, d. h. der Abstand zwischen den Bohrlöchern einer Einlagerungsstrecke wird nicht abgebildet. Dieser Ansatz stellt ab einem noch zu verifizierenden Abstand von der Wärmequelle eine gute Approximation dar. Im Endlagersystem T1 des Vorhabens RESUS wird ein Bohrlochabstand von 30 m verwendet.

Konsistent zu den weiteren Endlagersystemen wird basierend auf den oben dargestellten Überlegungen bei den numerischen Berechnungen die Integrität des Barrieregesteins im Abstand von weniger als 10 m zu Streckenbauwerken und Einlagerungsbohrlöchern nicht betrachtet, da mit dem verwendeten Berechnungskonzept ein Nachweis in diesem Bereich nicht möglich ist. Diese Annahme ist standortspezifisch zu prüfen und ggf. anzupassen.

Im Vorhaben RESUS wird davon ausgegangen, dass die Eigenschaften der generischen geologischen Formationen bekannt sind, ohne Ungewissheiten bei der Charakterisierung zu betrachten.

Physikalische Prozesse und Stoffgesetze

Basierend auf dem Modellierungskonzept werden gekoppelte Berechnungen durchgeführt. Es wird unterschieden zwischen den Prozessen, die im Allgemeinen durch partielle Differentialgleichungen dargestellt werden können und denen eine feste Anzahl an primären Variablen zugeordnet wird, und Kopplungsmechanismen, die die Beeinflussung zwischen den Prozessen beschreiben. Die Ansätze zur Berechnung von Prozessen und deren Kopplung sollen im Folgenden im Hinblick auf die Analysen zur Integrität des Barrieregesteins kurz dargestellt werden:

- Thermische Prozesse (T) beschreiben den Transport von Wärme. Die primäre Variable ist die Temperatur T mit der Einheit °C oder K. Im porösen Medium werden für die wichtigsten Parameter Wärmeleitfähigkeit und Wärmekapazität gemittelte Werte verwendet, um die verschiedenen Eigenschaften von Festkörper und Fluid zu berücksichtigen. Die wichtigste Wärmequelle stellen die Abfälle selbst dar. Außerdem muss der geothermische Temperaturgradient berücksichtigt werden.
- Hydraulische Prozesse (H) beschreiben das hydraulische Druckfeld und die damit einhergehende Strömung von Fluiden. Es wird der Ansatz von Darcy gewählt, womit ein linearer Zusammenhang zwischen Druckdifferenz und Fließgeschwindigkeit angenommen wird.
- Teilsättigung (H) beschreibt den Zustand, dass die Poren nur zum Teil mit Wasser ausgefüllt sind. Die durch die Auffahrung und anschließende Bewetterung entstehende Absenkung des Porenwasserdrucks und die Entwicklung einer ungesättigten Zone hat im Tongestein wesentliche Auswirkungen auf die Entwicklung des ewG und wird deshalb bei den Berechnungen berücksichtigt.
- Gasdruck entsteht vor allem durch korrosionsbedingte Gasbildung. Im Vorhaben RESUS wird angenommen, dass der Gasdruck durch geeignete technische Maßnahmen so gering bleibt, dass er nur Auswirkungen auf das Nahfeld hat und die Integrität des Barrieregesteins nicht wesentlich beeinflusst. Diese Annahme muss standortspezifisch geprüft werden.
- Mechanische Prozesse (M) beschreiben das Spannungs-Dehnungsverhalten der Festphase. Die primäre Variable ist der Vektor der Verschiebungen, wobei je nach Materialgesetz weitere Variablen hinzukommen. Abgeleitete Variablen sind beispielsweise die Spannungen und Dehnungen. Im Tongestein wird ein linear-elastisches Materialmodell

verwendet, da nicht-lineare Eigenschaften des spröd-duktilen Materialverhaltens nur im Nahfeld erwartet werden. Hier sind ggf. Anpassungen notwendig, wenn genauere Daten vorliegen.

- Wärmeausdehnung (T→M, T→H): Eine Änderung der Temperatur bewirkt eine Dichteänderung im Fluid und in der festen Phase. Dadurch kommt es im eingespannten Zustand zu Spannungsänderungen und zu einer Volumenänderung in der Fluidphase. Im gering durchlässigen Medium können durch Temperaturerhöhungen erhebliche Porendruckanstiege entstehen. Da diese Prozesskopplung einen wesentlichen Einfluss auf die Integrität haben kann, wird sie bei den Berechnungen berücksichtigt.
- Thermisch induzierte Änderung von Materialkennwerten (T→M, T→H): Fast alle Materialkennwerte sind mehr oder weniger temperaturabhängig. So wird das Verformungsverhalten, insbesondere das Kriechen, von der Temperatur beeinflusst. Für die Hydraulik ist die Änderung der Fluidviskosität besonders wichtig, da im betrachteten Temperaturbereich die Fließgeschwindigkeiten um den Faktor 3 beeinflusst werden können. Weitere Eigenschaftsänderungen werden bei den Berechnungen vernachlässigt, da davon ausgegangen wird, dass sie nur im Nahfeld einen wesentlichen Einfluss haben.
- Chemisch induzierte Änderung von Materialkennwerten (C→M, C→H): Durch Stoffumwandlung und Transport können sich die Kennwerte für das Deformationsverhalten verändern. So kann Alteration beispielsweise zu Materialschädigung führen. Wichtige hydraulische Eigenschaften, wie die Dichte und die Viskosität von Lösungen, hängen von gelösten Stoffen ab. Bei den folgenden Berechnungen wird davon ausgegangen, dass sich die Auswirkungen der chemischen Prozesse auf das Nahfeld beschränken und keinen wesentlichen Einfluss auf die Integrität des Barrieregesteins haben. Der Salzgehalt kann daher als konstant angenommen werden.
- Wärmetransport (H→T): Der advektive Wärmetransport ist durch das Strömungsfeld definiert. Solange nur kleine Verformungen auftreten und der Festkörper integer bleibt, kann der Festkörpertransport als Wärmetransportmechanismus vernachlässigt werden. Durch die geringen Fließgeschwindigkeiten im Barrieregestein ist der advektive Wärmetransport nur von untergeordneter Rolle, wird aber bei den Berechnungen mit Fluid berücksichtigt. Da Lösung, Gas und Festkörper unterschiedliche thermische Eigenschaften aufweisen, beeinflusst der Sättigungsgrad den Wärmetransport.
- Änderung der Porosität (M→H): Wie stark eine Volumenveränderung durch Deformation zu einer Änderung des Porenraums führt, wird durch den Biot-Koeffizienten bestimmt, der den Zusammenhang zwischen der Kompressibilität der festen Phase zur Kompressibilität des Gesteinskörpers darstellt. Eine deformationsbedingte Änderung der Porosität führt zur Änderung des Porendrucks. Ist der Körper wassergesättigt und nur gering durchlässig, kann eine volumetrische Verformung zu großen Porenwasserdruckänderungen führen.
- Änderung der Permeabilität (M→H): Eine Änderung der Permeabilität kann über eine Änderung der Porosität dargestellt werden, aber auch reine Verzerrungen können zu Permeabilitätsänderungen führen. Außerdem können Schädigungsparameter und/oder plastische Dehnungen herangezogen werden, um eine Permeabilitätsänderung zu berechnen. Bei den folgenden Berechnungen wird davon ausgegangen, dass sich die Änderung der Permeabilität auf das Nahfeld beschränkt und keinen wesentlichen Einfluss auf die Integrität des Barrieregesteins hat.

- Prinzip der effektiven Spannungen: (H→M): Nach dem Prinzip der effektiven Spannungen, setzten sich die totalen, äußeren Spannungen eines porösen Mediums aus den Spannungen im Fluid und denen im Korngerüst zusammen. Das bedeutet, dass eine Änderung der Porendrücke Spannungsumlagerungen im Korngerüst zur Folge hat. Wenn eine fluide Phase vorhanden ist, wird dieser Effekt bei den Berechnungen berücksichtigt.
- Quellen und Schrumpfen (H→M): Quellen und Schrumpfen ist ein wichtiger Mechanismus im teilgesättigten Tongestein. Die Wassereinlagerung zwischen den Tonschichten führt zu einer Volumenvergrößerung. Dies kann durch eine sättigungsabhängige Dehnung (wie in der Thermomechanik) oder einen zusätzlichen Spannungsterm modelliert werden. Bei den folgenden Berechnungen wird davon ausgegangen, dass sich die Auswirkungen von Quellen und Schrumpfen auf das Nahfeld beschränken und keinen wesentlichen Einfluss auf die Integrität des Barrieregesteins außerhalb des Nahfelds haben.

Die hier beschriebenen und in Abb. 23 dargestellten Prozesse und Kopplungen bilden die Basis für die numerischen Berechnungen.

Physikalisch-mathematisch-numerisches Modell

Das verwendete mathematisch-physikalische Modell für Tongestein berücksichtigt die nichtisotherme dreidimensionale Grundwasserströmung in teilgesättigten porösen Medien, linearelastische Deformation (Poroelastizität) und Wärmetransport. Es wird der Richards-Ansatz (Richards, 1931) verwendet, bei dem zwar eine Entsättigung berechnet werden kann, aber kein Gasdruck berücksichtigt wird. Die Kapillarspannung p_c ergibt sich direkt aus dem Porenwasserdruck p unter der Annahme, dass der Gasdruck $p_q = 0$ ist:

$$p_c = p_g - p \approx -p$$

Die Wassersättigung wird über das VanGenuchten-Modell direkt aus der Kapillarspannung bestimmt:

$$p_c = \frac{1}{\alpha} \cdot \left(S_e^{\frac{n'}{1-n'}} - 1 \right)^{\frac{1}{n'}} \text{ mit } S_e = \frac{S_w - S_{wr}}{1 - S_{wr}}$$

mit dem scheinbaren Gaseindringdruck $\frac{1}{\alpha}$, dem Formfaktor *n*', der effektiven Sättigung S_e , der Wassersättigung S_w und der residualen Wassersättigung S_{gr} .

Der Wärmetransport wird über die Wärmetransportgleichung beschrieben:

$$\left((1-n)\rho_{s}c_{\mathrm{ps}}+S_{w}n\rho_{w}c_{\mathrm{pw}}\right)\frac{\partial T}{\partial t}-\nabla\cdot\left(\left((1-n)\boldsymbol{\lambda}_{s}+S_{w}n\boldsymbol{\lambda}_{w}\boldsymbol{1}\right)\nabla T\right)+c_{\mathrm{pw}}\boldsymbol{q}\cdot\nabla T+Q_{T}=0$$

mit der Porosität *n*, der Dichte des Festkörpers ρ_s und des Wassers ρ_w , der spezifischen Wärmekapazität des Festkörpers c_{ps} und des Wassers c_{pw} , der Temperatur *T*, der Zeit *t*, dem Wärmeleitfähigkeitstensor des Festkörpers λ_s und der Wärmeleitfähigkeit des Wassers λ_w , der Wärmequelle Q_T , und dem modifizierten Darcy-Fluss

$$\boldsymbol{q} = nS_w \rho_l \frac{k_{\rm rel} \boldsymbol{k}}{\mu} (-\nabla p + \rho_w \boldsymbol{g})$$

mit dem Permeabilitätstensor **k**, der dynamischen Viskosität μ , dem Porenwasserdruck p, dem Vektor der Erdbeschleunigung **g** und der relativen Permeabilität k_{rel} , die eine Funktion der Wassersättigung ist (Mualem-Modell):

$$k_{rel} = S_e^{\frac{1}{2}} \left(1 - \left(1 - S_e^{\frac{n'}{n'-1}}\right)^{\frac{n'-1}{n'}} \right)^2$$

Der thermisch induzierte Wasserdampf-Fluss wird über das molekulare Diffusionsmodell nach Philip & De Vries (1957) berücksichtigt:

$$\boldsymbol{q}_{v} = -D_{pv}\nabla p - D_{Tv}\nabla T$$

mit den zwei Diffusions-Koeffizienten für Druck D_{pv} und Temperatur D_{Tv} :

$$D_{pv} = \frac{D_v \rho_v}{\rho_w RT}$$
 und $D_{Tv} = D_v \left(h_{rel} \frac{\partial \rho_{vS}}{\partial T} - \frac{\rho_v p}{\rho_w RT^2} \right)$

wobei der Dampf-Diffusions-Koeffizient definiert ist als:

$$D_V = \tau \cdot (1 - S_w) \cdot n \cdot 2,16 \cdot 10^{-5} \cdot \left(\frac{T}{273,15 \ K}\right)^{1.8}$$

mit der Dichte des Wasserdampfs $\rho_v = h_{\rm rel} \rho_{vS}$, der spezifischen Gaskonstanten $\left(R = 461, 5 \frac{J}{\rm kg\cdot K}\right)$, der gesättigten Wasserdampf-Dichte $\rho_{vS} = 10^{-3} e^{19.81 - 4976/T} \rm kg/m^3$, der relativen Feuchtigkeit $h_{\rm rel} = e^{p/(\rho_w RT)}$ und der Tortuosität τ .

Der Ansatz der effektiven Spannungen wird um den Bishop-Koeffizienten χ erweitert:

$$\boldsymbol{\sigma}^{\rm tot} = \boldsymbol{\sigma}' - \alpha \chi p \boldsymbol{I}$$

Im teilgesättigten Fall wird hier eine Kopplung über diesen Ansatz vernachlässigt:

$$\chi = \begin{cases} 0, & \text{wenn } S_w < 1 \\ 1, & \text{sonst} \end{cases}$$

Die Volumenbilanz des Wassers im Porenraum des deformierbaren Mediums ist:

$$\underbrace{n \left[\frac{\rho_{w} - \rho_{v}}{\rho_{w}} \frac{\partial S_{w}}{\partial p} + (1 - S_{w}) \frac{\rho_{v}}{\rho_{w}^{2} RT}\right] \frac{\partial S_{w}}{\partial t} + \left(\frac{n}{K_{w}} + \frac{\alpha - n}{K_{s}}\right) \frac{\partial p}{\partial t}}{Flussterm}}_{Speicherterm} + \underbrace{S_{w} \alpha \nabla \cdot \frac{\partial u}{\partial t}}_{Deformation} + \underbrace{n \frac{1 - S_{w}}{\rho_{w}} \left(h_{rel} \frac{\partial \rho_{vS}}{\partial T} + \frac{\rho_{v} p}{RT^{2}}\right) \frac{\partial T}{\partial t}}_{Dampfdiffusion} - \underbrace{(nS_{w} \beta_{w} + (\alpha - n) 3\beta_{s}) \frac{\partial T}{\partial t}}_{Thermische Expansion} = 0$$

Wobei **u** den Verschiebungsvektor, β_w den thermischen Raumausdehnungskoeffizienten des Wassers, β_s den thermischen Längenausdehnungskoeffizienten des Festkörpers und Q_w den Quellterm, K_w den Kompressionsmodul des Wassers und K_s den Kompressionsmodul der festen Phase darstellt. Der Biot-Koeffizient α ist definiert als

$$\alpha = 1 - \frac{K}{K_s}$$

Wobei *K* den Kompressionsmodul des drainierten porösen Mediums darstellt und im isotropen Fall zu dem Elastizitätsmodul *E* und der Querdehnungszahl ν im folgenden Verhältnis steht

$$K = \frac{E}{3 \cdot (1 - 2\nu)}$$

Das Deformationsmodell basiert auf dem Impulssatz, dynamische Kräfte werden auf Grund der geringen Beschleunigungen vernachlässigt:

$$\nabla \cdot (\boldsymbol{\sigma}' - \alpha \chi p \boldsymbol{I}) = 0.$$

Mit der Koeffizientenmatrix C wird das linear-elastische Verhalten abgebildet:

$$\boldsymbol{\sigma}' = \boldsymbol{C} : (\boldsymbol{\varepsilon} - \beta_s \Delta T \boldsymbol{I})$$

mit dem Tensor der Dehnungen ε und der Temperaturdifferenz ΔT .

Zusammenfassend kann festgehalten werden, dass das THM-Problem über drei primäre Variablen definiert wird. Diese werden auf den Knoten des FEM-Berechnungsnetzes berechnet. Des Weiteren werden abgeleitete Größen berechnet, die auf die Elemente bezogen sind, wie in Tab. 18 dargestellt.

Tab. 18: Prozesse und Variablen bei den numerischen Analysen im Tongestein

Prozess	primäre Variable	abgeleitete Größen
Т	Temperatur, T	Wärmemenge
н	Porenwasserdruck, p	Kapillarspannung, Wassersättigung, Vektor der Fließgeschwindigkeit, Wasservolumen
М	Verschiebungsvektor, u	Spannungstensor, Verzerrungstensor

Berechnungsmethode

Bei den Modellberechnungen kommt die Software OpenGeoSys (OGS) (Kolditz et al., 2012a) in der Version 5 zum Einsatz. OGS erfährt als quelloffener wissenschaftlicher numerischer Berechnungscode eine ständige Weiterentwicklung unter Beteiligung zahlreicher nationaler und internationaler Institutionen, wie beispielsweise: Technische Universität Dresden, Christian-Albrechts-Universität Kiel, Technische Universität Bergakademie Freiberg, University of Edinburgh (Großbritannien), BGR Hannover, Paul-Scherrer-Institut (Schweiz). Federführend bei der Entwicklung ist das Helmholtz Zentrum für Umweltforschung (UFZ), Department Umweltinformatik. Schwerpunkt ist die Implementierung und Anwendung von numerischen Methoden für die Simulation von thermisch-hydraulisch-mechanisch-chemisch gekoppelten Prozessen in porösen und klüftigen Medien. Wesentliche Anwendungsgebiete sind: CO₂-Sequestrierung, Geothermie, Energiespeicher, Wasserressourcenmanagement, Hydrologie und Endlagerung von hochradioaktiven radioaktiver Abfälle.

Zur Qualitätssicherung werden bei jeder Quellcodeänderung automatisierte Tests anhand von Beispielen ("Benchmarks") durchgeführt, die häufig bekannte analytische Lösungen darstellen. Ein Teil dieser Benchmarks sind in Kolditz et al. (2012b), Kolditz et al. (2015) und (Kolditz et al., 2016) ausführlich dargestellt. Im Rahmen des Vorhabens ANSICHT, wurde ein Code-Vergleich durchgeführt, der zeigte, dass wesentliche Prozesse mit OGS abgebildet werden können und die Ergebnisse eine gute Übereinstimmung mit anderen Codes zeigen (Maßmann et al., 2013).

6.1.2 Berechnungsmodell des Basisfalls

Unter Berücksichtigung des geologischen Modells wird das Berechnungsmodell in Bereiche aufgeteilt, in denen jeweils gleiche, homogene Materialeigenschaften angenommen werden.

Beschrieben wird im Folgenden das Berechnungsmodell für den Basisfall. Die Parametrisierung basiert auf dem Modell ANSICHT Nord (Jahn & Sönnke, 2013; Nowak & Maßmann, 2013; Reinhold et al., 2013a; Maßmann & Ziefle, 2017).

Gesteins- und Fluideigenschaften

Im Endlagersystem T1 werden angelehnt an die Ergebnisse aus dem Vorhaben Ansicht verschiedene Einheiten des geologischen Modells zu Homogenbereichen im numerischen Modell zusammengefasst. In Abb. 24 ist die Zuordnung der Einheiten des geologischen Modells (Kapitel 2.2) zu den Einheiten des numerischen Modells (Homogenbereich 0 bis 10) dargestellt.

70 m		Homogenbereich	Modelleinheit na	ach Reinhold et al. (2013)	
ч krl		⁰ U. NN 1	(HB)	Abkürzung	Bezeichnung
S3		2	0	q	Quartär
krb		5	1	krl	Albium
		4	2	<i>S3</i>	Hilssandstein
krh			3	krp	Aptium
krv		5		1 1 . 1 1	Barremium und Hauterivium
wd		6	4	KrD+Krn	(Wirts- und Barrieregestein)
jo		7	5	krv	Valanginium
jm S2		8	6	wd	Wealden
jū S1			7	јо	Oberjura
k		9	8	jm+S2+ju	Mitteljura, Aalensandstein und Unterjura
so+m		10	9	S1+k	Rhätsandstein und Keuper
su+sm z	-	-3500 m ü. NN	10	so+m+su+sm	oberer Buntsandstein, Muschelkalk, mittlerer und unterer Buntsandstein

Abb. 24: Modelleinheiten: links: nach geologischer Beschreibung; daneben: für Modellberechnungen mit den Homogenbereichen (HB) 0 bis 10

Zusammenstellungen der thermischen, hydraulischen und mechanischen Materialparameter der festen Phase für die numerischen Berechnungen finden sich in Tab. 19, Tab. 20, Tab. 21und Tab. 22.

HB⁺	spezifische Wärmekapazität <i>c</i> _{ps} / (Jkg ⁻¹ K ⁻¹)	Wärmeleitfähigkeit in Schichtungsebene λ _{II} / (Wm ⁻¹ K ⁻¹)	Wärmeleitfähigkeits enkrecht zur Schichtungsebene λ_{\perp} / (Wm ⁻¹ K ⁻¹)	thermischer Längenausdehnungs- koeffizient β _s / K ⁻¹
0	576,5	3,43	3,43	1,0·10 ⁻⁵
1	576,5	2,66	1,75	0,7·10 ⁻⁵
2	576,5	2,82	2,82	1,0·10 ⁻⁵
3	576,5	2,60	1,71	0,7·10 ⁻⁵
4	576,5	2,45	1,63	0,7·10 ⁻⁵
5	576,5	2,37	1,59	0,7·10 ⁻⁵
6	576,5	2,21	1,5	0,7·10 ⁻⁵
7	576,5	2,84	2,25	1,0·10 ⁻⁵
8	576,5	2,83	2,27	0,7·10 ⁻⁵
9	576,5	2,65	2,65	1,0·10 ⁻⁵
10	576,5	2,95	2,95	1,0·10 ⁻⁵

Tab. 19: Thermische Materialeigenschaften der festen Phase

*HB=Homogenbereich

HB⁺	Porosität n	Durchflusswirksame Porosität <i>n</i> e	Permeabilität in Schichtungsebene <i>k_{ll} /</i> m²	Permeabilität senkrecht zur Schichtungsebene k⊥ / m²
0	0,4	0,20	1,19·10 ⁻¹⁴	1,19·10 ⁻¹⁴
1	0,32	0,05	1,19·10 ⁻¹⁸	1,19·10 ⁻¹⁸
2	0,1	0,10	1,19·10 ⁻¹⁴	1,19·10 ⁻¹⁴
3	0,3	0,05	1,19·10 ⁻¹⁸	1,19·10 ⁻¹⁸
4	0,245	0,05	1,19·10 ⁻¹⁹	1,19·10 ⁻²⁰
5	0,21	0,05	1,19·10 ⁻¹⁶	1,19·10 ⁻¹⁶
6	0,13	0,075	1,19·10 ⁻¹⁴	1,19·10 ⁻¹⁴
7	0,15	0,01	1,19·10 ⁻¹⁵	1,19·10 ⁻¹⁵
8	0,148	0,02	4,78·10 ⁻¹⁵	4,78·10 ⁻¹⁵
9	0,071	0,036	8,02·10 ⁻¹⁵	8,02·10 ⁻¹⁵
10	0,15	0,15	1,19·10 ⁻¹⁵	1,19·10 ⁻¹⁵

Tab. 20: Hydraulische Materialeigenschaften der festen Phase

*HB=Homogenbereich

Tab. 21: Mechanische Materialeigenschaften der festen Phase

HB⁺	Korndichte $ ho_{s}$ / (kgm ⁻³)	Biot-Koeffizient α	Elastizitätsmodul <i>E</i> / MPa	Querdehnungszahl V
0	2.620	0,6	100	0,33
1	2.620	0,6	6.000	0,30
2	2.640	0,6	15.000	0,27
3	2.650	0,6	6.000	0,30
4	2.685	0,6	6.000	0,30
5	2.700	0,6	6.000	0,30
6	2.700	0,6	6.000	0,30
7	2.730	0,5	12.000	0,27
8	2.726	0,6	12.100	0,27
9	2.699	0,5	12.100	0,27
10	2.700	0,5	15.000	0,27

*HB=Homogenbereich

Tab. 22: Kohäsion und Winkel der inneren Reibung im Barrieregestein

Homogenbereich	Kohäsion c / MPa	Winkel der inneren Reibung ϕ
4	8	30°

Der Wertebereich der hydraulischen Durchlässigkeiten liegt im geologischen Modell zwischen 6·10⁻¹² und 1,19·10⁻²⁰ m² und umfasst somit 8 Größenordnungen. Bei dem verwendeten Modellierungsansatz wird die Grundwasserströmung im gesamten Modell in einem Gleichungssystem iterativ gelöst. Diese große Bandbreite würde zu einem schlecht konditionierten Gleichungssystem führen, sodass insbesondere im Bereich geringer Durchlässigkeiten die

Wasserdrücke mit großen Fehlern behaftet wären. Um eine hinreichende Genauigkeit der Berechnungsergebnisse sicher zu stellen, muss daher aus numerischen Gründen der Wertebereich der hydraulischen Durchlässigkeiten beschränkt werden. Die größte verwendete Permeabilität beträgt im Basisfall 1,19·10⁻¹⁴ m² (Tab. 20). In Homogenbereichen, in denen eine größere Permeabilität vorliegt, wird im Basisfall diese maximale Permeabilität von 1,19·10⁻¹⁴ m² verwendet. Mit einer Differenz zwischen dieser maximalen Permeabilität und der Permeabilität im Barrieregestein von etwa sechs Größenordnungen ist gewährleistet, dass auch deutliche Kontraste in den Durchlässigkeiten zwischen dem Barrieregestein und anderen Gesteinsschichten, wie sie in diesem Modell vorliegen, modelliert werden können und so die hydraulische Wirkung des Gebirges auf das Barrieregestein realistisch abgebildet werden kann. So wird mit diesem Ansatz zwar die Fließgeschwindigkeit in den Aquiferen zu gering berechnet, aber der deutliche Kontrast zum Barrieregestein bleibt erhalten und so auch die Auswirkung auf den hydraulischen Gradienten und die Fließgeschwindigkeiten im Barrieregestein.

Die Parameter für das VanGenuchten-Modell für die Kapillardruck-Sättigungsbeziehung und das Mualem-Modell für die relative Permeabilität-Sättigungsbeziehung sind in Tab. 23 dargestellt. Mit diesen Parametern ergeben sich die in Abb. 25 dargestellten Verläufe.

Parameter	Wert	Einheit
Scheinbarer Gaseindringdruck $1/\alpha$	20	MPa
Formfaktor n'	1,7	-
Residuale Wassersättigung Swr	0,0	-

Tab. 23: Parameter für Van Genuchten- und Mualem-Modell im Barrieregestein

Abb. 25: Kapillardruck-Sättigungsbeziehung und relative Permeabilität-Sättigungsbeziehung im Barrieregestein

Die Dichte und dynamische Viskosität des Wassers wird in Abhängigkeit von der Temperatur und Salzkonzentration nach der Näherungsformel von (Chierici, 1994) mit der absoluten Temperatur T (in K), dem Porenwasserdruck p (in MPa) und dem Salzgehalt C (in g/l) wie folgt berechnet:

$$\rho_{w} = 730,6 + 2,025 \cdot T - 0,0038 \cdot T^{2} + (2,362 - 0,01197 \cdot T + 0,00001835 \cdot T^{2}) \cdot p + (2,374 - 0,01024 \cdot T + 0,0000149 \cdot T^{2} - 0,00051 \cdot p) \cdot C$$

$$\mu_{w} = (1 + 2,765 \cdot 10^{-3} \cdot C) \cdot exp(11,897 - 5,943 \cdot 10^{-2} \cdot T + 6,422 \cdot 10^{-5} \cdot T^{2}) \cdot 10^{-3}$$

Die als konstant angenommenen Parameter der wässrigen Lösung sind in Tab. 24 zusammengestellt. Die Referenzdichte (bei 25 °C) entspricht 1.095 kg/m³.

spezifische Wärmekapazität <i>c</i> _{pl} / (Jkg ⁻¹ K ⁻¹)	Wärme- leitfähigkeit λ / (Wm ⁻¹ K ⁻¹)	thermischer Volumenaus- dehnungskoeffi zient β _I / K ⁻¹	Kompressibilität κ / Pa ⁻¹	Salzgehalt C / (kg m ⁻³)
4.200	0,6	5·10 ⁻⁴	3,2·10 ⁻¹⁰	150

Tab. 24: Konstante Parameter der wässrigen Lösung

Orts- und Zeitdiskretisierung

Zur Ortsdiskretisierung werden 131.009 Dreieckselemente und 65.566 Knoten verwendet. In Abb. 26 ist das Berechnungsgitter mit den stark verfeinerten Bereichen um die Strecken und Bohrlöcher dargestellt.

Die Berechnung erfolgt in etwa 800 Zeitschritten. Angepasst an die Gradienten der Temperatur, Verschiebungen und Porenwasserdrücke werden zu Beginn der Berechnungen werden kleine Zeitschritte verwendet, die im weiteren Verlauf stark vergrößert werden.

Abb. 26: Numerisches Modell für THM-Berechnungen (Farbgebung der geologischen Einheiten siehe Abb. 26)

Anfangs- und Randbedingungen

An der oberen Modellgrenze (70 mNN) wird eine Temperatur von 8,0 °C angesetzt, die als konstant angesetzt wird. Die Temperatur der unteren Modellgrenze (- 3.500 mNN) errechnet sich über den geothermischen Gradienten von 40,0 K/km zu 150,8 °C und wird ebenfalls als konstant angenommen. Ein Festpotenzial von 100.000 Pa (mittlerer Luftdruck) wird an der oberen Modellgrenze angelegt, während alle seitlichen und die untere Modellgrenze als hydraulisch undurchlässig angenommen werden.

Zwischen den Schichten S3 und wd wird durch hydraulische Randbedingungen zum hydrostatischen Gradienten ein zusätzlicher Druckunterschied von etwa 0,053 MPa (vgl. geologisches Modell in Kapitel 2.2) hinzugefügt. Daraus resultiert im stationären Zustand im Barrieregestein ein Druckgradient, der eine stationäre nach oben gerichtete Grundströmung verursacht.

Die thermischen und hydraulischen Anfangsbedingungen werden durch thermisch-hydraulisch gekoppelte Vorberechnungen ermittelt, denn der Porenwasserdruck ist an jeder Stelle von der

integralen Dichte der darüber liegenden Wassersäule abhängig, die wiederum von der Temperatur abhängt.

Für die Berechnung des ungestörten Anfangsspannungszustands wird vereinfachend von einer einheitlichen konstanten Dichte ausgegangen. In einer Vorberechnung wird unter Berücksichtigung der Schwerkraft der Spannungszustand am unteren Modellrand berechnet. Unter der Annahme einer Überdeckung von 30 m über der Modellobergrenze (ungesättigte Zone), wird ein Tiefengradient berechnet, sodass sich die effektiven Anfangsspannungen σ_{xx}^{IC} , σ_{yy}^{IC} und σ_{zz}^{IC} (in Pa) unter Berücksichtigung des Koordinatensystems in vertikaler Richtung und horizontaler Richtung wie folgt im gesamten Gebiet darstellen lassen:

 $\sigma_{zz}^{IC} = -1,76 \cdot 10^6 + 1,76 \cdot 10^4 \cdot z$

 $\sigma_{xx}^{IC} = \sigma_{yy}^{IC} = -0.642 \cdot 10^6 + 0.642 \cdot 10^4 \cdot z$

wobei z die Höhe mNN ist.

In den Berechnungen findet die Schwerkraft für den mechanischen Teil keine Berücksichtigung; es werden nur Spannungsänderungen berechnet und zur Auswertung mit dem Anfangsspannungszustand verrechnet. Der Anfangsspannungszustand erzeugt demnach keine Verformung.

Der Einfluss des Endlagerbergwerks auf das Gestein wird durch eine hydraulische und thermische Randbedingung abgebildet. Der zeitliche Ablauf ist in Abb. 27 skizziert.

Abb. 27: Zeitliche Phasen des Endlagers und der Randbedingungen des numerischen Modells

Hydraulisch wird an allen Strecken innerhalb der ersten 10 Jahre eine Kapillarspannung angesetzt. Der Wert wird über die Annahme einer relativen Luftfeuchtigkeit in den Strecken von $h_{rel} = 80$ % über die Kelvin-Gleichung (Fisher & Israelachvili, 1979) abgeschätzt:

$$p_{c} = -\frac{\rho_{w} \cdot R \cdot T'}{M_{v}} \ln h_{rel}$$

= $-\frac{1004, 4 \text{ kg/m}^{3} \cdot 8, 314 \text{ J/mol/K} \cdot 313, 15 \text{ K}}{0,018 \text{ kg/mol}} \ln 0, 8 = 32, 42 \text{ MPa}$

mit der universellen Gaskonstanten R, der absoluten Temperatur T^{\cdot} und der molaren Masse M_v des Wassers. Diese Kapillarspannung entspricht im Wirtsgestein einer Wassersättigung von 61 %.

Thermisch wird die Einlagerung der Abfälle durch eine instationäre Wärmequelle abgebildet. Betrachtet wird der Einlagerungsbereich für die mit DWR-Mix beladenen BSK auf Basis der in Kapitel 4.3 beschriebenen Geometrien und Wärmeleistungen. Die Wärmequelle wird in Längsrichtung der Strecken (also senkrecht zur Berechnungsebene) als gleichmäßig verteilt angenommen. Der Einlagerungsbeginn wird auf das Jahr 9 festgelegt, die volle Wärmeleistung wird ab dem Jahr 10 angesetzt.

6.1.3 Ergebnisse des Basisfalls

Systemverhalten

Im Folgenden wird das Systemverhalten auf Basis der Ergebnisse des Basisfalls dargestellt. Da einige Prozesse im Nahfeld, wie in Kapitel 6.1.1 beschrieben, nicht betrachtet werden, gehen die Ergebnisgrößen im Nahfeld der Streckenbauwerke ebenfalls nicht bei der Betrachtung der Integrität ein. Unter Nahfeld wird ein Bereich mit weniger als 10 m Abstand zu dem Endlagerbauwerk verstanden. In den entsprechenden Abbildungen ist dieser Bereich durch einen weißen Kasten markiert.

a) Thermisch

In Abb. 29 ist das Temperaturfeld dargestellt. Im Barrieregestein außerhalb des Nahfelds wird die höchste Temperatur von etwa 76 °C nach 500 Jahren erreicht. Die maximale Temperaturerhöhung im Barrieregestein beträgt dabei etwa 30 K. Die zeitlichen Verläufe der Temperaturen in ausgewählten Punkten oberhalb des Endlagers sind in Abb. 28 dargestellt. Die maximale Temperatur im gesamten Modellgebiet ergibt sich durch den geothermischen Gradienten an der Modellunterkante.

Der Bereich mit 10 K Temperaturerhöhung erreicht nach etwa 2.000 Jahren seine maximale vertikale Ausdehnung, die vollständig innerhalb der Wirtsgesteinsschicht (krb+krh: Barremium und Hauterivium) bleibt. Der Temperatureinfluss des Endlagers reicht über das Wirtsgestein hinaus. Die Temperaturen in den Aquiferen S3 und wd werden durch das Endlager zeitweise erhöht: In der Schicht S3 wird die maximale Temperaturerhöhung von etwa 4,3 K nach 5.000 Jahren erreicht während die Erhöhung der Temperatur in wd mit etwa 8 K ihr Maximum etwa 3.000 Jahren nach Einlagerung erreicht.

Abb. 28: Zeitliche Entwicklung der Temperatur an ausgewählten Punkten im Barrieregestein. Angegeben sind die Entfernungen zur Firste der Strecken, bzw. dem Bohrlochtiefsten (Punkt E entspricht der Oberkante des Barrieregesteins)

Abb. 29: Temperaturverteilung nach 500 Jahren

b) Hydraulisch

In Abb. 30 sind die Porenwasserdrücke in einem Ausschnitt des Modellgebiets dargestellt. Saugspannungen in teilgesättigten Bereichen werden durch negative Porenwasserdrücke repräsentiert. Im Barrieregestein wird nach 130 Jahren die maximale Porenwasserdruckerhöhung von 9 MPa für eine Lokation unterhalb des rechten Einlagerungsbereichs berechnet. Die entsättigte Zone, in der der Porenraum des Gesteins nicht vollkommen mit Wasser gefüllt ist, erreicht ihre größte Ausdehnung nach etwa 125 Jahren, bleibt dabei vollständig im Nahfeld (Definition siehe Kapitel 6.1.1) der Streckenbauwerke. Ab 500 Jahren werden keine entsättigten Bereiche berechnet.

Der zeitliche Verlauf des Porenwasserdrucks lässt sich in Abb. 31 nachvollziehen. Die Bereiche ober- und unterhalb des Einlagerungsbereiches, in denen eine Erhöhung des Porenwasserdrucks berechnet wird, lassen sich in den Zeitverläufen an den Auswertepunkten A und B wiederfinden. Ebenfalls ist im Zeitraum um 40.000 Jahre nach Einlagerung eine Absenkung der Porenwasserdrücke zu erkennen. Dieser Verlauf geht einher mit der Temperaturerhöhung bzw. Temperatursenkung. Der Einfluss der Entsättigung ist als zwischenzeitliche Abschwächung des Druckanstiegs im Druckverlauf des Punktes A erkennbar.

Die Grundwasserströmung wird, im Wesentlichen bedingt durch die Temperaturänderungen, in den ersten 100.000 Jahren durch das Endlager beeinflusst. Danach stellen sich die initialen Porenwasserdrücke wieder ein. In diesem ungestörten Zustand werden im Bereich des Endlagers Abstandsgeschwindigkeiten, die nach oben rechts gerichtet sind, von 0,95·10⁻³ bis 1,05·10⁻³ mm/a berechnet. Die vertikale Komponente beträgt 0,73·10⁻³ bis 0,82·10⁻³ mm/a.

Im Nahfeld und etwas darüber hinaus findet in den ersten 1.000 Jahren, bedingt durch die Entsättigung und die Absenkung des Porenwasserdrucks im Bereich der Strecken, eine Strömung in Richtung der Strecken statt.

Abb. 30: Porenwasserdruck nach 100 Jahren. Negative Werte entsprechen Saugspannungen in der ungesättigten Zone. Die Vektoren zeigen die Strömungsrichtung und qualitativ die Strömungsgeschwindigkeit

Abb. 31: Zeitliche Entwicklung der Porenwasserdrücke an ausgewählten Punkten über dem Einlagerungsbereich. Angegeben sind die Entfernungen zur Firste der Strecken, bzw. dem Bohrlochtiefsten (Punkt E entspricht der Oberkante des Barrieregesteins)

c) Mechanisch

In Abb. 33 sind die Vertikalverschiebungen dargestellt. In Abb. 32 ist die zeitliche Entwicklung der Vertikalverschiebungen an ausgewählten Punkten im Wirtsgestein dargestellt. Die zeitliche Entwicklung der effektiven Spannungen ist in Form der Spur des effektiven Spannungstensors (spur $\mathbf{\sigma} = \sigma_I + \sigma_{II} + \sigma_{III}$) in Abb. 34 dargestellt.

Die maximale Hebung an der Geländeoberkante von 14,6 cm wird für den Zeitpunkt nach 2.000 Jahren berechnet. Die maximale Senkung an der Geländeoberkante tritt mit 0,65 cm nach 9 Jahren auf und damit vor Beginn des Wärmeeintrags. Eine Eigenwertanalyse des effektiven Spannungstensors ergibt, dass im Barrieregestein nach 1.500 Jahren die maximale effektive Druckspannung von -20.77 MPa auftritt, die maßgeblich vom initialen Spannungszustand beeinflusst ist. Nach 1.500 Jahren wird die minimale Druckspannung von -1,88 MPa in der Nähe der Barrieregesteinsgrenze oberhalb des Endlagers erreicht. Eine effektive Zugspannung tritt im Barrieregestein nicht auf.

Abb. 32: Zeitliche Entwicklung der vertikalen Verschiebungen an ausgewählten Punkten im Barrieregestein. Angegeben sind die Entfernungen zur Firste der Strecken, bzw. dem Bohrlochtiefsten (Punkt E entspricht der Oberkante des Barrieregesteins)

Abb. 33: Vertikale Verschiebungskomponente nach 1.500 Jahren

Abb. 34: Zeitliche Entwicklung der Spannungen an ausgewählten Punkten über dem Einlagerungsbereich. Angegeben sind die Entfernungen zur Firste der Strecken, bzw. dem Bohrlochtiefsten (Punkt E entspricht der Oberkante des Barrieregesteins)

Auswertung der Indikatoren zur Bewertung der Integrität des Barrieregesteins

a) Indikator Dilatanz

Im Basisfall wird der maximale Wert des Indikators Dilatanz im Barrieregestein mit einem Wert von 0,47 für den Zeitpunkt 9 Jahre berechnet, also für einen Zeitpunkt vor Beginn des Wärmeeintrags. Die Lokation des Maximums befindet sich rechts am äußeren Rand des Modellgebiets am tiefsten Punkt der Barrieregesteinsschicht und ist in Abb. 35 in Magenta visualisiert.

Zum Systemverständnis sind zusätzlich in der Grafik die zeitlichen Verläufe des Indikators für zwei weitere Punkte am äußeren Rand des Wirtsgesteins gezeigt, an denen zwischenzeitlich im Vergleich zum Ausgangszustand ein größerer Indikatorwert berechnet wird. Die Auswertung des Indikators weist darauf hin, dass im Basisfall das Dilatanz-Kriterium deutlich eingehalten wird (maximaler Indikatorwert ist deutlich kleiner als 1) und die negativen Auswirkungen auf das Kriterium durch das Endlager gering sind.

Abb. 35: Örtliche und zeitliche Entwicklung des Indikators Dilatanz im Barrieregestein

b) Indikator Fluiddruck

Der maximale Wert für den Indikator Fluiddruck im Barrieregestein für den Basisfall wird mit einem Wert von 3,42 MPa für den Zeitpunkt 130 Jahre berechnet. Die Lokation des Maximums befindet sich an der Unterkante des Nahbereichs und ist in Abb. 36 in Magenta visualisiert.

Auch in weiter entfernten Bereichen im Wirtsgestein werden zwischenzeitlich im Vergleich zum Ausgangszustand höhere Werte für den Fluiddruckindikator berechnet. Exemplarisch ist dies für einen Punkt oberhalb des Endlagerbereichs in Abb. 36 visualisiert.

Die Auswertung des Indikators weist darauf hin, dass im Basisfall das Fluiddruck-Kriterium nicht eingehalten wird (es treten positive effektive Spannungen auf, die effektive Zugspannungen darstellen).

Abb. 36: Örtliche und zeitliche Entwicklung des Indikators Fluiddruck

c) Indikator Temperatur

Auf eine grafische Darstellung der Auswertung des Indikators Temperatur wird hier verzichtet, da die Temperatur bereits oben dargestellt wurde (vgl. Systemverhalten Thermisch).

Die höchste Temperatur im Barrieregestein außerhalb des Nahfelds beträgt 76 °C. Sie wird für einen Punkt, der direkt an den Nahbereich angrenzt, unterhalb der Einlagerungsbauwerke zum Zeitpunkt 500 Jahre berechnet. Die Auswertung des Indikators ergibt für den Basisfall im Endlagersystem T1:

$$\frac{T}{T_{Grenz}} = \frac{76\,^{\circ}C}{100\,^{\circ}C} = 0.76$$

Die Auswertung des Indikators weist darauf hin, dass im Basisfall das Temperatur-Kriterium deutlich eingehalten wird (Indikatorwert ist deutlich kleiner 1).

d) Indikator Advektion

Für die Bewertung des Indikators Advektion muss der Abstand s, der ausdrückt, wieweit sich ein Wasserteilchen maximal nur aufgrund von Strömungsprozessen vom Nahfeld des Endlagers aus in einer Million Jahre der oberen Begrenzung des Barrieregesteins angenähert hat und der Abstand s₀, der die kleinste Entfernung zwischen dem Nahfeld des Endlagers und der oberen Begrenzung des Barrieregesteins widerspiegelt, bestimmt werden (Kapitel 5.1.4). Hierzu werden die Partikelbahnen im Barrieregestein mit dem Auswerteprogramm Paraview 5.6 (Ahrens et al., 2005, Ayachit, 2015) auf Basis der mit OGS-5 berechneten Strömungsgeschwindigkeitsfelder ausgewertet. Es wird reine Advektion betrachtet, die Partikel sind masselos, bewegen sich exakt mit der Strömung und können sich nicht anlagern oder die Strömung beeinflussen. Die Startpunkte der Partikel (in Abb. 37 grün dargestellt) wurden an der Grenze des Nahfeldes positioniert (vgl. hierzu Kapitel 6.1.1). Zu jedem Berechnungszeitschritt wird an jedem Startpunkt ein Partikel hinzugefügt.

Abb. 37 zeigt die Positionen aller Partikel nach einer Million Jahre. Die Partikel sind nach dem Partikelalter eingefärbt. Partikel, die im Laufe des Transports den Nahfeldbereich erreichen, werden aufgrund der oben beschriebenen Einschränkung nicht dargestellt. Über die stetige Freisetzung von Partikeln ist sichergestellt, dass dies die Auswertung des Indikators nicht beeinflusst. Darüber hinaus ist die Umhüllende der Partikelbahnen als rotes Polygon dargestellt. Alle Partikel befinden sich innerhalb dieser Umhüllenden.

Abb. 37: Auswertung des Advektions-Kriteriums im Barrieregestein anhand der Verfolgung von Partikelbahnen. Dargestellt sind die Startpunkte (grün), die Umhüllende (rot) und die Partikel 1 Million Jahre nach Einlagerungsbeginn

Zunächst ist die Partikelbewegung durch den Einfluss des Endlagers aus Temperaturänderungen und Entsättigung bestimmt. Später werden die Partikel immer stärker durch die ungestörte Grundströmung beeinflusst. Diese ist durch einen vertikalen Druckgradienten geprägt, der eine Strömung nach oben hervorruft. Nach etwa 150.000 Jahren bewegen sich alle Partikel mit der Grundströmung.

Maßgeblich für die Partikelbewegung über 1 Million Jahre ist die ungestörte Grundströmung, die nach oben rechts gerichtet ist. Zu betrachten ist daher der Bereich oberhalb und rechts des Endlagers.

Der kleinste Abstand zwischen dem Nahfeld und der oberen Begrenzung des Barrieregesteins beträgt $s_0 = 274$ m, während der kleinste Abstand zwischen der Umhüllenden aller Partikel und der oberen Begrenzung des Barrieregesteins zu s = 273 m bestimmt wird. Die Auswertung des Indikators für den Basisfall ergibt damit:

$$1 - \frac{s}{s_0} = 1 - \frac{273 \text{ m}}{274 \text{ m}} = 0,0036$$

Die Auswertung des Indikators weist darauf hin, dass im Basisfall das Advektions-Kriterium deutlich eingehalten wird (Indikatorwert ist deutlich kleiner 1).

6.2 Einschluss von Radionukliden

Das für die langzeitsicherheitsanalytischen Rechnungen zur Bewertung des Einschlusses von Radionukliden zu Grunde gelegte abstrahierte Modell des Endlagersystems in einem Tongestein ist in Abb. 38 dargestellt. Die betrachtete Entwicklung für das generische Endlager unterstellt, dass die Versatzmaterialien im Grubengebäude und jene Teile des Wirtsgesteins, die während der Konstruktion des Endlagers entsättigt wurden, innerhalb weniger Jahrzehnte bis Jahrhunderte nach dem Verschluss des Endlagers wieder aufgesättigt werden. Dies erfolgt durch Lösungen, die aus dem Wirtsgestein zutreten. Entsprechend der Rechnungen in Kapitel 6.1 dauert dies ca. 500 Jahre. Die Oberflächen der Endlagerbehälter beginnen zu korrodieren, sobald sie in Kontakt mit Lösungen kommen. Dies geschieht im Modell direkt zu Beginn der Nachverschlussphase. Bevor die Behälter so weit korrodieren, dass Radionuklide aus ihnen freigesetzt werden können, erlangen die geotechnischen Versatz- und Verschlusssysteme ihre geplante Funktion, und es schließt sich die EDZ um das Grubengebäude wieder durch Quellen. Diese Annahme ist standortspezifisch zu prüfen und ggf. anzupassen. Solange die Behälter intakt sind, ändert sich die Aktivität des Abfalls im Behälter nur durch den Zerfall der Radionuklide.

Nach dem Ausfall der Behälter werden die Radionuklide in den Abfällen mobilisiert und aus den Behältern heraus transportiert. Im Vorhaben RESUS wird ausschließlich der Transport von Radionukliden in der gelösten Phase betrachtet. Gasförmige Radionuklide müssen erst gelöst werden, um in die überliegenden Schichten transportiert zu werden. Ein Teil der mobilisierten Radionuklide kann im Behälter oder dessen unmittelbarer Umgebung wieder aus der Lösung in eine feste Phase ausgefällt werden, falls die Radionuklidkonzentration in Lösung die Löslichkeitsgrenze des entsprechenden Elements erreicht. Bezüglich der Löslichkeit werden räumlich und zeitlich konstante geochemische Bedingungen angenommen. Eine Ausfällung von Radionukliden in den Versatzmaterialien im Nahfeld, oder im Wirtsgestein wird auf Grund der abnehmenden Konzentration der Radionuklide in der Lösung mit zunehmender Entfernung zu den Abfällen daher nicht betrachtet.

Der Transport der mobilisierten Radionuklide erfolgt im Basisfall im Nahfeld (Endlagerbereich) um den Behälter (Abb. 38, a) ausschließlich durch Diffusion radial durch die dort vorliegenden geotechnischen Barrieren, und durch Advektion und Diffusion durch das Wirtsgestein aus Tonstein (Abb. 38, b), durch geringdurchlässige überlagernde Tonsteine, bis in das wasserführende

Deckgebirge. Obwohl er als Grundwassergeringleiter eingestuft ist (Abb. 5), wird im Modell der Hilssandstein der Modelleinheit S1 als die nächste Schicht (Abb. 38, c) im Hangenden angenommen, in der advektive Strömung und damit auch ein entsprechender Transport von Radionukliden möglich ist. Eine Rückhaltung erfolgt durch Sorption an den Versatzmaterialien im Nahfeld und an den Gesteinen in allen Bereichen. Der Transport entlang der Einlagerungsstrecken wird nicht betrachtet, da davon ausgegangen wird, dass die Verschlussbauwerke zum Zeitpunkt des Behälterausfalls bereits ihre erwarteten Eigenschaften erreicht haben. In diesem Fall stellt der Transport durch das Wirtsgestein den kürzeren Transportweg mit dem geringeren Transportwiderstand dar.

Als Indikator für die Radionuklidfreisetzung wird eine auf die geringfügige Freisetzung normierte potenzielle Strahlenexposition am Rand des Wirtsgesteins (I1) und im darüber liegenden Geringleiter mit möglicher advektiver Strömung S1 (12) unter Verwendung von Dosiskonversionsfaktoren ermittelt. Dabei wird der jährlich freigesetzte Radionuklidstrom in 5.000 m³ Wasser konzentriert und das Wasser vollständig von der exponierten Gruppe von zehn Personen verbraucht (vgl. Kapitel 5.2). Dieses Berechnungsverfahren entspricht dem im Vorhaben VSG verwendeten Ansatz (Mönig et al., 2012).

Abb. 38: Schematische Darstellung des Modells für das Endlager im Tongestein (links) und der Stratigraphie der Gesteine (rechts) (nicht maßstabsgerecht)

6.2.1 Verwendete Rechenmodelle

Für die Berechnung der Mobilisierung und den Transport im Behälterumfeld wurde das Nahfeldmodul CLAYPOS Version 121031 eingesetzt (Rübel et al., 2007). Der Endlagerbereich des Endlagersystems wird als bestehend aus acht Gruppen von gleichartigen Elementen betrachtet. Jede der acht Gruppen entspricht dabei einem Teilbereich des Endlagers für die Einlagerung einer der acht Abfallarten. Für jede dieser acht Gruppen wird jeweils ein repräsentatives Element der Gruppe modelliert. Im Fall des Endlagersystems T1 ist dieses repräsentative Element ein Einlagerungsbohrloch mit den Endlagerbehältern und den darin enthaltenen Abfällen.

Die Mobilisierung der Radionuklide im Behälter wird für jede der acht betrachteten Abfallarten spezifisch angegeben. Die Radionuklid-Mobilisierung erfolgt mit einer konstanten Rate und beginnt mit dem Zeitpunkt des Behälterausfalls, d. h. sobald Lösungen in den Behälter eindringen können. Mobilisierte Schadstoffe gelangen entweder in Lösung oder fallen als Bodenkörper aus, dies wird durch elementspezifische Löslichkeitsgrenzen gesteuert. Gelöste Stoffe verteilen sich instantan gleichmäßig im gesamten Lösungsvolumen des Behälters. Durch die geotechnische Nahfeldbarriere der Bohrlochverfüllung bewegen sich die Schadstoffe ausschließlich diffusiv. Bei der Diffusionsrechnung wird eine radial symmetrische Geometrie betrachtet, und es werden eine elementspezifische lineare Sorption, sowie der radioaktive Zerfall berücksichtigt.

Für die Berechnung des Transports im Wirtsgestein und hangenden Gesteinsschichten wird das Modul GeoTREND-POSA Version 2013-06-08 verwendet (Reiche et al., 2011). Es simuliert den eindimensionalen Schadstofftransport entlang eines Transportpfades durch ein poröses, fluidgesättigtes geologisches Medium. Der Transportpfad kann dabei in mehrere Bereiche entlang des Transportwegs unterteilt werden, die jeweils unterschiedliche Eigenschaften bezüglich des Transports aufweisen. Dabei werden folgende Prozesse betrachtet: advektiver Transport mit der Grundwasserströmung, diffusiver Transport, dispersiver Transport, elementspezifische Sorption unter Verwendung von Henry-Isothermen, und radioaktiver Zerfall unter Berücksichtigung von Radionuklidketten.

Zur Ermittlung der radiologischen Konsequenzen einer Freisetzung von Radionukliden in die Biosphäre dient das Modul BioTREND Version 2011-12-09 (Reiche & Becker, 2014). Dieses greift auf vorberechnete Dosiskonversionsfaktoren zurück, die alle relevanten Expositionspfade einer standardisierten Referenzbiosphäre berücksichtigen.

6.2.2 Verwendete Daten

Die langzeitsicherheitsanalytischen Rechnungen im Vorhaben RESUS basieren auf generischen Endlagersystemen. Die Eingangsdaten der Transportmodellierung wurden soweit möglich aus realistischen Werten abgeleitet, die überwiegend den Berichten der Forschungsvorhaben ANSICHT (Jobmann et al., 2017) und KOSINA (Bollingerfehr et al., 2018) und der Studien der Nagra zum Projekt Opalinuston (Nagra, 2002a, 2002b) entnommen wurden. Die benötigten Daten zum geologischen Modell wurden aus Schachtprofilen der Endlagermodelle des Vorhabens RESUS abgeleitet.

Die Aktivitäten der Radionuklidinventare der acht betrachteten Abfallarten sind in Kapitel 4.1.2 angegeben. Der angenommene Zeitpunkt des Beginns der Nachverschlussphase ist das Jahr 2080 (Einlagerungsbeginn 2050, 30 Jahre Einlagerungszeit). Da den Aktivitäten für das Radionuklidinventar als Bezugszeitpunkt das Jahr 2075 zu Grunde liegt, wird in den langzeitsicherheitsanalytischen Rechnungen eine zusätzliche Zerfallszeit von 5 Jahren berücksichtigt.

Die Parameterwerte der einzelnen Abfallarten für die Radionuklidmobilisierung (Tab. 25 bis Tab. 27) basieren auf den Annahmen im Forschungsvorhaben KOSINA (Kindlein et al., 2018). Die Mobilisierungsdauer der Glasmatrix wurde entsprechend der Endlagerauslegung für das Endlagermodell T1 in konservativer Weise berechnet und dabei eine zeitlich konstante Temperatur von 100 °C zu Grunde gelegt, die der Maximaltemperatur an der Behälteroberfläche entspricht. Die Behälterlebensdauer wurde entsprechend einer Abschätzung im Vorhaben ANSICHT (Jobmann et

al., 2016) und die für die Lösung zur Verfügung stehenden Volumina in den Behältern durch Schätzung festgelegt. Es wird im Basisfall nicht angenommen, dass einzelne Behälter schon zu Beginn der Einlagerung undicht sind.

Für die Berechnung des Radionuklidtransports wurden die Parameterwerte bezüglich der Löslichkeitsgrenzen in Tab. 28 und der Sorptionskoeffizienten in Tab. 29 weitgehend der Studie der Nagra zum Projekt Opalinuston (Nagra, 2002b) entnommen, da für die Unterkreidetone kein adäquater Datensatz zur Verfügung steht. Für Iod wurde keine Sorption angenommen, da neuere Untersuchungen (Baeyens et al., 2014) dies nicht als gerechtfertigt erscheinen lassen.

Die vertikale Abstandsgeschwindigkeit des Grundwassers entspricht einem typischen Wert für die sehr niedrige Geschwindigkeit, wie man sie an Standorten mit gering durchlässigen Tongestein erwartet und liegt im Bereich der im Vorhaben ANSICHT ermittelten Werte. Der Diffusionskoeffizient für Radionuklide wurde aus dem experimentellen Wert für den effektiven Diffusionskoeffizienten von Tritium im Opalinuston (Van Loon et al., 2004) von 1·10⁻¹¹ m²/s abgeleitet. Dabei wurde eine Erhöhung des Diffusionskoeffizienten durch die natürliche erhöhte Temperatur in der Endlagerteufe von 40 °C gegenüber jener bei den Experimenten von 25 °C berücksichtigt, was einen Faktor 1,41 ergibt (Holz et al., 2000). Die Erhöhung der Temperatur durch die Wärme der Abfälle wird bei den Transportparametern nicht berücksichtigt, da das Temperaturmaximum zum Zeitpunkt des Behälterausfalls bereits deutlich überschritten ist (vgl. Kapitel 6.1). Für Anionen wurde eine Verringerung des Diffusionskoeffizienten gegenüber dem der sonstigen Radionuklide durch den Anionenausschluss um einen Faktor 4 entsprechend der Ergebnisse von Van Loon et al. (2004) berücksichtigt.

Die minimale Transportdistanz im Barrieregestein ist abhängig von der genauen Positionierung des Endlagers. Diese ist im Detail standortspezifisch festzulegen. Für das Vorhaben RESUS wurde die Transportdistanz entsprechend des geologischen Profils am Schacht 1 für das Endlagersystem T1 berechnet. Die Endlagerteufe beträgt 700 m unter Geländeoberkante. Eine fünf Meter mächtige Schicht entsprechend der Höhe des Endlagerbergwerks und der Transport entlang des Einlagerungsbohrlochs werden im Transportmodell in konservativer Weise nicht berücksichtigt.

Abfalltyp	Mobilisierungsdauer [a]
Instant Release Fraction (IRF)	1
Brennstoffmatrix abgebrannter Brennelemente	1.000.000
Glasmatrix bei verglasten Abfällen	67.995
Metalle in CSD-C-Behältern und in Brennelementen	278

Tab. 25:	Mobilisierungsdauer der verschiedenen Abfallbestandteile
----------	--

Tab. 26:	Aufteilung der Ele	mente abgebrannte	r Brennelemente auf	dessen Abfallbereiche
----------	--------------------	-------------------	---------------------	-----------------------

Element			
Clement	IRF	Metall	Matrix
Ве		0,002	0,998
С	0,058	0,418	0,524
CI	0,048	0,515	0,436
Са		0,325	0,675
Ni, Nb		1,000	
Мо		0,986	0,014

Element	Anteil [-]		
	IRF	Metall	Matrix
Sn, Se, Rb, Sm, Ho, Ag			1,000
I, Cs	0,020		0,980
Sr	0,010		0,990
Pd	0,001		0,999
Zr		0,049	0,951
Тс	0,001	0,001	0,998
Cm, Am, Pu, Pa, U, Th, Ac, Np, Ra			1,000

Tab. 27: Sonstige Daten bezüglich der Mobilisierung der Abfälle

Parameter	Wert
Zusätzliche Zwischenlagerzeit [a]	5
Behälterlebensdauer für alle Behälter [a]	5.500
Wasservolumen in Behältern für Brennelemente [m ³]	0,5
Wasservolumen in Behältern für CSD-C/V/B [m ³]	0,17

Tab. 28: Löslichkeitsbegrenzte Elemente und deren Löslichkeitsgrenzen [mol/m³]

Element	Wert	Element	Wert
Sr	3	Pu	6·10 ⁻⁸
Zr	0,006	U	1·10 ⁻⁵
Мо	0,03	Th	3·10 ⁻⁶
Sn	0,0001	Am	2·10 ⁻⁶
Sm	0,002	Ra	0,01
Eu	0,002	Pb	3
Cm	2·10 ⁻⁶	Pa	1·10 ⁻⁵

Tab. 29: Sorbierende Elemente und deren Sorptionskoeffizienten am Tongestein [m³/kg]

Element	Wert	Element	Wert
Ra	0,0007	Nb	4
Sr	0,001	Pd, Pa	5
Мо	0,01	Cm, Am, Zr	10
Со	0,4	Pu, U	20
Cs	0,5	Sm, Eu, Th, Tc	50
Ni	0,9	Sn	100
Pb	2		
Tab. 30:	Transportparameter für	das Endlagersystem T1	
----------	------------------------	-----------------------	
----------	------------------------	-----------------------	

Parameter		Wert
Dichte der Nahfeldmaterialien	[kg/m³]	2.500
Dichte des Wirtsgesteins	[kg/m³]	2.430
Dichte der Gesteine im Deckgebirge	[kg/m³]	2.260
Porosität der Nahfeldmaterialien		0,25
Porosität des Wirtsgesteins		0,20
Porosität der Gesteine im geringdurchlässigen Deckgebirge		0,30
Porosität der Gesteine im Hilssandstein		0,20
Horizontale Abstandsgeschwindigkeit des Grundwassers im Deckgebirge	[m/a]	10
Vertikale Abstandsgeschwindigkeit des Grundwassers im Wirtsgestein	[mm/a]	0,001
Porendiffusionskoeffizient anionischer Radionuklide bei 40 °C	[m²/a]	2,21·10 ⁻³
Transportdistanz im Nahfeld	[m]	0,6
Höhe des Endlagerbereichs (im Modell nicht berücksichtigt)	[m]	5
Transportdistanz im Wirtsgestein am Schacht 1 (inkl. EDZ)	[m]	307
Transportdistanz im geringdurchlässigen Deckgebirge	[m]	84
Transportdistanz im Aquifer	[m]	297

6.2.3 Ergebnisse des Basisfalls

Als Basisfall der Rechnungen wird im Folgenden derjenige Rechenfall bezeichnet, der die im vorangegangenen Abschnitt angegebenen Parameterwerte verwendet.

Abb. 39 zeigt für ausgewählte Radionuklide den zeitlichen Verlauf des gesamten jährlichen Radionuklidstroms aus dem Endlagerbereich in das Wirtsgestein. Diese Kurven sind durch das Mobilisierungsverhalten der Radionuklide geprägt. Die Radionuklidmobilisierung aus den verschiedenen Abfallmatrices beginnt nach dem Ausfall der Abfallbehälter. Der Ausfallzeitpunkt wird durch die Korrosion der Abfallbehälter bestimmt, die aber im Modell vereinfachend weder zeitabhängig noch spezifisch für die verschiedenen Abfallbehältertypen berechnet wird. Vielmehr wird im Modell für alle Behälter ein Behälterversagen nach 5.500 Jahren angenommen. Das kurzzeitige Maximum des Radionuklidstroms kurz darauf wird durch den Anteil der instantan mobilisierbaren Radionuklide verursacht. Dementsprechend weist C-14, das einen vergleichsweise hohen Anteil in der instant release fraction (IRF) hat, auch ein vergleichsweise hohes lokales Maximum in der Kurve zu frühen Zeiten auf. Je stärker das entsprechende Radionuklid an den Nahfeldmaterialien sorbiert, desto später erfolgt seine Freisetzung aus dem Nahfeld. So ist z. B. Tc-99 stark, Ni-59 schwach und Se-79 nicht sorbierend. Der frühzeitige Abfall einiger Freisetzungskurven, wie z, B. von C-14 und Ni-59, wird durch den radioaktiven Zerfall der entsprechenden Radionuklide verursacht. Die Sprünge im Radionuklidstrom einiger Radionuklide bei etwa 100.000 und 1.000.000 Jahren (vergleiche z. B. die Kurve von I-129) werden durch das Ende der Mobilisierung aus den verglasten Abfällen, bzw. der aus den Brennelementen verursacht. Bei U-234 zeigt sich, dass dessen Konzentration im Nahfeld die Löslichkeitsgrenze erreicht und ein wesentlicher Anteil der Radionuklide in eine feste Phase ausgefällt wird. Dieser Anteil wird auch nach dem Ende der Mobilisierung von U-234 aus den Brennelementen weiterhin aus dem Nahfeld in das Wirtsgestein freigesetzt.

Abb. 40 zeigt den Zeitverlauf der Indikatoren I1 und I2 im Basisfall. Die Radionuklidfreisetzung steigt zum Ende des Nachweiszeitraums noch an, und das Maximum am Rand des Wirtsgesteins tritt nach erst nach Zeiten weit größer als einer Million Jahre auf. Bei einer Million Jahre wird das Maximum durch die Freisetzung von I-129 und Se-79 verursacht.

Abb. 39: Radionuklidstrom aus dem Nahfeld in das Wirtsgestein

Abb. 40: Zeitverlauf der Indikatoren I1 und I2 am Rand des Barrieregesteins und in der Modelleinheit S1 für den Basisfall

6.3 Diskussion der Ergebnisse

6.3.1 Integrität des Barrieregesteins

Die Berechnungen zeigen ein stark gekoppeltes THM-System. Im Wesentlichen sind folgende, zum Teil konkurrierende, Mechanismen auszuweisen (Abb. 41):

- 1. Die Entsättigung und Druckabsenkung im Einlagerungsbereich führen zur Erhöhung der effektiven Druckspannungen und so zu einer Kompaktion, die auch zu einer Senkung an der Geländeoberfläche führt. Hydraulisch führt die Druckabsenkung zu einer Strömung in Richtung Grubengebäude. Dieser Mechanismus hat seine stärkste Ausprägung zu Beginn.
- 2. Der Wärmeeintrag durch die hochradioaktiven Abfälle führt zur Ausdehnung des Gesteins und so auch zu Hebungen an der Geländeoberfläche. Im vorliegenden teileingespannten Zustand erhöhen sich die effektiven Druckspannungen in einer Zone um den Einlagerungsbereich. Diese Erhöhung der Druckspannungen führt aus Gründen des mechanischen Gleichgewichts zu einer Verringerung der Druckspannungen in größerer Entfernung zum Endlager.
- 3. Der Wärmeeintrag führt zu einer Ausdehnung des Fluids und so zu einer Erhöhung des Porenwasserdrucks, die sich im gering durchlässigen Gestein nur langsam abbaut. Durch den Ansatz der effektiven Spannungen führt dies zu einer Verringerung der effektiven Druckspannungen. Hydraulisch führt dies zu einer Strömung aus diesen Bereichen heraus. Mechanismen, die durch Temperaturerhöhung ausgelöst werden, haben die stärkste Auswirkung mit Beginn der Einlagerungsphase bis etwa 1.000 Jahre, abhängig von dem Abstand zur Wärmequelle.
- 4. Die Abkühlung des Gesteins führt zur Kontraktion, bzw. Druckspannungsverminderung im teileingespannten Zustand. Dies führt zu Senkungen an der Geländeoberfläche.
- 5. Die Abkühlung des Fluids führt zur Kontraktion des Fluids und so zu einer Verminderung des Porenwasserdrucks. Durch den Ansatz der effektiven Spannungen führt dies zu einer Erhöhung der effektiven Druckspannungen. Mechanismen, die durch eine Abkühlung hervorgerufen werden, zeigen ihre stärkste Ausprägung zwischen 10.000 und 100.000 Jahren.

Die Temperaturentwicklung ist durch die Wärmeleitung, also diffusiv, dominiert. Die Abhängigkeit von anderen Prozessen ist im gesättigten Wirtsgestein klein. Im Nahbereich des Einlagerungsbereichs führt die Entsättigung und Absenkung des Porenwasserdrucks zur Kompensation der temperaturbedingten Porenwasserdruckerhöhung.

Das regionale Strömungsfeld ist im Wesentlichen von den Aquiferen bestimmt. Die Fließgeschwindigkeiten, und damit auch die Durchflüsse im Barrieregestein, sind im Vergleich zu denen in anderen Schichten, die eine höhere hydraulische Durchlässigkeit aufweisen, vernachlässigbar klein und hängen von den Druckdifferenzen der Schichten im Hangenden und im Liegenden ab. So liegt im ungestörten Anfangszustand eine nach oben gerichtete Strömung im Barrieregestein vor mit einer Abstandsgeschwindigkeit von etwa 0,001 mm/a.

Abb. 41: Berechnete zeitliche Entwicklung des gekoppelten THM-Systems; beispielhaft dargestellt an einem Punkt im Wirtsgestein

Der <u>Indikator Dilatanz</u> bewertet die Möglichkeit eines Verlusts der Integrität durch mechanisches Versagen, insbesondere das Versagen durch zu hohe Scherbeanspruchung. Hierbei wird das Zusammenwirken von thermomechanischer und hydraulischer Beanspruchung betrachtet. Zu erwarten sind hohe Werte in Bereichen hoher thermischer Gradienten und zu Zeiten großer Temperaturerhöhungen. Dieser Indikator ist aber auch stark von dem Anfangsspannungszustand abhängig. Wenn bereits im ungestörten Zustand eine hohe Deviatorspannung vorliegt, also große Unterschiede in den Hauptspannungen, ist ein Schubversagen schon bei kleineren Spannungsänderungen, die den Indikator negativ beeinflussen, möglich.

Der <u>Indikator Fluiddruck</u> bewertet die Möglichkeit eines Verlusts der Integrität durch Zugversagen. Effektive Zugspannungen können z. B. durch thermisch bedingte Druckerhöhung des Fluids und durch Zugspannungen als Ausgleich zu thermisch oder hydraulisch induzierten Druckspannungen auftreten. Schnelle Temperaturanstiege in Kombination mit geringen Permeabilitäten und hohen Porositäten beeinflussen den Indikator negativ.

Der <u>Indikator Advektion</u> bewertet, wie schnell bzw. wie weit sich Partikel aus dem Einlagerungsbereich in einer Million Jahre entfernen. Er ist im Wesentlichen von der ungestörten Grundströmung beeinflusst, da der Einfluss des Endlagers auf den Porenwasserdruck und damit auf die Fließgeschwindigkeiten, zeitlich begrenzt ist (Abb. 31). Der Indikator hängt somit im Wesentlichen von den Gesteinseigenschaften Permeabilität und durchflusswirksame Porosität sowie dem hydraulischen Gradienten ab. Kurzzeitig bewirkt die Druckabsenkung im Grubengebäude eine Strömung in Richtung Endlager, wirkt sich also positiv auf den Indikator aus. Der <u>Indikator Temperatur</u> beschreibt die berechnete Temperatur im Verhältnis zu einer Grenztemperatur. Hohe Temperaturen wirken sich somit negativ auf den Indikator aus. Allerdings ist die Bedeutung für die Integrität genauer zu betrachten. Die Auslegungsberechnungen (Kapitel 4.3) stellen bereits sicher, dass keine kritischen Temperaturen erreicht werden. Ob Temperaturen unterhalb der Auslegungstemperatur die Integrität des Barrieregesteins beeinflussen ist standortbezogen zu beantworten. Indirekte Auswirkungen der Temperaturerhöhungen, wie thermisch induzierte Spannungen, werden bereits mit dem Indikator Dilatanz- und Fluiddruck abgedeckt.

Die Analysen des THM-Systemverhaltens und die Auswertung der Indikatoren weisen im Basisfall darauf hin, dass die Integrität des Barrieregesteins im Nachweiszeitraum außerhalb des Nahfeldes gefährdet ist. Die temperaturinduzierte Porenwasserdruckerhöhung führt über einen längeren Zeitraum positiven effektiven Spannungen, also effektiven Zugspannungen, zu im sicherheitsrelevanten zentralen Bereich über und unter dem Einlagerungsbereich im Barrieregestein.

6.3.2 Einschluss von Radionukliden

Die geowissenschaftliche Prognose über die Entwicklung eines Standortes ist nach den vorliegenden wissenschaftlichen Erkenntnissen begrenzt. Basierend auf den Empfehlungen des AKEnd (2002) ist daher auch der Nachweiszeitraum in Deutschland auf eine Million Jahre festgelegt (BMU 2010a, StandAG). Die Berechnung von Sicherheitsindikatoren (Strahlenexposition) in einem Genehmigungsverfahren ist folglich auf diesen Zeitraum zu begrenzen. Die Berechnung einer Strahlenexposition ist dabei nicht als Prognose, sondern als Indikator für die Sicherheit des Endlagers zu verstehen (ICRP, 2013). Neben der Berechnung von Sicherheitsindikatoren ist es eine fundamentale Aufgabe eines Safety Case ergänzende Aussage zur Zuverlässigkeit und Robustheit des Systems zu machen, z. B. durch Performance-Indikatoren (OECD/NEA, 2013, 2014). Diese Aussagen können auch über den Nachweiszeitraum hinausgehen, da es auch nach einer Million Jahre noch ein Gefährdungspotenzial hochradioaktiver Abfälle gibt. Ziel solcher Aussagen zur Robustheit und Zuverlässigkeit ist zu zeigen, dass die getroffenen Maßnahmen für den Nachweis der Sicherheit eines Endlagers möglichst lange in die Zukunft wirksam bleiben.

Die durchgeführten integrierten langzeitsicherheitlichen Rechnungen im Vorhaben RESUS dienen allerdings der Analyse der Radionuklidausbreitung zur Bewertung des Einflusses der Abwägungskriterien diese Ausbreitung unter den beschriebenen auf geologischen Randbedingungen. Die geowissenschaftliche Langzeitprognose ist eine entscheidende Grundlage dieser Randbedingungen und der darin betrachtete Prognosezeitraum beträgt im Vorhaben RESUS eine Million Jahre. Bei Systemen mit einem hohen Einschlussvermögen, bei denen das Maximum der Radionuklidfreisetzung erst nach einer Million Jahre auftritt, wird die Aussagekraft der geowissenschaftlichen Langzeitprognose bezüglich der geologischen Verhältnisse zum Zeitpunkt des Auftretens des Maximums zunehmend ungewiss. Aus diesem Grund werden im Vorhaben RESUS keine weiteren langzeitsicherheitsanalytischen Variationsrechnungen zur Bewertung der Signifikanz der im StandAG angegebenen Parameterwerte für die Bewertungsgrößen der Abwägungskriterien dargestellt.

7 Bewertung der Indikatoren der geowissenschaftlichen Abwägungskriterien unter Berücksichtigung der generischen Sicherheitsuntersuchungen

In diesem Kapitel wird dargestellt, in welchem Umfang die Ergebnisse der im Vorhaben RESUS durchgeführten generischen Sicherheitsuntersuchungen zum hier betrachteten Endlagersystem bei der sicherheitsgerichteten Bewertung der Abwägungskriterien bzw. der zugehörigen Indikatoren beitragen können. Insbesondere wird untersucht, welche Bewertungen sich auf Basis der im Kapitel 5 definierten Indikatoren zur Integrität des Barrieregestein bzw. zum Radionuklideinschluss und von Ergebnissen entsprechender Modellberechnungen (Kapitel 6) ableiten lassen. Im Wesentlichen kann dabei auf drei Weisen zur Bewertung der Abwägungskriterien beigetragen werden:

- 1. Verbesserung des grundsätzlichen Systemverständnisses,
- 2. Signifikanzbewertung der im StandAG angegebenen Indikatoren der Abwägungskriterien für die Langzeitsicherheit des Endlagersystems,
- 3. Bewertung bzw. Überprüfung der Ausprägung der Indikatoren zu den Abwägungskriterien (z. B. für die Bewertung anhand der Wertungsgruppen).

7.1 Signifikanzbewertung

Zur Signifikanzbewertung soll anhand von Variationsberechnungen untersucht werden, wie sensitiv die Aussagen der generischen Sicherheitsuntersuchungen, konkret über die Integrität des Barrieregesteins bzw. über den Radionuklideinschluss, bezüglich der im StandAG genannten Indikatoren der Abwägungskriterien sind. Dabei wird jeweils der im Basisfall definierte Wert des dem Indikator zugehörigen Parameters variiert: einmal wird der Wert durch den Parameterwert ersetzt, der nach StandAG für den Indikator die Grenze der Wertungsgruppen günstig zu bedingt günstig darstellt, und ein zweites Mal durch den Parameterwert für die angegebene Grenze von bedingt günstig zu weniger günstig. Die in Kapitel 5.1 definierten Indikatoren zur Integrität des Barrieregesteins bzw. zum Radionuklideinschluss bilden die Grundlage für die konkrete Quantifizierung.

Um einen quantitativen Vergleich der Indikatorwerte zur Integrität des Barrieregesteins zu ermöglichen, ist eine Wertung über die Zeit und ggf. auch über den Ort notwendig. Hierfür ist bisher kein allgemein anerkanntes Verfahren bekannt. Im Folgenden wird aus den Ergebnissen der Variationsberechnungen für den jeweiligen Indikator I zur Integrität des Barrieregesteins der ungünstigste Wert über den gesamten Berechnungszeitraum im Barrieregestein ermittelt und das Verhältnis

$$F = \frac{\max(I)_{\text{bedingt günstig/weniger günstig}}}{\max(I)_{\text{günstig/bedingt günstig}}}$$

als Signifikanzmaß betrachtet. Das Nahfeld wird dabei nicht betrachtet (Nahfeld entspricht hierbei einen Bereich innerhalb von 10 m um den Einlagerungsbereich, vgl. Kapitel 6.1.1). Neben dieser schematischen Betrachtung wird die Auswirkung auf die Integrität verbal-argumentativ diskutiert.

Konkrete Signifikanzbewertungen zur Integrität des Barrieregesteins anhand von Parametervariationen können für das Endlagersystem T1 lediglich für die Indikatoren Abstandsgeschwindigkeit und Gebirgsdurchlässigkeit nach Anlage 1 StandAG durchgeführt werden:

- Kriterium zur Bewertung des Transportes radioaktiver Stoffe durch Grundwasserbewegungen im ewG: Eigenschaft Grundwasserangebot, Indikator Gebirgsdurchlässigkeit:
 - Signifikanzbewertung der Variation im Bereich der Wertungsgruppengrenzen auf die Indikatoren Dilatanz, Fluiddruck, Temperatur und Advektion.
- Kriterium zur Bewertung des Transportes radioaktiver Stoffe durch Grundwasserbewegungen im ewG: Eigenschaft Grundwasserströmung, Indikator Abstandsgeschwindigkeit:
 - Signifikanzbewertung der Variation im Bereich der Wertungsgruppengrenzen auf den Indikator Advektion

Nur in diesen beiden Fällen sind Zahlenwerte, die direkt in die Berechnungen zur Integrität des Barrieregesteins einfließen, für die Bewertungsgruppen der Indikatoren zu den Abwägungskriterien im StandAG angegeben.

Der Einschluss der Radionuklide wurde im Vorhaben RESUS durch langzeitsicherheitsanalytische Transportberechnungen bewertet. Der dabei zu Grunde gelegte Nachweiszeitraum beträgt entsprechend den regulatorischen Vorgaben in BMU 2010a und StandAG eine Million Jahre. Entsprechende Variationsberechnungen konnten für die Indikatoren des Kriteriums 1 zur Bewertung des Transports radioaktiver Stoffe, sowie für den Indikator zur Sorptionsfähigkeit der Gesteine (Kriterium 9) durchgeführt werden.

Für das Endlagersystem T1 erfolgt während des Nachweiszeitraums zwar eine Radionuklidfreisetzung aus dem Barrieregestein, das absolute rechnerische Maximum der Radionuklidfreisetzung tritt aber erst nach Ende des Nachweiszeitraums auf. Eine Bewertung der Signifikanz kann aber nur bezüglich des absoluten Maximums der Radionuklidfreisetzung erfolgen. da der Verlauf der Radionuklidfreisetzung zu einem bestimmten Zeitpunkt für diesen Zweck nicht ausreichend belastbar ist. Dies gilt insbesondere dann, wenn das absolute Maximum nach einer Million Jahre auftritt, während das Maximum der Freisetzung innerhalb des Nachweiszeitraum genau bei einer Million Jahre auftritt und die Freisetzung zu diesem Zeitpunkt eine stark zunehmende Tendenz aufzeigt. In diesem Fall ist das Maximum im Nachweiszeitraum nur ein relatives Maximum. Eine Bewertung der Signifikanz in Bezug auf das absolute Maximum der Radionuklidfreisetzung für Zeiten später als eine Million Jahre wurde nicht durchgeführt, da zum einen auf Grund der dann fehlenden geologischen Langzeitprognose die Ungewissheit der Aussage stark zunimmt und zum anderen fraglich ist, inwieweit eine Variation des Ergebnisses ienseits des Nachweiszeitraums aussagekräftig ist für die Standortauswahl eines Endlagers, für das die Sicherheit während des Nachweiszeitraums nachgewiesen werden soll. Eine Bewertung der Signifikanz der geowissenschaftlichen Abwägungskriterien des StandAG kann damit – unabhängig vom gewählten Sicherheitsindikator - nur für solche Endlagersysteme erfolgen, bei denen das absolute Maximum der Radionuklidfreisetzung innerhalb des Nachweiszeitraums auftritt. Dies ist bei Systemen mit hohem Einschlussvermögen nicht der Fall. Aus den Ergebnissen der Variationsberechnungen wurde aus den genannten Gründen keine Signifikanz der im StandAG angegebenen geowissenschaftlichen Abwägungskriterien abgeleitet und das Ergebnis der durchgeführten Berechnungen zum Endlagersystem T1 nicht dargestellt.

7.1.1 Parametervariationen zum Kriterium zur Bewertung des Transportes radioaktiver Stoffe durch Grundwasserbewegungen im

Grundwasserströmung, Abstandsgeschwindigkeit

Die Abstandsgeschwindigkeit ist ein Ergebnis der Berechnungen und ist damit vor allem von den hydraulischen Randbedingungen abhängig, insbesondere dem hydraulischen Gradienten, der Geometrie und den Eigenschaften des Gesteins, insbesondere der Permeabilität und Porosität, sowie des Fluids. Nach dem Darcy-Gesetz gehen Permeabilität, Porosität und der hydraulische Gradient linear in die Abstandsgeschwindigkeit ein. Demnach würde eine Verdoppelung des hydraulischen Gradienten oder der hydraulischen Durchlässigkeit, sowie eine Halbierung der Porosität zu einer Verdoppelung der Abstandsgeschwindigkeit führen.

Analyse des Indikators Advektion

Im Basisfall wurde im ungestörten Fall im Barrieregestein eine senkrecht nach oben gerichtete Abstandsgeschwindigkeit v_a von etwa 0,001 mm/a berechnet (vgl. Kapitel 6.1.3).

Die Abstandsgeschwindigkeit kann nicht direkt variiert werden, ohne die Ausgangsgrößen und damit das geologische Modell zu verändern. Sie hat jedoch einen direkten Einfluss auf den Indikator Advektion. Um diesen darzustellen, wird hier ein überschlägiger Zusammenhang (Kapitel 5.1.4) für die Bestimmung der für den Indikator Advektion benötigten Abstände bzw. Zeiten verwendet (vgl. Kapitel 5.1.4 und 6.1.3):

$$s = s_0 - v_a \cdot t = 274 \, m - v_a \cdot 10^6 a$$

 $t' = \frac{s_0}{v_a} = \frac{274 \, m}{v_a}$

mit der Abstandsgeschwindigkeit v_a und dem im Kapitel 6.1.3 (Indikator Advektion) bestimmten Abstand zwischen dem Nahbereich des Endlagers und der oberen Begrenzung des Barrieregesteins s₀ = 274 m. Hierbei wird die Abstandsgeschwindigkeit v_a als konstant angenommen, nur der ungestörte Strömungszustand ohne Berücksichtigung der Auswirkungen des Endlagers zu Grunde gelegt und vereinfachend s₀ als eindimensionale Transportstrecke betrachtet. Bei der Berechnung des Indikators Advektion ist eine Fallunterscheidung vorzunehmen:

Indikator Advektion = $\begin{cases} 1 - \frac{s}{s_0} & \text{wenn } s > 0 \text{ (Fall 1)} \\ \frac{10^6 a}{t'} & \text{wenn } s = 0 \text{ (Fall 2)} \end{cases}$

Setzt man die in Anlage 1 des StandAG dargestellten Werte für die Abstandsgeschwindigkeit ein, berechnet sich der Indikator wie folgt:

Variante A1: Grenze "günstig" / "bedingt günstig":

Prüfung der Fallunterscheidung:

 $s = s_0 - v_a \cdot t = 274 \text{ m} - 0.1 \frac{\text{mm}}{\text{a}} \cdot 10^6 \text{a} = 174 \text{ m}$

Der Abstand s ist hier positiv, d. h. die Partikel erreichen innerhalb einer Million Jahre nicht die obere Begrenzung des Barrieregesteins. Zur Berechnung des Indikators wird der 1. Fall angewendet:

Indikator Advektion = $1 - \frac{174 \text{ m}}{274 \text{ m}} = 0,365$

Variante A2: Grenze "bedingt günstig" / "weniger günstig":

Prüfung der Fallunterscheidung:

$$s = s_0 - v_a \cdot t = 274 \text{ m} - 1,0 \frac{mm}{a} \cdot 10^6 a = -726 \text{ m}$$

Der Abstand s ist hier negativ, d. h. die Partikel erreichen innerhalb einer Million Jahre die obere Begrenzung des Barrieregesteins. Zur Berechnung des Indikators wird der 2. Fall angewendet:

Indikator Advektion =
$$\frac{10^6 a}{t'} = \frac{10^6 a}{\frac{s_0}{v_a}} = \frac{10^6 a}{\frac{274m}{1mm/a}} = 3,65$$

Der Einfluss des Indikators Abstandsgeschwindigkeit nach StandAG auf den Indikator Advektion wird quantifiziert durch das oben eingeführte Signifikanzmaß *F*

$$F_{Advektion} = \frac{\text{Indikator Advektion}_{\text{bedingt günstig/weniger günstig}}}{\text{Indikator Advektion}_{\text{günstig/bedingt günstig}}} = \frac{3,65}{0,365} = 10$$

Das Signifikanzmaß weist auf eine große Sensitivität des Indikators Advektion hinsichtlich einer Variation der Abstandsgeschwindigkeit in der Bandbreite der im StandAG genannten Wertungsgruppen hin. Das Verhältnis der betrachteten Werte für die Abstandsgeschwindigkeiten überträgt sich hier aufgrund der zugrunde gelegten überschlägigen Berechnungsvorschriften unverändert auf das Signifikanzmaß *F*.

Die hier untersuchten Varianten weisen deutlich höhere Abstandsgeschwindigkeiten als der Basisfall auf. Dies führt dazu, dass bei der Variante A2 der Indikator darauf hinweist, dass das Advektions-Kriterium nicht eingehalten werden kann.

Grundwasserangebot, Gebirgsdurchlässigkeit

Die Gebirgsdurchlässigkeit stellt einen Eingangsparameter für die THM-Berechnungen dar. Um den Einfluss der Bewertungsgröße auf die Indikatoren zur Bewertung der Integrität des Barrieregesteins zu analysieren, werden zwei Varianten mit unterschiedlicher Permeabilität betrachtet. Hierfür werden die in der Anlage 1 des StandAG genannten Werte für die Durchlässigkeitswerte (Grenze "günstig" / "bedingt günstig": 1·10⁻¹² m/s und Grenze "bedingt günstig" / "weniger günstig" 1·10⁻¹⁰ m/s) in Permeabilitätswerte umgerechnet. Die initiale Temperatur in Endlagerteufe wird zu Grunde gelegt, um die Viskosität und Dichte des Wassers zu bestimmen. Es ergibt sich

- Variante P1: Grenze "günstig" / "bedingt günstig": k_{\perp} = 8,28·10⁻²⁰ m², k_{\parallel} = 8,28·10⁻¹⁹ m²
- Variante P2: Grenze "bedingt günstig" / "weniger günstig": k_{\perp} = 8,28·10⁻¹⁸ m², k_{\parallel} = 8,28·10⁻¹⁷ m²

Im Folgenden werden alle Indikatoren zur Bewertung der Integrität des Barrieregesteins für beide Varianten ausgewertet.

Analyse des Indikators Dilatanz

Variante P1

Der maximale Wert des Indikators Dilatanz für die Variante P1 (Durchlässigkeitsbeiwert = $1 \cdot 10^{-12}$ m/s) wird mit einem Wert von 0,47 für den Zeitpunkt 9 Jahre berechnet und damit vor Einlagerungsbeginn. Die Lokation des Maximums befindet sich rechts am äußeren Rand des Modellgebiets im tiefsten Punkt der Barrieregesteinsschicht und ist in Abb. 42 in Magenta visualisiert.

Abb. 42: Variante P1: Örtliche und zeitliche Entwicklung des Indikators Dilatanz (Durchlässigkeitsbeiwert = $1 \cdot 10^{-12}$ m/s)

Variante P2

Der maximale Wert des Indikators für diese Durchlässigkeitsvariation (Durchlässigkeitsbeiwert = $1 \cdot 10^{-10}$ m/s) wird mit einem Wert von 0,47 für den Zeitpunkt 40 Jahre berechnet. Die Lokation des Maximums befindet sich rechts am äußeren Rand des Modellgebiets im tiefsten Punkt der Barrieregesteinsschicht und ist in Abb. 43 visualisiert.

Abb. 43: Variante P2: Örtliche und zeitliche Entwicklung des Indikators Dilatanz (Durchlässigkeitsbeiwert = 1.10^{-10} m/s)

Der Indikator ist bei beiden Varianten stärker vom ungestörten Zustand (dem initialen effektiven Spannungszustand) als dem Endlager beeinflusst.

Es wird der maximale Wert für den Indikator Dilatanz (vgl. Kapitel 5.1.1) ausgewertet, es ergibt sich:

- Variante P1: 0,47
- Variante P2: 0,47

Die Auswertung des Indikators weist darauf hin, dass in beiden Varianten das Dilatanz-Kriterium deutlich eingehalten wird (maximaler Indikatorwert ist deutlich kleiner als 1) und die negativen Auswirkungen auf das Kriterium durch das Endlager gering sind.

Beide Varianten zeigen hinsichtlich des Maximalwertes des Indikators Dilatanz, auch im Vergleich zum Basisfall (0,47), keine Unterschiede. Für die Auswertung der Sensitivität des maximalen Werts des Indikators hinsichtlich der Änderung der Gebirgsdurchlässigkeit ergibt sich ein Signifikanzmaß von F = 0.47 / 0.47 = 1.0.

Das Signifikanzmaß weist darauf hin, dass die Gebirgsdurchlässigkeit in dem im StandAG dargestellten Wertebereich keinen Einfluss auf das Dilatanz-Kriterium hat. Dies liegt allerdings auch an der Auswertungsmethode, die nur auf den maximalen Wert ausgerichtet ist. Dieser maximale Wert ist unbeeinflusst von dem Endlager. An anderen Punkten ist hingegen eine Beeinflussung gegeben (blaue Linien in Abb. 42 und Abb. 43). Der Indikator ist bei beiden Varianten deutlich von sicherheitsrelevanten Werten entfernt und im Barrieregestein stärker vom ungestörten Zustand (dem initialen Spannungszustand) als dem Endlager beeinflusst.

Analyse des Indikators Fluiddruck

Variante P1

Der maximale Wert des Indikators Fluiddruck für die Variante P1 (Durchlässigkeitsbeiwert = $1 \cdot 10^{-12}$ m/s) wird mit einem Wert von 0,37 MPa für den Zeitpunkt 1000 Jahre berechnet. Die Lokation des Maximums befindet sich zentral oberhalb des Endlagers und ist in Abb. 44 in Magenta visualisiert.

Abb. 44: Variante P1: Örtliche und zeitliche Entwicklung des Indikators Fluiddruck (Durchlässigkeitsbeiwert = 1.10^{-12} m/s)

Variante P2

Der maximale Wert des Indikators Fluiddruck für die Variante P2 (Durchlässigkeitsbeiwert = $1 \cdot 10^{-10}$ m/s) wird mit einem Wert von -0,59 MPa für den Zeitpunkt 600 Jahre berechnet. Die Lokation des Maximums befindet sich an der Wirtsgesteinsoberkante zentral oberhalb der Einlagerungsbauwerke und ist in der Abb. 45 in Magenta visualisiert.

Abb. 45: Variante P2: Örtliche und zeitliche Entwicklung des Indikators Fluiddruck (Durchlässigkeitsbeiwert = 1.10^{-10} m/s)

Es wird der maximale Wert für den Indikator Fluiddruck (vgl. Abschnitt 7.2.3) ausgewertet, es ergibt sich:

- Variante P1: 0,37 MPa
- Variante P2: -0,59 MPa

Eine Auswertung des Signifikanzmaßes ist für diesen Indikator aufgrund des Nulldurchgangs nicht sinnvoll. Auch ohne Auswertung des Signifikanzmaßes ist hier ein deutlicher Einfluss der Variation der Gebirgsdurchlässigkeit in dem Wertebereich, der im StandAG dargestellt ist, auf den berechneten Indikator Fluiddruck zu beobachten, der sicherheitsrelevante Auswirkungen haben kann. Der Indikator Fluiddruck weist darauf hin, dass das Fluiddruck-Kriterium Variante P1 nicht eingehalten werden könnte und deshalb bezüglich dieses Indikators die Variation P2 (Durchlässigkeitsbeiwert = $1 \cdot 10^{-10}$ m/s) als günstiger zu bewerten ist.

Analyse des Indikators Temperatur

Die Berechnungen haben gezeigt, dass die Temperatur im Barrieregestein außerhalb des Nahfeldes der Einlagerungsstrecken deutlich unter der Grenztemperatur liegt. Die Variation der Permeabilität hat keinen wesentlichen Einfluss auf die Temperatur, sodass eine Auswertung in Hinblick auf die Sensitivität nicht sinnvoll erscheint.

Analyse des Indikators Advektion

Variante P1

Der kleinste Abstand zwischen dem Nahfeld und der oberen Begrenzung des Barrieregesteins beträgt $s_0 = 274$ m während der kleinste Abstand zwischen der Umhüllenden aller Partikel und der oberen Begrenzung des Barrieregesteins zu s = 267 m berechnet wird. Die Auswertung des Indikators für die Variante P1 ergibt damit:

$$1 - \frac{s}{s_0} = 1 - \frac{267 \text{ m}}{274 \text{ m}} = 0.0255$$

Abb. 46: Variante P1: Auswertung des Indikators Advektion im Barrieregestein anhand der Verfolgung von Partikeln. Dargestellt sind alle Partikel 1 Million Jahre nach Einlagerungsbeginn

Variante P2

Der kleinste Abstand zwischen dem Nahfeld und der oberen Begrenzung des Barrieregesteins beträgt $s_0 = 274$ m während der kleinste Abstand zwischen der Umhüllenden aller Partikel und der oberen Begrenzung des Barrieregesteins zu s =15 m berechnet wird. Die Auswertung des Indikators für die Variante P2 ergibt damit:

Abb. 47: Variante P2: Auswertung des Indikators Advektion im Wirtsgestein anhand der Verfolgung von Partikeln. Dargestellt sind alle Partikel zum Zeitpunkt 1 Million Jahren

Es wird der Indikator Advektion (vgl. Kapitel 5.1.4) ausgewertet, es ergibt sich:

- Variante P1: 0,0255
- Variante P2: 0,945

Die beiden Varianten zeigen hinsichtlich des Indikators Advektion, Variante P2 auch im Vergleich zum Basisfall (0,0036), große Unterschiede. In der zweiten Variante (Grenze "weniger günstig" / "ungünstig") wird die Permeabilität im Vergleich zum Basisfall deutlich erhöht, sodass die Auswertung des Indikators bei P2 darauf hinweist, dass das Advektionskriterium nur knapp erfüllt wird (Indikatorwert nur geringfügig kleiner als 1). Bei P1 weist die Auswertung des Indikators darauf hin, dass das Advektions-Kriterium deutlich eingehalten werden kann (Indikatorwert ist kleiner als 1).

Für die Sensitivität hinsichtlich der Gebirgsdurchlässigkeit auf den Indikator Advektion ergibt sich das Signifikanzmaß F = 37,1.

Das Signifikanzmaß weist darauf hin, dass die Gebirgsdurchlässigkeit in dem im StandAG dargestellten Wertebereich einen starken Einfluss auf das Advektions-Kriterium und damit auf die Integrität des Barrieregesteins hat.

Zusammenfassung

Die Analyse der Indikatoren hat ergeben, dass eine Variation der Gebirgsdurchlässigkeit in dem Rahmen, der im StandAG vorgegeben wird, auf das Advektions-Kriterium und das Fluiddruck-Kriterium einen starken sicherheitsrelevanten Einfluss hat. Die anderen Indikatoren werden durch diese Variation nicht wesentlich beeinflusst. Dies ergibt sich sowohl durch eine Analyse des Systemverhaltens über Zeit und Ort als auch durch eine streng schematische Auswertung der ungünstigsten Werte der Indikatoren für die Integrität des Barrieregesteins. Zu beachten ist hierbei, dass die Gebirgsdurchlässigkeit an der oberen Bewertungsgrenze positiv auf das Advektions-Kriterium wirkt, jedoch negativ auf das Fluiddruck-Kriterium.

7.1.2 Diskussion der Signifikanzanalyse

In diesem Kapitel wird eine Methodik dargestellt und soweit möglich angewendet, mit der mithilfe von Parametervariationen bewertet und guantifiziert werden soll, wie sensitiv die Aussagen der generischen Sicherheitsuntersuchungen, konkret über die Integrität des Barrieregesteins bzw. über genannten den Radionuklideinschluss, bezüglich der im StandAG Indikatoren der Abwägungskriterien sind. Da jedoch nur für wenige Indikatoren der Abwägungskriterien numerische Werte angegeben sind, die sich direkt in quantitative Analysen überführen lassen, können für das Endlagersystem T1 nur wenige Indikatoren hinsichtlich ihrer Signifikanz untersucht werden. Anhand der Integritätsanalysen ist dies für die Indikatoren Abstandgeschwindigkeit und Gebirgsdurchlässigkeit zu Kriterium 1 zur Bewertung des Transports radioaktiver Stoffe möglich. Für die Analysen zum Radionuklideinschluss liefern die Indikatoren des Kriteriums 1 und der Indikator zur Sorptionsfähigkeit der Gesteine (Kriterium 9) Eingangswerte für eine Parametervariation.

Zur Analyse der Auswirkungen der Variationsbreite der Wertungsgruppen auf die Integrität des Barrieregesteins wurden die Integritätskriterien quantitativ als Indikatoren herangezogen. Um eine skalare Bewertungsgröße zu erhalten, muss eine Wertung über Raum und Zeit erfolgen. Während beim Indikator Advektion diese Wertung bereits implizit erfolgt ist, wurde bei den anderen Indikatoren der ungünstigste Wert (über Raum und Zeit) herangezogen. Hierbei wird weder betrachtet, über welchen Zeitraum und in welche Ausdehnung ein ungünstiger Wert berechnet wird, noch, an welcher Stelle im Barrieregestein und zu welchem Zeitpunkt. Der so ermittelte Wert ist nur indirekt mit möglichen Ursachen und Mechanismen des Integritätsverlustes verknüpft. So kann beispielsweise der Indikator Dilatanz den minimalen Wert unmittelbar nach Berechnungsbeginn, bedingt durch die Entsättigung aufweisen, oder deutlich später, bedingt durch thermomechanische Spannungen. Ähnliches gilt für den Indikator Fluiddruck: Dieser könnte sowohl durch temperaturinduzierten Fluiddruck als auch thermomechanische Prozesse dominiert sein.

Es ist kritisch zu betrachten, inwiefern die formale Berechnung des Signifikanzmaßes F die Sensitivität des Indikators hinsichtlich der Parametervariation in dem Wertebereich, den das StandAG vorgibt, hinreichend beschreibt. Insbesondere beim Indikator Fluiddruck ist eine Auswertung nicht sinnvoll, da dieser nicht als relative Größe bestimmt wird. Durch den möglichen Nulldurchgang kann aus dem Quotienten F als Signifikanzmaß nicht eindeutig eine Sensitivität des Indikators Fluiddruck abgeleitet werden. Die Sensitivität kann aber aus einem direkten Vergleich der Indikatorwerte bewertet werden.

Insgesamt kann festgehalten werden, dass die Auswertung über den ungünstigsten Wert der Indikatoren grundsätzlich die sicherheitstechnische Auswirkung nicht betrachtet, was zu einer verzerrten Auswertung führen kann. So kann beispielsweise ein ungünstiger Wert des Indikators Fluiddruck am äußeren Rand des Barrieregesteins oder eine Temperaturdifferenz zwischen 40 und 50 °C sicherheitstechnisch irrelevant sein. Es sollte daher neben der formalisierten Vorgehensweise

eine verbalargumentative Bewertung der Signifikanz erfolgen. Eine Betrachtung der ungünstigsten Werte der Indikatoren zur Integrität des Barrieregesteins allein ist keine geeignete Grundlage für die Bewertung verschiedener Endlagersysteme.

Eine weitere Schwierigkeit bei der Ableitung von formalen Signifikanzen aus numerischen Analyse zur Integrität des Barrieregesteins mit der vorgestellten Methodik ist, dass Variationen von Eingangsparameter ambivalente Auswirkungen auf die Integrität des Barrieregesteins haben können (beispielsweise wirkt sich eine Verringerung der hydraulischen Durchlässigkeit positiv auf den advektiven Transport aus und negativ auf die Fluiddruckbelastung).

Aus den Analysen zum Radionuklideinschluss lassen sich für das Endlagersystem T1 keine Signifikanzen für die Indikatoren der Abwägungskriterien ableiten. Wie zuvor detailliert beschrieben, lässt sich der wesentliche Indikator für den Einschluss der Radionuklide für dieses Endlagersystem nicht aussagekräftig auswerten.

Insgesamt zeigen diese Ergebnisse, dass die numerischen Analysen zur Langzeitsicherheit insbesondere in der ersten Phase des Standortauswahlverfahrens nur im geringen Maße zur umfassenden Bewertung der Signifikanz der Abwägungskriterien beitragen können. Wesentliche Gründe hierfür sind:

- dass nur bei wenigen Abwägungskriterien im StandAG Zahlenwerte zu Parametern angegeben sind, die direkt in die Parametrisierung des Berechnungsmodells eingehen,
- dass sich der Indikator per se nicht f
 ür eine numerische Analyse der Integrit
 ät der geologischen Barriere oder des Einschlusses von Radionukliden eignet. Beispiele hierf
 ür sind die Indikatoren zum Kriterium in Anlage 4 StandAG, mit denen die f
 ür die langfristige Stabilit
 ät der g
 ünstigen Verh
 ältnisse wichtigen sicherheitsgerichteten geologischen Merkmale in der Vergangenheit zu bewerten sind.
- dass der Indikator (geologische) Gegebenheiten des Endlagersystems beschreibt, die zwar in numerischen Analysen berücksichtigt werden können. Allerdings resultiert eine Änderung der Gegebenheiten in einem deutlich veränderten geologischen Modell, das keine sinnvolle Aussage für das ursprünglich betrachtete Endlagersystem mehr zulässt. Beispiele hierfür sind die Indikatoren zu den Kriterien in den Anlagen 2 (insbesondere der Indikator Barrierenmächtigkeit) und 11 zu § 24 StandAG.
- dass verschiedene Szenarien und Ungewissheiten einen großen Einfluss auf die Ergebnisse haben können. Die Betrachtung eines Basisfalls mit nur einer zu erwartenden Entwicklung liefert nicht ausreichend belastbare Ergebnisse.
- die dargestellten Schwierigkeiten bei der formalisierten quantitativen Gesamtbewertung der Integrität des Barrieregesteins,
- die dargestellte wesentliche Einschränkung der Aussagekraft des Maximums der Radionuklidfreisetzung im Nachweiszeitraum als Indikators zum Radionuklideinschluss,
- dass Variationen von Eingangsparametern ambivalente Auswirkungen auf die Integrität des Barrieregesteins haben können (beispielsweise wirkt sich eine Verringerung der hydraulischen Durchlässigkeit positiv auf den advektiven Transport aus und negativ auf die Fluiddruckbelastung).

Dementsprechend ist eine Ableitung einer stärkeren Gewichtung einzelner Abwägungskriterien bzw. Indikatoren für die sicherheitsgerichtete Abwägung auf Basis dieser Analysen in der ersten Phase des Standortauswahlverfahrens nicht zielführend.

7.2 Überprüfung der Ausprägung der Indikatoren zu den Abwägungskriterien

Die thermischen Auslegungsberechnungen und die numerischen Analysen zur Integrität des Barrieregesteins können zur Überprüfung bzw. Bewertung der Ausprägung der Indikatoren für das Endlagersystem T1 beitragen.

Anhand der Ergebnisse der thermischen Auslegungsberechnungen (Kapitel 4.3.4) und der darauf aufbauenden Planung des Grubengebäudes lassen sich die Bewertungen zu den Indikatoren flächenhafte Ausdehnung (2.3) und Temperaturstabilität des Wirtsgesteins (8.1b) überprüfen. Für das Endlagersystem T1 wurden hier ein Flächenbedarf von 8,7 km² bzw. eine maximale Temperatur im Wirtsgestein von 87 °C ermittelt.

Die Berechnungsergebnisse zur Integrität des Barrieregesteins zum Endlagersystem T1 (Kapitel 6) können wie folgt zur Bewertung der Ausprägung der Indikatoren beitragen:

 Kriterium zur Bewertung des Transportes radioaktiver Stoffe durch Grundwasserbewegungen im ewG: Eigenschaft Grundwasserströmung, Indikator Abstandsgeschwindigkeit:

Im Basisfall wurde im ungestörten Fall im Barrieregestein eine nach oben rechts gerichtete Abstandsgeschwindigkeit v_a von etwa 0,001 mm/a berechnet (vgl. Kapitel 6.1.3).

 Kriterium zur Bewertung der g
ünstigen gebirgsmechanischen Eigenschaften: Indikator "um Endlagerhohlr
äume sind keine mechanisch bedingten Sekund
ärpermeabilit
äten au
ßerhalb einer unvermeidbaren konturnah entfestigten Auflockerungszone zu erwarten":

Die Berechnungen liefern Hinweise auf die Integrität des Barrieregesteins und ermöglichen so eine Einschätzung zu mechanisch bedingten Sekundärpermeabilitäten (Auswertung basierend auf Dilatanz- und Fluiddruck-Kriterium). Die Auswertung des Indikators Fluiddruck weist darauf hin, dass das Fluiddruck-Kriterium in großen Bereichen des Barrieregesteins zwischenzeitlich nicht eingehalten wird und somit eine Neigung zur Bildung von Sekundärpermeabilitäten, hervorgerufen durch temperaturinduzierte Erhöhung der Porenwasserdrücke, festgestellt werden kann.

 Kriterium zur Bewertung der Temperaturverträglichkeit: Indikator Neigung zur Bildung wärmeinduzierter Sekundärpermeabilitäten:

Die Berechnungen liefern Hinweise auf die Integrität des Barrieregesteins und ermöglichen so eine Einschätzung zur Neigung zur Bildung von wärmeinduzierten Sekundärpermeabilitäten (Auswertung basierend auf Dilatanz- und Fluiddruck-Kriterium). Die Auswertung des Indikators Fluiddruck weist darauf hin, dass das Fluiddruck-Kriterium in großen Bereichen des Barrieregesteins zwischenzeitlich nicht eingehalten wird und somit eine Neigung zur Bildung von Sekundärpermeabilitäten, hervorgerufen durch temperaturinduzierte Erhöhung der Porenwasserdrücke, festgestellt werden kann. Bei den Berechnungen werden thermische und mechanische Effekte nicht separat bewertet, sondern gekoppelt analysiert, sodass die letzten beiden Kriterien nicht differenziert betrachtet werden können.

Anhand dieser Ergebnisse wird die in Kapitel 3 vorgenommene Bewertung der Indikatoren

- Abstandsgeschwindigkeit (1.1)
- Flächenhafte Ausdehnung (2.3)
- Neigung zu mechanisch bedingten Sekundärpermeabilitäten (5.1b)
- Neigung zur Bildung wärmeinduzierter Sekundärpermeabilitäten (8.1a)
- Temperaturstabilität des Wirtsgesteins (8.1b)

überprüft. Aus den Berechnungen ergeben sich keine Änderungen der Bewertungen.

ſ							_				
		Endlagersystem T1		C		-					
•	Tab. 31:	Bewertung der Indikato	en nach	Anlage	1 zu	§ 24	Absatz	3 des	StandAG	für	das

Nr.	Indikator	Ausprägung T1	Bewertung
1.1	Abstandsgeschwindigkeit des Grundwassers	Ergebnis der generischen Sicherheitsuntersuchungen	günstig
1.2	Gebirgsdurchlässigkeit des Gesteinstyps	Gebirgsdurchlässigkeit vertikal 10 ⁻¹³ m/s	günstig
1.3	Effektiver Diffusionskoeffizient	$10^{-10} \text{ m}^2/\text{s} > D_{\text{eff}}$ für tritiiertes Wasser > $10^{-11} \text{ m}^2/\text{s}$	bedingt günstig
1.4a	Absolute Porosität	Absolute Porosität größer 20 %	bedingt günstig
1.4b	Verfestigungsgrad	Die Modelleinheiten krh bzw. krb sind gut verfestigte Tonsteine und Tonmergelsteine	günstig

Tab. 32: Bewertung der Indikatoren nach Anlage 2 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
2.1a	Barrierenmächtigkeit	Mächtigkeit des Gebirgs- bereiches, der ewG aufnehmen soll ist größer als 300 m	günstig
		Barrierenmächtigkeit ist größer 150 m	
2.1b	Grad der Umschließung	Vollständig, da es ein Endlagersystem vom Typ A ist	günstig

Nr.	Indikator	Ausprägung T1	Bewertung
2.2	Teufe der oberen Begrenzung des ewG	Obere Begrenzung der Modelleinheit krb liegt tiefer als 500 m u. GOK	günstig
2.3	Flächenhafte Ausdehnung	Modellgröße etwa 70 km ² >> 2-facher Flächenbedarf (2 x 8,7 km ² , siehe Kapitel 4.3.2)	günstig
2.4	Potenzialbringer	Kein Grundwasserleiter in unmittelbarer Nachbarschaft zum Wirtsgesteinskörper (siehe Abb. 5)	günstig

Tab. 33: Bewertung der Indikatoren nach Anlage 3 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
3.1a	Variationsbreite der Eigenschaften der Gesteinstypen	Die Modelleinheiten sind homogen entwickelt und gut charakterisierbar. In den Modelleinheiten krh bzw. krb ist die Variabilität der Fazies und der lithologischen Eigenschaften gering.	günstig
3.1b	Räumliche Verteilung der Gesteinstypen	Modelleinheiten in nahezu horizontaler Lagerung, die Gesteinsabfolge ist großräumig in einem Schichtverband um maximal 1° verstellt. Die Tongesteinsabfolge ist relativ einheitlich und weist keine Diskordanzen auf, die das Fehlen oder Auskeilen von Schichten bedingen bzw. zu Änderungen der Schichtmächtigkeit führen.	günstig
3.1c	Ausmaß der tektonischen Überprägung	Im Modell sind auf der Fläche von 7 km x 10 km keine Störungssysteme vorhanden. Dadurch ist gewährleistet, dass ein ewG bei einem Flächenbedarf des Endlagers von 8,7 km ² so platziert werden kann, dass sich mögliche Störungen in einem Abstand > 3 km zum Rand des ewG befinden.	günstig

Nr.	Indikator	Ausprägung T1	Bewertung
3.2	Gesteinsausbildung	Geringe laterale Variabilität der Fazies und der lithologischen Eigenschaften	günstig

Tab. 34: Bewertung der Indikatoren nach Anlage 4 zu § 24 Absatz 3 des StandAG für das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
4.1a	Zeitspanne über die sich die Mächtigkeit des ewG nicht wesentlich verändert hat	Keine wesentlichen Änderungen seit der Ablagerung und Kompaktion	günstig
4.1b	Zeitspanne über die sich die Ausdehnung des ewG nicht wesentlich verändert hat	Keine wesentlichen Änderungen seit der Ablagerung und Kompaktion	günstig
4.1c	Zeitspanne über die sich die Gebirgsdurchlässig- keit im ewG nicht wesentlich verändert hat	Keine wesentlichen Änderungen seit der Ablagerung und Kompaktion, Dekompaktionsprozesse werden ausgeschlossen	günstig

Tab. 35: Bewertung der Indikatoren nach Anlage 5 zu § 24 Absatz 4 des StandAG für das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
5.1a	Aufnahme der Bean- spruchung des Gebirges aus der Auffahrung ohne planmäßigen tragenden Ausbau	Tragender Ausbau notwendig (siehe Anhang A)	nicht in Wertungsgruppe günstig
5.1b	Mechanisch bedingte Sekundärpermeabilitäten	Konturferne Sekundär- permeabilitäten können auf Grund der generischen Sicherheitsuntersuchungen nicht ausgeschlossen werden.	nicht in Wertungsgruppe günstig

Nr.	Indikator	Ausprägung T1	Bewertung
6.1a	Verhältnis Gebirgsdurchlässigkeit zu Gesteinsdurchlässigkeit	Die Modelleinheiten krh bzw. krb enthalten keine hydraulisch wirksamen Klüfte, somit sind Gebirgs- und Gesteins- durchlässigkeit gleich und der Quotient aus beiden beträgt 1.	günstig
6.1b	Erfahrungen über die Barrierewirksamkeit	Die Unterkreidetone können Fallenstrukturen für Kohlen- wasserstofflagerstätten bilden. Sie erfüllen somit die vierte genannte Gegebenheit "unterlagernde Vorkommen flüssiger oder gasförmiger Kohlenwasserstoffe". Darüber hinaus werden für die Unterkreidetone weitere der genannten Gegebenheiten gefunden, beispielsweise die dritte genannte Gegebenheit "unterlagernde wasserlösliche Gesteine".	günstig
6.1c	Duktilität des Gesteins	Die Modelleinheiten krh bzw. krb verhalten sich spröde-duktil.	bedingt günstig
6.2a	Rückbildung der Sekundärpermeabilität	Rissschließung kann durch mechanische Rissweiten- verringerung (Quellen von Tonmineralen) erfolgen.	bedingt günstig
6.2b	Rückbildung der mechanischen Eigenschaften	Ob eine Rissverheilung ohne Sekundärmineralisation auftreten kann, bedarf einer standort- und teufenspezifischen Überprüfung	günstig
6.3	Zusammenfassende Beurteilung	6.1a bis 6.2b mehrheitlich günstig, allenfalls marginale Neigung zur Bildung von Fluidwegsamkeiten	günstig

Tab. 36: Bewertung der Indikatoren nach Anlage 6 zu § 24 Absatz 4 des StandAG für das Endlagersystem T1

Tab. 37:	Bewertung der Indikatoren nach Anlage 7 zu §24 Absatz 5 des StandAG für das
	Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
7.1	Wasserangebot im Einlagerungsbereich	Die Modelleinheiten krh bzw. krb sind feucht und haben eine Gebirgsdurchlässigkeit < 10 ⁻¹¹ m/s.	bedingt günstig

Tab. 38: Bewertung der Indikatoren nach Anlage 8 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
8.1a	Neigung zur Bildung wärmeinduzierter Sekundärpermeabilitäten	Ergebnis der generischen Sicherheitsuntersuchungen	günstig
8.1b	Temperaturstabilität des Wirtsgesteins hinsichtlich Mineralumwandlungen	Die maximale Temperatur im Wirtsgestein beträgt 87 °C. Bei dieser Temperatur ist die Stabilität der gesteinsbildenden Minerale in krh bzw. krb gegeben.	günstig

Tab. 39: Bewertung der Indikatoren nach Anlage 9 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
9.1a	Sorptionsfähigkeit der Gesteine im ewG	In den Modelleinheiten krh bzw. krb ist mit Sorption zu rechnen. Ein Sorptionskoeffizient von 10 ⁻³ m ³ /kg für Jod wird aber nicht erreicht (Anhang A).	bedingt günstig
9.1b	Mineralphasen mit großer reaktiver Oberfläche	Hoher Gehalt an Mineralphasen mit großer reaktiver Oberfläche in Tongestein zu erwarten.	günstig
9.1c	lonenstärke des Grundwassers im ewG	Die Ionenstärke reicht aus, um die Stabilität der Kolloide zu beeinflussen (Konzentration gelöster Stoffe in der Größenordnung von 100 g/l).	günstig
9.1d	Öffnungsweiten der Gesteinsporen	Tongestein hat generell einen sehr hohen Anteil von Poren mit geringem Durchmesser im Nanometerbereich.	günstig

Nr.	Indikator	Ausprägung T1	Bewertung
10.1a	Chemisches Gleichgewicht zwischen dem Barrieregestein und den darin enthaltenen Lösungen	Aufgrund der geringen Fließgeschwindigkeiten im Tongestein befindet sich der ewG im chemischen Gleich- gewicht mit dem Grundwasser.	günstig
10.1b	Neutrale bis leicht alkalische Bedingungen in den im Barrieregestein vorkommenden Lösungen	Die pH-Werte des Poren- wassers liegen zwischen 7 und 8.	günstig
10.1c	Anoxisch-reduzierendes Milieu in den im Barriere- gestein vorkommenden Lösungen	In den Modelleinheiten krh bzw. krb wird ein anoxisch- reduzierendes Milieu erwartet.	günstig
10.1d	Geringer Gehalt an Kolloiden und Komplex- bildnern in den im Barrieregestein vor- kommenden Lösungen	Es wird erwartet, dass der Gehalt an Kolloiden auf Grund der hohen Ionenstärke des Porenwassers gering ist. Über den Gehalt an Komplexbildnern liegen keine Informationen vor.	günstig
10.1e	Geringe Karbonat- konzentration in den im Barrieregestein vor- kommenden Lösungen	Der Chemismus des salinaren Wassers wird als Na-Cl-Wasser mit einer hohen HCO_3^{2-} und SO_4^{2-} Ionenkonzentration festgelegt.	nicht in Wertungsgruppe günstig

Tab. 40: Bewertung der Indikatoren nach Anlage 10 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1

Tab. 41: Bewertung der Indikatoren nach Anlage 11 zu § 24 Absatz 5 des StandAG für das Endlagersystem T1

Nr.	Indikator	Ausprägung T1	Bewertung
11.1a	Überdeckung des ewG mit grundwasserhemmenden Gesteinen	Grundwasserhemmende Schichten vorhanden, jeweils mit vollständiger und geschlos- sener Überdeckung des ewG (z. B. Modelleinheit krp).	günstig
11.1b	Verbreitung und Mächtig- keit erosionshemmender Gesteine im Deckgebirge des ewG	Deckgebirge mit massigen Sedimentgesteinskörpern mit weit aushaltender Bankmächtigkeit (z. B. die Modelleinheiten krp, krl).	günstig

Nr.	Indikator	Ausprägung T1	Bewertung
11.1c	Ausprägung struktureller Komplikationen im Deck- gebirge	Keine strukturellen Komplikationen im Deckgebirge.	günstig

Anhang A: Geowissenschaftliche Abwägungskriterien

Dieser Anhang erläutert die Indikatoren, bewertungsrelevanten Eigenschaften und geowissenschaftlichen Abwägungskriterien des StandAG für das in diesem Bericht betrachtete Endlagersystem. Für jedes geowissenschaftliche Abwägungskriterium wird zunächst die zugehörige Anlage aus dem StandAG wiedergegeben. Anschließend werden für jeden Indikator die folgenden Aspekte dargestellt:

- 1. Definition: Der Indikator wird im Hinblick auf seine Bedeutung im Abwägungsprozess definiert.
- 2. Mögliche Ausprägungen: Hier wird auf Grundlage des vorhandenen Wissenstandes angegeben, welche Eingruppierung in die vom StandAG vorgegebenen Wertungsgruppen für das betrachtete Wirtsgestein erwartet werden kann.

Die meisten bewertungsrelevanten Eigenschaften der geowissenschaftlichen Abwägungskriterien beziehen sich auf den ewG. Die Ausdehnung des ewG in einem konkreten Betrachtungsraum kann erst mittels Modellrechnungen unter Berücksichtigung der lokalen geologischen Gegebenheiten abgeleitet werden. Bis zur Festlegung des ewG wird daher hier der Gebirgsbereich bewertet, der den ewG aufnehmen soll. Dieser Gebirgsbereich muss nach StandAG § 23 Absatz 5 Nr. 2 mindestens 100 m mächtig sein.

Nicht auf den ewG beziehen sich

- gemäß Anlage 2 zu § 24 Absatz 3 StandAG die bewertungsrelevante Eigenschaft "Potenzialbringer bei Tonstein" auf Gesteinsschichten in unmittelbarer Nachbarschaft zum ewG,
- gemäß Anlage 7 zu § 24 Absatz 5 StandAG die bewertungsrelevante Eigenschaft "Gasbildung" auf den Einlagerungsbereich,
- gemäß Anlage 8 zu § 24 Absatz 5 StandAG die Indikatoren auf die von Temperaturänderungen infolge der Einlagerung der radioaktiven Abfälle betroffenen Gesteinsformationen, d. h. auf das Wirtsgestein bzw. je nach dessen Mächtigkeit auch auf daran angrenzende Gesteine, und
- gemäß Anlage 11 zu § 24 Absatz 5 StandAG die bewertungsrelevante Eigenschaft "Schutz des ewG durch das Deckgebirge" auf das Deckgebirge.

Anhand des Abwägungskriteriums gemäß Anlage 3 zu § 24 Abs. 3 StandAG erfolgt eine auf den Raum bezogene Bewertung der Ermittelbarkeit der Gesteinstypen und ihrer charakteristischen Eigenschaften sowie deren Übertragbarkeit. Dies betrifft damit die in den Anlagen 1, 2 und 5 bis 11 genannten Eigenschaften der wesentlichen geologischen Barrieren.

Direkt aus dem StandAG übernommene Textpassagen werden im Folgenden nicht verändert und durch kursive Schrift kenntlich gemacht.

Bewertung des Transportes radioaktiver Stoffe durch Grundwasserbewegungen im ewG

Das Kriterium ist gemäß StandAG § 24 Absatz 3 zur Bewertung der erreichbaren Qualität des Einschlusses und der zu erwartenden Robustheit des Nachweises heranzuziehen. In Anlage 1 zu § 24 Absatz 3 des StandAG wird gefordert:

Der Transport radioaktiver Stoffe durch Grundwasserbewegungen und Diffusion im einschlusswirksamen Gebirgsbereich soll so gering wie möglich sein. Bewertungsrelevante Eigenschaften dieses Kriteriums sind die im einschlusswirksamen Gebirgsbereich vorherrschende Grundwasserströmung, das Grundwasserangebot und die Diffusionsgeschwindigkeit entsprechend der unten stehenden Tabelle. Solange die entsprechenden Indikatoren nicht standortspezifisch erhoben sind, kann für die Abwägung das jeweilige Wirtsgestein als Indikator verwendet werden.

Bewertungsrelevante	Bewertungsgröße	Wertungsgruppe		
Eigenschaft des Kriteriums	beziehungsweise Indikator des Kriteriums	günstig	bedingt günstig	weniger günstig
Grundwasser- strömung	Abstandsgeschwindigkeit des Grundwassers [mm/a]	< 0,1	0,1 –1	> 1
Grundwasserangebot	Charakteristische Gebirgsdurch- lässigkeit des Gesteinstyps [m/s]	< 10 ⁻¹²	10 ⁻¹² – 10 ⁻¹⁰	> 10 ^{-10*}
Diffusions- geschwindigkeit	Charakteristischer effektiver Diffusionskoeffizient des Gesteinstyps für tritiiertes Wasser (HTO) bei 25 °C [m²/s]	< 10 ⁻¹¹	10 ⁻¹¹ - 10 ⁻¹⁰	> 10 ⁻¹⁰
Diffusionsgeschwin-	Absolute Porosität	< 20 %	20 % - 40 %	> 40 %
digkeit bei Tonstein	Verfestigungsgrad	Tonstein	fester Ton	halbfester Ton

* Für Endlagersysteme, die wesentlich auf geologischen Barrieren basieren, sind Standorte mit einer Gebirgsdurchlässigkeit von mehr als 10⁻¹⁰ m/s gemäß § 23 Absatz 4 Nummer 1 als nicht geeignet aus dem Verfahren auszuschließen

Abb. 48: Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 1 des StandAG.

Die Anlage 1 zu § 24 Absatz 3 des StandAG enthält Anforderungen an die hydrogeologischen Verhältnisse im ewG, die einer Bewertung der erreichbaren Qualität des Einschlusses von radioaktiven Stoffen dienen.

Unter Beachtung des § 23 Absatz 5 Nr. 1 des StandAG sind Standorte mit einer Gebirgsdurchlässigkeit im ewG von mehr als 10⁻¹⁰ m/s aus dem Verfahren auszuschließen. Alternativ zum ewG-Konzept darf im Wirtsgestein Kristallingestein der Nachweis geführt werden, dass technische und geotechnische Barrieren den sicheren Einschluss der Radionuklide gewährleisten (StandAG: § 23 Absatz 4). Für diesen Fall sind die Anforderungen des Abwägungskriteriums der Anlage 1 auf den Einlagerungsbereich anzuwenden und auch die Wertungsgruppe "weniger günstig" für die Anforderung an die Gebirgsdurchlässigkeit ist möglich (StandAG: § 24 Absatz 2).

Für die drei Wirtsgesteine wird das Abwägungskriterium durch drei bewertungsrelevante Eigenschaften und deren entsprechende Indikatoren für den ewG beschrieben, die Grundwasserströmung, das Grundwasserangebot und die Diffusionsgeschwindigkeit. Zusätzlich ist zu berücksichtigen, dass die bewertungsrelevante Eigenschaft Diffusionsgeschwindigkeit bei Tongestein anhand von zwei weiteren Indikatoren bewertet wird, die absolute Porosität und der Verfestigungsgrad.

Abstandsgeschwindigkeit des Grundwassers

Die Abstandsgeschwindigkeit des Grundwassers ist die Transportgeschwindigkeit des Wassers bzw. der darin gelösten Stoffe im Gestein. Sie definiert damit die im Gestein zurückgelegte geometrische Strecke eines konservativen Stoffs, wie einem sich inert verhaltenden Tracer, in einem bestimmten Zeitintervall. Entsprechend dem Darcy-Gesetz gilt:

$V_{a} = (k_{f} \cdot i)/n_{e}$	v _a = Abstandsgeschwindigkeit [m/s]
u (1) ² 0	kf= Durchlässigkeitsbeiwert [m/s]
	<i>i</i> = hydraulischer Gradient [m/m]
	ne = durchflusswirksame Porosität [-]

Die Abstandsgeschwindigkeit im ewG ist umso größer, je größer die Durchlässigkeitsbeiwerte und hydraulischen Gradienten sind oder je geringer die Werte für die durchflusswirksame Porosität sind. Die Ausprägung der Abstandsgeschwindigkeit im Tongestein resultiert aus der Lithologie und der Genese des Gebirgsbereiches (Nagra, 2014a), der den ewG aufnehmen soll sowie den hydrogeologischen Randbedingungen (Gradient). Die Ausprägung der Abstandsgeschwindigkeit in Tongestein kann in alle Wertungsgruppen fallen.

Charakteristische Gebirgsdurchlässigkeit des Gesteinstyps

Die Gebirgsdurchlässigkeit ist die hydraulische Leitfähigkeit eines natürlichen Gesteinsverbandes im Grundwasser. Sie setzt sich aus der Trennfugendurchlässigkeit und der Gesteinsdurchlässigkeit zusammen.

Die charakteristische Gebirgsdurchlässigkeit ist der räumlich gemittelte Durchlässigkeitsbeiwert k_f im Darcy-Gesetz. Sie gibt den Volumenstrom Q von Grundwasser durch eine Querschnittsfläche A unter einem bestimmten hydraulischen Gradienten i [m/m] an:

$k_f = Q / (A * i)$	kf = Durchlässigkeitsbeiwert [m/s]
	Q = Volumenstrom in [m3/s]
	A = durchströmte Fläche [m ²]
	<i>i</i> = hydraulischer Gradient [m/m]

Die Gebirgsdurchlässigkeit wird durch die Dichte und Viskosität des Wassers und die Eigenschaften des Gesteins bestimmt. Dichte und Viskosität des Wassers sind von der Temperatur abhängig und zudem mit der Salinität verknüpft, die im Untergrund variiert.

Die Permeabilität hingegen ist eine gesteinsspezifische Größe, die den nutzbaren Hohlraumanteil eines Gesteinsverbandes unabhängig von den Fluideigenschaften (insbesondere Viskosität) beschreibt. Ein k_f-Wert von 10⁻¹⁰ m/s für Wasser bei 10°C entspricht etwa einer Permeabilität von etwa 10⁻¹⁷ m².

Die Trennfugendurchlässigkeit eines Gesteinsverbandes wird maßgeblich bestimmt durch die Häufigkeit, Verteilung, Öffnungsweite, Oberflächenrauigkeit und Vernetzung der Trennflächen. In geklüfteten Gesteinen wird für die Modellierung der Gebirgsdurchlässigkeit ein repräsentatives Kontinuum-Modell für das poröse geklüftete Gestein angenommen.

Mit zunehmender Überlagerung (Teufe) nimmt die Gebirgsdurchlässigkeit bei allen Wirtsgesteinen generell ab, da das durchflusswirksame Hohlraumvolumen durch den Überlagerungsdruck abnimmt.

Durch die natürliche Schichtung der Tongesteine ist die Gesteinsdurchlässigkeit durch eine Anisotropie (transversale Isotropie) gekennzeichnet. Die Ausprägung der Gebirgsdurchlässigkeit eines Tongesteins resultiert aus der Lithologie und der Genese des Gebirgsbereiches, der den ewG aufnehmen soll. Die Ausprägung der Gesteinsdurchlässigkeit in Tongestein kann in alle Wertungsgruppen fallen.

Charakteristischer effektiver Diffusionskoeffizient des Gesteinstyps für tritiiertes Wasser (HTO) bei 25 °C

Der charakteristische effektive Diffusionskoeffizient ist der räumlich gemittelte makroskopische Diffusionskoeffizient in einem Gestein. Der effektive Diffusionskoeffizient D_{eff} [m²/s] ist definiert durch

 $D_{eff} = D_0 \cdot n_{diff} \cdot G,$

wobei D_0 der Diffusionskoeffizient in freiem Wasser, n_{diff} die diffusionswirksame Porosität des Gesteins und *G* ein gesteinsspezifischer Faktor \leq 1 ist.

Das Produkt aus dem gesteinsspezifischen Faktor und dem Diffusionskoeffizienten im freien Wasser wird als Porendiffusionskoeffizient D_p bezeichnet: $D_p = D_0 \cdot G$.

Der Diffusionskoeffizient D_0 von tritiierten Wasser in freiem Wasser (Selbstdiffusion) bei 25 °C beträgt 2,27·10⁻⁹ m²/s (Tanaka, 1978).

Der AkEnd hat zur Beurteilung der Diffusionsgeschwindigkeit als Modell eine 50 m mächtige Barriere angenommen, die einseitig mit einer erhöhten Ausgangskonzentration eines idealen Tracers beaufschlagt wird. Die Diffusionsgeschwindigkeit wird als gering bezeichnet, wenn die Konzentration eines nicht vom Gestein sorbierten (idealen) Tracers am Austritt aus der Barriere über einen Zeitraum von einer Million Jahren unterhalb 1 % der Ausgangskonzentration verbleibt. Dies ist bei einem effektiven Diffusionskoeffizienten kleiner 10⁻¹¹ m²/s der Fall und wird als günstig für die geologische Gesamtsituation bewertet.

Der effektive Diffusionskoeffizient eines Gesteinstyps ist durch den Porenraum (inklusive potenzieller Trennflächen), welcher für den diffusiven Transport verfügbar ist, und durch die Tortuosität sowie die Konstriktivität geprägt. Die Tortuosität kennzeichnet den Grad der Gewundenheit der Transportwege im Porenraum und die Konstriktivität den Widerstand eines engen Porenraums gegen Transportprozesse.

Mit dem oben genannten Diffusionskoeffizienten von tritiierten Wasser in freiem Wasser bei 25°C ergibt sich eine absolute Porosität von 4,4·10⁻³, unterhalb derer Gestein in jedem Fall in die Wertungsgruppe "günstig" eingeordnet werden können.

Die Variationen der effektiven Diffusion im Tongestein beruhen auf der Abhängigkeit der Diffusionskoeffizienten von der Porosität bzw. vom Kompaktionsgrad. Vorhandene Trennflächen im Tongestein können die Diffusionsgeschwindigkeit zusätzlich beeinflussen (Mazurek et al., 2008). Die natürliche Schichtung der Tongesteine führt zu einer Anisotropie der Diffusionsgeschwindigkeit. Für Opalinuston wurde bei einer Porosität von 15% ein effektiver Diffusionskoeffizient für Tritium von etwa 4·10⁻¹¹ m²/s bestimmt (Van Loon et al., 2004), was der Wertungsgruppe "bedingt günstig" entspricht.

Absolute Porosität (von Tonstein)

Die absolute Porosität n_p ist das Verhältnis von Hohlraumvolumen zum Gesamtvolumen des Gesteins. Sie wird durch den Quotienten des Volumens aller Poren zu dem Gesamtvolumen V_{ges} beschrieben:

$$n_p = V_p / V_{ges}$$

Aus einer geringen Gesteinsporosität resultiert ein geringer effektiver Diffusionskoeffizient. Die Ausprägung der absoluten Porosität hängt ab von der Versenkungsgeschichte und der Lithologie der Gesteinstypen sowie deren Diagenese (Zementation, Lösungserscheinungen). Tonige Gesteine (Tonstein, Tonmergel) im Teufenintervall 400 m bis 850 m u. GOK der Sondierbohrung Benken (Schweiz) weisen eine absolute Porosität von 3,3 Vol.-% bis 15,0 Vol.-% auf, eine systematische Tiefenabhängigkeit im Bohrprofil konnte nicht festgestellt werden (Nagra, 2001). Nach Vietor (2017) liegen die Porositätswerte des Opalinuston im Felslabor Mont Terri bei 12 Vol.-% bis 18 Vol.-%.

Es wird erwartet, dass die diffusionswirksame Porosität für Tritium nur geringfügig von der absoluten Porosität abweicht.

Die effektive Diffusionsgeschwindigkeit ist mit der absoluten Porosität verknüpft, da ein direkter Zusammenhang mit dem für den diffusiven Transport verfügbaren Porenraum (inklusive der Trennflächen) besteht.

Verfestigungsgrad (von Tonstein)

Der Verfestigungsgrad ist eine qualitative Bewertung für die Festigkeit von Tongestein und ist abhängig vom Grad der Kompaktion sowie diversen chemisch-mineralogischen Wechselwirkungen (z. B. Zementation).

Die Diffusionsgeschwindigkeit ist mit dem Verfestigungsgrad verknüpft, da bei der Abnahme des Porendurchmessers der relative Anteil der an den Oberflächen stark gebundenen Wassermoleküle steigt. Dadurch verringert sich die transportzugängliche Porosität, der Widerstand eines engen Porenraums gegen Transportprozesse steigt (Konstriktivität, Mazurek et al., 2008).

"Zum effektiven Diffusionskoeffizienten liegen als Maß für die Diffusionsgeschwindigkeit in konkreten Gesteinsvorkommen zu Beginn des Standortauswahlverfahrens keine ausreichenden Informationen vor. Da der Diffusionskoeffizient (wie auch die Gebirgsdurch-lässigkeit) generell vom Porenvolumen des Gesteins abhängig ist, kann hilfsweise die absolute Porosität als Indikator für die Diffusionsgeschwindigkeit in Frage kommen. Dies trifft bei Tonstein zu. Hier nehmen Diffusionsgeschwindigkeit und effektiver Diffusionskoeffizient wie die Porosität mit zunehmendem Kompaktions- beziehungsweise Verfestigungsgrad des Gesteins generell ab, so dass beide Eigenschaften als Indikatoren in Frage kommen" (Kommission, 2016).

Eine allgemeine Angabe der Ausprägung des Verfestigungsgrads des Wirtsgesteins Tongestein kann nicht erfolgen, alle drei Wertungsgruppen sind möglich.

Bewertung der Konfiguration der Gesteinskörper

Das Kriterium ist gemäß StandAG § 24 Absatz 3 zur Bewertung der erreichbaren Qualität des Einschlusses und der zu erwartenden Robustheit des Nachweises heranzuziehen. Das Kriterium ist gemäß Anlage 2 zu § 24 Absatz 3 durch vier bewertungsrelevante Eigenschaften und deren entsprechende Indikatoren definiert:

Die barrierewirksamen Gesteine eines einschlusswirksamen Gebirgsbereiches müssen mindestens über eine Mächtigkeit verfügen, die den sicheren Einschluss der Radionuklide über einen Zeitraum von einer Million Jahren bewirkt. Das voraussichtliche Einschlussvermögen soll möglichst hoch und zuverlässig prognostizierbar sein. Es ist unter Berücksichtigung der Barrierewirkung der unversehrten Barriere mittels Modellrechnungen abzuleiten, sobald die hierfür erforderlichen geowissenschaftlichen Daten vorliegen, spätestens für den Standortvorschlag nach § 18 Absatz 3. Solange die für die rechnerische Ableitung notwendigen Daten noch nicht vorliegen, können die Lage, Ausdehnung und Mächtigkeit der barrierewirksamen Gesteinsformation, der Grad der Umschließung durch einen einschlusswirksamen Gebirgsbereich sowie für das Wirtsgestein Tonstein deren Isolation von wasserleitenden Schichten und hydraulischen Potenzialbringern entsprechend der unten stehenden Tabelle als Indikatoren herangezogen werden.

Bewertungsrelevante	Bewertungsgröße	Wertungsgruppe		
Eigenschaft des Kriteriums	beziehungsweise Indikator des Kriteriums	günstig	bedingt günstig	weniger günstig
	Barrierenmächtigkeit [m]	> 150	100 – 150	50 – 100
Barrierewirksamkeit	Grad der Umschließung des Einlagerungsbereichs durch einen einschlusswirksamen Gebirgsbereich	vollständig	unvollständig, kleinere Fehlstellen in unkritischer Position	unvollständig; größere Fehlstellen, in kritischer Position
Robustheit und Sicherheitsreserven	Teufe der oberen Begrenzung des erforderlichen einschluss- wirksamen Gebirgsbereichs [m unter Geländeoberfläche]	> 500	300 – 500	
Volumen des einschlusswirksamen Gebirgsbereichs	flächenhafte Ausdehnung bei gegebener Mächtigkeit (Vielfaches des Mindestflächen- bedarfs)	>> 2-fach	etwa 2-fach	<< 2-fach
Indikator "Potenzial- bringer" bei Tonstein Anschluss von wasserleitenden Schichten in unmittel- barer Nähe des einschlusswirksamen Gebirgsbereichs/ Wirtsgesteinkörpers an ein hohes hydrau- lisches Potenzial verursachendes Gebiet	Vorhandensein von Gesteinsschichten mit hydraulischen Eigenschaften und hydraulischem Potenzial, die die Induzierung beziehungsweise Verstärkung der Grundwasser- bewegung im einschluss- wirksamen Gebirgsbereich ermöglichen können.	keine Grundwasser- leiter als mögliche Potenzialbringer in unmittelbarer Nachbarschaft zum Wirtsgestein/ ein- schlusswirksamen Gebirgsbereich vorhanden		Grundwasserleiter in Nachbarschaft zum Wirtsgestein/ ein- schlusswirksamen Gebirgsbereich vorhanden

Abb. 49: Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 2 des StandAG.

Ausdehnung, Anordnung und Tiefenlage von Gesteinskörpern sind in der Regel einfacher erhebbar als bestimmte Gesteinseigenschaften oder die hydraulischen und hydrochemischen Standortverhältnisse.

Bei mehreren Gesteinskörpern unterschiedlicher Eigenschaften ist die geometrische Anordnung und die Ausdehnung der zu unterscheidenden und zu charakterisierenden Gesteinskörper maßgebend.

Hinzu kommen die Tiefenlage des ewG innerhalb der Geosphäre sowie die mögliche Beeinträchtigung seiner Barrierewirkung durch die Nähe zu Gesteinskörpern mit erhöhtem hydraulischem Potenzial.

Das Verständnis der in den folgenden Kapiteln dargelegten Definitionen der Indikatoren setzt über die in § 2 des StandAG gegebenen Begriffsbestimmungen hinaus eine Festlegung zum Begriff des Barrieregesteins voraus. Mit Barrieregestein werden in den folgenden Definitionen die Bereiche des Wirtsgesteins (Abb. 50) bzw. im Falle einer Konfiguration mit einem überlagernden ewG die Gesteinsschichten bezeichnet, die die Mindestanforderungen nach § 23 des StandAG erfüllen (schraffierte Bereiche in Abb. 50 stellen schematisch Zonen dar, die diese Anforderungen nicht erfüllen). In Abb. 50 sind die Indikatoren dargestellt.

Konfiguration Typ A: Indikator Umschließung: vollständig

Abb. 50: Indikatoren bei der Konfiguration "ewG im Wirtsgestein" (Typ A in Anlehnung an die im AkEnd und im Kommissionsbericht abgebildeten und erläuterten Konfigurationstypen); H_{BG} = horizontale Ausdehnung des Barrieregesteins; H_{ELB}= horizontale Ausdehnung des Einlagerungsbereichs; schraffierte Bereiche stellen schematisch Zonen dar, die die Anforderungen an einen ewG nicht erfüllen

Barrierenmächtigkeit

Unter Barrierenmächtigkeit wird in den Fällen, in denen der Einlagerungsbereich innerhalb des Barrieregesteins liegt, der kleinste Abstand zwischen dem Einlagerungsbereich und dem Rand des Barrieregesteins verstanden. Solange keine Festlegung zur Positionierung des Einlagerungsbereichs im Barrieregestein getroffen wurde, sollte die Position angenommen werden, die diese Barrierenmächtigkeit maximiert. Der Einlagerungsbereich wird in seiner vertikalen Ausdehnung nicht berücksichtigt (Abb. 50).

Nach AkEnd wird die erforderliche Mächtigkeit des ewG über die hydraulische Leitfähigkeit der den ewG aufbauenden Gesteine, deren effektiver Porosität und den hydraulischen Gradienten im Bereich des gesuchten Standortes abgeleitet.

Für die Berechnung der Mindestmächtigkeit einer Gesteinsbarriere wird von AkEnd eine Gebirgsdurchlässigkeit k_f zwischen 10^{-11} m/s und 10^{-12} m/s, eine fünfprozentige Porosität und ein hydraulischer Gradient von 0,05 und 0,005 angesetzt. Der genannte Durchlässigkeitsbeiwert ist

kennzeichnend für den Übergang zwischen advektivem und diffusivem Transport von Flüssigkeiten; bei Gebirgsdurchlässigkeiten $k_f < 10^{-12}$ m/s dominiert im Allgemeinen der diffusive Stofftransport. Die angesetzten Werte für die Porosität und den hydraulischen Gradienten sind Erfahrungswerte, die die hydraulischen Verhältnisse im tiefen Untergrund widerspiegeln. Für die Berechnungen der Grundwassergeschwindigkeit wird nach AkEnd vereinfachend die Annahme getroffen, dass das Gesetz von Darcy auch für sehr kleine hydraulische Gradienten und k_f -Werte gilt. Die bei Verwendung der genannten Faktoren abgeleitete erforderliche Mindestmächtigkeit des ewG, die sich für die Radionuklidtransportzeit von eine Million Jahren ergibt, beträgt 33 m, zuzüglich eines Sicherheitsfaktors von 1,5 ergeben sich etwa 50 m. Ausgehend von einem Einlagerungshorizont in der Mitte des ewG ergibt sich somit eine Gesamtmächtigkeit von 100 m (Mindestanforderung nach § 23 StandAG). Dabei werden das Endlager, dessen Einflüsse auf das Gestein, und ein Einfallen des Barrieregesteins nicht berücksichtigt.

Für Tongestein sind Barrierenmächtigkeiten aller Wertungsgruppen möglich.

Grad der Umschließung des Einlagerungsbereichs durch einen ewG

Der Grad der Umschließung des Einlagerungsbereichs durch den ewG ist eine Bewertung der geologischen Konfiguration dahingehend, ob entweder der Einlagerungsbereich Bestandteil des ewG ist (Konfigurationstyp A, Abb. 50), oder ob der Einlagerungsbereich außerhalb des ewG liegt.

Der Grad der Umschließung des Einlagerungsbereichs durch einen ewG wird durch die Ausdehnung, Lage und Eigenschaften der Gesteinskörper beschrieben, welche die günstige geologische Gesamtsituation bestimmen. Dabei werden grundsätzlich Gesteine mit den folgenden Eigenschaften unterschieden: Gesteinskörper ohne sicherheitsrelevante Barrierewirkung und Gesteinskörper mit sicherheitsrelevanter Barrierewirkung. Die Hauptfunktion des Wirtsgesteins besteht in der Aufnahme der Abfälle und muss die Errichtung und den Betrieb eines Endlagerbergwerks erlauben. Somit muss der Einlagerungsbereich, je nach Konfiguration, nicht zwingend sicherheitsrelevante Barrierewirkungen aufweisen. Der ewG hingegen muss einen entscheidenden Beitrag zum Einschluss der radioaktiven Abfälle über den geforderten Zeitraum leisten und somit eine möglichst große Ausdehnung und ausgeprägte Barriereeigenschaften aufweisen.

Das Endlagersystem T1 entspricht dem Typ A: die Gesteine des Einlagerungsbereichs weisen eine sicherheitsrelevante Barrierewirksamkeit auf und sind Bestandteil des ewG. Einlagerungsbereich und ewG sind petrographisch gleichartig bzw. weisen übereinstimmende Barriereeigenschaften auf (Abb. 50). Alle Endlagersysteme vom Typ A fallen in die Bewertungsgruppe "günstig".

Teufe der oberen Begrenzung des erforderlichen ewG

Die Teufe der oberen Begrenzung des ewG ist der minimale Abstand des äußeren oberen Randes des ewG zur Geländeoberfläche (siehe Abb. 50).

Die Schichten zwischen der oberen Begrenzung des ewG und der Geländeoberfläche bieten Schutz gegenüber äußeren natürlichen Einwirkungen und sollen entsprechende Sicherheitsreserven gewährleisten sowie die Robustheit erhöhen.

Eine Festlegung der Teufe der oberen Begrenzung kann jedoch nur standortspezifisch erfolgen. Hier muss insbesondere die Bildung subglazialer Rinnen und deren mögliche Tiefenwirkung in bestimmten Teilgebieten in Betracht gezogen werden. Für das Wirtsgestein Steinsalz müssen die Auswirkungen verstärkter Subrosionsprozesse infolge auftretender Kaltzeiten betrachtet werden.

Der Begriff "erforderlicher ewG" wird nur in Anlage 2 des StandAG für den Indikator *zur Teufe der oberen Begrenzung des erforderlichen ewG* verwendet. Darunter wird die Größe des ewG verstanden, die erforderlich ist, um die Sicherheitsanforderungen zu erfüllen (siehe dunkelgrünen Bereich in Abb. 50).

Es wird erwartet, dass für alle Wirtsgesteinstypen Gesteinskörper in Deutschland ausgewiesen werden können, die hinsichtlich der Teufenlage in die Wertungsgruppen "günstig" oder "bedingt günstig" fallen.

Auf Grund der Mindestanforderung 3 nach § 23 Absatz 5 des StandAG ist keine Einstufung in die Wertungsgruppe "weniger günstig" im StandAG angegeben.

Flächenhafte Ausdehnung bei gegebener Mächtigkeit (Vielfaches des Mindestflächenbedarfs)

Die flächenhafte Ausdehnung ist das Verhältnis aus horizontaler Querschnittsfläche des Barrieregesteins und der Fläche des Endlagers.

Als Fläche des Endlagers ist analog zu dem in den Begründungen zum StandAG § 23 Absatz 5 Nr. 4 (Mindestanforderung "Fläche des Endlagers") angegebenen Flächenbedarf für das Wirtsgestein Tongestein ein Flächenbedarf von 10 km² zu unterstellen. Hierbei wurde von einsöhligen Endlagerbergwerken ausgegangen (Kommission, 2016).

Bezugsgröße für diese Bewertungsgröße ist der Flächenbedarf des Endlagers. Der ewG muss über eine Ausdehnung in der Fläche verfügen, die eine Realisierung des Endlagers ermöglicht. In den Flächenbedarf des Endlagers eingeschlossen sind Flächen, die für die Umsetzung von Maßnahmen zur Rückholung von Abfallbehältern oder zur späteren Auffahrung eines Bergungsbergwerks erforderlich sind und verfügbar gehalten werden müssen. Darüber hinaus ist der Flächenbedarf eines Endlagers für Wärme entwickelnde Abfälle bei gegebener Abfallmenge abhängig von der Art des Wirtsgesteins, von dem Endlagerkonzept (mehrsöhlige, horizontale / vertikale Lagerung) und von der Wärmeentwicklung der Abfälle (im Wesentlichen Abbrand und Zwischenlagerungszeiten der Brennelemente).

Durch diese Bewertungsgröße wird sichergestellt, dass in den zu untersuchenden Gebieten eine für die Errichtung eines Endlagers ausreichende Fläche vorhanden ist. Bewertungsgrundlage ist die Flächenausdehnung der entsprechenden geologischen Formation, in der ein ewG ausgewiesen werden kann. Der für die Aufnahme aller einzulagernden Abfälle notwendige Platzbedarf ist von den standortspezifischen Eigenschaften des Wirtsgesteins abhängig und vor Beginn der Erkundungsmaßnahmen noch nicht im Detail abzuschätzen. Die Wertungsgruppen zu dieser Bewertungsgröße beziehen sich auf ein Vielfaches des Flächenbedarfs.

Damit der Indikator eine Abwägung erlaubt, muss es sich hier um den maximal möglichen Bereich handeln, in dem ein ewG ausweisbar ist.

Es ist zu erwarten, dass Ausprägungen der Bewertungsgruppe "günstig" (>> 2-facher Flächenbedarf für ein Endlager für Wärme entwickelnde Abfälle) für sämtliche gesetzlich vorgegebenen Wirtsgesteinstypen und -konfiguration abgeleitet werden können.

Gesteinsschichten mit Möglichkeit zur Induzierung beziehungsweise Verstärkung der Grundwasserbewegung im ewG

Dieser Indikator ist eine qualitative Bewertung für Tongestein, ob wasserleitende Schichten in unmittelbarer Nähe des ewG bzw. des Wirtsgesteinskörpers existieren, die zum ewG eine hohe Potenzialdifferenz aufweisen oder aufbauen können.

Zur Bewertung der Konfiguration der Gesteinskörper wird für Tongestein u. a. der Indikator "Potenzialbringer" betrachtet. Mögliche Potenzialbringer sind nach StandAG wasserleitende Schichten in unmittelbarer Nachbarschaft des ewG bzw. des Wirtsgesteinskörpers, die an ein Gebiet angeschlossen sind, das ein hohes hydraulisches Potenzial verursacht. Ein dadurch verursachter hydraulischer Gradient könnte eine Induzierung bzw. Verstärkung der Grundwasserbewegung im ewG bewirken.

Mögliche Potenzialbringer sind insbesondere den ewG bzw. das Wirtsgestein unter- bzw. überlagernde sandige Schichten, mergelige Bereiche, Karbonatbänke oder geklüftete Bereiche innerhalb der Tongesteinfazies (Poren- und Kluftaquifere).

Nach StandAG wird das Vorhandensein von Gesteinsschichten mit hydraulischen Eigenschaften und hydraulischem Potenzial, die die Induzierung bzw. Verstärkung der Grundwasserbewegung im ewG ermöglichen können, als

- "günstig" bewertet, wenn keine Grundwasserleiter als mögliche Potenzialbringer in unmittelbarer Nachbarschaft zum Wirtsgestein / ewG vorhanden sind.
- "weniger günstig" bewertet, wenn Grundwasserleiter in Nachbarschaft zum Wirtsgestein / ewG vorhanden sind.

Als Grundwasserleiter werden nach Ad-Hoc-Arbeitsgruppe Hydrogeologie (Ad-Hoc-AG Hydrogeologie, 1997) Gesteinskörper verstanden, die eine Durchlässigkeit größer als $k_f = 10^{-5}$ m/s aufweisen.
Bewertung der räumlichen Charakterisierbarkeit

Das Kriterium ist gemäß StandAG § 24 Absatz 3 zur Bewertung der erreichbaren Qualität des Einschlusses und der zu erwartenden Robustheit des Nachweises heranzuziehen. Die Anlage 3 zu § 24 Absatz 3 lautet:

Die räumliche Charakterisierung der wesentlichen geologischen Barrieren, die direkt oder indirekt den sicheren Einschluss der radioaktiven Abfälle gewährleisten, insbesondere des vorgesehenen einschlusswirksamen Gebirgsbereichs oder des Einlagerungsbereichs, soll möglichst zuverlässig möglich sein. Bewertungsrelevante Eigenschaften hierfür sind die Ermittelbarkeit der relevanten Gesteinstypen und ihrer Eigenschaften sowie die Übertragbarkeit dieser Eigenschaften nach der unten stehenden Tabelle.

Bewertungsrelevante	Bewertungsgröße beziehungsweise Indikator des Kriteriums	Wertungsgruppe		
Eigenschaft des Kriteriums		günstig	bedingt günstig	ungünstig
Ermittelbarkeit der Gesteinstypen und ihrer charakteristi- schen Eigenschaften im vorgesehenen Endlagerbereich, insbesondere im vorgesehenen einschlusswirksamen Gebirgsbereich	Variationsbreite der Eigenschaften der Gesteinstypen im Endlagerbereich	gering	deutlich, aber bekannt beziehungs- weise zuverlässig erhebbar	erheblich und/oder nicht zuverlässig erhebbar
	Räumliche Verteilung der Gesteinstypen im Endlager- bereich und ihrer Eigenschaften	gleichmäßig	kontinuierliche, bekannte räumliche Veränderungen	diskontinuierliche, nicht ausreichend genau vorhersagbare räumliche Veränderungen
	Ausmaß der tektonischen Überprägung der geologischen Einheit	Weitgehend ungestört (Störungen im Abstand > 3 km vom Rand des einschlusswirksamen Gebirgsbereichs), flache Lagerung	wenig gestört (weit- ständige Störungen, Abstand 100 m bis 3 km vom Rand des einschlusswirksamen Gebirgsbereichs), Flexuren	gestört (engständig zerblockt, Abstand < 100 m), gefaltet
Übertragbarkeit der Eigenschaften im vorgesehenen einschlusswirksamen Gebirgsbereich	Gesteinsausbildung (Gesteinsfazies)	Fazies regional einheitlich	Fazies nach bekanntem Muster wechselnd	Fazies nach nicht bekanntem Muster wechselnd

Abb. 51: Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 3 des StandAG.

Dem Abschlussbericht der Kommission Lagerung hoch radioaktiver Abfallstoffe (2016) (K-Drs. 268, Kap. 6.5.6.1.3) nach "beruht die räumliche Charakterisierbarkeit auf der Ermittelbarkeit der Gesteinstypen und ihrer Eigenschaften und der Übertragbarkeit dieser Eigenschaften durch Extrapolation beziehungsweise Interpolation. Beide hängen maßgeblich von Entstehungsbedingungen der Gesteinstypen oder/und ihrer späteren Überprägung ab" und vom vorhandenen Kenntnisstand. Die Begriffe "Ermittelbarkeit" und "Übertragbarkeit" werden im Abschlussbericht der Kommission Lagerung hoch radioaktiver Abfallstoffe wie folgt näher definiert:

Ermittelbarkeit:

- "Die charakteristischen Eigenschaften der den einschlusswirksamen Gebirgsbereich beziehungsweise den Wirtsgesteinskörper aufbauenden Gesteinstypen sollten eine geringe Variationsbreite aufweisen und räumlich möglichst gleichmäßig verteilt sein."
- "Bei tektonisch überprägten geologischen Einheiten sollte die Überprägung möglichst gering sein. Das Ausmaß der Überprägung wird abgeleitet aus den Lagerungsverhältnissen unter

Berücksichtigung von Bruch- und Faltentektonik. Salzstrukturen sollten möglichst großräumige Verfaltungen von solchen Schichten aufweisen, die unterschiedliche mechanische und hydraulische Eigenschaften haben."

Übertragbarkeit:

- "Günstige Verhältnisse sind dadurch gekennzeichnet, dass die Gesteine des einschlusswirksamen Gebirgsbereichs beziehungsweise des Wirtsgesteinskörpers großräumig einheitlich oder sehr ähnlich ausgebildet sind."
- "Im Hinblick auf die Einheitlichkeit der Gesteinsausbildung bestehen zwischen den verschiedenen genetischen Gesteinsgruppen (Sedimentgesteine, magmatische Gesteine und metamorphe Gesteine) deutliche Unterschiede. Zu ihrer genaueren Bewertung bedarf es daher unterschiedlicher Bewertungsmaßstäbe. Deren abschließende Spezifizierung ist erst nach Kenntnis des Gesteinstyps des einschlusswirksamen Gebirgsbereichs und gegebenenfalls des Wirtsgesteins möglich. Insofern ist die Festlegung der Wertungsgruppen für Sedimentgesteine und metamorphe Gesteine auf Basis des Fazies-Begriffs vorläufig."

Die Indikatoren "Variationsbreite der Eigenschaften", "Räumliche Verteilung der Gesteinstypen" und "Ausmaß der tektonischen Überprägung" sind insbesondere auf den ewG und darüber hinaus auf den Endlagerbereich anzuwenden. Der Indikator "Gesteinsausbildung" gilt nur für den ewG.

Der Gesetzgeber lässt offen, welche spezifischen Eigenschaften der Gesteinstypen zu bewerten sind. Beushausen et al. (2020) schlagen vor, die in den Abwägungskriterien abgebildeten bewertungsrelevanten Eigenschaften des StandAG zu berücksichtigen. In den Anlagen 1 bis 3 sowie 5 bis 11 zu StandAG § 24 ist jeweils der räumliche Bereich benannt, für den die bewertungsrelevanten Eigenschaften der Abwägungskriterien zu bewerten sind. Im Falle des überlagernden ewG ist die Variationsbreite der bewertungsrelevanten Eigenschaften funktionsbezogen zu betrachten, so ist z. B. das Kriterium nach Anlage 5 sowohl auf das Kristallingestein als auch auf den überlagernden ewG zu beziehen.

Für das Kriterium zur Bewertung der räumlichen Charakterisierbarkeit erfolgt im StandAG die Verwendung der Wertungsgruppe "ungünstig" anstatt der Wertungsgruppe "weniger günstig".

Variationsbreite der Eigenschaften der Gesteinstypen im Endlagerbereich

Die Variationsbreite der Eigenschaften der Gesteinstypen ist eine Bewertung der Spannbreite bzw. Ermittelbarkeit der für die Abwägung relevanten Eigenschaften.

Der Begriff Variationsbreite wurde im Kommissionsbericht eingeführt aber nicht definiert. Mit dem Begriff Variationsbreite ist hier nicht die Spannweite einer Verteilung (Differenz von größtem und kleinstem Wert) gemeint, da diese bei sehr kleinen Werten (z. B. Diffusionskoeffizienten) automatisch sehr klein ist. Eine Bewertung der Variationsbreite erfordert somit eine Normierung auf die physikalisch mögliche Spannweite der betrachteten Eigenschaft (im Sinne eines Variationskoeffizienten).

Die Variationsbreite der Eigenschaften ist ohne genaue Untersuchungen des zu betrachtenden Gebirgsbereiches schwer abzuschätzen und ist in der ersten Phase der Standortsuche nicht abdeckend ermittelbar. Abwägungsrelevante Eigenschaften sind beispielsweise die Gebirgsdurchlässigkeit des Gesteinstyps (Indikator nach Anlage 1) oder die Barrierenmächtigkeit (Indikator nach Anlage 2).

Wenn die Gesteinsabfolge und die Lagerungsverhältnisse des Endlagerbereiches bekannt sind, sind Analogieschlüsse aus Feld- und Laboruntersuchungen zu den Eigenschaften der Gesteinstypen ausreichend.

In den Kapiteln zu den jeweiligen Abwägungskriterien wird detailliert auf die Ausprägung der Indikatoren jedes Abwägungskriteriums eingegangen.

Die Variationsbreite vieler Eigenschaften im Tongestein resultiert aus der lithologischen Ausbildung und aus diagenetischen Veränderungen und kann sehr groß sein. Durch die sedimentäre Schichtung sind ungestörte Tongesteine durch eine transversale Isotropie gekennzeichnet. Für Tongestein sind Einstufungen in alle Wertungsgruppen möglich.

Räumliche Verteilung der Gesteinstypen im Endlagerbereich und ihrer Eigenschaften

Der Indikator bewertet die räumliche Verteilung der Gesteinstypen und ihrer für die Abwägung relevanten Eigenschaften.

Die Ausprägung dieses Indikators wird dann als günstig bewertet, wenn die Gesteinstypen und ihre charakteristischen Eigenschaften innerhalb des Endlagerbereiches und insbesondere innerhalb des ewG räumlich möglichst gleichmäßig verteilt und in ihrer Ausprägung homogen sind.

In Bezug auf die räumliche Verteilung der Gesteinstypen erfüllen Tongesteinsabfolgen die Anforderungen der Wertungsgruppe "günstig" insbesondere dann, wenn sie in ihrer ursprünglichen horizontalen Lagerung angetroffen werden. Die Anforderung der Wertungsgruppe "günstig" kann aber auch erfüllt sein, wenn Gesteinsabfolgen großräumig und in einem Schichtverband verstellt wurden. Großräumig bedeutet hier, dass die Ausdehnung des verstellten Bereiches deutlich größer als der Endlagerbereich und damit als der ewG ist. Auswirkungen von Diskordanzen innerhalb der Tongesteinsabfolge sind mit Bezug auf die Eigenschaften des Gesteinstyps zu bewerten.

In Bezug auf die räumliche Verteilung der Eigenschaften liegt die Wertungsgruppe günstig vor, wenn eine möglichst einheitliche Tongesteinsfazies vorhanden ist. Waren der Ablagerungsraum homogen und die Ablagerungsbedingungen gleichmäßig, so ist mit einer einheitlichen Gesteinszusammensetzung zu rechnen. War der Ablagerungsraum z. B. stark morphologisch gegliedert, können kleinräumig Unterschiede in der Sedimentzusammensetzung bestehen. Ist die Tongesteinsfazies in einem Gesteinsverband lateral sehr variabel, ist die gleichmäßige räumliche Verteilung der Gesteinseigenschaften schwer einzuschätzen und somit nur mit Ungewissheiten zu extrapolieren bzw. zu interpolieren.

Ausmaß der tektonischen Überprägung der geologischen Einheit

Der Indikator bewertet das Vorhandensein von Störungen und deren Abstand zum ewG sowie das Vorhandensein von Flexuren und Falten.

Im strukturellen Aufbau eines Gebirges, zu dem der ewG bzw. Endlagerbereich gehört, sind die Veränderungen zu betrachten, die ausgehend von einem ursprünglich ungestörten zu einem gestörten Gebirgsverband geführt haben.

Eine tektonische Überprägung hat in den meisten Fällen negative Auswirkungen auf die Charakterisierbarkeit des Gebirgsverbandes bzw. einer geologischen Struktur im Gebirgsverband. Die Ermittelbarkeit der räumlichen Verteilung der charakteristischen Eigenschaften wird dadurch eingeschränkt. Daher sollte der Gesteinsverband des Endlagerbereiches und des ewG eine möglichst geringe tektonische Überprägung aufweisen. Nach der Begründung zum StandAG

(Deutscher Bundestag, 2017) wird das Ausmaß der Überprägung abgeleitet aus den Lagerungsverhältnissen unter Berücksichtigung von Bruch- und Faltentektonik.

Bei den in den Wertungsgruppen genannten Abständen zu bekannten Störungen ist auf die sich möglicherweise in die Tiefe hin ändernden Einfallswinkel und Einfallsrichtungen zu achten.

Bei Anwendung der Abwägungskriterien gemäß StandAG müssen auch die nicht aktiven Störungen betrachtet werden. Das StandAG legt nicht fest, ab welcher "Größe" Störungen zu betrachten sind. Für die Ausweisung von Teilgebieten in Phase 1 des StandAG könnte es sinnvoll sein, solche Störungen zu betrachten, die in der Seismikauswertung identifiziert werden können und/oder solche, die bei einer Oberflächenkartierung einen nachweisbaren Versatz aufweisen.

Störungen, insbesondere Abschiebungen, Aufschiebungen und Überschiebungen mit und ohne Transversalversätzen, können von kleineren Nebenstörungen begleitet sein. Ein Faltungsprozess geht insbesondere in den kompetenten Gesteinseinheiten mit Auflockerung des Gesteinsverbandes an Klüften und Störungen einher. Die möglichen Ausprägungen der tektonischen Überprägung können von der Wertungsgruppe günstig bis zur Wertungsgruppe ungünstig reichen.

Gesteinsausbildung (Gesteinsfazies)

Dieser Indikator bewertet den Grad der Homogenität und die räumliche Charakterisierbarkeit der Gesteinsausbildung im vorgesehenen ewG. Als Gesteinsausbildung bzw. Gesteinsfazies werden alle Eigenschaften eines Gesteins verstanden.

Die Gesteinszusammensetzung, also die Gesteinskomponenten (qualitative und quantitative Zusammensetzung) und das Gesteinsgefüge (Größe, Gestalt und räumliche Anordnung der Gemengeteile) sowie die Matrix- und/ oder Zementausbildung werden als Lithofazies zusammengefasst. Hinzu kommen Aussagen zur Alteration und Diagenese des Gesteins sowie zu strukturellen Merkmalen.

Der Indikator "Gesteinsausbildung" bezieht sich explizit auf den ewG. Es ist zu erwarten, dass die Gesteinsausbildung der Wirtsgesteine in den entsprechenden Tiefenlagen im Gebirge nur durch Bohrungen bekannt ist. Liegen für die Wirts- und Barrieregesteine Steinsalz und Tongestein keine lithologisch interpretierten Bohrungen im Endlagerbereich vor, besteht die Möglichkeit, dass über Analogieschlüsse zu bekannten Gesteinsvorkommen, die im ehemals gleichen Ablagerungsraum entstanden sind, eine erste Annäherung vorgenommen werden kann. Bei plutonischen und metamorphen Komplexen wäre eine erste Einschätzung über das Volumen und die äußere Form, wenn bekannt, der Gesteinskörper möglich.

Im Hinblick auf die Einheitlichkeit der Gesteinsausbildung bestehen zwischen den verschiedenen genetischen Gesteinsgruppen (Sedimentgesteine, magmatische Gesteine und metamorphe Gesteine) deutliche Unterschiede.

Die Tonmineralzusammensetzung von Tongesteinen und die Zusammensetzung ihrer klastischen Beimengungen sind abhängig von der Art der Ausgangsgesteine im Liefergebiet und von dem dort bei der Verwitterung herrschenden Klima. Neben einer Tonmineralneubildung trägt die Erosion tonmineralhaltiger Gesteine im Liefergebiet zur Bildung von Tongesteinen bei, die nach Transport in fluviatilen, limnischen und marinen Ablagerungsräumen sedimentiert werden.

Nach Füchtbauer (1988) werden im Bereich der Schelfe, insbesondere in Mündungsgebieten der Flüsse, die angelieferten Tonminerale entsprechend ihrer Korngröße getrennt abgelagert. Durch

Koagulation der Tonminerale und durch Strömungstransport kann auf dem Schelf die korngrößenabhängige Tonmineralzonierung beeinflusst werden. In die zentralen Ozeanbecken gelangen durch Meeresströmungen und äolischen Transport nur die feinsten Schwebstoffe.

Für Ablagerungsbereiche gilt, dass eine geringe Unterteilung in Schwellen- und Beckenbereiche auch zu geringen lateralen und horizontalen faziellen Änderungen der Tongesteine führt. In einheitlichen, weiträumigen Becken mit ruhigen Ablagerungsbedingungen sind die Tongesteine homogener ausgebildet als in engräumig strukturierten Sedimentationsräumen. In Letzteren können Tongesteine z. B. mit gröberklastischen Sedimenten verzahnt sein.

Diagenetische und tektonische Überprägungen sowie Alterationen sind zusätzliche Faktoren, die die Einheitlichkeit der Gesteinsausbildung beeinflussen können.

Für Tongesteine wird daher erwartet, dass je nach regionaler Ausprägung eine Einordnung in die Wertungsgruppen günstig bis ungünstig möglich ist.

Bewertung der langfristigen Stabilität der günstigen Verhältnisse

Das Kriterium ist gemäß StandAG § 24 Absatz 3 zur Bewertung der erreichbaren Qualität des Einschlusses und der zu erwartenden Robustheit des Nachweises heranzuziehen. In Anlage 4 zu § 24 Absatz 3 wird gefordert:

Die für die langfristige Stabilität der günstigen Verhältnisse wichtigen sicherheitsgerichteten geologischen Merkmale sollen sich in der Vergangenheit über möglichst lange Zeiträume nicht wesentlich verändert haben. Indikatoren hierfür sind insbesondere die Zeitspannen, über die sich die Betrachtungsmerkmale "Mächtigkeit", flächenhafte beziehungsweise räumliche "Ausdehnung" und "Gebirgsdurchlässigkeit" des einschlusswirksamen Gebirgsbereichs nicht wesentlich verändert haben. Sie sind wie folgt zu bewerten:

1. als günstig, wenn seit mehr als zehn Millionen Jahren keine wesentliche Änderung des betreffenden Merkmals aufgetreten ist,

2. als bedingt günstig, wenn seit mehr als einer Million, aber weniger als zehn Millionen Jahren keine solche Änderung aufgetreten ist, und

3. als ungünstig, wenn innerhalb der letzten eine Million Jahre eine solche Änderung aufgetreten ist.

Folglich ist das Kriterium durch eine bewertungsrelevante Eigenschaft (langfristige Stabilität der wichtigen sicherheitsgerichteten geologischen Merkmale) und deren entsprechende Indikatoren:

- 1. Zeitspanne, über die sich die Mächtigkeit des ewG nicht wesentlich verändert hat,
- 2. Zeitspanne, über die sich die Ausdehnung des ewG nicht wesentlich verändert hat,
- 3. Zeitspanne, über die sich die Gebirgsdurchlässigkeit des ewG nicht wesentlich verändert hat,

definiert. Für alle drei Indikatoren gilt die oben genannte Einteilung in "günstig", "bedingt günstig" und "ungünstig".

Für die in diesem Kriterium genannten Änderungen der sicherheitsgerichteten geologischen Merkmale des ewG in der Vergangenheit fehlt eine Bezugsgröße. Auch erfolgt keine Unterscheidung zwischen positiven und negativen Veränderungen. Diese müssen insbesondere Betrachtung finden, wenn sie als bewertungsrelevant für die zukünftige Entwicklung des Endlagersystems erachtet werden.

Gegenstand der drei zu diesem Kriterium angegebenen Indikatoren sind die in der Vergangenheit aufgetretenen Änderungen der Betrachtungsmerkmale Mächtigkeit, Ausdehnung und Gebirgsdurchlässigkeit des ewG. Solche Änderungen haben zwar ggf. den gegenwärtigen Zustand des für die Aufnahme eines ewG geeigneten Gebirgsbereichs beeinflusst, darüber hinaus können sie jedoch keine direkten Veränderungen in der Zukunft bewirken. Einflüsse auf eine zukünftige Barrierenintegrität oder einen zukünftigen Radionuklidtransport sind aufgrund dieser unterschiedlichen Zeitlichkeit ausgeschlossen. Für diese Indikatoren wird im Vorhaben RESUS folglich auch keine Sensitivitätsstudie durchgeführt. Unabhängig davon sind jedoch die Prozesse, die in der Vergangenheit Veränderungen von Mächtigkeit, Ausdehnung oder Gebirgsdurchlässigkeit des für die Aufnahme eines ewG geeigneten Gebirgsbereichs bewirkt haben, selbstverständlich in Sicherheitsuntersuchungen zu berücksichtigen, sofern sie rezent oder in Zukunft auftreten.

Die im Vorhaben RESUS verwendeten geologischen Modelle sind generisch, so dass auch entsprechende Genesemodelle für die Modelle generisch wären. Eine langfristige Stabilität der

geologischen Verhältnisse in der Vergangenheit begünstigt die Prognostizierbarkeit von geologischen Prozessen, die die Betrachtungsmerkmale Mächtigkeit, Ausdehnung und Gebirgsdurchlässigkeit des ewG verändern könnten (siehe Kapitel 2.3). In Übereinstimmung mit den Ausführungen in Kapitel 2.3 und der Zielsetzung, kein Endlagersystem aufgrund generischer Randbedingungen zu diskreditieren, erfolgt im Vorhaben RESUS für die Anlage 4 die Wertung "günstig" in allen betrachteten Endlagersystemen.

Zeitspanne, über die sich die Mächtigkeit des ewG nicht wesentlich verändert hat

Der Indikator bewertet die Zeitspanne, über die sich die Mächtigkeit des ewG nicht wesentlich verändert hat.

Die Veränderung der Mächtigkeit von Gesteinseinheiten erfolgt überwiegend durch Wechselbeziehungen zwischen Hebung, Senkung, Erosion und Sedimentation. Wichtiger Steuerungsfaktor neben der Tektonik ist das Klima. Sedimentations- und erosive Prozesse können durch Faktoren wie isostatische Ausgleichsbewegungen infolge wechselnder Auflast durch Gletscher- oder Gesteinsmaterial beeinflusst werden.

Sedimentationsprozesse betreffen die Erdoberfläche und üben indirekt Einfluss auf die Mächtigkeit des ewG aus (z. B. Kompaktion durch Auflast). Erosive Prozesse hingegen können aufgrund ihrer teilweise hohen Tiefenwirkung (z. B. glazigene Rinnenbildung) neben der indirekten Beeinflussung (z. B. Dekompaktion durch fehlende Auflast) direkten Einfluss auf die Mächtigkeit des ewG haben. Erosion kann lokal forciert erfolgen, z. B. linienhafte Vertiefung der Erdoberfläche durch abfließendes Wasser (fluviatile Erosion) oder durch Gebirgsgletscher (glaziale Erosion). Flächenhaft wirkende Abtragungsprozesse umfassen fluviatile, gravitative, glazigene, litorale und äolische Prozesse. Erosion betrifft alle Gesteine, wobei hinsichtlich der Intensität Unterschiede auftreten: magmatische und hochmetamorphe Gesteine (z. B. Kristallingestein) sind gegenüber Erosion grundsätzlich resistenter als Sedimentgesteine (z. B. Tongestein, Steinsalz).

In Bezug auf die Indikatorbewertung kann die Variationsbreite bei Tongesten von "günstig" bis "ungünstig" reichen. Zusätzlich sind gesteinsspezifisch folgende Aspekte zu betrachten:

- Änderung der Mächtigkeit durch Kompaktion und Dekompaktion,
- Änderung der Mächtigkeit durch tektonische Überprägung,
- Volumenänderung bestimmter Tongesteine durch Quellen und
- Änderung der Mächtigkeit durch Verkarstungsprozesse in Tongesteinen mit nennenswerten Karbonateinschlüssen.

Zeitspanne, über die sich die Ausdehnung des ewG nicht wesentlich verändert hat

Der Indikator bewertet die Zeitspanne, über die sich die flächenhafte bzw. räumliche Ausdehnung des ewG nicht wesentlich verändert hat.

Die mögliche Ausprägung des Indikators "Zeitspanne, über die sich die Ausdehnung des ewG nicht wesentlich verändert hat" ist mit der von Indikator "Zeitspanne, über die sich die Mächtigkeit des ewG nicht wesentlich verändert hat" vergleichbar. Änderungen der flächenhaften bzw. räumlichen Ausdehnung von Gesteinseinheiten erfolgen auch hier als Folge von Wechselbeziehungen zwischen Hebung, Senkung, Erosion und Sedimentation. Darüber hinaus kommt kaltzeitlichen

Prozessen (glaziale Erosion, Gletscherauflast) aufgrund ihrer teilweise großen Tiefenwirkung besondere Bedeutung zu.

Diese Prozesse betreffen alle Wirtsgesteinstypen, wobei hinsichtlich ihrer Intensität und ihrer Auswirkungen Unterschiede auftreten. In Bezug auf die Indikatorbewertung kann die Variationsbreite bei Tongestein von "günstig" bis "ungünstig" reichen.

Zusätzlich sind gesteinsspezifisch folgende Aspekte zu betrachten:

- Änderung der Ausdehnung durch Kompaktion und Dekompaktion,
- Änderung der Ausdehnung durch tektonische Überprägung,
- Volumenänderung bestimmter Tongesteine durch Quellen und
- Änderung der Ausdehnung durch Verkarstungsprozesse in Tongesteinen mit nennenswerten Karbonateinschlüssen.

Zeitspanne, über die sich die Gebirgsdurchlässigkeit im ewG nicht wesentlich verändert hat

Der Indikator bewertet die Zeitspanne, über die sich die Gebirgsdurchlässigkeit des ewG nicht wesentlich verändert hat.

Faktoren, die die Gebirgsdurchlässigkeit von Gesteinseinheiten verändern können, sind tektonische Überprägungen, eine veränderte Auflast z. B. durch Sedimentation und Erosion, Diagenese (Steinsalz und Tongestein) sowie Alterationen. Die Variationsbreite in Bezug auf die Indikatorbewertung kann bei Steinsalz, Kristallin- und Tongestein von "günstig" bis "ungünstig" reichen.

Im Tongestein ist die Gebirgsdurchlässigkeit abhängig von der Porosität (Boisson, 2005). Die zeitliche Veränderung der hydraulischen Eigenschaften kann als Folge exogener Faktoren eine Kompaktion und Dekompaktion erfolgen, durch Alterationsprozesse, Volumenänderungen durch Quellen, sowie durch die Bildung neuer Fluidwegsamkeiten, z. B. durch die Bildung von Entlastungsrissen oder durch Verkarstungsprozesse bei Tongestein mit nennenswerten Karbonateinschlüssen.

Bewertung der günstigen gebirgsmechanischen Eigenschaften

Das Kriterium ist gemäß StandAG § 24 Absatz 4 zur Beurteilung der Absicherung des Isolationsvermögens heranzuziehen. Das Kriterium ist gemäß Anlage 5 (zu § 24 Absatz 4) durch eine bewertungsrelevante Eigenschaft mit zwei Indikatoren definiert.

Anlage 5 StandAG lautet:

Die Neigung zur Ausbildung mechanisch induzierter Sekundärpermeabilitäten im einschlusswirksamen Gebirgsbereich soll außerhalb einer konturnahen entfestigten Auflockerungszone um die Endlagerhohlräume möglichst gering sein. Indikatoren hierfür sind:

1. das Gebirge kann als geomechanisches Haupttragelement die Beanspruchung aus Auffahrung und Betrieb ohne planmäßigen tragenden Ausbau, abgesehen von einer Kontursicherung, bei verträglichen Deformationen aufnehmen;

2. um Endlagerhohlräume sind keine mechanisch bedingten Sekundärpermeabilitäten außerhalb einer unvermeidbaren konturnah entfestigten Auflockerungszone zu erwarten.

Aufnahme der Beanspruchung des Gebirges aus der Auffahrung ohne planmäßigen tragenden Ausbau

Mit dem Indikator wird die Festigkeit des Barrieregesteins in Relation zum Sekundärspannungszustand (nach der Auffahrung) bewertet.

Das StandAG gibt explizit für diesen Indikator keine Wertungsgruppen vor. Ein Standort hat günstige gebirgsmechanische Eigenschaften, wenn das Gebirge als geomechanisches Haupttragelement die Beanspruchung aus Auffahrung und Betrieb ohne planmäßigen tragenden Ausbau, abgesehen von einer Kontursicherung (z. B. Anker, Maschendrahtverzug), bei verträglichen Deformationen aufnehmen kann. Weitere Einteilungen gibt das StandAG nicht vor.

Das Ausmaß der Beanspruchung ist abhängig vom Endlagerkonzept und Barrieregesteinstyp. Für die Beurteilung des Indikators ist es wesentlich, ob es sich bei dem Endlagersystem um den Konfigurationstyp A oder Bb handelt. Da die Barrieregesteinstypen generell ein sehr unterschiedliches Materialverhalten aufweisen, müssen für eine Abschätzung des gesteinsmechanischen Verhaltens der verschiedenen Barrieregesteinstypen gesteinstypspezifische Stoffmodelle beachtet werden. Kristallingesteine sind dabei durch ein elastisch-sprödes, Tongesteine durch ein elastisch-(visko)plastisches bis sprödes und Steinsalz durch ein elastischviskoses Materialverhalten charakterisiert. Darüber hinaus müssen auch die Fazies und die Intaktheit des Gesteins beachtet werden.

Grundsätzlich kann davon ausgegangen werden, dass der für die Errichtung eines Endlagers für hochradioaktive Abfälle ausgewählte Gebirgsbereich nur in geringem Maße durch ein mechanisch wirksames Trennflächengefüge überprägt ist. Dennoch können Bereiche in dem Barrieregestein vorkommen, in denen schon vor der Auffahrung Gebirgsfestigkeiten unter dem zu erwartenden Niveau vorliegen. Daher empfiehlt sich eine Unterscheidung in intakte Gebirgsbereiche und nicht intakte Gebirgsbereiche. Zusätzlich ist das gesteinsmechanische Verhalten auch abhängig vom Primärspannungszustand des Gebirges. Die Primärspannungen nehmen im Allgemeinen mit der Teufe als Folge des Eigengewichtes der Überlagerung zu. Die Primärspannungen können durch tektonische Einflüsse, Anisotropie oder Trennflächen wesentlich beeinflusst werden.

Der AkEnd hat für seine Diskussion zur Bewertung der günstigen gebirgsmechanischen Eigenschaften eine Studie des grundsätzlichen Tragverhaltens sowie der Neigung zur Ausbildung mechanisch induzierter Sekundärpermeabilitäten verschiedener Gebirgsarten als Reaktion auf endlagerrelevante Einwirkungen in Auftrag gegeben. Die zweiteilige Studie (Lux et al., 2002a, 2002b) macht für die dort angesetzten Rahmenbedingungen eine gesteinsart- und gebirgsklassenbezogene Aussage, bis in welche Teufe jeweils "günstige gebirgsmechanische Verhältnisse" zu erwarten sind. Der AkEnd weist darauf hin, dass die beiden Indikatoren aus gebirgsmechanischer Sicht zusammengefasst betrachtet werden können.

Da das geowissenschaftliche Abwägungskriterium zur Bewertung der günstigen gebirgsmechanischen Eigenschaften auf den Ausarbeitungen des AKEnd beruht, lassen sich die Ergebnisse von Lux et al. (2002a, 2002b) auf die Anlage 5 des StandAG anwenden. Dabei kann das in der Studie so bezeichnete "Granitgestein" als repräsentativer Vertreter von Kristallingestein angesehen werden.

Aus der Studie und aus bergbaulichen Erfahrungen im Steinsalz und im Kristallingestein sowie dem Bau und Betrieb von Untertagelaboren im Tongestein (Mont Terri / Schweiz, Bure/Frankreich) ergeben sich die folgenden Einschätzungen.

Für Tongestein ist zu erwarten, dass ein tragender Ausbau errichtet werden muss. Dieser variiert in Abhängigkeit von der Geometrie und der Dauer der geplanten Offenhaltung des entsprechenden Grubenraums.

Eine ähnliche Einschätzung zur Hohlraumstabilität für die drei potenziellen Wirtsgesteine Steinsalz, Tongestein und Kristallingestein gibt BGR (2007). Während einem Endlager in Steinsalz grundsätzlich eine Eigenstabilität attestiert wird, wird für ein Endlager im Tongestein prinzipiell ein tragender Ausbau als notwendig angesehen. Die Hohlraumstabilität für ein Endlager im Kristallingestein wird als Funktion der Kluftintensität angegeben (hoch bei ungeklüftet; gering bei stark geklüftet).

Mechanisch bedingte Sekundärpermeabilitäten

Sekundärpermeabilitäten entstehen infolge einer Beanspruchung (thermomechanische Beanspruchung infolge der Auffahrung von Hohlräumen und/oder der Einlagerung Wärme Dilatanzfestigkeit überschreitet entwickelnder Abfälle), die die und auf dilatante Gebirgsdeformationen zurückzuführen ist. Dabei erweitern sich vorhandene Fissuren, und es Risse können sich darüber hinaus neue ausbilden und vernetzen. Der Begriff "Sekundärpermeabilität" wurde in dieser Bedeutung vom AkEnd (2002) geprägt.

Mit dem Indikator werden die Dilatanzfestigkeiten (Zug- und Scherfestigkeit) des Barrieregesteins als Maß für die Neigung zur Bildung von Wegsamkeiten im ewG bewertet.

Das StandAG gibt für diesen Indikator keine Wertungsgruppen vor. Die Indikation ist somit entweder gegeben (es sind keine konturfernen Sekundärpermeabilitäten zu erwarten) oder nicht gegeben (es sind konturferne Sekundärpermeabilitäten zu erwarten).

Auch die Ausprägung dieses Indikators ist sowohl abhängig vom Barrieregesteinstyp als auch von der Fazies und der Qualität des Gesteins. Der AkEnd weist darauf hin, dass die beiden Indikatoren des Kriteriums aus gebirgsmechanischer Sicht zusammengefasst betrachtet werden können, da bei hinreichender Tragfähigkeit des Gebirges (Gebirge = Haupttragelement) auch nur in begrenztem Maß Konturentfestigungen und Konturauflockerungen zu erwarten sind. Dementsprechend sind die Aussagen zum vorhergehenden Indikator "Aufnahme der Beanspruchung des Gebirges aus der

Auffahrung ohne planmäßigen tragenden Ausbau" für beide Indikatoren gültig und daher auch auf eine Einschätzung zur Ausprägung des Indikators "Mechanisch bedingte Sekundärpermeabilitäten" prinzipiell übertragbar.

Bewertung der Neigung zur Bildung von Fluidwegsamkeiten

Das Kriterium ist gemäß StandAG § 24 Absatz 4 zur Beurteilung der Absicherung des Isolationsvermögens heranzuziehen.

Anlage 6 StandAG lautet:

Die Neigung des einschlusswirksamen Gebirgsbereichs zur Ausbildung von Wegsamkeiten soll möglichst gering sein. Bewertungsrelevante Eigenschaften hierfür sind die Veränderbarkeit der Gebirgsdurchlässigkeit, Erfahrungen über die Barrierewirksamkeit der Gebirgsformationen, die Rückbildbarkeit von Rissen und für den Vergleich von Gebieten die Duktilität des Gesteins.

Bewertungsrelevante Bewertungsgröße		Wertungsgruppe		
Eigenschaft des Kriteriums	beziehungsweise Indikator des Kriteriums	günstig	bedingt günstig	weniger günstig
	Verhältnis repräsentative Gebirgs- durchlässigkeit/repräsentative Gesteinsdurchlässigkeit	< 10	10 – 100	> 100
Veränderbarkeit der vorhandenen Gebirgsdurchlässig- keit	 Erfahrungen über die Barriere- wirksamkeit der Gebirgsformationen in folgenden Erfahrungsbereichen rezente Existenz als wasserlösliches Gestein fossile Fluideinschlüsse unterlagernde wasserlösliche Gesteine unterlagernde Vorkommen flüssiger oder gasförmiger Kohlenwasserstoffe Heranziehung als hydrogeolo- gische Schutzschicht bei Gewinnungsbergwerken Aufrechterhaltung der Abdichtungsfunktion auch bei dynamischer Beanspruchung Nutzung von Hohlräumen zur behälterlosen Speicherung von gasförmigen und flüssigen Medien 	Die Gebirgsforma- tion/der Gesteinstyp wird unmittelbar oder mittelbar anhand eines oder mehrerer Erfahrungsbereiche als gering durch- lässig bis geologisch dicht identifiziert, auch unter geogener oder technogener Beanspruchung.	Die Gebirgsforma- tion/der Gesteinstyp ist mangels Erfahrung nicht unmittelbar/mittelbar als gering durchlässig bis geologisch dicht zu charakterisieren.	Die Gebirgsforma- tion/ der Gesteinstyp wird unmittelbar oder mittelbar anhand eines Erfahrungs- bereichs als nicht hinreichend gering durchlässig identifiziert.
	Duktilität des Gesteins (da es keine festgelegten Grenzen gibt, ab welcher Bruchverformung ein Gestein duktil oder spröde ist, soll dieses Kriterium nur bei einem Vergleich von Standorten angewandt werden)	Duktil/plastisch- viskos ausgeprägt	Spröde-duktil bis elastoviskoplastisch wenig ausgeprägt	Spröde, linear- elastisch
Rückbildbarkeit von Rissen	Rückbildung der Sekundärpermeabilität durch Rissschließung	Die Rissschließung erfolgt aufgrund duktilen Material- verhaltens unter Ausgleich von Ober- flächenrauhigkeiten im Grundsatz vollständig.	Die Rissschließung erfolgt durch mecha- nische Rissweiten- verringerung in Verbindung mit sekundären Mecha- nismen, zum Beispiel Quelldeformationen.	Die Rissschließung erfolgt nur in beschränktem Maße (zum Beispiel bei sprödem Material- verhalten, Ober- flächenrauhigkeiten, Brückenbildung).
	Rückbildung der mechanischen Eigenschaften durch Rissverheilung	Rissverheilung durch geochemisch geprägte Prozesse mit erneuter Aktivierung atomarer Bindungskräfte im Rissflächenbereich		Rissverheilung nur durch geogene Zuführung und Auskristallisation von Sekundärmineralen (mineralisierte Poren- und Kluftwässer, Sekundärmineralisati on)
Zusammenfassende Beurteilung der Neigung zur Bildung von Fluidwegsamkeiten aufgrund der Bewertung der einzelnen Indikatoren		Bewertung überwiegend "günstig": Keine bis marginale Neigung zur Bildung von Fluidwegsamkeiten	Bewertung überwiegend "bedingt günstig": Geringe Neigung zur Bildung von dauerhaften Fluidwegsamkeiten	Bewertung überwie- gend "weniger günstig": Bildung von dauerhaften sekundären Fluidwegsamkeiten zu erwarten

Abb. 52: Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 6 des StandAG.

In der vorstehenden Tabelle aus Anlage 6 StandAG werden zwei bewertungsrelevante Eigenschaften für das Kriterium genannt, nämlich die Veränderbarkeit der vorhandenen Gebirgsdurchlässigkeit und die Rückbildbarkeit von Rissen. Demgegenüber werden in dem der Tabelle vorangestellten Text zusätzlich Erfahrungen über die Barrierewirksamkeit der Gebirgsformationen und die Duktilität des Gesteins, die in der Tabelle jeweils als Indikator bezeichnet werden, als bewertungsrelevante Eigenschaften genannt.

In der Tabelle ist angegeben, dass die Duktilität des Gesteins nur bei einem Vergleich von Standorten angewendet werden soll, wohingegen die Duktilität des Gesteins gemäß dem der Tabelle vorangestellten Text für den Vergleich von Gebieten anzuwenden ist. Zur Aufklärung dieses Widerspruchs kann auf den Text des Abschlussberichtes der Kommission Lagerung hochradioaktiver Abfallstoffe zurückgegriffen werden. Dort findet sich auf S. 323 als Tabelle 30 (Kommission, 2016) eine mit der Tabelle in Anlage 6 StandAG nahezu identische Tabelle. Es bestehen zwei Unterschiede. Ein Unterschied bestehen darin, dass im Kommissionsbericht für den Indikator "Verhältnis repräsentative Gebirgsdurchlässigkeit / repräsentative Gesteinsdurchlässigkeit" die Einheit m/s angegeben wird, während in der Tabelle in Anlage 6 StandAG die Angabe dieser Einheit fehlt. Da Gebirgsdurchlässigkeit und Gesteinsdurchlässigkeit die gleichen Einheiten haben, ist das Verhältnis aus beiden dimensionslos und die Weglassung der Einheit im StandAG sachgerecht. Der andere Unterschied besteht darin, dass die Sachverhalte zur Einschätzung der Barrierewirksamkeit, wie beispielsweise die Nutzung des Gesteinstyps zur behälterlosen Speicherung von Fluiden, im Kommissionsbericht vor der Tabelle im Text aufgeführt sind, während sie im StandAG wortgleich in die Tabelle übernommen wurden. Da abgesehen von diesen formalen Unterschieden die beiden Tabellen wörtlich übereinstimmen, kann gefolgert werden, dass der Gesetzgeber bestrebt war, hier den Inhalt des Kommissionsberichts unverändert umzusetzen. Im Kommissionsbericht ist die Aussage, dass die Duktilität des Gesteins für den Vergleich von Gebieten anzuwenden ist, nicht enthalten. Daraus folgt, dass die Duktilität des Gesteins, wie in den Tabellen angegeben, nur bei einem Vergleich von Standorten anzuwenden ist, nicht aber bei einem Vergleich von Gebieten. Folglich ist dieser Indikator weder bei der Ermittlung von Teilgebieten gemäß § 13 StandAG noch bei der Ermittlung von Standortregionen gemäß § 14 StandAG zu berücksichtigen.

Verhältnis repräsentative Gebirgsdurchlässigkeit / repräsentative Gesteinsdurchlässigkeit

Der Indikator entspricht dem Quotienten aus der Gebirgsdurchlässigkeit, also der hydraulischen Leitfähigkeit des natürlichen Gesteinsverbandes, die sich aus der Trennfugendurchlässigkeit und der Gesteinsdurchlässigkeit zusammensetzt, und der Durchlässigkeit des Gesteins.

Bei der Ermittlung werden repräsentative Werte für den Gesteinstyp ohne Beschränkung auf die spezifischen Verhältnisse im ewG angesetzt. Dass für diesen Indikator nicht nur die Werte für den ewG, sondern repräsentative Werte für die Gesteinsart am jeweiligen Standort zu berücksichtigen sind, geht aus einer diesbezüglichen Arbeit im Auftrag des AkEnd (Lux, 2002c) hervor, in der "sowohl grundsätzliche Gesteinstyp bezogene und Standort bezogene Erkenntnisse" genannt werden, jedoch die Standort bezogenen Erkenntnisse nicht unterteilt werden nach Lage innerhalb des ewG oder außerhalb davon.

Voraussetzung dafür, dass ein Feststoff durchströmt werden kann, ist die Existenz von für Fluide zugänglichen vernetzten Poren- und/oder Klufthohlräumen, die beliebige Größe und Form haben können. Neben Hohlräumen im Mikrogefüge eines Gesteins können makroskopische Hohlräume in kavernösem Gebirge oder Trennflächen in geklüftetem Gebirge existieren.

Da die Gebirgsdurchlässigkeit nicht kleiner als die Gesteinsdurchlässigkeit sein kann, kann der Quotient aus Gebirgsdurchlässigkeit und Gesteinsdurchlässigkeit nicht kleiner als 1 sein. In einem

Gebirge, das keine durchlässigkeitserhöhenden Elemente wie hydraulisch wirksame Klüfte enthält, sind Gebirgs- und Gesteinsdurchlässigkeit gleich und der Quotient aus beiden beträgt 1. Da über Klüfte um Größenordnungen größere Fluidvolumina transportiert werden können als durch geringdurchlässige Gesteine bei gleichen Randbedingungen, kann der Quotient in geklüftetem Gebirge entsprechend große Werte im Bereich mehrerer Zehnerpotenzen annehmen.

In Tongestein sind Werte aus allen Wertungsgruppen möglich. Die hydrogeologischen Eigenschaften des Opalinustones wurden u.a. von Hekel (1994) und Gautschi (1997) beschrieben. Die Untersuchungen zeigen, dass bei einer Mächtigkeit des Deckgebirges von mehreren hundert Metern Klüfte im Barrieregestein hydraulisch nicht wirksam sind (Nagra 2002). Phänomenologisch lassen sich diese Befunde durch die Fähigkeit des Opalinustons zur Selbstabdichtung erklären.

Erfahrungen über die Barrierewirksamkeit der Gebirgsformationen

Mit dem Indikator wird bewertet, ob durch die existierenden geowissenschaftlichen Informationen über das Wirtsgestein und seine Inhaltsstoffe (wie z. B. Fluide) Aussagen über seine langfristige niedrige Gebirgsdurchlässigkeit getroffen werden können.

Für diesen Indikator zählt das StandAG eine Reihe von Erfahrungsbereichen auf, auf deren Basis auf die Barrierewirksamkeit der entsprechenden Gebirgsformation geschlossen werden kann, und zwar:

- rezente Existenz als wasserlösliches Gestein
- fossile Fluideinschlüsse
- unterlagernde wasserlösliche Gesteine
- unterlagernde Vorkommen flüssiger oder gasförmiger Kohlenwasserstoffe
- Heranziehung als hydro-geologische Schutzschicht bei Gewinnungsbergwerken
- Aufrechterhaltung der Abdichtungsfunktion auch bei dynamischer Beanspruchung
- Nutzung von Hohlräumen zur behälterlosen Speicherung von gasförmigen und flüssigen Medien

Ein Wirtsgesteinstyp, auf den dieses Abwägungskriterium angewendet wird, ist gemäß StandAG in die Wertungsgruppe "günstig" einzuordnen, wenn eine der genannten Gegebenheiten zutrifft.

Der Indikator wird so verstanden, dass anhand von Erfahrungen sowohl die relevanten Formationen als auch die Gesteinstypen im Hinblick auf ihre Barrierewirksamkeit einzuschätzen sind. Somit werden Erfahrungen zur Barrierewirksamkeit des jeweiligen Gesteinstyps oder der Gebirgsformationen berücksichtigt, die auch außerhalb des zu bewertenden Gebietes gemacht wurden. Dies entspricht auch der Formulierung unmittelbar/mittelbar in der Wertungsgruppe. Synonym für Gebirgsformation wird der Begriff Formation verwendet.

Sowohl Ton- als auch Salzformationen können in Fallenstrukturen für Kohlenwasserstofflagerstätten abdichtende Schichten bilden. Beide Barrieregesteinstypen erfüllen somit die vierte genannte Gegebenheit "unterlagernde Vorkommen flüssiger oder gasförmiger Kohlenwasserstoffe". Darüber hinaus erfüllen diese Barrieregesteinstypen weitere der genannten Gegebenheiten. Sie erfüllen beispielsweise beide die dritte genannte Gegebenheit "unterlagernde wasserlösliche Gesteine", da im Deckgebirge von Salzformationen sowohl Tonformationen als auch weitere Salzformationen

vorkommen können. Salzformationen und Tonformationen sind folglich für diesen Indikator standortunabhängig in die Wertungsgruppe günstig einzuordnen.

Gemäß StandAG soll eine anhand dieses Indikators festgestellte Barrierewirksamkeit auch unter "geogener oder technogener Beanspruchung" gegeben sein. Dieser Vorgabe kann dadurch Rechnung getragen werden, dass als technogene Beanspruchung die Spannungen im Gebirge nach einer Hohlraumauffahrung im relevanten Teufenbereich angenommen werden. Das hätte für Tongestein zur Folge, dass dieses Gestein nicht in die Wertungsgruppe "günstig" eingeordnet werden könnte, da bei der Hohlraumauffahrung in Tongestein immer ein tragender Ausbau notwendig wäre und ohne einen solchen Ausbau das nachbrechende Gebirge seine Barrierewirksamkeit verlieren könnte. Da Tongestein keiner der anderen für diesen Indikator genannten Wertungsgruppen zugeordnet werden kann, sollte bis zu einer Überprüfung eines konkreten Standortes Tongestein aus o.g. Gründen der Wertungsgruppe "günstig" zugeordnet werden.

Duktilität des Gesteins

Der Indikator gibt an, auf welche Weise das Gestein auf mechanische Belastungen reagiert.

Tongestein kann je nach fazieller Ausprägung duktiles, spröde-duktiles oder sprödes Verformungsverhalten aufweisen und kann in alle Wertungsgruppen fallen.

Rückbildung der Sekundärpermeabilität durch Rissschließung

Dieser Indikator bewertet, durch welche Prozesse bzw. wie weit es zur Rissschließung und damit zur Verringerung der Sekundärpermeabilität im Barrieregestein kommt.

Dabei werden gemäß Lux (2002c) unter Rissen infolge Einwirkungen aus Bau und Betrieb des Endlagers entstandene Trennflächen verstanden, im Gegensatz zu durch natürliche geogene Einwirkungen entstandenen Klüften.

Dem AkEnd-Bericht zufolge kann als Bewertungsmaßstab für diesen Indikator z. B. die "Intensität der Rückbildung von Sekundärpermeabilitäten nach dem Aufbau eines realitätsnahen Kompaktionsdruckes" genutzt werden. Der Begriff "Sekundärpermeabilität" wird weder im AkEnd-Bericht, noch im Abschlussbericht der Kommission Lagerung hochradioaktiver Abfallstoffe definiert. Der AkEnd hatte zur Formulierung dieses Indikators ein Gutachten beauftragt (Lux, 2002c). In diesem Gutachten (Lux, 2002c) wird dazu ausgeführt: "...dass die im unverritzten Gebirge zunächst vorhandene sogenannte Primärpermeabilität beanspruchungsbedingt (technogen, geogen) durch Mikrorissbildungen angestiegen ist und dadurch von einer Verschlechterung der Barrierewirksamkeit des Gefüges auszugehen ist. Diese nunmehr als Sekundärpermeabilität bezeichnete Gesteinspermeabilität...". An anderer Stelle heißt es: "...Auflockerungszone entlang der Hohlraumkontur, die eine im Gegensatz zum umliegenden Gebirge erhöhte primäre Permeabilität aufweist. die als Sekundärpermeabilität bezeichnet wird." Danach würde also die Sekundärpermeabilität sowohl eine initiale Primärpermeabilität als auch eine durch beanspruchungsbedingt entstandene Mikrorisse verursachte zusätzliche Permeabilität umfassen. Eine solche Bedeutung verträgt sich allerdings nur bedingt mit der Bezeichnung "Rückbildung der Sekundärpermeabilität...", da durch eine zunehmende isotrope Beanspruchung und abnehmende deviatorische Beanspruchung vorzugsweise die durch beanspruchungsbedingt entstandene Mikrorisse verursachte zusätzliche Permeabilität zurückgehen kann, weniger jedoch die Primärpermeabilität des unverritzten Gebirges. Daher wird im Folgenden unter Sekundärpermeabilität derjenige Anteil an der Gebirgspermeabilität in einer Wirtsgesteinsformation verstanden, der durch

die thermomechanische Beanspruchung infolge der Auffahrung von Hohlräumen und/oder der Einlagerung Wärme entwickelnder Abfälle entstanden ist.

Die Einordnung in die Wertungsgruppen geschieht gemäß StandAG in Abhängigkeit davon, ob die Rissschließung aufgrund duktilen Materialverhaltens, das eine vollständige Rückbildung der Sekundärpermeabilitäten erlaubt, erfolgt oder durch "mechanische Rissweitenverringerung" in Verbindung mit zusätzlichen Prozessen wie z. B. Quellen oder lediglich durch "mechanische Rissweitenverringerung". Laut AkEnd (2002) sind zu unterscheiden:

- Polykristalline Gesteine mit viskoplastischem Materialverhalten und ausgeprägtem Kriechvermögen, wie z. B. (chloridische) Salzgesteine
- Feinklastische Gesteine mit viskoplastisch-duktilem Materialverhalten, wie z. B. Tone und manche Tongesteine
- Polykristalline und auch feinklastische Gesteine mit elastisch-sprödem Materialverhalten und keinen bzw. vernachlässigbar geringen Kriecheigenschaften, wie z. B. Granitgesteine, tendenziell aber auch Tonmergelsteine

Die erstgenannten Gesteine sind gemäß der in StandAG Anlage 6 angegebenen Maßstäbe der Wertungsgruppe "günstig" zuzuordnen, die letztgenannten der Wertungsgruppe "weniger günstig", und feinklastische Gesteine mit viskoplastisch-duktilem Materialverhalten können zur Wertungsgruppe "günstig" oder "bedingt günstig" gehören. Danach ergibt sich folgende Zuordnung zu den Wertungsgruppen: Tongestein gehört der Wertungsgruppe "günstig" oder "bedingt günstig" an.

Rückbildung der mechanischen Eigenschaften durch Rissverheilung

Dieser Indikator bewertet, durch welche Prozesse Risse im Barrieregestein verheilen und dadurch dessen ursprüngliche mechanischen Eigenschaften wiederhergestellt werden.

Ebenso wie die Formulierung der vorangehenden Indikatoren zu diesem Kriterium, geht die Formulierung dieses Indikators auf das Gutachten Lux (2002c) zurück. Dort wird ausgeführt, dass von Rissverheilung zu sprechen ist, wenn "über den mechanischen Prozess der Rissschließung hinaus auch eine geochemisch geprägte Rissverheilung erfolgt". Während die Rissschließung also lediglich die Öffnungsweite geometrisch reduziert, indem die einander gegenüberliegenden Rissflächen aufeinandergepresst werden, werden bei der Verheilung zusätzlich atomare Bindungskräfte zwischen den einander gegenüberliegenden Rissflächen aufgebaut. Zu betrachten sind Rissverheilungsprozesse, die in Zeiträumen von Wochen bis Monaten, also in nicht geologischen Zeiträumen, ablaufen (Lux 2002c).

Für diesen Indikator werden im StandAG lediglich zwei Wertungsgruppen angegeben. Als günstig wird die "Rissverheilung durch geochemisch geprägte Prozesse mit erneuter Aktivierung atomarer Bindungskräfte im Rissflächenbereich" deklariert; eine Rissverheilung ausschließlich infolge von Sekundärmineralisationen führt zu einer Einstufung in die Wertungsgruppe "weniger günstig".

Die möglichen Ausprägungen dieses Indikators sind darauf beschränkt, dass Rekristallisationsprozesse unter endlagerrelevanten Druck- und Temperaturbedingungen ohne Auftreten von Sekundärmineralisationen stattfinden können oder nicht stattfinden können.

Die Rissverheilung in Tongestein bedarf einer standort- und teufenspezifischen Bewertung.

Bewertung der Gasbildung

Das Kriterium ist gemäß StandAG § 24 Absatz 5 zur Bewertung weiterer sicherheitsrelevanter Eigenschaften heranzuziehen. Das Kriterium ist gemäß Anlage 7 zu § 24 Absatz 5 durch eine bewertungsrelevante Eigenschaft und einen entsprechenden Indikator definiert:

Die Gasbildung soll unter Endlagerbedingungen möglichst gering sein. Indikator hierfür ist das Wasserangebot im Einlagerungsbereich nach der unten stehenden Tabelle.

Bewertungsrelevante Bewertungsgröße	Wertungsgruppe			
Eigenschaft des Kriteriums	aft des beziehungsweise Indikator des ums Kriteriums	günstig	bedingt günstig	weniger günstig
Gasbildung	Wasserangebot im Einlagerungsbereich	trocken	feucht und dicht (Gebirgsdurchlässig- keit < 10 ⁻¹¹ m/s)	feucht

Abb. 53: Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 7 des StandAG.

Gasbildung kann in einem Endlager in erster Linie durch Korrosion von Metallen auftreten (OECD/NEA, 2000, Xu et al. 2008). Voraussetzung dafür ist das Vorhandensein von Wasser. Als einzigen Indikator für das Kriterium Gasbildung wird das Wasserangebot im Einlagerungsbereich genannt.

Wasserangebot im Einlagerungsbereich

Der Begriff "Wasserangebot im Einlagerungsbereich" fasst die Menge des in einem Einlagerungsbereich vorhandenen und aus dem Wirtsgestein stammenden Wassers und die Rate, mit der Wasser aus dem Wirtsgestein in einen Einlagerungsbereich zutreten könnte, zusammen.

Die Einordnung in Wertungsgruppen erfolgt gemäß StandAG danach, ob das Gestein im Einlagerungsbereich "trocken" oder "feucht" ist und im Fall feuchten Gebirges zusätzlich danach, ob die Gebirgsdurchlässigkeit kleiner als 10⁻¹¹ m/s ist.

Weitere Angaben dazu, wie "trockene" von "feuchten" Gesteinen zu unterscheiden sind, finden sich im StandAG nicht.

Da die im StandAG angegebenen Wertungsgruppen für das Wasserangebot im Wirtsgestein wörtlich identisch sind mit den Wertungsgruppen, die der AkEnd zum Wasserangebot im Wirtsgestein angibt, kann hilfsweise auf die entsprechenden Angaben des AkEnd zurückgegriffen werden. Gemäß AkEnd ist das Gestein als "feucht" einzustufen, wenn "die zur Korrosion erforderliche Feuchtigkeit ansteht", im anderen Fall als "trocken".

In Tongestein ist aufgrund der Existenz durchströmbarer Poren die Bedingung, dass die zur Korrosion erforderliche Feuchtigkeit ansteht, als potenziell erfüllt anzusehen. Für Gesteinsbereiche mit einer Gebirgsdurchlässigkeit kleiner als 10⁻¹¹ m/s ist daher Tongestein in die Wertungsgruppe "bedingt günstig" einzuordnen.

Bewertung der Temperaturverträglichkeit

Das Kriterium ist gemäß StandAG § 24 Absatz 5 zur Bewertung weiterer sicherheitsrelevanter Eigenschaften heranzuziehen. Das Kriterium ist gemäß Anlage 8 zu § 24 Absatz 5 durch eine bewertungsrelevante Eigenschaft mit den Indikatoren *Neigung zur Bildung wärmeinduzierter Sekundärpermeabilitäten* sowie *Temperaturstabilität hinsichtlich Mineralumwandlungen* definiert.

Das Kriterium zu § 24 Absatz 5 im StandAG dient der Bewertung der Temperaturverträglichkeit und ist dort in Anlage 8 wie folgt beschrieben:

Die von Temperaturänderungen infolge der Einlagerung der radioaktiven Abfälle betroffenen Gesteinsformationen sollen so beschaffen sein, dass dadurch bedingte Änderungen der Gesteinseigenschaften sowie thermomechanische Gebirgsspannungen nicht zu einem Festigkeitsverlust und der Bildung von Sekundärpermeabilitäten im Endlagerbereich führen. Indikatoren hierfür sind die Neigung zur Bildung wärmeinduzierter Sekundärpermeabilitäten und ihre Ausdehnung sowie die Temperaturstabilität des Wirtsgesteins hinsichtlich Mineralumwandlungen.

Neigung zur Bildung wärmeinduzierter Sekundärpermeabilitäten

Der Indikator bewertet die mechanische Festigkeit der Gesteine im Endlagerbereich gegenüber auftretenden thermomechanischen Spannungen.

Es erfolgt im StandAG keine Zuordnung der Ausprägung des Indikators zu den Wertungsgruppen "günstig", "bedingt günstig", "weniger günstig" oder "ungünstig".

Der AkEnd hatte ein identisches Kriterium vorgeschlagen und dazu ausgeführt: "Die Neigung zu thermomechanisch bedingter Sekundärpermeabilität außerhalb einer konturnahen entfestigten Saumzone sollte räumlich möglichst eng begrenzt sein." Die Zuordnung zu Wertungsgruppen erfolgte dann in Abhängigkeit von der Ausdehnung des Bereichs um die Einlagerungshohlräume herum, in dem es zu thermisch bedingten Überschreitungen der Zug- und Dilatanzfestigkeiten kommen könnte, wobei eine Begrenzung auf einen Bereich im Abstand von bis zu 10 m um Einlagerungshohlräumen als günstig eingestuft wurde und eine Ausdehnung solcher Bereiche bis in Entfernungen von mehr als 50 m von Einlagerungshohlräumen als "weniger günstig".

"In den Forschungsvorhaben VSG und KOSINA wurde folgendes Systemverständnis entwickelt: Durch die Erwärmung des Wirtsgesteins infolge der Einlagerung hochradioaktiver Abfälle kommt es im erwärmten Bereich des Gebirges aus thermomechanischen Gründen zu einem Anstieg der Druckspannungen. Die thermisch bedingte Volumenexpansion des erwärmten Gebirgsbereichs in unmittelbarer Nachbarschaft der Einlagerungshohlräume kann allerdings in weiterer Entfernung, wo nur eine geringe Erwärmung stattfindet, zu einer Abnahme der Druckspannungen im Gebirge führen. Bei der Auswertung von im Salzgestein üblichen Festigkeitskriterien wirkt sich ein Anstieg der Druckspannungen im Hinblick auf eine Festigkeitsüberschreitung eher positiv aus, während eine Abnahme kritisch zu betrachten ist (Hampel et al., 2016). Entsprechende Berechnungen für einen Salzstock belegen, dass am Salzspiegel in mehreren Hundert Metern Entfernung von einem unterstellten Einlagerungsbereich sogar Zugspannungen in einem wenige Meter mächtigen auftreten während geringerer Gesteinsbereich können. in Entfernung von Einlagerungshohlräumen die Druckspannungen zunehmen (Kock et al., 2012). Dadurch entfernt sich der Spannungszustand von der Dilatanzfestigkeitsgrenze. Hinsichtlich der mechanischen Unversehrtheit des Gesteins bewirkt die Erwärmung somit eine Verbesserung des Spannungszustands im Bereich um die Einlagerungshohlräume, allerdings kann es in weiterer Entfernung zu einer Verschlechterung kommen. Zusammenfassend ist also zu erwarten, dass es im trockenen Salzgestein im Bereich um die Einlagerungshohlräume nicht zu thermomechanisch bedingten Festigkeitsüberschreitungen kommt."

Im fluidgesättigten Gestein ist zusätzlich zu den für trockenes Salzgestein beschriebenen Effekten zu beachten, dass sich das Fluid in den Gesteinshohlräumen stärker ausdehnt als das Gestein selbst, was bei geringdurchlässigen Gesteinen zu einer temperaturinduzierten Erhöhung des Porenwasserdruckes führt. Bedingt durch die hydraulisch-mechanische Kopplung nach dem Konzept der effektiven Spannungen, kann eine Erhöhung des Porenwasserdrucks zu einer Verringerung der mechanisch effektiven Druckspannungen führen, bis hin zu einer Verschiebung in den Zugbereich. Hierdurch kann sich der Spannungszustand hinsichtlich der Dilatanz- und Zugfestigkeitsgrenze ungünstig entwickeln.

Temperaturstabilität des Wirtsgesteins hinsichtlich Mineralumwandlungen

Der Indikator bewertet die thermische Stabilität der Minerale des Wirtsgesteins gegenüber Mineralumwandlungen.

Es erfolgt im StandAG keine Zuordnung der Ausprägung des Indikators zu den Wertungsgruppen "günstig", "bedingt günstig", "weniger günstig" oder "ungünstig". Anhand der Temperaturstabilität des Wirtsgesteins hinsichtlich Mineralumwandlungen lassen sich Betrachtungsräume oder Wirtsgesteinstypen daher nicht absolut bewerten. Sie können aber relativ zueinander bewertet werden, indem Betrachtungsräume oder Wirtsgesteinstypen umso günstiger bewertet werden, je weniger sie zu thermisch bedingten Mineralumwandlungen neigen.

Abhängig von der maximalen Versenkungstiefe in der geologischen Vergangenheit können Tongesteinsformationen unterschiedlich hohen Temperaturen ausgesetzt gewesen sein. Je höher diese bereits ertragenen Temperaturen waren, umso günstiger ist die Temperaturstabilität der Tongesteinsformation einzustufen. Ursächlich dafür ist der Umstand, dass eine Mineralumwandlung, die ab einer bestimmten Temperatur abläuft, bereits stattgefunden hat, wenn das Gestein dieser Temperatur aufgrund einer großen Versenkungstiefe in der geologischen Vergangenheit ausgesetzt war. Hinzukommt, dass in der Umgebung von in einem Endlager eingelagerten wärmeentwickelnden Abfällen die Temperatur bereits nach wenigen zehn bzw. hundert Jahren wieder absinkt (GRS 2016), sodass die Zeitdauer der Einwirkung erhöhter Temperatur auf das Wirtsgestein relativ kurz ist im Vergleich zur Einwirkung erhöhter Temperatur über geologische Zeiträume aufgrund einer hohen Versenkungstiefe.

Eine Temperaturerhöhung kann dazu führen, dass Wassermoleküle aus den Zwischenschichten der quellfähigen Tonminerale in den Porenraum wandern und so zu einer Verringerung des Quelldruckes, zu einer Konsolidierung und zu einer temporären Erhöhung des Porendruckes führen. Diese Erhöhung ist allerdings gering gegenüber der Porendruckerhöhung durch die Wärme selbst bzw. durch die thermische Expansion des Porenfluides (GRS, 2016).

Bewertung des Rückhaltevermögens im ewG

Das Kriterium ist gemäß StandAG § 24 Absatz 5 zur Bewertung weiterer sicherheitsrelevanter Eigenschaften heranzuziehen.

Die barrierewirksamen Gesteine eines einschlusswirksamen Gebirgsbereichs sollen ein möglichst hohes Rückhaltevermögen gegenüber den langzeitrelevanten Radionukliden besitzen. Indikatoren hierfür sind die Sorptionsfähigkeit der Gesteine beziehungsweise die Sorptionskoeffizienten für die betreffenden Radionuklide nach der unten stehenden Tabelle, ein möglichst hoher Gehalt an Mineralphasen mit großer reaktiver Oberfläche wie Tonminerale sowie Eisen- und Mangan-Hydroxide und -Oxihydrate, eine möglichst hohe Ionenstärke des Grundwassers in der geologischen Barriere sowie Öffnungsweiten der Gesteinsporen im Nanometerbereich.

Nur einem der vier genannten Indikatoren werden Wertungsgruppen zugeordnet (Abb. 54).

Bewertungsrelevante Eigenschaft des Kriteriums Bewertungsgröße beziehungsweise Indikator des Kriteriums	Bewertungsgröße	Wertungsgruppe		
	günstig	bedingt günstig	weniger günstig	
Sorptionsfähigkeit der Gesteine des einschlusswirksamen Gebirgsbereichs	Kd-Wert für folgende langzeitrelevante Radionuklide ≥ 0,001 m ³ /kg	Uran, Protactinium, Thorium, Plutonium, Neptunium, Zirkonium, Technetium, Palladium, Jod, Cäsium, Chlor	Uran, Plutonium, Neptunium, Zirkonium, Technetium, Cäsium	-

Abb. 54: Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 9 des StandAG.

Sorptionsfähigkeit der Gesteine des ewG

Der Indikator bewertet die Rückhaltefähigkeit der barrierewirksamen Gesteine des ewG anhand ausgewählter langzeitrelevanter Radionuklide, deren Gleichgewichts-Sorptionskoeffizient nach der Henry-Isotherme einen Schwellenwert von 10⁻³ m³/kg überschreitet.

Sorptionskoeffizienten von gelösten Stoffen an Gesteinen werden bei geologischen Erkundungsarbeiten üblicherweise nicht ermittelt. Dies gilt insbesondere für Aktiniden. Daher ist das Vorliegen von Sorptionskoeffizienten nur für solche Gesteine zu erwarten, deren Eignung als Wirtsgestein für ein Endlager für radioaktive Abfälle bereits untersucht wurde.

Die Sorptionsfähigkeit der Gesteine ist mit dem Auftreten bestimmter Mineralphasen in den Gesteinen korreliert, wie z. B. Montmorillonit, Illit, Kaolinit, Pyrit. Falls mineralogische Analysen des Gesteins vorliegen, können daraus indirekt Rückschlüsse auf die Sorptionsfähigkeit des Gesteins gezogen werden. Sorptionswerte sind standortspezifisch, da sie beispielsweise von der lokalen Grundwasserzusammensetzung und sekundären Mineralphasen beeinflusst werden.

Für den Indikator werden Radionuklide der folgenden Elemente betrachtet: CI, Zr, Tc, Pd, I, Cs, Pa, Np, Pu, Th und U. Im Tongestein ist für die meisten Elemente mit einer Sorption zu rechnen (Nagra, 2002a, 2014b). 10⁻³ m³/kg ist für die Aktiniden und Zr, Tc, Pd ein eher geringer Wert gegenüber den aus der Literatur bekannten Werten für Sorptionskoeffizienten an Tongesteinen. Für diese Elemente

ist mit hoher Wahrscheinlichkeit zu erwarten, dass die Sorptionskoeffizienten den geforderten Schwellwert übersteigen.

Damit sind Tongesteine mindestens als "bedingt günstig" einzustufen. Für die bei "günstig" angegebenen Elemente Iod, Chlor und Cäsium ist die Sorptionsfähigkeit der Gesteine standortspezifisch zu prüfen. Der Tonstein des Endlagersystems T1 ist daher als beding günstig eingestuft.

Mineralphasen mit großer reaktiver Oberfläche

Der Indikator bewertet den Gehalt der Gesteine des ewG an Mineralphasen mit großer reaktiver Oberfläche wie Tonminerale sowie Eisen- und Mangan-Hydroxide und -Oxihydrate.

Es erfolgt im StandAG keine Einteilung der Ausprägung des Indikators in Wertungsgruppen, es wird lediglich qualitativ angegeben, dass ein hoher Gehalt an Mineralphasen mit großer reaktiver Oberfläche als günstig angesehen wird.

Tongestein enthält generell größere Gehalte an Tonmineralen sowie Eisen- und Mangan-Hydroxiden und -Oxihydraten (Pearson et al., 2003, Klinkenberg et al., 2008, Gorski et al., 2013). In der Art und der Menge der Tonminerale (Zweischicht-Tonminerale, wie z. B. Kaolinit, oder Dreischicht-Tonminerale, wie z. B. Illit, Smektit und Montmorillonit) von Tongesteinen bestehen allerdings deutliche Unterschiede. Da die Sorptionsfähigkeit der Tonminerale ebenfalls sehr unterschiedlich ist, sind hohe Gehalte bestimmter Tonminerale zu bevorzugen. Im Allgemeinen gilt, dass die Sorptionsfähigkeit von Montmorillonit über Illit zum Kaolinit abnimmt (Atun & Bascetin, 2003, Durrant et al., 2018).

Ionenstärke des Grundwassers in der geologischen Barriere

Der Indikator bewertet die Stoffmengenkonzentration gelöster Ionen im Grundwasser in der geologischen Barriere.

Gemäß Kommissionsbericht bezieht sich dieser Indikator auf die Einschränkung der Migration von Kolloiden. Diese Einschränkung wird im StandAG nicht wiedergegeben.

Es erfolgt im StandAG keine Einteilung der Ausprägung des Indikators in Wertungsgruppen, es wird lediglich qualitativ angegeben, dass eine hohe Ionenstärke als günstig angesehen wird.

Die Ionenstärke des Grundwassers hängt vornehmlich von den standortspezifischen geologischen Gegebenheiten ab (Stober et al., 2014, Müller & Papendieck, 1975). In der Umgebung von Salzgesteinen besteht durch Ablaugungsprozesse generell eine hohe Ionenstärke des Grundwassers. In Norddeutschland ist z. B. auf Grund der weit verbreiteten Salzgesteine in größeren Tiefen allgemein mit Salzwasser-führenden Gesteinen zu rechnen. In Süddeutschland mineralisierte können auch vergleichsweise geringer Wässer vorgefunden werden. Zusammenfassende Arbeiten zur Genese und Verbreitung der Tiefenwässer in Norddeutschland wurden z. B. von Hölting (1970), Müller & Papendieck (1975), Müller & Nebel (1976), Thomas (1994), Hoth et al. (1997), Wolfgramm (2002) Wolfgramm et al. (2011) und Magri et al. (2008) erstellt. Für Tiefenwässer in Süddeutschland können unter anderem die Arbeiten von Prestel (1991), Stober & Bucher (2000b), Birner et al. (2011) und Stober et al. (2014) herangezogen werden.

Für die Werte der Ionenstärke des Grundwassers in den geringdurchlässigen Gesteinsschichten kann man sich an jener in über und unterliegenden durchlässigeren Gesteinen orientieren.

Öffnungsweiten der Gesteinsporen

Der Indikator bewertet die Öffnungsweite der Poren der Gesteine im ewG.

Gemäß Kommissionsbericht bezieht sich dieser Indikator auf die Filtration von Kolloiden im Grundwasser. Dieser Bezug wird im StandAG nicht wiedergegeben.

Eine Bestimmung der Porenradienverteilung in Gesteinen erfolgt bei geologischen Erkundungsarbeiten üblicherweise nicht. Insbesondere sind die als günstig bewerteten Porenradien im Nanometerbereich durch die übliche Methode der Quecksilber-Porosimetrie nicht zu erfassen. Daher ist das Vorliegen von standortspezifischen Daten zu den Porenradien nur für solche Gesteine zu erwarten, deren Eignung als Wirtsgestein für ein Endlager für radioaktive Abfälle bereits untersucht wurde.

Es erfolgt im StandAG keine Einteilung der Ausprägung des Indikators in Wertungsgruppen, es wird lediglich angegeben, dass eine Öffnungsweite der Gesteinsporen im Nanometerbereich als günstig angesehen wird.

Tongestein hat generell einen sehr hohen Anteil von Poren mit geringem Durchmesser im Nanometerbereich, aber im Allgemeinen auch einen Anteil größerer Poren (Mazurek, 2011, Nagra, 2014a). Die Porenradienverteilung von Tongestein hängt unter anderem vom Kompaktionsgrad ab (Pearson et al., 2003, Tournassat et al., 2015).

Bewertung der hydrochemischen Verhältnisse

Das Kriterium ist gemäß StandAG § 24 Absatz 5 zur Bewertung weiterer sicherheitsrelevanter Eigenschaften heranzuziehen. Die Datenlage für die frühen Phasen des Auswahlverfahrens wird in den Begründungen zum Gesetztext als wenig belastbar angesehen. Das Kriterium ist gemäß Anlage 10 zu § 24 Absatz 5 durch eine sicherheitsrelevante Eigenschaft und deren entsprechende Indikatoren definiert:

Die chemische Zusammensetzung der Tiefenwässer und die festen Mineralphasen des einschlusswirksamen Gebirgsbereichs sollen sich auch nach dem Einbringen von Behälter- und Ausbaumaterial positiv auf die Rückhaltung der Radionuklide auswirken und das Material technischer und geotechnischer Barrieren chemisch möglichst nicht angreifen. Indikatoren hierfür sind:

1. ein chemisches Gleichgewicht zwischen dem Wirtsgestein im Bereich des einschlusswirksamen Gebirgsbereichs und dem darin enthaltenen tiefen Grundwasser,

2. neutrale bis leicht alkalische Bedingungen (pH-Wert 7 bis 8) im Bereich des Tiefenwassers,

3. ein anoxisch-reduzierendes Milieu im Bereich des Tiefenwassers,

4. ein möglichst geringer Gehalt an Kolloiden und Komplexbildnern im Tiefenwasser und

5. eine geringe Karbonatkonzentration im Tiefenwasser.

Das Vorhandensein der oben aufgeführten a priori positiv belegten Indikatoren wird im Folgenden mit der Wertungsgruppe "günstig" gleichgesetzt, andernfalls mit der Wertungsgruppe "nicht in Wertungsgruppe günstig" gleichgesetzt.

Die in den Indikatoren zur Bewertung der hydrochemischen Verhältnisse verwendeten Begriffe "tiefes Grundwasser" und "Tiefenwasser" beziehen sich auf die im ewG vorkommenden Wässer und Lösungen.

Gemäß den Ausführungen im StandAG bezieht sich das Kriterium auf die Rückhaltung der Radionuklide und die chemische Stabilität der technischen und geotechnischen Barrieren. Auf die für die anderen Kriterien durchgeführte Analyse des Einflusses der Indikatoren auf die Wirksamkeit der geologischen Barriere wird daher für dieses Kriterium verzichtet.

Chemisches Gleichgewicht zwischen dem Barrieregestein und den darin enthaltenen Lösungen

Der Indikator bewertet die vorliegenden natürlichen hydrochemischen Verhältnisse im Barrieregestein.

Im StandAG erfolgt keine Einteilung der Ausprägung des Indikators in Wertungsgruppen, es bewertet das Vorliegen eines chemischen Gleichgewichtes zwischen dem Barrieregestein und den darin enthaltenen Lösungen als günstig.

Ein chemisches Gleichgewicht zwischen dem Barrieregestein und den darin enthaltenen Lösungen hat sich eingestellt, wenn die Mineralphasen des jeweiligen Barrieregesteins unter den gegebenen Temperatur- und Druckbedingungen im Grundwasser gesättigt sind. Die Ermittlung, ob eine Mineralphase im chemischen Gleichgewicht mit dem Grundwasser steht, erfolgt über den jeweiligen Sättigungsindex [SI].

Es gilt: SI = log(IAP/K)

mit IAP = Ionenaktivitätsprodukt K = Löslichkeitsprodukt

Tendiert der Sättigungsindex gegen Null, liegt zwischen den jeweiligen Mineralen und der umgebenden Lösung ein Gleichgewicht vor.

Tongesteine können aufgrund unterschiedlicher lithologischer Bestandteile eine große Variabilität aufweisen. In die Tongesteine eingeschaltete sandig-siltige Lagen, Karbonatbänke oder geklüftete Bereiche können die Inhaltsstoffe der Lösung verändern. Stark kompaktierte Tongesteine können aufgrund des höheren Verfestigungsgrades Mikroklüfte aufweisen (Hoth et al., 2007). Wenn diese Klüfte in Tongesteinen hydraulisch leitfähig sind, kann ein chemisches Ungleichgewicht zwischen Grundwasser und den im Tongestein vorhandenen Mineralphasen vorliegen. Das Vorhandensein eines chemischen Gleichgewichts zwischen Tongesteinen und Grundwässern ist daher abhängig von der Verweilzeit des Grundwassers in den Gesteinen und der lithologischen Zusammensetzung der Tongesteine. Aufgrund der geringen Fließgeschwindigkeiten im Tongestein wird davon ausgegangen, dass sich ein ewG im Tongestein im chemischen Gleichgewicht mit dem Grundwasser befindet (Nagra, 2002b).

Neutrale bis leicht alkalische Bedingungen (pH-Wert 7 bis 8) in den im Barrieregestein vorkommenden Lösungen

Der Indikator bewertet den pH-Wert der im Barrieregestein vorkommenden Lösungen.

Im StandAG erfolgt keine Einteilung der Ausprägung des Indikators in Wertungsgruppen, es bewertet neutrale bis leicht alkalische Bedingungen, also pH-Werte zwischen 7 und 8, im Bereich des Grundwassers als günstig.

Der AkEnd weist aus, dass aus der pH-Abhängigkeit der Radionuklidlöslichkeit ein TiefenwasserpH-Wert zwischen 7 und 8 als positives Kriterium festgelegt werden kann. Liegen Karbonat-Spezies in Lösung vor, ist bei pH-Werten über 9 mit einem Anstieg der Actinidenkonzentrationen in Lösung aufgrund von Karbonatkomplexierung zu rechnen. Vorteilhaft sind pH-Werte des Tiefenwassers von 7 oder höher, sowie geringe Karbonatkonzentrationen.

Die pH-Werte in Grundwässern ab 200 m Tiefe liegen im Normalfall zwischen 5 und 9. Im Allgemeinen nimmt die Radionuklidlöslichkeit im pH-Bereich von 3 bis 7 mit steigendem pH-Wert ab. Damit kann aus der pH-Abhängigkeit ein Lösungs-pH-Wert 7 oder höher als positives Kriterium abgeleitet werden. Für eine direkte Anwendung dieses Kriteriums sind zwei Einschränkungen zu berücksichtigen. Natürliche Grundwässer haben im Allgemeinen eine geringe Pufferkapazität für den pH-Wert (abhängig von den Konzentrationen der gelösten Karbonatspezies und vom Gehalt der Sulfate und Karbonate im Wirtsgestein selbst). Zum anderen muss berücksichtigt werden, dass mit steigendem pH-Wert und hohem CO₂-Partialdruck die Karbonatkonzentrationen im Grundwasser führen. Als günstig sind daher neutrale bis leicht alkalische pH-Bedingungen (pH 7 bis 8) bei niedrigem CO₂-Partialdruck anzusehen. Der pH-Wert ist zudem eine temperaturabhängige Größe und beeinflusst außerdem den Sättigungszustand der Tiefenwässer (Indikator Chemisches Gleichgewicht) bezüglich verschiedener Minerale (AkEnd 2002, Kienzler et al., 2001, Larue et al., 2001).

Angaben zu den zu erwartenden pH-Werten in Grundwässern von Tongesteinen liegen flächendeckend nicht vor. Die pH-Werte des In-situ-Porenwassers im Opalinuston liegen nach Messungen von Bossart (2008) zwischen 7 und 8.

Anoxisch-reduzierendes Milieu in den im Barrieregestein vorkommenden Lösungen

Der Indikator bewertet das Redoxpotential der im Barrieregestein vorkommenden Lösungen.

Das Redoxpotential E_H beschreibt das Konzentrationsverhältnis von oxidierten und reduzierten Stoffen und somit die elektrochemischen Bedingungen.

Im StandAG erfolgt keine Einteilung der Ausprägung des Indikators in Wertungsgruppen, es bewertet ein anoxisch-reduzierendes Milieu als günstig.

Der Indikator hat Einfluss auf die Radionuklidmobilisierung im ewG. Redoxsensitiv sind z. B. die Radionuklide U, Np, Pu und Tc. Ihr Oxidationszustand hängt vom allgemeinen Redoxzustand der geochemischen Verhältnisse ab. Indikatoren für reduzierende Bedingungen sind die Anwesenheit von reduzierenden Fe(II)-Mineralen, ein niedriger E_H-Wert, das Vorliegen reduzierter Festphasen, der Gehalt an organischem Material und das Fehlen von freiem Sauerstoff im Grundwasser (Larue et al., 2001). Nach dem Verbrauch von während der Betriebsphase eingebrachtem Sauerstoff in tiefen Endlagern stellen sich nach einer gewissen Zeit wieder anoxisch-reduzierende Verhältnisse ein. Unter reduzierenden Bedingungen können radioaktive Elemente wie U, Np, Pu und Tc in schwerlösliche vierwertige Zustände überführt werden (Kienzler et al., 2001).

Quantitative Angaben liegen in der Regel nicht vor. In den meisten tiefen Formationen liegen natürliche anoxisch-reduzierende Verhältnisse vor (Liszin et al., 1997, Stober & Bucher, 2000b).

Variationen der Ausprägung des Indikators können durch Verteilung von Kohlenwasserstoffen im gebundenen Porenwasser des Wirtsgesteins auftreten (Reinhold et al., 2013a). Die mineralogische Zusammensetzung (einzelne sandige oder karbonatische Einschaltungen) hat unter anoxischen Bedingungen in tonigen und tonmergeligen Gesteinen keinen signifikanten Einfluss auf die Lösungen im Wirtsgestein.

Geringer Gehalt an Kolloiden und Komplexbildnern in den im Barrieregestein vorkommenden Lösungen

Der Indikator bewertet den Gehalt an Kolloiden und Komplexbildnern der im Barrieregestein vorkommenden Lösungen.

Im StandAG erfolgt keine Einteilung der Ausprägung des Indikators in Wertungsgruppen, es bewertet einen möglichst geringen Gehalt an Kolloiden und Komplexbildnern als günstig.

Als Kolloide werden fein dispergierte Feststoffe mit erkennbarer Grundstruktur bezeichnet, deren Größe im Nanometer- oder Mikrometer-Bereich liegt. Kolloide können u.a. durch die Umsetzung organischer Substanzen, Auflösungs- und Fällungsprozesse und hydrochemischer und hydraulischer Veränderungen im Grundwasser entstehen. Daher sind Kolloide in allen natürlichen Gewässern vorhanden (z. B. Tonminerale, Huminstoffe und Mikroorganismen).

Kolloide können ein hohes Sorptionsvermögen haben und dadurch die Rückhaltung der Radionuklide durch Sorption am Gestein verringern. Da die Bildung von Kolloiden zu einer Erhöhung der in Lösung befindlichen und damit transportfähigen Radionuklide führt, sollte die Kolloidbildung bzw. der Anteil an natürlichen Kolloiden im Grundwasser eines ewG möglichst gering sein. Hohe Gehalte an Kolloiden können zur Verstärkung der Radionuklidmobilität führen. Einflussfaktoren sind pH-Wert, Lösungsinhaltsstoffe und die Ionenstärke des Wassers. Für die Radionuklidmobilität oder Rückhaltung sind die Konzentrationen an Kolloiden und Komplexbildnern im Grundwasser und das Vorhandensein von Sorptionsplätzen im Wirtsgestein entscheidend (Kienzler et al., 2001).

Die Komplexbildung beschreibt die Koordinationsbindung einer Anzahl von Atomen oder Atomgruppen (Liganden) um ein Zentralatom. Durch Komplexbildung verlieren die Ausgangsstoffe ihre spezifischen Eigenschaften. Es verändern sich die Bindung bzw. Koordination der Ionen bzw. Moleküle sowie die physikalischen und chemischen Eigenschaften der neuen Phasen im Vergleich zu den Ausgangstoffen.

Gelöste Spezies können durch Komplexierung und Kolloidbildung oder Anlagerung an natürlich im Grundwasser vorhandenen Kolloiden in Lösung gehalten werden. Die Ionen H⁺, OH⁻, HCO₃⁻ und CO₃²⁻ stehen über die Dissoziationsgleichgewichte von Wasser und Kohlensäure miteinander im Gleichgewicht. Dadurch liegen in karbonathaltigen Lösungen stets mehrere Komplexbildner nebeneinander vor.

Quantitative Angaben zu Gehalten an Kolloiden und Komplexbildner im Bereich potentieller ewG liegen in der Regel vor.

Für den Opalinuston wurden als mögliche Kolloide Tonminerale, Quarz, Calcit, Eisenoxide und organisches Material benannt (Nagra, 2002). Die Kolloidkonzentrationen im Felslabor Mont Terri, die bei Durchflussraten von 20 ml/d gemessen wurden (Degueldre et al., 2002), bewegen sich nach Angaben der Nagra (2002) im Bereich von 1 bis 2·10⁻⁵ g pro Liter Porenwasser.

Es gibt keine Aussagen zu möglichen Kolloiden in Tongesteinen in Norddeutschland. Auf Grund der hohen Salinitäten der Grundwässer in diesen Gesteinen wird erwartet, dass die Stabilität der Kolloide gering ist.

Es gibt keine Aussagen zu möglichen Komplexbildnern in Tongesteinen. Es wird erwartet, dass die Gehalte an Komplexbildnern in Tongesteinslösungen generell nicht gering sind.

Geringe Karbonatkonzentration in den im Barrieregestein vorkommenden Lösungen

Der Indikator bewertet den Gehalt an Karbonat der im Barrieregestein vorkommenden Lösungen.

Im StandAG erfolgt keine Einteilung der Ausprägung des Indikators in Wertungsgruppen, es bewertet eine möglichst geringe Karbonatkonzentration als günstig.

Die Löslichkeit der Actiniden nimmt mit steigendem Karbonatgehalt in der Lösung zu, während die Tendenz zur Sorption aufgrund von Karbonat-Komplexierung abnimmt.

Variationen in den Lithologien durch Beimischungen von Karbonat und durch Einschaltung karbonatischer Lagen sind möglich (Hoth et al., 2007).

Bewertung des Schutzes des ewG durch das Deckgebirge

Das Kriterium ist gemäß StandAG § 24 Absatz 5 zur Bewertung weiterer sicherheitsrelevanter Eigenschaften heranzuziehen. Das Kriterium ist gemäß Anlage 11 zu § 24 Absatz 5 durch eine bewertungsrelevante Eigenschaft und deren entsprechende Indikatoren definiert:

Das Deckgebirge soll durch seine Mächtigkeit sowie seinen strukturellen Aufbau und seine Zusammensetzung möglichst langfristig zum Schutz des einschlusswirksamen Gebirgsbereichs gegen direkte oder indirekte Auswirkungen exogener Vorgänge beitragen. Indikatoren hierfür sind die Überdeckung des einschlusswirksamen Gebirgsbereichs mit grundwasser- und erosionshemmenden Gesteinen und deren Verbreitung und Mächtigkeit im Deckgebirge sowie das Fehlen von strukturellen Komplikationen im Deckgebirge, aus denen sich Beeinträchtigungen des einschlusswirksamen Gebirgsbereichs ergeben können, nach der unten stehenden Tabelle.

Bewertungsrelevante Bewertungsgröße		Wertungsgruppe		
Eigenschaft des Kriteriums	beziehungsweise Indikator des Kriteriums	günstig	bedingt günstig	ungünstig
Schutz des einschlusswirksamen Gebirgsbereichs durch günstigen Aufbau des Deckgebirges gegen Erosion und Subrosion sowie ihre Folgen (insbesondere Dekompaktion)	Überdeckung des einschluss- wirksamen Gebirgsbereichs mit grundwasserhemmenden Gesteinen, Verbreitung und Mächtigkeit grundwasser- hemmender Gesteine im Deckgebirge	mächtige vollstän- dige Überdeckung, geschlossene Verbreitung grundwasser- hemmender Gesteine im Deckgebirge	flächenhafte, aber lückenhafte beziehungsweise unvollständige Über- deckung, flächen- hafte, aber lücken- hafte beziehungs- weise unvollständige Verbreitung grund- wasserhemmender Gesteine im Deckgebirge	fehlende Überdeckung, Fehlen grundwasser- hemmender Gesteine im Deckgebirge
	Verbreitung und Mächtigkeit erosionshemmender Gesteine im Deckgebirge des einschlusswirksamen Gebirgs- bereichs	mächtige vollständige Überdeckung, weiträumige geschlossene Verbreitung besonders erosionshemmender Gesteine im Deckgebirge	flächenhafte, aber lückenhafte beziehungsweise unvollständige Über- deckung, flächenhafte, aber lückenhafte beziehungsweise unvollständige Verbreitung erosionshemmender Gesteine im Deckgebirge	fehlende Überdeckung, Fehlen erosionshemmender Gesteine im Deckgebirge
	keine Ausprägung struktureller Komplikationen (zum Beispiel Störungen, Scheitelgräben, Karststrukturen) im Deckgebirge, aus denen sich subrosive, hydraulische oder mechanische Beeinträchtigungen für den einschlusswirksamen Gebirgs- bereich ergeben könnten	Deckgebirge mit ungestörtem Aufbau	strukturelle Komplikationen, aber ohne erkennbare hydraulische Wirksamkeit (zum Beispiel verheilte Klüfte/ Störungen)	strukturelle Komplikationen mit potenzieller hydraulischer Wirksamkeit

Abb. 55: Aufstellung der bewertungsrelevanten Eigenschaften, ihrer Indikatoren und Zuordnung zu den Wertungsgruppen in Anlage 11 des StandAG.

Gemäß § 2 StandAG ist das "Deckgebirge der Teil des Gebirges oberhalb des einschlusswirksamen Gebirgsbereichs und bei Endlagersystemen, die auf technischen und geotechnischen Barrieren beruhen, oberhalb des Einlagerungsbereichs." In Abhängigkeit des ausgewiesenen ewG bzw. Einlagerungsbereiches gehören somit ggf. auch Bereiche der Wirtsgesteinsformation zum Deckgebirge.

Bei diesem Kriterium erfolgt die Verwendung der Wertungsgruppe "ungünstig" anstatt der Wertungsgruppe "weniger günstig".

Überdeckung des ewG mit grundwasserhemmenden Gesteinen

Der Indikator bewertet qualitativ die Mächtigkeit und die räumliche Verbreitung grundwasserhemmender Gesteine im Deckgebirge.

Als grundwasserhemmend werden im Vorhaben RESUS Gesteine verstanden, die gemäß Ad-Hoc-AG als geringleitend eingestuft werden (Ad-Hoc-AG Hydrogeologie, 1997).

Der Indikator dient der Bewertung von Deckgebirgsbereichen, inwieweit diese grundwasserhemmende Eigenschaften besitzen und möglichst mächtig, vollständig sowie geschlossen den ewG überlagern.

Zwischen einer mächtigen, vollständigen und geschlossenen Überdeckung des ewG mit grundwasserhemmenden Schichten einerseits und dem vollständigen Fehlen solcher Gesteine andererseits sind sämtliche Ausprägungen möglich. Es ist zu erwarten, dass nach Einschätzung auf Grundlage der vorhandenen Datenlage in einem frühen Stadium des Standortauswahlprozesses Teilgebiete mit günstiger Ausprägung des Indikators identifiziert werden können. Allerdings ist davon auszugehen, dass im Zuge der späteren übertägigen Erkundung in einigen der potenziellen Standortregionen hydraulische Fenster im Deckgebirge nachgewiesen werden.

Verbreitung und Mächtigkeit erosionshemmender Gesteine im Deckgebirge des ewG

Der Indikator bewertet qualitativ den Grad der Überdeckung des ewG durch Festgestein im Deckgebirge und die Mächtigkeit des Festgesteins.

Eine Einschätzung zur Verbreitung und Mächtigkeit möglicher erosionshemmender Gesteine im Deckgebirge eines ewG kann auf Grund der Datenlage (Bohrdaten, regionalgeologische Kenntnisse, geologische Modelle) in der Frühphase des Standortauswahlverfahrens problematisch sein. Mit zunehmendem Kenntnisstand im Zuge der übertägigen und untertägigen Erkundungen ist zu erwarten, dass differenziertere Ausprägungen angetroffen werden, wie z. B. Festigkeit der Deckgebirgsabfolgen, Bankmächtigkeiten von Sedimentgesteinen oder Kluftabstände.

Strukturelle Komplikationen im Deckgebirge

Der Indikator bewertet das Ausmaß der Veränderungen der ursprünglichen Struktur der Gesteinstypen im Deckgebirge.

Als Beispiele für strukturelle Komplikationen werden im StandAG Störungen, Scheitelgräben und Karststrukturen im Deckgebirge genannt. Auch quartäre Rinnen können als strukturelle Komplikationen verstanden werden.

Es ist zu erwarten, dass die Ausprägungen (hydraulische Wirksamkeiten) der strukturellen Komplikationen lokal spezifisch und sehr unterschiedlich sind. Die Übertragbarkeit von gesicherten Einzelerkenntnissen auf weitere Gebiete ist wahrscheinlich nur sehr eingeschränkt möglich.

Glossar

Abfall, radioaktiver:	Radioaktive Stoffe im Sinne des § 2 Absätze 1 und 2 des Atom- gesetzes, die nach § 9a Absatz 1 Nr. 2 des Atomgesetzes geordnet beseitigt werden müssen.
Abfallgebinde:	Endzulagernde Einheit aus Abfallprodukt und Abfallbehälter.
Barrieregestein:	Die Bereiche des →Wirtsgesteins bzw. der überlagernden Gesteins- schichten, die die Mindestanforderungen an einen →ewG nach § 23 des StandAG erfüllen
Deckgebirge:	Der Teil des Gebirges oberhalb des →ewG und bei →Endlager- systemen, die auf technischen und geotechnischen Barrieren beruhen, oberhalb des →Einlagerungsbereichs. Definition Stand AG § 2
Einschlusswirksamer	Der Teil eines Gebirges, der bei →Endlagersystemen, die wesentlich
Gebirgsbereich (ewG):	auf geologischen Barrieren beruhen, im Zusammenwirken mit den technischen und geotechnischen Verschlüssen den sicheren Einschluss der →radioaktiven Abfälle in einem Endlager gewährleistet. Definition Stand AG § 2
Einlagerungsbereich:	Der räumliche Bereich des Gebirges, in den die →radioaktiven Abfälle eingelagert werden sollen; falls das Einschlussvermögen des →Endlagersystems wesentlich auf technischen und geotechnischen Barrieren beruht, zählt hierzu auch der Bereich des Gebirges, der die Funktionsfähigkeit und den Erhalt dieser Barrieren gewährleistet. Definition Stand AG § 2
Einlagerungskonzept:	Das Konzept, in dem beschrieben und dargestellt wird, wie die Ein- lagerung von Endlagerbehältern(-gebinden) im Einlagerungsbereich vorgesehen ist.
Endlagerbereich:	Der Gebirgsbereich, in dem ein →Endlagersystem realisiert ist oder realisiert werden soll; Definition Stand AG § 2
Endlagerkonzept:	Das technische Konzept, in dem beschrieben und dargestellt wird, wie das Endlagerbergwerk insgesamt einschließlich Zugang von der Tagesoberfläche (Schächte/Rampen), dem Einlagerungskonzept und den vorgesehenen Verschlüssen in die jeweilige geologische Gesamtsituation eingepasst wird.
Endlagersystem:	Das den sicheren Einschluss der radioaktiven Abfälle durch das Zusammenwirken der verschiedenen Komponenten bewirkende System, das aus dem Endlagerbergwerk, den Barrieren und den das Endlagerbergwerk und die Barrieren umgebenden oder überlagernden geologischen Schichten bis zur Erdoberfläche besteht, soweit sie zur Sicherheit des Endlagers beitragen. Definition Stand AG § 2
Geologische Langzeitprognose:	Die geologische Langzeitprognose beschreibt für den Nachweiszeitraum die geologische und klimatische Entwicklung für ein Teilgebiet, eine Standortregion oder einen Standort, ohne den Einfluss eines Endlagers zu berücksichtigen.
Gesteinstyp:	Ein in sich überwiegend ähnlich zusammengesetztes Gestein, das durch charakteristische, lithologisch bedingte Eigenschaften definiert ist. Definition BGE (2018)
Kristallingestein:	→Wirtsgestein gemäß StandAG

Integrität:	Der Begriff Integrität beschreibt den Erhalt der Eigenschaften des Einschlussvermögens des einschlusswirksamen Gebirgsbereichs eines Endlagers. Definition BMU (2010a)
Steinsalz:	→Wirtsgestein gemäß StandAG
Tongestein:	→Wirtsgestein gemäß StandAG
Ungünstige Gebiete:	Im Rahmen des Standortauswahlverfahrens ist die Ermittlung ungünstiger Gebiete einer der Verfahrensschritte. Dabei werden diejenigen Gebiete ermittelt, die nach den Sicherheitsanforderungen sowie den geowissenschaftlichen, wasserwirtschaftlichen und raumplanerischen Ausschlusskriterien offensichtlich ungünstige Eigenschaften aufweisen. Neben denjenigen Gebieten, die die geologischen Mindestanforderungen nicht erfüllen, werden diese ungünstigen Gebiete als potentielle Standortregionen bzw. Standorte ausgeschlossen. Definition Glossar Kommissionsbericht
Wirtsgestein:	lst der gesamte Gesteinskörper des →Gesteinstyps, in dem die →radioaktiven Abfälle eingelagert werden.

Literaturverzeichnis

- AD-HOC-AG HYDROGEOLOGIE (1997): HYDROGEOLOGISCHE KARTIERANLEITUNG. GEOLOGISCHES JAHRBUCH, BAND G 2, REIHE G: 157 S., HANNOVER (SCHWEIZERBART)
- AHRENS, J., GEVECI, B., LAW, C. (2005): ParaView: An End-User Tool for Large Data Visualization. (In: Hansen, C.D., Johnson, C.R. (Hrsg.): Visualization Handbook). S. 717 - 731, Burlington (Elsevier).
- AKEND (2002): Auswahlverfahren für Endlagerstandorte. Arbeitskreis Auswahlverfahren Endlagerstandorte (AkEnd), Empfehlungen: 260 S., Köln.
- ALFARRA, A.; BERTRAMS, N.; BOLLINGERFEHR, W.; EICKEMEIER, R.; FLÜGGE, J.; FRENZEL, B.; MAßMANN, J.; MAYER, K.-M.; MÖNIG, J.; MRUGALLA, S.; MÜLLER-HOEPPE, N.; REINHOLD, K.; RÜBEL, A.; SCHUBARTH-ENGELSCHALL, N.; SIMO, E.; THIEDAU, J.; THIEMEYER, T.; WEBER, J.R.; WOLF, J. (2020): RESUS: Grundlagen zur Bewertung eines Endlagersystems in einer Tongesteinsformation geringerer Mächtigkeit. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln, GRS-572, ISBN 978-3-947685-58-5, August 2020.
- AMELUNG, P., JOBMANN, M., LERCH, C., POLSTER, M., SCHONEBECK, M. (2005): Berechnungen zur Endlagerauslegung im Steinsalz und Tongestein - Eine vergleichende Gegenüberstellung, Präsentation auf dem Workshop "Gegenüberstellung von Endlagerkonzepten im Salz und Tonstein" (GEIST), Peine, 2005.
- ATUN, G., BASCETIN, E. (2003): Adsorption of Barium on Kaolinite, Illite and Montmorillonite at various ionic strengths, Radiochimica Acta 91: 223-228, Oldenbourg Wissenschaftsverlag, München.
- AYACHIT, U. (2015): The ParaView Guide: A Parallel Visualization Application. 276 S., Kitware, Inc.
- BÄCKBLOM, G. (2008): Excavation damage and disturbance in crystalline rock results from experiments and analyses. Swedish Nuclear Fuel and Waste Management Co. (SKB) / Conrox, SKB TR-08-08.
- BAEYENS, B., THOENEN, T., BRADBURY, M.H., MARQUES FERNANDES, M. (2014): Sorption Data Bases for Argillaceous Rocks and Bentonite for the Provisional Safety Analyses for SGT-E2. Nagra, NTB 12-04, Wettingen.
- BEUSHAUSEN, M., BEBIOLKA, A., KLOKE, R., KUHLMANN, G., NOACK, V., REINHOLD, K., RÖHLING, S., SÖNNKE, J. (2020): Konzept zur generellen Vorgehensweise zur Anwendung der geowissenschaftlichen Abwägungskriterien – Schritt 2. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Abschlussbericht: 110 S., Hannover/Berlin.
- BFS (2002): Planfeststellungsbeschluss für die Errichtung und den Betrieb des Bergwerkes Konrad in Salzgitter als Anlage zur Endlagerung fester oder verfestigter radioaktiver Abfälle mit vernachlässigbarer Wärmeentwicklung vom 22. Mai 2002. - Bundesamt für Strahlenschutz, Salzgitter.
- BGE (2018): Arbeitshilfen zur Datenabfrage Mindestanforderung vom 19.03.2018 (Abfrage der Daten für die Anwendung der Mindestanforderungen gemäß Standortauswahlgesetz). Link: www.endlagersuche-infoplattform.de.
- BIRNER, J., MAYER, C., THOMAS, L., SCHNEIDER, M., BAUMANN, T., WINKLER, A. (2011): Hydrochemie und Genese der tiefen Grundwässer des Malmaquifers im bayerischen Teil des süddeutschen Molassebeckens, Zeitschrift für Geologische Wissenschaften 3: 291-308.

- BMU (2010A): Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Sicherheitsanforderungen an die Endlagerung wärmeentwickelnder radioaktiver Abfälle, K-MAT 10, 30.09.2010.
- BMU (2010B): Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Keine Zustimmung zum Transport bestrahlter Forschungsreaktor-Brennelemente nach Russland, Pressemitteilung Nr. 190/10, 06.12.2010.
- BMUB (2013): Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Verzeichnis radioaktiver Abfälle, Bestand zum 31. Dezember 2013 und Prognose.
- BMUB (2015A): Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Programm für eine verantwortungsvolle und sichere Entsorgung bestrahlter Brennelemente und radioaktiver Abfälle (Nationales Entsorgungsprogramm), August 2015.
- BMUB (2015B): Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Gemeinsames Übereinkommen über die Sicherheit der Behandlung abgebrannter Brennelemente und über die Sicherheit der Behandlung radioaktiver Abfälle, Bericht der Bundesrepublik Deutschland für die fünfte Überprüfungskonferenz im Mai 2015.
- BMUB (2015c): Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Bericht des BMUB zur Entsorgung bestrahlter Brennelemente aus Forschungs-, Versuchs- und Demonstrationsreaktoren, 7. September 2015.
- BMUB (2018): Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Gemeinsames Übereinkommen über die Sicherheit der Behandlung abgebrannter Brennelemente und über die Sicherheit der Behandlung radioaktiver Abfälle, Bericht der Bundesrepublik Deutschland für die sechste Überprüfungskonferenz im Mai 2018.
- BOISSON, J.-Y. (2005): Clay Club Catalogue of Characteristics of Argillaceous Rocks. NEA No. 4436, OECD Nuclear Energy Agency, Paris.
- BOLLINGERFEHR, W., FILBERT, W., DÖRR, S., HEROLD, P., LERCH, C., BURGWINKEL, P., CHARLIER, F., THOMAUSKE, B., BRACKE, G., KILGER, R. (2012): Endlagerauslegung und -optimierung. Bericht zum Arbeitspaket 6, Vorläufige Sicherheitsanalyse für den Standort Gorleben, GRS-281, Köln.
- BOLLINGERFEHR, W., BERTRAMS, N., BUHMANN, D., EICKEMEIER, R., FAHLAND, S., FILBERT, W., HAMMER, J., KINDLEIN, J., KNAUTH, M., KÜHNLENZ, T., LIU, W., MINKLEY, W., POPP, T., PRIGNITZ, S., REINHOLD, K., SIMO, E., VÖLKNER, E., WOLF, J. (2018): Concept developments for a generic repository for heat-generating waste in bedded salt formations in Germany, Project KOSINA, Synthesis Report (BGE TEC 2018-13), BGE TECHNOLOGY GmbH, Peine.
- BOSSART, P., TRICK, T., MEIERAND, P.M., MAYOR, J.C. (2004): Structural and hydrogeological Characterization of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland). Applied Clay Science, 26: 429-448.
- CHIERICI, G.L. (1994): Principles of petroleum reservoir engineering. Bd. 1, Berlin, New York (Springer-Verlag).
- DAVISON, I. (2009): Faulting and fluid flow through salt. Journal of the Geological Society London, Vol. 166: S. 205-216.
- DEGUELDRE, C., SCHOLTIS, A., LAUBE, A., TURRERO, M.J., PEARSON, F.J., GAUTSCHI, A., THOMAS, B. (2002): Study of pore water chemistry through an argillaceous formation. A hydropaleochemical approach. Applied Geochemistry 18: 55-73.
- DEUTSCHER BUNDESTAG (2017): Gesetzentwurf der Fraktionen CDU/CSU, SPD und BÜNDNIS 90/DIE GRÜNEN: Entwurf eines Gesetzes zur Fortentwicklung des Gesetzes zur Suche und Auswahl eines Standortes für ein Endlager für Wärme entwickelnde radioaktive Abfälle und anderer Gesetze, Deutscher Bundestag, Drucksache 18/11398 vom 07.03.2017.

- DEUTSCHER BUNDESTAG (2020): Verordnung des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit: Verordnung über Sicherheitsanforderungen und vorläufige Sicherheitsuntersuchungen für die Endlagerung hochradioaktiver Abfälle, Deutscher Bundestag, Drucksache 19/19291 vom 18.05.2020.
- DÖRR, S., BOLLINGERFEHR, W., FILBERT, W., THOLEN, M. (2011): Status quo der Lagerung ausgedienter Brennelemente aus stillgelegten/rückgebauten deutschen Forschungsreaktoren und Strategie (Lösungsansatz) zu deren künftigen Behandlung/Lagerung (LABRADOR). Abschlussbericht, FKZ 02 S 8679, Peine.
- DURRANT, C.B., BEGG, J.D., KERSTING, A.B., ZAVARIN, M. (2018): Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite, Science of The Total Environment 610-611: 511-520.
- EID (2020): Earth Impact Database http://www.passc.net/EarthImpactDatabase /New%20website_05-2018/Index.html
- ESK (2019): Sicherheitskonzeptionelle Anforderungen an das Barrierensystem eines Endlagers für hoch radioaktive Abfälle und deren Umsetzbarkeit. Stellungnahme der Entsorgungskommission vom 21.02.2019.
- FISHER, L.R., ISRAELACHVILI, J.N. (1979): Direct experimental verification of the Kelvin equation for capillary condensation. Nature, 277, 5697: S. 548.
- FÜCHTBAUER, H. (HRSG.) (1988): Sedimente und Sedimentgesteine. 4. Auflage, 1141 S., E. Schweizerbart sche Verlagsbuchhandlung, Stuttgart.
- GERLING, P., BEER, W., BORNEMANN, O. (1991): Gasförmige Kohlenwasserstoffe in Evaporiten des deutschen Zechsteins. Kali und Steinsalz 10: 376-383.
- GIESEL, R.J., HAASE, G., MAGGRAF, P., SALZER, K., THOMA, K. (1989): Drei Jahrzehnte Ausbruchsforschung im Kalibergbau des Werrareviers der DDR. Z. geol. Wiss. Berlin, 17: 333-346.
- GORSKI, C., KLÜPFEL, S., VOEGELIN, A., SANDER, M., HOFSTETTER, T. B. (2013): Redox Properties of Structural Fe in Clay Minerals: 3. Relationships between Smectite Redox and Structural Properties, Environmental Science and Technology, 47, 13477-13485
- GRIEVE, R. A. F. (1993): Impact craters: Lessons from and for the Earth. Vistas in Astronomy, Vol: 36, Issue: PART 3, S. 203-230.
- HAMPEL, A., HERCHEN, K., LUX, K.-H., GÜNTHER, R.-M., SALZER, K., MINKLEY, W., PUDEWILLS, A., YILDIRIM, S., ROKAHR, R., MISSAL, C., GÄHRKEN, A., STAHLMANN, J. (2016): Verbundprojekt: Vergleich aktueller Stoffgesetze und Vorgehensweisen anhand von Modellberechnungen zum thermo-mechanischen Verhalten und zur Verheilung von Steinsalz: Synthesebericht: Projektlaufzeit: 01.10.2010-30.09.2016. BMWi-FKZ 02E10810 bis 02E10860, https://doi.org/10.2314/GBV:88655800X, Dr. Andreas Hampel, Mainz.
- HEKEL, U. (1994): Hydrogeologische Erkundung toniger Festgesteine am Beispiel des Opalinustons (Unteres Aalenium).- Tübinger Geowiss. Arbeiten C 18, Tübingen.
- HERRMANN A. G., USDOWSKI, E. (2003): Eisen und Mangan in konzentrierten Evaporit-Lösungen. -Kali und Steinsalz, 2: 6-11, 6 Abb., 3 Tab., Kassel.
- HEROLD, P., GRUNER, M., KUDLA, W., JOBMANN, M. (2016): Konzeptentwicklung für die Schachtverschlüsse im Ton und Salzgestein, Technischer Bericht, Arbeitspaket 1, FuE-Vorhaben ELSA Phase II, DBE Technology GmbH und TU Bergakademie Freiberg.

- HOLZ, M., HEILA, S. R., SACCOB, A. (2000): Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys., 2000, 2, 4740-4742.
- HOTH, P., SEIBT, A., KELLNER, T., HUENGES, E. (1997): Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrothermaler Ressourcen in Norddeutschland. - Scientific Technical Report (97/15 GFZ Potsdam).
- HOTH, P., WIRTH, H., REINHOLD, K., BRÄUER, V., KRULL, P., FELDRAPPE, H. (2007): Endlagerung stark wärmeentwickelnder radioaktiver Abfälle in tiefen geologischen Formationen Deutschlands -Untersuchung und Bewertung von Tongesteinsformationen. BGR-Bericht, 118 S., Hannover.
- HÖLTING, B. (1970): Beiträge zur Hydrochemie der Tiefenwässer. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 121: S. 19-44.
- HUNSCHE, U., SCHULZE, O., WALTER, F., PLISCHKE, I. (2003): Thermomechanisches Verhalten von Salzgestein. Projekt Gorleben, Hannover (BGR).
- IAEA (2012): The Safety Case and Safety Assessment for the Disposal of Radioactive Waste. IAEA Safety Standards, Specific Safety Guide No. SSG-23. International Atomic Energy Agency, Wien, 2012.
- ICRP (2013): Radiological protection in geological disposal of long-lived solid radioactive waste. ICRP Publication 122. Ann. ICRP 42(3), 2013.
- ITASCA (2013): Itasca Consulting Group Inc.: FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), Ver. 5.01 User's Manual. Minneapolis: Itasca, 2013
- JAHN, S., MRUGALLA, S., STARK, L. (2016): Endlagerstandortmodell SÜD Teil II: Zusammenstellung von Gesteinseigenschaften für den Langzeitsicherheitsnachweis. Projekt ANSICHT: Methodik und Anwendungsbezug eines Sicherheits- und Nachweiskonzeptes für ein HAW-Endlager im Tonstein. BGR, Technischer Bericht, Hannover.
- JAHN, S., SÖNNKE, J. (2013): Endlagerstandortmodell NORD Teil II: Zusammenstellung von Gesteinseigenschaften für den Langzeitsicherheitsnachweis. Projekt ANSICHT: Methodenentwicklung und Anwendung eines Sicherheitsnachweiskonzeptes für einen generischen HAW-Endlagerstandort im Tonstein, BGR, Technischer Bericht, Hannover.
- JOBMANN, M., UHLIG, L., AMELUNG, P., BILLAUX, D., POLSTER, M., SCHMIDT, H. (2007): Untersuchungen zur sicherheitstechnischen Auslegung eines generischen Endlagers im Tonstein in Deutschland - GENESIS – Abschlussbericht, DBE TECHNOLOGY GmbH, Peine.
- JOBMANN, M., MAßMANN, J., MELESHYN, A., POLSTER, M. (2015): Quantifizierung von Kriterien für Integritätsnachweise im Tonstein: Projekt ANSICHT. Technischer Bericht / DBE Technology, TEC-08-2013-AP, Peine.
- JOBMANN, M., BURLAKA, V., HEROLD, P., KUATE SIMO, E., MAßMANN, J., MELESHYN, A., RÜBEL, A., ZIEFLE, G. (2017): Systemanalyse für die Endlagerstandortmodelle: Methode und exemplarische Berechnungen zum Sicherheitsnachweis, Projekt ANSICHT. Technischer Bericht / DBE Technology, TEC-29-2016-AB, Peine.
- JOBMANN, M., BURLAKA, V., MELESHYN, A., RÜBEL, A. (2016): Spezifische Prozessanalysen. TEC-13-2016-B, DBE TECHNOLOGY, Peine.
- JOBMANN, M., BEBIOLKA, A., JAHN, S., LOMMERZHEIM, A., MAßMANN, J., MELESHYN, A., MRUGALLA, S., REINHOLD, K., RÜBEL, A., STARK, L., ZIEFLE, G. (2017): Sicherheits- und Nachweismethodik für

ein Endlager im Tongestein in Deutschland – Synthesebericht. TEC-19-2016-AB, DBE TECHNOLOGY, Peine.

- JUNGHANS, R. (1953): Der schwere CO2-Ausbruch auf der Schachtanlage Menzengraben des VEB Kaliwerk Heiligenroda am 07.07.1953, seine Ursachen und Folgen. Bergbautechnik, 3. Jg., Heft 9, Heft 11: 457-462, 597-589.
- JUNGHANS, R. (1955): Neue Beobachtungen über das Auftreten von CO2 im Werra-Kalibergbau. Bergbautechnik, 5. Jg., Heft 7: 364-367.
- KHAN, A.S., HUANG, S. (1995): Continuum theory of plasticity. New York (John Wiley, Sons).
- KIENZLER, B., SCHÜßLER, W., METZ, V. (2001): Günstige hydrochemische Verhältnisse. Abschlussbericht: Ermittlung von Eignungskriterien von geologischen Formationen für die Endlagerung radioaktiver Abfälle mittels geochemischer Analysen. FZK-INE 03/01.
- KINDLEIN, J., BUHMANN, D., MÖNIG, J., SPIEßL, S., WOLF, J. (2018): Bewertung der Wirksamkeit des Radionuklideinschlusses für ein Endlager in flach lagernden Salzformationen - Ergebnisse aus dem Vorhaben KOSINA. 02E11405A, GRS-496, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH, Braunschweig.
- KLINKENBERG, M., DOHRMANN, R., SIEGESMUND, S. (2008): Laboratory Testing of Opalinus Clay (LT) Experiment: Comparison of Opalinus Clay and Callovo-Oxfordian clay-stone with respect to mechanical strength and carbonate microfabric, Technical Report 2008-03
- KOCK, I., EICKEMEIER, R., FRIELING, G., HEUSERMANN, S., KNAUTH, M., MINKLEY, W., NAVARRO, M., NIPP, H.-K., VOGEL, P. (2012): Integritätsanalyse der geologischen Barriere, Bericht zum Arbeitspaket 9.1, Vorläufige Sicherheitsanalyse für den Standort Gorleben. Bd. GRS-286, Köln (GRS).
- KOLDITZ, O., BAUER, S., BILKE, L., BÖTTCHER, N., DELFS, J.-O., FISCHER, T., GÖRKE, U.J., KALBACHER, T., KOSAKOWSKI, G., MCDERMOTT, C. (2012A): OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environmental Earth Sciences, 67, 2: S. 589-599.
- KOLDITZ, O., GÖRKE, U.J., SHAO, H., WANG, W. (2012B): Thermo-Hydro-Mechanical-Chemical Processes in Porous Media: Benchmarks and Examples. (In: Lecture Notes in Computational Science and Engineering). (Springer).
- KOLDITZ, O., GÖRKE, U.J., SHAO, H., WANG, W., BAUER, S. (HRSG.) (2016): Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Benchmarking Initiatives, (Springer).
- KOLDITZ, O., SHAO, H., WANG, W., BAUER, S. (HRSG.) (2015): Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Closed Form Solutions, (Springer).
- KOMMISSION LAGERUNG HOCH RADIOAKTIVER ABFALLSTOFFE (2016): Abschlussbericht der Kommission Lagerung hoch radioaktiver Abfallstoffe, K-Drs. 268: 683 S., Berlin.
- KTA (2011): Sicherheitstechnische Regel des KTA 2201, Auslegung von Kernkraftwerken gegen seismische Einwirkungen, Teil I: Grundsätze, Fassung 2011-11. – Kerntechnischer Ausschuss (KTA).
- LARUE, J., KOCK, I., SEHER, H. (2010): VerSi: Endlagerung im Tonstein Abschlussbericht zum Vorhaben 3607R02538 "Untersuchung aktueller planerischer Grundsatzfragen zur Endlagerung
radioaktiver Abfälle in tiefen geologischen Formationen" - Entwicklung eines synthetischen Tonsteinstandortes (Teil 2: Standortcharakterisierung). Bericht GRS: 71 S., Köln.

- LARUE, J., BALTES, B., FISCHER, H., FRIELING, G., KOCK, I., NAVARRO, M., SEHER, H. (2013): Radiologische Konsequenzenanalyse. Bericht zum Arbeitspaket 10, Vorläufige Sicherheitsanalyse für den Standort Gorleben. GRS-289, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Köln.
- LISIZIN, A. K., MYSKIN, V. I., GANINA, N. I., KOTOVA, S. J., SCHULIK, L. S. (1997): Bewertung der Schutzeigenschaften des geologischen Milieus im Gebiet der PO "Majak" (russ.). Geoekologija 2, 51-62.
- LIU, W., KNAUTH, M., EICKEMEIER, R., FAHLAND, S., POPP, T., MINKLEY, W. (2018): TM- und THMgekoppelte Modellberechnungen zur Integritätsanalyse der geologischen Barrieren in flach lagernden Salzformationen, Ergebnisse aus dem Vorhaben KOSINA. BGR, Ergebnisbericht, Hannover.
- LUX, K.H., LOMO-APPEYH, G.M., EBERTH, S. (2002A): Entwicklung und Fundierung der Anforderung "Günstige gebirgsmechanische Voraussetzungen". Teil A: Grundlegende rechnerische Untersuchungen. - TU Clausthal, Gutachten: 117 S., Clausthal-Zellerfeld.
- LUX, K.H., LOMO-APPEYH, G.M., EBERTH, S. (2002B): Entwicklung und Fundierung der Anforderung "Günstige gebirgsmechanische Voraussetzungen". Teil B: Weiterführende laborative und rechnerische Untersuchungen. - TU Clausthal, Gutachten: 172 S., Clausthal-Zellerfeld.
- LUX, K.-H. (2002c): Entwicklung und Fundierung der Anforderung "Geringe Neigung zur Bildung von Wegsamkeiten" Gutachten im Auftrag des AkEnd, TU- Clausthal, Clausthal-Zellerfeld, Dezember 2002.
- MÄDER, U. (2009): Reference pore water for the Opalinus Clay and 'Brown Dogger' for the provisional safety-analysis in the framework of the sectoral plan interim results (Interim report for SGT Phase 2). Nagra Arbeitsber. NAB 09-14.
- MAGRI, F., BAYER, U., TESMER, M., MÖLLER, P., PEKDEGER, A. (2008): Salinization problems in the NEGB: results from thermohaline simulations. International Journal of Earth Sciences, 97: 1075-1085. DOI:10.1007/s00531-007-0209-8
- MAßMANN, J., JOBMANN, M., LI, S., NOWAK, T., POLSTER, M. (2013): Code-Benchmark zur Vorbereitung numerischer Berechnungen zum Nachweis der Integrität der geologischen Barriere. GRS, BGR, DBE TECHNOLOGY GmbH, Technischer Bericht. ANSICHT: Methodik und Anwendungsbezug eines Sicherheits- und Nachweiskonzeptes für ein HAW-Endlager im Tonstein, Peine, Hannover, Braunschweig.
- MAßMANN, J. (2016): Endlagerstandortmodell Süd (AnSichT) Teil III: Auswahl von Gesteins- und Fluideigenschaften für numerische Modellberechnungen im Rahmen des Langzeitsicherheitsnachweises. – Technischer Bericht, BGR, Hannover.
- MAßMANN, J., ZIEFLE, G. (2017): Integritätsnachweis geologische Barriere. Projekt ANSICHT: Methodik und Anwendungsbezug eines Sicherheits- und Nachweiskonzeptes für ein HAW-Endlager im Tonstein. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.
- MAZUREK, M., GAUTSCHI, A., MARSCHALL, P., VIGNERON, G., LEBON, P., DELAY, J. (2008): Transferability of geoscientific information from various sources (study sites, underground rock laboratories, natural analogues) to support safety cases for radioactive waste repositories in argillaceous.
- MELESHYN, A., WEYAND, T., BRACKE, G., KULL, H., WIECZOREK, K. (2016): Wärmeentwicklung / Gesteinsverträglichkeit. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln.

- MÖNIG, J., BUHMANN, D., RÜBEL, A., WOLF, J., BALTES, B., FISCHER-APPELT, K. (2012): Sicherheits- und Nachweiskonzept, Bericht zum Arbeitspaket 4, Vorläufige Sicherheitsanalyse für den Standort Gorleben. GRS-277, Köln.
- MÖNIG, J.; BERTRAMS, N.; BOLLINGERFEHR, W.; FAHLAND, S.; FRENZEL, B.; MAßMANN, J.; MAYER, K.-M.; MÜLLER-HOEPPE, N.; REINHOLD, K.; RÜBEL, A.; SCHUBARTH-ENGELSCHALL, N.; SIMO, E.; THIEDAU, J.; WEBER, J.R.; WOLF, J.: RESUS: Empfehlungen zur sicherheitsgerichteten Anwendung der geowissenschaftlichen Abwägungskriterien des StandAG – Synthesebericht. Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Köln, GRS-567, ISBN 978-3-947685-53-0, August 2020.
- MRUGALLA, S. (2020): Geologische und klimatische Langzeitentwicklung mit Relevanz für die Endlagerung wärmeentwickelnder Abfälle in Deutschland. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.
- MÜLLER, E.P., PAPENDIECK, G. (1975): Zur Verteilung, Genese und Dynamik von Tiefenwässern unter besonderer Berücksichtigung des Zechsteins. Zeitschrift für Geologische Wissenschaften, 3: 167-196.
- MÜLLER, E.P., NEBEL, B. (1976): Zur Isotopengeochemie des H, O, und S in Tiefenwässern. Zeitschrift für angewandte Geologie, 22: 351-357.
- NAGRA (2001): Sondierbohrung Benken Untersuchungsbericht (Text- und Beilagenband). Nationale Gesellschaft für die Lagerung radioaktiver Abfälle (NAGRA), Nagra Techn. Ber., NTB 00-01: 288 S., Wettingen.
- NAGRA (2002a). Project Opalinus Clay: The long-term safety of a repository for spent fuel, vitrified highlevel waste and long-lived intermediate-level waste sited in the Opalinus Clay of the Züricher Weinland. Nagra, NTB 02-05, Wettingen.
- NAGRA (2002b): Projekt Opalinuston. Synthese der geowissenschaftlichen Untersuchungsergebisse - Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle. NTB 02-03: 560 S., Wettingen.
- NOWAK, T., WEBER, J. (2002): Projekt Gorleben Hydraulische Charakterisierung der Salzbarriere Gorleben. Abschlussbericht. Hannover (BGR).
- NOWAK, T., MAßMANN, J. (2013): Endlagerstandortmodell Nord Teil III: Auswahl von Gesteins- und Fluideigenschaften Modellberechnungen für numerische Rahmen des im Langzeitsicherheitsnachweises am Endlagermodellstandort Nord. -Bundesanstalt für Projekt Geowissenschaften und Rohstoffe (BGR), Zwischenbericht, AnSichT Methodenentwicklung und Anwendung eines Sicherheitsnachweiskonzeptes für einen generischen HAW-Endlagerstandort im Tonstein: 31 S., Hannover.
- OECD/NEA (2000): Radioactive Waste Disposal Gas Generation and Migration in Radioactive Waste Disposal Safety-relevant Issues. Workshop Proceedings, Reims, France, 26-28 June 2000.
- OECD/NEA (2013): The Nature and Purpose of the Post-closure Safety Cases for Geological Repositories. Report NEA/RWM/R(2013)1. OECD Nuclear Energy Agency, Paris, 2013.
- OECD/NEA (2014): The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art. Report NEA/RWM/R(2013)9. OECD Nuclear Energy Agency, Paris, 2014.
- PEARSON, F.J., ARCOS, D, BATH, A., BOISSON, J.-Y., FERNÁNDEZ, A. M., GÄBLER, H.-E., GAUCHER, E., GAUTSCHI, E., GRIFFAULT, L., HERNÁN, P., WABER, H.N. (2003): Mont Terri Project – Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory, Berichte des BWG, Serie Geologie, No. 5.

- PHILIP, J.R., DE VRIES, D.A. (1957): Moisture movement in porous materials under temperature gradients. Eos, Transactions American Geophysical Union, 38, 2: 222-232.
- PÖHLER, M., AMELUNG, P., BOLLINGERFEHR, W., ENGELHARDT, H.J., FILBERT, W., THOLEN, M. (2010). Referenzkonzept für ein Endlager für radioaktive Abfälle im Tongestein. ERATO. Abschlussbericht. Förderkennzeichen 02E 10288, DBE TECHNOLOGY GmbH, TEC-28-2008-AB, Peine.
- PRÖHL, G., GERING, F. (2002): Dosiskonversionsfaktoren zur Berechnung der Strahlenexposition in der Nachbetriebsphase von Endlagern nach dem Entwurf der Allgemeinen Verwaltungsvorschriften zu § 47 Strahlenschutzverordnung. GSF-Forschungszentrum für Umwelt und Gesundheit, Institut für Strahlenschutz. Neuherberg.
- REICHE, T., BECKER, D.-A., BUHMANN, D., LAUKE, T. (2011): Anpassung des Programmpakets EMOS an moderne Softwareanforderungen: ADEMOS – Phase 1. FKZ 02E10367, GRS-A-3623, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH, Braunschweig.
- REICHE, T., BECKER, D.-A. (2014): Berechnung radiologischer Konsequenzen der Freisetzung radioaktiver Stoffe aus einem Endlager in die Biosphäre mit dem Programm BioTREND. FKZ 02E10367, GRS-345, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Braunschweig.
- REINHOLD, K., JAHN, S., KÜHNLENZ, T., PTOCK, L.,, SÖNNKE, J. (2013A): Endlagerstandortmodell Nord (AnSichT) Teil I: Beschreibung des geologischen Endlagerstandortmodells. Technischer Bericht, BGR, Hannover.
- REINHOLD, K., STARK, L., KÜHNLENZ, T., PTOCK, L. (2016): Endlagerstandortmodell SÜD (AnSichT) -Teil I: Beschreibung des geologischen Endlagerstandortmodells. – Technischer Bericht, BGR, Hannover.
- REISER, H. (1991): Unterkompaktion und Porenwasserüberdrücke in jurassischen Tonsteinen der Struktur Thönse. Nds. Akad. Geowiss. Veröfftl., 6: 123-131, Hannover.
- REJEB, A., CABRERA, J. (2007): Time-dependent evolution of the excavation damaged zone in the argillaceous Tournemire site. Advances on coupled thermohydro-mechanicalchemical processes in geosystems and engineering. International Conference GeoProc, 2006, Nanjing, China. S. 648-657.
- REMPE, N.T. (2014): Geologic analogues for hot waste and for radionuclide releases. Proc. Salt Club Workshop, Natural Analogues for Safety Cases of Repositories in Rock Salt, NEA/RWM/R (2013)10, Braunschweig. S. 99-103.
- RICHARDS, L.A. (1931): Capillary conduction of liquids through porous mediums. physics, 1, 5: S. 318-333.
- RÜBEL, A., BECKER, D.-A., FEIN, E. (2007): Radionuclide transport modelling to assess the safety of repositories in clays. FKZ 02 E 9813, GRS-228, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH, Braunschweig.
- RÜBEL, A., MELESHYN, A. (2014): Methodik und Anwendungsbezug eines Sicherheits- und Nachweiskonzeptes für ein HAW-Endlager im Tonstein (AnSichT). Sicherheitskonzept und Nachweisstrategie. GRS-338, Gesellschaft für Anlagen und Reaktorsicherheit (GRS) mbH, Braunschweig.
- SHAO, H., SCHUSTER, K., SÖNNKE, J., BRÄUER, V. (2008): EDZ development in indurated clay formations–In situ borehole measurements and coupled HM modelling. Physics and Chemistry of the Earth, Parts A/B/C, 33: 388-395.

- SOULEY, M., HOMAND, F., PEPA, S., HOXHA, D. (2001): Damage-induced permeability changes in granite: a case example at the URL in Canada. International Journal of Rock Mechanics and Mining Sciences, 38, 2: 297-310.
- STANDAG: Standortauswahlgesetz vom 5. Mai 2017 (BGBI. I S. 1074), das zuletzt durch Artikel 2 Absatz 16 des Gesetzes vom 20. Juli 2017 (BGBI. I S. 2808) geändert worden ist.
- STARK, L., JAHN, S., JOBMANN, M., LOMMERZHEIM, A., MELESHYN, A., MRUGALLA, S., REINHOLD, K., RÜBEL, A., KELLER, S., GERARDI, J. (2014). FEP-Katalog für das Endlagerstandortmodell NORD - Konzept und Aufbau -, Projekt ANSICHT, Methodik und Anwendungsbezug eines Sicherheitsund Nachweiskonzeptes für ein HAW-Endlager im Tonstein, DBE TECHNOLOGY GmbH, GRS, BGR.
- STARK, L., JAHN, S., JOBMANN, M., LOMMERZHEIM, A., MELESHYN, A., MRUGALLA, S., REINHOLD, K., RÜBEL, A. (2016). FEP-Katalog für das Endlagerstandortmodell SÜD - Konzept und Aufbau -, Projekt ANSICHT, Methodik und Anwendungsbezug eines Sicherheits- und Nachweiskonzeptes für ein HAW-Endlager im Tonstein, DBE TECHNOLOGY GmbH, GRS, BGR.
- STOBER, I., BUCHER, K. (2000A): Hydrogeology of Crystalline Rocks. Water Science and Technology Library, 275, Kluwer Academic Publishers, Dordrecht, Boston, London.
- STOBER, I., BUCHER, K. (2000B): Herkunft der Salinität in Tiefenwässern des Grundgebirges unter besonderer Berücksichtigung der Kristallinwässer des Schwarzwaldes, Grundwasser -Zeitschrift der Fachsektion Hydrogeologie, 3: 125-140.
- STOBER, I., BIRNER, J., WOLFGRAMM, M. (2014): Hydrochemie der Tiefenwässer in Deutschland, Zeitschrift für Geologische Wissenschaften 41/42: 339-380.
- TANAKA, K. (1978): Self-diffusion coefficients of water in pure water and in aqueous solutions of several electrolytes with 18O and 2H as tracers, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases.
- TERZAGHI, K., FRÖHLICH, O.K. (1936): Theorie der Setzung von Tonschichten: eine Einführung in die analytische Tonmechanik. (Franz Deuticke).
- THOMAS, L.G. (1994): Hydrogeochemische Untersuchungen an Ölfeldern aus NW-Deutschland und dem Oberrheingraben und ihre Modellierung unter dem Aspekt der Entwicklung eines Expertensystems für Fluid-Rock-Interactions (XPS Frocki). Berliner geowissenschaftliche Abhandungen, 166 S.
- TOURNASSAT, C., STEEFEL, C.I., BOURG, I.C., BERGAYA, F. (2015): Natural and Engineered Clay Barriers, Developments in Clay Science Series – Volume 6, ISBN: 978-0-08-100027-4, Elsevier, Amterdam, Niederlande.
- VAN LOON, L. R., WERSIN, P., SOLER, J. M., EIKENBERG, J., GIMMI, TH., HERNAN, P., DEWONCK, S., SAVOYE, S. (2004): In-situ diffusion of HTO, 22Na+, Cs + and I- in Opalinus Clay at the Mont Terri underground rock laboratory, Radiochim. Acta 92: 757–763.
- VIETOR, T. (2017): Tiefenlager für radioaktive Abfälle der Schweiz im Opalinuston. Geowissenschaftliche Mitteilungen 70: 8-18.
- WEBER, J.R., WALLNER, M. (1998): Hydraulische Untersuchungen im Grubengebäude Morsleben: Abschlußbericht, 30.03.1998. Hannover (Bundesanst. f. Geowiss. u. Rohstoffe).
- WOLFGRAMM, M. (2002): Fluidentwicklung und Diagenese im Nordostdeutschen Becken -Petrographie, Mikrothermometrie und Geochemie stabiler Isotope [Dissertation]. -, Martin-Luther-Universität Halle-Wittenberg.

- WOLFGRAMM, M., THORWART, K., RAUPPACH, K., BRANDES, J. (2011): Zusammensetzung, Herkunft und Genese geothermaler Tiefengrundwässer im Norddeutschen Becken (NDB) und deren Relevanz für die geothermische Nutzung. - Zeitschrift für Geologische Wissenschaften, 39: 173-193.
- Xu, T., Senger, R., Finsterle, S. (2008): Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects. Applied Geochemistry 23: 3423-3433.
- ZIEFLE, G., MATRAY, J.-M., MAßMANN, J., MÖRI, A. (2018): Coupled hydraulic-mechanical simulation of seasonally induced processes in the Mont Terri rock laboratory (Switzerland). (In: Mont Terri Rock Laboratory, 20 Years). S. 197-214, Cham (Springer).

Gesellschaft für Anlagenund Reaktorsicherheit (GRS) gGmbH

Schwertnergasse 1 50667 Köln Telefon +49 221 2068-0 Telefax +49 221 2068-888

Boltzmannstraße 14 **85748 Garching b. München** Telefon +49 89 32004-0 Telefax +49 89 32004-300

Kurfürstendamm 200 **10719 Berlin** Telefon +49 30 88589-0 Telefax +49 30 88589-111

Theodor-Heuss-Straße 4 **38122 Braunschweig** Telefon +49 531 8012-0 Telefax +49 531 8012-200

www.grs.de

BGE TECHNOLOGY GmbH

Eschenstraße 55 31224 Peine

Bundesanstalt für Geowissenschaften und Rohstoffe GmbH Geozentrum Hannover (BGR) Stilleweg 2 30655 Hannover