

The Greening of HPC -Will Power Consumption Become the Limiting Factor for Future Growth in HPC?

Horst D. Simon Associate Laboratory Director, Computing Sciences Lawrence Berkeley National Laboratory and EECS Dept., UC Berkeley hdsimon@lbl.gov

Festkolloquium: Prof. Dr. Arndt Bode 60 Jahre Parallelrechner – Hochleistung für Wissenschaft und Forschung, München, October 10, 2008

The Greening of HPC -Will Power Consumption Become the Limiting Factor for Future Growth in HPC?

Horst D. Simon Associate Laboratory Director, Computing Sciences Lawrence Berkeley National Laboratory and EECS Dept., UC Berkeley <u>hdsimon@lbl.gov</u>

> HPC User Forum, Stuttgart, Germany October 13th and 14th, 2008

Acknowledgements

A large number of individuals have contributed to energy efficiency in computing at the Lab and to this presentation:

David Bailey (CRD), Michael Banda (CRD), Michael Bennett (ITD), Shoaib Kamil (CRD), Jonathan Koomey (Stanford), Chuck McParland (CRD), Bruce Nordman (EETD), Lenny Oliker (CRD), Ekow Otoo (CRD), Vern Paxson (UCB/ICSI/CRD), Doron Rotem (CRD), Dale Sartor (EETD), John Shalf (NERSC), Erich Strohmaier (CRD), Bill Tschudi (EETD), Howard Walter (NERSC), Michael Wehner (CRD), Kathy Yelick (NERSC/CRD) ... and many others

Almost all Berkeley resources about energy efficiency are available at http://www.lbl.gov/CS/html/energy%20efficient%20comp uting.html

Why does saving energy matter?

Energy Consumption in the United States 1949 - 2005 200 \$1.7 175 Trillion Avoided Supply = 70 Quads in 2005 150 125 Quads/Year If E/GDP had dropped 0.4% per year \$1.0 100 Trillion New Physical Supply = 25 Q 75 Actual (E/GDP drops 2.1% per year) 50 70 Quads per year saved or avoided corresponds to 1 Billion cars off the 25 road 0 ε 2005 002 1985 1987 1989 1993 1995 1999 2001 1991 1997 http://www.energy.ca.gov/commission/commissioners/rosenfeld_docs/index.html Office of ERSC U.S. DEPARTMENT OF ENERG

Outline

- 1. Power consumption has become an industry-wide issue for computing
- 2. Building and computer room energy efficiency
- 3. Computer architecture for energy efficiency- the Green Flash project
- **4. Future Direction**

Outline

1. Power consumption has become an industry-wide issue for computing

Two interrelated issues:

- Building and infrastructure problem
- Computer architecture problem

The Problem

- "Big IT" all electronics
 - PCs / etc., consumer electronics, telephony
 - Residential, commercial, industrial
 - More than 200 TWh/year
 - \$16 billion/year
 - Based on .08\$/KWh
 - Nearly 150 million tons of CO₂ per year
 - Roughly equivalent to 30 million cars!

ERSC

One central baseload power plant (about 7 TWh/yr)

Numbers represent

U.S. only

... and IT electricity use is increasing

data taken from: Jonathan Koomey, "Estimating Total Power Consumption by Servers in the U.S. and the World" Available at: http://www.koomey.com/publications.html

The Problem

Unrestrained IT power consumption could eclipse hardware costs and put great pressure on affordability, data center infrastructure, and the environment.

Source: Luiz André Barroso (Google), "The Price of Performance," *ACM Queue*, Vol. 2, No. 7, pp. 48-53, September 2005 (Modified with permission)

Top Challenges to Clusters

Even Consumers See the HPC Heat Issue

Data Center Economic Reality

- June 2006 Google begins building a new data center near the Columbia River on the border between Washington and Oregon
 - Because the location is "at the intersection of cheap electricity and readily accessible data networking"

"Hiding in Plain Sight, Google Seeks More Power" by John Markoff, NYT, June 14, 2006

- Microsoft and Yahoo are building big data centers upstream in Wenatchee and Quincy, Wash.
 - To keep up with Google, which means they need cheap electricity and readily accessible data networking

Source: New York Times, June 14, 2006

Google Dalles Oregon Facility 68,680 Sq Ft Per Pod

Microsoft Quincy, Wash. 470,000 Sq Ft, 47MW!

Source: Levy and Snowhorn, Data Center Power Trends, February 18, 2008

Absolute Power Levels

DARPA Exascale Study

- Commissioned by DARPA to explore the challenges for Exaflop computing
- Two model for future performance growth
 - Simplistic: ITRS roadmap; power for memory grows linear with #of chips; power for interconnect stays constant
 - Fully scaled: same as simplistic, but memory and router power grow with peak flops per chip

We won't reach Exaflops with this approach

... and the power costs will still be staggering

From Peter Kogge, DARPA Exascale Study

Power fundamentals 2018--2020

Processor budget: **15 MW** for a sustained HPL Exaflops (10pJ/op) {250}

- Memory budget: 25-50 MW (25 pJ/op) {300} [1/2 Byte/sec/Flops]
- Interconnect budget: **50 MW** (5 pJ/op) [0.1 B/F] {30}
- I/O Budget: **5 MW** (5 pJ/byte) 1 petabyte/sec
- Power and Cooling Budget @30%: 30 MW

Total Power required 125 MW!

Outline

- 1. Power consumption has become an industry-wide issue for computing
- 2. Building and computer room energy efficiency
- 3. Computer architecture for energy efficiency- the Green Flash project
- **4. Future Direction**

Understanding Power Consumption in HPC Computer Room Environment (http://hightech.lbl.gov/datacenters.html)

- LBNL has long-term experience in computer room energy efficiency for data centers (power distribution, air flow, cooling technology)
- Usage patterns are significantly different between IT and HPC centers
- Need to understand and improve computer room issues for HPC centers

Focus on PUE

- PUE = "power usage effectiveness" metric promoted by "Green Grid"
- PUE = total facility power/ computer equipment power
- Reduce PUE by consistent application of facilities improvements

	PUE		
Current Trends	1.9		
Improved Operations	1.7		
Best Practices	1.3		
State-of-the-Art	1.2		

PERKINS +WILL

Ideas + buildings that honor the broade goals of society

Computational Research & Theory Facility - LBNL

Proof of Concept Simulations

Cold-Aisle Doors

Cold-Aisle Enclosure

CFD Modeling of Alternatives

Temperature

Velocity

221111

RCI vs. Architecture

PERKINS +WILL

Ideas + buildings that honor the broade goals of society

Computational Research & Theory Facility - LBNL

Berkeley Weather

Objectives Synopsis Project Energy Systems

Total HPC Power/IT Power Lotal Data Center Power/IT Power

Outline

- 1. Power consumption has become an industry-wide issue for computing
- 2. Building and computer room energy efficiency
- 3. Computer architecture for energy efficiency- the Green Flash project.
- **4. Future Direction**

Estimated Exascale Power Requirements

- LBNL IJHPCA Study for ~1/5 Exaflop for Climate Science
 - Extrapolation of Blue Gene and AMD design trends
 - Estimate: 20 MW for BG and 179 MW for AMD
- DOE E3 Report
 - Extrapolation of existing design trends to exascale in 2016
 - Estimate: 130 MW
- DARPA Study
 - More detailed assessment of component technologies for exascale system
 - Estimate: more than 120 MW
- The current approach is not sustainable!

Ultra-Efficient "Green Flash" Computing at NERSC: 100x over Business as Usual

Radically change HPC system development via application-driven hardware/software co-design

- Achieve 100x power efficiency and 100x capability of mainstream HPC approach for targeted high-impact applications
- Accelerate development cycle for exascale HPC systems
- Approach is applicable to numerous scientific applications
- Proposed pilot application: Ultra-high resolution climate change simulation

Path to Power Efficiency Reducing Waste in Computing

- Examine methodology of low-power embedded computing market
 - optimized for low power, low cost and high computational efficiency

"Years of research in low-power embedded computing have shown only one design technique to reduce power: reduce waste."

— Mark Horowitz, Stanford University & Rambus Inc.

- Sources of waste
 - Wasted transistors (surface area)
 - Wasted computation (useless work/speculation/stalls)
 - Wasted bandwidth (data movement)
 - Designing for serial performance

Design for Low Power: More Concurrency

ERSC

- Cubic power improvement with lower clock rate due to V²F
 - Slower clock rates enable use of simpler cores
 - Simpler cores use less area (lower leakage) and reduce cost
- Tailor design to application to <u>reduce</u> <u>waste</u>\$ \$

This is how iPhones and MP3 players are designed to maximize battery life and minimize cost

Low Power Design Principles

- IBM Power5 (server)
 - 120W@1900MHz
 - Baseline
- Intel Core2 sc (laptop) :
 - 15W@1000MHz
 - 4x more FLOPs/watt than baseline
- IBM PPC 450 (BG/P low power)
 - 0.625W@800MHz
 - 90x more
- Tensilica XTensa (Moto Razor) :
 - 0.09W@600MHz
 - 400x more

Even if each core operates at 1/3 to 1/10th efficiency of largest chip, you can pack 100s more cores onto a chip and consume 1/20 the power

Embedded Design Automation (Example from Existing Tensilica Design Flow)

Advanced Hardware Simulation (RAMP)

- Research Accelerator for Multi-Processors (RAMP)
 - Utilize FGPA boards to emulate large-scale multicore systems
 - Simulate hardware before it is built
 - Break slow feedback loop for system designs
 - Allows fast performance validation
 - Enables tightly coupled hardware/software/science
 co-design (not possible using conventional approach)
- Technology partners:
 - UC Berkeley: John Wawrzynek, Jim Demmel, Krste Asanovic, Kurt Keutzer
 - Stanford University / Rambus Inc.: Mark Horowitz
 - Tensilica Inc.: Chris Rowen

Customization Continuum: Green Flash

- <u>Application-driven does NOT necessitate a special purpose machine</u>
- MD-Grape: Full custom ASIC design
 - 1 Petaflop performance for one application using 260 kW for \$9M
- D.E. Shaw Anton System: Full and Semi-custom design
 - Simulate 100x–1000x timescales vs any existing HPC system (~200kW)
- Application-Driven Architecture (Green Flash): Semicustom design
 - Highly programmable core architecture using C/C++/Fortran
 - Goal of 100x power efficiency improvement vs general HPC approach
 - Better understand how to build/buy application-driven systems
 - Potential: 1km-scale model (~200 Petaflops peak) running in O(5 years)

Green Flash Strawman System Design

We examined three different approaches (in 2008 technology)

Computation .015°X.02°X100L: 10 PFlops sustained, ~200 PFlops peak

- AMD Opteron: Commodity approach, lower efficiency for scientific applications offset by cost efficiencies of mass market
- BlueGene: Generic embedded processor core and customize system-onchip (SoC) to improve power efficiency for scientific applications
- Tensilica XTensa: Customized embedded CPU w/SoC provides further power efficiency benefits but maintains programmability

Processor	Clock	Peak/ Core (Gflops)	Cores/ Socket	Sockets	Cores	Power	Cost 2008
AMD Opteron	2.8GHz	5.6	2	890K	1.7M	179 MW	\$1B+
IBM BG/P	850MHz	3.4	4	740K	3.0M	20 MW	\$1B+
Green Flash / Tensilica XTensa	650MHz	2.7	32	120K	4.0M	3 MW	\$75M
	M	13				110	Office of Science

Climate System Design Concept Strawman Design Study

Portable Performance for Green Flash

- Challenge: Our approach would produce multiple architectures, each different in the details
 - Labor-intensive user optimizations for each specific architecture
 - Different architectural solutions require vastly different optimizations
 - Non-obvious interactions between optimizations & HW yield best results
- Our solution: Auto-tuning
 - Automate search across a complex optimization space
 - Achieve performance far beyond current compilers
 - Attain performance portability for diverse architectures

Auto-Tuning for Multicore

(finite-difference computation)

- Take advantage of unique multicore features via auto-tuning
- Attains performance portability across different designs
- Only requires basic compiling technology
- Achieve high serial performance, scalability, and optimized power efficiency

Outline

- 1. Power consumption has become an industry-wide issue for computing
- 2. Building and computer room energy efficiency
- 3. Computer architecture for energy efficiency- the Green Flash project
- 4. Future

Processor Technology Trend

- 1990s R&D computing hardware dominated by desktop/COTS
 - -Had to learn how to use COTS technology for HPC
- 2010 R&D investments moving rapidly to consumer electronics/ embedded processing
 - Must learn how to leverage embedded processor technology for future HPC systems
 Market in Japan(B\$)

17

Consumer Electronics Convergence

Consumer Electronics Convergence

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

Power Ranking and How Not to do it!

500

One can-not 'rank' objects with densities BY SIZE:

- Density does not tell anything about size of an object
- A piece of lead is not heavier or larger than one piece of wood.
- Linpack (sub-linear) / Power (linear) will always sort smaller systems before larger ones!

The Transition to Low-Power Technology is Inevitable

Does it make sense to build systems that require the electric power equivalent of an aluminum smelter?

- Information "factories" are only affordable for a few government labs and large commercial companies (Google, MSN, Yahoo ...)
 - Midrange installations will soon hit the 1 2 MW wall, requiring costly new installations
 - Economics will change if operating expenses of a server exceed acquisition cost
- The industry will switch to low-power technology within 2 3 years
- Embedded processors or game processors will be the next step (BG, Cell, Nvidia, SiCortex, Tensilica)
 - Example RR, first Petaflops system

Absolute Power Levels

Power Efficiencies of Systems with different Processors 600 Power Efficiency [MFlops/Watt] (8+1) core 500 QC embedded 400 Quadcore DC embedded 300 Dualcore 200 100 0 IntelEMEAT YEON ESAYA Harpertown) IntelEMBAT Xeon LSAX I Harpertown IntelEMOAT Yeon 53XX Covertown IntelEMOAT HEON 51XX IMOODCLEST AND X86 64 Opteron Dual Core AND X86 -A Opteron Quad Core PowerXcell®i 31st List / June 2008

ISC'08, Dresden

Frequencies and Power Efficiency

Power rating is 80 Watts each!

Maximum Power Efficiency of Harpertown E54xx

31st List / June 2008

ISC'08, Dresden

Most Power Efficient Systems

Power Efficiencies of different Systems

Convergence of Platforms

- Multiple parallel general-purpose processors (GPPs)
- Multiple application-specific processors (ASPs)

BG/L—the Rise of the Embedded Processor

TOP 500 Performance by Architecture

Summary (1)

- LBNL has taken a comprehensive approach to the power in computing problem
 - Component level (investigate use of low-power components and build new system)
 - System level (measuring and understanding energy consumption of system
 - Computer Room level (understand airflow and cooling technology)
 - Building Level (enforce rigorous energy standards in new computer building and use of innovative energy savings technology)

Summary (2)

- Economic factors are driving us already to more energy efficient solutions in computing
- Incremental improvements are well on track, but we may ultimately need revolutionary new technology to reach the Exaflop/s level and beyond

Happy 60th Birthday!

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

... and keep up with "green" computing and commuting

