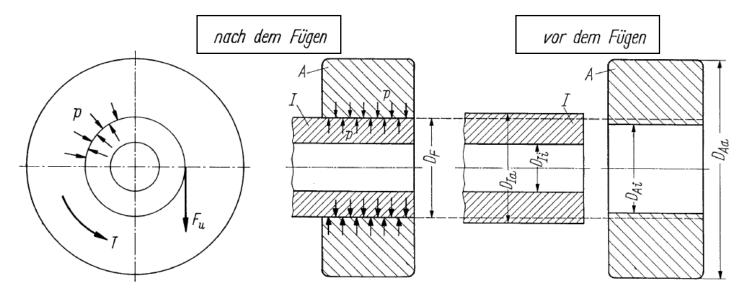
ÜBUNG

MASCHINENELEMENTE

Zylindrische Pressverbände:

Tragfähigkeitsnachweis nach DIN 7190

Stephan Voigt, M.Eng.


Agenda

- 1. Einleitung
 - 1.1 Wirkprinzip
 - 1.2 Herleitung der Berechnungsgrundlagen
 - 1.3 Wiederholung: Toleranzen und Passungen
 - 1.4 Möglichkeiten der Auslegung zylindrischer Pressverbände
- 2. Auslegung zylindrischer Pressverbände bei rein elastischer Beanspruchung
 - 2.1 Vorgehensweise
 - 2.2 Beispiel zu rein elastischen Beanspruchung
- 3. Auslegung zylindrischer Pressverbände bei elastisch-plastischer Beanspruchung
 - 3.1 Vorgehensweise
 - 3.2 Beispiel zu elastisch-plastischen Beanspruchung
- 4. Montage und Betrieb zylindrischer Pressverbände

1 Einleitung

1.1 Wirkprinzip

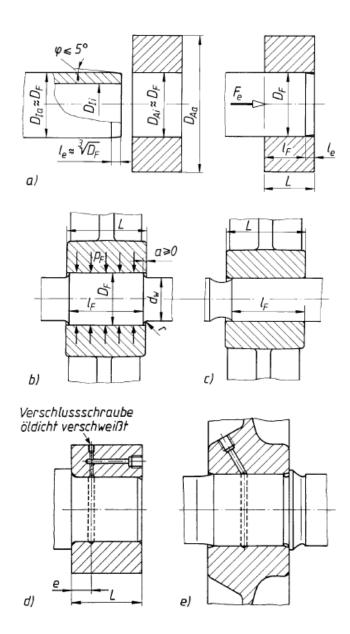
Beim Fügen der mit Übermaß versehenen Teile (Welle und Nabe) entsteht die elastische Fugenpressung $p_{\rm F}$.

Nabe unter Innendruck, Welle unter Außendruck

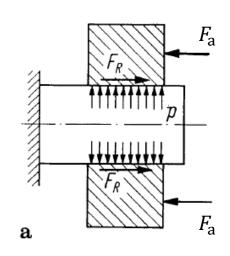
 D_{Ia} ... Außendurchmesser des Innenteils (Welle) D_{Ii} ... Innendurchmesser des Innenteils (Welle)

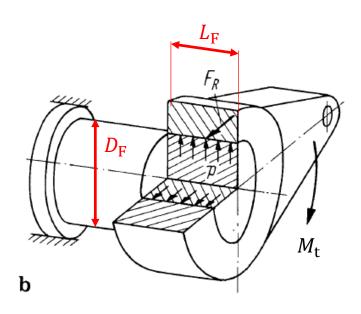
 D_{Aa} ... Außendurchmesser des Außenteils (Nabe) D_{Ai} ... Innendurchmesser des Außenteils (Nabe)

$$D_{\rm F} \approx D_{\rm Ia} \approx D_{\rm Ai}$$


Nach dem Montageverfahren wird unterschieden:

• Längspressverband


- Fügen bei RT durch Aufpressen
- Einpressgeschwindigkeit $\leq 2 \text{ mm} \cdot \text{s}^{-1}$
- Glättung der Oberflächen durch plastische Verformung und Abscheren
- Fase zwingend erforderlich → Gefahr des Schabens
- Beim Fügen ungehärteter Stahlteile: Gefahr des Fressens (kaltverschweißen) → Schmierung


Querpressverband

- Kraftfreies Fügen durch Erwärmung des Außenteils
 (Schrumpfsitz) oder Abkühlen des Innenteils (Dehnsitz)
- Glättung der Oberflächen durch plastische Verformung
- Lösen mittels Drucköl → Druckölpressverband

Kraftübertragung mittels Reibschluss

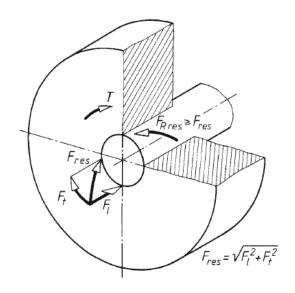
Axialkraft

$$F_{\rm a} \le \frac{F_{\rm R}}{S_{\rm R}} = \frac{\nu \cdot F_{\rm N}}{S_{\rm R}} = \frac{\nu \cdot p_{\rm F} \cdot A}{S_{\rm R}} = \frac{\nu \cdot p_{\rm F} \cdot \pi \cdot D_{\rm F} \cdot L_{\rm F}}{S_{\rm R}}$$

 ν ... Haftbeiwert

 $S_{\rm R}$... Rutschsicherheit

 $D_{\rm F}$... Fügedurchmesser


 $L_{
m F}$... Fügelänge

Drehmoment

$$M_{\rm t} \leq \frac{M_{\rm R}}{S_{\rm R}} = \frac{F_{\rm R} \cdot D_{\rm F}}{2 \cdot S_{\rm R}} = \frac{\nu \cdot F_{\rm N} \cdot D_{\rm F}}{2 \cdot S_{\rm R}} = \frac{\nu \cdot p_{\rm F} \cdot A \cdot D_{\rm F}}{2 \cdot S_{\rm R}} = \frac{\nu \cdot p_{\rm F} \cdot \pi \cdot D_{\rm F}^2 \cdot L_{\rm F}}{2 \cdot S_{\rm R}}$$

• Treten Axial- und Tangentialkräfte gleichzeitig auf, so gilt:

$$F_{\text{res}} = \sqrt{F_a^2 + F_t} = \sqrt{F_a^2 + \frac{4 \cdot M_t^2}{D_F^2}} \le \frac{F_{\text{R res}}}{S_{\text{R}}}$$

• Damit kann der erforderliche Fugendruck $p_{\rm F\,erf}$ zur Übertragung einer Axialkraft und/oder eines Drehmomentes ermittelt werden:

$$p_{\text{F erf}} = \frac{\sqrt{F_{\text{a}}^2 + \frac{4 \cdot M_{\text{t}}^2}{D_{\text{F}}^2}}}{\nu \cdot \pi \cdot D_{\text{F}} \cdot L_{\text{F}}} \cdot S_{\text{R}}$$

Haftbeiwerte

• Beim Lösen (Demontage):

$$v_{\rm l} = {{
m gemessene \ L\"{o}sekraft} \over {
m berechnete \ Normalkraft}} = {{F_{
m L\"{o}_mess}} \over {F_{
m N_ber}}}$$

• Beim Rutschen (Schadensfall):

$$v_{\rm r} = rac{{
m gemessene \ Rutschkraft}}{{
m berechnete \ Normalkraft}} = rac{F_{
m Ru_mess}}{F_{
m N_ber}}$$

Einfluss der Kraftrichtung

	Lösen	Rutschen
Umfangsrichtung	$ u_{ m lu}$	$ u_{ m ru}$
Längsrichtung	$ u_{ m ll}$	$ u_{ m rl}$

- Weitere Einflussfaktoren: Art des Pressverbandes, Werkstoffpaarung, Rauheit und Schmierungszustand der Fügeflächen, Beanspruchung (rein elastisch oder elastisch-plastisch)
- Unterschied zu Reibungszahl

$$\mu = \frac{\text{gemessene Kraft}}{\text{gemessene Normalkraft}} = \frac{F_{\text{mess}}}{F_{\text{N_mess}}}$$

Haftbeiwerte von
 Längspressverbänden bei
 zügiger Beanspruchung

	Werkstoffe		Haftbeiwerte						
alt	ne	u	troc	ken	geschmiert				
		Nummer	$ u_{11}$	$ u_{\rm rl}$	$ u_{11}$	$\nu_{ m rl}$			
St 60-2	E 335	1.0060	0,11	0,08	0,08	0,07			
GS-60	GE 300	1.0558	0,11	0,08	0,08	0,07			
RSt37-2	S 235JRG2	1.0038	0,10	0,09	0,07	0,06			
GG-25	EN-GJL-250	0.6025	0,12	0,11	0,06	0,05			
GGG-60	EN-GJS-600-3	0.7060	0,10	0,09	0,06	0,05			
G-AlSi12(Cu)	EN AB-44000 ff.		0,07	0,06	0,05	0,04			
G-CuPb10Sn (G-CuSn10Pb10)	CB495K	2.1176.01	0,07	0,06	_1)	_1)			
TiAl6V4	TiAl6∨4	3.7165.10	_1)	_1)	0,05	_1)			
1) Haftbeiwerte nicht	bekannt.		-	-					

 Haftbeiwerte bei Querpressverbänden in Längs- und Umfangsrichtung beim Rutschen

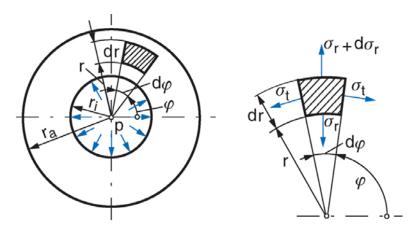
Werkstoffpaarung, Schmierung, Fügung	Haftbeiwerte $ u_{ m r}, u_{ m rl}, u_{ m u}$
Stahl-Stahl-Paarung	
Druckölverbände normal gefügt mit Mineralöl	0,12
Druckölverbände mit entfetteten Pressflächen mit Glyzerin gefügt	0,18
Schrumpfverband normal nach Erwärmung des Außenteils bis zu 300 °C im Elektroofen	0,14
Schrumpfverband mit entfetteten Pressflächen nach Erwärmung im Elektroofen bis zu 300 °C	0,20
Stahl-Gusseisen-Paarung	
Druckölverbände normal gefügt mit Mineralöl	0,10
Druckölverbände mit entfetteten Pressflächen	0,16
Stahl-MgAl-Paarung, trocken	0,10 bis 0,15
Stahl-CuZn-Paarung, trocken	0,17 bis 0,25

Rutschsicherheit

 Erfahrungswerte in Abhängigkeit der Belastung

ruhend	schwellend	wechselnd
≥ 1,5	≥ 1,8	≥ 2,2

• Werte in Abhängigkeit der Einsatzbedingungen


	$S_{ m R}$
Axialer Kraftfluss (z.B. Kupplungsnaben), konstantes Drehmoment, sichere Reibungszahl	1,3 1,5
Bei bekanntem Lastkollektiv und Berechnung mit größtmöglichem Drehmoment	2,0 2,5
Aufgeschrumpfte Zahnräder, Berechnung mit größtmöglichem Drehmoment	2,5 3,5
Aufgeschrumpfte Zahnradbandagen bei umlaufender Welle	5 50

Doppelte Werte bei Wechselbiegung, hohe Werte bei unsicheren Angaben über Belastung,
 Betriebstemperatur, Haftbeiwert, Fertigungsqualität etc;
 kleinere Werte für Rutschen in Umfangsrichtung, wenn axiales Rutschen durch Anschlag (z.B. Wellenbund) verhindert wird

Stephan Voigt, M.Eng.

1.2 Herleitung der Berechnungsgrundlagen

• Betrachtung eines Volumenelementes $r d\varphi \cdot dr \cdot dz$ eines Hohlzylinders unter Innendruck:

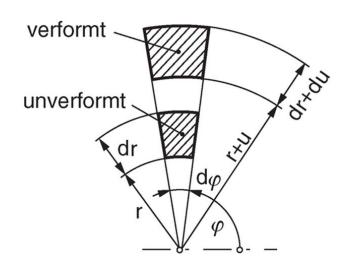
Kräftegleichgewicht in radialer Richtung

$$(\sigma_{r} + d\sigma_{r}) \cdot dz \cdot (r + dr) \cdot d\varphi = \sigma_{r} \cdot dz \cdot r \cdot d\varphi + 2 \cdot \sigma_{t} \cdot dz \cdot dr \cdot \underbrace{\sin\left(\frac{d\varphi}{2}\right)}_{\frac{d\varphi}{2}}$$
$$(\sigma_{r} + d\sigma_{r}) \cdot (r + dr) = \sigma_{r} \cdot r + \sigma_{t} \cdot dr$$

$$\sigma_{\mathbf{r}} \cdot r + \sigma_{\mathbf{r}} \cdot d\mathbf{r} + d\sigma_{\mathbf{r}} \cdot r + d\sigma_{\mathbf{r}} \cdot d\sigma_{\mathbf{r}} = \sigma_{\mathbf{r}} \cdot r + \sigma_{\mathbf{t}} \cdot d\mathbf{r}$$

$$\sigma_{\rm r} + \frac{{
m d}\sigma_{
m r} \cdot r}{{
m d}r} = \sigma_{
m t} \qquad \Rightarrow \quad \sigma_{
m t} = \frac{{
m d}}{{
m d}r} (r \cdot \sigma_{
m r})$$

• Verformungen in radialer Richtung


Dehnung in radialer Richtung

$$\varepsilon_{\rm r} = \frac{\mathrm{d}u}{\mathrm{d}r}$$

- Dehnung in tangentialer Richtung

$$\varepsilon_{t} = \frac{(r+u) \cdot d\varphi - r \cdot d\varphi}{r \cdot d\varphi} = \frac{u}{r}$$

- Mit $u = r \cdot \varepsilon_t$ bzw. $du = r \cdot d\varepsilon_t$ folgt:

$$Dehnung = \frac{L\"{a}ngen\"{a}nderung}{Ausgangsl\"{a}nge}$$

$$\varepsilon_{\rm r} = \frac{r \cdot d\varepsilon_{\rm t}}{dr}$$
 \Rightarrow $\varepsilon_{\rm r} = \frac{d}{dr}(r \cdot \varepsilon_{\rm t})$

Mit dem Hookschen Gesetz des ebenen Spannungszustandes

$$\varepsilon_{\rm r} = \frac{1}{E} \cdot (\sigma_{\rm r} - \nu \cdot \sigma_{\rm t}) \qquad \qquad \varepsilon_{\rm t} = \frac{1}{E} \cdot (\sigma_{\rm t} - \nu \cdot \sigma_{\rm r}) \qquad \qquad \nu \ ... \ {\rm Querkontraktion \ (Poisson-Zahl)}$$

folgt die Differentialgleichung 2. Ordnung (mit nichtkonstanten Koeffizienten) für die Radialspannung σ_r :

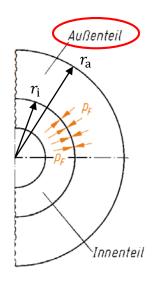
$$\frac{\mathrm{d}^2 \sigma_{\mathrm{r}}}{\mathrm{d}r^2} + \frac{3}{r} \cdot \frac{\mathrm{d}\sigma_{\mathrm{r}}}{\mathrm{d}r} = 0$$

Die allgemeine Lösung lautet:

$$\sigma_{
m r}(r) = \mathcal{C}_1 + \frac{\mathcal{C}_2}{r^2}$$
 $\sigma_{
m t}(r) = \mathcal{C}_1 - \frac{\mathcal{C}_2}{r^2}$ \mathcal{C}_1 , \mathcal{C}_2 ... Integrationskonstanten

- Anmerkung: Lösen der obigen Differentialgleichung
 - Rückführung auf Differentialgleichung 1. Ordnung mit $\frac{\mathrm{d}\sigma_{\mathrm{r}}}{\mathrm{d}r} = z \cdot \sigma_{\mathrm{r}}$
 - Reduktion der Ordnung durch Ansatz

$$\sigma_{r2}(r) = u(r) \cdot \sigma_{r1}(r)$$


■ Für einen *Hohlzylinder unter Innendruck (Außenteil bzw. Nabe)* gelten die Randbedingungen:

$$\sigma_{\rm r}(r=r_{\rm i})=-p_{\rm F}$$

$$\sigma_{\rm r}(r=r_{\rm a})=0$$

• Einsetzen in $\sigma_{\rm r}(r)=C_1+C_2/r$ liefert die beiden Gleichungen zur Ermittlung der Integrationskonstanten:

$$-p_{\rm F} = C_1 + \frac{C_2}{r_{\rm i}^2} \qquad 0 = C_1 + \frac{C_2}{r_{\rm a}^2}$$

• Lösung des Gleichungssystems:

$$C_1 = p_{\rm F} \cdot \frac{r_{\rm i}^2}{r_{\rm a}^2 - r_{\rm i}^2} = p_{\rm F} \cdot \frac{Q^2}{1 - Q^2}$$

$$C_2 = -p_{\rm F} \cdot \frac{r_{\rm i}^2 \cdot r_{\rm a}^2}{r_{\rm a}^2 - r_{\rm i}^2} = -p_{\rm F} \cdot \frac{r_{\rm i}^2}{1 - Q^2}$$

Dabei ist Q das Durch- bzw. Halbmesserverhältnis

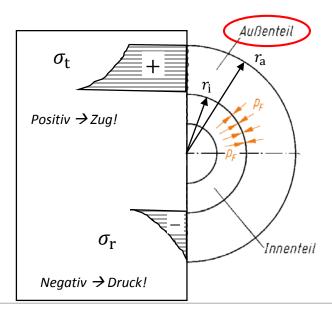
$$Q = \frac{r_{\rm i}}{r_{\rm a}} = \frac{D_{\rm i}}{D_{\rm a}} = \frac{D_{\rm F}}{D_{\rm a}}$$

• Mit den nun bekannten Integrationskonstanten ergeben sich die Spannungen (als Funktionen des Radius') zu

$$\sigma_{\rm r}(r) = -p_{\rm F} \cdot \frac{\left(\frac{r_{\rm i}}{r}\right)^2 - Q^2}{1 - Q^2}$$
 $\sigma_{\rm t}(r) = p_{\rm F} \cdot \frac{\left(\frac{r_{\rm i}}{r}\right)^2 + Q^2}{1 - Q^2}$

Die Randwerte sind

$$\sigma_{\rm ri} = \sigma_{\rm r}(r = r_{\rm i}) = -p_{\rm F}$$


$$\sigma_{\rm ti} = \sigma_{\rm t}(r = r_{\rm i}) = p_{\rm F} \cdot \frac{1 + Q^2}{1 - O^2}$$

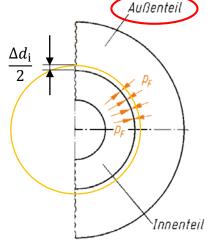
Siehe Randbedingungen!

$$\sigma_{\rm ra} = \sigma_{\rm r}(r = r_{\rm a}) = 0$$

$$\sigma_{\text{ta}} = \sigma_{\text{t}}(r = r_{\text{a}}) = p_{\text{F}} \cdot \frac{2 \cdot Q^2}{1 - Q^2}$$

Spannungsverläufe

• Verformung der Hohlwelle unter Innendruck, Aufweitung des Innendurchmessers:


$$\Delta d_{i} = \varepsilon_{ti} \cdot D_{i}$$

$$= \frac{1}{E} \cdot (\sigma_{ti} - \nu_{A} \cdot \sigma_{ri}) \cdot D_{i}$$

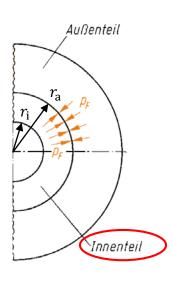
$$= \frac{1}{E} \cdot \left(p_{F} \cdot \frac{1 + Q^{2}}{1 - Q^{2}} + \nu \cdot p_{F} \right) \cdot D_{i}$$

$$= p_{F} \cdot D_{i} \cdot \frac{1}{E} \cdot \left(\frac{1 + Q^{2}}{1 - Q^{2}} + \nu \right)$$

Stephan Voigt, M.Eng.

$$\sigma_{\rm ri} = \sigma_{\rm r}(r = r_{\rm i}) = -p_{\rm F}$$

$$\sigma_{\rm ti} = \sigma_{\rm t}(r = r_{\rm i}) = p_{\rm F} \cdot \frac{1 + Q^2}{1 - Q^2}$$


• Für einen Hohlzylinder unter Außendruck (Innenteil bzw. Welle) gelten die Randbedingungen:

$$\sigma_{\rm r}(r=r_{\rm i})=0$$

$$\sigma_{\rm r}(r=r_{\rm a})=-p_{\rm F}$$

• Einsetzen in $\sigma_{\rm r}(r)=C_1+C_2/r$ liefert die beiden Gleichungen zur Ermittlung der Integrationskonstanten:

$$0 = C_1 + \frac{C_2}{r_i^2} \qquad -p_F = C_1 + \frac{C_2}{r_a^2}$$

• Lösung des Gleichungssystems:

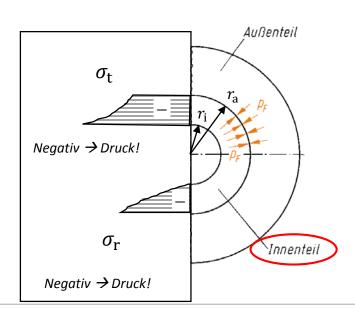
$$C_1 = -p_F \cdot \frac{r_a^2}{r_a^2 - r_i^2} = -p_F \cdot \frac{1}{1 - Q^2} \qquad C_2 = p_F \cdot \frac{r_i^2 \cdot r_a^2}{r_a^2 - r_i^2} = p_F \cdot \frac{r_i^2}{1 - Q^2}$$

• Dabei ist Q das Durch- bzw. Halbmesserverhältnis

$$Q = \frac{r_{\rm i}}{r_{\rm a}} = \frac{D_{\rm i}}{D_{\rm a}} = \frac{D_{\rm i}}{D_{\rm F}}$$

• Mit den nun bekannten Integrationskonstanten ergeben sich die Spannungen (als Funktionen des Radius') zu

$$\sigma_{\rm r}(r) = -p_{\rm F} \cdot \frac{1 - \left(\frac{r_{\rm i}}{r}\right)^2}{1 - Q^2} \qquad \qquad \sigma_{\rm t}(r) = p_{\rm F} \cdot \frac{1 + \left(\frac{r_{\rm i}}{r}\right)^2}{1 - Q^2}$$


Die Randwerte sind

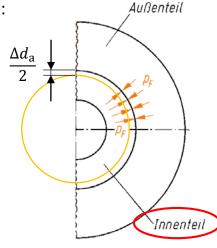
$$\sigma_{\rm ri} = \sigma_{\rm r}(r=r_{\rm i}) = 0$$

$$-\sigma_{\rm ti} = -\sigma_{\rm t}(r=r_{\rm i}) = p_{\rm F} \cdot \frac{2}{1-Q^2}$$

Siehe Randbedingungen!

$$\sigma_{\rm ra} = \sigma_{\rm r}(r = r_{\rm a}) = -p_{\rm F}$$
 $-\sigma_{\rm ta} = -\sigma_{\rm t}(r = r_{\rm a}) = p_{\rm F} \cdot \frac{1 + Q^2}{1 - Q^2}$

Spannungsverläufe


Verformung der Hohlwelle unter Außendruck, Stauchung des Außendurchmessers:

$$\Delta d_{a} = \varepsilon_{ta} \cdot D_{a}$$

$$= \frac{1}{E} \cdot (\sigma_{ta} - \nu \cdot \sigma_{ra}) \cdot D_{a}$$

$$= \frac{1}{E} \cdot \left(-p_{\mathrm{F}} \cdot \frac{1 + Q^2}{1 - Q^2} + \nu \cdot p_{\mathrm{F}} \right) \cdot D_{\mathrm{a}}$$

$$= -p_{\mathrm{F}} \cdot D_{\mathrm{a}} \cdot \frac{1}{E} \cdot \left(\frac{1+Q^2}{1-Q^2} - \nu \right)$$

$$\sigma_{\rm ra} = \sigma_{\rm r}(r = r_{\rm a}) = -p_{\rm F}$$

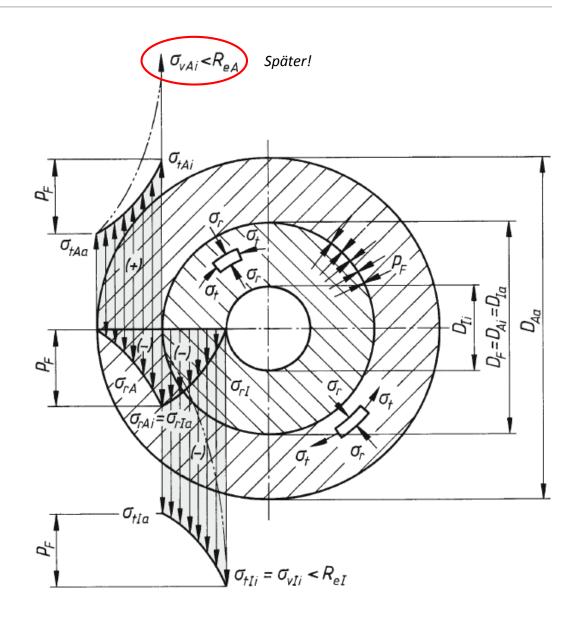
$$\sigma_{\text{ta}} = \sigma_{\text{t}}(r = r_{\text{a}}) = -p_{\text{F}} \cdot \frac{1 + Q^2}{1 - Q^2}$$

lacktriangle Zusammenfassung der Ergebnisse mit Index A für Außenteil (Nabe) und Index I für Innenteil (Welle)

Lsg. der Dgl.	$\sigma_{\rm r}(r) = C_1 + \frac{C_2}{r^2}$	$\sigma_{\rm t}(r) = C_1 - \frac{C_2}{r^2}$
	Hohlzylinder unter Innendruck (Außenteil bzw. Nabe)	Hohlzylinder unter Außendruck (Innenteil bzw. Welle)
Rand- bedingungen	$\sigma_{ m rA}(r=r_{ m Ai})=-p_{ m F}$ $\sigma_{ m rA}(r=r_{ m Aa})=0$	$\sigma_{ m rI}(r=r_{ m Ii})=0$ $\sigma_{ m rI}(r=r_{ m Ia})=-p_{ m F}$
Integrations-	$C_{ m A1} = p_{ m F} \cdot rac{r_{ m Ai}^2}{r_{ m Aa}^2 - r_{ m Ai}^2} = p_{ m F} \cdot rac{Q_{ m A}^2}{1 - Q_{ m A}^2}$	$C_{ m I1} = -p_{ m F} \cdot rac{r_{ m Ia}^2}{r_{ m Ia}^2 - r_{ m Ii}^2} = -p_{ m F} \cdot rac{1}{1 - Q_{ m I}^2}$
konstanten	$C_{ m A2} = -p_{ m F} \cdot rac{r_{ m Ai}^2 \cdot r_{ m Aa}^2}{r_{ m Aa}^2 - r_{ m Ai}^2} = -p_{ m F} \cdot rac{r_{ m Ai}^2}{1 - Q_{ m A}^2}$	$C_{ m I2} = p_{ m F} \cdot rac{r_{ m Ii}^2 \cdot r_{ m Ia}^2}{r_{ m Ia}^2 - r_{ m Ii}^2} = p_{ m F} \cdot rac{r_{ m Ii}^2}{1 - Q_{ m I}^2}$
Radial- spannung	$\sigma_{ ext{rA}}(r) = -p_{ ext{F}} \cdot rac{\left(rac{r_{ ext{Ai}}}{r} ight)^2 - Q_{ ext{A}}^2}{1 - Q_{ ext{A}}^2}$	$\sigma_{ m rI}(r) = -p_{ m F} \cdot rac{1-\left(rac{r_{ m Ii}}{r} ight)^2}{1-Q_{ m I}^2}$
Tangential- spannung	$\sigma_{tA}(r) = p_{F} \cdot rac{\left(rac{r_{Ai}}{r} ight)^2 + Q_{A}^2}{1 - Q_{A}^2}$	$\sigma_{ m tI}(r) = -p_{ m F} \cdot rac{1+\left(rac{r_{ m Ii}}{r} ight)^2}{1-Q_{ m I}^2}$
Verformung	$\Delta d_{\mathrm{Ai}} = p_{\mathrm{F}} \cdot D_{\mathrm{Ai}} \cdot \frac{1}{E_{\mathrm{A}}} \cdot \left(\frac{1 + Q_{\mathrm{A}}^2}{1 - Q_{\mathrm{A}}^2} + \nu_{\mathrm{A}} \right)$	$\Delta d_{\mathrm{Ia}} = -p_{\mathrm{F}} \cdot D_{\mathrm{Ia}} \cdot rac{1}{E_{\mathrm{I}}} \cdot \left(rac{1+Q_{\mathrm{I}}^2}{1-Q_{\mathrm{I}}^2} - u_{\mathrm{I}} ight)$

■ Spannungsverläufe: Überblick

	Welle	Nabe
Radial- spannungen	Druck	Druck
Tangential- spannungen	Druck	Zug (!!)

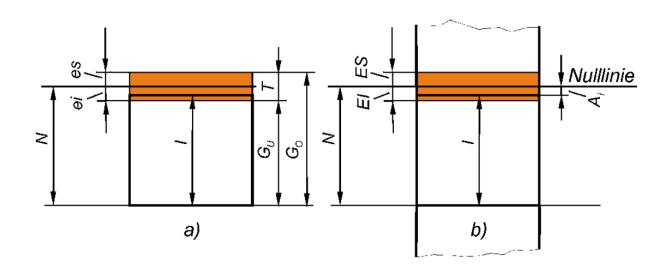

• Spezialfall Vollwelle

- Aus
$$\sigma_{\rm rI}(r) = -p_{\rm F} \cdot \frac{1 - \left(\frac{r_{\rm Ii}}{r}\right)^2}{1 - Q^2}$$

und
$$\sigma_{\rm tI}(r) = p_{\rm F} \cdot \frac{1 + \left(\frac{r_{\rm Ii}}{r}\right)^2}{1 - Q^2}$$

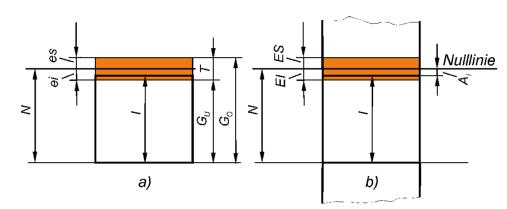
folgt mit $r_{Ii} = 0$:

$$\sigma_{\rm rI}(r) = \sigma_{\rm tI}(r) = -p_{\rm F}$$



1.3 Wiederholung: Toleranzen und Passungen

Maße, Abmaße und Toleranzen


- Zur Funktionssicherstellung müssen Abstände von Oberflächen (Passflächen) entsprechend genau hergestellt werden. Absolut exakte Abmessungen sind jedoch nicht realisierbar!
 - → Angabe von zulässigen Abweichungen!
- Grundlage ist das ISO-System für Abmaße und Toleranzen nach DIN ISO 286.
- Maße und Abmaße an:

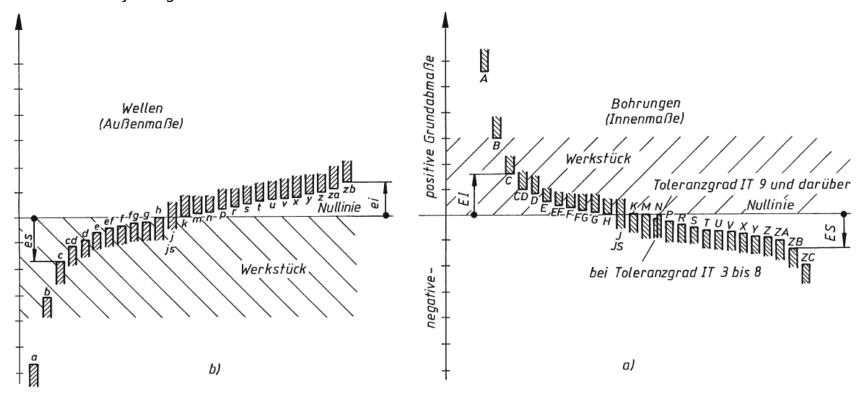
- einer Welle (Kleinbuchstaben) - einer Bohrung (Großbuchstaben)

Begriffe

- Welle: Kurzbezeichnung für alle Außenmaße
- Bohrung: Kurzbezeichnung für alle Innenmaße

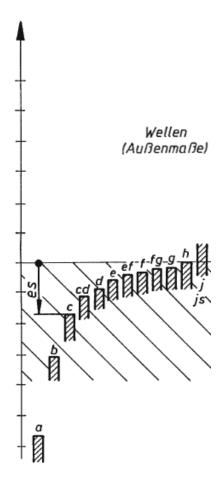
- Nennmaß N: Bezugsmaß für die Abmaße
- Istmaß I: am fertigen Werkstück messbares Maß
- **Grenzmaße**: Höchstmaß $G_{
 m o}$ und Mindestmaß $G_{
 m u}$, zwischen denen das Istmaß liegen muss
- **Oberes Abmaß** ES bzw. es (extreme superior): Differenz zwischen Höchstmaß G_0 und Nennmaß N
- **Unteres Abmaß** EI bzw. ei (extreme inferior): Differenz zwischen Mindestmaß G_{u} und Nennmaß N
- Istabmaß A_i : Differenz zwischen Istmaß I und Nennmaß N
- Toleriertes Maß: Nennmaß mit angegebenen Grenzabmaßen
- Nulllinie: dem Nennmaß N entsprechende Bezugslinie für die Abmaße
- **Maßtoleranz**, **Toleranz** T: Differenz zwischen Höchstmaß G_0 und Mindestmaß G_u bzw. Differenz zwischen oberem Abmaß ES oder es und unterem Abmaß EI oder ei

ISO-Toleranzsystem

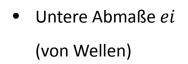

- Nach DIN ISO 286 sind
 20 Grundtoleranzgrade definiert.
- Sie bestimmen die zulässigen
 Abweichungen, also die Größe der

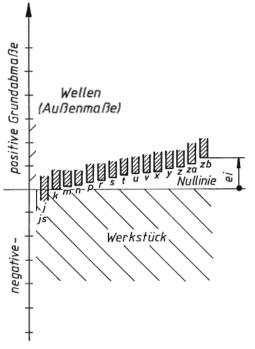
 Maßtoleranz T.

	Kleine	Toleranzen	M	littlere Toleran	zen	Große Toleranzen		
Grundtoleranzgrade	01 0	1 2 3 4	5	6 7 8 9 10	11	12 13 14 15 16 17 18		
Anwendungsgebiete	Prü	flehren		Bearbeitete Werkstücke		Nicht für Passmaße		
		Arbeitslehr	en	Maschinen- bau		Sezogene, gewalzte Teile egossene, geschmiedete Teile		
Fertigungsverfahren	Läppe	n, Honen		Schleifen, Reibe Fräsen, Drehe		Walzen, Schmieden, Pressen		

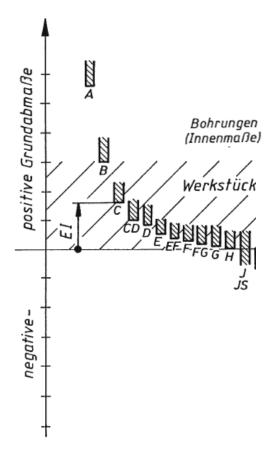

Ne	nnmaß									(Grundtole	ranzgrad	e								
	mm	IT01	IT0	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13	IT14	IT15	IT16	IT17	IT18
über	bis ein-		Grundtoleranzen																		
uber	schließ- lich		μm													mm					
_	3	0,3	0,5	0,8	1,2	2	3	4	6	10	14	25	40	60	0,1	0,14	0,25	0,4	0,6	1	1,4
3	6	0,4	0,6	1	1,5	2,5	4	5	8	12	18	30	48	75	0,12	0,18	0,3	0,48	0,75	1,2	1,8
6	10	0,4	0,6	1	1,5	2,5	4	6	9	15	22	36	58	90	0,15	0,22	0,36	0,58	0,9	1,5	2,2
10	18	0,5	0,8	1,2	2	3	5	8	11	18	27	43	70	110	0,18	0,27	0,43	0,7	1,1	1,8	2,7
18	30	0,6	1	1,5	2,5	4	6	9	13	21	33	52	84	130	0,21	0,33	0,52	0,84	1,3	2,1	3,3
30	50	0,6	1	1,5	2,5	4	7	11	16	25	39	62	100	160	0,25	0,39	0,62	1	1,6	2,5	3,9
50	80	0,8	1,2	2	3	5	8	13	19	30	46	74	120	190	0,3	0,46	0,74	1,2	1,9	3	4,6
80	120	1	1,5	2,5	4	6	10	15	22	35	54	87	140	220	0,35	0,54	0,87	1,4	2,2	3,5	5,4
120	180	1,2	2	3,5	5	8	12	18	25	40	63	100	160	250	0,4	0,63	1	1,6	2,5	4	6,3
180	250	2	3	4,5	7	10	14	20	29	46	72	115	185	290	0,46	0,72	1,15	1,85	2,9	4,6	7,2
250	315	2,5	4	6	8	12	16	23	32	52	81	130	210	320	0,52	0,81	1,3	2,1	3,2	5,2	8,1
315	400	3	5	7	9	13	18	25	36	57	89	140	230	360	0,57	0,89	1,4	2,3	3,6	5,7	8,9
400	500	4	6	8	10	15	20	27	40	63	97	155	250	400	0,63	0,97	1,55	2,5	4	6,3	9,7
500	630			9	11	16	22	32	44	70	110	175	280	440	0,7	1,1	1,75	2,8	4,4	7	11
630	800			10	13	18	25	36	50	80	125	200	320	500	0,8	1,25	2	3,2	5	8	12,5
800	1 000			11	15	21	28	40	56	90	140	230	360	560	0,9	1,4	2,3	3,6	5,6	9	14
1 000	1 250			13	18	24	33	47	66	105	165	260	420	660	1,05	1,65	2,6	4,2	6,6	10,5	16,5
1 250	1 600			15	21	29	39	55	78	125	195	310	500	780	1,25	1,95	3,1	5	7,8	12,5	19,5
1 600	2 000			18	25	35	46	65	92	150	230	370	600	920	1,5	2,3	3,7	6	9,2	15	23
2 000	2 500			22	30	41	55	78	110	175	280	440	700	1 100	1,75	2,8	4,4	7	11	17,5	28
2 500	3 150			26	36	50	68	96	135	210	330	540	860	1 350	2,1	3,3	5,4	8,6	13,5	21	33

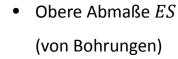
- Schließlich muss festgelegt werden, wo sich das Toleranzfeld bzgl. der Nulllinie befinden soll.
 - → Toleranzfeldlage

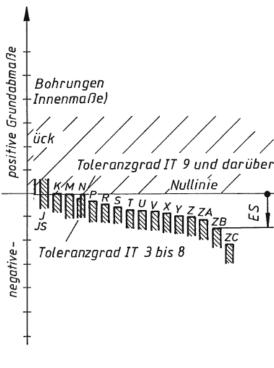



- Wegen Verwechslungsgefahr nicht enthalten: i, I, o, q, w bzw. I, L, O, Q, W
- a bis g → beide Abmaße negativ; A bis G → beide Abmaße positiv; h/H → ein Abmaß = 0
- Abmaße sind Tabellen zu entnehmen, Größe des Toleranzfeldes wird durch Toleranzgrad bestimmt!

• Obere Abmaße *es* (von Wellen)


	Tole	eranzfeldlage	a	b	с	cd	d	e	ef	f	fg	g	h	js
	Gr	undtoleranz						al	le					
Г	von	1 bis 3	- 270	-140	- 60	-34	- 20	- 14	-10	- 6	-4	- 2	0	
1	über	3 bis 6	- 270	-140	- 70	-46	- 30	- 20	-14	-10	-6	- 4	0	_
1	über	6 bis 10	- 280	-150	- 80	-56	- 40	- 25	-18	-13	-8	- 5	0	gel
ı	über	10 bis 18	- 290	-150	- 95	_	- 50	- 32	_	-16	_	- 6	0	H
1	über	18 bis 30	- 300	-160	-110	_	- 65	- 40	_	-20	_	- 7	0) %
ı	über	30 bis 40	- 310	-170	-120	_	- 80	- 50	_	-25	_	_ 9	0	je.
1	über	40 bis 50	- 320	-180	-130		- 00	- 30		23			U	des jeweiligen
	über	50 bis 65	- 340	-190	-140	_	-100	- 60	_	-30	_	-10	0	E
mm	über	65 bis 80	- 360	-200	-150		-100	- 00		-30		_10	U	2 I
日	über	80 bis 100	- 380	-220	-170	_	-120	- 72	_	-36	_	-12	0	1
급.	über	100 bis 120	- 410	-240	-180		120	/2		30		12		+
aß	über	120 bis 140	- 460	-260	-200									en
I	über	140 bis 160	- 520	-280	-210	_	-145	- 85	_	-43	_	-14	0	lag
ennmaß	über	160 bis 180	- 580	-310	-230									Die Abmaße betragen Grundtoleranzgrades
Ιž	über	180 bis 200	- 660	-340	-240									e b
1	über	200 bis 225	- 740	-380	-260	_	-170	-100	_	-50	_	-15	0	aße
1	über	225 bis 250	- 820	-420	-280									l d o
1	über	250 bis 280	- 920	-480	-300	_	-190	-110	_	-56	_	-17	0	ld A
1	über	280 bis 315	-1050	-540	-330		-170	-110		-30		-17	V	Die
1	über	315 bis 355	-1200	-600	-360	_	-210	-125	_	-62	_	-18	0	Q D
1	über	355 bis 400	-1350	-680	-440		-210	-123		-02		-10	U	
1	über	400 bis 450	-1500	-760	-440		-230	-135	_	-68		-20	0	
	über	450 bis 500	-1650	-840	-480		-230	-133		-08		-20	U	




	Toleranzfeldlage		j			k		m	n	p		
	Grundtoleranzgrad	5 und 6	7	8	bis 3	4 bis 7	ab 8		alle			
ì	von 1 bis 3	- 2	- 4	-6	0	0	0	+ 2	+ 4	+ 6		
ı	über 3 bis 6	- 2	- 4	_	0	+1	0	+ 4	+ 8	+12		
ı	über 6 bis 10	- 2	- 5	_	0	+1	0	+ 6	+10	+15		
日	über 10 bis 18	- 3	- 6	_	0	+1	0	+ 7	+12	+18		
mm	über 18 bis 30	- 4	- 8	_	0	+2	0	+ 8	+15	+22		
Nennmaß in	über 30 bis 50	- 5	-10	_	0	+2	0	+ 9	+17	+26		
aß	über 50 bis 80	- 7	-12	_	0	+2	0	+11	+20	+32		
Ē	über 80 bis 120	- 9	-15	_	0	+3	0	+13	+23	+37		
l ii	über 120 bis 180	-11	-18	_	0	+3	0	+15	+27	+43		
Ž	über 180 bis 250	-13	-21	_	0	+4	0	+17	+31	+50		
ı	über 250 bis 315	-16	-26	_	0	+4	0	+20	+34	+56		
1	über 315 bis 400	-18	-28	_	0	+4	0	+21	+37	+62		
	über 400 bis 500	-20	-32	_	0	+5	0	+23	+40	+68		
	Toleranzfeldlage	r	s	t	u	v	X	y	z	za	zb	zc
	Grundtoleranzgrad						alle					
i	von 1 bis 3	+ 10	+ 14	_	+ 18	_	+ 20	_	+ 26	+ 32	+ 40	+ 60
i	über 3 bis 6	+ 15	+ 19	_	+ 23	_	+ 28	_	+ 35	+ 42	+ 50	+ 80
i	über 6 bis 10	+ 19	+ 23	_	+ 28	_	+ 34	_	+ 42	+ 52	+ 67	+ 97
i	über 10 bis 14	+ 23	+ 28		+ 33	_	+ 40	_	+ 50	+ 64	+ 90	+ 130
i	über 14 bis 18	+ 23	+ 28	_	+ 33	+ 39	+ 45	_	+ 60	+ 77	+ 108	+ 150
1	über 18 bis 24	+ 28	1 25	_	+ 41	+ 47	+ 54	+ 63	+ 73	+ 98	+ 136	+ 188
1	über 24 bis 30	+ 28	+ 35	+ 41	+ 48	+ 55	+ 64	+ 75	+ 88	+ 118	+ 160	+ 218
1	über 30 bis 40	+ 34	+ 43	+ 48	+ 60	+ 68	+ 80	+ 94	+ 112	+ 148	+ 200	+ 274
1	über 40 bis 50	+ 34	+ 43	+ 54	+ 70	+ 81	+ 97	+ 114	+ 136	+ 180	+ 242	+ 325
日	über 50 bis 65	+ 41	+ 53	+ 66	+ 87	+102	+122	+ 144	+ 172	+ 226	+ 300	+ 405
mm	über 65 bis 80	+ 43	+ 59	+ 75	+102	+120	+146	+ 174	+ 210	+ 274	+ 360	+ 480
н.	über 80 bis 100	+ 51	+ 71	+ 91	+124	+146	+178	+ 214	+ 258	+ 335	+ 445	+ 585
aß	über 100 bis 120	+ 54	+ 79	+104	+144	+172	+210	+ 254	+ 310	+ 400	+ 525	+ 690
Ħ	über 120 bis 140	+ 63	+ 92	+122	+170	+202	+248	+ 300	+ 365	+ 470	+ 620	+ 800
Nennmaß in	über 140 bis 160	+ 65	+100	+134	+190	+228	+280	+ 340	+ 415	+ 535	+ 700	+ 900
Ž	über 160 bis 180	+ 68	+108	+146	+210	+252	+310	+ 380	+ 465	+ 600	+ 780	+1000
Ī	über 180 bis 200	+ 77	+122	+166	+236	+284	+350	+ 425	+ 520	+ 670	+ 880	+1150
i	über 200 bis 225	+ 80	+130	+180	+258	+310	+385	+ 470	+ 575	+ 740	+ 960	+1250
Ī	über 225 bis 250	+ 84	+140	+196	+284	+340	+425	+ 520	+ 640	+ 820	+1050	+1350
i	über 250 bis 280	+ 94	+158	+218	+315	+385	+475	+ 580	+ 710	+ 920	+1200	+1550
ĺ	über 280 bis 315	+ 98	+170	+240	+350	+425	+525	+ 650	+ 790	+1000	+1300	+1700
ĺ	über 315 bis 355	+108	+190	+268	+390	+475	+590	+ 730	+ 900	+1150	+1500	+1900
İ	über 355 bis 400	+114	+208	+294	+435	+530	+660	+ 820	+1000	+1300	+1650	+2100
İ	über 400 bis 450	+126	+232	+330	+490	+595	+740	+ 920	+1100	+1450	+1850	+2400
1	über 450 bis 500	+132	+252	+360	+540	+660	+820	+1000	+1250	+1600	+2100	+2600

• Untere Abmaße EI (von Bohrungen)

Tol	eranzfeldlage	A	В	С	CD	D	E	EF	F	FG	G	Н	JS
Grui	ndtoleranzgrad	alle											
von	1 bis 3	+ 270	+140	+ 60	+34	+ 20	+ 14	+10	+ 6	+4	+ 2	0	
über	3 bis 6	+ 270	+140	+ 70	+46	+ 30	+ 20	+14	+10	+6	+ 4	0	_
über	6 bis 10	+ 280	+150	+ 80	+56	+ 40	+ 25	+18	+13	+8	+ 5	0	gel
über	10 bis 18	+ 290	+150	+ 95	_	+ 50	+ 32	_	+16	_	+ 6	0	i ii ii ii
über	18 bis 30	+ 300	+160	+110	_	+ 65	+ 40	_	+20	_	+ 7	0	jeweiligen
über	30 bis 40	+ 310	+170	+120	_	+ 80	+ 50	_	+25	_	+ 9	0	je l
über	40 bis 50	+ 320	+180	+130		+ 60	7 30		+25		T)	U	des
über	50 bis 65	+ 340	+190	+140	_	+100	+ 60	_	+30	_	+10	0	Ħ
∏ über über	65 bis 80	+ 360	+200	+150		1100	1 00		150		110	U	/2 I
	80 bis 100	+ 380	+220	+170	_	+120	+ 72	_	+36	_	+12	0	H .
.∃ über	100 bis 120	+ 410	+240	+180		+120	T 12		+30		712	U	+
rədü rədü rədü	120 bis 140	+ 460	+260	+200									betragen zgrades
über	140 bis 160	+ 520	+280	+210	_	+145	+ 85	_	+43	_	+14	0	Die Abmaße betrage Grundtoleranzgrades
über	160 bis 180	+ 580	+310	+230									gr2
Z über	180 bis 200	+ 660	+340	+240									e b mz
über	200 bis 225	+ 740	+380	+260	_	+170	+100	_	+50	_	+15	0	aß era
über	225 bis 250	+ 820	+420	+280									l de l
über	250 bis 280	+ 920	+480	+300	_	+190	+110	_	+56	_	+17	0	A P
über	280 bis 315	+1050	+540	+330	_	T190	T110	_	+30	_	T17	U	.e. 🖺
über	315 bis 355	+1200	+600	+360		+210	+125	_	+62	_	+18	0	D Q
über	355 bis 400	+1350	+680	+400	_	7210	7123	_	T02	_	710	U	
über	400 bis 450	+1500	+760	+440	_	+230	+135	_	+68	_	+20	0] [
über	450 bis 500	+1650	+840	+480	_	T230	+133	_	+00	_	+20	U	

ı															
	Tole	ranzfeldlage		J		K			M		N	N		Δ-Wert	
	Grund	ltoleranzgrad	6	7	8	bis 8	ab 9	b	is 8	ab 9	bis 8	ab 9	3 4	5 6	7 8
	von	1 bis 3	+ 2	+ 4	+ 6	0	0	ļ .	-2	- 2	-4	-4		$\Delta = 0$	
	über	3 bis 6	+ 5	+ 6	+10	$-1 + \Delta$	T -	- 4	$4 + \Delta$	- 4	-8+4	0 4	1 1,5	1 3	4 6
	über	6 bis 10	+ 5		+12	$-1 + \Delta$	_		$5 + \Delta$	- 6	-10 + 2		1 1,5	2 3	6 7
	über	10 bis 18	+ 6	+10	+15	$-1 + \Delta$			$7 + \Delta$	- 7	-12 + 2	_	1 2	3 3	7 9
	uber uber	18 bis 30	+ 8		+20	$-2 + \Delta$			$3 + \Delta$	- 8	-15 + 2		1,5 2	3 4	8 12
	uner	30 bis 50	+10	+14	+24	$-2 + \Delta$	 -		$\theta + \Delta$	- 9	-17 + 2		1,5 3	4 5	9 14
	über über über	50 bis 80	+13		+28	$-2 + \Delta$	-	-1		-11	-20 + 4		2 3	5 6	11 16
	über	80 bis 120	+16	+22	+34	$-3 + \Delta$	 -		$3 + \Delta$	-13	-23 + 4		2 4 3 4	5 7	13 19 15 23
	z über über	120 bis 180 180 bis 250	+18 +22	+26 +30	+41 +47	$\frac{-2+\Delta}{-4+\Delta}$	+=		$\frac{5+\Delta}{7+\Delta}$	-15 -17	-27 + 2 -31 + 2		3 4 3 4	6 7	15 23 17 26
	über	250 bis 315	+25	+36	+55	$\frac{-4+\Delta}{-4+\Delta}$	+ =		$\frac{A + \Delta}{A + \Delta}$	-20	-31 + 2 -34 + 2		4 4	7 9	20 29
- 1	über	315 bis 400	+29		+60	$\frac{-4+\Delta}{-4+\Delta}$	+=	-2		-20	-37 + 2		4 5	7 11	21 32
	über	400 bis 500	+33		+66	$-5+\Delta$	+-		$3 + \Delta$	-23	-40 + 2		5 5	7 13	23 34
	Tole	ranzfeldlage	P bis	Р	R	S	Т	U	V	X	Y	Z	ZA	ZB	ZC
	Total	amzierange	ZC	•	"		•		•	2.	•	-	23.1	20	20
	Grund	Itoleranzgrad	bis 7							ab 8	8				
/	von	1 bis 3		- 6	- 10	- 14		- 18	_	- 20	_	- 26	- 32	- 40	- 60
2	über	3 bis 6	1	-12	- 15	- 19		- 23	_	- 28	_	- 35	- 42	- 50	- 80
٠,	über	6 bis 10	٠.	-15	- 19	- 23	_ -	- 28	_	- 34	_	- 42	- 52	- 67	- 97
_	über	10 bis 14	3er	-18	- 23	- 28	_ -	- 33	_	- 40	_	- 50	- 64	- 90	- 130
ΤI	über	14 bis 18	, TÖL						- 39	- 45	_	- 60	- 77	- 108	- 150
ŧ Į	über	18 bis 24	5 8 erg	-22	- 28	- 35		- 41	- 47	- 54	- 63	- 73	- 98	- 136	- 188
-	über	24 bis 30	o al				- 41 -	- 48	- 55	- 64	- 75	- 88	- 118	- 160	- 218
	über	30 bis 40	ade	-26	- 34	- 43	-10	- 60	- 68	- 80	- 94	- 112	- 148	- 200	- 274
	über	40 bis 50 50 bis 65	1979 Op	-32	41	52	- 54 - - 66 -	- 70 - 87	- 81	- 97	- 114	- 136	- 180	- 242 - 300	- 325 - 405
	iber über	50 bis 65 65 bis 80	ang	-32	- 41 - 43	- 53 - 59		- 87 -102	$\frac{-102}{-120}$	-122 -146	- 144 - 174	- 172 - 210	- 226 - 274	- 300 - 360	- 405 - 480
	.≡ über	80 bis 100	abe	-37	- 51	- 71		-124	-120 -146	-178	- 214	- 258	- 335	- 445	- 480
	e über	100 bis 120	Gleiches Abmaß wie für Toleranzgrade ab 8, jedoch um A-Wert (siehe Tabelle oben) vergrößert	-37 -43	- 54			-144	-172	-210	- 254	- 310	- 400	- 525	- 690
	über über über	120 bis 140			- 63	- 92		-170	-202	-248	- 300	- 365	- 470	- 620	- 800
i	über	140 bis 160	ie sie		- 65	-100	-134 -	-190	-228	-280	- 340	- 415	- 535	- 700	- 900
	Z über	160 bis 180	art w		- 68	-108	-146 -	-210	-252	-310	- 380	- 465	- 600	- 780	-1000
	über	180 bis 200	We	-50	- 77			-236	-284	-350	- 425	- 520	- 670	- 880	-1150
	über	200 bis 225	Pu Pu Pu		- 80			-258	-310	-385	- 470	- 575	- 740	- 960	-1250
	über	225 bis 250	A M		- 84			-284	-340	-425	- 520	- 640	- 820	-1050	-1350
	über	250 bis 280	hei h	-56	- 94			-315	-385	-475 525	- 580	- 710	- 920	-1200	-1550
	über	280 bis 315	eic	-62	- 98	-170	-240 - -268 -	-350 -390	-425 -475	-525 -590	- 650 730	- 790 000	-1000	-1300	-1700 -1900
	über über	315 bis 355 355 bis 400	<u>_</u> <u>5</u> . <u>ĕ</u>	-62	-108 -114			- <i>3</i> 90 -435	-4/5 -530	-590 -660	- 730 - 820	- 900 -1000	-1150 -1300	-1500 -1650	-1900 -2100
	über	400 bis 450	1	-68	-114	-208	-294 - -330 -	-435 -490	-595	-740	- 820 - 920	-1000 -1100	-1300 -1450	-1650 -1850	-2100 -2400
	über	450 bis 500	1	-08	-120	-252		- 540	-660	-820	- 920 -1000	-1100	-1430 -1600	-2100	-2600
	ubel	450 018 500			-132	-232	-300 -	J 4 0	-000	-620	-1000	-1250	-1000	-2100	-2000

- **Beispiel eines tolerierten Maßes:** 90F6

Großbuchstabe:

Bohrung

Nennmaß:

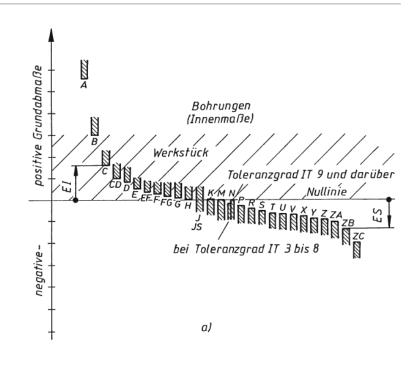
$$N = 90 \text{ mm}$$

Unteres Abmaß bei Toleranzfeld F:

 $EI = 36 \, \mu \text{m}$

Toleranzgrad 6:

 $T = 22 \,\mu\text{m}$


Oberes Abmaß:

 $ES = EI + T = 58 \,\mu\text{m}$

Höchst- und Mindestmaß:

 $G_{\rm u} = 90,036 \, \rm mm; G_{\rm o} = 90,058 \, \rm mm$

Alternative Angabe:

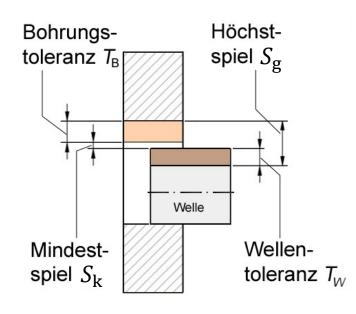
Nennmaß mm										G
		IT01	IT0	IT1	IT2	IT3	IT4	IT5	IT6	IT7
796	bis ein-									
über	er schließ- lich							μm		
_	3	0,3	0,5	0,8	1,2	2	3	4	6	10
3	6	0,4	0,6	1	1,5	2,5	4	5	8	12
6	10	0,4	0,6	1	1,5	2,5	4	6	9	15
10	18	0,5	0,8	1,2	2	3	5	8	11	18
18	30	0,6	1	1,5	2,5	4	6	9	13	21
30	50	0,6	1	1,5	2,5	4	7	11	16	25
50	80	0,8	1,2	2	3	5	8	13	19	30
80	120	1	1,5	2,5	4	6	10	15	22	35

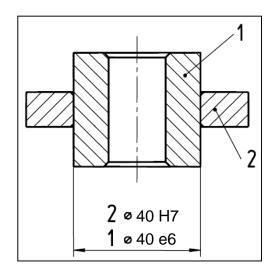
Passungsarten, Passungssysteme

- Definition Passung: Ist die Beziehung, die sich aus dem Maßunterschied zweier zu paarender Passteile (Bohrung und Welle) ergibt.
- Je nach Wahl der Toleranzfelder ergibt sich so eine
 - Spielpassung
 - → Bewegungsfreiheit vorhanden; loser Sitz; bspw. für leichte Demontage oder Drehgelenke
 - Übermaß- oder Presspassung
 - → kein Freiheitsgrad; fester Sitze; bspw. für Pressverbindungen
 - Übergangspassung
 - → Anwendung zwischen Spiel- und Übermaßpassung; enger, aber noch beweglicher Sitz; bspw. für Kupplungen auf Wellenenden

Spielpassung

Höchstspiel


$$S_{\rm g} = ES - ei = G_{\rm oB} - G_{\rm uW}$$


Mindestspiel

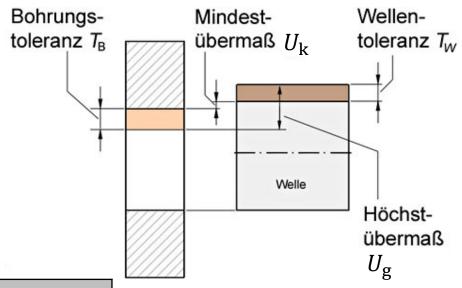
$$S_{\rm k} = EI - es = G_{
m uB} - G_{
m oW}$$

Beispiel: 40H7/e6

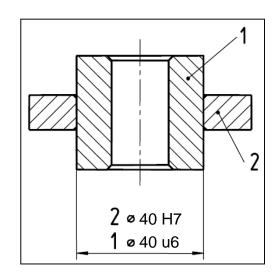
	Bohrung	Welle				
oberes Abmaß	<i>ES</i> = 25 μm	$es = -50 \ \mu m$				
unteres Abmaß	$EI = 0 \mu m$	ei = –66 μm				
Höchstmaß	$G_{\text{oB}} = N + ES = 40,025 \text{ mm}$	$G_{\text{oW}} = N + es = 39,950 \text{ mm}$				
Mindestmaß	$G_{\text{uB}} = N + EI = 40,000 \text{ mm}$	$G_{\text{uW}} = N + ei = 39,934 \text{ mm}$				
Maßtoleranz	$T_{\rm B} = G_{\rm oB} - G_{\rm uB} = 25 \ \mu \rm m$	$T_{\rm W} = G_{\rm oW} - G_{\rm uW} = 16 \ \mu \rm m$				
Passung						
Höchstspiel	$S_{\rm g} = G_{ m oB} - G_{ m uW} = 91~\mu m m$					
Mindestspiel	$S_{\rm k} = G_{\rm uB} - G_{\rm oW} = 50 \; \mu \rm m$					
Passtoleranz	$T_{\rm P} = S_{\rm g} - S_{\rm k} = 41 \mu \rm m$					

31

Übermaßpassung


- Höchstübermaß

$$U_{\rm g} = es - EI = G_{\rm oW} - G_{\rm uB}$$

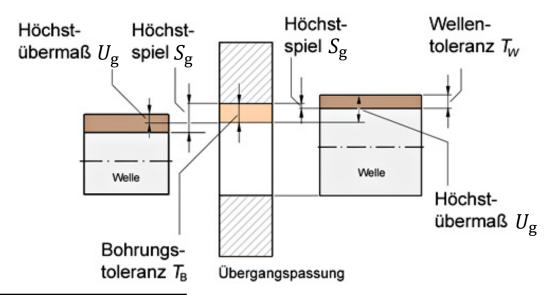

Mindestübermaß

$$U_{\rm k} = ei - ES = G_{\rm uW} - G_{\rm oB}$$

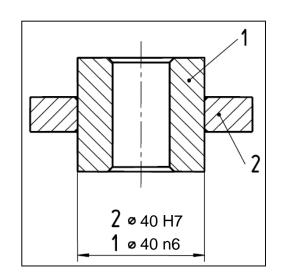
- Beispiel: 40H7/u6

	Bohrung	Welle				
oberes Abmaß	$ES = 25 \mu \text{m}$	es = 76 μm				
unteres Abmaß	$EI = 0 \mu m$	ei = 60 μm				
Höchstmaß	$G_{\text{oB}} = N + ES = 40,025 \text{ mm}$	$G_{\text{oW}} = N + es = 40,076 \text{ mm}$				
Mindestmaß	$G_{\rm uB} = N + EI = 40,000 \mathrm{mm}$	$G_{\rm uW} = N + ei = 40,060 \mathrm{mm}$				
Maßtoleranz	$T_{\rm B} = G_{\rm oB} - G_{\rm uB} = 25 \ \mu \rm m$	$T_{\rm W} = G_{\rm oW} - G_{\rm uW} = 16 \mu \rm m$				
Passung						
Höchstübermaß	$U_{\rm g} = G_{ m oW} - G_{ m uB} = 76~\mu{ m m}$					
Mindestübermaß	$U_{\rm k}=G_{ m uW}-G_{ m oB}=35~ m \mu m$					
Passtoleranz	$T_{\mathrm{P}} = U_{\mathrm{g}} - U_{\mathrm{k}} = 41~\mathrm{\mu m}$					

• Übergangspassung

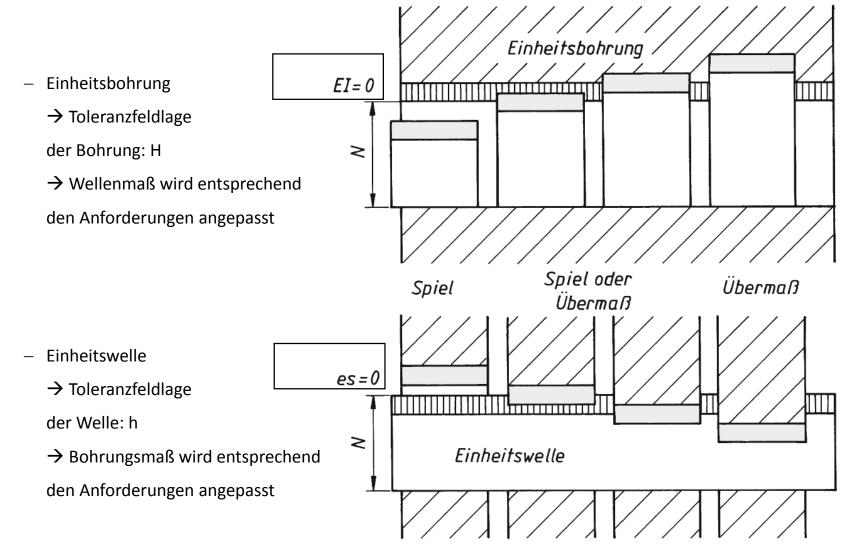

Höchstspiel

$$S_{\rm g} = ES - ei = G_{
m oB} - G_{
m uW}$$


Höchstübermaß

$$U_{\rm g} = es - EI = G_{\rm oW} - G_{\rm uB}$$

Beispiel: 40H7/n6



	Bohrung	Welle				
oberes Abmaß	$ES = 25 \mu \text{m}$	$es = 33 \mu m$				
unteres Abmaß	$EI = 0 \mu m$	$ei = 17 \mu \mathrm{m}$				
Höchstmaß	$G_{\text{oB}} = N + ES = 40,025 \text{ mm}$	$G_{\text{oW}} = N + es = 40,033 \text{ mm}$				
Mindestmaß	$G_{\text{uB}} = N + EI = 40,000 \text{ mm}$	$G_{\rm uW} = N + ei = 40,017 \mathrm{mm}$				
Maßtoleranz	$T_{\rm B} = G_{\rm oB} - G_{\rm uB} = 25 \ \mu \rm m$	$T_{\rm W} = G_{\rm oW} - G_{\rm uW} = 16 \; \mu \rm m$				
Passung						
Höchstspiel	$S_{\rm g} = G_{ m oB} - G_{ m uW} = 8 \ \mu m m$					
Höchstübermaß	$U_{\rm g} = G_{ m oW} - G_{ m uB} = 33~\mu m m$					
Passtoleranz	$T_{\rm P} = S_{\rm g} + U_{\rm g} = 41 \mu \rm m$					

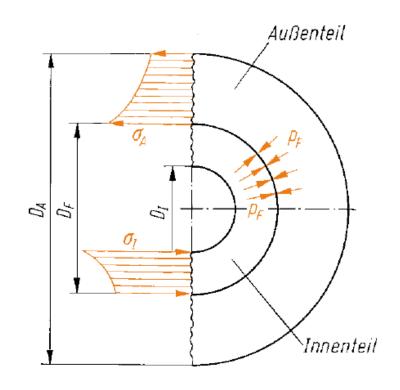
33

Passungssysteme

- Passungswahl
 - SystemEinheitsbohrung ist zu bevorzugen!

P	assung	Merkmal	Anwendungsbeispiele						
	Spielpassungen								
		Besonders großes Bewegungsspiel	Reglerwellen, Bremswellenlager, Federgehäuse, Kuppelbolzen.						
H11/c11	C11/h11	Großes Bewegungsspiel	Lager in Haushalts- und Landmaschinen, Drehschalter, Raststife für Hebel, Gabelbolzen.						
H11/d9	C11/h9	Sicheres Bewegungsspiel	Abnehmbare Hebel und Kurbeln, Hebel- und Gabelbolzen, Lager für Rollen und Führungen.						
H9/d9	D10/h9	Sehr reichliches Spiel	Lager von Landmaschinen und langen Kranwellen, Leerlaufscheiben, grobe Zentrierungen, Spindeln von Textilmaschinen.						
H8/d9	E9/h9	Reichliches Spiel. Weiter Laufsitz	Seilrollen, Achsbuchsen an Fahrzeugen, Lager von Gewindespindeln und Transmissionswellen.						
H8/e8	F8/h9	Merkliches Spiel. Schlichtlaufsitz	Mehrfach gelagerte Wellen, Vorgelegewellen, Achsbuchsen an Kraftfahrzeugen.						
H8/f7	F8/h7	Merkliches Spiel. Leichter Laufsitz	Hauptlager von Kurbelwellen, Pleuelstangen, Kreisel- und Zahnradpumpen, Gebläsewellen, Kolben, Kupplungsmuffen.						
H7/f7	F8/h6	Merkliches Spiel. Laufsitz	Lager für Werkzeugmaschinen, Getriebewellen, Kurbel- und Nockenwellen, Regler, Führungssteine.						
H7/g6	G7/h6	Wenig Spiel. Enger Laufsitz	Ziehkeilräder, Schubkupplungen, Schieberäderblöcke, Stellstifte in Führungsbuchsen, Pleuelstangenlager.						
H11/h9 H11/h11	H11/h9 H11/h11	Geringes Spiel. Weiter Gleitsitz	Teile an Landmaschinen, die auf Wellen verstiftet, festgeschraubt oder festgeklemmt werden, Distanzbuchsen, Scharnierbolzen, Hebelschalter.						
H8/h9	H8/h9	Kraftlos verschiebbar. Schlichtgleitsitz	Stellringe für Transmissionen, Handkurbeln, Zahnräder, Kupplungen, Riemenscheiben, die über Wellen geschoben werden müssen.						
H7/h6 H7/h6 Von Hand noch verschiebbar. Gleitsitz			Wechselräder auf Wellen, lose Buchsen für Kolbenbolzen, Zentrierflansche für Kupplungen, Stellringe, Säulenführungen.						
		Ú	Übergangspassungen						
H7/j6	J7/h6	Mit Holzhammer oder von Hand fügbar. Schiebesitz	Öfter auszubauende oder schwierig einzubauende Riemenscheiben, Zahnräder, Handräder und Zentrierungen.						
H7/k6	K7/h6	Mit Handhammer fügbar. Haftsitz	Riemenscheiben, Kupplungen, Zahnräder auf Wellen, Schwungräder mit Tangentkeilen, festge Handräder und -hebel, Passstifte.						
H7/n6 N7/h6 Mit Presse fügbar. Festsitz			Zahnkränze auf Radkörpern, Bunde auf Wellen, Lagerbuchsen in Getriebekästen und in Naben, Stirn- und Schneckenräder, Anker auf Motorwellen.						
	Übermaßpassungen								
H7/r6 H7/s6	R7/h6 S7/h6	Mittlerer Presssitz	Kupplungsnaben, Bronzekränze auf Graugussnaben, Lagerbuchsen in Gehäusen, Rädern und Schubstangen.						
H7/x6 X7/h6 Starker Presssitz H8/u7 U8/h7		Starker Presssitz	Naben von Zahnrädern, Laufrädern und Schwungrädern, Wellenflansche.						

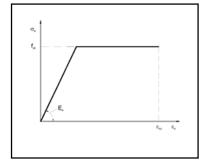
1.4 Möglichkeiten der Auslegung zylindrischer Pressverbände


- Man unterscheidet:
 - Rein elastische Beanspruchung
 - Sämtliche Spannungen bleiben unterhalb der Streck- bzw. Dehngrenzen (bzw. Fließgrenzen).
 - Naben
 - Im Grenzfall darf gelten:

$$\sigma_{\rm A} = R_{\rm eA}$$

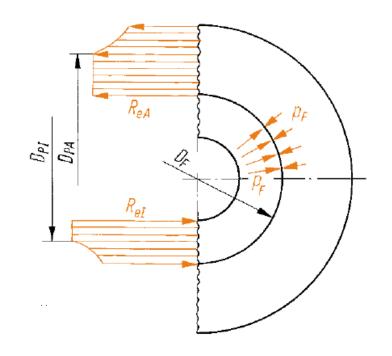
- Bei Grauguss ist $\sigma_{
 m A~zul} pprox 0.5 \cdot R_{
 m m}$
- Wellen
 - Maßgebend ist die Quetschgrenze:

$$\sigma_{\rm I\,zul} = R_{\rm edI} \approx R_{\rm e(z)I}$$


Bei Grauguss (hohe Druckfestigkeit)
 kann der Nachweis entfallen.

• Elastisch-Plastische Beanspruchung

- Sowohl im Außen- als auch im Innenteil erreicht ein Teil der Spannungen die Streckgrenze.
 - → ideal-plastisches Werkstoffverhalten
- Es werden die Plastizitätsdurchmesser $D_{\rm PA}$ und $D_{\rm PI}$ eingeführt, wobei gilt:


$$D_{\rm F} < D_{\rm PA} < D_{\rm Aa}$$
 $D_{\rm F} > D_{\rm PI} > D_{\rm Ii}$

 Bei Außenteilen aus spröden Werkstoffen ist nur rein elastische Beanspruchung zulässig.
 Werkstoffe gelten als spröde, sofern

$$Z < 30 \%$$

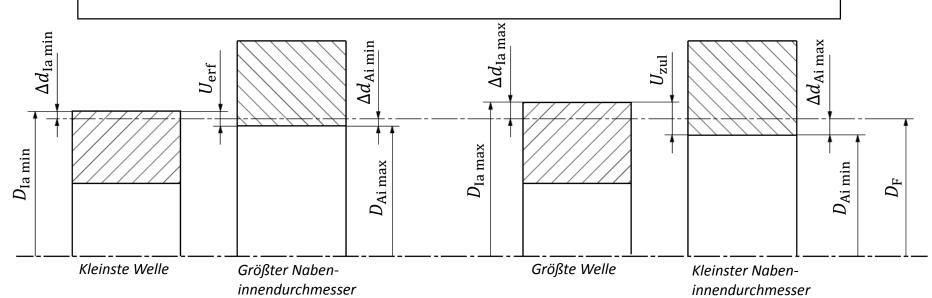
Ein volles Innenteil ist entweder rein elastisch oder vollplastisch beansprucht!

2 Auslegung zylindrischer Pressverbände bei rein elastischer Beanspruchung

2.1 Vorgehensweise

Der zur Kraftübertragung notwendige Fugendruck zwischen Welle und Nabe wird durch das Übermaß U erzeugt.
 Dabei gilt:

$$U_{\rm erf} < U < U_{
m zul}$$


Falls $U < U_{\rm erf}$: Schadensfall Rutschen

Falls $U > U_{\text{zul}}$:

Schadensfall Fließen bzw. Bruch

$$U_{\rm erf} = \Delta d_{\rm Ai\,min} - \Delta d_{\rm Ia\,max}$$

$$U_{\rm zul} = \Delta d_{\rm Ai\ max} - \Delta d_{\rm Ia\ min}$$

Für das Übermaß
$$U$$
 bei einem Fugendruck $p_{\rm F}$ folgt mit $\Delta d_{\rm Ai} = p_{\rm F} \cdot D_{\rm Ai} \cdot \frac{1}{E_{\rm A}} \cdot \left(\frac{1 + Q_{\rm A}^2}{1 - Q_{\rm A}^2} + \nu_{\rm A} \right)$

und
$$\Delta d_{\mathrm{Ia}} = -p_{\mathrm{F}} \cdot D_{\mathrm{Ia}} \cdot \frac{1}{E_{\mathrm{I}}} \cdot \left(\frac{1+Q_{\mathrm{I}}^2}{1-Q_{\mathrm{I}}^2} - \nu_{\mathrm{I}}\right)$$

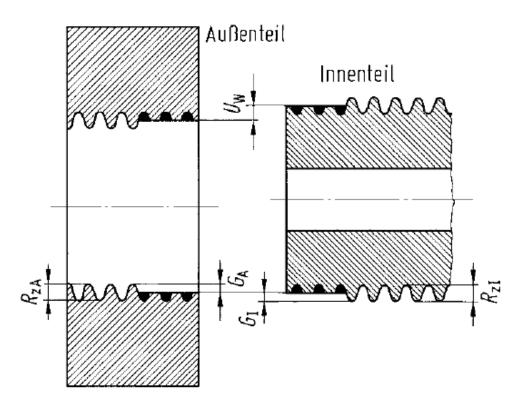
$$U = \Delta d_{Ai} - \Delta d_{Ia} = p_{F} \cdot D_{F} \cdot \left[\frac{1}{E_{A}} \cdot \left(\frac{1 + Q_{A}^{2}}{1 - Q_{A}^{2}} + \nu_{A} \right) + \frac{1}{E_{I}} \cdot \left(\frac{1 + Q_{I}^{2}}{1 - Q_{I}^{2}} - \nu_{I} \right) \right]$$

$$= \frac{p_{\rm F} \cdot D_{\rm F}}{E_{\rm A}} \cdot K \hspace{1cm} {\rm mit} \hspace{1cm} K = \frac{1 + Q_{\rm A}^2}{1 - Q_{\rm A}^2} + \nu_{\rm A} + \frac{E_{\rm A}}{E_{\rm I}} \cdot \left(\frac{1 + Q_{\rm I}^2}{1 - Q_{\rm I}^2} - \nu_{\rm I}\right)$$

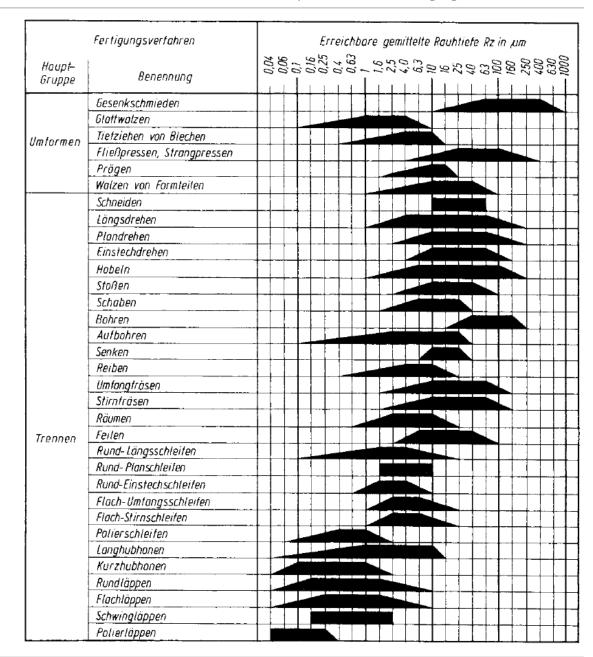
- Dabei ist $D_{\rm F} \approx D_{\rm Ai} \approx D_{\rm Ia}$.
- Somit ist der Zusammenhang zwischen Übermaß und Fugendruck (Pressung) hergestellt. Einflussgrößen sind die Abmessungen der zu fügenden Teile $(D_{\rm F},\,Q_{\rm I},\,Q_{\rm A})$ sowie werkstoffspezifische Größen wie E-Modul und Poisson-Zahl.
- Zu ermitteln ist dann das erforderliche Mindestübermaß $U_{\rm erf}$ (gegen Rutschen) und das maximal zulässige Höchstübermaß $U_{\rm zul}$ (gegen Fließen/Bruch).

■ Glättung, Übermaßverlust

• Infolge der Einebnung der Oberflächen beim Fügen (Längspress- oder Querpressverband) ist der sogenannte Übermaßverlust $U_{\rm V}$ zu berücksichtigen:


$$U_{\rm V} \approx 0.8 \cdot (R_{\rm z \, Ai} + R_{\rm z \, Ia})$$

Damit ist


$$U_{\rm w} = U - U_{\rm V}$$

das wirksame Übermaß bzw. Haftmaß (nach dem Fügen).

• Die Formel für $U_{\rm V}$ gilt streng genommen nur für die Paarungen aus Stahl/Stahl und Stahl/Guss.

 Rauhtiefen in Abhängigkeit des Fertigungsverfahren

Mindestübermaß

Mit dem ermittelten Mindestfugendruck zur Übertragung der Axial- und/oder Tangentialkräfte

$$p_{\text{F erf}} = \frac{F_{\text{res}}}{v \cdot \pi \cdot D_{\text{F}} \cdot L_{\text{F}}} \cdot S_{\text{R}}$$

und dem Übermaßverlust $U_{
m V}$ folgt das erforderliche Mindestübermaß

$$U_{\rm erf} = \frac{p_{\rm F\,erf} \cdot D_{\rm F}}{E_{\rm A}} \cdot K + U_{\rm V}$$

Zulässiges Höchstübermaß

Mit einem werkstoff- und geometrieabhängigen zulässigen Höchstwert des Fugendruckes $p_{\rm F\,zul}$ und dem Übermaßverlust $U_{
m V}$ folgt das zulässige Höchstübermaß

$$U_{\rm zul} = \frac{p_{\rm F\,zul} \cdot D_{\rm F}}{E_{\rm A}} \cdot K + U_{\rm V}$$

Stephan Voigt, M.Eng.

43

Notation in der DIN 7190

• Anstelle der eben vorgestellten Formel

$$U = \frac{p_{\rm F} \cdot D_{\rm F}}{E_{\rm A}} \cdot K + U_{\rm V}$$

zur direkten Ermittlung des gesucht Übermaßes, werden in der DIN 7190 weitere Berechnungsgrößen verwendet.

• Es wird zunächst das bezogene Übermaß

$$Z = \frac{p_{\rm F} \cdot K}{E_{\rm A}}$$

ermittelt, woraus dann das wirksame Übermaß

$$U_{\rm w} = Z \cdot D_{\rm F}$$

und abschließend das Übermaß selbst berechnet wird:

$$U = U_{\rm w} + U_{\rm V}$$

• Je nach verwendetem Fugendruck erfolgt die Indizierung erf bzw. zul.

Zulässiger Fugendruck

• Bei Verwendung der modifizierten Schubspannungshypothese MSH (einfacherer Formelsatz und bessere Übereinstimmung mit experimentell ermittelten Ergebnissen als GEH \rightarrow Faktor $2/\sqrt{3}$) gilt

$$\sigma_{\text{v MSH}} = \sqrt{(\sigma_{\text{t}} - \sigma_{\text{r}})^2 + 4 \cdot \tau_{\text{t}}} \le \frac{2}{\sqrt{3}} \cdot \frac{R_{\text{e}}}{S_{\text{F}}}$$

- $S_F = 1.0 \dots 1.3$ ist die Sicherheit gegen Fließen. Bei spröden Werkstoffen ist R_e durch $(0.3 \dots 0.5) \cdot R_m$ und S_F durch $S_B = 1.0$ zu ersetzen.
- Mit den Gleichungen für $\sigma_{rA}(r=r_i)=\sigma_{rAi}$ und $\sigma_{tA}(r=r_i)=\sigma_{tAi}$ des Außenteils und $\tau_t \leq \nu_{ru} \cdot p_F$ folgt:

$$2 \cdot \sqrt{\left(\frac{1}{1 - Q_{\rm A}^2}\right)^2 + \nu_{\rm ru}^2} \cdot p_{\rm F} \le \frac{2}{\sqrt{3}} \cdot \frac{R_{\rm eA}}{S_{\rm F}}$$

• Wegen $v_{\rm ru}^2 \ll 1$ kann vereinfacht geschrieben werden:

$$\frac{2}{1 - Q_{\rm A}^2} \cdot p_{\rm F} \le \frac{2}{\sqrt{3}} \cdot \frac{R_{\rm eA}}{S_{\rm F}}$$

Damit ergibt sich der zulässige Fugendruck des Außenteils zu

$$p_{\rm F\,zul\,A} = \frac{1 - Q_{\rm A}^2}{\sqrt{3} \cdot S_{\rm F}} \cdot R_{\rm eA}$$

• Analoge Betrachtungen für das Innenteil (als Hohlwelle mit $Q_{\rm I} \neq 0$) liefern

$$p_{\rm F\,zul\,I} = \frac{1 - Q_{\rm I}^2}{\sqrt{3} \cdot S_{\rm F}} \cdot R_{\rm eI}$$

• Bei Vollwellen gilt $\sigma_{
m rI} = \sigma_{
m tI} = -p_{
m F}$, weshalb

$$\sigma_{\text{v MSH}} = p_{\text{F}} \le \frac{2}{\sqrt{3}} \cdot \frac{R_{\text{eI}}}{S_{\text{F}}}$$

ist, woraus folgt:

$$p_{\rm F\,zul\,I} = \frac{2}{\sqrt{3} \cdot S_{\rm F}} \cdot R_{\rm eI}$$

45

Passungsauswahl

ullet Mit Kenntnis von $U_{
m erf}$ und $U_{
m zul}$ folgt die größtmögliche Passtoleranz zu

$$T_{\rm P\,max} = U_{\rm zul} - U_{\rm erf}$$

- System Einheitsbohrung → Toleranzfeldlage H
 - Bohrung H6
- → Welle mit IT5

- Bohrung H7
- → Welle mit IT6

- Bohrung H8
- → Welle mit IT7
- Ab Bohrung H9
- → Welle mit gleichem Toleranzgrad

$$T_{\rm B} \le 0.6 \cdot T_{\rm P \, max}$$

 $T_{\rm B} \leq 0.5 \cdot T_{\rm P \, max}$

Schritt 1:

Festlegung des Toleranzgrades der Bohrung

$$\rightarrow$$
 Wegen $EI = 0$ folgt $ES = T_{\rm B}$

47

• Schritt 2:

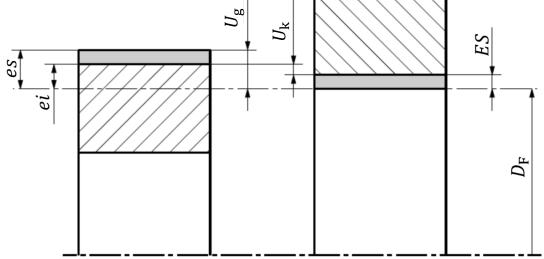
Wellentoleranz $T_{\rm W}$ heraussuchen (meist ein Toleranzgrad kleiner als die Bohrung)

• Schritt 3:

Ermittlung des unteres Abmaßes der Welle:

$$ei \ge ES + U_{\text{erf}}$$

• Schritt 4:


Ermittlung des oberes Abmaßes der Welle:

$$es = ei + T_{W}$$

Damit folgen das Höchst- und Mindestübermaß

$$U_{\rm g} = es - EI = es$$

$$U_{\rm k} = ei - ES$$

- ullet Die Übermaße $U_{
 m g}$ und $U_{
 m k}$ sind die vor dem Fügen messbaren Übermaße.
- Nach dem Fügen ergeben sich die wirksamen Übermaße (auch Haftmaße genannt):

$$U_{\rm wg} = U_{\rm g} - U_{\rm V}$$

$$U_{\rm wk} = U_{\rm k} - U_{\rm V}$$

• Der Übermaßverlust $U_{
m V}$ ist bereits bei der Berechnung von $U_{
m erf}$ und $U_{
m zul}$ berücksichtigt, so dass gilt:

$$U_{\rm erf} < U_{\rm k} < U_{\rm g} < U_{
m zul}$$

Stephan Voigt, M.Eng.

Festigkeitsnachweis

ullet Der Tragfähigkeitsnachweis ist mit dem Höchstübermaß $U_{
m g}$ zu führen. Die zugehörige Pressung kann aus

$$U_{\rm g} = \frac{p_{\rm Fg} \cdot D_{\rm F}}{E_{\rm A}} \cdot K + U_{\rm V}$$

gewonnen werden. Mit $U_{
m wg}=U_{
m g}-U_{
m V}$ ist

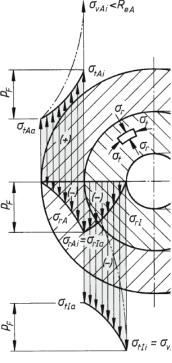
$$p_{\rm Fg} = \frac{U_{\rm wg} \cdot E_{\rm A}}{D_{\rm F} \cdot K}$$

• Analog kann mit $U_{
m wk}=U_{
m k}-U_{
m V}$ der kleinste Fugendruck $p_{
m Fk}$ ermittelt werden.

• Die bereits eingeführte modifizierte Schubspannungshypothese MSH bei vernachlässigbar kleinen

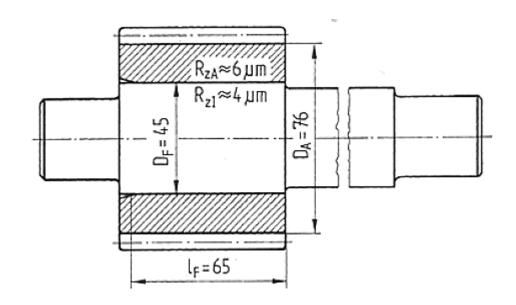
Schubspannungen lautet:

$$\sigma_{\text{v MSH}} = \sqrt{(\sigma_{\text{t}} - \sigma_{\text{r}})^2 + 4 \cdot \tau_{\text{t}}} \approx \sigma_{\text{t}} - \sigma_{\text{r}} \leq \sigma_{\text{v zul}}$$


- Gemäß den Spannungsverläufen sind die kritischen Stellen:
 - Innenfaser Nabe

$$\sigma_{\text{vAi}} = \sigma_{\text{tAi}} - \sigma_{\text{rAi}} = p_{\text{Fg}} \cdot \frac{1 + Q_{\text{A}}^2}{1 - Q_{\text{A}}^2} + p_{\text{Fg}} = \frac{2 \cdot p_{\text{Fg}}}{1 - Q_{\text{A}}^2} \le \sigma_{\text{v zul}}$$

Innenfaser (dünnwandige) Hohlwelle


$$\sigma_{\mathrm{vIi}} = |\sigma_{\mathrm{tIi}} - \sigma_{\mathrm{rIi}}| = \left| -p_{\mathrm{Fg}} \cdot \frac{2}{1 - Q_{\mathrm{I}}^2} \right| \le \sigma_{\mathrm{v} \, \mathrm{zul}}$$

$$\bullet \quad \text{Die zulässige Spannung ist} \quad \sigma_{\text{v} \; \text{zul}} = \frac{2}{\sqrt{3}} \cdot \frac{R_{\text{e}}}{S_{\text{F}}} \quad \text{bzw.} \quad \sigma_{\text{v} \; \text{zul}} = \frac{2}{\sqrt{3}} \cdot \frac{(0,3 \ldots 0,5) \cdot R_{\text{m}}}{S_{\text{B}}}$$

2.2 Beispiel zur rein elastischen Beanspruchung

- Auf eine Getriebewelle aus Vergütungsstahl C30 ($R_{\rm e}=300~{
 m N}\cdot{
 m mm}^{-2}$) ist ein Ritzel aus Einsatzstahl 17CrNiMo7 ($R_{\rm e}=600~{
 m N}\cdot{
 m mm}^{-2}$) unter Ölschmierung kalt aufgepresst. Es ist ein ruhend wirkendes Drehmoment $M_{\rm t}=500~{
 m Nm}$ zu übertragen. Für eine rein elastische Beanspruchung ist eine geeignete Übermaßpassung zu ermitteln.
- Weitere gegebene Größen:
 - Haftbeiwert $\nu = 0.07$ (Folie 8)
 - Rutschsicherheit $S_{
 m R}=1,5$ (Folie 9)
 - Sicherheit gegen Fließen $S_{
 m F}=1,2$ (Folie 44)

Erforderliches Übermaß

• Der erforderliche Fugendruck zur Übertragung des gegebenen Drehmoments beträgt:

$$p_{\mathrm{Ferf}} = \frac{2 \cdot M_{\mathrm{t}}}{v \cdot \pi \cdot D_{\mathrm{F}}^2 \cdot L_{\mathrm{F}}} \cdot S_{\mathrm{R}} = 51.8 \; \mathrm{N} \cdot \mathrm{mm}^{-2}$$

Mit der Hilfsgröße

$$K = \frac{1 + Q_A^2}{1 - Q_A^2} + 1 = 3,08$$

$$K = \frac{1 + Q_{\rm A}^2}{1 - Q_{\rm A}^2} + \nu_{\rm A} + \frac{E_{\rm A}}{E_{\rm I}} \cdot \left(\frac{1 + Q_{\rm I}^2}{1 - Q_{\rm I}^2} - \nu_{\rm I}\right)$$

(wobei $Q_{\rm A}=D_{\rm F}/D_{\rm Aa}=0.592$ ist) und dem Übermaßverlust

$$U_{\rm V} = 0.8 \cdot (R_{\rm zA} + R_{\rm zI}) = 8 \,\mu{\rm m}$$

ergibt sich das erforderliche Übermaß zu

$$U_{\mathrm{erf}} = \frac{p_{\mathrm{Ferf}} \cdot D_{\mathrm{F}}}{E} \cdot K + U_{\mathrm{V}} = 42,2 \ \mu \mathrm{m}$$

Zulässiges Übermaß

• Die zulässigen Pressungen für Innen- und Außenteil betragen:

$$p_{\text{Fzul I}} = \frac{2}{\sqrt{3} \cdot S_{\text{F}}} \cdot R_{\text{eI}} = 289 \text{ N} \cdot \text{mm}^{-2}$$

$$p_{\text{F zul A}} = \frac{1 - Q_{\text{A}}^2}{\sqrt{3} \cdot S_{\text{F}}} \cdot R_{\text{eA}} = 187 \text{ N} \cdot \text{mm}^{-2}$$

• Mit dem kleineren der beiden Werte folgt:

$$U_{\text{zul}} = \frac{p_{\text{F zul A}} \cdot D_{\text{F}}}{E} \cdot K + U_{\text{V}} = 132 \,\mu\text{m}$$

Passungswahl

• Für das Höchst- und Mindestübermaß der gewählten Passung muss gelten:

$$U_{\rm erf} < U_{\rm k} < U_{\rm g} < U_{\rm zul}$$

• Schritt 1: Festlegung des Toleranzgrades der Bohrung

Toleranzgrad 7
$$\rightarrow$$
 ES = $T_{\rm B}$ = 25 μm (Folie 23)

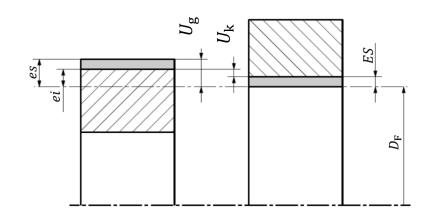
Schritt 2: Wellentoleranz

Toleranzgrad 6
$$\rightarrow$$
 $T_{\rm W} = 16~\mu \rm m$ (Folie 23)

• Schritt 3: Unteres Abmaß der Welle

Es muss gelten:
$$ei \ge ES + U_{\rm erf} = 67.2 \, \mu {\rm m}$$

 \rightarrow Toleranzfeldlage u mit $ei = 70 \mu m$ (Folie 26)


	_			
Toleranzfeldlage	r	s	t	u
Grundtoleranzgrad				
von 1 bis 3	+ 10	+ 14	_	+ 18
über 3 bis 6	+ 15	+ 19	_	+ 23
über 6 bis 10	+ 19	+ 23	_	+ 28
über 10 bis 14	+ 23	+ 28	_	+ 33
über 14 bis 18	+ 23	T 20		+ 55
über 18 bis 24	+ 28	+ 35	_	+ 41
über 24 bis 30	1 20	1 33	+ 41	+ 48
über 30 bis 40	+ 34	+ 43	+ 48	+ 60
über 40 bis 50			+ 54	+ 70
				0.0

• Schritt 4: Oberes Abmaß der Welle

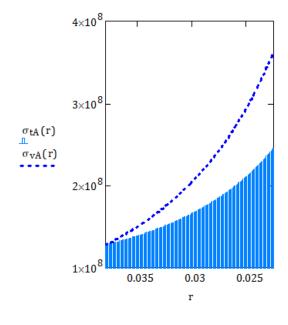
$$\rightarrow es = ei + T_W = 86 \,\mu\text{m}$$

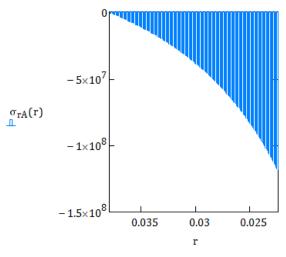
Es folgen Höchst- und Mindestübermaß mit

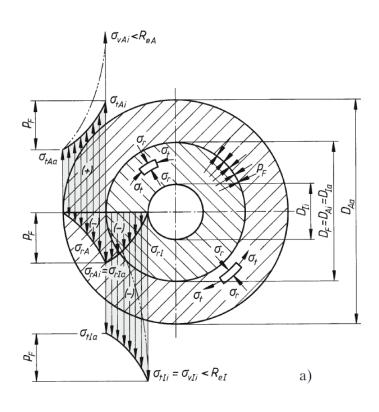
$$U_{
m g}=es-EI=es=86~
m \mu m$$
 $U_{
m k}=ei-ES=55~
m \mu m$

Festigkeitsnachweis

• Mit $U_{\rm g}$ bzw. $U_{\rm wg}=U_{\rm g}-U_{\rm V}$ ergibt sich die größte Fugenpressung:


$$p_{\rm Fg} = \frac{U_{\rm wg} \cdot E}{D_{\rm F} \cdot K} = 118 \,\rm N \cdot mm^{-2}$$


Damit gilt am Innenrand der Nabe schließlich


$$\sigma_{\rm vAi} = \frac{2 \cdot p_{\rm Fg}}{1 - Q_{\rm A}^2} = 364 \, \rm N \cdot mm^{-2} \le 577 \, \, N \cdot mm^{-2} = \frac{2}{\sqrt{3}} \cdot \frac{R_{\rm eA}}{S_{\rm F}} = \sigma_{\rm v \, zul}$$

Anhalt University of Applied Sciences

• Spannungsverläufe Nabe

57

3 Auslegung zylindrischer Pressverbände bei elastisch-plastischer Beanspruchung

3.1 Vorgehensweise

- Der Einfachheit halber ist das folgende Berechnungsverfahren bei elastisch-plastischer Beanspruchung an Voraussetzungen gebunden:
 - 1) Volles Innenteil $\Rightarrow Q_{\rm I} = 0$ \Rightarrow Innenteil wird elastisch, Außenteil elastisch-plastisch beansprucht!
 - 2) Welle und Nabe bestehen aus ähnlichen Werkstoffen \rightarrow $E_{\rm A}=E_{\rm I}=E$ und $u_{\rm A}=
 u_{\rm I}=
 u$
- Grenzfugendruck für Innen- und Außenteil
 - Der Fugendruck $p_{\rm F}$ bei elastisch-plastischer Beanspruchung des Außenteils muss im Bereich

$$p_{\rm F\,zul\,A} = \frac{(1 - Q_{\rm A})}{\sqrt{3}} \cdot R_{\rm eA} < p_{\rm F} \le \frac{p_{\rm PA}}{S_{\rm PA}} = p_{\rm F\,zul\,A\,p}$$

liegen, d.h. $p_{\rm F}$ ist insbesondere größer als der zulässige Fugendruck bei rein elastischer Beanspruchung. Dabei ist

- p_{PA} der Grenzfugendruck bei vollplastischer Beanspruchung und
- $-S_{PA} = 1.2 \dots 1.3$ die Sicherheit gegen vollplastische Beanspruchung

• Der Grenzfugendruck p_{PA} ist von der Geometrie des Außenteils abhängig:

$$p_{\mathrm{PA}} = \begin{cases} \frac{2 \cdot R_{\mathrm{eA}}}{\sqrt{3}} & \text{für dickwandiges Außenteil mit } Q_{\mathrm{A}} < \frac{1}{e} \\ \\ \frac{-2 \cdot R_{\mathrm{eA}}}{\sqrt{3}} \cdot \ln Q_{\mathrm{A}} & \text{für dünnwandiges Außenteil mit } Q_{\mathrm{A}} \geq \frac{1}{e} \end{cases}$$

• Weiterhin darf der wirkende Fugendruck $p_{\rm F}$ nicht den Grenzfugendruck $p_{\rm PI}$ des Innenteils überschreiten:

$$p_{\rm F} \le p_{\rm F\,zul\,I\,p} = \frac{p_{\rm PI}}{S_{\rm PI}} = \frac{2 \cdot R_{\rm eI}}{\sqrt{3} \cdot S_{\rm PI}} \quad \text{mit} \quad S_{\rm PI} = 1.1$$

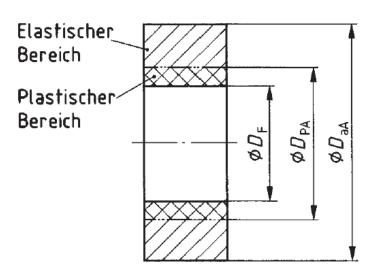
- Infolge der gegebenen Verformungsbehinderung durch das Außenteil genügt diese sehr kleine Sicherheit.
- Bringt man die Bedingungen für Innen- und Außenteil zusammen, so folgt:

$$R_{\rm eI} > \frac{1 - Q_{\rm A}}{2} \cdot R_{\rm eA}$$

Andernfalls ist das Innenteil bereits vollplastisch beansprucht, wenn das Außenteil noch rein elastisch beansprucht ist.

Anhalt University of Applied Sciences

Mindestübermaß


• Mit dem bezogenen Plastizitätsdurchmessers ζ kann das erforderliche Mindestübermaß bestimmt werden:

$$U_{\rm erf} = \frac{2}{\sqrt{3}} \cdot \frac{R_{\rm eA}}{E} \cdot \zeta_{\rm k}^2 \cdot D_{\rm F} + U_{\rm V}$$

• ζ ist definiert als:

$$\zeta = \frac{D_{\rm PA}}{D_{\rm F}}$$

• Wegen $D_{\rm F} < D_{\rm PA} < D_{\rm Aa}$ muss gelten: $1 < \zeta < \frac{1}{Q_{\rm A}}$

• Einflussgrößen sind neben dem Fugendruck $p_{\rm F}$ sowohl Streckgrenze $R_{\rm eA}$ als auch Durchmesserverhältnis $Q_{\rm A}$ des Außenteils.

• Werte für ζ

$Q_{\rm A}$	$p_{ m F}/R_{ m eA}$							
	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
0,3	Rein			1,07	1,18	1,31	1,45	1,62
0,4	elastischer Bereich		1,02	1,13	1,26	1,43	1,64	1,96
0,5			1,08	1,23	1,44	2,0		
0,6		1,04	1,22	Vollplastischer Bereich				
0,7	1,10	1,29						

Zwischenwerte durch lineare Interpolation!

- ullet Zur Ermittlung des erforderlichen Übermaßes muss der erforderliche Fugendruck $p_{
 m F\,erf}$ verwendet werden!
 - ightarrow kleinster bezogener Plastizitätsdurchmesser $\zeta_{\mathbf{k}}$

- Alternative Berechnung des bezogenen Plastizitätsdurchmessers ζ
 - Mithilfe der Plastizitätstheorie lässt sich ζ als Lösung der folgenden transzendenten Gleichung herleiten:

$$2 \cdot \ln \zeta - (Q_{\mathcal{A}} \cdot \zeta)^2 + 1 - \sqrt{3} \cdot \frac{p_{\mathcal{F}}}{R_{\mathcal{C}}} = 0$$

- Iteratives Lösungsverfahren
 - Startwert: $\zeta_1 = 1$
 - Iterationsvorschrift:

$$\zeta_{i+1} = \zeta_{i} \cdot \left\{ 1 - \frac{2 \cdot \ln \zeta_{i} - (Q_{A} \cdot \zeta_{i})^{2} + 1 - \sqrt{3} \cdot \frac{p_{F}}{R_{eA}}}{2 \cdot [1 - (Q_{A} \cdot \zeta_{i})^{2}]} \right\}$$

– Abbruchbedingung:

$$|\zeta_{i+1} - \zeta_i| < \frac{1}{1000}$$

Kontrolle:

$$1 \le \zeta \le \frac{1}{Q_{\rm A}}$$

Zulässiges Übermaß

• Zur Ermittlung des zulässigen Übermaßes ist zunächst der zulässige bezogene Plastizitätsdurchmesser zu berechnen:

$$\zeta_{\text{zul}} = \zeta(p_{\text{F zul A p}})$$

• Damit ist:

$$U_{\mathrm{zul}} = \frac{2}{\sqrt{3}} \cdot \frac{R_{\mathrm{eA}}}{E} \cdot \zeta_{\mathrm{zul}}^2 \cdot D_{\mathrm{F}} + U_{\mathrm{V}}$$

Stephan Voigt, M.Eng.

Passungswahl

• Wie bei rein elastischer Beanspruchung ist eine Passung auszuwählen, so dass gilt:

$$U_{\rm erf} < U_{\rm k} < U_{\rm g} < U_{
m zul}$$

Stephan Voigt, M.Eng.

• Dabei ist $U_{\rm g}=es-EI=es$ und $U_{\rm k}=ei-ES$.

Größte Fugenpressung

- Bislang wurde auf Basis einer Fugenpressung der bezogene Plastizitätsdurchmesser und anschließend das zugehörige Übermaß bestimmt.
- Zur Berechnung der größten Fugenpressung ist aus

$$U = \frac{2}{\sqrt{3}} \cdot \frac{R_{\rm eA}}{E} \cdot \zeta^2 \cdot D_{\rm F} + U_{\rm V}$$

für $U=U_{\rm g}$ der korrespondierende (größte) bezogene Plastizitätsdurchmesser $\zeta_{\rm g}$ zu berechnen.

• Mit $U_g - U_V = U_{wg}$ folgt:

$$\zeta_{\rm g} = \sqrt{\frac{U_{\rm wg} \cdot \sqrt{3} \cdot E}{2 \cdot R_{\rm eA} \cdot D_{\rm F}}} \approx 0.93 \cdot \sqrt{\frac{U_{\rm wg} \cdot E}{R_{\rm eA} \cdot D_{\rm F}}}$$

Stephan Voigt, M.Eng.

• Damit ist der größte Fugendruck gegeben durch:

$$p_{\rm Fg} = \frac{R_{\rm eA}}{\sqrt{3}} \cdot \left[1 + 2 \cdot \ln \zeta_{\rm g} - \left(Q_{\rm A} \cdot \zeta_{\rm g} \right)^2 \right]$$

• Zu zeigen bleibt, dass gilt

und

$$p_{\rm Fg} < p_{
m F\,zul\,A\,p}$$

$$p_{\rm Fg} < p_{\rm F \, zul \, I \, p}$$

 $\bullet \;\;$ Abschließend ist das Querschnittsverhältnis q_{g} zu prüfen.

66

Querschnittsverhältnis

- Das Verhältnis aus plastisch beanspruchter Ringfläche $q_{\rm PA}$ zu gesamten Ringfläche des Nabenquerschnittes $q_{\rm A}$ sollte den Erfahrungswert 0,3 nicht überschreiten.
 - Ringfläche des plastisch beanspruchten Bereiches als Funktion von ζ :

$$q_{\rm PA}(\zeta) = \frac{\pi}{4} \cdot \left(D_{\rm PA}^2 - D_{\rm F}^2\right) = \frac{\pi}{4} \cdot D_{\rm F}^2 \cdot (\zeta^2 - 1)$$

Ringfläche des Nabenquerschnittes:

$$q_{\rm A} = \frac{\pi}{4} \cdot \left(D_{\rm Aa}^2 - D_{\rm F}^2 \right) = \frac{\pi}{4} \cdot D_{\rm A}^2 \cdot \left(1 - Q_{\rm A}^2 \right)$$

– Quotient:

$$q(\zeta) = \frac{q_{\text{PA}}(\zeta)}{q_{\text{A}}} = \frac{Q_{\text{A}}^2 \cdot (\zeta^2 - 1)}{1 - Q_{\text{A}}^2} \le 0,3$$

Zu zeigen ist, dass gilt:

$$q_{\rm g} = q(\zeta = \zeta_{\rm g}) \le 0.3$$

3.2 Beispiel zur elastisch-plastischen Beanspruchung

Ein Pressverband soll in der Fuge bei einem Haftbeiwert von $\nu=0,2$ eine wechselnd wirkende Betriebskraft $F=180~{\rm kN}$ übertragen.

Gegebene Größen

Geometrie

$$D_{Aa} = 100 \text{ mm}$$

$$D_{\rm F} = 50 \, \mathrm{mm}$$

$$D_{\text{Ii}} = 0$$

$$L_{\rm F} = 60 \ \rm mm$$

Werkstoffe und Oberfläche

$$R_{\rm eA} = 400 \, \mathrm{N} \cdot \mathrm{mm}^{-2}$$

$$R_{\rm el} = 460 \, \rm N \cdot mm^{-2}$$

$$R_{\rm zA} = 12 \, \mu \rm m$$

$$R_{\rm zI} = 8 \, \mu \rm m$$

Anhalt University of Applied Sciences

68

Prüfung der Voraussetzungen

Kann das Außenteil zum Teil plastisch beansprucht werden, bevor dass Innenteil vollpastisch beansprucht wird?

$$R_{\rm eI} > \frac{1 - Q_{\rm A}}{2} \cdot R_{\rm eA}$$

$$460 > \frac{1 - 0.5}{2} \cdot 400 = 100$$

$$460 > \frac{1-0.5}{2} \cdot 400 = 100$$

Ist die erforderliche Fugenpressung größer als die für das Außenteil zulässige Fugenpressung bei rein elastischer Beanspruchung?

$$p_{\text{F erf}} = \frac{F_{\text{B}}}{v \cdot \pi \cdot D_{\text{F}} \cdot L_{\text{F}}} \cdot S_{\text{R}} = 210 \text{ N} \cdot \text{mm}^{-2}$$

$$p_{\rm F\,zul\,A} = \frac{(1 - Q_{\rm A})}{\sqrt{3}} \cdot R_{\rm eA} = 173\,{\rm N}\cdot{\rm mm}^{-2}$$

Nach Folie 9 ist für $S_R = 2.2$ anzusetzen (wechselnde Last).

- Zulässige Fugenpressung für Außen- und Innenteil
 - Wegen $Q_A \ge 1/e$ ist der Grenzfugendruck gegeben durch

$$p_{\rm PA} = \frac{-2 \cdot R_{\rm eA}}{\sqrt{3}} \cdot \ln Q_{\rm A} = 320 \,\mathrm{N} \cdot \mathrm{mm}^{-2}$$

- Mit der Sicherheit gegen vollplastische Verformung $S_{\rm PA}=1,25$ (Folie 57) folgt:

$$p_{\rm F\,zul\,A\,p} = \frac{p_{\rm PA}}{S_{\rm PA}} = 256\,{\rm N\cdot mm^{-2}} > p_{\rm F\,erf}$$

- Für das Innenteil ergibt sich mit $S_{PI} = 1,1$:

$$p_{\text{F zul I p}} = \frac{p_{\text{PI}}}{S_{\text{PI}}} = \frac{2}{\sqrt{3}} \cdot \frac{R_{\text{eI}}}{S_{\text{PI}}} = 482 \text{ N} \cdot \text{mm}^{-2} > p_{\text{F erf}}$$

Anhalt University of Applied Sciences

Ermittlung der Passung

• Der bezogene Plastizitätsdurchmesser kann in MathCAD mittels while-Schleife berechnet werden:

$$\begin{split} \zeta \big(p_F,\, Q_A \,,\, R_{eA} \big) &:= \quad \left| \begin{array}{c} \zeta_0 \leftarrow 0 \\ \zeta_1 \leftarrow 1 \\ \end{array} \right. \\ \text{while} \quad \left| \left. \zeta_1 - \zeta_0 \right| > \frac{1}{1000} \\ \\ \left| \begin{array}{c} \zeta_0 \leftarrow \zeta_1 \\ \end{array} \right. \\ \left| \begin{array}{c} \zeta_1 \leftarrow \zeta_1 \cdot \left[1 - \frac{2 \cdot \ln \left(\zeta_0 \right) - \left(Q_A \cdot \zeta_0 \right)^2 + 1 - \sqrt{3} \cdot \frac{p_F}{R_{eA}}}{2 \cdot \left[1 - \left(Q_A \cdot \zeta_0 \right)^2 \right]} \right] \end{split} \end{split}$$

• Für $p_{\rm F}=p_{\rm F\,erf}$, $Q_{\rm A}=0$,5 und $R_{\rm eA}=400~{
m N\cdot mm^{-2}}$ ergibt sich ein Wert von

$$\zeta_k = 1,117$$

• Mit dem Übermaßverlust $U_{\rm V}=0.8\cdot(R_{\rm zA}+R_{\rm zI})=16~\mu{\rm m}$ lautet das erforderliche Übermaß:

$$U_{\mathrm{erf}} = \frac{2}{\sqrt{3}} \cdot \frac{R_{\mathrm{eA}}}{E} \cdot \zeta_{\mathrm{k}}^2 \cdot D_{\mathrm{F}} + U_{\mathrm{V}} = 153 \,\mathrm{\mu m}$$

Passung

- Einheitsbohrung mit Toleranzgrad 7:
- Gesucht ist nun ein Wellentoleranzfeld mit:
- Welle mit Toleranzgrad 6:
- Mindestübermaß:
- Höchstübermaß:

H7
$$\rightarrow$$
 $EI=0$ und $ES=T_{\mathrm{B_{l}IT7}}=25~\mathrm{\mu m}$

$$U_{\rm k}=ei-ES>U_{\rm erf}$$
 \rightarrow za mit $ei=180~\mu{\rm m}$

$$es = ei + T_{B \text{ IT}6} = 196 \, \mu \text{m}$$

$$U_{\rm g} = es - EI = 196 \,\mu\text{m}$$

$$U_{\rm k} = ei - ES = 155 \, \mu \rm m$$

Beanspruchung bei Höchstübermaß

• Mit

$$\zeta_{\text{zul}} = \zeta(p_{\text{F}} = p_{\text{Fzul}}) = 1.31$$

folgt:

$$U_{\mathrm{zul}} = \frac{2}{\sqrt{3}} \cdot \frac{R_{\mathrm{eA}}}{E} \cdot \zeta_{\mathrm{zul}}^2 \cdot D_{\mathrm{F}} + U_{\mathrm{V}} = 204 \ \mathrm{\mu m}$$

Stephan Voigt, M.Eng.

• Es gilt also:

$$U_{\text{zul}} > U_{\text{g}} = 196 \, \mu\text{m}$$

· Die größte Fugenpressung ergibt sich mit

$$p_{\rm Fg} = \frac{R_{\rm eA}}{\sqrt{3}} \cdot \left[1 + 2 \cdot \ln \zeta_{\rm g} - \left(Q_{\rm A} \cdot \zeta_{\rm g} \right)^2 \right]$$

wobei $\zeta_{
m g}$ aus

$$\zeta_{\rm g} \approx 0.93 \cdot \sqrt{\frac{U_{\rm wg} \cdot E}{R_{\rm eA} \cdot D_{\rm F}}} = 1.28$$

mit $U_{\text{wg}} = U_{\text{g}} - U_{\text{V}}$ folgt.

- Damit ist $p_{\mathrm{F}\,\mathrm{g}} = 250\ \mathrm{N}\cdot\mathrm{mm}^{-2}$ und weiter $p_{\mathrm{F}\,\mathrm{g}} < p_{\mathrm{F}\,\mathrm{zul}\,\mathrm{A}\,\mathrm{p}}$
- Abschließend ist

$$q_{\rm g} = q(\zeta = \zeta_{\rm g}) = \frac{Q_{\rm A}^2 \cdot (\zeta_{\rm g}^2 - 1)}{1 - Q_{\rm A}^2} = 0.21 \le 0.3$$

Anhalt University of Applied Sciences

4. Montage und Betrieb zylindrischer Pressverbände

Einpresskraft

• Beim Längspressverband kann die Einpresskraft wie folgt ermittelt werden:

$$F_{\rm e} = A_{\rm F} \cdot p_{\rm F}' \cdot \nu_{\rm ll}$$

Dabei ist

- $-A_{\mathrm{F}}=D_{\mathrm{F}}\cdot\pi\cdot L_{\mathrm{F}}$ die Fügefläche,
- $p_{\rm F}^{\prime}$ der tatsächliche Fugendruck und
- $-\nu_{11}$ der Haftbeiwert für das Lösen in Längsrichtung (Folie 8)
- Nach Messung des tatsächlichen Übermaßes U' mit $U_{\rm g}>U'>U_{\rm k}$ ergibt sich $p_{
 m F}'$ aus

$$p_{\mathrm{F}}' = \frac{U' - U_{\mathrm{V}}}{U_{\mathrm{g}} - U_{\mathrm{V}}} \cdot p_{\mathrm{Fg}} = \frac{U_{\mathrm{w}}'}{U_{\mathrm{wg}}} \cdot p_{\mathrm{Fg}}$$

Fügetemperatur

• Mit dem Einführspiel $S_{II} = D_{\rm F}/1000$ gilt für die notwendige Temperatur des Außenteils

$$\vartheta_{\rm A} = \vartheta_{\rm R} + \frac{U' + S_{\rm u}}{\alpha_{\rm A} \cdot D_{\rm F}}$$

Dabei ist

- $\vartheta_{\rm R}$ die Raumtemperatur und
- $-\alpha_A$ der Längenausdehnungskoeffizient des Nabenwerkstoffs.
- Ist zusätzlich das Abkühlen der Welle nötig, so ist

$$\theta_{\rm A} = \theta_{\rm R} + \frac{U' + S_{\rm u}}{\alpha_{\rm A} \cdot D_{\rm F}} - \frac{\alpha_{\rm I}}{\alpha_{\rm A}} \cdot (\theta_{\rm I} - \theta_{\rm R})$$

Dabei ist

- $\vartheta_{
 m I}$ die Temperatur der Welle und
- $-\alpha_{\rm I}$ der Längenausdehnungskoeffizient des Wellenwerkstoffs.

76

• Werkstoffkennwerte

Werkstoff	ν	E N/mm ²	$^{lpha_{ m A}}_{10^{-6}/ m K}$	$10^{-6}/{ m K}$
Stahl, Stahlguss GS Grauguss EN-GJL-100 EN-GJL-150 EN-GJL-200 EN-GJL-250300 Gusseisen mit Kugelgraphit EN-GJS-500-7 Temperguss EN-GJMB (GTS), EN-GJMW Aluminiumlegierungen AlMgSi, AlCuMg Magnesiumlegierungen MgAlZn Kupfer Cu Kupfer- Legierungen CuAl, CuPb, CuSn (Bronze) CuZn (Messing) CuSnZn (Rotguss)	0,3 0,24 0,25 0,25 0,28 0,28 0,25 0,33 0,3 0,35 0,35 0,35	$\begin{array}{c} \approx \! 210000 \\ \approx 70000 \\ \approx 70000 \\ \approx 80000 \\ \approx \! 105000 \\ \approx \! 130000 \\ \approx \! 175000 \\ \approx 95000 \\ \approx 70000 \\ \approx 42000 \\ \approx 125000 \\ \approx 80000 \\ \approx 80000 \\ \approx 80000 \end{array}$	11 10 10 10 10 10 10 23 26 16 16 18	- 8,5 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 18 - 21 - 14 - 14 - 16 - 15

• Fügetemperaturen

Werkstoff der Nabe	Fügetemperatur °C
Baustahl niedriger Festigkeit Stahlguss Gusseisen mit Kugelgrafit	350
Stahl oder Stahlguss vergütet	300
Stahl randschichtgehärtet	250
Stahl einsatzgehärtet oder hochvergüteter Baustahl	200

Methoden zum Erwärmen der Nabe

Medium zum Erwärmen	max. Temperatur in °C	Anwendungen, Beispiele, Besonderheiten
Elektro-Heizkern	50	Kleine Naben, Hülsen
Elektro-Heizplatte	100	Wälzlager bei geringer Vorspannung
Ölbad	400	Große Naben, sehr gleichmäßige Erwärmung
Heißluftofen	400 bis 650	Große Naben, Oxidschicht auf Fügeflächen
Elektro-Ofen	700	Ölbenetzte Fügeflächen, variabel, gut steuerbar, durch Schutzgas Oxidschicht vermeidbar
Ringbrenner	700	Sperrige Naben, schwierig handhabbar, Gefahr der Überhitzung

• Methoden zum Abkühlen der Welle

Medium zum Unterkühlen	min. Temperatur in °C	Anwendungen, Beispiele, Besonderheiten
Trockeneis, Kohlensäureschnee	-78	Langsames Abkühlen, Gefahr der Vereisung erfordert Gegenmaßnahmen
Flüssige Luft (Sauerstoff)	-150	Gefahr der Frostschädigung, Explosionsgefahr
Flüssiger Stickstoff	-196	Gefahr der Frostschädigung, gute Entlüftung erforderlich

Tatsächlich übertragbare Kraft

• Mit dem gemessenen Übermaß U' und der so bekannten tatsächlichen Fugenpressung $p'_{\rm F}$ kann die übertragbare Kraft $F'_{\rm res}$ ermittelt werden (siehe Folie 6)

$$F'_{\text{res}} = \sqrt{(F'_a)^2 + \frac{4 \cdot (M'_t)^2}{D_F^2}} = p'_F \cdot \nu \cdot \pi \cdot D_F \cdot L_F$$

Drehzahleinfluss

- Durch die mit steigender Drehzahl größer werdende Fliehkraft nimmt der Fugendruck ab, wodurch sich die übertragbaren Kräfte verringern.
- Dies muss Berücksichtigung finden, wenn für die Umfangsgeschwindigkeit gilt:
 - $-v>30~{\rm m\cdot s^{-1}}$ bei Paarungen Stahl/Stahl und $Q_{\rm A}\geq0.5$
 - $-v>12~{\rm m\cdot s^{-1}}$ bei Paarungen Stahl/Stahl und $Q_{\rm A}\geq 0.2$
 - $-v > 8 \text{ m} \cdot \text{s}^{-1}$ bei eine GJL-Nabe und $Q_A \ge 0.2$

• Die Grenzdrehzahl, bei der der Fugendruck zu Null wird, lässt sich bei gleichem Werkstoff von Welle und Nabe berechnen zu:

$$n_{\rm g} = \frac{2}{\pi \cdot D_{\rm Aa}} \cdot \sqrt{\frac{2 \cdot p_{\rm F}'}{(3 + \nu) \cdot (1 - Q_{\rm A}^2) \cdot \rho}}$$

• Der mit steigender Drehzahl einhergehende Verlust übertragbarer Kraft ergibt sich zu

$$\Delta F_{\rm res} = F_{\rm res} \cdot \left(\frac{n}{n_{\rm g}}\right)^2$$

mit der Betriebsdrehzahl n.