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Abstract

Geostatistics is a very important branch of spatial statistics. It jhas been developed on the basis
of very practical concerns (mining research), and has undergone very significant methodological
developments driven by Georges Matheron and his colleagues at the Fontainebleau Ecole des
Mines. The simplest illustrations relate to problems such as the interpolation of temperatures or
precipitation. But the most important work concerns geological and mining applications (e.g. Chiles
et al. 2009). Applying geostatistics to demographic or social examples is more difficult, but it seems
important to present the broad outline of the method — how to treat stationarity and introduce
intrinsic stationarity; introducing the semivariogram to study spatial relations; data interpolation
using the kriging method. Beyond mining applications, variogram analysis can be used in mixed
models to analyse residuals.



114 Chapter 5. Geostatistics

R Prior reading of Chapter 1: "Descriptive spatial analysis", and Chapter 4: "Spatial distributions
of points" is recommended.

Modelling spatial data is made difficult by the fact that there is only one realisation of the phe-
nomenon. As in spatial point patterns, only one realisation is also observed, for which all the data
are available. For continuous data (potentially observable at any point in the space), only partial
data are available, from which values at unobserved points may be predicted. It is this lack of
information that will lead to the use of probabilistic models.

Randomness is not a property of the phenomenon, but a characteristic of the model used to
describe it. Geostatistics, which studies continuous phenomena, has enabled the development of
specific methods to study spatial relationships between observations and to construct predictive
tools.

Geostatistics owes its name to the discipline’s origins in mining (Krige, Matheron). Many
of the basic concepts of the discipline derive from the work of Georges Matheron (regionalized
variable, random function, intrinsic assumption, nugget effect 1, Matheron et al. 1965). Figure 5.1
presents a summary illustrating the pathway from reality towards a more abstract model, a model
that will itself enable us to act in expected best way (Chauvet 2008).

Figure 5.1 – Diagram of a geostatistical analysis
Source: Chauvet 2008

5.1 Random functions

5.1.1Definitions
As in Figure 5.1, we designate z(s) the regionalized variable, and Z(s) the random function, the

letter s designating the position in space. We will retain this wording here as specific to geostatistics.
A phenomenon occurring in space is qualified as regionalized. A regionalized variable is a function
that describes this phenomenon satisfactorily. This is a first level of abstraction, where we remain

1. These terms are defined later in this chapter.
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in the description, without resorting to a probabilistic model. If we make no additional assumption,
we remain within the framework of transitive geostatistics.

The next step, qualified as intrinsic geostatistics, introduces the concept of random function.
It results from a choice — considering the regionalized variable as the realisation of a random
function. This choice makes it possible to use powerful probabilistic tools, the counterpart being
moving further from reality. The probabilistic model is a calculation intermediary that is expected
to be used in understanding the regionalized phenomenon.

The random function is fully characterised by the knowledge of its distribution function.

F(s1,s2, ...sn;z1,z2, ...zn) = P{Z(s1)≤ z1,Z(s2)≤ z2, ...,Z(sn)≤ zn} . (5.1)

Since we have only one realisation of our regionalized phenomenon, we need to find another
way to make the inference. Citing Matheron et al. 1965: "For inference to be possible, we need
to introduce additional assumptions about random function Z(s) so as to reduce the number of
parameters on which its law depends. This is the purpose of the stationary assumption we are going
to define: a stationary function is repeated itself in some form in space, and this repetition once
again makes statistical inference possible from a single realisation." Each observation will therefore
be treated as the realisation of a random variable.

5.1.2 Stationarity
Three meanings of stationarity are used in geostatistics:

— strict stationarity;
— second order stationarity;
— intrinsic stationarity.

Definition 5.1.1 — Strict stationarity. Strict stationarity directly refers to the probability law
of the process. There is strict stationarity if by moving using translation, all the characteristics
of the random function remain the same.
Formally, the joint distribution of Z(si) is the same as that of Z(si +h), h indicating translation
relative to the initial position. This form of stationarity is not operational and very restrictive.

Definition 5.1.2 — Second order stationarity. Second order stationarity or weak stationarity
no longer imposes conditions on the probability law, but only on the mean and covariance. These
indicators must be invariable by translation.
Given that Z(s) breaks down into a deterministic component and a random component
Z(s) = m(s)+R(s)

second order stationarity requires the following conditions:
— E [Z(s)] = m(s)∀s.

The invariance of the expected value by translation leads to constancy of the deterministic
component.
m(s+h) = m(s) = m∀s;

— The variance is constant: E
[
(Z(s)−m)2

]
= σ2;

— Covariance depends only on the spatial shift:
Cov [Z(s+h),Z(s)] = E [(Z(s+h)−m)(Z(s)−m)] =C(h).

In practice, this stationarity assumption is often too strong. The most important limit is that
the mean can change over the area of interest, and that the variance may not be bounded when this
area of interest grows. It was George Matheron who drew the consequences of the limits of weak
stationarity by suggesting the even weaker concept of intrinsic stationarity (Matheron et al. 1965).
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Definition 5.1.3 — Intrinsic stationarity. The intrinsic stationarity assumption is as follows:
E
[
(Z(s+h)−Z(s))2

]
= 0.

Increments can be stationary without the process itself being stationary.

A new function can then be defined, called variogram, based on differences between values
and shifted values, and which depends only on the offset:

γ(h) =
1
2

E [Z(s+h)−Z(s)]2 (5.2)

Second order stationarity leads to intrinsic stationarity, but the reverse is not true. A random
function can enable a variogram to be calculated, but this is not the case for covariance and the
autocorrelation function.

5.2 Spatial variability
5.2.1 Covariance and correlogram

Definition 5.2.1 — Covariance. The covariance function will allow the relationships between
all point pairs to be considered. If we consider two points si and s j, covariance can be defined
by Equation 5.3.

Cov [Z(si),Z(s j)] = E [(Z(si)−m)(Z(s j)−m)] (5.3)

When the process is second-order stationary, covariance will no longer depend only on
the distance between the points |si− s j|. If we designate h this distance, we will define C(h)
calculated for all values of h taking into account all point pairs located at a distance h from each
other. Covariance function C(h) is defined by Equation 5.4.

C(h) =Cov [Z(s+h),Z(s)] = E [(Z(s+h)−m)(Z(s)−m)] (5.4)

It reflects how the covariance of observations changes when their distance increases. When h is
equal to 0, covariance is equal to variance.

C(0) = E
[
(Z(s)−m)2

]
= σ

2 (5.5)

The covariance function has the following properties:

C(−h) =C(h) (5.6)

|C(h)| ≤C(0). (5.7)

For the covariance function to be called allowable, the variance of a linear combination of
variables must be positive: Var [∑n

i=1 λiz(si)] = ∑
n
i=1 ∑

n
j=1C(si− s j).

This results in C being positive semi-definite.

Definition 5.2.2 — Autocorrelation function. The autocorrelation function ρ(h) is defined as
a function of h by ratio C(h)

C(0) . Its value is between -1 and +1. The following relationships can be
shown when second order stationarity is verified:

γ(h) =C(0)−C(h)

γ(h) = σ
2 (1−ρ(h)) .

(5.8)
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Box 5.2.1 — Estimate of the covariance function. The covariance function is estimated from
n(h) point pairs, as defined below, for i variant from 1 to n(h).

Ĉ(h) =
1

n(h)

n(h)

∑
i=1

(z(si)−m)(z(si +h)−m) (5.9)

with n(h) =Card
{
(si,s j)/

∣∣si− s j
∣∣≈ h

}
5.2.2 Variogram

The literature contains variogram or semivariogram expressions. Some authors (Matheron et al.
1965) believe that the term semivariogram should be used for γ(h) as defined in Equation 5.10, the
variogram corresponding to 2γ(h). This is the choice we make in this article.

Out of the following three indicators – covariance function, autocorrelation function and
variogram – the latter is most used to the extent that it refers to the weakest form of stationarity and
therefore to the least restrictive conditions on the local behaviour of the mean.

γ(h) = σ
2 (1−ρ(h)) (5.10)

The variogram has the following properties:

γ(h) = γ(−h)

γ(0) = 0
γ(h)

‖h‖2 → 0 quand ‖h‖→ ∞

(5.11)

For any set of real {a1,a2, ...am} verifying ∑
m
i=1 ai = 0, we have the following property:

m

∑
i=1

m

∑
j=1

aia jγ(si− s j)≤ 0 (5.12)

When the process is isotropic:

γ(h) = γ(‖h‖) (5.13)

Box 5.2.2 — Estimate of the experimental variogram. An experimental variogram can be
estimated from point pairs defined as previously.

γ̂(h) =
1

n(h)

n(h)

∑
i=1

(z(si +h)− z(si))
2 (5.14)

where n(h) =Card
{
(si,s j)/

∣∣si− s j
∣∣≈ h

}
The variogram can be estimated in different directions to highlight any anisotropy of the phe-
nomenon studied.

5.2.3 Empirical application
Geostatistics with R

The packages dedicated to geostatistics in this chapter are gstat and geoR, which are most
commonly used. Many other packages are available on the CRAN website. Below is a list with
comments produced by Roger Bivand.



118 Chapter 5. Geostatistics

Package gstat provides a wide range of functions for univariate and multivariate geostatistics,
including larger data sets, while geoR and geoRglm contain functions for model-based geostatistics.
Variogram diagnostics can be performed with vardiag. Automated interpolation using gstat is
available in automap. This family of packages is supplemented by intamap with automatic
interpolation procedures and psgp, which implements Gaussian process regression kriging. A
broad range of similar functions is found in the fields package. The spatial package is delivered
with the R database and contains several main functions. The spBayes package is compatible
with Gaussian univariate and multivariate models with MCMC. The rampes package is another
Bayesian geostatistical modelling set. The geospt package contains basic geostatistical and radial
functions, including prediction and cross-validation. In addition, it includes functions to design
optimal spatial sampling networks based on geostatistical modelling. spsann is another package
that offers functions to optimise sample configurations, using spatial simulated annealing. The
geostatsp package offers geostatistical modelling functions using Raster and SpatialPoints objects.
Non-Gaussian models are adapted using INLA, and Gaussian geostatistical models use the estimate
of maximum likelihood. The FRK package is a spatial/spatial-temporal modelling and prediction
tool with large data sets. The approach, discussed in Cressie and Johannesson (2008), breaks down
the field, and therefore the covariance function, using a fixed set of n basic functions, where n is
generally much smaller than the number of data points (or polygons).

RGeostats package
RGeostats is an R-language package. It was developed by the geostatistics team at the Geo-

sciences Centre of Mines ParisTech. It implements all geostatistical functions available from
the (commercial) Geoslib library (written in C/C++). It therefore benefits from the experience
accumulated in the mining field, and is especially dedicated to such applications. It makes it
possible to carry out all the implementations described in this chapter, and to deal with the support
effects.

RGeostats allows R users, by loading and installing it, to access the normal Geostatistics
functionalities. It is also a platform that enables the Geostatistics team at the Geosciences Centre to
develop prototypes for the application of new models (e.g. Boolean simulations, bi-plurigaussian
simulations) or new techniques (flow of fluids, simulations of the first arrival time in geophysics).
The functions are described, but the code is not accessible, and there are few examples.

RGeostats can be downloaded from the following address: cg.ensmp.fr/rgeostats.

Exploratory analyses
The proposed application uses Swiss rainfall data. This database is widely used in spatial

studies, particularly in Diggle et al. 2003. It is supplied in the R geoR package. The observations
are rainfall readings from 467 weather stations in Switzerland, and were made on 8 May, 1986.
This is indeed a continuous data point, as rainfall can potentially be recorded at any point in the
country. It can therefore fall within geostatistical modelling, but it is easier to understand than
mining data. In addition to rainfall, measured in millimetres, data about the altitude of weather
stations is provided.

In the geoR package, there are three Spatial Interpolation Comparison (SIC) databases:
— Sic.100: sample of 100 observations that may be used to make interpolations;
— Sic.367: observations not included in the sample that will enable estimates and observations

to be compared;
— Sic.all: set.

The features of geoR will be used here, but gstat and RGeostats provide analysis tools.

Figure 5.2 shows the data sampled (in green) and the control data, the circles being proportional
to the rainfall recorded.

cg.ensmp.fr/rgeostats
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Figure 5.2 – Rainfall in Switzerland
Source: Swiss rainfall from the geoR package

library(geoR)
points(sic.100, borders=sic.borders,col="green")
points(sic.367, borders=sic.borders,col="red",add=TRUE)

The geoR package provides some descriptive representations using the plotgeodata function.
Figure 5.3 shows, from left to right and top to bottom:

— representation of the level of rainfall, based on the quantiles of the variable;
— rainfall based on latitude;
— rainfall based on longitude;
— the histogram of rainfall data.

library(geoR)
plot.geodata(sic.100,bor=sic.borders)

The histogram in Figure 5.3 suggests that the variable’s distribution is not Gaussian, and that a
data transformation could be considered since the most common methods only have interesting
properties in the Gaussian context.

Variogram cloud and experimental variogram
In intrinsic geostatistics, the variogram cloud is a cloud of data points expressing their vari-

ability based on their interspacing. The variogram cloud provides the graphical representation of
the values used to calculate the variogram. For a dataset of variable Z at points (s1, .,si, .,sn), it
represents the abscissa points

∥∥si− s j
∥∥ and ordinate points 1

2 [z(si)− z(s j)]
2. It can be represented

as a point cloud and as a boxplot (see Figure 5.4).

library(geoR)
library(fields)
vario.b<- variog(sic.100,option =c ("bin", "cloud", "smooth"),
bin.cloud=TRUE)
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Figure 5.3 – Some descriptive statistics
Source: Swiss rainfall from the geoR package

Figure 5.4 – Variogram cloud
Source: Swiss rainfall from the geoR package
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vario.c <- variog(sic.100, op="cloud")
bplot.xy(vario.c$u,vario.c$v, breaks=vario.b$u,col="grey80",
lwd=2,cex=0.1,outline=FALSE)

Since these representations are hard to read, the most useful representation is the experimental
variogram (defined in box 5.2.2), shown in Figure 5.6 based on a construction diagram shown in
Figure 5.5.

Figure 5.5 – Experimental variogram: construction diagram
Source: Swiss rainfall from the geoR package

Figure 5.6 – Experimental variogram
Source: Swiss rainfall from the geoR package

library(geoR)
vario.ex<- variog(sic.100, bin.cloud=TRUE)
plot(vario.ex)

In Figure 5.6, all observed points are used to calculate the variogram. But the phenomena
studied are not necessarily isotropic, and it may be useful to calculate variograms based on several
directions of space (see Figure 5.7).

library(geoR)
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Figure 5.7 – Directional variograms
Source: Swiss rainfall from the geoR package

vario4<-variog4(sic.100)
plot(vario4,same=FALSE)

5.3 Fitting variogram
In section 5.4, which is dedicated to kriging, we see that the value of the estimators depends

on observations and the spatial autocorrelation structure, understood by the variogram. Variogram
analysis is therefore not just a passage point. It forms the central point of the geostatistical approach.
The empirical variograms shown in section 5.2 cannot be used directly because they don’t meet
the properties listed in section 5.2.2. To be used in geostatistical models, they must first be
adjusted to theoretical models with well-defined analytical forms, which implies a vision of what a
semi-variogram should be.

5.3.1 General shape of the variogram
We begin by presenting the most classical model, from which theoretical variograms will be

constructed, making it possible to define, among other things, the kriging equations (see section
5.4).

This variogram has a form that is initially increasing, up to a certain level. The value of h
corresponding to this plateau is called the range. We understand it by referring to the relationship be-
tween covariance, when it is defined, and the semi-variogram, i.e. γ(h) =C(0)−C(h). Covariance
is very often a decreasing function of distance, which implies the increase of the semi-variogram,
but this is not always the case (e.g. cardinal sine model).

At a certain distance, which is called the range, covariance will be cancelled out. This range is
the range of spatial dependence. There is no longer any relationship between the values observed at
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Figure 5.8 – Theoretical variogram

a distance beyond this range. For the semi-variogram this means that, beyond this range, its value
is constant and we have: C =C(0) = σ2.

For h = 0, the value of the variogram is zero, by definition. But in practice we see that for values
very close to 0, the variogram takes values greater than 0 and there is therefore a discontinuity at
the origin. We call the limit of the variogram at zero a nugget. As Matheron explains (Matheron
et al. 1965): "The concept of scale plays a key role here. At a scale of ten metres, a transition
phenomenon where the range is measured in centimetres is only seen on γ(h) as a discontinuity
at the origin, i.e. a nugget effect." It represents the variation between two measurements made at
infinitely close locations, and from two effects there may arise:

— variability of the measuring instrument: the nugget therefore partly measures the statistical
error of the measuring instrument.

— a real nugget effect: a sudden change in the measured parameter; the historical case is the
passage without transition from a gold nugget to soil containing virtually no gold.

Other forms of variograms may be encountered. Figure 5.9 shows two classical cases. The first is
the linear variogram, the second the pure nugget effect. When the variogram is unbounded, the
mean and variance are not defined. This most frequently indicates a large-scale trend, which must
be modelled. The pure nugget effect reflects the lack of spatial dependence.

5.3.2 Usual variograms
Geostatistical literature offers many functions that satisfy the properties of the semi-variogram as

shown in Figure 5.8. These configured functions must be used to describe the different components
(range, plateau, nugget). They must also handle the behaviour of the function at the origin (linear
trend, horizontal or vertical tangent).

We will only discuss four examples of variogram models here (Figure 5.10), the others being
described in the reference works (Armstrong 1998, Chiles et al. 2009, Waller et al. 2004).

Definition 5.3.1 — Spherical model.

γ(h) =


0

c0 + cs

[
3
2

(h
a

)
− 1

2

(h
a

)3
]

c0 + cs

h = 0
0 < h≤ a

h > 0

(5.15)
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Figure 5.9 – Two atypical semi-variograms

Definition 5.3.2 — Exponential model.

γ(h) =

{
0

c0 + cs
[
1− exp

(
−h

a

)] h = 0
h > 0

(5.16)

Definition 5.3.3 — Gaussian model.

γ(h) =

{
0

c0 + cs
[
1− exp

(
−(h

a)
2
)] h = 0

h > 0
(5.17)

Definition 5.3.4 — Power model.

γ(h) =

{
0

c0 +bhp

h = 0
h > 0

(5.18)

Definition 5.3.5 — Matern model.

γ(h) =

 0

cs

[
1−

h
a

2α−1Γ(α)
Kα

(h
a

)] h = 0
h > 0

(5.19)

where Γ refers to the gamma function and Kα , the modified Bessel of the second kind of
parameter α .

Definition 5.3.6 — Cardinal sine model.

γ(h) =

{
0

cs
[
1− a

h sin
(h

a

)] h = 0
h > 0

(5.20)

As explained by Matheron and the geostatisticians of the Ecole des Mines in Fontainebleau,
modelling is a matter of choice. Choosing a theoretical model is a decisive moment in the
geostatistician’s approach, but we cannot associate a priori a theoretical variogram to any given
type of process. We have to take account both empirical knowledge of the phenomenon and the
shape of the experimental variogram obtained. As this is the nugget effect, one might think that it is
not appropriate for data such as rainfall.
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Figure 5.10 – Four examples of theoretical variograms

5.3.3 Variogram fitting

A functional form appropriate to the experimental variogram must then be found. An important
first step is to obtain a smoothed representation of the variogram, which can be obtained using
the variog function of geoR. As always, this smoothing depends on the choice of window. The
smoothed representation is sometimes considered adequate to visually estimate the variogram.
Many geostatisticians criticise this approach as too empirical, but this step can give some indications,
particularly on behaviour at the origin.

Figure 5.11 shows three examples of fitting the experimental variogram to rainfall data in
Switzerland, using a spherical variogram, an exponential variogram without nugget and an exponen-
tial variogram with nugget. These adjustments are made using the lines.variomodel function of
geoR (Ribeiro Jr et al. 2006). This is the first visual approach. We can see that while the exponential
variogram with nugget apparently fits better to the data than the variogram without nugget, the
introduction of this very short distance effect has no physical justification for rainfall.

library(geoR)
vario.ex<- variog(sic.100,option="bin")
vario.sphe<-(variofit(vario.ex,cov.model= "spher",
ini.cov.pars=c(15000,200)))
par(mfrow=c(2,2), mar=c(3,3,1,1), mgp =c (2,1,0))
plot(vario.ex,main="Spherical")
lines.variomodel(cov.model="sphe",cov.pars=c(15000,100),
nug=0,max.dist=350)
plot(vario.ex,main="Exponential")
lines.variomodel(cov.model="exp",cov.pars=c(15000,100),
nug=0,max.dist=350)
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Figure 5.11 – Three examples of experimental variogram adjustment
Source: Swiss rainfall from the geoR package

plot(vario.ex,main="Exponential with nugget effect")
lines.variomodel(cov.model="exp",cov.pars=c(10000,100),
nug=5000,max.dist=350)
plot(vario.ex,main="Exponential with nugget effect")
lines.variomodel(cov.model="matern",cov.pars=c(10000,100),
nug=0,max.dist=350,kappa=0.5)

The choice is therefore a compromise as noted by Waller et al. 2004: "Even if a particular model
is deemed better for a particular dataset using a statistical adjustment method, it may not necessarily
be the best choice. For example, the Gaussian model is often selected using an automatic adjustment
criterion, but this provides smoothing that often appears unrealistic. Ultimately, the final choice
of model should reflect both the result of the procedure for adjusting the statistical model and a
consistent interpretation with scientific understanding of the process being studied.”

Many methods are suggested to fit the variogram — methods based on ordinary or weighted
least squares, methods based on likelihood, as well as Bayesian methods. In geoR, the functions
used are variofit (least squares) and likfit (maximum likelihood). The methods are quite
technical and would require significant developments. Refer to Ribeiro Jr et al. 2006 for an
illustration of these methods using simulated data. The R code is supplied in the article.

Fitting by Ordinary Least Squares (OLS)

We look for the vector of the function’s parameters that minimises a simple objective function,
the sum of squares of the distances between the value of the experimental semi-variogram and the
value of the theoretical variogram.

θ̂MCO = argmin
θ∈Θ

k

∑
i=1

(γ̂(hi)− γ(hi;θ))2 (5.21)

Fitting by Weighted Least Squares (WLS)
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Ordinary least squares do not take into account the number of point pairs involved in the
calculation of each point of the experimental variogram, unlike the weighted least squares.

θ̂MCP = argmin
θ∈Θ

k

∑
i=1

#N(hi)

γ(hi;θ)2 (γ̂(hi)− γ(hi;θ))2 (5.22)

Fitting by Generalised Least Squares (GLS)

Other authors have proposed generalised least squares to take heteroscedasticity into account.

θ̂MCG = argmin
θ∈Θ

(γ̂n− γ(θ))T Cov(γn)
−1 (γ̂n− γ(θ)) (5.23)

where γ is the vector (γ1,γ2, ...,γK).

Fitting by maximum likelihood (ML)

The parameters of the model are estimated by calculating the likelihood. In the non-Gaussian
case, the estimates are not robust. The calculations are tedious, and this method must only be used
for small samples. In addition, this method requires second order stationarity and cannot be applied
to unbounded variograms. In the latter case, the weighted least squares must be used.

5.4 Ordinary kriging
5.4.1 Principle

The term kriging was coined by to Georges Matheron, and refers to the pioneering work
by South African engineer Danie Krige. Kriging is a very powerful interpolation method. The
examples provided here are very basic. Applications to mining or geological research provide
many examples where we want to estimate volumes and not just simple interpolations. We will not
discuss simple kriging here, which assumes the mean value is known, but ordinary kriging, which
forms the highlight of geostatistics. In ordinary kriging, the mean value is unknown. Simple uses of
it can be found in interpolating temperatures (Joly et al. 2009) or in air quality studies (Lloyd et al.
2004). Assume that Z(.) is intrinsically stationary, that its variogram γ(h) is known but its mean m
is unknown. We have a data set Z = [Z(s1), ..,Z(si), ..,Z(sN)]

t . We want to predict the value of Z(.)
as an unobserved point and calculate Z(s0). The ordinary kriging estimator will be defined as a
linear combination of observations.

ZOK(s0) =
N

∑
i=1

λiZ(si) (5.24)

The weighting values λi are not calculated using a distance function but by using the semi-
variogram and two statistical criteria. This way, there is no bias and minimisation of the mean
squared prediction error. The absence of bias brings us to Equation 5.25:

E
[
ẐOK(s0)

]
= E [Z(s0)] = m (5.25)

E
[
ẐOK(s0)

]
=

N

∑
i=1

λiE[Z(si)] =
N

∑
i=1

λim →
N

∑
i=1

λi = 1

Therefore, using the Lagrange multipliers method, we will minimise E
[
ẐOK(s0)−Z(s0)

]2
under the constraint ∑

N
i=1 λi = 1.
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Box 5.4.1 shows how to introduce the variogram and end up with the kriging equations.

N

∑
j=1

λ jγ(si− s j)+m = γ(s0− si)

N

∑
i=1

λi = 1

(5.26)

The value of ẐOK(s0) is determined by points that depend on the correlation between the
estimation point and the observation points, but also correlations between the observation points.
These kriging equations are generally best written in matrix form:



λ1
λ2
.
.

λN

m

=



γ(s1− s1) .. γ(s1− sN) 1
γ(s2− s1) .. γ(s2− sN) 1

. .. . .

. .. . .
γ(sN− s1) .. γ(sN− sN) 1

1 .. 1 0



−1

γ(s0− s1)
γ(s0− s2)

.

.
γ(s0− sN)

1

 (5.27)

or in a more condensed form:

λ0 = Γ
−1
i j γ0. (5.28)

Matrix Γ does not depend on the estimation point, and does not therefore have to be recalculated
every time. The values of all γ(si− s j) and γ(s0− si) are calculated using values from the estimated
variogram. The mean squared prediction error r, known as kriging variance, is equal to λ t

0γ0. In
short, kriging provides an unbiased estimator of minimum variance that is also an exact interpolator
since, for every known point, it returns an estimated value equal to the observed value.

Box 5.4.1 — Estimate of kriging equations. Using the Lagrange multipliers method, we
minimise:

E
[
ẐOK(s0)−Z(s0)

]2 under the constraint ∑
N
i=1 λi = 1.

We’ll look for λ1, ...,λN and multiplier m that enable the constraint to be introduced. The
objective function is therefore written:

E

( N

∑
i=1

λiZ(si)−Z(s0)

)2
−2m

(
N

∑
i=1

λi−1

)
. (5.29)

Due to the constraint, we can write:[
N

∑
i=1

λiZ(si)−Z(s0)

]2

=−1
2

N

∑
i=1

N

∑
j=1

[
(Z(si)−Z(s j))

2
]
+

N

∑
i=1

[
(Z(si)−Z(s0))

2
]
. (5.30)

By taking the expected value of the expressions, we have:

E

[
N

∑
i=1

λiZ(si)−Z(s0)

]2

=−1
2

N

∑
i=1

N

∑
j=1

λiλ jE
[
(Z(si)−Z(s j))

2
]
+

N

∑
i=1

λiE
[
(Z(si)−Z(s0))

2
]
.

(5.31)
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This expression brings out the variogram and we can rewrite the constraint as:

−
N

∑
i=1

N

∑
j=1

λiλ jγ(si− s j)+2
N

∑
i=1

γ(s0− si)−2m

(
N

∑
i=1

λi−1

)
. (5.32)

We will minimise this expression by deriving in relation to λ1, ...,λN and m, which leads to the
kriging equations:

N

∑
j=1

λ jγ(si− s j)+m = γ(s0− si)

N

∑
i=1

λi = 1.

(5.33)

5.4.2 Application to rainfall data
Raw data

An initial kriging was carried out from raw data using a spherical model for the variogram.
Figure 5.12 shows the spherical variogram used, after estimating the parameters using maximum
likelihood compared to the experimental variogram.

Figure 5.12 – Spherical variogram for raw data
Source: Swiss rainfall from the geoR package

library(geoR)
vario.ex<- variog(sic.100, bin.cloud=TRUE)
plot(vario.ex,main="")
lines.variomodel(cov.model="spher",cov.pars=c(15000,50),
nug=0,max.dist=300)

This way, we can calculate kriged values on a grid, as well as the kriging variances represented
in Figure 5.13. The values are represented according to graphical semiology conventions, the warm
colours corresponding to the high values.
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Figure 5.13 – Kriging estimates and variances for raw data
Source: Swiss rainfall from the geoR package

library(geoR)
pred.grid <- expand.grid(seq(0,350, l=51),seq (0,220, l=51))
rgb.palette <- colorRampPalette(c("blue", "lightblue",
"orange", "red"),space = "rgb")
kc<- krige.conv(sic.100, loc = pred.grid,
krige=krige.control(cov.model="spherical",cov.pars=c(15000,50)))

image(kc, loc = pred.grid,col =rgb.palette(20) ,xlab="Coord X",
ylab="Coord Y",borders=sic.borders,main="Estimation")
image(kc, krige.var,loc = pred.grid,col=rgb.palette(20),
xlab="Coord X",ylab="Coord Y",borders=sic.borders,
main="Kriging variance")

The estimate was made using the 100 points of the sample. We can:
— confirm that kriging is unbiased on the points observed;
— measure differences between estimated values and observed values.

Figure 5.14 – Estimated and observed values
Source: Swiss rainfall from the geoR package

library(geoR)
kc1<- krige.conv(sic.100, loc = sic.100$coords,
krige=krige.control(cov.model="spherical",cov.pars=c(16000,47)))
kc2<- krige.conv(sic.100, loc = sic.367$coords,
krige=krige.control(cov.model="spherical",cov.pars=c(16000,47)))
plot(sic.100$data,kc1$predict,xlab="Observed",ylab="Estimated",
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main="Control sample")
abline(a=0,b=1,col="red")
plot(sic.367$data,kc2$predict,,xlab="Observed",ylab="Estimated",
main="Control")
abline(a=0,b=1,col="red")

Transformed data
The histogram in Figure 5.3 indicates that the distribution of rainfall data deviated from a

Gaussian distribution. A first possibility, classical in statistics, is to modify variables. In fact, it
may be better to work with data that obey a normal law. This is not absolutely necessary in the
kriging model, but the linearity assumption in kriging is only really effective when the data are
Gaussian. Classical transformations are logarithmic transformations, or more generally Box-Cox
transformations. The boxcoxfit function of geoR suggests a coefficient close to 0.5. Exploratory
data are shown in Figure 5.15.

Figure 5.15 – Exploratory data, after Box-Cox transformation
Source: Swiss rainfall from the geoR package

library(geoR)
plot.geodata(sic.100,bor=sic.borders,lambda=0.5)

Rainfall data have frequently been studied. Ribeiro Jr et al. 2004 recommends the same trans-
formation of variables. For the variogram, they suggest using a Matern model for which K = 1.
The parameters of the model are determined using maximum likelihood. The experimental and
theoretical variograms for transformed data are shown in Figure 5.16.

library(geoR)



132 Chapter 5. Geostatistics

Figure 5.16 – Experimental variogram and theoretical variogram after transformation
Source: Swiss rainfall from the geoR package

vario.ext<- variog(sic.100,option="bin",lambda=0.5)
plot(vario.ext)
lines.variomodel(cov.m = "mat",cov .p =c (105, 36), nug = 6.9,

max.dist = 300,kappa = 1, lty = 1)

As for raw data, we can provide mapping of kriging estimates and values (Figure 5.17).

Figure 5.17 – Kriging estimates and variance of rainfall in Switzerland after transformation
Source: Swiss rainfall from the geoR package

library(geoR)
kct<- krige.conv(sic.100, loc = pred.grid,
krige=krige.control(cov.model="matern",cov.pars=c(105, 36),
kappa=1,nugget=6.9,lambda=0.5))
pred.grid <- expand.grid(seq(0,350, l=51),seq (0,220, l=51))
rgb.palette <- colorRampPalette(c("blue", "lightblue",
"orange", "red"),space = "rgb")
image(kct, loc = pred.grid,col =rgb.palette(20) , xlab="Coord X",
ylab="Coord Y",borders=sic.borders,main="Estimation")
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image(kct, krige.var,loc = pred.grid,col =rgb.palette(20) ,
xlab="Coord X",ylab="Coord Y",borders=sic.borders,
main="Kriging variance")

The estimated values and observed values can be compared (5.18).

Figure 5.18 – Estimated and observed values
Source: Swiss rainfall from the geoR package

library(geoR)
kct1<- krige.conv(sic.100, loc = sic.100$coords,
krige=krige.control(cov.model="spherical",cov.pars=c(16000,47),
kappa=1,nugget=6.9,lambda=0.5))
kct2<- krige.conv(sic.100, loc = sic.367$coords,
krige=krige.control(cov.model="spherical",cov.pars=c(16000,47),
kappa=1,nugget=6.9,lambda=0.5))
plot(sic.100$data,kct1$predict,xlab="Observed",ylab="Estimated",
main="Sample")
abline(a=0,b=1,col="red")
plot(sic.367$data,kct2$predict,,xlab="Observed",ylab="Estimated",
main="Control sample")
abline(a=0,b=1,col="red")

If we take the square root of the mean quadratic deviation as a criterion,

RMSE(y) =

√
∑

n
i=1(ŷi− yi)2

n

we see an improvement in prediction if we use the transformed data modelled by the Matern model.
In the case of raw data, the value of RMSE is 62.3, while for transformed data it is 55.2.
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5.5 Support and change of support
The question of analysis scales is of primary importance in spatial analysis. Geographers,

especially Openshaw, use the term Modifiable areal unit problem (MAUP), discussed in Chapter 1:
"Descriptive spatial analysis". The MAUP can be summarised as overlaying a zoning effect and an
aggregation effect. This can be illustrated simply using surface data, by showing the variability of
results obtained depending on the territorial breakdown used.

In geostatistics, we talk about change of support problem (COSP). This problem is actually
more general than MAUP, since it refers to size, shape and directions. The COSP in geostatistics
originates from very practical concerns linked to mining research, the origins of which can be found
in Krige’s work, which was then expanded on by Matheron. Krige’s articles are contemporary with
those by Yule and Kendall in classical statistics, which anticipate those by Openshaw in geography.
From a practical viewpoint, geostatisticians quickly realised that it was more important to predict a
value over a large block than on one point, even though the first prediction derived from the second.

The support can be a point, a larger or smaller block, or a meeting of points in a given geometric
configuration. There is a relationship between the values taken on different volumes. In the context
of additive variables, for a volume V partitioned in units vi of same support v (V being a multiple of
v), we have:

z(V ) =
1
n

n

∑
i=1

z(vi) (5.34)

or if v is unique:

z(V ) =
1
V

∫
V

z(x)dx. (5.35)

Z(V ) is qualified as a regularised variable, because it increases statistical regularity. In fact, it
is a specific form of regularised variable, the more general form being a Z convolute (Chiles et al.
2009).

5.5.1 Empirical dispersion variance and Krige additivity relationships
Definition 5.5.1 — Empirical dispersion variation.

s2(v|V ) =
1
n

n

∑
i=1

[z(vi)− z(V )]2 (5.36)

If V is included in a broader domain called D, we can demonstrate relationship 5.37, called the
Krige additivity relationship:

s2(v|D) = s2(v|V )+ s2(V |D). (5.37)

Armstrong 1998 gives an educational example from the yields in millet on 16 blocks of 2m
side, divided into 64 parcels of 1m side. The average is 201 in the case of blocks as in the case of
parcels. The variance of the dispersion of the blocks in the field is 16.64, that of the parcels 27.59,
which means that the dispersion of the parcels in the blocks is 10.85. (see 5.1).

5.5.2 Variogram of the regularised variable
Variance by block can be defined based on information about single data points (covariance

function).

Var [Z(V )] =C (V,V ) =
1

|V |2
∫

V

∫
V

C(x− y)dxdy (5.38)
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735 325 45 140 125 175 167 485
540 420 260 128 20 30 105 70
450 200 337 190 95 260 245 278
180 250 380 405 250 80 515 605
124 120 430 175 230 120 460 260
40 135 240 35 190 135 160 170
75 95 20 35 32 95 20 450

200 35 100 59 2 45 58 90

505 143 88 207
270 328 171 411
102 220 154 263
101 54 44 155

Table 5.1 – Observed values on parcels (top) and blocks (bottom)
Source : Armstrong 1998.

where C designates the covariance function for single data points and C designates covariance
of the data by block. Covariance is written:

Cov
[
Z(V ),Z(V ′)

]
=C(V,V ′) =

1
|V | |V ′|

∫
V

∫
V ′

C(x− y)dxdy. (5.39)

Covariance function CV is defined by introducing Vh which is the translation of support V by
vector h:

CV (h) =Cov [Z(V ),Z(Vh)] =C(V,Vh). (5.40)

From the unique variogram we can also deduce the variogram of the regularised variable:

γV (h) = γ(V,V h)− γ(V,V ) (5.41)

with γ(V,V ) = 1
|V |2

∫
V
∫

V γ(x− y)dxdy and γ(V,Vh) =
1
|V |2

∫
V
∫

Vh
γ(x− y)dxdy where γ is the

variogram calculated from unique observations.
We can then show that γV (h)∼ γ(h)− γ(V,V ), leading to the graph in Figure 5.19.

Figure 5.19 – Switch from unique variogram to regularised variogram

To switch from unique to regularised variogram, the same type of theoretical model is retained
by correcting the sill and the range.
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5.5.3 Block kriging
We can determine kriging equations, in the logic of ordinary kriging. From E [Z(x)] = m, we

deduce that E [ZV ] = m.

As for ordinary kriging, we are looking for an estimator that is a linear combination of the
observations collected.

ZV =
n

∑
i=1

λiZ(xi) (5.42)

The approach is the same as that shown in box 5.4.1 (minimisation under constraint) and we
get the following kriging equations:

n

∑
j=1

λ jγ(xi,x j)+µ = γ(xi,V ) pour i = 1,2, ...,n

n

∑
i=1

λi = 1
(5.43)

where γ(xi,V ) = 1
|V |
∫

V γ(xi− x)dx.

5.6 Extensions
Ordinary kriging is the basic method of geostatistics. But in the end, it is only part of it, and

there have been many developments, particularly at the Ecole des Mines in Fontainebleau.

Intrinsic stationarity assumptions remain fairly restrictive, in particular the constancy of the
mean. Many methods have been developed to introduce less constraining assumptions, or to use
supplementary information. In this paragraph, a number of modifications and variants will be
presented, mainly from Swiss rainfall data, and another frequently-used dataset on the contents of
various minerals in a meander of the River Meuse.

5.6.1 Cokriging
Geostatistics developed multivariate methods long ago. One of them is Cokriging, which will

consider several variables. It was defined by Waller et al. 2004 as follows:

Definition 5.6.1 — cokriging. "Cokriging is an extension of kriging to the case of two or more
spatial variables. It was originally developed as a technique for improving the prediction of a
variable for which only a few samples could be taken, by using its spatial correlation with other
more easily measured variables. Cokriging differs from kriging with external drift in that the
explanatory variables are no longer assumed to be fixed variables that indicate the nature of a
trend in the primary variable, but are themselves spatial random variables with expected values
and variograms.".

A cross co-variogram can be defined:

γZY (h) =
1

2p(h)

p(h)

∑
i=1

(z(si)− z(si +h))(y(si)− y(si +h)) (5.44)

with p(h) =Card
{
(si,s j)|

∣∣si− s j
∣∣≈ h

}
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Must like kriging, there will be several versions for cokriging. We will only discuss ordinary
cokriging. We will restrict ourselves to the case where only one auxiliary variable is introduced,
which will be called Y . The estimator we calculate takes the form:

Z(s0) =
nZ

∑
i=1

λiZ(si)+
nY

∑
i=1

αiY (si) (5.45)

with bias-free constraints:

nZ

∑
i=1

λi = 1

nY

∑
i=1

αi = 0.
(5.46)

In matrix form, the cokriging equations are written:
ΓZZ ΓZY 1 0
ΓY Z ΓYY 0 1
1′ 0′ 0 0
0 1′ 0 0




λ

α

µZ

µY

=


γZZ

γY Z

1
0

 (5.47)

This method will be illustrated using River Meuse data supplied in the sp package and particularly
studied by Pebesma (Pebesma 2001) and Rossiter (Rossiter 2017). The latter author provides R
programs on his website.

� Example 5.1 Analysis of River Meuse data by Cokriging

The River Meuse data provide localised measurements of lead, zinc and cadmium contents, but
also other variables such as altitude and organic matter content of the soil. The sp package contains
a table called Meuse, which can be loaded with the data(meuse) function. It also provides a
40x40 m grid – meuse.grid – and boundaries of the "département" – meuse.riv.

The data comprise 155 observations on 15x15 m supports, over the upper 20 cm of alluvial soils
on the right bank of the River Meuse. Associated data provide the geographical coordinates of the
observations, their altitude, and concentrations of cadmium, copper, lead, zinc and organic matter.
There is also the distance to the River Meuse and the flooding frequency. In the example provided
by Rossiter 2017, the lead content is studied (after logarithmic transformation). The organic matter
content that will be used as covariable.

The variogram analysis for Cokriging is based on studying the two simple variograms and the
cross-variogram.

The same exercise is performed using the logarithm of the zinc content as covariable. The
figure below shows the kriging results for the lead content, by ordinary kriging and by cokriging,
using the two variables mentioned above (zinc content and organic matter). Figure 5.22 shows the
kriged values (left column) and the residual values (right column). It successively shows ordinary
kriging, cokriging with organic matter as co-variable, and cokriging with the zinc content.

The code required for this processing is quite long. The link below provides access to the R
programme made available by Rossiter (Rossiter 2007)

http://www.css.cornell.edu/faculty/dgr2/teach/R/ck_plotfns.R.

If we compare the three models using RMSE, we find the following results:
— 0.166 for ordinary kriging;

http://www.css.cornell.edu/faculty/dgr2/teach/R/ck_plotfns.R


138 Chapter 5. Geostatistics

Figure 5.20 – Geography and sample locations
Source: Meuse data from the sp package

Figure 5.21 – Simple and cross variograms
Source: Meuse data from the sp package
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Figure 5.22 – Kriging and Cokriging estimate and variance
Source: Meuse data from the sp package

— 0.226 for cokriging with organic matter content;
— 0.078 for cokriging with zinc content.

Cokriging involving zinc content therefore improves the performance of ordinary kriging. This
is not true for cokriging with organic matter content. �

5.6.2 Universal kriging

In many cases, the average value is not constant, and ordinary kriging cannot be used. This
applies when deterministic relationships are observed between the value of the variable and its
position in space. The regionalized variable can then be written:

Z(s) = m(s)+Y (s) (5.48)

where m(s) represents the deterministic component.

� Example 5.2 — Analysis of River Meuse data by cokriging. The River Meuse data provide
two variables likely to build a deterministic component — distance to the river and flooding
frequency (Figure 5.23). They are different from the co-variables used previously in cokriging.

On his website, Rossiter provides examples used to compare the predictions from normal
kriging and from two universal kriging models.

If we compare the three models using RMSE, we find the following results:
— 0.173 for ordinary kriging;
— 0.141 for the model with flooding frequency;
— 0.145 for the model with flooding frequency and distance to the river.
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Figure 5.23 – Flooding frequency
Source: Meuse data from the sp package

Figure 5.24 – Three estimates
Note: ordinary kriging (left), flooding frequency (middle), flooding frequency and distance to the
river (right)
Source: Meuse data from the sp package
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Introducing flooding frequency improves predictions, but introducing the distance also degrades
it (probably due to correlation of the two variables). The R code used is available at the address
below. It is a good example to illustrate and extend what has been discussed in this chapter.

http://www.css.cornell.edu/faculty/dgr2/teach/R/gs_short_ex.pdf �

5.7 Combined models with variogram

Other uses can be found for tools developed in geostatistics. When performing regressions on
spatial data, the residuals are frequently spatially autocorrelated. This correlation can be highlighted
by the Moran spatial autocorrelation indicator (see Chapter 3: "Spatial autocorrelation indices").
This autocorrelation can be taken into account using spatial econometric models (see Chapter
6: "Space econometrics: current models") or geographically-weighted regression (see Chapter 9:
"Geographically-weighted regression").

When the data are suitable, the variogram can also be used to study the spatial structure of
residuals in linear models. Examples are more frequently described in books dealing with ecology
or epidemiology. Illustrations can be found in general spatial statistical handbooks such as Waller
et al. 2004 or Schabenberger et al. 2017, as well as books dealing with ecology, such as Plant 2012
or Zuur et al. 2009, the last two providing examples of implementation in R.

� Example 5.3 — Analysis of the spatial structure of residuals with a variogram. An example
of use on ecological data is provided by Zuur et al. 2009 2. The example comes from data collected
over forests in the Raifa section of the Voljsko-Kamsky state natural biosphere.

The interest variable is a ’boreality’ index (Bor) defined as the share of specifically boreal
species compared to the total number of species on a site. There are also explanatory variables
provided by satellite images:

1. standardised vegetation difference index;
2. temperature;
3. moisture index;
4. greening index.

Due to the strong co-linearity between these variables, only moisture was used to explain
the boreality index. The variance analysis performed using ordinary least squares provides the
following results:

Variable Estimated value standard deviation
Constant 27.63 0.981

Wet 429.609 27.45

Table 5.2 – Least squares estimate

The addresses of the sites are used to provide an exploratory vision of the spatialisation of
residues of the OLS model.

library(sp)
library(nlme)
Boreality<-read.table("C:/jmf/Boreality.txt",header=TRUE)
B.lm <- lm(boreal ~ Wet, data = Boreality)

2. https://github.com/James-Thorson/2016_class_CMR/tree/master/Other%20material/Zuur%
20et%20al.%202007/ZuurDataMixedModelling

http://www.css.cornell.edu/faculty/dgr2/teach/R/gs_short_ex.pdf
https://github.com/James-Thorson/2016_class_CMR/tree/master/Other%20material/Zuur%20et%20al.%202007/ZuurDataMixedModelling
https://github.com/James-Thorson/2016_class_CMR/tree/master/Other%20material/Zuur%20et%20al.%202007/ZuurDataMixedModelling


142 Chapter 5. Geostatistics

Figure 5.25 – Residuals
Source: Meuse data from the sp package

E <- rstandard(B.lm)
graphic <- data.frame(E, Boreality$x, Boreality$y)
library(sp)
coordinates(graphic) <- c("Boreality.x","Boreality.y")
bubble(graphic, "E",col = c ("green","red"),main = "Residuals",
xlab = "X", ylab = "Y")

The OLS model does not allow the introduction of spatial structure on residues. It can only be
introduced in a generalised linear model. It will be estimated using the gls function of the R nlme
package. This package contains a function to estimate the variogram.
The experimental variogram is shown below (Figure 5.26)

Figure 5.26 – Variogram of residuals
Source: Meuse data from the sp package
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mod<-gls(boreal~Wet,data=bor)
summary(mod)
plot(Variogram(mod,form=~x+y,maxdist=10000),xlim=c(0,10000))

The initial estimate from the model, without the introduction of the spatial structure, gives
the same results as OLS. The update command is used to introduce a spatial structure using a
variogram analysis and to re-estimate the model.

Table 5.3 shows the result of the comparison between OLS and models using spherical, Gaussian
and exponential variograms.

Variogram AIC Likelihood L Significance
OLS 3855 -1924

Spherical 3859 -1924 1 1
Gaussian 3750 -1870 109 <0.001

Exponential 3740 -1865 119 <0.001

Table 5.3 – AIC and L criteria based on variogram type

The AIC and L criteria show that the model can be improved by using a spherical variogram to
model the residues. The regression results with the exponential variogram are shown in Table 5.4.

Variable Estimated value standard deviation
constant 18.099 2.333

Wet 180.247 34.932

Table 5.4 – Estimates

f1 <- formula(boreal ~ Wet)
B1.gls <- gls(f1, data = Boreality)
Vario.gls <- Variogram(B1.gls, form =~ x + y,robust = TRUE,
maxDist = 2000,resType = "pearson")
B1A <- gls(f1, correlation = corSpher(form =~ x + y,nugget = TRUE),
data = Boreality)
B1B <- gls(f1, correlation = corLin(form =~ x + y,nugget = TRUE),
data = Boreality)
B1C <- gls(f1, correlation = corRatio(form =~ x + y,nugget = TRUE),
data = Boreality)
B1D <- gls(f1, correlation = corGaus(form =~ x + y,nugget = TRUE),
data = Boreality)
B1E <- gls(f1, correlation = corExp(form =~ x + y,nugget = TRUE),
data = Boreality)
AIC(B1.gls, B1A, B1B, B1C, B1D, B1E)
B1 <- lm(f1, data = Boreality)
anova(B1.gls,B1A)
anova(B1.gls,B1D)
anova(B1.gls,B1E)
summary(B1E)
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The parameters of the model are significant. The influence of moisture is less pronounced when
spatial autocorrelation is introduced into the model. �

Conclusion
The first chapter of this handbook presents the three main areas of spatial statistics appropriate

to the analysis of continuous, surface or single data points. Geostatistics, used for continuous
data, is less directly linked to the work of public statistics. Nonetheless, it seemed useful to
provide a quick description in the handbook. From an educational viewpoint, geostatistical methods
illustrate particularly well how considering spatial autocorrelation (through the variogram) makes
it possible to improve the estimators. From a more operational viewpoint, without going into the
complexity of mining research work, geostatistics using kriging methods is useful for modelling
simpler continuous data (e.g. climate data). The Fontainebleau Ecole des Mines, which has played
a crucial part in developing of these methods, has used quite unusual language for statisticians, but
many discussions have been held since Cressie’s work to link the different approaches. The classic
book by Chilès and Delfiner is a good example of this (Chiles et al. 2009). In the healthcare field,
significant work has involved geostatistical methods to model epidemiological data, particularly that
by Diggle (Diggle et al. 2003), who is better known for his work on ad hoc methods. Finally, we
can only recommend that statisticians who may use models in the future should read the exploratory
article by the founder of geostatistics (Matheron 1978).
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Appendices
Mathematical reminders

The expressions of theoretical variograms, in particular Matern’s variogram, use quite unusual
mathematical expressions, in particular the expression below (Chiles et al. 2009).

The Gamma function
Γ (x) =

∫
∞

0 e−uux−1du

For whole number values:

Γ (n+1) = n!

The Bessel functions
The Bessel function of the first kind is as follows:

Jν(x) =
( x

2

)ν
∑

∞
k=0

(−1)k

k!Γ(ν+k+1)

( x
2

)2k

The modified Bessel function of the first kind is as follows:

Iν(x) =
( x

2

)ν
∑

∞
k=0

1
k!Γ(ν+k+1)

( x
2

)2k

The modified Bessel function of the second kind is defined from the previous type

Kν(x) = π

2
I−ν (x)+Iν (x)

sinπν
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