Digital Video Broadcasting

Nils Ahrens

Samoa- PMPC

August 2015

Rohde & Schwarz fields of business

- Wireless communications
 Development and production test solutions for every second mobile phone in the world
- I Analog & digital TV Transmitters for more than 80 countries
- I Air traffic control Radiocommunications for more than 200 large airports
- Secure communications Radios in use worldwide for all branches of the armed forces
- I Management of the frequency spectrum Instruments and systems for radiomonitoring and radiolocation for about 150 countries
- Service & services
 To be as close to the customer as possible, nearly 70 locations worldwide

Broadcast & Media equipment

- I High-tech for network operators
 - Analog and digital TV and radio transmitters of all power classes
 - Setup of nationwide networks for digital and mobile TV
 - T&M for maintenance and monitoring of operating networks
- I Production & Storage solutions
 - Video Servers
 - Storage (Online/ nearline, NAS, SAN)
 - Post Production equipment
- High-tech for manufacturers of broadcasting equipment Test solutions from the earliest stages of development up to series production – all from a single source

The DVB Project

- I Founded in 1993 with 8 Members
- I Currently 280 Member Organisations in 34 Countries
- I First Generation systems widely adopted worldwide
- I Many DVB standards and specifications adopted by ETSI
- I Second Generation systems are already deployed

A long term dynamic to build a coherent Family of standards...

... 270 Member Companies ... 45 Published Standards ... 130 Million Receivers Deployed ... On-Air On 6 Continents ...

1992 1993	1994 1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
COPEG""																		
From Anal	From Analog TV to Digital TV From SDTV to HDTV																	
									D/3	SATELUTE			- 					
D						 							L L	λ <mark>β</mark>		I I 1		
		TRIAL											Ľ					

...DVB-T2 in line with a family of 2° Generation of standards

... 270 Member Companies ... 45 Published Standards ... 130 Million Receivers Deployed ... On-Air On 6 Continents ...

Mobile TV: a coherent but specific Family of standards

... 270 Member Companies ... 45 Published Standards ... 130 Million Receivers Deployed ... On-Air On 6 Continents ...

1998 1	1999 2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
									Ar	nalog	TV Sv	vitch-	Off P	roces	s				
From Digital TV to Mobile TV									Fron TV″	n Mol	oile T	V to	"Nex	t Ger	nerat	ion M	lobile		
						ш													
												XYZ [*] ation Mobile TV							

Analogue / Digital Transition

Analogue TV - PAST

Digital TV-

Analogue / Digital Transition

<u>Analogue TV – PAST</u> /PRESENCE

Channel Bandwidth

•7 MHz / 8 MHz

1 Program

- •1 Video
- •Dual Sound
- •1 Teletext

No Interactivity

<u>Digital TV-</u> PRESENCE/FUTURE

Channel Bandwidth

•7 MHz / 8 MHz

1 Transport Stream / Multiple Streams

- up to 20 Video Programs
 - •Dual Sound / Surround
 - •Teletext
 - •MetaData

Interactivity with return path

First Generation Broadcast TV Standards

Based on the highest performance consumer technology then available Some Early UK STBs could only support 2K modes

Development time/costs minimised by re-using common modules

DVB-S Approved in December 1993

Single carrier QPSK mode Single Transport Stream

DVB-C Approved in March 1994

Single carrier with 4, 16 and 64QAM modes Single Transport Stream

DVB-T Approved in December 1995

2K and 8K COFDM with 4, 16 and 64QAM Two transport streams using Hierarchical Modulation

Why Are New Standards Being Developed?

New Services Require Increasingly Higher Bandwidths

HDTV, 3DTV and Interactive TV

New Business Models Demand More Flexible Delivery

IP, Mobile and Fixed Broadcasting

Increasingly Expensive Spectrum must be Better Utilized

Competition for limited resources with telcos

New Technologies enable more complex systems

Low Cost High Speed Processors High Performance Algorithms

DVB ... 2nd Generation

DVB 2.0 - Second Generation Broadcasting Standards

Source: DVB-Projekt

DVB-S2 EN302 307

Dec 2003

DVB-S2: New Features over DVB-S

New Modulation and Forward Error Correction (FEC)

30% Higher bandwidth enables more HDTV, SDTV and IP services

Dynamically variable modulation and FEC

Optimal bandwidth utilization for different service types Robust delivery in poor weather conditions

Multiple Input streams

Independent and Flexible Operation between service providers Hierachical Mode for backwards compatibility with legacy STBs

Supports non-compliant Transport Stream formats e.g. IP

"Null" (PID8191) TS packets need not always be transmitted No need for Transport Stream packetization overhead No conversion simplifies interoperability

DVB-S2: New Technology Requirements

"New" High Performance FEC (BCH, LDPC)

Originally developed in the 1960s Large Frame Size (64800bits) Also adopted for DVB-T2 and DVB-C2 Requires large memory and high processing power

New modulation schemes (8PSK, 16APSK, 32APSK)

Requires high performance demodulators

Modulation can be changed for every Physical Layer Frame

Different/variable bit rates for each Input Stream Different FEC for robust reception in bad weather (snow/rain) Requires more complex demodulators

DVB-C2 EN302 769

April 2009

DVB-C2: Channel Bonding

DVB-C2: Technical Summary

Based on DVB-T2 COFDM (4K mode, 2 short guard intervals) Channel raster bandwidth 6 or 8 MHz QPSK ... 4096QAM Variable coding and modulation Channel bundling Copes with notches (interfered frequency ranges) Uses the same BBFRAME/FEC structure as DVB-S2 Multiple TS and GSE Single and multiple input streams Data slices Reserved carriers for Peak to Average Power Reduction

≫50% Higher Bit rates than DVB-C

DVB-C2 Bit Rates

DVB-T2 EN302 755

May 2008

DVB-T2: Key Commercial Requirements

Re-use existing domestic antennae and transmitter network

Support Portable and fixed Receivers

At least 30% > capacity than DVB-T

Improved SFN Performance

Service Specific Robustness

Bandwidth and Frequency Flexibility

Reduce Peak to Average Power Ratio

DVB-T2: New Technology over DVB-T

Many new transmission options:

New Channel Bandwidths, Guard Intervals and FFT Modes 8 Different Pilot Patterns Extended Carrier Modes Rotated and Q-delayed constellations Multiple Input Single Output (MISO) Modes Peak to Average Power Reduction (PAPR) Modes

Modulation dynamically variable for each "COFDM Cell"

Every carrier in each symbol independently controllable System/Control data sent in fixed format highly robust symbols

DVB-S2 FEC plus extensive time and frequency interleaving

Further improves robustness in noisy environments

DVB-T2: Benefits over DVB-T

New Modulation, FEC and Transmission modes

30 - 60% More Bandwidth enables more HDTV, SDTV and IP services

Multiple Input streams (Physical Layer Pipes = PLPs)

Common (e.g. SI) Data and service specific (Video, audio) streams Independent and Flexible Operation with multiple service providers

Dynamically variable modulation and FEC

Mobile (time/frequency sliced) and Fixed Services in same bandwidth Optimal bandwidth utilization for different service types

Direct Support for non-TS formats e.g. IP

No Transport Stream packetization overhead Repeated (null packets) or common (SI) data need not always be sent No conversion simplifies interoperability

DVB Worldwide

Typical Datarates Digital Broadcast

Source Coding: MPEG-2 video SDTV MPEG-4 video SDTV MPEG-4 video HDTV MPEG-1 LII audio Dolby AC-3 audio Teletext

2.5 ... 5 Mbit/s
1.5 ... 3 Mbit/s
8 ... 12 Mbit/s
192 kbit/s
448 kbit/s
260 kbit/s

Physical Layer before FEC (net data rate): DVB-S (27.5 MS/s, CR=3/4) 38.01 Mbit/s DVB-S2 (22 MS/S, 8PSK, CR=2/3) 42.58 Mbit/s DVB-S2 (27.5 MS/s, QPSK, CR=9/10) 49.2 Mbit/s DVB-T (16QAM, CR=2/3, g=1/4) 13.27 Mbit/s DVB-T (64QAM, CR=3/4, g=1/4) 22.39 Mbit/s DVB-C (64QAM) 38.15 Mbit/s DVB-C (256QAM) 50.87 Mbit/s DAB/DAB+ 1.2...1.7 Mbit/s

Transmission of Information: DVB

MPEG Standards

Current Digital Broadcast Transmission Standards

DVB – Digital Video Broadcasting (1994 – 2014) DVB-T/T2, -C/C2, -S/S2, DVB-IP

DAB/DAB+/T-DMB – Digital Audio Broadcasting (1988, 2007)

ATSC – Advanced Television Systems Committee (USA, 1995)

ISDB-T – Integrated Service Digital Broadcast – Terrestrial (Japan, 1999)

DTMB – Digital Terrestrial Multimedia Broacasting (China, 2004)

DVB-T2 + HEVC

Source coding:

M HEVC (H.265, MPEG-H): ►	$\frac{1}{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
M Datafate reduction by approx.	50 /0 III comp. to 11.204
MPEG-1 LII audio	192 kbit/s
Dolby AC-3 audio	448 kbit/s
Teletext	260 kbit/s
Physical layer before FEC (net data rate	e):
DVB-S (27.5 MS/s, CR=3/4)	38.01 Mbit/s
DVB-S2 (22 MS/S, 8PSK, CR=2/3)	42.58 Mbit/s
DVB-S2 (27.5 MS/s, QPSK, CR=9/10)	49.2 Mbit/s
DVI DVB-T2: DVB-T datarate x 1.	7 2 pit/s
	DIT/S
DVB-C (64QAM)	38.15 Mbit/s
DVB-C (256QAM)	50.87 Mbit/s
DAB/DAB+	1.21.7 Mbit/s

Terrestrial Braodcast Channel

DVB-T2: Closer to the Shannon Limit ...

0 Mbit/s

CNR Limits at DVB-T

	Modula- tionsart	Coderate	Gauß-Kanal	Rice-Kanal	Rayleigh- Kanal	
			[dB]	[dB]	[dB]	
	QPSK	1/2	3.1	3.6	5.4	
		2/3	4.9	5.7	8.4	
		3/4	5.9	6.8	10.7	
		5/6	6.9	8.0	13.1	
		7/8	7.7	8.7	16.3	
	16QAM	1/2	8.8	9.6	11.2	
		2/3	11.1	11.6	14.2	portable indoor
		3/4	12.5	13.0	16.7 ^L	P • • • • • • • • • • • • • • • • • • •
		5/6	13.5	14.4	19.3	
		7/8	13.9	15.0	22.8	
	64QAM	1/2	14.4	14.7	16.0	
		2/3	16.5	17.1	19.3	
Roof an	tenna	3/4	18.0	18.6	21.7	
		5/6	19.3	20.0	25.3	
		7/8	20.1	21.0	27.9	

DVB-T2 ... more Datarate ...

Shannon limit ... channel capacity

C~=1/3 * SNR * B;

B = 6/7/8MHz

"Fixed antenna" reception SNR = 18 ... 30 dB "Portable indoor" reception SNR = 10 ... 20 dB

at 8 MHz bandwidth: 10 dB ... 26.7 Mbit/s 15 dB ... 40 Mbit/s 20 dB ... 53.3 Mbit/s 30 dB ... 80 Mbit/s

Theoretical max. datarates

Datarates at DVB-T

Modulation	CR	Guard 1/4	Guard 1/8	Guard 1/16	Guard 1/32	
		Mbit/s	Mbit/s	Mbit/s	Mbit/s	i
QPSK	1/2	4.976471	5.529412	5.854671	6.032086	
	2/3	6.635294	7.372549	7.806228	8.042781	
	3/4	7.464706	8.294118	8.782007	9.048128	
	5/6	8.294118	9.215686	9.757785	10.05348	
	7/8	8.708824	9.676471	10.24567	10.55617	
16QAM	1/2	9.952941	11.05882	11.70934	12.06417	
	2/3	13.27059	14.74510	15.61246	^{16.08556} PC	ortable indoor
	3/4	14.92941	16.58824	17.56401	18.09626	
	5/6	16.58824	18.43137	19.51557	20.10695	
	7/8	17.41765	19.35294	20.49135	21.11230	
64QAM	1/2	14.92941	16.58824	17.56401	18.0926	
	2/3	19.90588	22.11765	23.41869	24.12834	
	3/4	22.39412	24.88235	26.34602	^{27.14439} R	oof antenna
	5/6	24.88235	27.64706	29.27336	30.16043	
	7/8	26.12647	29.02941	30.73702	31.66845	

DVB-T and DVB-T2

DVB-T, "Germany, portable indoor": 13.27 Mbit/s DVB-T, "fixed antenna": 22.39 Mbit/s

similar modes at DVB-T2:

26.6 Mbit/s "portable indoor" (32Kext, 64QAM, CR=2/3, g=1/16)

39.7 Mbit/s "fixed antenna" (32Kext, 256QAM, CR=3/4, g=1/16)

DVB and Fall-Off-the-Cliff

CNR Limits @DVB-T2 @ BER=10⁻⁴ after LDPC

Modulation	Coderate	C/N Gaussian Channel [dB]	C/N Ricean Channel [dB]	C/N Rayleigh Channel [dB]	C/N 0dl Channe [dB]		
QPSK	1/2	0.4	0.7	1.5	1.2	1	
	3/5	2.2	2.4	3.5	3.2	1	
	2/3	3.1	3.4	4.7	4.4		
	3/4	4.0	4.5	6.0	5.7		1
	4/5	4.6	5.1	6.9	6.5		
	5/6	5.1	5.7	7.8	7.4		1
16QAM	1/2	5.2	5.5	6.6	6.3		1
	3/5	7.5	7.9	9.3	9.0	1	
2/3		8.8	9.1 10.7		10.4		
	3/4	10.0	10.5 12.4 11.3 13.6		12.1	1	
	4/5	10.8			13.3	1	
	5/6	11.4	12.0	14.6	14.4	1	
64QAM	1/2	8.7	9.1	10.7	10.5		1
	3/5	12.0	12.4	14.2	14.0	Derteble	1
	2/3	13.4	13.8	15.7	15.5	Portable	e indoor
	3/4	15.2	15.6	17.8	17.6		
	4/5	16.1	16.6	19.1	18.9		
	5/6	16.8	17.4	20.3	20.3		1
256QAM	1/2	12.1	12.4	14.4	14.3		
	3/5	16.5	16.9	18.8	18.8		
	2/3	17.7	18.1	20.3	20.3 22.7 Roof a		
	3/4	19.9	20.4	22.6			tenna
	4/5	21.2	21.7	24.2	24.3		
	5/6	22.0	22.5	25.6	25.9		

Source: DVB-T2 Implementation Guidelines

Digital Broadcast Network

ROHDE&SCHWARZ

Digital TV Network

MPEG-2 Transport Stream

Basics of a DVB-T2 Network

Link fed Transmitters

Basics of a DVB-T2 Network

Link fed Transmitters

SFN Basics of a DVB-T2 Network

Link fed Transmitters

SFN Basics of a DVB-T2 Network

Over the air synchronistation for Re-Transmitters

SFN Basics of a DVB-T2 Network

Over the air synchronistation for Re-Transmitters

- I Network Design
- I Gap Filler and Re-transmitters
- **I** DVB-T2 Single Frequency Network
- I Total Cost of Ownership

Network Design: Total-cost-of-ownership Design and implementation

Ensuring a most economic operation

Network structure:

(few) high power Transmitter – high tower (many) low power Transmitter mixed setup

I Network design:

Combination of main components driving operational cost

I Network equipment:

Energy efficiency Reliability and long term stability Mean time between failure

Coverage example

Tx Power: 3 kW

Tx Power: 6 kW

64 QAM, 32k FFT, CR 2/3, C/N 17dB MORE POWER IS NOT ALWAYS THE BEST SOLUTION

Why Low Power Transmitters

- High Power Transmitters (> 2kW) can not guarantee a 100% coverage
- 2. Low Power Transmitters do support the High Power Transmission to ensure a better / improved coverage for

5

Shadowed areas (buildings, valleys, etc.) Indoor coverage for Malls Small communities

3. Power Classes

1W - 200W

Low Power: Transmitter, Re-transmitter & Gap Filler

1. Transmitter

Must have a link fed (ASI / IP Transport stream inputs) VHF & UHF

2. Re-Transmitters

RF input & ASI / IP Transport stream inputs Demodulate the DVB-T2 signal to Baseband (Transport Stream) Re-modulate the transport streams to form a regenerated DVB-T2 signal which is then retransmitted

Transmits in UHF only

3. Gap Filler (OCR), Transposers

RF input only (VHF & UHF) can shift frequency (Transposer) amplify

Selay and transmit the received DVB-T2 signal without a full re-modulation

Re-broadcast systems Difference: input and output frequency

 $f_{out} \neq f_{in}$ Output frequency \neq frequency parent transmitter

Advantages & disadvantages

Low Power Transmitters

Produce a very clean output signal

Can be used in a Single Frequency Network (SFN) together with a Main transmitter

Need a Link Feed (ASI / IP Transport stream) which can be expensive

Advantages & disadvantages

Gap Fillers

Provide a degraded output signal

MER degradation

Can start to oscillate if not careful installed (Echos between Input & Output have to be suppressed with Echo cancellation)

Very short processing time between input and output

Can be used in a Single Frequency Network (SFN) together with a Main transmitter

