
Journal of Computer Science & Computational Mathematics, Volume 11, Issue 3, September 2021
DOI: 10.20967/jcscm.2021.03.003

Implementation of Modified Booth-Wallace Tree
Multiplier in FPGA

Anis Shahida Mokhtar*, Nurlisa Zahari, Chew Sue Ping, Muhazam Mustapha, Norlaili Ismail, Ahmad Sani Ismail

Department of Electric and Electronic Engineering, National Defence University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur
*Corresponding author email: anis@upnm.edu.my

Abstract: The main purpose of this paper is to present the design
and implementation of the Modified Booth Algorithm introduced by
Andrew Donald Booth in 1950 and the Wallace tree structure is by
an Australian Computer Scientist Chris Wallace in 1964. Combina-
tion of both algorithms is to implement a versatile algorithm widely
used for digital signal processing application. Due to the highly de-
mand on the fast microprocessors, designers come out with multiple
techniques to produce a high speed multipliers. Modified Booth’s
Algorithm have the advantages on faster multiplication process by
reducing the generation of the partial products half of the number
of bits of the multiplicand. The Wallace-tree multiplier itself giving
a speed up in additional stage by reducing the adding partial prod-
ucts using the half adder and full adder instead of the long AND
gate thus minimize the complexity of circuit. Combination of these
two algorithms producing a new architecture of a high speed and
low implementation area in one multiplier. This fulfil the require-
ment of high speed computer system nowadays. The algorithm was
developed using Verilog HDL in Quartus II software and the result
obtained from Modelsim-Altera then the design is implemented in
FPGA DE2 Cyclone II to verify the result.

Keywords: Booth multiplier, modified Booth multiplier, wallace
tree, FPGA.

1. Introduction
Multipliers arithmetic algorithm plays important role in the
performance of digital signal processing algorithm [1]. Many
types of multipliers designed to match the requirement of
high speed data processing [2]. Multiplication is basically
an addition of the multiplicand itself to number of time of the
multiplier generating levels of partial products. The critical
path is determined more by the multiplier Next, product is
formed by the additional of the partial products. All multi-
pliers would having this three operation stages which is the
generation of partial products, the additional of partial prod-
ucts and the final addition stage [3].

For this project, Modified Radix-4 Booth Algorithm as the
multiplier giving full advantages in reducing the multiplica-
tion into half. A simple encoder are reduced from many op-
erations in conventional multipliers [4] compared to 4 oper-
ations of Radix-4. The speed of multiplication can be in-
creased by reducing the number of partial products and ac-
celerating the accumulation of partial products. From many
multipliers design of implementing high speed parallel mul-
tipliers, Booth Algorithm and Wallace-tree structure are an
efficient implementation of a high speed parallel multiplier

[5].

1.1 Modified Booth Algorithm
Following the standard add-shift operation of multiplier,
adding the multiplicand number of times to multiplier in par-
tial products. Big number of multiplicand increase the total
partial products to be added for those large multiplier. Booth
Algorithm design will be reducing the number of multipli-
cand multiples.

Figure 1. Conventional multiplier operation

Figure 2. Modified Booth algorithm operation

A modification is made in Figure 3 from the Conventional
Booth Multiplier from Figure 1. For the purpose in this pa-
per focusing Modified Radix-4 Booth Algorithm by taking
groups of three bits at a time. It starts with LSB. The first
block comprises only two bits of the multiplier and it assumes
zero for the third bit. For multiplier to compare with the rules
of encoded signal [6] in Table 1 to generate the partial prod-
ucts. Booth re-coding encodes multiplier bits into [−2,2].

Radix-4 Booth algorithm is given below:

1. Extend the sign bit 1 position if needed to confirm that
n is even.

2. Add on a 0 to the right of the LSB of the multiplier.



50 Implementation of Modified Booth-Wallace Tree Multiplier in FPGA

Table 1. Modified Radix-4 encoding table

Multiplicand Bits, Y Recorded Operation on
Yi-1 Yi Yi+1 Multiplier, X

0 0 0 0X
0 0 1 +X
0 1 0 +X
0 1 1 +2X
1 0 0 -2X
1 0 1 -X
1 1 0 -X
1 1 1 0X

3. According to the value of each vector, each Partial
Product will be 0, +X, –X, +2X or –2X.

4. The negative values of X are made by taking the 2’s
complement.

Figure 3. Radix-4 re-coding scheme

For Example:
Multiplier, X = 0000000000111100 (60)
Multiplicand, Y = 0000000100101100 (150)
PP1, PP4 = 100 encode -2X which equal to multiplier bits

times -2. This is obtained by shifting 1 bit of the multiplier
bits and 2’s compliment multiplier bits.

X = 0000000000111100
2X = 00000000001111000
-2X = 11111111110001000
PP2 = 011 +2X which equal to multiplier bits times 2. This

is obtained by shifting 1 bit of the multiplier bits.
X = 0000000000111100
2X = 00000000001111000
PP3, PP5 = 010 encode +X which equal to multiplier bits

times by 1. For this encode just take the value of the multi-
plier.

X = 0000000000111100
PP6, PP7, PP8 = 000 encode 0X which equal to multiplier

bits times 0.
X = 0000000000111100
0X = 0000000000000000
After doing the operations and obtaining the partial prod-

ucts, the additions of partial products are done to obtain the
answer.

In designing Modified Booth multiplier in this project are
using 16 bits of multiplier and multiplicand. Which resulting
in 16 partial products for conventional multiplier but reduced
to half in this Modified Booth Algorithm leaving only 8 par-
tial products to be added later.

Figure 4. Modified Radix-4 calculation

1.2 Wallace Tree Structure

The Wallace tree structure proposed by Wallace in 1964 [7].
The idea to speed up the additional stage by reducing the par-
tial products to be added by taking a group of three rows of
partial products. The additional of partial products generated
from the Modified Booth Algorithm [1] can be added in se-
quence for standard additional operation. This logic is easy
to implement but it this method causing large delay of time.

Thus, for this algorithm, the partial products are solved by
using the Wallace tree structure method. The Wallace tree
speed up the additional stage by reduced the level or partial
product leaving two rows to be added on the last stage. The
final results of multiplications are from the addition of the
last two rows of partial products.

Figure 5. Additional steps of partial products in wallace tree

Figure 5 shows steps to implement Wallace tree structure
for additional of partial products. First is the generation of the
partial products which is from the Modified Booth Algorithm
multiplier. Next the bits of partial products are reduced to
rows by taking group of three rows to produce next rows of
sum and products. Three bits signal are passed to a one [8] bit
full adder input Wallace Tree circuit, and the output signal is
supplied to the next stage full adder of the same bit position
producing sum and carry. The new rows of sums and carries
will be repeated until the last two rows of sum and carry left.
Last step is the architecture of adders to sum up the last two
rows for the final products [9].



Anis Shahida Mokhtar et al. 51

2. Results and analysis
The algorithm was developed using Verilog HDL in Quartus
II and simulated in Modelsim-Altera.

Figure 6 shows the simulation result for 60×150 by taking
three types of multiplier using Modelsim-Altera to analyse
the delays of the output

Figure 6. Simulation result from Modelsim

The result for simulation were recorded in Table 3 to com-
pare the difference delay from the designed Modified Booth-
Wallace with the conventional multiplier.

Figure 6 and Table 3 showed the result when Modified
Booth Wallace multiplier implement into FPGA DE2 board.
16 bits input binary used onto the switches and product of 32
bits binary shown on 7 segments in Hexadecimal.

Modified Booth-Wallace multiplier algorithm run using
Quartus II software then simulated on Modelsim-Altera to
see the delay. The delay results are taken to analyze the speed
of the multiplier to generate output of the multiplication as
shown in Figure 6.

From the results of the simulation on Table 4, Modified
Booth-Wallace multiplier had faster processing time com-
pared to conventional multiplier, Modified Booth and Wal-
lace tree structure itself. Modified Booth Algorithm multi-
3. Conclusion
The Modified Booth-Wallace multiplier generates n/2 par-
tial products hence decreasing the number of partial prod-
ucts generated with Wallace structure reducing the additional
process of partial products. Combination of both algorithms
producing a high speed multiplier with less area implemen-
tation on circuit. The simulation results and analysis are im-
plemented using Altera Quartus II and Modelsim. The hard-
ware implementation of the multiplier is implemented using
FPGA DE2 Altera Cyclone II board. Taking the interest in
a high speed and reduced area with power consumption mul-

plier reduced the number of partial products contributes to
the less area of logic gates implement in circuit while Wallace
structure lessen the circuitry structure of conventional adders
thus both algorithm when combined producing one fast mul-
tiplier because of the less logic gates used in the multiplier to
be implement in circuits.
tiplier, Modified Booth-Wallace algorithm was chosen as the
fastest multiplier for Digital Signal Processing.

References

[1] M. Othman, M. M. Ali et al., “High performance
parallel multiplier using wallace-booth algorithm,” in
ICONIP’02. Proceedings of the 9th International Con-
ference on Neural Information Processing. Compu-
tational Intelligence for the E-Age (IEEE Cat. No.
02EX575). IEEE, 2002, pp. 433–436.

[2] A. Chandrakasan, W. J. Bowhill, and F. Fox, “High-
speed vlsi arithmetic units: Adders and multipliers,”
2001.

[3] S. Asif and Y. Kong, “Performance analysis of wallace
and radix-4 booth-wallace multipliers,” in 2015 Elec-
tronic System Level Synthesis Conference (ESLsyn).
IEEE, 2015, pp. 17–22.

[4] S.-R. Kuang, J.-P. Wang, and C.-Y. Guo, “Modified
booth multipliers with a regular partial product array,”
IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 56, no. 5, pp. 404–408, 2009.

[5] M. J. Rao and S. Dubey, “A high speed and area efficient
booth recoded wallace tree multiplier for fast arithmetic
circuits,” in 2012 Asia Pacific conference on postgradu-
ate research in microelectronics and electronics. IEEE,
2012, pp. 220–223.

[6] O. L. MacSorley, “High-speed arithmetic in binary
computers,” Proceedings of the IRE, vol. 49, no. 1, pp.
67–91, 1961.

[7] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE
Transactions on electronic Computers, no. 1, pp. 14–17,
1964.

[8] A. Cooper, “Parallel architecture modified booth mul-
tiplier,” in IEE Proceedings G-Electronic Circuits and
Systems, vol. 135, no. 3. IET, 1988, pp. 125–128.

[9] J. Fadavi-Ardekani, “M* n booth encoded multiplier
generator using optimized wallace trees,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems,
vol. 1, no. 2, pp. 120–125, 1993.

[10] G. C. Ram, D. S. Rani, R. Balasaikesava, and K. B.
Sindhuri, “Design of delay efficient modified 16 bit
wallace multiplier,” in 2016 IEEE International Con-
ference on Recent Trends in Electronics, Information &
Communication Technology (RTEICT). IEEE, 2016,
pp. 1887–1891.

[11] N. Sharma and R. Sindal, “Modified booth multi-
plier using wallace structure and efficient carry se-
lect adder,” International Journal of Computer Appli-
cations, vol. 68, no. 13, 2013.



52 Implementation of Modified Booth-Wallace Tree Multiplier in FPGA

Table 2. Calculation of Modified Booth Wallace Multiplier

Multiplier 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
Multiplicand 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0

PP1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0
PP2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
PP3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
PP4 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0
PP5 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
PP6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PP7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PP8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sum1 0 0 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0
carry1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
sum2 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0
carry2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
sum3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
carry3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sum4 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0
carry4 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0
sum5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
carry5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sum6 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0
carry6 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
carry5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

prod_sum 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0
prod_carry 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 0

Table 3. Simulation Result

Type of Multiplier Delay Difference
(ps) delay (ps)

Conventional Multiplier (mult) 18117 -
Booth Multiplier (check) 24084 5697

Modified Booth Multiplier (prod) 21847 3730

Table 4. Comparison Types of Multiplier

Conventional Modified Wallace Modified
Multiplier Booth tree Booth-

[10] Algorithm structure Wallace
[11] [10]

Delay (ns) 61.39 24.23 36.350 18.23
No of LUTs 844 1292 1000 713


	Introduction
	 Modified Booth Algorithm
	 Wallace Tree Structure

	Results and analysis 
	 Conclusion

