Vorlesung Künstliche Intelligenz Wintersemester 2007/08

Teil III:

Wissensrepräsentation und Inferenz

Kap. 10: Beschreibungslogiken

Mit Material von

Carsten Lutz, Uli Sattler: http://www.computationallogic.org/content/events/iccl-ss-2005/lectures/lutz/index.php?id=24 lan Horrocks: http://www.cs.man.ac.uk/~horrocks/Teaching/cs646/

Beschreibungslogiken (Description Logics)

A family of logic based Knowledge Representation formalisms

- Descendants of semantic networks and KL-ONE
- Describe domain in terms of concepts (classes), roles (relationships) and individuals

Distinguished by:

- Formal semantics (typically model theoretic)
 - Decidable fragments of FOL
 - Closely related to Propositional Modal & Dynamic Logics
- Provision of inference services
 - Sound and complete decision procedures for key problems
 - Implemented systems (highly optimised)
- **E** Einfache Sprache zum Start: ALC (Attributive Language with Complement)
- Im Semantic Web wird $SHOIN(D_n)$ eingesetzt. Hierauf basiert die Semantik von OWL DL.

Geschichte

Literatur

- Ihre Entwicklung wurde inspiriert durch semantische Netze und Frames.
- Frühere Namen:
 - KL-ONE like languages
 - terminological logics
- Ziel war eine Wissensrepräsentation mit formaler Semantik.
- Das erste Beschreibungslogik-basierte System war KL-ONE (1985).
- Weitere Systeme u.a. LOOM (1987), BACK (1988), KRIS (1991), CLASSIC (1991), FaCT (1998), RACER (2001), KAON 2 (2005).

- D. Nardi, R. J. Brachman. An Introduction to Description Logics. In: F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.): Description Logic Handbook, Cambridge University Press, 2002, 5-44.
- F. Baader, W. Nutt: Basic Description Logics. In: Description Logic Handbook, 47-100.
- Ian Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology language.

http://www.cs.man.ac.uk/%7Ehorrocks/Publications/download/2003/HoPH03a.pdf

Ontology/KR languages aim to model (part of) world

Terms in language correspond to entities in world

Meaning given by, e.g.:

- Mapping to another formalism, such as FOL, with own well defined semantics
- or a Model Theory (MT)

MT defines relationship between syntax and interpretations

- There can be many interpretations (models) of one piece of syntax
- Models supposed to be analogue of (part of) world
 - E.g., elements of model correspond to objects in world
- Formal relationship between syntax and models
 - Structure of models reflect relationships specified in syntax
- Inference (e.g., subsumption) defined in terms of MT
 - E.g., $\mathcal{T} \models A \sqsubseteq B$ iff in every model of \mathcal{T} , $ext(A) \subseteq ext(B)$

Recall: Logics and Model Theory

Many logics (including standard First Order Logic) use a model theory based on (Zermelo-Frankel) set theory

The domain of discourse (i.e., the part of the world being modelled) is represented as a set (often referred as Δ)

Objects in the world are interpreted as elements of Δ

- \blacksquare Classes/concepts (unary predicates) are subsets of \triangle
- Properties/roles (binary predicates) are subsets of $\Delta \times \Delta$ (i.e., Δ^2)
- Ternary predicates are subsets of Δ^3 etc.

The sub-class relationship between classes can be interpreted as set inclusion.



Recall: Logics and Model Theory

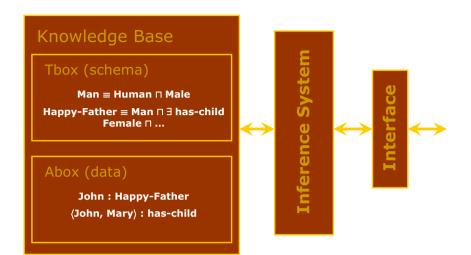
 $\{(a,b),\ldots\} \subseteq \Delta \times \Delta$

Formally, the vocabulary is the set of names we use in our model of (part of) the world

■ {Daisy, Cow, Animal, Mary, Person, Z123ABC, Car, drives, ...} An interpretation $\mathcal I$ is a tuple $\langle \Delta, \cdot^{\mathcal I} \rangle$

- \blacksquare \triangle is the domain (a set)
- \blacksquare $\cdot^{\mathcal{I}}$ is a mapping that maps
 - Names of objects to elements of Δ
 - \blacksquare Names of unary predicates (classes/concepts) to subsets of Δ
 - Names of binary predicates (properties/roles) to subsets of Δ × Δ
 - And so on for higher arity predicates (if any)

6



DL Knowledge Base

10

DL Knowledge Base (KB) normally separated into 2 parts:

- TBox is a set of axioms describing structure of domain (i.e., a conceptual schema), e.g.:
 - HappyFather \equiv Man $\land \exists$ hasChild.Female $\land ...$
 - Elephant = Animal \(\times \) Large \(\times \) Grey
 - transitive(ancestor)
- ABox is a set of axioms describing a concrete situation (data), e.g.:
 - John:HappyFather
 - <John, Mary>:hasChild

Separation has no logical significance

■ But may be conceptually and implementationally convenient

Interpretation function . T extends to concept expressions in the obvious way, i.e.:

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$

$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$

$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

$$\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}$$

$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$

$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$$

$$(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$$

$$(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$$

DL Knowledge Bases (Ontologies)

A DL Knowledge Base is of the form $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$

- \blacksquare \mathcal{T} (Tbox) is a set of axioms of the form:
 - C □ D (concept inclusion)
 - $C \equiv D$ (concept equivalence)
 - R □ S (role inclusion)
 - $R \equiv S$ (role equivalence)
 - $R^+ \sqsubseteq R$ (role transitivity)
- \blacksquare A (Abox) is a set of axioms of the form
 - $x \in D$ (concept instantiation)
 - $\langle x, y \rangle \in R$ (role instantiation)

Two sorts of Tbox axioms often distinguished

- "Definitions"
 - $C \sqsubseteq D$ or $C \equiv D$ where C is a concept name
- General Concept Inclusion axioms (GCIs)
 - $C \sqsubseteq D$ where C is an arbitrary concept

Knowledge Base Semantics

An interpretation \mathcal{I} satisfies (models) an axiom A ($\mathcal{I} \models A$):

- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\blacksquare \quad \mathcal{I} \models \mathbf{C} \equiv \mathbf{D} \text{ iff } \mathbf{C}^{\mathcal{I}} = \mathbf{D}^{\mathcal{I}}$
- $\blacksquare \quad \mathcal{I} \models R \sqsubseteq S \text{ iff } R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
- $\blacksquare \quad \mathcal{I} \models R \equiv S \text{ iff } R^{\mathcal{I}} = S^{\mathcal{I}}$
- $\mathcal{I} \models \mathbb{R}^+ \sqsubseteq \mathbb{R} \text{ iff } (\mathbb{R}^{\mathcal{I}})^+ \subseteq \mathbb{R}^{\mathcal{I}}$
- $I \models x \in D \text{ iff } x^{I} \in D^{I}$
- $I \models \langle x, y \rangle \in R \text{ iff } (x^{I}, y^{I}) \in R^{I}$

 \mathcal{I} satisfies a Tbox \mathcal{T} ($\mathcal{I} \models \mathcal{T}$) iff \mathcal{I} satisfies every axiom A in \mathcal{T}

 \mathcal{I} satisfies an Abox \mathcal{A} ($\mathcal{I} \models \mathcal{A}$) iff \mathcal{I} satisfies every axiom A in \mathcal{A}

 \mathcal{I} satisfies an KB \mathcal{K} ($\mathcal{I} \models \mathcal{K}$) iff \mathcal{I} satisfies both \mathcal{T} and \mathcal{A}

Inference Tasks

13

Knowledge is correct (captures intuitions)

■ C subsumes D w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} \subset D^{\mathcal{I}}$

Knowledge is minimally redundant (no unintended synonyms)

■ C is equivalent to D w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} = D^{\mathcal{I}}$

Knowledge is meaningful (classes can have instances)

■ C is satisfiable w.r.t. \mathcal{K} iff there exists some model \mathcal{I} of \mathcal{K} s.t. $C^{\mathcal{I}} \neq \emptyset$

Ouerving knowledge

- x is an instance of C w.r.t. \mathcal{K} iff for every model \mathcal{I} of \mathcal{K} , $x^{\mathcal{I}} \in C^{\mathcal{I}}$
- \blacksquare $\langle x,y \rangle$ is an instance of R w.r.t. \mathcal{K} iff for, every model \mathcal{I} of \mathcal{K} , $(x^{\mathcal{I}},y^{\mathcal{I}}) \in \mathbb{R}^{\mathcal{I}}$

Knowledge base consistency

■ A KB K is consistent iff there exists *some* model I of K

Syntax für DLs (ohne concrete domains)

S	Ontology (=Knowledge Base)			
А, В		Г		
¬C			Concept Axioms (TBox)	
СПД			Subclass	C ⊑ D
СПБ			Equivalent	C ≡ D
∃R.C		ſ	Role Axioms (R	PRov)
∀R.C			TOIC AXIOITIS (1	(DOX)

	Roles	
_	Atomic	R
	Inverse	R-

≥n R.C (≥n R)

 \leq n R.C (\leq n R)

{i₁,...,i_n}

Roles	
Atomic	R
Inverse	R-

 $C \sqsubseteq D$ $C \equiv D$ □ Subrole R ⊑ S Transitivity Trans(S) Instance Role R(a,b)Same a = bDifferent a ≠ b

S = ALC + Transitivity

Atomic

Not

And

Or

Exists

For all

At least

At most

Nominal

OWL DL = SHOIN(D) (D: concrete domain)

0

The Description Logic ALC: Syntax

Atomic types: concept names A, B, \ldots (unary predicates)

role names R, S, \ldots (binary predicates)

(negation) Constructors: $\neg C$

> $-C \sqcap D$ (conjunction)

(disjunction) $-C \sqcup D$

(existential restriction) $\exists R.C$

- $\forall R.C$ (value restriction)

Abbreviations: - $C \rightarrow D = \neg C \sqcup D$ (implication)

> $-C \leftrightarrow D = C \rightarrow D$ (bi-implication) $\sqcap D \to C$

 $-\top = (A \sqcup \neg A)$ (top concept)

 $- \bot = A \Box \neg A$ (bottom concept)

Examples

- Person □ Female
- Person □ ∃attends.Course
- Person $\sqcap \forall$ attends.(Course $\rightarrow \neg$ Easy)
- Person □ ∃teaches.(Course □ ∀attended-by.(Bored □ Sleeping))

U resden

Interpretations

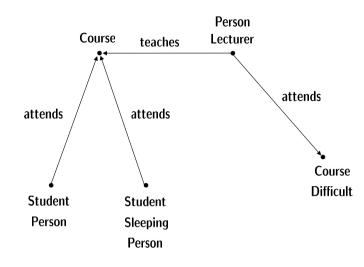
Semantics based on interpretations $(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $-\Delta^{\mathcal{I}}$ is a non-empty set (the domain)
- $-\cdot^{\mathcal{I}}$ is the interpretation function mapping each concept name A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$ and each role name R to a binary relation $R^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$.

Intuition: interpretation is complete description of the world

Technically: interpretation is first-order structure with only unary and binary predicates

Example

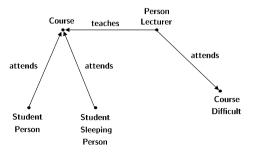


Semantics of Complex Concepts

$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \qquad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$

$$(\exists R.C)^{\mathcal{I}} = \{d \mid \text{there is an } e \in \Delta^{\mathcal{I}} \text{ with } (d,e) \in R^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\}$$

$$(\forall R.C)^{\mathcal{I}} = \{d \mid \text{for all } e \in \Delta^{\mathcal{I}}, (d,e) \in R^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}}\}$$



Person □ ∃attends.Course

Person □ ∀attends.(□Course □ Difficult)

U .

TBoxes

Capture an application's terminology means defining concepts

TBoxes are used to store concept definitions:

Syntax:

finite set of concept equations $A \doteq C$ with A concept name and C concept left-hand sides must be unique!

Semantics:

interpretation $\mathcal I$ satisfies $A \doteq C$ iff $A^{\mathcal I} = C^{\mathcal I}$ $\mathcal I$ is model of $\mathcal T$ if it satisfies all definitions in $\mathcal T$

E.g.: Lecturer

Person

∃teaches.Course

Yields two kinds of concept names: defined and primitive

TBox: Example

TBoxes are used as ontologies:

Woman **≐** Person □ Female

Man ≐ Person □ ¬Woman

Lecturer \doteq Person \sqcap \exists teaches.Course

Student \doteq Person \sqcap \exists attends.Course

 $\mathsf{BadLecturer} \doteq \mathsf{Person} \sqcap \forall \mathsf{teaches.}(\mathsf{Course} \rightarrow \mathsf{Boring})$

TBox: Example II

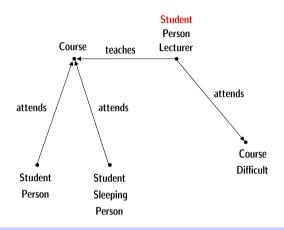
A TBox restricts the set of admissible interpretations.

Lecturer ≐ Person □ ∃**teaches**.**Course**

Student

Person

∃attends.Course



U resden

Reasoning Tasks — Subsumption

C subsumed by D w.r.t. \mathcal{T} (written $C \sqsubseteq_{\mathcal{T}} D$)

iff

 $C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$ holds for all models ${\mathcal{I}}$ of ${\mathcal{T}}$

Intuition: If $C \sqsubseteq_{\mathcal{T}} D$, then D is more general than C

Example:

Lecturer \doteq Person \sqcap \exists teaches.Course

Student \doteq Person \sqcap \exists attends.Course

Then

Lecturer \sqcap ∃attends.Course $\sqsubseteq_{\mathcal{T}}$ Student

J resden i

9

resden

Reasoning Tasks — Classification

Classification: arrange all defined concepts from a TBox in a hierarchy w.r.t. generality

Woman

Person

Female

Man

Person

Woman

Man

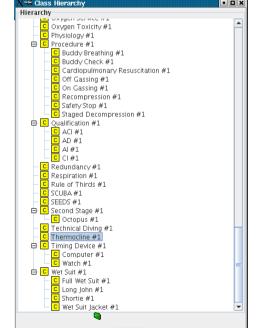
Woman

MaleLecturer

MaleLecturer

Can be computed using multiple subsumption tests

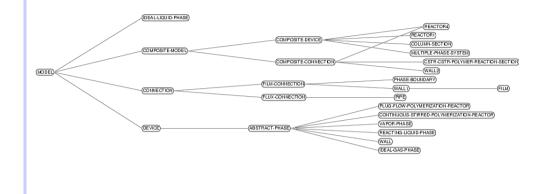
Provides a principled view on ontology for browsing, maintaining, etc.



Done

A Concept Hierarchy

Excerpt from a process engineering ontology



Reasoning Tasks — Satisfiability

C is satisfiable w.r.t. \mathcal{T} iff \mathcal{T} has a model with $C^{\mathcal{I}} \neq \emptyset$

Intuition: If unsatisfiable, the concept contains a contradiction.

Example: Woman **≐** Person □ Female

Man **≐** Person □ ¬Woman

Then \exists sibling.Man $\sqcap \forall$ sibling.Woman is unsatisfiable w.r.t. \mathcal{T}

Subsumption can be reduced to (un)satisfiability and vice versa:

ullet $C \sqsubseteq_{\mathcal{T}} D$ iff $C \sqcap \neg D$ is not satisfiable w.r.t. \mathcal{T}

• C is satisfiable w.r.t. \mathcal{T} if not $C \sqsubseteq_{\mathcal{T}} \bot$.

Many reasoners decide satisfiability rather than subsumption.

Ū resden

resden

Definitorial TBoxes

A primitive interpretation for TBox \mathcal{T} interpretes

- \bullet the primitive concept names in ${\mathcal T}$
- all role names

A TBox is called definitorial if every primitive interpretation for $\mathcal T$ can be uniquely extended to a model of $\mathcal T$.

i.e.: primitive concepts (and roles) uniquely determine defined concepts

Not all TBoxes are definitorial:

Person = ∃parent.Person Person? parent

Non-definitorial TBoxes describe constraints, e.g. from background knowledge

Acyclic TBoxes

TBox ${\mathcal T}$ is acyclic if there are no definitorial cycles:

Expansion of acyclic TBox \mathcal{T} :

exhaustively replace defined concept names with their definition (terminates due to acyclicity)

Acyclic TBoxes are always definitorial:

first expand, then set $A^{\mathcal{I}} := C^{\mathcal{I}}$ for all $A \doteq C \in \mathcal{T}$

Acyclic TBoxes II

For reasoning, acyclic TBox can be eliminated:

- ullet to decide $C \sqsubseteq_{\mathcal{T}} D$ with \mathcal{T} acyclic,
 - expand ${\mathcal T}$
 - replace defined concept names in C, D with their definition
 - decide $C \sqsubseteq D$
- analogously for satisfiability

May yield an exponential blow-up:

$$A_0 \doteq orall r.A_1 \sqcap orall s.A_1 \ A_1 \doteq orall r.A_2 \sqcap orall s.A_2 \ \cdots$$

 $A_{n-1} \doteq \forall r.A_n \sqcap \forall s.A_n$

U resden

General Concept Inclusions

View of TBox as set of constraints

General TBox: finite set of general concept implications (GCIs)

$$C \sqsubseteq D$$

with both C and D allowed to be complex

e.g. Course □ ∀attended-by.Sleeping □ Boring

Interpretation \mathcal{I} is model of general TBox \mathcal{T} if

$$C^{\mathcal{I}} \subset D^{\mathcal{I}}$$
 for all $C \sqsubset D \in \mathcal{T}$.

 $C \doteq D$ is abbreviation for $C \sqsubseteq D$, $D \sqsubseteq C$

e.g. Student \sqcap \exists has-favourite.SoccerTeam \doteq Student \sqcap \exists has-favourite.Beer

Note: $C \sqsubseteq D$ equivalent to $\top \doteq C \to D$

rocdo

3

22

resden

ABoxes

ABoxes describe a snapshot of the world

An ABox is a finite set of assertions

a:C (a individual name, C concept)

(a,b):R (a,b) individual names, R role name)

E.g. {peter : Student, (dl-course, uli) : tought-by}

Interpretations $\mathcal I$ map each individual name a to an element of $\Delta^{\mathcal I}$.

I satisfies an assertion

$$a:C \qquad \quad \text{iff} \qquad \quad a^{\mathcal{I}} \in C^{\mathcal{I}}$$

$$(a,b):R$$
 iff $(a^{\mathcal{I}},b^{\mathcal{I}})\in R^{\mathcal{I}}$

 \mathcal{I} is a model for an ABox \mathcal{A} if \mathcal{I} satisfies all assertions in \mathcal{A} .

U resden

24

ABoxes II

Note:

- interpretations describe the state if the world in a complete way
- ABoxes describe the state if the world in an incomplete way

(uli, dl-course): tought-by uli: Female

does not imply

dl-course : ∀tought-by.Female

An ABox has many models!

An ABox constraints the set of admissibile models similar to a TBox

Reasoning with ABoxes

ABox consistency

Given an ABox A and a TBox T, do they have a common model?

Instance checking

Given an ABox \mathcal{A} , a TBox \mathcal{T} , an individual name a, and a concept C does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold in all models of \mathcal{A} and \mathcal{T} ?

(written
$$\mathcal{A}, \mathcal{T} \models a : C$$
)

The two tasks are interreducible:

- \mathcal{A} consistent w.r.t. \mathcal{T} iff $\mathcal{A}, \mathcal{T} \not\models a : \bot$
- $\mathcal{A}, \mathcal{T} \models a : C \text{ iff } \mathcal{A} \cup \{a : \neg C\} \text{ is not consistent }$

U resden

26 22

Example for ABox Reasoning

ABox dumbo : Mammal t14 : Trunk

q23 : Darkgrey (dumbo, t14) : bodypart

(dumbo, g23): color

dumbo : ∀color.Lightgrey

TBox Elephant \doteq Mammal \sqcap \exists bodypart.Trunk \sqcap \forall color.Grey

Grev ≐ Lightgrev ⊔ Darkgrev

⊥ **≐** Lightgrey □ Darkgrey

- 1. ABox is inconsistent w.r.t. TBox.
- 2. dumbo is an instance of Elephant

U

2. Tableau algorithms for \mathcal{ALC} and extensions

We see a tableau algorithm for \mathcal{ALC} and extend it with

- ① general TBoxes and
- 2 inverse roles

Goal: Design sound and complete desicion procedures for satisfiability (and subsumption) of DLs which are well-suited for implementation purposes

University of

A tableau algorithm for the satisfiability of \mathcal{ALC} concepts

Goal: design an algorithm which takes an \mathcal{ALC} concept C_0 and

- 1. returns "satisfiable" iff C_0 is satisfiable and
- 2. terminates, on every input,

i.e., which decides satisfiability of \mathcal{ALC} concepts.

Recall: such an algorithm cannot exist for FOL since satisfiability of FOL is undecidable.

Idea: our algorithm

- is tableau-based and
- ullet tries to construct a model of C_0
- ullet by breaking C_0 down syntactically, thus
- inferring new constraints on such a model.

Preliminaries: Negation Normal Form

To make our life easier, we transform each concept C_0 into an equivalent C_1 in NNF

Equivalent: $C_0 \sqsubseteq C_1$ and $C_1 \sqsubseteq C_0$

NNF: negation occurs only in front of concept names

How? By pushing negation inwards (de Morgan et. al):

$$\neg(C \sqcap D) \rightsquigarrow \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \rightsquigarrow \neg C \sqcap \neg D$$

$$\neg \neg C \rightsquigarrow C$$

$$\neg \forall R.C \rightsquigarrow \exists R. \neg C$$

$$\neg \exists R.C \rightsquigarrow \forall R. \neg C$$

From now on: concepts are in NNF and $\operatorname{sub}(C)$ denotes the set of all sub-concepts of C

University

Mancheste

More intuition

Find out whether $A \sqcap \exists R.B \sqcap \forall R. \neg B$ is satisfiable... $A \sqcap \exists R.B \sqcap \forall R. (\neg B \sqcup \exists S.E)$

Our tableau algorithm works on a completion tree which

ullet represents a model \mathcal{I} : nodes represent elements of $\Delta^{\mathcal{I}}$

ightharpoonup each node x is labelled with concepts $\mathcal{L}(x) \subseteq \mathsf{sub}(C_0)$ $C \in \mathcal{L}(x)$ is read as "x should be an instance of C"

edges represent role successorship

ightharpoonup each edge $\langle x,y
angle$ is labelled with a role-name from C_0 $R \in \mathcal{L}(\langle x,y
angle)$ is read as "(x,y) should be in $R^{\mathcal{I}"}$

- ullet is initialised with a single root node x_0 with $\mathfrak{L}(x_0)=\{C_0\}$
- is expanded using completion rules

University of Manchester

. . .

Completion rules for \mathcal{ALC}

$$\sqcup$$
-rule: if $C_1\sqcup C_2\in \mathcal{L}(x)$ and $\{C_1,C_2\}\cap \mathcal{L}(x)=\emptyset$ then set $\mathcal{L}(x)=\mathcal{L}(x)\cup \{C\}$ for some $C\in \{C_1,C_2\}$

$$\exists$$
-rule: if $\exists S.C \in \mathcal{L}(x)$ and x has no S -successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x,y \rangle) = \{S\}$ and $\mathcal{L}(y) = \{C\}$

$$\forall$$
-rule: if $\forall S.C \in \mathcal{L}(x)$ and there is an S -successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$

University o

Properties of the completion rules for \mathcal{ALC}

We only apply rules if their application does "something new"

$$\sqcap$$
-rule: if $C_1\sqcap C_2\in \mathcal{L}(x)$ and $\{C_1,C_2\}\not\subseteq \mathcal{L}(x)$ then set $\mathcal{L}(x)=\mathcal{L}(x)\cup \{C_1,C_2\}$

$$\sqcup$$
-rule: if $C_1 \sqcup C_2 \in \mathcal{L}(x)$ and $\{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset$
then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$

$$\exists$$
-rule: if $\exists S.C \in \mathcal{L}(x)$ and x has no S -successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x,y \rangle) = \{S\}$ and $\mathcal{L}(y) = \{C\}$

$$\forall$$
-rule: if $\forall S.C \in \mathcal{L}(x)$ and there is an S -successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$

Properties of the completion rules for \mathcal{ALC}

The ⊔-rule is non-deterministic:

$$\sqcap$$
-rule: if $C_1\sqcap C_2\in \mathcal{L}(x)$ and $\{C_1,C_2\}\not\subseteq \mathcal{L}(x)$ then set $\mathcal{L}(x)=\mathcal{L}(x)\cup \{C_1,C_2\}$

$$\sqcup$$
-rule: if $C_1 \sqcup C_2 \in \mathcal{L}(x)$ and $\{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset$
then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$

$$\exists$$
-rule: if $\exists S.C \in \mathcal{L}(x)$ and x has no S -successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x,y \rangle) = \{S\}$ and $\mathcal{L}(y) = \{C\}$

$$orall$$
-rule: if $\forall S.C \in \mathcal{L}(x)$ and there is an S -successor y of x with $C \notin \mathcal{L}(y)$ then set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$

Manch

Last details on tableau algorithm for \mathcal{ALC}

Clash: a c-tree contains a clash if it has a node x with $\bot \in \mathcal{L}(x)$ or

 $\{A, \neg A\} \subseteq \mathcal{L}(x)$ — otherwise, it is clash-free

Complete: a c-tree is complete if none of the completion rules can be applied to it

Answer behaviour: when started for C_0 (in NNF!), the tableau algorithm

- ullet is initialised with a single root node x_0 with $\mathfrak{L}(x_0)=\{C_0\}$
- repeatedly applies the completion rules (in whatever order it likes)
- answer "C₀ is satisfiable" iff the completion rules can be applied in such a way that it results in a complete and clash-free c-tree (careful: this is non-deterministic)

...go back to examples

University of Mancheste

•

Properties of our tableau algorithm

Lemma: Let C_0 an \mathcal{ALC} -concept in NNF. Then

- 1. the algorithm terminates when applied to C_0 and
- 2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_0 is satisfiable.

- Corollary: 1. Our tableau algorithm decides satisfiability and subsumption of ALC.
 - 2. Satisfiability (and subsumption) in \mathcal{ALC} is decidable in PSpace.
 - 3. \mathcal{ALC} has the finite model property i.e., every satisfiable concept has a finite model.
 - 4. ALC has the tree model property i.e., every satisfiable concept has a tree model.
 - 5. ALC has the finite tree model property i.e., every satisfiable concept has a finite tree model.

Extend tableau algorithm to ALC with general TBoxes

- Recall: Concept inclusion: of the form $C \stackrel{.}{\sqsubset} D$ for C, D (complex) concepts
 - (General) TBox: a finite set of concept inclusions
 - $ullet \, \mathcal{I} \,$ satisfies $C \ \dot{\sqsubseteq} \, D \,$ iff $C^{\mathcal{I}} \subset D^{\mathcal{I}}$
 - $\bullet \mathcal{I}$ is a model of TBox \mathcal{I} iff \mathcal{I} satisfies each concept equation in \mathcal{I}
 - C_0 is satisfiable w.r.t. \mathcal{T} iff there is a model \mathcal{I} of \mathcal{T} with $C_0^{\mathcal{I}} \neq \emptyset$

Goal – Lemma: Let C_0 an \mathcal{ALC} -concept and \mathcal{T} be a an \mathcal{ALC} -TBox. Then

- 1. the algorithm terminates when applied to \mathcal{T} and C_0 and
- 2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_0 is satisfiable w.r.t. \mathcal{T} .

Extend tableau algorithm to \mathcal{ALC} with general TBoxes: Preliminaries

We extend our tableau algorithm by adding a new completion rule:

- ullet remember that nodes represent elements of $\Delta^{\mathcal{I}}$ and
- ullet if $C\ \dot{\sqsubseteq}\ D\in \mathcal{T}$, then for each element x in a model $\mathcal I$ of $\mathcal T$ if $x \in C^{\mathcal{I}}$, then $x \in D^{\mathcal{I}}$ hence $x \in (\neg C)^{\mathcal{I}}$ or $x \in D^{\mathcal{I}}$ $x \in (\neg C \sqcup D)^{\mathcal{I}}$ $x \in (\mathsf{NNF}(\neg C \sqcup D))^{\mathcal{I}}$

for NNF(E) the negation normal form of E

Completion rules for ALC with TBoxes

$$\sqcap$$
-rule: if $C_1 \sqcap C_2 \in \mathcal{L}(x)$ and $\{C_1, C_2\} \not\subseteq \mathcal{L}(x)$
then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C_1, C_2\}$

$$\sqcup$$
-rule: if $C_1 \sqcup C_2 \in \mathcal{L}(x)$ and $\{C_1,C_2\} \cap \mathcal{L}(x) = \emptyset$
then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1,C_2\}$

$$\exists$$
-rule: if $\exists S.C \in \mathcal{L}(x)$ and x has no S -successor y with $C \in \mathcal{L}(y)$, then create a new node y with $\mathcal{L}(\langle x,y \rangle) = \{S\}$ and $\mathcal{L}(y) = \{C\}$

$$\forall \text{-rule: if } \forall S.C \in \mathcal{L}(x) \text{ and there is an } S\text{-successor } y \text{ of } x \text{ with } C \notin \mathcal{L}(y)$$
 then set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$

$$\mathcal{T}$$
-rule: if $C_1 \stackrel{.}{\sqsubseteq} C_2 \in \mathcal{T}$ and $\mathsf{NNF}(\neg C_1 \sqcup C_2) \not\in \mathcal{L}(x)$ then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{\mathsf{NNF}(\neg C_1 \sqcup C_2)\}$

A tableau algorithm for \mathcal{ALC} with general TBoxes

Example: Consider satisfiability of C w.r.t. $\{C \sqsubseteq \exists R.C\}$

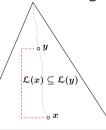
Tableau algorithm no longer terminates!

Reason: size of concepts no longer decreases along paths in a completion tree

Observation: most nodes on this path look the same and we keep repeating ourselves

Regain termination with a "cycle-detection" technique called blocking

Intuitively, whenever we find a situation where y has to satisfy stronger constraints than x, we $freeze\ x$, i.e., block rules from being applied to x



University of

A tableau algorithm for \mathcal{ALC} with general TBoxes: Blocking

- ullet x is directly blocked if it has an ancestor y with $\mathcal{L}(x)\subseteq\mathcal{L}(y)$
- ullet in this case and if y is the "closest" such node to x, we say that x is blocked by y
- a node is **blocked** if it is directly blocked or one of its ancestors is blocked
- \oplus restrict the application of all rules to nodes which are not blocked
 - \leadsto completion rules for \mathcal{ALC} w.r.t. TBoxes

A tableau algorithm for \mathcal{ALC} with general TBoxes

 \sqcap -rule: if $C_1\sqcap C_2\in \mathcal{L}(x)$, $\{C_1,C_2\}\not\subseteq \mathcal{L}(x)$, and x is not blocked then set $\mathcal{L}(x)=\mathcal{L}(x)\cup \{C_1,C_2\}$

 \sqcup -rule: if $C_1 \sqcup C_2 \in \mathcal{L}(x)$, $\{C_1, C_2\} \cap \mathcal{L}(x) = \emptyset$, and x is not blocked then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{C\}$ for some $C \in \{C_1, C_2\}$

 \exists -rule: if $\exists S.C \in \mathcal{L}(x)$, x has no S-successor y with $C \in \mathcal{L}(y)$, and x is not blocked then create a new node y with $\mathcal{L}(\langle x,y \rangle) = \{S\}$ and $\mathcal{L}(y) = \{C\}$

 \forall -rule: if $\forall S.C \in \mathcal{L}(x)$, there is an S-successor y of x with $C \notin \mathcal{L}(y)$ and x is not blocked then set $\mathcal{L}(y) = \mathcal{L}(y) \cup \{C\}$

 \mathcal{T} -rule: if $C_1 \stackrel{.}{\sqsubseteq} C_2 \in \mathcal{T}$, $\mathsf{NNF}(\neg C_1 \sqcup C_2) \not\in \mathcal{L}(x)$ and x is not blocked then set $\mathcal{L}(x) = \mathcal{L}(x) \cup \{\mathsf{NNF}(\neg C_1 \sqcup C_2)\}$

Or M

Tableaux Rules for \mathcal{ALC}

$x \bullet \{C_1 \sqcap C_2, \ldots\}$	\rightarrow_{\sqcap}	$x \bullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\}$
$x \bullet \{C_1 \sqcup C_2, \ldots\}$	\rightarrow_{\sqcup}	$x \bullet \{C_1 \sqcup C_2, \textcolor{red}{C}, \ldots\}$ for $C \in \{C_1, C_2\}$
$x \bullet \{\exists R.C, \ldots\}$	→∃	$x \bullet \{\exists R.C, \ldots\}$ R $y \bullet \{C\}$
$\begin{bmatrix} x \bullet \{ \forall R.C, \ldots \} \\ R \\ y \bullet \{ \ldots \} \end{bmatrix}$	\rightarrow_{\forall}	$x \bullet \{ \forall R.C, \ldots \}$ R $y \bullet \{ C, \ldots \}$

Tableaux Rule for Transitive Roles

$$\begin{bmatrix} x \bullet \{ \forall R.C, \ldots \} \\ R \\ y \bullet \{ \ldots \} \end{bmatrix} \longrightarrow_{\forall_{+}} \begin{bmatrix} x \bullet \{ \forall R.C, \ldots \} \\ R \\ y \bullet \{ \forall R.C, \ldots \} \end{bmatrix}$$

Where R is a transitive role (i.e., $(R^{\mathcal{I}})^+ = R^{\mathcal{I}}$)

- No longer naturally terminating (e.g., if $C = \exists R. \top$)
- Need blocking
 - Simple blocking suffices for \mathcal{ALC} plus transitive roles
 - I.e., do not expand node label if ancestor has superset label
 - More expressive logics (e.g., with inverse roles) need more sophisticated blocking strategies

Reasoning with Expressive Description Logics - p. 6/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)$ where R is a transitive role

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)$ where R is a transitive role

$$\mathcal{L}(w) = \{\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$$

Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)$ where R is a transitive role

$$\mathcal{L}(w) = \{\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$$

$$(w)$$

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

$$\widehat{(w)}$$

Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C) \}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

$$S$$

$$\mathcal{L}(x) = \{C\} \text{ (x)}$$

Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

Reasoning with Expressive Description Logics – p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

$$S$$

$$\mathcal{L}(x) = \{C, (\neg C \sqcup \neg D), \neg C\} \text{ (x)}$$

Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

$$w$$

$$S$$

$$\mathcal{L}(x) = \{C, (\neg C \sqcup \neg D), \neg C\}$$

$$w$$
 clash

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

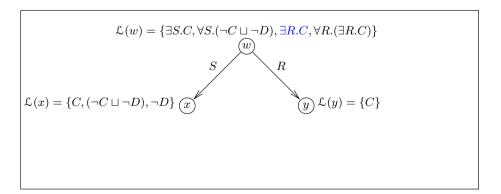
$$S$$

$$\mathcal{L}(x) = \{C, (\neg C \sqcup \neg D), \neg D\} \text{ (x)}$$

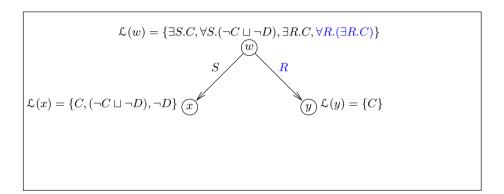
Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role



Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role



Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

$$S$$

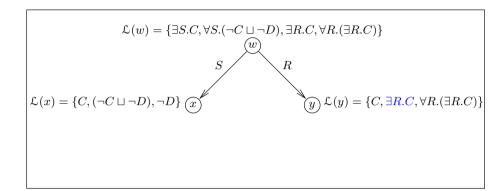
$$R$$

$$\mathcal{L}(x) = \{C, (\neg C \sqcup \neg D), \neg D\}$$

$$y \quad \mathcal{L}(y) = \{C, \exists R.C, \forall R.(\exists R.C)\}$$

Tableaux Algorithm — Example

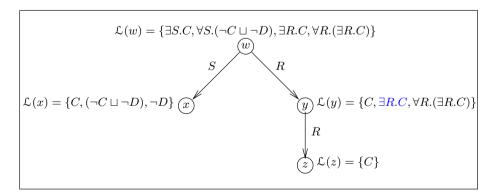
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$ where R is a **transitive** role



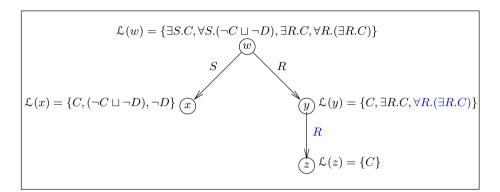
Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role



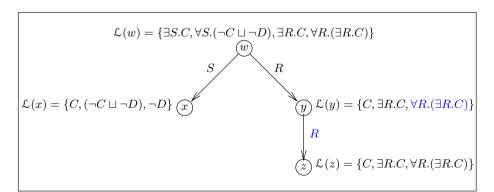
Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role



Reasoning with Expressive Description Logics - p. 7/27

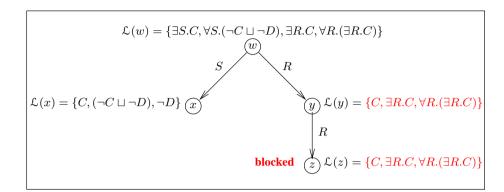
Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role



Tableaux Algorithm — Example

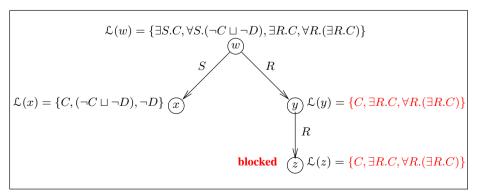
Test satisfiability of $\exists S.C \sqcap \forall S.(\neg C \sqcup \neg D) \sqcap \exists R.C \sqcap \forall R.(\exists R.C)\}$ where R is a **transitive** role



Reasoning with Expressive Description Logics - p. 7/27

Tableaux Algorithm — Example

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)\}$ where R is a **transitive** role



Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics - p. 7/27

Test satisfiability of $\exists S.C \cap \forall S.(\neg C \sqcup \neg D) \cap \exists R.C \cap \forall R.(\exists R.C)$ where R is a transitive role

$$\mathcal{L}(w) = \{\exists S.C, \forall S.(\neg C \sqcup \neg D), \exists R.C, \forall R.(\exists R.C)\}$$

$$S$$

$$R$$

$$\mathcal{L}(x) = \{C, (\neg C \sqcup \neg D), \neg D\}$$

$$R$$

$$y$$

$$\mathcal{L}(y) = \{C, \exists R.C, \forall R.(\exists R.C)\}$$

Concept is satisfiable: T corresponds to model

Reasoning with Expressive Description Logics - p. 7/27

Properties of our tableau algorithm for \mathcal{ALC} with TBoxes

Lemma: Let \mathcal{T} be a general \mathcal{ALC} -Tbox and C_0 an \mathcal{ALC} -concept. Then

- 1. the algorithm terminates when applied to \mathcal{T} and C_0 and
- 2. the rules can be applied such that they generate a clash-free and complete completion tree iff C_0 is satisfiable w.r.t. \mathcal{T} .

- Corollary: 1. Satisfiability of ALC-concept w.r.t. TBoxes is decidable
 - 2. ALC with TBoxes has the finite model property
 - 3. ALC with TBoxes has the tree model property

A tableau algorithm for \mathcal{ALC} with general TBoxes: Summary

The tableau algorithm presented here

- → decides satisfiability of ALC-concepts w.r.t. TBoxes, and thus also
- → decides subsumption of ALC-concepts w.r.t. TBoxes
- → uses blocking to ensure termination, and
- **→** is non-deterministic due to the →⊔-rule
- → in the worst case, it builds a tree of depth exponential in the size of the input, and thus of double exponential size. Hence it runs in (worst case) 2NExpTime,
- → can be implemented in various ways,
 - order/priorities of rules
 - data structure
 - etc.
- → is amenable to optimisations more on this next week

Challenges

Increased expressive power

- Existing DL systems implement (at most) SHIQ.
- OWL extends \mathcal{SHIQ} with datatypes and nominals
- Scalability
 - Very large KBs
 - Reasoning with (very large numbers of) individuals

Other reasoning tasks

- Querying
- Matching
- Least common subsumer

Tools and Infrastructure

• Support for large scale ontological engineering and deployment

Summary

- Description Logics are family of logical KR formalisms
- Applications of DLs include DataBases and Semantic Web
 - Ontologies will provide vocabulary for semantic markup
 - OWL web ontology language based on SHIQ DL
 - Set to become W3C standard (OWL) & already widely adopted
 - Use of DL provides formal foundations and reasoning support
- DL Reasoning based on tableau algorithms
- Highly Optimised implementations used in DL systems
- Challenges remain
 - Reasoning with full OWL language
 - (Convincing) demonstration(s) of scalability
 - New reasoning tasks
 - Development of (high quality) tools and infrastructure

Reasoning with Expressive Description Logics - p. 23/27

68

Resources

```
Slides from this talk

http://www.cs.man.ac.uk/~horrocks/Slides/Innsbruck-tutorial/

FaCT system (open source)

http://www.cs.man.ac.uk/FaCT/

OilEd (open source)

http://oiled.man.ac.uk/

OIL

http://www.ontoknowledge.org/oil/

W3C Web-Ontology (WebOnt) working group (OWL)

http://www.w3.org/2001/sw/WebOnt/

DL Handbook, Cambridge University Press

http://books.cambridge.org/0521781760.htm
```