www.ktunotes.in

kting companion.

Chapter 4 – Macro Processors

- A *macro* represents a commonly used group of statements in the source programming language. The macro processor replaces each macro instruction with the corresponding group of source language statements. This is called *expanding* the macros.
- Macro instructions allow the programmer to write a shorthand version of a program, and leave the mechanical details to be handled by the macro processor.
- For example, suppose that it is necessary to save the contents of all registers before calling a subprogram.

On SIC/XE, this would require a sequence of seven instructions (STA, STB, etc.).

Using a macro instruction, the programmer could simply write one statement like SAVEREGS. This macro instruction would be expanded into the seven assembler language instructions needed to save the register contents.

• The most common use of macro processors is in *assembler language programming*. However, macro processors can also be used with *high-level programming languages*, operating system command languages, etc.

4.1 Basic Macro Processor Functions

4.1.1 Macro Definition and Expansion

• Fig 4.1 shows an example of a SIC/XE program using *macro instructions*. The definitions of these macro instructions (RDBUFF and WRBUFF) appear in the

source program following the START statement.

5	COPY	START	0	COPY FILE FROM INPUT TO OUTPUT
10	RDBUFF	MACRO	& INDEV, & BUFADR	, &RECLIH
15				
20		MACRO T	O READ RECORD IN	TO BUFFER
25	2			
30	18) 1	CLEAR	x	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50		TD	=X'&TNDEV'	TEST INPUT DEVICE
55		TEC	*-3	LOOP UNTIL READY
50		RD	=X'ATNDEV'	READ CHARACTER INTO REG A
65		COMPR	h S	TEST FOR END OF RECORD
70		TRO	*+11	BATT LOOP IF EOR
70		CUCU	COUPADD Y	STORE CHARACTER IN BUFFER
75		SICH	aborada, a	LOOP UNLESS WAXIMUM LENGTH
80		TIAR	+ 10	UNC BEEN PEACHED
85		JUL	19	CAUR DROOPD LENGTH
90		SIX	&RECLAR	SAVE RECORD LENGTH
95		MEND		
100	WRBUFF	MACRO	SOUTDEV, &BUFAL	ir, arbuith
105		100		
110		MACRO T	O WRITE RECORD I	FROM BUFFER
115				
120		CLEAR	X	CLEAR LOOP COUNTER
125		LDT	&RECL/TH	
130		LDCH	&BUFADR, X	GET CHARACTER FROM BUFFER
135		TD	=X'&OUTDEV'	TEST OUTPUT DEVICE
140		JEQ	*-3	LCOP UNTIL READY
145		WD	=X'&OUTDEV'	WRITE CHARACTER
150		TIXR	Т	LOOP UNTIL ALL CHARACTERS
155		JLT	*-14	HAVE BEEN WRITTEN
160		MEND		
165		0.900.996050		
170		MAIN PR	OGRAM	
175		And Annual State		
180	FTRST	STL	RETADR	SAVE RETURN ADDRESS
190	CLOOP	ROBURT	F1. BUFFER. LEW	TH READ RECORD INTO BUFFER
195	chee.	LUNA	LENCTH	TEST FOR END OF FILE
200		COMP	#0	
200		TEO	ENDETT.	FXTT IF FOF FOUND
205	10.000	MIDDLINE OTO	OS BUEPEP I FN	TH WRITE OUTPUT RECORD
210	1 - 14	ALCOPP	CLOOP	LOOP
215		J	OF POT TUPET	INCEPT FOR MARKER
220	ENDFIL	WRBUFF	US, BUP, THREE	INSERT FOR IMPROSE
225		J	GRETADR	
230	EOF	BYTE	C. BOH.	
235	THREE	WORD	3	
240	RETADR	RESW	1	North and Albert and a state of the second
245	LENGTH	RESW	1	LENGTH OF RECORD
250	BUFFER	RESB	4096	4096-BYTE BUFFER AREA
255		ENP	FIRST	states and an entry of the Addition of the
10.47			a man yan e u	84 (real of 81 (PADE)

Figure 4.1

Use of macros in a SIC/XE program.

 Two new assembler directives (MACRO and MEND) are used in macro definitions.

The first MACRO statement (line 10) identifies the beginning of a macro definition.

<u>The symbol in the label field (RDBUFF)</u> is the name of the macro, and the entries in the operand field identify the *parameters* of the macro instruction.

 In our macro language, <u>each parameter begins with the</u> <u>character &</u>, which facilitates the substitution of parameters during *macro expansion*.

<u>The macro name and parameters</u> define a *pattern* or *prototype* for the macro instructions used by the programmer.

Following the MACRO directive are the statements that make up the body of the macro definition.

<u>The MEND assembler directive</u> marks <u>the end of the</u> <u>macro definition</u>.

• Fig 4.2 shows the output that would be generated. Each macro invocation statement has been expanded into the statements that form the *body* of the macro, with the *arguments* from the macro invocation substituted for the *parameters* in the *macro prototype*.

-	0000	CHILD TO THE	•	
5	COPI	START	0	COPY FILE FROM INPUT TO OUTPUT
180	FIRST	STL	REIADR	SAVE RETURN ADDRESS
190	.CLOOP	KUBUFF	FI, BUFFER, LENGTH	READ RECORD INTO BUFFER
1904	CLOP	CLISAR	^	CLEAR LOOP COUNTER
1905		CLEAR	A	
1900		CLEAR	S	
190d		+LDF	#4095	SET MAXIMUM RECORD LENGTH
190e		CTP.	=X'F'''	TEST INPUT DEVICE
190F		JEQ	*-3	LOOP UNTIL READY
190g		FD	=Z'F1'	READ CHARACTER INTO REG A
190h		COMPR	A,S	TEST FOR END OF RECORD
1901		JEQ	*+11	BAIT LOOP IF BOR
1905		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
190k		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
1901		JLT	*-19	HAS BEEN REACHED
190m		STX	LENGTH	SAVE RECORD LENGTH
195		LDA	LENGTH	TEST FOR END OF FILE
200		COMP	#0	
205		JEQ	ENDFIL	EXIT IF BOF FOUND
210		WRBUFF	05, BUFFER, LENGTH	WRITE OUTPUT RECORD
210a		CLEAR	X	CLEAR LOOP COUNTER
210b		LDT	LENGTH	
210c		LIDCH	BOFFER, X	GET CHARACTER FROM BUFFER
210đ		TD	=X'05'	TEST OUTPUT DEVICE
210e		JEQ	*-3	LOOP UNTIL READY
210 f		WD	=X'05'	WRITE CHARACTER
210g		TIXR	T	LOOP UNTIL ALL CHARACTERS
210h		JLT	*-14	HAVE BEEN WRITTEN
215		3	CLOOP	LOOP
220	. ENDETL	WRBUFF	05, EOF, THREE	INSERT BOF MARKER
220a	ENDPIL	CLEAR	x	CLEAR LOOP COUNTER
220b		LOT	THREE	
220c		LOCH	BOF.X	GET CHARACTER FROM BUFFER
220d		TD	=X'05"	TEST OUTPUT DENICE
220e		JEO	*-3	LOOP UNTIL READY
220£		WD	=X'05'	WRITE CHARACTER
220cr		TIXE	T	LOOP INTTL ALL CHARACTERS
220h		JUT	*-14	HAUR BREN WOTTTEN
225		a l	ARRIADR	they bear mained
230	FOF	BYTE	C'EDE'	
235	THREE	WORD	3	
240	RETION	RECH		
245	LINGTH	DECH	1	
250	DITERE	DECTO	1005	ADDE THE DE RECORD
255	DUCCESK	TAT	4090	AUSO-BITE HUFFER AREA
		Hand J		

Figure 4.2 Program from Fig. 4.1 with macros expanded.

 For example, in expanding the macro invocation on line 190, the argument F1 is substituted for the parameter <u>&INDEV</u> wherever it occurs in the body of the macro.

Similarly, <u>BUFFER</u> is substituted for <u>&BUFADR</u>, and <u>LENGTH</u> is substituted for <u>&RECLTH</u>.

- The comment lines within the macro body have been deleted. Note that the macro invocation statement itself has been included as a comment line. This serves as documentation of the statement written by the programmer.
- <u>The label on the macro invocation statement (CLOOP)</u> has been retained as a label <u>on the first statement</u> <u>generated in the macro expansion</u>.

This allows the programmer to use a *macro instruction* in exactly the same way as an *assembler language mnemonic*.

Note that the two invocations of WRBUFF specify different arguments, so they produce different expansions.

- After macro processing, the expanded file (Fig 4.2) can be used as input to the assembler.
- In general, the statements that form the expansion of a macro are generated (and assembled) each time the macro is invoked (see Fig 4.2). Statements in a subroutine appear only once, regardless of how many times the subroutine is called (see Fig 2.5).

Line	Source statement			
5	COFY	START	0	COPY FILE FROM INPUT TO OUTPUT
10	FIRST	STL	RETADR	SAVE RETURN ADDRESS
12	100000000000	LDB	#LENGTH	ESTABLISH BASE REGISTER
13		BASE	LENGTH	
15	CLOOP	+JSUE	RDREC	READ INPUT RECORD
20		LDA	LENGTH	TEST FOR EOF (LENGTH = 0)
25		COMP	#0	
30		JEQ	ENDFIL	EXIT IF BOF FOUND
35		+JSUB	WEREC	WRITE OUTPUT RECORD
40		J	CLOOP	LOOP
45	ENDFIL	LDA	EOF	INSERT END OF FILE MARKER
50		STA	BUFFER	
55		LDA	#3	SET LENGTH = 3
60		STA	LENGTH	
65		+JSUB	WRREC	WRITE EOF
70		J	GRETADR	RETURN TO CALLER
80	EOF	BYTE	C'BOF'	
95	RETADR	RESW	1	
100	LENGTH	RESW	1	LENGTH OF RECORD
105	BOFFER.	RESB	4096	4096-BYTE BUFFER AREA
110	-			
115		SUBROUT	TINE TO READ R	ECORD INTO BUFFER
120				
125	REREC	CLEAR	x	CLEAR LOOP COUNTER
130		CLEAR	A	CLEAR A TO ZERO
132		CLEAR	5	CLEAR S TO ZERO
133		+LDT	#4096	
135	RLOOP	TD	INPUT	TEST INPUT DEVICE
140		JEQ	FLOOP	LOOP UNTIL READY
145		RD	INPUT	READ CHARACTER INTO REGISTER A
150		COMPR.	A,S	TEST FOR END OF RECORD (X'00')
155		JEQ	EXIT	EXIT LOOP IF EOR
160		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
165		TIXR	T	LCOP UNLESS MAX LENGTH
170		JLT	RLOOP	HAS BEEN REACHED
175	EXIT	STX	LENGTH	SAVE RECORD LENGTH
180		RSUB	i din	RETURN TO CALLER
185	INPOT	BYTE	X'F1'	CODE FOR INPUT DEVICE
195				
200		SUBROU	TINE TO WRITE	RECORD FROM BUFFER
205	•	d anna llana	32	
210	WRREC	CLEAR	x	CLEAR LOOP COUNTER
212		LDT	LENGTH	
215	NLOOP	TD	OOTPOT	TEST OUTPUT DEVICE
220		JBQ	WLOOP	LOOP UNTIL READY
225		LDCH	BOFFER, X	GET CHARACTER FROM BUFFER
230		WID	OCTPUT	WRITE CHARACTER
235		TIXR	T	LOOP UNTIL ALL CHARACTERS
240		JLT	WLOOP	HAVE BEEN WRITTEN
245		RSUB		RETURN TO CALLER
250	OUTPUT	BYTE	x'05'	CODE FOR COTFOT DEVICE
255		END	FIRST	

Figure 2.5 Example of a SIC/XE program.

4.1.2 Macro Processor Algorithm and Data Structures

 Approach 1: It is easy to design a two-pass macro processor in which all macro definitions are processed during the first pass, and all macro invocation statements are expanded during the second pass.

However, such a two-pass macro processor would not allow the body of one macro instruction to contain definitions of other macros (because all macros would have to be defined during the first pass before any macro invocations were expanded).

 Approach 2: A one-pass macro processor that can alternate between macro definition and macro expansion is able to handle macros like those in Fig 4.3.

1	MACROS	MACRO	{Defines SIC standard version macros}
*	REBOFF	MACINO	armos, abor and, anocorri
		1. 1.	{SIC standard version}
		imm	
5		MEND	(End of RDBOFF)
4	WRBUFF.	MACRO	&OUTDEV, & BUFADR, & RECLITH
		-	A second state of the seco
		- 10	(SIC standard version)
323		and the second	
5		MEND	(End of WRBUFF)
		Street Level	
6		MEND	(End of MACROS)
		KTL	(a)
1	MACROX	MACRO	{Defines SIC/XE macros}
2	RDBUFF	MACRO	& INDEV. & BUFADR, & RECLTH
-72	1.		
		13	(SIC/XE version)
			The Access Soliday Galanting of the
3		MEND	(End of RDBUFF)
4	WRBUFF	MACRO	SOUTDEV, SBUFADR, SRECLTH
100			
		20.00 PM	{SIC/XE version}
5		MEND	{End of WRBUFF}
-		and the second second	and the property of the section of the
		47	
6		MEND	{End of MACROX}
			alternation from the state of the state
			(b)

Figure 4.3 Example of the definition of macros within a macro body.

Because of the one-pass structure, <u>the definition of a</u> macro must appear in the source program *before* any <u>statements that invoke that macro</u>.

• There are three main data structures involved in our macro processor.

The *macro definitions* themselves are stored in a *definition table* (DEFTAB), which contains <u>the *macro prototype*</u> and <u>the statements that make up the macro</u> <u>body</u> (with a few modifications). Comment lines from the macro definition are not entered into DEFTAB because they will not be part of the macro expansion.

References to the *macro instruction parameters* are converted to a *positional notation* for efficiency in substituting arguments.

The *macro names* are entered into NAMTAB, which serves as an index to DEFTAB. For each macro instruction defined, NAMTAB contains pointers to the *beginning* and *end* of the definition in DEFTAB.

• The third data structure is an *argument table* (ARGTAB), which is used during the expansion of macro invocations.

When a macro invocation statement is recognized, the arguments are stored in ARGTAB <u>according to their</u> <u>position in the argument list</u>.

As the macro is expanded, <u>arguments from ARGTAB</u> are substituted for <u>the corresponding parameters</u> in the macro body.

• Fig 4.4 shows portions of the contents of these tables during the processing of program in Fig 4.1.

Figure 4.4 Contents of macro processor tables for the program in Fig. 4.1: (a) entries in NAMTAB and DEFTAB defining macro RDBUFF. (b) entries in ARGTAB for invocation of RDBUFF on line 190.

Fig 4.4(a) shows the definition of RDBUFF stored in DEFTAB, with an entry in NAMTAB identifying the beginning and end of the definition.

Note the *positional notation* that has been used for the *parameters*: $\&INDEV \rightarrow ?1$ (indicating the first parameter in the prototype), $\&BUFADR \rightarrow ?2$, etc.

Fig 4.4(b) shows ARGTAB as it would appear during expansion of the RDBUFF statement on line 190. In this case (this invocation), the first argument is F1, the second is BUFFER, etc.

• The *macro processor algorithm* is presented in Fig 4.5.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

```
begin {macro processor}
        EXPANDING := FALSE
        while OPCODE ≠ 'END' do
             begin
                 GETLINE
                 PROCESSLINE
             end (while)
   end (macro processor)
  procedure PROCESSLINE
       begin
             search NAMTAB for OPCODE
             if found then
                EXPAND
             else if OPCODE = 'MACRO' then
                DEFINE
            else write source line to expanded file
       end {PROCESSLINE}
procedure DEFINE
    begin
         enter macro name into NAMTAB
         enter macro prototype into DEFTAB
        LEVEL := 1
         while LEVEL > 0 do
          begin
                 GETLINE
                if this is not a comment line then
              begin
                substitute positional notation for parameters
                         enter line into DEFTAB
                        if OPCODE = 'MACRO' then
                         LEVEL := LEVEL + 1
       else if OPCODE = 'MEND' then
                           LEVEL := LEVEL - 1
                    end {if not comment}
          end (while)
        store in NAMTAB pointers to beginning and end of definition
    end {DEFINE}
procedure EXPAND
    begin
        EXPANDING := TRUE
     get first line of macro definition (prototype) from DEFTAB
    set up arguments from macro invocation in ARGTAB
       write macro invocation to expanded file as a comment
    while not end of macro definition do
           begin
                GETLINE
                PROCESSLINE
      end (while)
      EXPANDING := FALSE
    end {EXPAND}
procedure GETLINE
        if EXPANDING then
           begin the second s
               get next line of macro definition from DEFTAB
              substitute arguments from ARGTAB for positional notation
           end (if)
        else
           read next line from input file
    end (GETLINE)
```

Figure 4.5 Algorithm for a one-pass macro processor.

<u>The procedure DEFINE</u>, which is called when the beginning of a macro definition is recognized, <u>makes the appropriate entries in DEFTAB and NAMTAB</u>.

EXPAND is called to set up the argument values in <u>ARGTAB</u> and <u>expand a macro invocation statement</u>.

<u>The procedure GETLINE</u>, which is called at several points in the algorithm, <u>gets the next line to be processed</u>. This line may come <u>from DEFTAB (the next line of a macro begin expanded)</u>, or <u>from the input file</u>, depending on whether the Boolean variable EXPANDING is set to TRUE or FALSE.

• One aspect of this algorithm deserves further comment: *the handling of macro definitions within macros* (as illustrated in Fig 4.3).

The DEFINE procedure maintains a counter named LEVEL. Each time a MACRO directive is read, the value of LEVEL is increased by 1.

Each time an MEND directive is read, the value of LEVEL is decreased by 1.

When LEVEL reaches 0, the MEND that corresponds to the original MACRO directive has been found.

• The above process is very much like matching *left* and *right parentheses* when scanning an arithmetic expression.

4.2 Machine-Independent Macro Processor Features

4.2.1 Concatenation of Macro Parameters

• Suppose that a program contains one series of variables named by the symbols XA1, XA2, XA3, ..., another series named by XB1, XB2, XB3, ..., etc.

If similar processing is to be performed on each series of variables, the programmer might want to incorporate this processing into a macro instruction.

<u>The parameter</u> to such a macro instruction could specify the series of variables to be operated on (A, B, etc.). The macro processor would use <u>this parameter</u> to construct the symbols required in the macro expansion (XA1, XB1, etc.).

 Most macro processors deal with this problem by providing a special concatenation operator.

This operator is the character \rightarrow . For example, the statement LDA $X \le ID \rightarrow 1$ so that the end of the parameter $\le ID$ is clearly identified.

The macro processor deletes all occurrences of the concatenation operator immediately after performing parameter substitution, so \rightarrow will not appear in the macro expansion.

Fig 4.6(a) shows a macro definition that uses the concatenation operator as previously described. Fig 4.6(b) and (c) shows macro invocation statements and the corresponding macro expansions.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

Figure 4.6 Concatenation of macro parameters.

4.2.2 Generation of Unique Labels

 Consider the definition of WRBUFF in Fig 4.1. If a label were placed on the TD instruction on line 135, <u>this label</u> <u>would be defined twice</u> – once for each invocation of WRBUFF.

<u>This duplicate definition</u> would prevent correct assembly of the resulting expanded program.

 Many macro processors avoid these problems by allowing the creation of <u>special types of labels</u> within macro instructions. <u>Fig 4.7 illustrates one technique for</u> generating unique labels within a macro expansion.

25	RDBUFF	MACRO	& INDEV, & BUF	ADR. & RECLTH
30		CLEAR	х	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4095	SET MAXIMUM RECORD LENGTH
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		FD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
75		STCH	& BUFADR, X	STORE CHARACTER IN BUFFER
80		TIXE	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	SLOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95	10000000000000	MEND		

(a)

		RDBUFF	F1, BUFFER, I	LENGTH
~ ~				
30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	TED.II'
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	SAALCOP	TD	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	SAAEXIT	EXIT LOOP IF EOR
75		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
80		TIXR	т	LCOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	LENGTH	SAVE RECORD LENGTH

(b)

Figure 4.7 Generation of unique labels within macro expansion.

 Fig 4.7(a) shows a definition of the RDBUFF macro. <u>Labels used</u> within the macro body <u>begin with the special</u> <u>character \$</u>.

Fig 4.7(b) shows <u>a macro invocation statement</u> and <u>the</u> <u>resulting macro expansion</u>. Each symbol beginning with \$ has been modified by replacing \$ with \$AA.

More generally, the character $\underline{\$}$ will be replaced by $\underline{\$xx}$, where \underline{xx} is *a two-character alphanumeric counter* of the number of macro instructions expanded.

For the first macro expansion in a program, xx will have the value AA. For succeeding macro expansions, xx will be set to AB, AC, etc.

4.2.3 Conditional Macro Expansion

- Most macro processors <u>can also modify the sequence of</u> <u>statements generated for a macro expansion</u>, <u>depending</u> <u>on the arguments supplied in the macro invocation</u>. This is called conditional macro expansion.
- Fig 4.8 shows the use of one type of conditional macro expansion statement.

25	RDBUFF	MACRO	& INDEV, & BUFADR, & RECL/TH, & EOR, & MAXL/TH		
26		IF	(&ECR NE '')		
27	&EORCK	SET	1		
28		ENDIF			
30		CLEAR	x	CLEAR LOOP COUNTER	
35		CLEAR	A		
38		IF	(&EORCK EQ 1)		
40		LDCH	=X'&EOR'	SET EOR CHARACTER	
42		RMO	A.S		
43		ENDIF			
44		IF	(SMAXLTH BC '	1	
45		+LDT	#4096	SET MAX LENGTH = 4096	
46		ELSE			
47		+LDT	#&MAXLTH	SET MAXIMUM RECORD LENGTH	
48		ENDIF			
50	SLOOP	TD	=X'&INDEV'	TEST INPUT DEVICE	
55	+	TEO	SLOOP	LOOP UNTIL READY	
60		RD	=X'& INDEV'	READ CHARACTER INTO REG A	
63		TF	(ARORCK ED 1)	The boundary and the bound of the	
65		COMPR	A S	TRAT FOR END OF PROOPD	
70		TEO	SEXTE	FXTT LOOP TE FOR	
73		ENDIE		Later boot it bon	
75		STCH	CREEPADE Y	STARE CHARACTER IN STREEP	
20		TTER	T	LOOP INTERS MAYTMIM LENGTH	
95		TTT	SLOOP	HAS BEEN DEACHED	
00	CEVTP	STR	6 B B C I TH	CANE PECOPO LENGUL	
05	STRATT.	MEND	archeuin	SAVE RECORD LENGTH	
33		THEFT	(2)		
			(a)		
		RDBUFF	F3, BUF, RECL, 04	,2048	
30		CLEAR	x	CLEAR LOOP COUNTER	
35		CLEAR	A		
40		LDCH	=X'04'	SET EOR CHARACTER	
42		RMO	A,S		
47		+LDT	#2048	SET MAXIMUM RECORD LENGTH	
50	\$AALOOP	TD	=X'F3'	TEST INPUT DEVICE	
55		JEQ	\$AALOOP	LOOP UNTIL READY	
60		RD	=X'F3'	READ CHARACTER INTO REG A	
65		COMPR	A.S	TEST FOR END OF RECORD	
70		JEQ	SAAEXIT	EXIT LOOP IF EOR	
75		STCH	BUF, X	STORE CHARACTER IN BUFFER	
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH	
85		JLT	SAALOOP	HAS BEEN REACHED	
90	SAAEXIT	STX	RECL	SAVE RECORD LENGTH	
			(b)	the second state of the se	

Written by WWF

Downloaded from Ktunotes.in

RDBUFF 0E, BUFFER, LENGTH, , 80

30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
47		+LDT	#80	SET MAXIMUM RECORD LENGTH
50	\$ABLOOP	TD	=X'0E'	TEST INPUT DEVICE
55		JEQ	\$ABLOOP	LOOP UNTIL READY
60		RD	=X'0E'	READ CHARACTER INTO REG A
75		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
80		TIXR	т	LOOP UNLESS MAXIMUM LENGTH
87		JLT	SABLOOP	HAS BEEN REACHED
90	\$ABEXIT	STX	LENGTH	SAVE RECORD LENGTH
				(c)
		RDBUFF	F1, BUFF, F	LENG, 04
30		CT PAD		
25		CLEAR	- -	CLEAR LOOP COUNTER
40		LEAR	A	
40		LUCH	=X'04'	SET EOR CHARACTER
44		RMO	A,S	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	SACLOOP	TD	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$ACLOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$ACEXIT	EXIT LOOP IF FOR
75		STCH	BUFF, X	STORE CHARACTER IN BUFFER
80		TIXR	т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	SACLOOP	HAS BEEN REACHED
90	\$ACEXIT	STX	RLENG	SAVE RECORD LENGTH

Figure 4.8 Use of macro-time conditional statements.

Fig 4.8(a) shows a definition of a macro RDBUFF, the logic and functions of which are similar to those previously discussed.

Two additional parameters are defined in RDBUFF: <u>&EOR</u>, which specifies a hexadecimal character code that marks the end of a record, and <u>&MAXLTH</u>, which specifies the maximum length record that can be read.

 1st illustration: The statements on <u>lines 44 through 48</u> of this definition illustrate a simple macro-time conditional structure.

The <u>IF statement evaluates a *Boolean expression*</u> that is its operand (In this case, it is [&MAXLTH EQ ``].). If TRUE, the statements following the IF are generated until an ELSE is encountered (Line 45 is generated.).

If FALSE, these statements are skipped, and the statements following the ELSE are generated (Line 47 is generated.).

The ENDIF statement terminates the conditional expression that was begun by the IF statement.

2nd illustration: On line 26 through 28, line 27 is another <u>macro processor directive</u> (SET). This SET statement assigns the value 1 to &EORCK.

The symbol &EORCK is a *macro time variable*, which can be used to store working values during the macro expansion. Note any symbol that begins with the character & and that is not a macro instruction parameter is assumed to be a *macro-time variable*. All such variables are initialized to a value of 0.

- Other illustrations: On <u>line 38 through 43</u> and <u>line 63</u> <u>through 73</u>.
- Fig 4.8 (b-d) shows the expansion of 3 different macro invocation statements that illustrate the operation of the IF statements in Fig 4.8(a).
- Note that the macro processor must maintain a <u>symbol</u> <u>table</u> that contains <u>the values of all macro-time variables</u> <u>used</u>.

Entries in this table are <u>made or modified when SET</u> <u>statements are processed</u>. The table is used to look up the current value of a macro-time variable whenever it is required.

 Syntax 1 – <u>IF (Boolean Exp.) (statements) ELSE</u> (statements) ENDIF: If IF statement is encountered during the expansion of a macro, the specified Boolean expression is evaluated.

If <u>TRUE</u>, the macro processor continues to process lines from DEFTAB until it encounters the next ELSE or ENDIF statement. If an ELSE is found, the macro processor then skips lines in DEFTAB until the next ENDIF. Upon reaching the ENDIF, it resumes expanding the macro in the usual way.

If <u>FALSE</u>, the macro processor skips ahead in DEFTAB <u>until</u> it finds the next ELSE or ENDIF statement. The macro processor then resumes normal macro expansion.

- The implementation outlined above does not allow for <u>nested IF structures</u>.
- It is extremely important to understand that <u>the testing of</u> <u>Boolean expressions in IF statements</u> occurs <u>at the time</u> <u>macros are expanded</u>.

By the time the program is assembled, all such decisions (must) have been made.

The conditional macro expansion directives (must) have been removed. The same applies to the assignment of values to macro-time variables, and to the other conditional macro expansion directives.

• Fig 4.9 shows the use of *macro-time loop statements*. The definition in Fig 4.9(a) uses a macro-time loop statement WHILE.

25	RDBUFF	MACRO	&INDEV, SBUF	ADR, &RECLITH, &EOR
27	SECRCT	SET	NITEMS (&EOF	()
30		CLEAR	x	CLEAR LOOP COUNTER
35		CLEAR	A	
45		+LDT	#4095	SET MAX LENGTH = 4096
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	SLOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
63	&CTR	SET	1	
64		WHILE	(&CTR LE &BO	RCT)
65		COMP	=X'0000&EOR[&	CTR]'
70		JEQ	\$EXIT	
71	&CTR	SET	&CTR+1	
73		ENDW		
75		STCH	& BUFADR, X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	SLOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
100		MEND		

(a)

RDBUFF F2, BUFFER, LENGTH, (00,03,04)

30		CLEAR	х	CLEAR LOOP COUNTER
35		CLEAR	A	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	SAALOOP	TD	=X'F2'	TEST INPUT DEVICE
55	a destruction destruction de	JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F2'	READ CHARACTER INTO REG A
65		COMP	=X'000000'	
70		JEQ	SAAEXIT	
65		COMP	=X'000003'	
70		JEQ	SAAEXIT	
65		COMP	=X'000004'	
70		JEO	SAAEXIT	
75		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
80	SPARY SC	TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	SAALOOP	HAS BEEN REACHED
90	SAAEXIT	STX	LENGTH	SAVE RECORD LENGTH

(b)

Figure 4.9 Use of macro-time looping statements.

The WHILE statement specifies that <u>the following lines</u>, <u>until the next ENDW statement</u>, are to be generated <u>repeatedly as long as a particular condition is true</u>. Note that all the generation is done at the macro expansion time. The conditions to be tested involve macro-time variables and arguments, not run-time data values.

 The use of the <u>WHILE-ENDW structure</u> is illustrated on <u>lines 63 through 73</u> of Fig 4.9(a). The macro-time variables &EORCT has previously been set (line 27) to the value %NITEMS(&EOR).

<u>%NITEMS</u> is a *macro processor function* that returns as its value the number of members in an argument list. For example, if the argument corresponding to &EOR is (00, 03, 04), then %NITEMS(&EOR) has the value 3.

The macro-time variable &CTR is used to count the number of times the lines following the WHILE statement have been generated. The value of &CTR is initialized to 1 (line 63), and incremented by 1 each time through the loop (line 71).

Fig 4.9(b) shows the expansion of a macro invocation statement using the definition in Fig 4.9(a).

 Syntax 2 – <u>WHILE (Boolean Exp.) (statements) ENDW</u>: When a WHILE statement is encountered during macro expansion, the specified Boolean expression is evaluated.

If the value of this expression is <u>FALSE</u>, <u>the macro</u> <u>processor</u> <u>skips ahead in DEFTAB until</u> it finds the next ENDW statement, and then resumes normal macro expansion.

If <u>TRUE</u>, the macro processor continues to process lines from DEFTAB in the usual way until the next ENDW statement. When ENDW is encountered, the macro processor returns to the preceding WHILE, re-evaluates the Boolean expression, and takes action based on the new value of this expression as previously described.

• Note that no nested WHILE structures are allowed.

4.2.4 Keyword Macro Parameters

- All the macro instruction definitions we have seen thus far used *positional parameters*. That is, *parameters* and arguments were associated with each other according to their positions in the macro prototype and the macro invocation statement.
- With positional parameters, the programmer must be careful to specify the arguments in the proper order. If an be omitted, the macro argument is to invocation statement must contain a null argument (two consecutive commas) to maintain the correct argument positions.

For example, a certain macro instruction GENER has 10 possible parameters, but in a particular invocation of the macro, only 3rd and 9th parameters are to be specified. Then, the macro invocation might look like **GENER**

, , DIRECT, , , , , , 3.

• Using a different form of parameter specification, called keyword parameters, each argument value is written with a keyword that names the corresponding parameter.

Arguments may appear in any order.

For example, if 3rd parameter in the previous example is named &TYPE and 9th parameter is named &CHANNEL, the macro invocation statement would be GENER TYPE=DIRECT, CHANNEL=3.

• Fig 4.10(a) shows a version of the RDBUFF macro definition using keyword parameters.

System Software – An Introduction to Systems Programming, 3rd ed., Leland L. Beck

25	RDBUFF	MACRO	&INDEV=F1,&EU	FADR=, &RECLTH=, & BOR=04, &MAXLTH=4096
26		IF	(&EOR NE '')	
27	& EORCK	SET	1	
28		ENDIF		
30		CLEAR	х	CLEAR LOOP COUNTER
35		CLEAR	A	
38		IF	(&EORCK EQ 1)	
40		LIDCH	=X'&EOR'	SET BOR CHARACTER
42		RMO	A,S	en a la contra de la
43		ENDIF		
47		+LDT	#&MAXL/TH	SET MAXIMUM RECORD LENGTH
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		FD	=X'&INDEV'	READ CHARACTER INTO REG A
63		IF	(&EORCK EQ 1)	
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
73		ENDIF	112-53645	
75		STCH	&BUFADR, X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	SLOOP	FAS BEEN REACHED
90	\$EXIT	STX	&RECL/TH	SAVE RECORD LENGTH
95		MEND		

(a)

Figure 4.10 Use of keyword parameters in macro instructions.

In the macro prototype, <u>each parameter name</u> is followed by <u>an equal sign</u> (=), which identifies <u>a keyword</u> <u>parameter</u>.

After = sign, <u>a default value</u> is specified for some of the parameters. <u>The parameter is assumed to have this</u> <u>default value</u> if its name does not appear in <u>the macro</u> <u>invocation statement</u>.

Default values can simplify the macro definition in many cases.

4.3 Macro Processor Design Options

4.3.1 Recursive Macro Expansion

• Fig 4.11 shows an example of <u>macro invocations within</u> <u>macro definitions</u>.

10	REBUFF	MACRO	&BUFADR, &REC	L/TH, & INDEV
15				
20		MACRO 1	NO READ RECORD	INTO BUFFER
25				
30		CLEAR	x	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	SLOOP	RDCHAR	& INDEV	READ CHARACTER INTO REG A
65		COMPR	A.S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
75		SICH	ABUFADR, X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	SEXIT	STX	&RECL/TH	SAVE RECORD LENGTH
95		MEND		
			(a)	
			(-/	
12				
5	RDCHAR	MACRO	&IN	
10				
15		MACRO 7	'O READ CHARAC'	TER INTO REGISTER A
20				
25		TD	=X'&IN'	TEST INPUT DEVICE
30		JEQ	*-3	LOOP UNTIL READY
35		RD	=X'&IN'	READ CHARACTER
40		MEND		Same and the second second
			(b)	-ES IN
				E
		RDBUFF	BUFFER, LENGT	H,FL
			(c)	

Figure 4.11 Example of nested macro invocation.

Fig 4.11(a) shows the definition of RDBUFF. In this case, a macro invocation (RDCHAR) is invocated in the body of RDBUFF and a related macro instruction already exists.

The definition of RDCHAR appears in Fig 4.11(b).

 Unfortunately, the macro processor design we have discussed previously cannot handle such <u>invocations of</u> <u>macros within macros</u>.

Fig 4.11(c) shows a macro invocation statement of <u>RDBUFF.</u> According to the algorithm in Fig 4.5, the procedure EXPAND would be called when the macro was recognized. The arguments from the macro invocation

would be entered into ARGTAB as shown in page 201.

<u>The processing would proceed normally until line 50,</u> <u>which contains a statement invoking RDCHAR</u>. At that point, PROCESSLINE would <u>call EXPAND again</u>. This time, ARGTAB would look like as shown in page 201.

The expansion of RDCHAR would also proceed normally. At the end of this expansion, however, a problem would appear. When the end of the definition of RDCHAR was recognized, EXPANDING would be set to FALSE. Thus, the macro processor would "forget" that it had been in the middle of expanding a macro when it encountered the RDCHAR statement.

In addition, the arguments from the original macro invocation (RDBUFF) would be lost because the values in ARGTAB were overwritten with the arguments from the invocation of RDCHAR.

This cause of these difficulties is the recursive call of the procedure EXPAND.

When the RDBUFF macro invocation is encountered, EXPAND is called. Later, it calls PROCESSLINE for line 50, which results in another call to EXPAND before a return is made from the original call.

A similar problem would occur with PROCESSLINE since this procedure too would be called recursively.

- These problems are not difficult to solve if the macro processor is being written in a programming language that allows recursive calls.
- If a programming language that supports recursion is not available, the programmer must take care of handling such items as *return addresses* and *values of local variables* (that is, handling by looping structure and data

values being saved on a stack).

4.3.2 General-Purpose Macro Processors

 The most common use of macro processors is as an aid to assembler language programming. Macro processors have also been developed for some high-level programming languages.

These *special-purpose macro processors* are similar in <u>general function and approach</u>. However, the details differ from language to language.

- The general-purpose macro processors are not dependent on any particular programming language, but can be used with a variety of different languages.
- There are relatively few general-purpose macro processors. The major reason is <u>the large number of details that must be dealt within a real programming language</u>. That is to say, a general-purpose facility must provide some way for a user to define the specific set of rules to be followed. Therefore, there are some difficulties in some way.
- Case 1: Comments are usually ignored by a macro processor (at least in scanning for parameters). However, each programming language has its own methods for identifying comments.
- Case 2: Another difference between programming languages is related to their facilities for grouping together *terms*, *expressions*, or *statements*. A general-purpose macro processor may need to take these groupings into account in scanning the source statements.
- Case 3: Languages differ substantially in their restrictions on <u>the length of *identifiers*</u> and the rules for <u>the formation</u>

<u>of constants</u> (i.e. the *tokens* of the programming language – for example, identifiers, constants, operators, and keywords).

 Case 4: Another potential problem with general-purpose macro processors involves the *syntax* used for <u>macro</u> <u>definitions</u> and <u>macro invocation</u> statements. With most special-purpose macro processors, macro invocations are very similar in form to statements in the source programming language.

4.3.3 Macro Processing within Language Translators

- The macro processors might be called <u>preprocessors</u>. Consider an alternative: combining the macro processing functions with the language translator itself.
- The simplest method of achieving this sort of combination is a *line-by-line* macro processor.

Using this approach, the macro processor <u>reads</u> the source program statements and <u>performs</u> all of its functions as previously described.

<u>The output lines</u> are then passed to the language <u>translator</u> as they are generated (<u>one at a time</u>), instead of being written to an expanded source file.

Thus, <u>the macro processor</u> operates as a sort of <u>input</u> <u>routine</u> for <u>the assembler or compiler</u>.

- Although a line-by-line macro processor may use some of the same utility routines as the language translator, <u>the</u> <u>functions of macro processing and program translation</u> <u>are still relatively independent</u>.
- There exists <u>even closer cooperation</u> between the macro processor and the assembler or compiler. Such a scheme can be thought of as <u>a language translator with an</u> <u>integrated macro processor</u>.

An <u>integrated macro processor</u> can potentially make use of any information about the source program that is extracted by the <u>language translator</u>.

For example, at a relatively simple level of cooperation, the macro processor may use the results of such translator operations as <u>scanning for symbols</u>, <u>constants</u>, <u>etc</u>. The macro processor can simply use the results <u>without being involved in such details</u> as multiple-character operators, continuation lines, and the rules for token formation.

• There are disadvantages to integrated and line-by-line macro processors.

They must be specially designed and written to work with a particular implementation of an assembler or compiler.

The costs of macro processor development must be added to the cost of the language translator, resulting in a more expensive piece of software.

The size may be a problem if the translator is to run on a computer with limited memory.

4.4 Implementation Examples

4.4.1 (Skip)

4.4.2 ANSI C Macro Language

- In the ANSI C language, definitions and invocations of macros are handled by a preprocessor. This preprocessor is generally not integrated with the rest of compiler. Its operation is similar to the macro processor we discussed before.
- Two simple (and commonly used) examples of ANSI C macro definitions:

#define NULL 0 #define EOF (-1)

After these definitions, every occurrence of NULL will be replaced by 0, and every occurrence of EOF will be replaced by (-1).

 It is also possible to use macros like this to make limited changes in the syntax of the language. For example, after defining the macro

#define EQ ==.

A programmer could write while (I EQ 0)...

The macro processor would convert this into while $(I == 0) \dots$

 ANSI C macros can also be defined with parameters. Consider, for example, the macro definition

#define ABSDIFF(X,Y)((X) > (Y)) ? (X) - (Y) : (Y) - (X)

For example, ABSDIFF (I+1, J-5) would be converted by the macro processor into

((I+1) > (J-5)? (I+1) - (J-5) : (J-5) - (I+1)).

The macro version can also be used with different types of data. For example, we could invoke the macro as ABSDIFF(I, 3.14159) or ABSDIFF(`D', `A').

 It is necessary to be very careful in writing macro definitions with parameters. The macro processor simply makes string substitutions, without considering the syntax of the C language.

For example, if we had written the definition of ABSDIFF as

#define ABSDIFF(X, Y) X>Y ? X-Y : Y-X. The macro invocation ABSDIFF(3+1, 10-8) would be expanded into

3+1 > 10-8 **?** 3+1-10-8 **:** 10-8–3+1.

• The ANSI C preprocessor also provides *conditional compilation statements*. For example, in the sequence

#ifndef BUFFER_SIZE
#define BUFFER_SIZE 1024
#endif

the #define will be processed only if BUFFER_SIZE has not already been defined.

• *Conditionals* are also often used to control the inclusion of debugging statements in a program. (See page 213 for example.)

4.4.3 (Skip)

1

Chapter 4 Macro Processors

Professor Gwan-Hwan Hwang Dept. Computer Science and Information Engineering National Taiwan Normal University 9/17/2009

Downloaded from Ktunotes.in

Introduction

- A macro instruction (abbreviated to *macro*) is simply a notational convenience for the programmer.
- A macro represents a commonly used group of statements in the source programming language
- Expanding a macros
 - Replace each macro instruction with the corresponding group of source language statements

Introduction (Cont'd)

- E.g.
 - On SIC/XE requires a sequence of seven instructions to save the contents of all registers
 - Write one statement like SAVERGS
- A macro processor is not directly related to the architecture of the computer on which it is to run
- Macro processors can also be used with high-level programming languages, OS command languages, etc.

Basic Macro Processor Functions

Basic Macro Processor Functions

- Macro Definition
 - Two new assembler directives

 - MACRO
 MEND KTUNOTES.IN
 - A pattern or prototype for the macro instruction
 - Macro name and parameters
 - See figure 4.1

Line	:	Source stat	tement	
5	COPY	CULTURE	0	CODY FILE FROM THIDER TO OUTFORT
10	RDBUFF	MACRO	STNDEV SEUFAD	COPI FILE FROM INPUT TO OUTPUT
15		T# IGITO	artificity , abor Abi	AV & RECHTH
20		MACRO 7	TO READ RECORD T	NTO BURRER
25			io man moone 1	
30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	CONTRACT DOOL CONTINUE
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50		TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEO	*-3	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A.S	TEST FOR END OF RECORD
70		JEO	*+11	EXIT LOOP IF FOR
75		STCH	& BUFADR . X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	*-19	HAS BEEN REACHED
90		STX	&RECL/TH	SAVE RECORD LENGTH
95		MEND		
100	WRBUFF	MACRO	&OUTDEV, &BUFAI	DR. &RECLTH
105	-			States and the second second second
110	1.00	MACRO T	WRITE RECORD	FROM BUFFER
115				
120		CLEAR	X	CLEAR LOOP COUNTER
125		LDT	&RECLTH	
130		LDCH	&BUFADR, X	GET CHARACTER FROM BUFFER
135		TD	=X'&OUTDEV'	TEST OUTPUT DEVICE
140		JEO	*-3	LOOP UNTIL READY
145		WD	=X'&OUTDEV'	WRITE CHARACTER
150		TIXR	Т	LOOP UNTIL ALL CHARACTERS
155	Solution 1	JLT	*-14	HAVE BEEN WRITTEN
160		MEND		
165				
170		MAIN PROGRAM		
175				
180	FIRST	STL	RETADR	SAVE RETURN ADDRESS
190	CLOOP	RDBUFF	F1, BUFFER, LENG	TH READ RECORD INTO BUFFER
195		LDA	LENGTH	TEST FOR END OF FILE
200		COMP	#0	
205		JEQ	ENDFIL	EXIT IF EOF FOUND
210		WRBUFF	05, BUFFER, LENG	TH WRITE OUTPUT RECORD
215		J	CLOOP	LOOP
220	ENDFIL	WRBUFF	05, EOF, THREE	INSERT EOF MARKER
225		J	ØRETADR	
230	EOF	BYTE	C'EOF'	
235	THREE	WORD	3	
240	RETADR	RESW	1	
245	LENGTH	RESW	1	LENGTH OF RECORD
250	BUFFER	RESB	4096	4096-BYTE BUFFER AREA

Figure 4.1 Use of macros in a SIC/XE program.

Downloaded from Ktunotes.in

Basic Macro Processor Functions

- Macro invocation
 - Often referred to as a *macro call*
 - Need the name of the macro instruction begin invoked and the arguments to be used in expanding the macro
- Expanded program
 - Figure 4.2
 - No macro instruction definitions
 - Each macro invocation statement has been expanded into the statements that form the body of the macro, with the arguments from the macro invocation substituted for the parameters in the prototype

KTU NOTES	
	L
	KTU NOTES

5COPYSTART0COPY FILE FROM INPUT TO OUTPUT180FIRSTSTLRETADRSAVE RETURN ADDRESS190.CLOOPRDBUFFF1,BUFFER,LENGTHREAD RECORD INTO BUFFER190aCLOOPCLEARXCLEAR LOOP COUNTER190bCLEARA190cCLEARS190d+LDT#4096SET MAXIMUM RECORD LENGTH190eTD=X'F1'TEST INPUT DEVICE190fJEQ*-3LOOP UNTIL READY190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	Line	Sour	ce statem	ent	
180FIRSTSTLRETADRSAVE RETURN ADDRESS190.CLOOPRDBUFFF1, BUFFER, LENGTHREAD RECORD INTO BUFFER190aCLOOPCLEARXCLEAR LOOP COUNTER190bCLEARA	5	COPY	START	0	COPY FILE FROM INPUT TO OUTPUT
190.CLOOPRDBUFFF1, BUFFER, LENGTHREAD RECORD INTO BUFFER190aCLOOPCLEARXCLEAR LOOP COUNTER190bCLEARA190cCLEARS190d+LDT#4096SET MAXIMUM RECORD LENGTH190eTD=X'F1'TEST INPUT DEVICE190fJEQ*-3LOOP UNTIL READY190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	180	FIRST	STL	RETADR	SAVE RETURN ADDRESS
190aCLOOPCLEARXCLEAR LOOP COUNTER190bCLEARA190cCLEARS190d+LDT#4096SET MAXIMUM RECORD LENGTH190eTD=X'F1'TEST INPUT DEVICE190fJEQ*-3LOOP UNTIL READY190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190	.CLOOP	RDBUFF	F1, BUFFER, LENGTH	READ RECORD INTO BUFFER
190bCLEARA190cCLEARS190d+LDT#4096SET MAXIMUM RECORD LENGTH190eTD=X'F1'TEST INPUT DEVICE190fJEQ*-3LOOP UNTIL READY190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190a	CLOOP	CLEAR	х	CLEAR LOOP COUNTER
190cCLEARS190d+LDT#4096SET MAXIMUM RECORD LENGTH190eTD=X'F1'TEST INPUT DEVICE190fJEQ*-3LOOP UNTIL READY190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190b		CLEAR	A	
190d+LDT#4096SET MAXIMUM RECORD LENGTH190eTD=X'F1'TEST INPUT DEVICE190fJEQ*-3LOOP UNTIL READY190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190c		CLEAR	S	
190eTD=X'F1'TEST INPUT DEVICE190fJEQ*-3LOOP UNTIL READY190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190d		+LDT	#4096	SET MAXIMUM RECORD LENGTH
190fJEQ*-3LOOP UNTIL READY190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190e		TD	=X'F1'	TEST INPUT DEVICE
190gRD=X'F1'READ CHARACTER INTO REG A190hCOMPRA,STEST FOR END OF RECORD190iJEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190f		JEQ	*-3	LOOP UNTIL READY
190hCOMPRA, STEST FOR END OF RECORD1901JEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER, XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190g		RD	=X'F1'	READ CHARACTER INTO REG A
1901JEQ*+11EXIT LOOP IF EOR190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190h		COMPR	A,S	TEST FOR END OF RECORD
190jSTCHBUFFER,XSTORE CHARACTER IN BUFFER190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190i		JEQ	*+11	EXIT LOOP IF EOR
190kTIXRTLOOP UNLESS MAXIMUM LENGTH1901JLT*-19HAS BEEN REACHED190mSTXLENGTHSAVE RECORD LENGTH	190j		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
1901 JLT *-19 HAS BEEN REACHED 190m STX LENGTH SAVE RECORD LENGTH	190k		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
190m STX LENGTH SAVE RECORD LENGTH	1901		JLT	*-19	HAS BEEN REACHED
	190m		STX	LENGTH	SAVE RECORD LENGTH
195 LDA LENGTH TEST FOR END OF FILE	195		LDA	LENGTH	TEST FOR END OF FILE
200 COMP #0	200		COMP	#0	
205 JEQ ENDFIL EXIT IF EOF FOUND	205		JEQ	ENDFIL	EXIT IF EOF FOUND
210 WRBUFF 05, BUFFER, LENGTH WRITE OUTPUT RECORD	210		WRBUFF	05, BUFFER, LENGTH	WRITE OUTPUT RECORD
210a CLEAR X CLEAR LOOP COUNTER	210a		CLEAR	X	CLEAR LOOP COUNTER
210b LDT LENGTH	210b		LDT	LENGTH	The second second second
210C LDCH BUFFER, X GET CHARACTER FROM BUFFER	210c		LDCH	BUFFER, X	GET CHARACTER FROM BUFFER
210d TD =X'05' TEST OUTPUT DEVICE	210d	1.1	TD	=X'05'	TEST OUTPUT DEVICE
210e JEQ *-3 LOOP UNTIL READY	210e		JEQ	*-3	LOOP UNTIL READY
210f WD =X'05' WRITE CHARACTER	210f		WD	=X'05'	WRITE CHARACTER
210g TIXR T LOOP UNTIL ALL CHARACTERS	210g		TIXR	Т	LOOP UNTIL ALL CHARACTERS
210h JLT *-14 HAVE BEEN WRITTEN	210h		JLT	*-14	HAVE BEEN WRITTEN
215 J CLOOP LOOP	215		J	CLOOP	LOOP
220 .ENDFIL WRBUFF 05, EOF, THREE INSERT EOF MARKER	220	.ENDFIL	WRBUFF	05, EOF, THREE	INSERT EOF MARKER
22UA ENDFIL CLEAR X CLEAR LOOP COUNTER	220a	ENDFIL	CLEAR	X	CLEAR LOOP COUNTER
2200 LDT THEE	2200		LDT	THREE	CON CUADACTER FROM DUPPED
220C LUCH EOF,X GET CHARACTER FROM BOFFER	220C		LLCH	EUF, A	GET CHARACTER FROM BUFFER
	220a		TEO	*_3	LOOD INTELL BEADY
	2208		WD	-2/05/	WETTE CHARACTER
	2201		TTYP	-A UD	LOOP INTTL ALL CHARACTERS
220b ILT *-14 HAVE REEN DETATION	220g		TIT	*-14	HAVE BEEN WRITTEN
225 JT GRETADR	225		J	ARETADR	ANTIVES ANALAST TRANE & A LINY
230 FOF BYTE C'EOF'	230	FOF	BYTE	C'EOF'	
235 THREE WORD 3	235	THREE	WORD	3	
240 RETADR RESW 1	240	RETADR	RESW	1 manual and	
245 LENGTH RESW 1 LENGTH OF RECORD	245	LENGTH	RESW	1	LENGTH OF RECORD
250 BUFFER RESB 4096 4096-BYTE BUFFER AREA	250	BUFFER	RESB	4096	4096-BYTE BUFFER AREA
255 END FIRST	255		END	FIRST	

Figure 4.2 Program from Fig. 4.1 with macros expanded.

Basic Macro Processor Functions

- Macro invocations and subroutine calls are different
- Note also that the macro instructions have been written so that the body of the macro contains no label
 - Why?

Macro Processor Algorithm and Data Structures

- It is easy to design a two-pass macro processor
 - Pass 1:
 - All macro definitions are processed
 - Pass 2:
 - All macro invocation statements are expanded
- However, a two-pass macro processor would not allow the body of one macro instruction to contain definitions of other macros
 - See Figure 4.3

	and a survey of the		
1 2	MACROS RDBUFF	MACRO MACRO	{Defines SIC standard version macros} &INDEV,&BUFADR,&RECLTH
			{SIC standard version}
3 4	WRBUFF	MEND MACRO	{End of RDBUFF} &OUTDEV,&BUFADR,&RECLTH
			{SIC standard version}
5		MEND	{End of WRBUFF}
		• R 3 993	
6		MEND	{End of MACROS}
1 2	MACROX RDBUFF	MACRO MACRO	{Defines SIC/XE macros} &INDEV,&BUFADR,&RECLTH
			{SIC/XE version}
3 4	WRBUFF	MEND MACRO	{End of RDBUFF} &OUTDEV,&BUFADR,&RECLTH
			{SIC/XE version}
5		MEND	{End of WRBUFF}
		e de la calada E de la calada	
6		MEND	{End of MACROX}
			, (b)

Figure 4.3 Example of the definition of macros within a macro body.

Downloaded from Ktunotes.in

11

Macro Processor Algorithm and Data Structures

- Sub-Macro definitions are only processed when an invocation of their Super-Macros - See Figure 4.3: RDBUFF are expanded
- A one-pass macro processor that can alternate between macro definition and macro expansions able to handle macros like those in Figure 4.3

Macro Processor Algorithm and Data Structures

- Because of the one-pass structure, the definition of a macro must appear in the source program before any statements that invoke that macro
- Three main data structures involved in an one-pass macro processor
 - DEFTAB, NAMTAB, ARGTAB

14

5

begin {macro processor}
EXPANDING := FALSE
while OPCODE ≠ 'END' do
 begin
 GETLINE
 PROCESSLINE
 end {while}
end {macro processor}

procedure PROCESSLINE
begin

search NAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = 'MACRO' then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

Figure 4.5 Algorithm for a one-pass macro processor.


```
procedure DEFINE
   begin
       enter macro name into NAMTAB
       enter macro prototype into DEFTAB
       LEVEL := 1
       while LEVEL > 0 do
          begin
              GETLINE
             if this is not a comment line then
                 begin
                     substitute positional notation for parameters
                     enter line into DEFTAB
                     if OPCODE = 'MACRO' then
                        LEVEL := LEVEL + 1
                     else if OPCODE = 'MEND' then
                        LEVEL := LEVEL - 1
                 end {if not comment}
          end {while}
       store in NAMTAB pointers to beginning and end of definition
   end {DEFINE}
procedure EXPAND
   begin
       EXPANDING := TRUE
       get first line of macro definition (prototype) from DEFTAB
       set up arguments from macro invocation in ARGTAB
       write macro invocation to expanded file as a comment
       while not end of macro definition do
          begin
              GETLINE
              PROCESSLINE
           end {while}
       EXPANDING := FALSE
    end {EXPAND}
procedure GETLINE
    begin
       if EXPANDING then
          begin
              get next line of macro definition from DEFTAB
              substitute arguments from ARGTAB for positional notation
          end {if}
       else
           read next line from input file
    end {GETLINE}
  Figure 4.5 (cont'd)
```


Machine-Independent Macro Processor Feature

- Concatenation of Macro Parameters
- Generation of Unique Labels
- Conditional Macro Expansion
- Keyword Macro Parameters

Concatenation of Macro Parameters

- Most macro processors allow parameters to be concatenated with other character strings
 - The need of a special catenation operator
 - LDA X&ID1
 - LDA X&ID
 - The catenation operator
 - LDA X&ID→1
- See figure 4.6

19

Generation of Unique Labels

- It is in general not possible for the body of a macro instruction to contain labels of the usual kind
 - Leading to the use of relative addressing at the source statement level
 - Only be acceptable for short jumps
- Solution:
 - Allowing the creation of special types of labels within macro instructions
 - See Figure 4.7

Figure 4.7 Generation of unique labels within macro expansion.

Downloaded from Ktunotes.in

(b)

\mathbf{a}	1
1	
	T.

30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$AALOOP	TD	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	ŞAAEXIT	EXIT LOOP IF EOR
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	LENGTH	SAVE RECORD LENGTH

RDBUFF F1, BUFFER, LENGTH

(a)

25	RDBUFF	MACRO	&INDEV, &BUF	ADR, & RECLTH
30		CLEAR	X	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95		MENTO		

Generation of Unique Labels

- Solution:
 - Allowing the creation of special types of labels within macro instructions
 - See Figure 4.7
 - Labels used within he macro body begin with the special character \$
 - Programmers are instructed no to use \$ in their source programs

22

Conditional Macro Expansion

- Most macro processors can modify the sequence of statements generated for a macro expansion, depending on the arguments supplied in the macro invocation
- See Figure 4.8

NOTES

26IF $(\&EOR NE '')$ 27 $\&EORCK$ SET128ENDIF30 $CLEAR$ X $CLEAR LOOP COUNTER$ 35 $CLEAR$ A38IF $(\&EORCK EQ 1)$ 40LDCH $=X'\&EOR'$ SET EOR CHARACTER42RMOA, S43ENDIF44IF $(\&MAXLTH EQ '')$ 45 $+LDT$ #4096SET MAX LENGTH = 409646ELSE47 $+LDT$ # $\&MAXLTH$ SET MAX LENGTH = 409648ENDIF50\$LOOPTD $=X'\&INDEV'$ 55JEQ\$LOOPLOOP UNTIL READY60RD $=X'\&INDEV'$ READ CHARACTER INTO REG63IF $(\&EORCK EQ 1)$ 64IF $(\&EORCK EQ 1)$ 65COMPRA, S70JEQ\$EXIT73ENDIF74ENDIF75STCH $\&BUFADR, X$ 85JLT\$LOOP4AS BEEN REACHED	&EORCK + \$LOOP	5 7 &EOR 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26 27 28 30 35 38 40 42 43 44 45 46 47 48 50 55
27&EORCKSET128ENDIF30CLEARX35CLEARA38IF(&EORCK EQ 1)40LDCH=X'&EOR'42RMOA, S43ENDIF44IF(&MAXLTH EQ '')45+LDT#409646ELSE47+LDT48ENDIF50\$LOOPTD51JEQ\$LOOP52JEQ53SET MAXIMUM RECORD LENG60RD81EX'&INDEV'62TF63IF64EX65COMPR76JEQ77EXIT78ENDIF79JEQ80TIXR71LOOP UNTIL READY72STCH80TIXR71LOOP UNLESS MAXIMUM LENG85JLT80FIXR81SLOOP85JLT85	&EORCK + + \$LOOP	7 &EOR(3) 5 3) 2 3) 2 3 3) 2 3 3) 2 3 3) 5 5 3 3) 5 5 3 3) 5 5 5 5 5 5 5	27 28 30 35 38 40 42 43 44 45 46 47 48 50
28ENDIF30CLEARXCLEAR LOOP COUNTER35CLEARA38IF(&EORCK EQ 1)40LDCH $=$ X'&EOR'SET EOR CHARACTER42RMOA, S43ENDIF44IF(&MAXLTH EQ '')45+LDT#4096SET MAX LENGTH = 409646ELSE47+LDT#&MAXLTHSET MAX LENGTH = 409648ENDIF50\$LOOPTD=X'&INDEV'55JEQ\$LOOPLOOP UNTIL READY60RD=X'&INDEV'READ CHARACTER INTO REG63IF(&EORCK EQ 1)65COMPRA, STEST FOR END OF RECORD70JEQ\$EXITEXIT LOOP IF EOR73ENDIF73ENDIF80TIXRTLOOP UNLESS MAXIMUM LENG85JLT\$LOOPHAS BEEN REACHED	+ + \$LOOP	\$LOOF	28 30 35 38 40 42 43 44 45 46 47 48 50 55
30CLEARXCLEARLOOP COUNTER 35 CLEARA 38 IF(&EORCK EQ 1) 40 LDCH=X'&EOR'SET EOR CHARACTER 42 RMOA, S 43 ENDIF 44 IF(&MAXLTH EQ '') 45 +LDT#4096SET MAX LENGTH = 4096 46 ELSE 47 +LDT#&MAXLTHSET MAX LENGTH = 4096 46 ENDIF 50 \$LOOPTD=X'&INDEV' 55 JEQ\$LOOPLOOP UNTIL READY 60 RD=X'&INDEV'READ CHARACTER INTO REG 63 IF(&EORCK EQ 1) 65 COMPRA, STEST FOR END OF RECORD 70 JEQ\$EXITEXIT LOOP IF EOR 73 ENDIF75STCH&BUFADR, X 80 TIXRTLOOP UNLESS MAXIMUM LENK 85 JLT\$LOOPHAS BEEN REACHED	+ + \$LOOP	\$LOOP	30 35 38 40 42 43 44 45 46 47 48 50
35CLEARA38IF(&EORCK EQ 1)40LDCH $=X'$ &EOR'SET EOR CHARACTER42RMOA, S43ENDIF44IF(&MAXLTH EQ '')45+LDT#4096SET MAX LENGTH = 409646ELSE47+LDT#&MAXLTHSET MAX LENGTH = 409648ENDIF50\$LOOPTD=X' & INDEV'55JEQ\$LOOPLOOP UNTIL READY60RD=X' & INDEV'READ CHARACTER INTO REG63IF(&EORCK EQ 1)65COMPRA, STEST FOR END OF RECORD70JEQ\$EXITEXIT LOOP IF EOR73ENDIF75STCH&BUFADR, X80TIXRTLOOP UNLESS MAXIMUM LENG85JLT\$LOOPHAS BEEN REACHED	+ + \$LOOP	\$LOOF	35 38 40 42 43 44 45 46 47 48 50
38IF(&EORCK EQ 1) 40 LDCH=X'&EOR'SET EOR CHARACTER 42 RMOA, S 43 ENDIF 44 IF(&MAXLTH EQ '') 45 +LDT#4096 46 ELSE 47 +LDT#&MAXLTH 48 ENDIF 50 \$LOOPTD 55 JEQ 56 ACOP 70 RD 80 RD 81 (&EORCK EQ 1) 63 IF 64 (&EORCK EQ 1) 65 COMPR 73 ENDIF 75 STCH 80 TIXR 71 TIXR 71 LOOP 73 IIF 85 JLT 85 JLT 85 JLT 85 JLT 80 TIXR 75 STCH 85 JLT 80 TIXR 75 80 TIXR 75 80 71 80 71 80 71 80 71 80 85 71 80 <	+ + \$LOOP	\$LOOF	38 40 42 43 44 45 46 47 48 50
40LDCH $=X'\&EOR'$ SET EOR CHARACTER42RMOA, S43ENDIF44IF $(\&MAXLTH EQ '')$ 45+LDT#409646ELSE47+LDT48ENDIF50\$LOOPTD55JEQ\$LOOP60RD=X'&INDEV'63IF(&EORCK EQ 1)65COMPRA, S73ENDIF75STCH&BUFADR, X80TIXRT61LOOP72JLT73ENDIF	+ + \$LOOP) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 42 43 44 45 46 47 48 50 55
42RMOA, S43ENDIF44IF44IF45+LDT $+LDT$ #409646ELSE47+LDT $+LDT$ #&MAXLTH8ENDIF50\$LOOP70JEQ60RD $=X' & INDEV'$ 75COMPR73ENDIF75STCH $&$ & BUFADR, X85JLT\$LOOPUNTIL REACTER IN BUFFI80TIXR71\$LOOP72HARACTER IN BUFFI73ENDIF	+ + \$LOOP	\$LOOF	42 43 44 45 46 47 48 50
43 ENDIF 44 IF (&MAXLTH EQ '') 45 +LDT #4096 SET MAX LENGTH = 4096 46 ELSE 47 +LDT #&MAXLTH SET MAXIMUM RECORD LENG 48 ENDIF 50 \$LOOP TD =X'&INDEV' TEST INPUT DEVICE 55 JEQ \$LOOP LOOP UNTIL READY 60 RD =X'&INDEV' READ CHARACTER INTO REG 63 IF (&EORCK EQ 1) 65 COMPR A,S TEST FOR END OF RECORD 70 JEQ \$EXIT EXIT LOOP IF EOR 73 ENDIF TIXR T 80 TIXR T LOOP UNLESS MAXIMUM LENG 85 JLT \$LOOP HAS BEEN REACHED	+ + \$LOOP	\$LOOF	43 44 45 46 47 48 50
44 IF (&MAXLTH EQ '') 45 +LDT #4096 SET MAX LENGTH = 4096 46 ELSE 47 +LDT #&MAXLTH SET MAXIMUM RECORD LENG 48 ENDIF 50 \$LOOP TD =X'&INDEV' TEST INPUT DEVICE 55 JEQ \$LOOP LOOP UNTIL READY 60 RD =X'&INDEV' READ CHARACTER INTO REG 63 IF (&EORCK EQ 1) 65 COMPR A,S TEST FOR END OF RECORD 70 JEQ \$EXIT EXIT LOOP IF EOR 73 ENDIF T TOOP UNLESS MAXIMUM LENG 80 TIXR T LOOP UNLESS MAXIMUM LENG 85 JLT \$LOOP HAS BEEN REACHED	+ + \$LOOP	\$LOOP	44 45 46 47 48 50
45+LDT#4096SET MAX LENGTH = 409646ELSE47+LDT#&MAXLTHSET MAXIMUM RECORD LENG48ENDIF50\$LOOPTD=X'&INDEV'TEST INPUT DEVICE55JEQ\$LOOPLOOP UNTIL READY60RD=X'&INDEV'READ CHARACTER INTO REG63IF(&EORCK EQ 1)65COMPRA,STEST FOR END OF RECORD70JEQ\$EXITEXIT LOOP IF EOR73ENDIF75STCH&BUFADR,X80TIXRTLOOP UNLESS MAXIMUM LENG85JLT\$LOOPHAS BEEN REACHED	+ + \$LOOP	\$LOOP	45 46 47 48 50
46 ELSE 47 +LDT #&MAXLTH SET MAXIMUM RECORD LENG 48 ENDIF 50 \$LOOP TD =X'&INDEV' TEST INPUT DEVICE 55 JEQ \$LOOP LOOP UNTIL READY 60 RD =X'&INDEV' READ CHARACTER INTO REG 63 IF (&EORCK EQ 1) 65 COMPR A,S TEST FOR END OF RECORD 70 JEQ \$EXIT EXIT LOOP IF EOR 73 ENDIF TIXR T 80 TIXR T LOOP UNLESS MAXIMUM LENG 85 JLT \$LOOP HAS BEEN REACHED	+ \$LOOP	\$LOOF	46 47 48 50
47+LDT#&MAXLTHSET MAXIMUM RECORD LENG48ENDIF50\$LOOPTD=X'&INDEV'TEST INPUT DEVICE55JEQ\$LOOPLOOP UNTIL READY60RD=X'&INDEV'READ CHARACTER INTO REG63IF(&EORCK EQ 1)65COMPRA, STEST FOR END OF RECORD70JEQ\$EXITEXIT LOOP IF EOR73ENDIF75STCH&BUFADR, X80TIXRTLOOP UNLESS MAXIMUM LENG85JLT\$LOOPHAS BEEN REACHED	+ \$LOOP	\$LOOP	47 48 50
48 ENDIF 50 \$LOOP 55 JEQ 56 JEQ 60 RD 63 IF 65 COMPR 70 JEQ 73 ENDIF 75 STCH 80 TIXR 71 \$LOOP 85 JLT	\$LOOP	\$LOOP	48 50
50 \$LOOP TD =X'&INDEV' TEST INPUT DEVICE 55 JEQ \$LOOP LOOP UNTIL READY 60 RD =X'&INDEV' READ CHARACTER INTO REG 63 IF (&EORCK EQ 1) 65 COMPR A, S TEST FOR END OF RECORD 70 JEQ \$EXIT EXIT LOOP IF EOR 73 ENDIF TIXR T 80 TIXR T LOOP UNLESS MAXIMUM LENK 85 JLT \$LOOP HAS BEEN REACHED	\$LOOP	\$LOOP	50
55 JEQ \$LOOP LOOP UNTIL READY 60 RD =X'&INDEV' READ CHARACTER INTO REG 63 IF (&EORCK EQ 1) 65 COMPR A, S TEST FOR END OF RECORD 70 JEQ \$EXIT EXIT LOOP IF EOR 73 ENDIF 75 STCH &BUFADR, X STORE CHARACTER IN BUFFI 80 TIXR T LOOP UNLESS MAXIMUM LENK 85 JLT \$LOOP HAS BEEN REACHED	aple mytring optical and is the product		55
60 RD =X'&INDEV' READ CHARACTER INTO REG 63 IF (&EORCK EQ 1) 65 COMPR A, S TEST FOR END OF RECORD 70 JEQ \$EXIT EXIT LOOP IF EOR 73 ENDIF 75 STCH &BUFADR, X 80 TIXR T LOOP UNLESS MAXIMUM LENG 85 JLT \$LOOP HAS BEEN REACHED	intering and a		22
63 IF (&EORCK EQ 1) 65 COMPR A, S TEST FOR END OF RECORD 70 JEQ \$EXIT EXIT LOOP IF EOR 73 ENDIF 75 STCH &BUFADR, X STORE CHARACTER IN BUFFI 80 TIXR T LOOP UNLESS MAXIMUM LENG 85 JLT \$LOOP HAS BEEN REACHED			60
65 COMPR A, S TEST FOR END OF RECORD 70 JEQ \$EXIT EXIT LOOP IF EOR 73 ENDIF 75 STCH &BUFADR, X STORE CHARACTER IN BUFFI 80 TIXR T LOOP UNLESS MAXIMUM LENG 85 JLT \$LOOP HAS BEEN REACHED			63
70 JEQ \$EXIT FLST FOR END OF RECORD 73 ENDIF 75 STCH &BUFADR,X STORE CHARACTER IN BUFFI 80 TIXR T LOOP UNLESS MAXIMUM LENG 85 JLT \$LOOP HAS BEEN REACHED			65
73 ENDIF 75 STCH & BUFADR, X 80 TIXR 75 JLT \$LOOP HAS BEEN REACHED			70
75STCH & &BUFADR, XSTORE CHARACTER IN BUFFI80TIXRT85JLT\$LOOPHAS BEEN REACHED			73
80 TIXR T LOOP UNLESS MAXIMUM LENG 85 JLT \$LOOP HAS BEEN REACHED			75
85 JLT \$LOOP HAS BEEN REACHED	nes une oute		80
THE DELLY REPORTED			85
90 SEXIT STX &RECLTH SAVE RECORD LENGTH	\$EXIT	\$EXIT	90
95 MEND	1		95
(a)			
. RDBUFF F3, BUF, RECL, 04, 2048			
30 CLEAR X CLEAR LOOP COUNTER	(30
35 CLEAR A	(35
40 LDCH =X'04' SET EOR CHARACTER	I		40
42 RMO A,S	I		42
47 +LDT #2048 SET MAXIMUM RECORD LENGT	+1		47
50 \$AALOOP TD =X'F3' TEST INPUT DEVICE	\$AALOOP 7	\$AALO	50
55 JEQ SAALOOP LOOP INTTL READY	and the same of		55
60 RD =X'F3' READ CHARACTER INTO PEC	H		60
65 COMPR A.S TEST FOR END OF RECORD	(65
70 JEO SAAEXIT EXIT LOOP TE FOR			70
75 STCH BUF, X STORE CHARACTER IN DIFFE	5		75
80 TIXE T LOOP UNLESS MAYTMIM LENG			80
85 JLT \$AALOOP HAS BEEN REACHED			85
90 SAAEXIT STX RECL SAVE RECORD LENCTH	\$AAEXIT S	\$AAEX	90
(h)			

Figure 4.8 Use of macro-time conditional statements.

24

RDBUFF 0E, BUFFER, LENGTH, , 80

30		CLEAR	х	CLEAR LOOP COUNTER
35		CLEAR	А	
47		+LDT	#80	SET MAXIMUM RECORD LENGTH
50	\$ABLOOP	TD	=X'0E'	TEST INPUT DEVICE
55		JEQ	\$ABLOOP	LOOP UNTIL READY
60		RD	=X'0E'	READ CHARACTER INTO REG A
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
87		JLT	\$ABLOOP	HAS BEEN REACHED
90	\$ABEXIT	STX	LENGTH	SAVE RECORD LENGTH

(c)

RDBUFF F1, BUFF, RLENG, 04

30		CLEAR	x	CLEAR LOOP COUNTER
35		CLEAR	A	
40		LDCH	=X'04'	SET EOR CHARACTER
42		RMO	A,S	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	\$ACLOOP	TD	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$ACLOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$ACEXIT	EXIT LOOP IF EOR
75		STCH	BUFF,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$ACLOOP	HAS BEEN REACHED
90	\$ACEXIT	STX	RLENG	SAVE RECORD LENGTH

(d)

Figure 4.8 (cont'd)

Downloaded from Ktunotes.in

KTU NOTES

Conditional Macro Expansion

- Most macro processors can modify the sequence of statements generated for a macro expansion, depending on the arguments supplied in the macro invocation
- See Figure 4.8

- IF, ELSE, ENDIF
- SET
- Macro-time variable (set symbol)
- WHILE-ENDW
 - See Figure 4.9

Downloaded from Ktunotes.in

Figure 4.9 Use of macro-time looping statements.

35		CLEAR	A	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
63	&CTR	SET	1	
64		WHILE	(&CTR LE &EOI	RCT)
65		COMP	=X'0000&EOR[&0	CTR]'
70		JEQ	\$EXIT	
71	&CTR	SET	&CTR+1	
73		ENDW		
75		STCH	&BUFADR, X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECL/TH	SAVE RECORD LENGTH
100		MEND		
			(a)	
				alleling and a Country of Alleria
		RDBUFF	F2, BUFFER, LE	NGTH, (00,03,04)
		17)16
30		CLEAR	WNC	CLEAR LOOP COUNTER
30 35		CLEAR CLEAR	ANC	CLEAR LOOP COUNTER
30 35 45		CLEAR CLEAR +LDT	X A #4096	CLEAR LOOP COUNTER SET MAX LENGTH = 4096
30 35 45 50	\$AALOOP	CLEAR CLEAR +LDT TD	X A #4096 =X'F2'	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE
30 35 45 50 55	ŞAALOOP	CLEAR CLEAR +LDT TD JEQ	X A #4096 =X'F2' \$AALOOP	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY
30 35 45 50 55 60	\$AALOOP	CLEAR CLEAR +LDT TD JEQ RD	X A #4096 =X'F2' \$AALOOP =X'F2'	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A
30 35 45 50 55 60 65	\$AALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000'	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A
30 35 45 50 55 60 65 70	\$AALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A
30 35 45 50 55 60 65 70 65	\$AALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ COMP	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT =X'000003'	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A
30 35 45 50 55 60 65 70 65 70	\$AALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ COMP JEQ	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT =X'000003' \$AAEXIT	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A
30 35 45 50 55 60 65 70 65 70 65	\$AALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ COMP JEQ COMP	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT =X'000003' \$AAEXIT =X'000004'	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A
30 35 45 50 55 60 65 70 65 70 65 70	ŞAALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ COMP JEQ COMP JEQ	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT =X'000003' \$AAEXIT =X'000004' \$AAEXIT	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A
30 35 45 50 55 60 65 70 65 70 65 70 70 75	ŞAALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ COMP JEQ COMP JEQ STCH	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT =X'000003' \$AAEXIT =X'000004' \$AAEXIT BUFFER, X	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A
30 35 45 50 55 60 65 70 65 70 65 70 75 80	\$AALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ COMP JEQ COMP JEQ STCH TIXR	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT =X'000003' \$AAEXIT =X'000004' \$AAEXIT BUFFER, X T	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A STORE CHARACTER IN BUFFER LOOP UNLESS MAXIMUM LENGTH
30 35 45 50 55 60 65 70 65 70 65 70 75 80 85	\$AALOOP	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ COMP JEQ COMP JEQ STCH TIXR JLT	X A #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT =X'000003' \$AAEXIT =X'000004' \$AAEXIT BUFFER, X T \$AALOOP	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A STORE CHARACTER IN BUFFER LOOP UNLESS MAXIMUM LENGTH HAS BEEN REACHED
30 35 45 50 55 60 65 70 65 70 65 70 65 70 75 80 85 90	\$AALOOP \$AAEXIT	CLEAR CLEAR +LDT TD JEQ RD COMP JEQ COMP JEQ COMP JEQ STCH TIXR JLT STX	X #4096 =X'F2' \$AALOOP =X'F2' =X'000000' \$AAEXIT =X'000003' \$AAEXIT =X'000004' \$AAEXIT BUFFER,X T \$AALOOP LENGTH	CLEAR LOOP COUNTER SET MAX LENGTH = 4096 TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A STORE CHARACTER IN BUFFER LOOP UNLESS MAXIMUM LENGTH HAS BEEN REACHED SAVE RECORD LENGTH

&INDEV, &BUFADR, &RECLTH, &EOR

CLEAR LOOP COUNTER

%NITEMS (&EOR)

Х

25

27

30

RDBUFF

&EORCT

MACRO

CLEAR

SET

27

Keyword Macro Parameters

- Positional parameters
 - Parameters and arguments were associated with each other according to their positions in the macro prototype and the macro invocation statement
 - Consecutive commas is necessary for a null argument

GENER "DIRECT,"",3

Keyword Macro Parameters

- Keyword parameters
 - Each argument value is written with a keyword that names the corresponding parameter
 - A macro may have a large number of parameters, and only a few of these are given values in a typical invocation
 GENER TYPE=DIRECT, CHANNEL=3

25	RDBUFF	MACRO	&INDEV=F1,&BUI	FADR=, &RECLTH=, &EOR=04, &MAXLTH=4096
26		IF	(&EOR NE '')	
27	&EORCK	SET	1	
28		ENDIF		
30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	
38		IF	(&EORCK EQ 1)	
40		LDCH	=X'&EOR'	SET EOR CHARACTER
42		RMO	A,S	
43		ENDIF		
47		+LDT	#&MAXLTH	SET MAXIMUM RECORD LENGTH
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
63		IF	(&EORCK EQ 1)	
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
73		ENDIF		
75		STCH	&BUFADR, X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

(a)

	mire	RDBUFF	BUFADR=BUFF	ER, RECLIPTELENGTH
30		CLEAR	x	CLEAR LOOP COUNTER
35		CLEAR	A	Children Door Coontribut
40		LDCH	=X'04'	SET EOR CHARACTER
42		RMO	A,S	
47		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$AALOOP	TD	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$AAEXIT	EXIT LOOP IF EOR
75		STCH	BUFFER, X	STORE CHARACTER IN BUFFER
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	LENGTH	SAVE RECORD LENGTH

(b)

Figure 4.10 Use of keyword parameters in macro instructions.

RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

30		CLEAR	X
35		CLEAR	A
47		+LDT	#4096
50	\$ABLOOP	TD	=X'F3'
55		JEQ	\$ABLOOP
60		RD	=X'F3'
75		STCH	BUFFER, X
80		TIXR	T
85		JLT	\$ABLOOP
90	\$ABEXIT	STX	LENGTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A STORE CHARACTER IN BUFFER LOOP UNLESS MAXIMUM LENGTH HAS BEEN REACHED SAVE RECORD LENGTH

(c)

Figure 4.10 (cont'd)

Macro Processor Design Options

- Recursive Macro Expansion
 - In Figure 4.3, we presented an example of the definition of on macro instruction by another.
 - We have not dealt with the invocation of one macro by another (nested macro invocation)
 - See Figure 4.11

10 15	RDBUFF	MACRO & BUFADR, & RECLTH, & INDEV				
20		MACRO I	O DEAD DECODD			
25		MACRO TO READ RECORD INTO BUFFER				
30		CLEAR	v	CLEAR LOOD COLMMERT		
35		CLEAR	λ	CLEAR LOOP COUNTER		
40		CLEAR	C C			
45		+LDT	#4096	SET MAXIMIM RECORD I ENCONI		
50	SLOOP	RDCHAR	& TNDEV	READ CHARACTER INTO REC A		
65	A LEADER OF	COMPR	A.S	TEST FOR FND OF RECORD		
70		JEO	SEXIT	EXIT LOOP IF FOR		
75		STCH	&BUFADR, X	STORE CHARACTER IN BUFFER		
80		TIXR	T	LOOP UNLESS MAXIMUM LENGTH		
85		JLT	\$LOOP	HAS BEEN REACHED		
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH		
95		MEND		the discrimention in the basis of		
5	RDCHAR	MACRO	&IN			
10						
15		MACRO TO READ CHARACTER INTO REGISTER A				
20						
25		TD	=X'&IN'	TEST INPUT DEVICE		
30		JEQ	*-3	LOOP UNTIL READY		
35		RD	=X'&IN'	READ CHARACTER		
40		MEND				
(b)						
RDBUFF BUFFER, LENGTH, F1						
Figure 4.11 Example of nested macro invocation						
		pio	or moored mucho in			

Macro Processor Design Options

- Recursive Macro Expansion Applying Algorithm of Fig. 4.5
 - Problem:
 - The processing would proceed normally until line 50, which contains a statement invoking RDCHAR
 - In addition, the argument from the original macro invocation (RDBUFF) would be lost because the values in ARGTAB were overwritten with the arguments from the invocation of RDCHAR
 - Solution:
 - These problems are not difficult to solve if the macro processor is begin written in a programming language that allows recursive call

- Macro processors have been developed for some high-level programming languages
- These special-purpose macro processors are similar in general function and approach; however, the details differ from language to language

- The advantages of such a general-purpose approach to macro processing are obvious
 - The programmer does not need to learn about a different macro facility for each compiler or assembler language, so much of the time and expense involved in training are eliminated
 - A substantial overall saving in software development cost

- In spite of the advantages noted, there are still relatively few general-purpose macro processors. Why?
 - 1. In a typical programming language, there are several situations in which normal macro parameter substitution should no occur
 - E.g. comments should usually be ignored by a macro processor

- 2. Another difference between programming languages is related to their facilities for grouping together terms, expressions, or statements
 - E.g. Some languages use keywords such as begin and end for grouping statements. Others use special characters such as { and }.

- 3. A more general problem involves the tokens of the programming language
 - E.g. identifiers, constants, operators, and keywordsE.g. blanks

4. Another potential problem with generalpurpose macro processors involves the syntax used for macro definitions and macro invocation statements. With most specialpurpose macro processors, macro invocations are very similar in form to statements in the source programming language

The end.

Chapter 4 Macro Processors

4.1 Basic Macro Processor Functions 4.1.1 Macro Definition and Expansion

- Fig. 4.1 shows an example of a SIC/XE program using macro instructions.
 - DBUFF and WRBUFF
 - MACRO and MEND
 - RDBUFF is name
 - DTES.IN Parameters (參數) of the macro instruction, each parameter begins with the character &.
 - Macro invocation (引用) statement and the arguments (引數) to be used in expanding the macro.
- Fig. 4.2 shows the output that would be generated.

5	COPY	START	0	COPY FILE FROM INPUT TO OUTPUT
10	RDBUFF	MACRO	&INDEV,&BUF	ADR, & RECLTH
15				
20	•	MACRO T	O READ RECORI) INTO BUFFER
25	•			
30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	А	
40		CLEAR	S	rfs.In
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50		TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	*-3	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	*+11	EXIT LOOP IF EOR
75		STCH	& BUFADR, X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	*-19	HAS BEEN REACHED
90		STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

Downloaded from Ktunotes.in

180	FIRST	STL	RETADR	SAVE RETURN ADDRESS
190	CLOOP	RDBUFF	F1, BUFFER, LENGT	TH READ RECORD INTO BUFFER
195		LDA	LENGTH	TEST FOR END OF FILE
200		COMP	#0	
205		JEQ	ENDFIL	EXIT IF EOF FOUND
210		WRBUFF	05, BUFFER, LENGI	TH WRITE OUTPUT RECORD
215		J	CLOOP	LOOP
220	ENDFIL	WRBUFF	05, EOF, THREE	INSERT EOF MARKER
225		J	@retadr	
230	EOF	BYTE	C'EOF'	
235	THREE	WORD	3	
240	RETADR	RESW	1	
245	LENGTH	RESW	1	LENGTH OF RECORD
250	BUFFER	RESB	4096	4096-BYTE BUFFER AREA
255		END	FIRST	

Figure 4.1 Use of macros in a SIC/XE program.

5	COPY	START	0	COPY FILE FROM INPUT TO OUTPUT
180	FIRST	STL	RETADR	SAVE RETURN ADDRESS
190	.CLOOP	RDBUFF	F1, BUFFER, LENGTH	READ RECORD INTO BUFFER
190a	CLOOP	CLEAR	Х	CLEAR LOOP COUNTER
190b		CLEAR	А	
190c		CLEAR	S	
190d		+LDT	#4096	SET MAXIMUM RECORD LENGTH
190e		TD	=X'F1'	TEST INPUT DEVICE
190f		JEQ	*-3	LOOP UNTIL READY
190g		RD	=X'F1'	READ CHARACTER INTO REG A
190h		COMPR	A,S	TEST FOR END OF RECORD
190i		JEQ	*+11	EXIT LOOP IF EOR
190j		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
190k		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
1901		JLT	*-19	HAS BEEN REACHED
190m		STX	LENGTH	SAVE RECORD LENGTH
195		LDA	LENGTH	TEST FOR END OF FILE
200		COMP	#O	
205		JEQ	ENDFIL	EXIT IF EOF FOUND

Downloaded from Ktunotes.in

			-
210	• WRBUFF	05, BUFFER, LENGTH	WRITE OUTPUT RECORD
210a	CLEAR	Х	CLEAR LOOP COUNTER
210b	LDT	LENGTH	
210c	LDCH	BUFFER, X	GET CHARACTER FROM BUFFER
210d	TD	≃X′05′	TEST OUTPUT DEVICE
210e	JEQ	*-3	LOOP UNTIL READY
210f	WD	=X'05'	WRITE CHARACTER
210g	TIXR	Т	LOOP UNTIL ALL CHARACTERS
210h	ЛЛ	*-14	HAVE BEEN WRITTEN
215	J	CLOOP	LOOP

-		-		
220	.ENDFIL	WRBUFF	05,EOF,THREE	INSERT EOF MARKER
220a	ENDFIL	CLEAR	Х	CLEAR LOOP COUNTER
220b		LDT	THREE	
220c		LDCH	EOF,X	GET CHARACTER FROM BUFFER
220d		TD	=X'05'	TEST OUTPUT DEVICE
220e		JEQ	*-3	LOOP UNTIL READY
220f		WD	=X′05′	WRITE CHARACTER
220g		TIXR	T	S LOOP UNTIL ALL CHARACTERS
220h		JLT	*-14	HAVE BEEN WRITTEN
225		J	@RETADR	
230	EOF	BYTE	C'EOF'	
235	THREE	WORD	3	
240	RETADR	RESW	1	
245	LENGTH	RESW	1	LENGTH OF RECORD
250	BUFFER	RESB	4096	4096-BYTE BUFFER AREA
255		END	FIRST	

Figure 4.2 Program from Fig. 4.1 with macros expanded.

Downloaded from Ktunotes.in

Two-pass macro processor

- All macro definitions are processed during the first pass.
- All macro invocation statements are expanded during the second pass.
- Two-pass macro processor would not allow the body of one macro instruction to contain definitions of other macros.
- Such definitions of macros by other macros Fig.
 4.3

{Defines SIC standard version macros} 1 MACROS MACRO 2 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH {SIC standard version} 3 {End of RDBUFF} MEND MACRO 4 WRBUFF &OUTDEV, &BUFADR, &RECLTH {SIC standard version} 5 MEND {End of WRBUFF} 6 {End of MACROS} MEND

MACROX MACRO {Defines SIC/XE macros} RDBUFF 2 MACRO & INDEV, & BUFADR, & RECLTH {SIC/XE version} 3 MEND {End of RDBUFF} 4 WRBUFF MACRO &OUTDEV, &BUFADR, &RECLTH {SIC/XE version} {End of WRBUFF} 5 MEND ٠ 6 {End of MACROX} MEND (b)

Figure 4.3 Example of the definition of macros within a macro body.

- A one-pass macro processor that can alternate between macro definition and macro expansion.
 - The definition of a macro must appear in the source program before any statements that invoke that macro.
 - Inconvenience of the programmer.
 - Macro definitions are stored in DEFTAB
 - Comment lines are not entered the DEFTAB.

- The macro names are entered into NAMTAB, NAMTAB contains two pointers to the beginning and the end of the definition in DEFTAB
- The third data structure is an argument table ARGTAB, which is used during the expansion of macro invocations.
- The arguments are stored in ARGTAB according to their position in the argument list.

- Fig. 4.4 shows positions of the contents of these tables during the processing.
 - Parameter &INDEV -> Argument ?1
 - Parameter & BUFADR -> Argument ?2
 - When the ?n notation is recognized in a line form DEFTAB, a simple indexing operation supplies the proper argument form ARGTAB.

Downloaded from Ktunotes.in

4.1.2 Macro Processor Algorithm

and Data Structures

- The macro processor algorithm itself is presented in Fig. 4.5.
 - The procedure PROCESSING
 - The procedure DEFINE
 - Called when the beginning of a macro definition is recognized, makes the appropriate entries in DEFTAB and NAMTAB.
 - The procedure EXPAND
 - Called to set up the argument values in ARGTAB and expand a macro invocation statement.
 - The procedure GETLINE
 - Called at several points in the algorithm, gets the next line to be processed.
 - EXPANDING is set to TRUE or FALSE.

begin {macro processor} EXPANDING := FALSE while OPCODE \neq 'END' do begin GETLINE PROCESSLINE **end** {while} **end** {macro processor} procedure PROCESSLINE begin search NAMTAB for OPCODE if found then EXPAND else if OPCODE = 'MACRO' then DEFINE else write source line to expanded file **end** {PROCESSLINE}

Figure 4.5 Algorithm for a one-pass macro processor. Downloaded from Ktunotes.in


```
procedure DEFINE
   begin
       enter macro name into NAMTAB
       enter macro prototype into DEFTAB
       LEVEL := 1
       while LEVEL > 0 do
          begin
              GETLINE
              if this is not a comment line then
                 begin
                     substitute positional notation for parameters
                     enter line into DEFTAB
                     if OPCODE = 'MACRO' then
                         LEVEL := LEVEL + 1
                     else if OPCODE = 'MEND' then
                         LEVEL := LEVEL -1
                 end {if not comment}
          end {while}
       store in NAMTAB pointers to beginning and end of definition
    end {DEFINE}
```

Downloaded from Ktunotes.in

```
procedure EXPAND
   begin
       EXPANDING := TRUE
       get first line of macro definition {prototype} from DEFTAB
       set up arguments from macro invocation in ARGTAB
       write macro invocation to expanded file as a comment
       while not end of macro definition do
          begin
             GETLINE
             PROCESSLINE
          end {while}
                 KTUNOTES.IN
       EXPANDING := FALSE
   end {EXPAND}
procedure GETLINE
   begin
       if EXPANDING then
          begin
             get next line of macro definition from DEFTAB
             substitute arguments from ARGTAB for positional notation
          end {if}
       else
          read next line from input file
   end {GETLINE}
```


- To solve the problem is Fig. 4.3, our DEFINE procedure maintains a counter named LEVEL.
 - MACRO directive is read, the value of LEVEL is inc. by 1.
 - MEND directive is read, the value of LEVEL is dec. by 1.

4.2 Machine-Independent Macro Processor Features

4.2.1 Concatenation of Macro Parameters

- Most macro processors allow parameters to be concatenated with other character strings.
 - A program contains one series of variables named by the symbols XA1, XA2, XA3, ..., another series named by XB1, XB2, XB3, ..., etc.
 - The body of the macro definition might contain a statement like

SUM	Macro	&ID
	LDA	X <mark>&ID</mark> 1
	LDA	X <mark>&ID</mark> 2
	LDA	X <mark>&ID</mark> 3
	LDA	X <mark>&ID</mark> S

4.2.1 Concatenation of Macro Parameters

- The beginning of the macro parameter is identified by the starting symbol &; however, the end of the parameter is not marked.
- The problem is that the end of the parameter is not marked. Thus X&ID1 may mean "X" + ID + "1" or "X" + ID1.
- In which the parameter &ID is concatenated after the character string X and before the character string 1.

4.2.1 Concatenation of Macro Parameters

Most macro processors deal with this problem by providing a special concatenation operator (Fig. 4.6).
 In SIC or SIC/XE, -> is used

			TES.IN
1	SUM	MACRO	&ID
2		LDA	X&ID \rightarrow 1
3		ADD	X&ID→2
4		ADD	X&ID→3
5		STA	X&ID→S
6		MEND	

(a)

4.2.2 Generation of Unique Labels

- As we discussed in Section 4.1, it is in general not possible for the body of a macro instruction to contain labels of usual kind.
 - WRBUFF (line 135) is called twice.
 - Fig. 4.7 illustrates one techniques for generating unique labels within a macro expansion.
 - Labels used within the macro body begin with the special character \$.
 - Each symbol beginning with \$ has been modified by replacing \$ with \$AA.

4.2.2 Generation of Unique Labels

Because it was not possible to place a label on line 135 of this macro definition, the Jump instructions on lines 140 and 155 were written using the relative operands *–3 and *–14. This sort of relative addressing in a source statement may be acceptable for short jumps such as "JEQ *–3." However, for longer jumps spanning several instructions, such notation is very inconvenient, errorprone, and difficult to read. Many macro processors avoid these problems by allowing the creation of special types of labels within macro instructions.

4.2.2 Generation of Unique Labels

25	RDBUFF	MACRO	&INDEV,&BUFAD	R,&RECLTH
30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

(a)

RDBUFF F1, BUFFER, LENGTH

30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	А	
40		CLEAR	S	
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$AALOOP	TD	=X'F1'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F1'	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$AAEXIT	EXIT LOOP IF EOR
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	LENGTH	SAVE RECORD LENGTH

(b)

Figure 4.7 Generation of unique labels within macro expansion.

Downloaded from Ktunotes.in

4.2.3 Conditional Macro Expansion

- The use of one type of conditional macro expansion statement is illustrated in Fig. 4.8.
 - The definition of RDBUFF has two additional parameters: &EOR and &MAXLTH.
 - Macro processor directive SET
 - This SET statement assigns the value 1 to &EORCK.
 - The symbol & EORCK is a macro time variables, which can be used to store working values during the macro expansion.
 - □ RDBUFF F3, BUF, RECL, 04, 2048
 - □ RDBUFF 0E,BUFFER,LENGTH,,80
 - □ RDBUFF F1,BUFF,RLENG,04

Downloaded from Ktunotes.in

RDBUFF F3, BUF, RECL, 04, 2048

CLEAR LOOP COUNTER SET EOR CHARACTER SET MAXIMUM RECORD LENGTH TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A TEST FOR END OF RECORD EXIT LOOP IF EOR STORE CHARACTER IN BUFFER LOOP UNLESS MAXIMUM LENGTH HAS BEEN REACHED SAVE RECORD LENGTH

Figure 4.8 Use of macro-time conditional statements.

RDBUFF 0E, BUFFER, LENGTH, , 80

.

30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	AUDTE	5.11
47	3	+LDT	#80	SET MAXIMUM RECORD LENGTH
50	\$ABLOOP	TD	=X'0E'	TEST INPUT DEVICE
55		JEQ	\$ABLOOP	LOOP UNTIL READY
60		RD	=X'0E'	READ CHARACTER INTO REG A
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
87		$_{\rm JLT}$	\$ABLOOP	HAS BEEN REACHED
90	\$ABEXIT	STX	LENGTH	SAVE RECORD LENGTH

(C)

RDBUFF F1, BUFF, RLENG, 04

CLEAR LOOP COUNTER SET EOR CHARACTER SET MAX LENGTH = 4096TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A TEST FOR END OF RECORD EXIT LOOP IF EOR STORE CHARACTER IN BUFFER LOOP UNLESS MAXIMUM LENGTH HAS BEEN REACHED SAVE RECORD LENGTH

(d)

4.2.3 Conditional Macro Expansion

- A different type of conditional macro expansion statement is illustrated in Fig. 4.9.
 - □ There is a list (00, 03, 04) corresponding to &EOR.
 - %NITEMS is a macro processor function that returns as its value the number of members in an argument list.
 - %NITEMS(&EOR) is equal to 3.
 - &CTR is used to count the number of times the lines following the WHILE statement have been generated.
 - Thus on the first iteration the expression &EOR[&CTR] on line 65 has the value 00 = &EOR[1]; on the second iteration it has the value 03, and so on.
 - How to implement nesting WHILE structures?

25	RDBUFF	MACRO	&INDEV,&BUI	FADR, & RECLTH, & EOR
27	&EORCT	SET	%NITEMS(&E0	DR)
30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	А	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60	_	RD	=X'&INDEV'	READ CHARACTER INTO REG A
63	&CTR	SET	1	
64		WHILE	(&CTR LE &	EORCT)
65		COMP	=X'0000&EOR	[&CTR] '
70		JEQ	\$EXIT	
71	&CTR	SET	&CTR+1	
73		ENDW		
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
100		MEND		

KTU NOTES

RDBUFF F2, BUFFER, LENGTH, (00, 03, 04)

30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	
45		+LDT	#4096	SET MAX LENGTH = 4096
50	\$AALOOP	TD	=X'F2'	TEST INPUT DEVICE
55		JEQ	\$AALOOP	LOOP UNTIL READY
60		RD	=X'F2'	READ CHARACTER INTO REG A
65		COMP	=X′0000 <u>00</u> ′	TESIN
70		JEQ	\$AAEXIT	
65		COMP	=X'000003'	
70		JEQ	\$AAEXIT	
65		COMP	=X′000004′	
70		JEQ	\$AAEXIT	
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$AALOOP	HAS BEEN REACHED
90	\$AAEXIT	STX	LENGTH	SAVE RECORD LENGTH

4.2.4 Keyword Macro Parameters

Positional parameters

- Parameters and arguments were associated with each other according to their positions in the macro prototype and the macro invocation statements.
- A certain macro instruction GENER has 10 possible parameters.

```
GENER MACRO &1, &2, &type, ..., &channel, &10
```

GENER

, DIRECT, , , , , ,

4.2.4 Keyword Macro Parameters

Keyword parameters

- Each argument value is written with a keyword that names the corresponding parameter.
- Arguments may appear in any order.

GENER , , DIRECT, , , , , , , , , 3

- GENER TYPE=DIRECT, CHANNEL=3
- GENER CHANNEL=3, TYPE=DIRECT

parameter=argument

□ Fig. 4.10 shows a version of the RDBUFF using keyword.

25	RDBUFF	MACRO	&INDEV=F1,&BUB	FADR=, & RECLTH=, & EOR=04, & MAXLTH= 4096
26		IF	(&EOR NE '')	
27	&EORCK	SET	1	
28		ENDIF		
30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	-
38		IF	(&EORCK EQ 1)	
40	2	LDCH	=X'&EOR'	SET EOR CHARACTER
42	2	RMO	A,S	
43		ENDIF		
47		+LDT	#&MAXLTH	SET MAXIMUM RECORD LENGTH
50	\$LOOP	TD	=X'&INDEV'	TEST INPUT DEVICE
55		JEQ	\$LOOP	LOOP UNTIL READY
60		RD	=X'&INDEV'	READ CHARACTER INTO REG A
63	:	IF	(&EORCK EQ 1)	
65	2	COMPR	A,S	TEST FOR END OF RECORD
70	5	JEQ	\$EXIT	EXIT LOOP IF EOR
73		ENDIF		
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

KTU NOTES

RDBUFF BUFADR=BUFFER, RECLTH=LENGTH

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAXIMUM RECORD LENGTH TEST INPUT DEVICE LOOP UNTIL READY READ CHARACTER INTO REG A TEST FOR END OF RECORD EXIT LOOP IF EOR STORE CHARACTER IN BUFFER LOOP UNLESS MAXIMUM LENGTH HAS BEEN REACHED SAVE RECORD LENGTH

(b)

Figure 4.10 Use of keyword parameters in macro instructions. Downloaded from Ktunotes.in

RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	А	
47		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$ABLOOP	TD	=X'F3'	TEST INPUT DEVICE
55		JEQ	\$ABLOOP	LOOP UNTIL READY
60		RD	=X'F3'	READ CHARACTER INTO REG A
75		STCH	BUFFER,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$ABLOOP	HAS BEEN REACHED
90	\$ABEXIT	STX	LENGTH	SAVE RECORD LENGTH

(C)

Figure 4.10 (cont'd)

٠

4.3 Macro Processor Design Options 4.3.1 Recursive Macro Expansion

- In Fig. 4.3 we presented an example of the definition of one macro instruction by another.
- Fig. 4.11(a) shows an example Dealt with the invocation of one macro by another.
- The purpose of RDCHAR Fig. 4.11(b) is to read one character from a specified device into register A, taking care of the necessary test-and-wait loop.

5 RDCHAR MACRO &IN 10 15 MACRO TO READ CHARACTER INTO REGISTER A =X'&IN'ES TEST INPUT DEVICE 20 25 TD 30 JEQ LOOP UNTIL READY 35 RD =X' & IN'READ CHARACTER 40 MEND

(b)

RDBUFF BUFFER, LENGTH, F1

10	RDBUFF	MACRO	&BUFADR, &RE	CLTH,&INDEV
15	•			
20	•	MACRO T	O READ RECORD	INTO BUFFER
25	•			
30		CLEAR	Х	CLEAR LOOP COUNTER
35		CLEAR	A	
40		CLEAR	S	- SIN
45		+LDT	#4096	SET MAXIMUM RECORD LENGTH
50	\$LOOP	RDCHAR	&INDEV	READ CHARACTER INTO REG A
65		COMPR	A,S	TEST FOR END OF RECORD
70		JEQ	\$EXIT	EXIT LOOP IF EOR
75		STCH	&BUFADR,X	STORE CHARACTER IN BUFFER
80		TIXR	Т	LOOP UNLESS MAXIMUM LENGTH
85		JLT	\$LOOP	HAS BEEN REACHED
90	\$EXIT	STX	&RECLTH	SAVE RECORD LENGTH
95		MEND		

4.3.1 Recursive Macro Expansion

- Fig. 4.11(c), applied to the macro invocation statement RDBUFF BUFFER, LENGTH, F1
- The procedure EXPAND would be called when the macro was recognized.
- The arguments from the macro invocation would be entered into ARGTAB as follows:

Parameter	Value	
1	BUFFER	
2	LENGTH	
3	F1	
4	(unused)	

4.3.1 Recursive Macro Expansion

- The Boolean variable EXPANDING would be set to TRUE, and expansion of the macro invocation statement would be begin.
- The processing would proceed normally until line 50, which contains a statement invoking RDCHAR. At that point, PROCESSLINE would call EXPAND again.
- This time, ARGTAB would look like

Parameter	Value		
1 2	F1 (unused)		
•	•		

4.3.1 Recursive Macro Expansion

- At the end of this expansion, however, a problem would appear. When the end of the definition of RDCHAR was recognized, EXPANDING would be set to FALSE.
- Thus the macro processor would "forget" that it had been in middle of expanding a macro when it encountered the RDCHAR statement.
- Use a Stack to save ARGTAB.
- Use a counter to identify the expansion.

Pages 208-209, MASM

OP1, OP2, SIZE 1 ABSDIF MACRO 2 LOCAL EXIT 3 SIZE IS NOT BLANK <SIZE> IFNB IF :: 4 THEN IT MUST BE E $\langle SIZE \rangle, \langle E \rangle$ IFDIF ;; 5 OR BLANK BE E -- SIZE MUST : ERROR 6 .ERR 7 EXITM 8 ENDIF OF IFDIF END 9 IFNB ENDIF END OF COMPUTE ABSOLUTE DIFFERENCE 10 SIZE&AX, OP1 MOV SUBTRACT OP2 FROM OP1 11 SUB SIZE&AX, OP2 :: IF RESULT GE 0 EXIT 12 EXIT JNS ; ; OTHERWISE CHANGE SIGN 13 SIZE&AX NEG ;; 14 EXIT: 15 ENDM

(a)

Figure 4.12 Examples of MASM macro and conditional statements.

1	NODE	MACRO	NAME
2		IRP	S, <'LEFT', 'DATA', 'RIGHT'>
3	NAME&S	DW	0
4		ENDM	;; END OF IRP
5		ENDM	;; END OF MACRO

(a)

XLEFT	DW	0
XDATA	DW	0
XRIGHT	DW	0

(b)

Figure 4.13 Example of MASM iteration statement. Downloaded from Ktunotes.in