

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

Chapter 4 – Macro Processors

 A macro represents a commonly used group of
statements in the source programming language. The
macro processor replaces each macro instruction with the
corresponding group of source language statements. This
is called expanding the macros.

 Macro instructions allow the programmer to write a
shorthand version of a program, and leave the
mechanical details to be handled by the macro processor.

 For example, suppose that it is necessary to save the
contents of all registers before calling a subprogram.

On SIC/XE, this would require a sequence of seven
instructions (STA, STB, etc.).

Using a macro instruction, the programmer could simply
write one statement like SAVEREGS. This macro
instruction would be expanded into the seven assembler
language instructions needed to save the register
contents.

 The most common use of macro processors is in
assembler language programming. However, macro
processors can also be used with high-level programming
languages, operating system command languages, etc.

4.1 Basic Macro Processor Functions

4.1.1 Macro Definition and Expansion

 Fig 4.1 shows an example of a SIC/XE program using
macro instructions. The definitions of these macro
instructions (RDBUFF and WRBUFF) appear in the

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

source program following the START statement.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

 Two new assembler directives (MACRO and MEND) are
used in macro definitions.

The first MACRO statement (line 10) identifies the
beginning of a macro definition.

The symbol in the label field (RDBUFF) is the name of the
macro, and the entries in the operand field identify the
parameters of the macro instruction.

 In our macro language, each parameter begins with the
character &, which facilitates the substitution of
parameters during macro expansion.

The macro name and parameters define a pattern or
prototype for the macro instructions used by the
programmer.

Following the MACRO directive are the statements that
make up the body of the macro definition.

The MEND assembler directive marks the end of the
macro definition.

 Fig 4.2 shows the output that would be generated. Each
macro invocation statement has been expanded into the
statements that form the body of the macro, with the
arguments from the macro invocation substituted for the
parameters in the macro prototype.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

 For example, in expanding the macro invocation on line
190, the argument F1 is substituted for the parameter
&INDEV wherever it occurs in the body of the macro.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

Similarly, BUFFER is substituted for &BUFADR, and
LENGTH is substituted for &RECLTH.

 The comment lines within the macro body have been
deleted. Note that the macro invocation statement itself
has been included as a comment line. This serves as
documentation of the statement written by the
programmer.

 The label on the macro invocation statement (CLOOP)
has been retained as a label on the first statement
generated in the macro expansion.

This allows the programmer to use a macro instruction in
exactly the same way as an assembler language
mnemonic.

Note that the two invocations of WRBUFF specify
different arguments, so they produce different
expansions.

 After macro processing, the expanded file (Fig 4.2) can
be used as input to the assembler.

 In general, the statements that form the expansion of a
macro are generated (and assembled) each time the
macro is invoked (see Fig 4.2). Statements in a
subroutine appear only once, regardless of how many
times the subroutine is called (see Fig 2.5).

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

4.1.2 Macro Processor Algorithm and Data Structures

 Approach 1: It is easy to design a two-pass macro
processor in which all macro definitions are processed
during the first pass, and all macro invocation statements
are expanded during the second pass.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

However, such a two-pass macro processor would not
allow the body of one macro instruction to contain
definitions of other macros (because all macros would
have to be defined during the first pass before any macro
invocations were expanded).

 Approach 2: A one-pass macro processor that can
alternate between macro definition and macro expansion
is able to handle macros like those in Fig 4.3.

Because of the one-pass structure, the definition of a
macro must appear in the source program before any
statements that invoke that macro.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

 There are three main data structures involved in our
macro processor.

The macro definitions themselves are stored in a
definition table (DEFTAB), which contains the macro
prototype and the statements that make up the macro
body (with a few modifications). Comment lines from the
macro definition are not entered into DEFTAB because
they will not be part of the macro expansion.

References to the macro instruction parameters are
converted to a positional notation for efficiency in
substituting arguments.

The macro names are entered into NAMTAB, which
serves as an index to DEFTAB. For each macro
instruction defined, NAMTAB contains pointers to the
beginning and end of the definition in DEFTAB.

 The third data structure is an argument table (ARGTAB),
which is used during the expansion of macro invocations.

When a macro invocation statement is recognized, the
arguments are stored in ARGTAB according to their
position in the argument list.

As the macro is expanded, arguments from ARGTAB are
substituted for the corresponding parameters in the
macro body.

 Fig 4.4 shows portions of the contents of these tables
during the processing of program in Fig 4.1.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Fig 4.4(a) shows the definition of RDBUFF stored in
DEFTAB, with an entry in NAMTAB identifying the
beginning and end of the definition.

Note the positional notation that has been used for the
parameters: &INDEV ?1 (indicating the first parameter
in the prototype), &BUFADR ?2, etc.

Fig 4.4(b) shows ARGTAB as it would appear during
expansion of the RDBUFF statement on line 190. In this
case (this invocation), the first argument is F1, the second
is BUFFER, etc.

 The macro processor algorithm is presented in Fig 4.5.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

The procedure DEFINE, which is called when the
beginning of a macro definition is recognized, makes the
appropriate entries in DEFTAB and NAMTAB.

EXPAND is called to set up the argument values in
ARGTAB and expand a macro invocation statement.

The procedure GETLINE, which is called at several points
in the algorithm, gets the next line to be processed. This
line may come from DEFTAB (the next line of a macro
begin expanded), or from the input file, depending on
whether the Boolean variable EXPANDING is set to
TRUE or FALSE.

 One aspect of this algorithm deserves further comment:
the handling of macro definitions within macros (as
illustrated in Fig 4.3).

The DEFINE procedure maintains a counter named
LEVEL. Each time a MACRO directive is read, the value
of LEVEL is increased by 1.

Each time an MEND directive is read, the value of LEVEL
is decreased by 1.

When LEVEL reaches 0, the MEND that corresponds to
the original MACRO directive has been found.

 The above process is very much like matching left and
right parentheses when scanning an arithmetic
expression.

4.2 Machine-Independent Macro Processor Features

4.2.1 Concatenation of Macro Parameters

 Suppose that a program contains one series of variables
named by the symbols XA1, XA2, XA3, …, another series
named by XB1, XB2, XB3, …, etc.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

If similar processing is to be performed on each series of
variables, the programmer might want to incorporate this
processing into a macro instruction.

The parameter to such a macro instruction could specify
the series of variables to be operated on (A, B, etc.). The
macro processor would use this parameter to construct
the symbols required in the macro expansion (XA1, XB1,
etc.).

 Most macro processors deal with this problem by
providing a special concatenation operator.

This operator is the character .
For example, the statement LDA X&ID 1
so that the end of the parameter &ID is clearly identified.

The macro processor deletes all occurrences of the
concatenation operator immediately after performing
parameter substitution, so will not appear in the macro
expansion.

 Fig 4.6(a) shows a macro definition that uses the
concatenation operator as previously described. Fig 4.6(b)
and (c) shows macro invocation statements and the
corresponding macro expansions.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

4.2.2 Generation of Unique Labels

 Consider the definition of WRBUFF in Fig 4.1. If a label
were placed on the TD instruction on line 135, this label
would be defined twice – once for each invocation of
WRBUFF.

This duplicate definition would prevent correct assembly
of the resulting expanded program.

 Many macro processors avoid these problems by
allowing the creation of special types of labels within
macro instructions. Fig 4.7 illustrates one technique for
generating unique labels within a macro expansion.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

 Fig 4.7(a) shows a definition of the RDBUFF macro.
Labels used within the macro body begin with the special
character $.

Fig 4.7(b) shows a macro invocation statement and the
resulting macro expansion. Each symbol beginning with $
has been modified by replacing $ with $AA.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

More generally, the character $ will be replaced by $xx,
where xx is a two-character alphanumeric counter of the
number of macro instructions expanded.

For the first macro expansion in a program, xx will have
the value AA. For succeeding macro expansions, xx will
be set to AB, AC, etc.

4.2.3 Conditional Macro Expansion

 Most macro processors can also modify the sequence of
statements generated for a macro expansion, depending
on the arguments supplied in the macro invocation. This
is called conditional macro expansion.

 Fig 4.8 shows the use of one type of conditional macro
expansion statement.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Fig 4.8(a) shows a definition of a macro RDBUFF, the
logic and functions of which are similar to those
previously discussed.

Two additional parameters are defined in RDBUFF:
&EOR, which specifies a hexadecimal character code
that marks the end of a record, and &MAXLTH, which
specifies the maximum length record that can be read.

 1st illustration: The statements on lines 44 through 48 of
this definition illustrate a simple macro-time conditional
structure.

The IF statement evaluates a Boolean expression that is
its operand (In this case, it is [&MAXLTH EQ ‘ ‘].). If TRUE,
the statements following the IF are generated until an

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

ELSE is encountered (Line 45 is generated.).

If FALSE, these statements are skipped, and the
statements following the ELSE are generated (Line 47 is
generated.).

The ENDIF statement terminates the conditional
expression that was begun by the IF statement.

 2nd illustration: On line 26 through 28, line 27 is another
macro processor directive (SET). This SET statement
assigns the value 1 to &EORCK.

The symbol &EORCK is a macro time variable, which can
be used to store working values during the macro
expansion. Note any symbol that begins with the
character & and that is not a macro instruction parameter
is assumed to be a macro-time variable. All such
variables are initialized to a value of 0.

 Other illustrations: On line 38 through 43 and line 63
through 73.

 Fig 4.8 (b-d) shows the expansion of 3 different macro
invocation statements that illustrate the operation of the IF
statements in Fig 4.8(a).

 Note that the macro processor must maintain a symbol
table that contains the values of all macro-time variables
used.

Entries in this table are made or modified when SET
statements are processed. The table is used to look up
the current value of a macro-time variable whenever it is
required.

 Syntax 1 – IF (Boolean Exp.) (statements) ELSE
(statements) ENDIF: If IF statement is encountered
during the expansion of a macro, the specified Boolean
expression is evaluated.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

If TRUE, the macro processor continues to process lines
from DEFTAB until it encounters the next ELSE or ENDIF
statement. If an ELSE is found, the macro processor then
skips lines in DEFTAB until the next ENDIF. Upon
reaching the ENDIF, it resumes expanding the macro in
the usual way.

If FALSE, the macro processor skips ahead in DEFTAB
until it finds the next ELSE or ENDIF statement. The
macro processor then resumes normal macro expansion.

 The implementation outlined above does not allow for
nested IF structures.

 It is extremely important to understand that the testing of
Boolean expressions in IF statements occurs at the time
macros are expanded.

By the time the program is assembled, all such decisions
(must) have been made.

The conditional macro expansion directives (must) have
been removed. The same applies to the assignment of
values to macro-time variables, and to the other
conditional macro expansion directives.

 Fig 4.9 shows the use of macro-time loop statements.
The definition in Fig 4.9(a) uses a macro-time loop
statement WHILE.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

The WHILE statement specifies that the following lines,
until the next ENDW statement, are to be generated
repeatedly as long as a particular condition is true. Note
that all the generation is done at the macro expansion
time. The conditions to be tested involve macro-time
variables and arguments, not run-time data values.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

 The use of the WHILE-ENDW structure is illustrated on
lines 63 through 73 of Fig 4.9(a). The macro-time
variables &EORCT has previously been set (line 27) to
the value %NITEMS(&EOR).

%NITEMS is a macro processor function that returns as
its value the number of members in an argument list. For
example, if the argument corresponding to &EOR is (00,
03, 04), then %NITEMS(&EOR) has the value 3.

The macro-time variable &CTR is used to count the
number of times the lines following the WHILE statement
have been generated. The value of &CTR is initialized to
1 (line 63), and incremented by 1 each time through the
loop (line 71).

Fig 4.9(b) shows the expansion of a macro invocation
statement using the definition in Fig 4.9(a).

 Syntax 2 – WHILE (Boolean Exp.) (statements) ENDW:
When a WHILE statement is encountered during macro
expansion, the specified Boolean expression is
evaluated.

If the value of this expression is FALSE, the macro
processor skips ahead in DEFTAB until it finds the next
ENDW statement, and then resumes normal macro
expansion.

If TRUE, the macro processor continues to process lines
from DEFTAB in the usual way until the next ENDW
statement. When ENDW is encountered, the macro
processor returns to the preceding WHILE, re-evaluates
the Boolean expression, and takes action based on the
new value of this expression as previously described.

 Note that no nested WHILE structures are allowed.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

4.2.4 Keyword Macro Parameters

 All the macro instruction definitions we have seen thus far
used positional parameters. That is, parameters and
arguments were associated with each other according to
their positions in the macro prototype and the macro
invocation statement.

 With positional parameters, the programmer must be
careful to specify the arguments in the proper order. If an
argument is to be omitted, the macro invocation
statement must contain a null argument (two consecutive
commas) to maintain the correct argument positions.

For example, a certain macro instruction GENER has 10
possible parameters, but in a particular invocation of the
macro, only 3rd and 9th parameters are to be specified.
Then, the macro invocation might look like GENER
 , , DIRECT, , , , , , 3.

 Using a different form of parameter specification, called
keyword parameters, each argument value is written with
a keyword that names the corresponding parameter.

Arguments may appear in any order.

For example, if 3rd parameter in the previous example is
named &TYPE and 9th parameter is named &CHANNEL,
the macro invocation statement would be
GENER TYPE=DIRECT, CHANNEL=3.

 Fig 4.10(a) shows a version of the RDBUFF macro
definition using keyword parameters.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

In the macro prototype, each parameter name is followed
by an equal sign (=), which identifies a keyword
parameter.

After = sign, a default value is specified for some of the
parameters. The parameter is assumed to have this
default value if its name does not appear in the macro
invocation statement.

Default values can simplify the macro definition in many
cases.

4.3 Macro Processor Design Options

4.3.1 Recursive Macro Expansion

 Fig 4.11 shows an example of macro invocations within
macro definitions.

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Fig 4.11(a) shows the definition of RDBUFF. In this case,
a macro invocation (RDCHAR) is invocated in the body of
RDBUFF and a related macro instruction already exists.

The definition of RDCHAR appears in Fig 4.11(b).

 Unfortunately, the macro processor design we have
discussed previously cannot handle such invocations of
macros within macros.

Fig 4.11(c) shows a macro invocation statement of
RDBUFF. According to the algorithm in Fig 4.5, the
procedure EXPAND would be called when the macro was
recognized. The arguments from the macro invocation

Written by WWF

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

would be entered into ARGTAB as shown in page 201.

The processing would proceed normally until line 50,
which contains a statement invoking RDCHAR. At that
point, PROCESSLINE would call EXPAND again. This
time, ARGTAB would look like as shown in page 201.

The expansion of RDCHAR would also proceed normally.
At the end of this expansion, however, a problem would
appear. When the end of the definition of RDCHAR was
recognized, EXPANDING would be set to FALSE. Thus,
the macro processor would “forget” that it had been in the
middle of expanding a macro when it encountered the
RDCHAR statement.

In addition, the arguments from the original macro
invocation (RDBUFF) would be lost because the values in
ARGTAB were overwritten with the arguments from the
invocation of RDCHAR.

 This cause of these difficulties is the recursive call of the
procedure EXPAND.

When the RDBUFF macro invocation is encountered,
EXPAND is called. Later, it calls PROCESSLINE for line
50, which results in another call to EXPAND before a
return is made from the original call.

A similar problem would occur with PROCESSLINE since
this procedure too would be called recursively.

 These problems are not difficult to solve if the macro
processor is being written in a programming language
that allows recursive calls.

 If a programming language that supports recursion is not
available, the programmer must take care of handling
such items as return addresses and values of local
variables (that is, handling by looping structure and data

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

values being saved on a stack).

4.3.2 General-Purpose Macro Processors

 The most common use of macro processors is as an aid
to assembler language programming. Macro processors
have also been developed for some high-level
programming languages.

These special-purpose macro processors are similar in
general function and approach. However, the details differ
from language to language.

 The general-purpose macro processors are not
dependent on any particular programming language, but
can be used with a variety of different languages.

 There are relatively few general-purpose macro
processors. The major reason is the large number of
details that must be dealt within a real programming
language. That is to say, a general-purpose facility must
provide some way for a user to define the specific set of
rules to be followed. Therefore, there are some difficulties
in some way.

 Case 1: Comments are usually ignored by a macro
processor (at least in scanning for parameters). However,
each programming language has its own methods for
identifying comments.

 Case 2: Another difference between programming
languages is related to their facilities for grouping
together terms, expressions, or statements. A
general-purpose macro processor may need to take
these groupings into account in scanning the source
statements.

 Case 3: Languages differ substantially in their restrictions
on the length of identifiers and the rules for the formation

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

of constants (i.e. the tokens of the programming
language – for example, identifiers, constants, operators,
and keywords).

 Case 4: Another potential problem with general-purpose
macro processors involves the syntax used for macro
definitions and macro invocation statements. With most
special-purpose macro processors, macro invocations
are very similar in form to statements in the source
programming language.

4.3.3 Macro Processing within Language Translators

 The macro processors might be called preprocessors.
Consider an alternative: combining the macro processing
functions with the language translator itself.

 The simplest method of achieving this sort of combination
is a line-by-line macro processor.

Using this approach, the macro processor reads the
source program statements and performs all of its
functions as previously described.

The output lines are then passed to the language
translator as they are generated (one at a time), instead
of being written to an expanded source file.

Thus, the macro processor operates as a sort of input
routine for the assembler or compiler.

 Although a line-by-line macro processor may use some of
the same utility routines as the language translator, the
functions of macro processing and program translation
are still relatively independent.

 There exists even closer cooperation between the macro
processor and the assembler or compiler. Such a scheme
can be thought of as a language translator with an
integrated macro processor.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

An integrated macro processor can potentially make use
of any information about the source program that is
extracted by the language translator.

For example, at a relatively simple level of cooperation,
the macro processor may use the results of such
translator operations as scanning for symbols, constants,
etc. The macro processor can simply use the results
without being involved in such details as
multiple-character operators, continuation lines, and the
rules for token formation.

 There are disadvantages to integrated and line-by-line
macro processors.

They must be specially designed and written to work with
a particular implementation of an assembler or compiler.

The costs of macro processor development must be
added to the cost of the language translator, resulting in a
more expensive piece of software.

The size may be a problem if the translator is to run on a
computer with limited memory.

4.4 Implementation Examples

4.4.1 (Skip)

4.4.2 ANSI C Macro Language

 In the ANSI C language, definitions and invocations of
macros are handled by a preprocessor. This preprocessor
is generally not integrated with the rest of compiler. Its
operation is similar to the macro processor we discussed
before.

 Two simple (and commonly used) examples of ANSI C
macro definitions:

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

#define NULL 0
#define EOF (-1)

After these definitions, every occurrence of NULL will be
replaced by 0, and every occurrence of EOF will be
replaced by (-1).

 It is also possible to use macros like this to make limited
changes in the syntax of the language. For example, after
defining the macro

#define EQ ==.

A programmer could write while (I EQ 0)…
The macro processor would convert this into while (I ==

0) …

 ANSI C macros can also be defined with parameters.
Consider, for example, the macro definition

#define ABSDIFF(X,Y) ((X) > (Y)) ? (X) – (Y) : (Y) – (X))

For example, ABSDIFF (I+1, J-5) would be converted by
the macro processor into

((I+1) > (J-5) ? (I+1) – (J-5) : (J-5) – (I+1)).

The macro version can also be used with different types
of data. For example, we could invoke the macro as
ABSDIFF(I, 3.14159) or ABSDIFF(‘D’, ‘A’).

 It is necessary to be very careful in writing macro
definitions with parameters. The macro processor simply
makes string substitutions, without considering the syntax
of the C language.

For example, if we had written the definition of ABSDIFF
as

#define ABSDIFF(X, Y) X>Y ? X-Y : Y-X. The macro
invocation ABSDIFF(3+1, 10-8) would be expanded into

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

System Software – An Introduction to Systems Programming, 3
rd

 ed., Leland L. Beck

Written by WWF

3+1 > 10-8 ? 3+1-10-8 : 10-8–3+1.

 The ANSI C preprocessor also provides conditional
compilation statements. For example, in the sequence

#ifndef BUFFER_SIZE
#define BUFFER_SIZE 1024
#endif

the #define will be processed only if BUFFER_SIZE has
not already been defined.

 Conditionals are also often used to control the inclusion of
debugging statements in a program. (See page 213 for
example.)

4.4.3 (Skip)

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Chapter 4 Macro Processors

Professor Gwan-Hwan Hwang

Dept. Computer Science and Information Engineering

National Taiwan Normal University

9/17/20099/ / 009

1

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Introduction

� A macro instruction (abbreviated to macro) is

i l i l i f hsimply a notational convenience for the

programmer.

� A macro represents a commonly used group of

statements in the source programming language

� Expanding a macros

– Replace each macro instruction with the corresponding p p g

group of source language statements

2

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Introduction (Cont’ d)

� E.g.

– On SIC/XE requires a sequence of seven instructions to

save the contents of all registers

W it t t t lik SAVERGS� Write one statement like SAVERGS

� A macro processor is not directly related to the

hit t f th t hi h it i tarchitecture of the computer on which it is to run

� Macro processors can also be used with high-level

programming languages, OS command languages,

etc.

3

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Basic Macro Processor Functions

A program with
A i h

Expanded program

Macro

Processor

A program with

Macro definitions and

Macro invocations

A program without

Macro definitions

Assembler

Object program

4

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Basic Macro Processor Functions

� Macro Definition

– Two new assembler directives

� MACRO

� MEND

– A pattern or prototype for the macro instructionA pattern or prototype for the macro instruction

� Macro name and parameters

See figure 4 1– See figure 4.1

5

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

6

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Basic Macro Processor Functions

� Macro invocation
Oft f d t ll– Often referred to as a macro call

� Need the name of the macro instruction begin invoked and the
arguments to be used in expanding the macro

� Expanded program
– Figure 4.2g

– No macro instruction definitions

– Each macro invocation statement has been expanded
into the statements that form the body of the macro,
with the arguments from the macro invocation
substituted for the parameters in the prototype

7

substituted for the parameters in the prototype

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

8

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Basic Macro Processor Functions

� Macro invocations and subroutine calls are

different

� Note also that the macro instructions haveNote also that the macro instructions have

been written so that the body of the macro

contains no labelcontains no label

– Why?

9

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Macro Processor Algorithm andMacro Processor Algorithm and

Data StructuresData Structures
� It is easy to design a two-pass macro processor

– Pass 1:

� All macro definitions are processed

P 2– Pass 2:

� All macro invocation statements are expanded

H t ld t� However, a two-pass macro processor would not

allow the body of one macro instruction to contain

d fi iti f thdefinitions of other macros

– See Figure 4.3

10

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

11

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Macro Processor Algorithm andMacro Processor Algorithm and

Data StructuresData Structures

� Sub-Macro definitions are only processed

when an invocation of their Super-Macros

are expanded p

– See Figure 4.3: RDBUFF

A th t� A one-pass macro processor that can

alternate between macro definition and

macro expansions able to handle macros

like those in Figure 4.3

12

g

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Macro Processor Algorithm andMacro Processor Algorithm and

Data StructuresData Structures

� Because of the one-pass structure, the

definition of a macro must appear in the

source program before any statements that p g y

invoke that macro

� Three main data structures involved in an� Three main data structures involved in an

one-pass macro processor

– DEFTAB, NAMTAB, ARGTAB

13

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

14

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

15

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

16

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Machine Independent MacroMachine-Independent Macro

Processor FeatureProcessor Feature

� Concatenation of Macro Parameters

� Generation of Unique Labels

� Conditional Macro Expansion� Conditional Macro Expansion

� Keyword Macro Parameters

17

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Concatenation of MacroConcatenation of Macro

ParametersParameters

� Most macro processors allow parameters to

be concatenated with other character strings

– The need of a special catenation operatorThe need of a special catenation operator

� LDA X&ID1

� LDA X&IDLDA X&ID

– The catenation operator

� LDA X&ID1� LDA X&ID1

� See figure 4.6

18

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

19

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Generation of Unique Labels

� It is in general not possible for the body of a
macro instruction to contain labels of the usualmacro instruction to contain labels of the usual
kind

Leading to the use of relative addressing at the source– Leading to the use of relative addressing at the source
statement level

� Only be acceptable for short jumps

� Solution:
– Allowing the creation of special types of labels within

macro instructions

– See Figure 4.7

20

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

21

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Generation of Unique Labels

� Solution:

– Allowing the creation of special types of labels

within macro instructions

– See Figure 4.7

� Labels used within he macro body begin with theLabels used within he macro body begin with the

special character $

– Programmers are instructed no to use $ in theirProgrammers are instructed no to use $ in their

source programs

22

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Conditional Macro Expansion

� Most macro processors can modify the

sequence of statements generated for a

macro expansion, depending on the p , p g

arguments supplied in the macro invocation

� See Figure 4 8� See Figure 4.8

23

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

24

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

25

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Conditional Macro ExpansionConditional Macro Expansion

� Most macro processors can modify the sequenceMost macro processors can modify the sequence
of statements generated for a macro expansion,
depending on the arguments supplied in the macro
invocation

� See Figure 4.8
– Macro processor directive

� IF, ELSE, ENDIF

SET� SET

– Macro-time variable (set symbol)

� WHILE ENDW� WHILE-ENDW
– See Figure 4.9

26

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

27

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Keyword Macro Parameters

� Positional parameters

– Parameters and arguments were associated with

each other according to their positions in the g p

macro prototype and the macro invocation

statement

– Consecutive commas is necessary for a null

argumentargument

GENER ,,DIRECT,,,,,,3

28

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Keyword Macro Parameters

� Keyword parameters

– Each argument value is written with a keyword

that names the corresponding parameterp g p

– A macro may have a large number of

parameters , and only a few of these are givenparameters , and only a few of these are given

values in a typical invocation

GENER TYPE=DIRECT, CHANNEL=3GENER TYPE DIRECT, CHANNEL 3

29

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

30

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

31

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Macro Processor Design Optionsg p

� Recursive Macro Expansion

– In Figure 4.3, we presented an example of the

definition of on macro instruction by another.y

� We have not dealt with the invocation of one macro

by another (nested macro invocation)

– See Figure 4.11

32

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

33

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

Macro Processor Design Optionsg p

� Recursive Macro Expansion Applying

Al ith f Fi 4 5Algorithm of Fig. 4.5
� Problem:

– The processing would proceed normally until line 50,

which contains a statement invoking RDCHAR

– In addition, the argument from the original macro add t o , t e a gu e t o t e o g a ac o

invocation (RDBUFF) would be lost because the values in

ARGTAB were overwritten with the arguments from the

invocation of RDCHARinvocation of RDCHAR

� Solution:

– These problems are not difficult to solve if the macroThese problems are not difficult to solve if the macro

processor is begin written in a programming language that

allows recursive call

34

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

General Purpose MacroGeneral-Purpose Macro

ProcessorsProcessors

� Macro processors have been developed for

some high-level programming languages

� These special-purpose macro processors areThese special purpose macro processors are

similar in general function and approach;

however the details differ from language tohowever, the details differ from language to

language

35

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

General Purpose MacroGeneral-Purpose Macro

ProcessorsProcessors

� The advantages of such a general-purpose

approach to macro processing are obvious

– The programmer does not need to learn about aThe programmer does not need to learn about a

different macro facility for each compiler or

assembler language, so much of the time and asse b e a guage, so uc o t e t e a d

expense involved in training are eliminated

– A substantial overall saving in software– A substantial overall saving in software

development cost

36

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

General Purpose MacroGeneral-Purpose Macro

ProcessorsProcessors

� In spite of the advantages noted, there are

still relatively few general-purpose macro

processors. Why?p y

1. In a typical programming language, there are

several situations in which normal macroseveral situations in which normal macro

parameter substitution should no occur

E g comments should usually be ignored by a– E.g. comments should usually be ignored by a

macro processor

37

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

General Purpose MacroGeneral-Purpose Macro

ProcessorsProcessors
2. Another difference between programming

l i l d h i f ili i flanguages is related to their facilities for

grouping together terms, expressions, or

statements

– E.g. Some languages use keywords such as begin

d d f i t t t Othand end for grouping statements. Others use

special characters such as { and }.

38

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

General Purpose MacroGeneral-Purpose Macro

ProcessorsProcessors
3. A more general problem involves the tokens

f h i lof the programming language

– E.g. identifiers, constants, operators, and

k dkeywords

– E.g. blanks

39

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

General Purpose MacroGeneral-Purpose Macro

ProcessorsProcessors
4. Another potential problem with general-

i l hpurpose macro processors involves the syntax

used for macro definitions and macro

i i Wi h i linvocation statements. With most special-

purpose macro processors, macro invocations

i il i f i hare very similar in form to statements in the

source programming language

40

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

41

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

1

Chapter 4

Macro Processors

Source

Code
(with macro)

Macro

Processor

Expanded

Code

Compiler or

Assembler
obj

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

2

4.1 Basic Macro Processor Functions

4.1.1 Macro Definition and Expansion

Fig. 4.1 shows an example of a SIC/XE program

using macro instructions.

RDBUFF and WRBUFF

MACRO and MEND

RDBUFF is name

Parameters (參數) of the macro instruction, each

parameter begins with the character &.

Macro invocation (引用) statement and the arguments

(引數) to be used in expanding the macro.

Fig. 4.2 shows the output that would be generated.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

3

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

4

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

5

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

6

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

7

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

8

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

9

Source

STRG MACRO

STA DATA1

STB DATA2

STX DATA3

MEND

.

STRG

.

STRG

.

.

Expanded source

.

.

.

.STRG

STA DATA1

STB DATA2

STX DATA3

.STRG

STA DATA1

STB DATA2

STX DATA3

.

{
{

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

10

4.1.2 Macro Processor Algorithm

and Data Structures

Two-pass macro processor

All macro definitions are processed during the first pass.

All macro invocation statements are expanded during

the second pass.

Two-pass macro processor would not allow the body of

one macro instruction to contain definitions of other

macros.

Such definitions of macros by other macros Fig.

4.3

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

11

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

12

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

13

4.1.2 Macro Processor Algorithm

and Data Structures

A one-pass macro processor that can alternate

between macro definition and macro expansion.

The definition of a macro must appear in the source

program before any statements that invoke that

macro.

Inconvenience of the programmer.

Macro definitions are stored in DEFTAB

Comment lines are not entered the DEFTAB.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

14

4.1.2 Macro Processor Algorithm

and Data Structures

The macro names are entered into NAMTAB, NAMTAB

contains two pointers to the beginning and the end of

the definition in DEFTAB

The third data structure is an argument table ARGTAB,

which is used during the expansion of macro invocations.

The arguments are stored in ARGTAB according to their

position in the argument list.
KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

15

4.1.2 Macro Processor Algorithm

and Data Structures

Fig. 4.4 shows positions of the contents of these

tables during the processing.

Parameter &INDEV -> Argument ?1

Parameter &BUFADR -> Argument ?2

When the ?n notation is recognized in a line form

DEFTAB, a simple indexing operation supplies the

proper argument form ARGTAB.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

16

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

17

4.1.2 Macro Processor Algorithm

and Data Structures
The macro processor algorithm itself is presented

in Fig. 4.5.

The procedure PROCESSING

The procedure DEFINE

Called when the beginning of a macro definition is recognized,

makes the appropriate entries in DEFTAB and NAMTAB.

The procedure EXPAND

Called to set up the argument values in ARGTAB and expand a

macro invocation statement.

The procedure GETLINE

Called at several points in the algorithm, gets the next line to be

processed.

EXPANDING is set to TRUE or FALSE.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

18

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

19

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

20

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

21

4.1.2 Macro Processor Algorithm

and Data Structures

To solve the problem is Fig. 4.3, our DEFINE

procedure maintains a counter named LEVEL.

MACRO directive is read, the value of LEVEL is inc. by 1.

MEND directive is read, the value of LEVEL is dec. by 1.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

22

4.2 Machine-Independent Macro Processor

Features

4.2.1 Concatenation of Macro Parameters

Most macro processors allow parameters to be

concatenated with other character strings.

A program contains one series of variables named by

the symbols XA1, XA2, XA3, …, another series named

by XB1, XB2, XB3, …, etc.

The body of the macro definition might contain a

statement like

SUM Macro &ID

LDA X&ID1

LDA X&ID2

LDA X&ID3

LDA X&IDS

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

23

4.2.1 Concatenation of Macro Parameters

The beginning of the macro parameter is identified by

the starting symbol &; however, the end of the

parameter is not marked.

The problem is that the end of the parameter is not

marked. Thus X&ID1 may mean “X” + ID + “1” or “X” +

ID1.

In which the parameter &ID is concatenated after the

character string X and before the character string 1.
KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

24

4.2.1 Concatenation of Macro Parameters

Most macro processors deal with this problem by

providing a special concatenation operator (Fig. 4.6).

In SIC or SIC/XE, -> is used

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

25

4.2.2 Generation of Unique Labels

As we discussed in Section 4.1, it is in general not

possible for the body of a macro instruction to

contain labels of usual kind.

WRBUFF (line 135) is called twice.

Fig. 4.7 illustrates one techniques for generating unique

labels within a macro expansion.

Labels used within the macro body begin with the

special character $.

Each symbol beginning with $ has been modified by

replacing $ with $AA.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

26

4.2.2 Generation of Unique Labels

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

27

4.2.2 Generation of Unique Labels

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

28

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

29

4.2.3 Conditional Macro Expansion

The use of one type of conditional macro

expansion statement is illustrated in Fig. 4.8.

The definition of RDBUFF has two additional

parameters: &EOR and &MAXLTH.

Macro processor directive SET

This SET statement assigns the value 1 to &EORCK.

The symbol &EORCK is a macro time variables, which

can be used to store working values during the macro

expansion.

RDBUFF F3,BUF,RECL,04,2048

RDBUFF 0E,BUFFER,LENGTH,,80

RDBUFF F1,BUFF,RLENG,04

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

30

1

2

3

4

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

31

2

3

4

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

32

3 KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

33

2

3

4

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

34

4.2.3 Conditional Macro Expansion

A different type of conditional macro expansion

statement is illustrated in Fig. 4.9.

There is a list (00, 03, 04) corresponding to &EOR.

%NITEMS is a macro processor function that returns as

its value the number of members in an argument list.

%NITEMS(&EOR) is equal to 3.

&CTR is used to count the number of times the lines

following the WHILE statement have been generated.

Thus on the first iteration the expression &EOR[&CTR]

on line 65 has the value 00 = &EOR[1]; on the second

iteration it has the value 03, and so on.

How to implement nesting WHILE structures?

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

35

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

36

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

37

4.2.4 Keyword Macro Parameters

Positional parameters

Parameters and arguments were associated with each

other according to their positions in the macro

prototype and the macro invocation statements.

A certain macro instruction GENER has 10 possible

parameters.

GENER MACRO &1, &2, &type, …, &channel, &10

GENER , , DIRECT, , , , , , 3

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

38

4.2.4 Keyword Macro Parameters

Keyword parameters

Each argument value is written with a keyword that

names the corresponding parameter.

Arguments may appear in any order.

GENER , , DIRECT, , , , , , 3

GENER TYPE=DIRECT, CHANNEL=3

GENER CHANNEL=3, TYPE=DIRECT

parameter=argument

Fig. 4.10 shows a version of the RDBUFF using keyword.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

39

2

3

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

40

2

3 KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

41

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

42

4.3 Macro Processor Design Options

4.3.1 Recursive Macro Expansion

In Fig. 4.3 we presented an example of the

definition of one macro instruction by another.

Fig. 4.11(a) shows an example - Dealt with the

invocation of one macro by another.

The purpose of RDCHAR Fig. 4.11(b) is to read one

character from a specified device into register A,

taking care of the necessary test-and-wait loop.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

43

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

44

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

45

4.3.1 Recursive Macro Expansion

Fig. 4.11(c), applied to the macro invocation statement
RDBUFF BUFFER, LENGTH, F1

The procedure EXPAND would be called when the macro

was recognized.

The arguments from the macro invocation would be

entered into ARGTAB as follows:

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

46

4.3.1 Recursive Macro Expansion

The Boolean variable EXPANDING would be set to TRUE,

and expansion of the macro invocation statement would be

begin.

The processing would proceed normally until line 50, which

contains a statement invoking RDCHAR. At that point,

PROCESSLINE would call EXPAND again.

This time, ARGTAB would look likeKTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

47

4.3.1 Recursive Macro Expansion

At the end of this expansion, however, a problem

would appear. When the end of the definition of

RDCHAR was recognized, EXPANDING would be

set to FALSE.

Thus the macro processor would “forget” that it

had been in middle of expanding a macro when it

encountered the RDCHAR statement.

Use a Stack to save ARGTAB.

Use a counter to identify the expansion.

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

48

Pages 208-209, MASM

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

49

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

50

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

51

KTUNOTES.IN

Downloaded from Ktunotes.in

http://www.ktunotes.in/
http://ktunotes.in/

