

February 2019 DISSIMILAR METAL WELDING

Dissimilar Metal Welding = Explosion Welding

LIGHTWEIGHT PLATFORM DESIGN – ALL ALUMINUM

TRADITIONAL PLATFORM DESIGN – LIGHTWEIGHT INTEGRATION

• Mostly steel

Weight Savings

- HSS welded
- Aluminum fasteners

CONSIDER HYBRID METALS?

Reducing weight

- Enable lightweight materials
- Use of Bi-metal Transition Joints allows structural welds between traditionally nonweldable materials: Steel to Al, Ti to Al, Steel to Ti, Cu to Al etc.

• Welding electrical connections

• Bi-metal from explosion cladding are better conductors than bolts or mechanical contacts

• Fighting corrosion and wear

- A thin corrosion barrier can be cladded on some pieces to solve galvanic or corrosion issues
- Welded structures are water tight solutions (no crevice corrosion)
- Reducing total costs
 - Faster and cheaper than machining, riveting, bolting
 - Eliminates galvanic corrosion protection requirements

NobelClad Process

INTRODUCTION TO EXPLOSION WELDING

7

EXPLOSION WELDED INTERFACE

- Interface achieved by combination of:
 - Very high pressure <---> Explosive detonation
 - Very localized heat ←→ Collision of metals
- Wavy bond on a macro scale
- Jet assures pure and clean surfaces for the welding
- Possible to weld similar and dissimilar metals

EXPLOSION WELDING CLASSIFICATION

- Process developed, commercialized and standardized in the 1960's
 - Process classified in EN 14610, EN ISO 4063 and American Welding Society (AWS)

3.1.6.5

explosive welding (441)

.

shock welding in which the workpieces are welded when impacted together by the detonation of an explosive charge

	T			EN 14610:2004 (E/F/D
3.1.6.4 shock welding welding with pressure welded by the applicat generated by the sur welding	which the workpieces ar of a striking force. The hea en collision contributes to the	3,1,6,4 soudage par choc a soudage avec press t soudes par l'applica e produite par la collisi soudure	ion dans lequel les pièces son tion d'un effort violent, la chaleu on brutale permettant de réaliser la	3.1.6.4 Schockschweißen t Presschweißen, wobei die Wertstlucke durch Aufwenden schlageriger Kraft geschweißt worden. Die bei dem pflyzure hat zurs Schweißen bei entstehende Vamer tragt zurs Schweißen bei
3.1.6.5 explosive welding (44 shock welding in which impacted together by charge) The workpieces are welded when the detonation of an explosive	3.1.6.5 soudage par explosion soudage par chec da lorsqu'elles sont plas détonation d'une charg	on (441) Ins lequel les pièces sont soudéer quées l'une contre l'autre par la ge explosive	3.1.6.5 Sprengachweißen (441) Schockschweißen, wobei die Werkstücke geschweißt werden, indem sie durch die Detonation einer Sprengladung aneinandergeschleudert werden.
see rigure II	2-€	3		
Key 1 Warkpieces	4 Explosive charge	1 Légende 1 Pièces	4 Charge explosive	Legende 1 Werkstück 4 Sprengladung und
2 Weld and buffer 3 Detonation front	5 Flyer plate 6 Parent plate	2 Soudure 3 Front de la détonation	5 Tôle volante 6 Tôle de base	Speichermedium 2 Schweißnaht 5 Plattierungsblech 3 Detonations- 6 Grundblech druckwelle
a) Explosiv	e welding for cladding	a) Soudage	par explosion utilisé pour le placage	a) Sprengschweißen zum Beschichten

	SOLID-STATE WELDING (SSW)
	coextrusion welding CEW cold welding CW
	diffusion weldingDFW
	explosion welding EXW
T	torge welding FOW
	friction weldingFRW
	hot pressure welding HOW
	roll welding ROW
	ultrasonic welding USW

Master Chart of Welding and Joining Processes

INTERFACE SHEAR PROPERTIES

- ASME code and EU codes require shear tests
- Bond quality and forming capacity
- Design with direct attachments to the clad

INTERFACE TENSILE PROPERTIES

- 1st R&D Project: Comparison of tensile vs. shear strength
- Initial test program and paper published in 2005
- Tensile Strength of NobelClad EXW Bond
 - > Shear Strength

4/23/2019

NobelClad Plants and Manufacturing

NOBELCLAD SHOOTING FACILITIES

- USA Dunbar mine and Coolspring mine
 - Underground chambers
 - 35,000 50,000 sq. m
- Germany Königzug mine and Höchen site
 - Underground chambers
 - 20,000 30,000 sq. m
- Total Production volume
 - 55,000 80,000 sq. m or 10,000 plates per year

NOBELCLAD PRODUCTS & TECHNOLOGY

Plate Products

PLATES

HEADS

SHELLS

TUBESHEETS

Transition Joints

STRUCTURAL

ELECTRICAL

4/23/2019

FROM CLAD PLATE TO TRANSITION JOINT

- A transition joint is a bi-metal product used as an intermediate piece to weld 'non-weldable' structures
- Bi-metal transition joints are cut from the mother plate by water jet and or sawing
- Different shapes are possible (round, cylinders, beams, square)
- Long profiles are possible up to 12 m
- Large & small quantities
- Very efficient and cost effective
- Repeatability from 1 piece to the others

Transportation Applications and Solutions Examples

RAILCLAD™ STRUCTURAL TRANSITION JOINTS FOR THE TRAIN INDUSTRY

- RailClad[™] transition joints
 - Welded and maintenance free connection between aluminum components and steel structures in the train industry.
- Design Goals
 - Alternate solution to bolting and riveting
- Qualification
 - EN 3834-2:2005 and to EN 15085 Certification Level CL1 (welding of railway vehicles and components).

ALSTOM CHOSE RAILCLAD TO BENEFIT FROM THE TECHNICAL AND ECONOMIC ADVANTAGES IT OFFERS

STRUCTURAL TRANSITION JOINTS - TRAIN

 RailClad[™] allows welding the Aluminum floor on the steel frame of the carbody structure, in lieu of bolts and rivets.

• Key Details

- Combination
 - Steel + Al1050 + Al5XXX (18+3+18mm)
- Typical test values
 - RAM tensile: 152MPa
 - Shear: 92MPa
- Certified by Alstom transport
 - Used for 10 years on more than 1,000 rail vehicles

Before: Hybrid bars

After: Aluminum alloy panel welded on the steel structure

STRUCTURAL TRANSITION JOINTS - MARINE

- For 50 years, NobelClad has made the welding of Aluminium superstructures on steel decks possible.
- Benefits include:
 - Low cost
 - Low maintenance
 - Easy installation
 - Reduced vessel weight
 - Superior corrosion control
 - Universally approved by maritime authorities

USUAL DESIGN

OUR SOLUTION

19

SHIP APPLICATIONS

20

SHIP APPLICATIONS

Structural transition joints

Titanium Light Assembly mounted to Steel deck with Titanium-Steel bimetal flange.

Titanium studs are welded to Aluminum hulls and decks

Steel-Aluminum bimetal tie-down point for welding to Aluminum decks.

AUTOMOTIVE APPLICATIONS

- Transitions
 - Aluminum crossmembers welded to steel frames
 - Steel weld attach points for aluminum sheetmetal
 - Driveshaft transitions (steel u-joint to aluminum shaft)
 - Others

22

AUTOMOTIVE - DRIVESHAFT

23

AUTOMOTIVE – APPLICATIONS (CONTINUED)

24

Dissimilar Metal Welding

4/23/2019

DODGE RAM 2019

What would you do if you could simply weld aluminum to steel?

Image: FCA LLC US

QUESTIONS

Warren Salt E wsalt@nobelclad.com T 303.604.3921 M 303.249.1796 NobelClad 5405 Spine Road Boulder, Colorado 80301 USA

Appendix

LARGE OIL & GAS PROJECT STRUCTURE

28

EXPLOSION WELDING PROCESS

29

PRE WELDING GRINDING

- The proprietary DetaClad Explosion Welding process begins with a thorough inspection of the materials.
- Then, grinding the surface of each metal ensures that they are free from any debris, oxides and surface flaws.

EXPLOSION WELDING OF CLAD PLATES

- Explosion Bonding Parameters
 - Standoff distance
 - Explosive load
 - Explosive burn rate
- Key Process Parameters
 - Input material meets specifications
 - Careful preparation and assembly
 - Final inspection

31

EXPLOSION WELDING OF CLAD PLATES

- Cladding and base metal plates are positioned parallel with a preset separation distance
- Explosive is placed on top
- Explosive detonation sweeps across the plate at ~2000 m/sec pushing the cladder onto the backer under high pressures (β,Vp)
- The collision between metals generates the jet and creates the wavy interface

POST WELDING PROCESS

- In preparation for delivery, the explosion welded clad plates undergo a finishing process that can include heating, cutting, or flattening.
- All clad undergoes stringent testing and qualification to ensure it meets industrial and project specifications.

AUTOMATIC ULTRASONIC SCANNING

- Capacity
 - L=12 m & W=4.2 m up to 500 mm
 - Weight=50 t
 - Plate or tubesheets
- Scanning speed: 500 mm/s
- Permanent coupling with water layer
- 3 multitransducer heads adaptable vs specification
- Applicable specifications:
- B898 / SA578 / EN 10160 & SA577

POST WELDING PICTURES

Dissimilar Metal Welding

