EINFLÜSSE AUF DAS ZYKLISCHE WERKSTOFFVERHALTEN ADDITIV GEFERTIGTER METALLISCHER STRUKTUREN

16. Dynamik Symposium

Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen am 9. April 2019 bei ZwickRoell in Ulm

Benjamin Möller Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF www.lbf.fraunhofer.de

16. Dynamik Symposium – Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen, Ulm, 08.04.2019 | Möller

© Fraunhofer LBF

Motivation

Additiv gefertigter Verbindungsknoten Lastpfad optimiert

Strangpressprofil Funktionsintegrierte Fahrzeug Leichtbaustruktur Demonstrator: Batterieträger

Betriebsfestigkeit und ihre Einflussgrößen

zyklische Erprobung an Proben

Werkstoffe

Einfluss von Schweißen, Gießen, Nachbehandlung, additiver Fertigung ...

Fertigung

Betriebsfestigkeit

Konstruktion

Bauteilerprobung: Pleuel, Kurbelwellen, Kurbelgehäuse ...

Belastung

Einfluss von

Temperatur, Medien, Lastkollektive ...

Spezifische Kenngrößen der additiven Fertigung

Selektives Laserschmelzen im Pulverbettverfahren

- Metallpulver wird durch einen Laserstrahl schichtenweise geschmolzen und verbunden → Baurichtung ist orthogonal zu den Schichten
- 2. Auf jede aufgeschmolzene Schicht folgt eine neue Beschichtung in Pulverauftragsrichtung
- 3. Hauptrichtungen im Bauraum sind X, Y und Z

Ausgewählte Einflussgrößen auf die Betriebsfestigkeit

Eigenspannungen: I. bis III. Art

Innere Unregelmäßigkeiten: Poren, nicht geschmolzene Partikel, unvollständige Verschmelzung Mikrostruktur:

Kornorientierung,

Korngrenzen,

Korngröße,

Einschlüsse

- Änderungen in den Prozessparametern führen auf vielfältige Struktureigenschaften
- Das Versagen wird maßgeblich durch die Oberfläche und Unregelmäßigkeiten bestimmt
- Mikrostruktur begründet Anisotropie und Strukturverhalten
- Eigenspannungen liegen vor, können hoch sein und die Schwingfestigkeit mindern

Ermüdungsprüfung und Betriebsbelastungen

Elektro-Zylinder Bildquelle: Fraunhofer

Last-Zeit-Verlauf

16. Dynamik Symposium – Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen, Ulm, 08.04.2019 | Möller

verlängerung

Einsatz unterschiedlicher Aktorik zur Ermüdungsprüfung

Schwingfestigkeitsuntersuchung unter Lastregelung

- Edelstahl 1.4542 (17-4 PH, X5CrNiCuNb16-4) in zwei "Chargen"
- Z-Rundproben mit unbearbeiteter und feingedrehter Oberfläche

Metallographische Grundcharakterisierung

- AlSi10Mg (Schliffbild)
- Selektives
 Laserschmelzen im
 Pulverbettverfahren
- Baurichtung senkrecht zur Bildebene

 Unterschiedliche Prozessparameter f
ür Kern- und Konturwerkstoff

Schwingfestigkeit von AlSi10Mg

- Versuchsdurchführung mit der Piezo-basierten Prüftechnik (PZB500)
 - Kraftaufnehmer mit 2,2 kN
 - Detektion sehr kleiner Risse
 - Hohe Reproduzierbarkeit
 - Hohe Dynamik (Frequenz)

Versuchsparameter
$$\longrightarrow R = \frac{\sigma_{min}}{\sigma_{max}} \longrightarrow R_{\sigma} = -1$$
 $f = 100 \text{ Hz}$

Schwingfestigkeit von AlSi10Mg Wöhlerergebnisse für Z-Proben mit K_t ≈ 1

Schwingfestigkeit von AlSi10Mg Wöhlerergebnisse für X-Proben mit $K_t \approx 1$

Schwingfestigkeit von AlSi10Mg Wöhlerergebnisse für X- und Z-Proben mit $K_t \approx 1$

Fertigungsprozess – Stützstrukturen und Poren

Stützstrukturen führen auf ungleichmäßige Oberflächen und enthalten Unregelmäßigkeiten Beispiel einer Probe mit Kontur und Kernwerkstoff: Oberfläche und Porenverteilung abhängig von Upskin-/Downskin-Winkel

¹ Scurria, M.; Möller, B.; Wagener, R.; Melz, T.: Effect of the Surface Finish on the Cyclic Behavior of Additively Manufactured AlSi10Mg. TMS 2019 – 148th Annual Meeting & Exhibition, 10.-14. März 2019, San Antonio, Texas, USA

Fertigungsprozess – Stützstrukturen

Oberflächenbeschaffenheit und Rauheit von AlSi10Mg-Proben

Zyklisches Spannungs-Dehnungsverhalten von additiv gefertigten Werkstoffen und Strukturen

Versuchsaufbau und Pr
üfablauf

Auswertung des Incremental Step Tests IST

- Charakterisierung mit Hilfe des Incremental Step Tests IST^{2,3}
- Auswertung f
 ür den stabilisierten Zyklus (Block)

² Masendorf, R.; Wagener, R.: Prüf- und Dokumentationsrichtlinie für die experimentelle Ermittlung mechanischer Kennwerte von Feinblechen aus Stahl für die CAE-Berechnung, Anhang Incremental Step Test

³ Morrow, J.: Cyclic plastic strain energy and fatigue of metals. Internal friction, damping, and cyclic plasticity. ASTM International, 1965.

⁴Landgraf, R. W.; Morrow, J.: Determination of the cyclic stress-strain curve. Journal of Materials 4.1 (1969): 176-188.

⁵ Sonsino, C. M.: Bedeutung von Aufnahmeverfahren zur Ermittlung von zyklischen Spannungs-Dehnungskurven. Sonderdruck aus dem Berichtsband "Kurzzeit-Schwingfestigkeit und elastoplastisches Werkstoffverhalten", 5. Sitzung des Arbeitskreises Betriebsfestigkeit, 08./09. Oktober 1979, Berlin, S. 221-229

Auswertung des Incremental Step Tests IST

Ableitung des zyklischen Spannungs-Dehnungs-Verhaltens

⁶ Ramberg, W.; Osgood, W.R.: NACA Technical Note No. 902, 1943

Spannungs-Dehnungsverhalten von AlSi10Mg Z-Proben

16. Dynamik Symposium – Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen, Ulm, 08.04.2019 | Möller

Spannungs-Dehnungsverhalten von AlSi10Mg Z-Proben

Zyklische Dehngrenzen für AlSi10Mg

Arbeitskreises Additiv gefertigte Bauteile und Strukturen, 7.-8. November 2018, Berlin, Bericht 403, S. 57-66

Systematische Kombination der Bauraumorientierung und des Oberflächenzustands

16. Dynamik Symposium – Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen, Ulm, 08.04.2019 | Möller

© Fraunhofer LBF

^{16.} Dynamik Symposium – Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen, Ulm, 08.04.2019 | Möller

^{16.} Dynamik Symposium – Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen, Ulm, 08.04.2019 | Möller

N _A	$\varepsilon_{a,t} = 0.8\%$		
Orientierung	as-built	elektrochemisch poliert	mechanisch poliert
Х	800	320	5.760
XZ	1.120	2.640	4.720
Z	2.160	4.640	4.400

as-built

elektrochemisch poliert

mechanisch poliert

- Gegenüberstellung von
 - (zyklischem) Elastizitätsmodul E
 - Anrissschwingspielzahl N_A

Oberfläche:

 $\Delta \Delta \Delta$

Α

 $\theta = 0^{\circ}$

Х

3aurichtung

mit Stützstruktur

В

 $\theta = 0^{\circ}$

Х

D

θ=90°

Ζ

С

 $\theta = 0^{\circ}$

Х

Ε

θ=45°

XZ

poliert

as-built

16. Dynamik Symposium – Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen, Ulm, 08.04.2019 | Möller

S

θ=0°, 45°, 90°

X, XZ, Z

5

Schlussfolgerungen

- Last- und dehnungsgeregelte Schwingfestigkeitsversuche bilden die Grundlage zur zyklischen Charakterisierung additiv gefertigter Strukturen
- Erkenntnisse zu den unterschiedlichen Einflüssen
 - Oberflächenbearbeitung (Polieren, Feinbearbeitung) wirkt sich grundsätzlich positiv auf die Schwingfestigkeit aus, sofern Kontur und Porensaum (keine Poren schneiden) abgearbeitet werden
 - Orientierungsabhängig (X, XZ, Z) stellen hängen Schwingfestigkeiten maßgeblich mit der Oberflächenbeschaffenheit (Stützstrukturen und Bearbeitung) und inneren Unregelmäßigkeiten (z.B. Poren) des AlSi10Mg zusammen
 - Das zyklische Spannungs-Dehnungsverhalten auf Basis von Incremental Step Tests für Inconel®718 zeigt ein anisotropes Verhalten im as-built und polierten Zustand
 - XZ-Proben (45°) zeigen den höchsten (zyklischen) Elastizitätsmodul (Inconel®718)
 - Spannungsarmglühen von AlSi10Mg gleicht das zyklische Spannungs-Dehnungsverhalten an

Ausblick

- Erweiterung experimenteller Untersuchungen auf weitere Einflussgrößen, wie z.B. Reproduzierbarkeit und Schweißbarkeit
- Verfolgung des Ansatzes auf Basis Repräsentativer Strukturelemente (RSE), der die Berücksichtigung AM-spezifischer Einflüsse zulässt.

- Zur Sicherstellung der Bauteileigenschaften nicht nur Dichte und Zugfestigkeit heranziehen, sondern auch zyklische Kennwerte für entsprechende Anwendungsfälle → Methode zur Abschätzung der Schwingfestigkeit auf Basis weniger kleinskaliger Proben in Bearbeitung
 - Schwingfestigkeitsbewertung mit Hilfe von Finite-Elemente Analysen

Ausblick – Finite Elemente Analyse und Bewertung

16. Dynamik Symposium – Ermüdungsprüfung von additiv gefertigten Bauteilen und Strukturen, Ulm, 08.04.2019 | Möller

© Fraunhofer LBF

Vielen Dank für Ihre Aufmerksamkeit!

Förderhinweis und Kontakt

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Betriebsfestigkeit additiv gefertigter Bauteile

GEFÖRDERT VOM

für Bildung

und Forschung

Bundesministerium

Das diesem Bericht zugrundeliegende Forschungs- und Entwicklungsprojekt wird mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) innerhalb des Technologieprogramms "PAiCE Digitale Technologien für die Wirtschaft" gefördert und vom Projektträger "Gesellschaft, Innovation, Technologie – Informationstechnologien/Elektromobilität " im Deutschen Zentrum für Luft- und Raumfahrt, Köln betreut. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

www.varika.de

An dieser Stelle sei dem Bundesministerium für Bildung und Forschung für die Förderung des Verbundprojektes "Betriebsfestigkeit additiv gefertigter Bauteile – BadgeB" gedankt, dem ein Teil der Ergebnisse entstammen.

www.badgeb.de

Dipl.-Ing. Benjamin Möller

Gruppe Bauteilgebundenes Werkstoffverhalten Abteilung Werkstoffe und Bauteile Bereich Betriebsfestigkeit

Telefon: +49 6151 705-8443 Fax: +49 6151 705-214

benjamin.moeller@lbf.fraunhofer.de

Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF Insitutsleiter: Prof. Dr.-Ing. T. Melz Bartningstr. 47 64289 Darmstadt

www.lbf.fraunhofer.de

Vielen Dank für Ihre Aufmerksamkeit!

Ein herzlichen Dank gilt den beteiligten Kollegen des Fraunhofer LBF, die wesentliche Inhalte zu diesem Vortrag beigetragen haben, sowie den Projektpartnern der zugrundliegenden Forschungsprojekte.

