

FRAUNHOFER-INSTITUT FÜR BETRIEBSFESTIGKEIT UND SYSTEMZUVERLÄSSIGKEIT LBF

Schriftenreihe LBF-Berichte

FB-256

Dr.-Ing. Christoph Bleicher, Dipl.-Ing. (FH) Jan Hesseler, Dr.-Ing. Rainer Wagener, Dr.-Ing. Jörg Baumgartner, Dr.-Ing. Heinz Kaufmann

Schlussbericht zum BMWi-Vorhaben »GaßnerWind«

Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Schriftenreihe LBF-Berichte

FB-256

Dr.-Ing. Christoph Bleicher, Dipl.-Ing. (FH) Jan Hesseler, Dr.-Ing. Rainer Wagener, Dr.-Ing. Jörg Baumgartner, Dr.-Ing. Heinz Kaufmann

Schlussbericht zum BMWi-Vorhaben »GaßnerWind«

© Fraunhofer LBF

Kontaktadresse:

Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF Bartningstr. 47 64289 Darmstadt Telefon 06151 705-0 Telefax 06151 705-214 E-Mail info@lbf.fraunhofer.de URL www.lbf.fraunhofer.de

Alle Rechte vorbehalten.

Dieses Werk ist einschließlich aller seiner Teile urheberrechtlich geschützt. Jede Verwertung, die über die engen Grenzen des Urheberrechtsgesetzes hinausgeht, ist ohne schriftliche Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen sowie die Speicherung in elektronischen Systemen.

Die Wiedergabe von Warenbezeichnungen und Handelsnamen in diesem Buch berechtigt nicht zu der Annahme, dass solche Bezeichnungen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und deshalb von jedermann benutzt werden dürften.

Soweit in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z.B. DIN, VDI) Bezug genommen oder aus ihnen zitiert worden ist, kann der Verlag keine Gewähr für Richtigkeit, Vollständigkeit oder Aktualität übernehmen.

Schlussbericht zum BMWi-Vorhaben "GaßnerWind"

Vereinfachte Bemessung von Eisengussbauteilen für Windenergieanlagen unter Berücksichtigung von Betriebsbelastungen und Sonderereignissen

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) unter dem Förderkennzeichen 0325707 im Zeitraum vom 01.08.2014 bis 30.06.2018 gefördert.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Autoren:

Dr.-Ing. Christoph Bleicher (Gesamtprojektleiter)

Dipl.-Ing. (FH) Jan Hesseler

Dr.-Ing. Rainer Wagener

Dr.-Ing. Jörg Baumgartner

Dr.-Ing. Heinz Kaufmann

Forschungsstelle:

Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren

Darmstadt 28.02.2019

Vorwort

Der vorliegende Abschlussbericht entstand im Rahmen des durch das Bundesministerium für Wirtschaft und Energie geförderten Projektes "GaßnerWind" am Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF in Darmstadt.

Für die Förderung des Vorhabens durch das Bundesministerium für Wirtschaft und Energie sowie den daran beteiligten Projektpartnern aerodyn Energiesysteme GmbH, DNV GL, Eickhoff Gießerei GmbH, Meuselwitz Guss - Eisengießerei GmbH, Senvion SE und ThyssenKrupp Industrial Solutions GmbH sei an dieser Stelle herzlich gedankt.

Kurzfassung

Im abgeschlossenen Vorhaben GaßnerWind wird der Einfluss von Überlasten auf große Bauteile aus Gusseisen mit Kugelgraphit (GJS) sowie die Einsatzfähigkeit höherfester Legierungen für zyklisch hochbeanspruchte Bauteile aus dem Bereich der Windenergie untersucht. Dabei liegt der Untersuchung des Überlastverhaltens sowie der Einsatzmöglichkeit höherfester GJS-Werkstoffe der Wunsch zu Grunde, Leichtbau zu betreiben sowie die Auswirkungen eines 1000-Jahre-Sturmes oder eines plötzlichen Netzverlustes mit den damit verbundenen werkstoffmechanischen Folgen bei einem Lebensdauernachweis berücksichtigen zu können.

Hierzu werden im Rahmen des Vorhabens sowohl ferritische als auch perlitische und ausferritische Werkstoffe unter konstanten und variablen Belastungsamplituden untersucht. Dabei werden die Versuche unter variablen Belastungsamplituden Beanspruchungszeitfunktionen mit linearem sowie relativ fülligem Kollektiv zu Grunde gelegt und gezielt eingestreuten Überlasten durchgeführt.

In der Auswertung zeigt sich, dass trotz der Annahme eines Sicherheitsbeiwertes beim Einsatz von höherfesten Werkstoffen in zyklisch hochbeanspruchten Bauteilen auch unter Berücksichtigung von Überlasten eine höhere Schwingfestigkeit vorliegt als bei ferritischen Sorten. Dies zeigen insbesondere die Untersuchungen am perlitischen EN-GJS-700-2 sowie der ADI-800 und ADI-900 die eine deutlich höhere Belastbarkeit in Bezug auf die Überlast im Vergleich zum untersuchten, ferritischen EN-GJS-400-18U-LT aufweisen.

Weiterhin wird im Vorhaben mit Erkenntnissen aus den Versuchsreihen ein Bemessungskonzept erarbeitet, das die Lebensdauer- bzw. Beanspruchbarkeitsabschätzung von dickwandigen GJS-Bauteilen speziell für den Bereich der Windenergie ermöglicht.

Inhaltsverzeichnis

I.	Kur	zdarstellung	1
1	Aus	gangssituation und Zielsetzung des Vorhabens	1
2	Vor	aussetzungen des Vorhabens	3
3	Plar	nung und Ablauf des Vorhabens	4
	3.1 F	Planung des Vorhabens	4
	3.2 /	Ablauf des Vorhabens	7
4	Wis	ssenschaftlicher und technischer Stand, an den angeknüpft wurde	8
	4.1 E	Experimentelle Ermittlung des zyklischen Werkstoffverhaltens	8
	4.1.1	Versuche unter konstanten Dehnungsamplituden	8
	4.1.2	Versuche unter variablen Dehnungsamplituden	15
	4.2 k	Konzepte und Richtlinien für die Bemessung im Eisengroßguss	16
	4.3 F	Rechnerische Schwingfestigkeitsbewertung	19
	4.3.1	Ablauf des Festigkeitsnachweises	20
	4.3.2	Modellierung des zyklischen Werkstoffverhaltens	20
	4.3.3	Last-Kerbdehnungskurve (Bauteilfließkurve)	22
	4.3.4	Zählverfahren	22
	4.3.5	Schädigungsparameter	22
	4.3.6	Beanspruchbarkeit	23
	4.3.7	Schadensakkumulation	24
	4.4 A	Angabe bekannter Konstruktionen, Verfahren oder Schutzrechte, die für die Durchführung des Vorhabens benötigt wurden	25
	4.5 /	Angabe der verwendeten Fachliteratur	25
5	Zus	ammenarbeit mit anderen Stellen	26
II.	Eing	gehende Darstellung	28
6	We	rkstoffe und Entnahme von Schwingproben	28
	6.1 l	Jntersuchte Werkstoffe	28
	6.2 E	Entnahme der Schwingproben aus Y-Blöcken und Bauteilen	30
	6.3 5	Schwingprobe	32
	6.4 (Quasistatische Werkstoffkennwerte	32
7	Zyk	lische Werkstoffuntersuchungen	34

	7.1	Pri	üftechnik	34
	7.2	Ve	rsuchsdurchführung unter konstanten Beanspruchungsamplituden	34
	7.3	Ve	rsuchsdurchführung unter variablen Dehnungsamplituden	35
	7.3.	1	Ermittlung der Beanspruchungszeitfunktionen "Senvion" und "aerodyn"	
	7.3.	2	Einstreuung der Überlast	
	7.3.	3	Spannungs-Dehnungsverhalten bei gekerbten Bauteilen	41
8	Er	gek	onisse	45
	8.1	Zył	klische Prüfung unter konstanten Dehnungsamplituden	45
	8.2	Re	gressionsanalysen der quasi-statischen und zyklischen Kennwerte	48
	8.3	Zył	klische Prüfung unter variablen Dehnungsamplituden	52
	8.4	Str	euung der Versuche mit konstanten Dehnungsamplituden	61
	8.5	Me	etallographie	63
9	Ba	aute	eilbemessung unter Berücksichtigung von Überlasten	68
	9.1	Nu	Imerische Untersuchungen zum Bemessungskonzept	68
	9.1.	1	Einleitung	
	9.1.	2	Berechnungsablauf	
	9.1.	3	Hinweise zur Auswertung der Berechnungen	
	9.1.	4	Einfluss der Überlast auf die Mittelspannung	72
	9.1.	5	Einfluss der Modifikation auf die Schadenssumme	74
	9.1.	6	Einfluss des Schädigungsparameters auf die Schadenssumme	75
	9.1.	7	Detaillierte Betrachtung des Mittelspannungseinflusses	76
	9.1.	8	Einfluss der Spannungs-Dehnungskurve auf die Schadenssumme	79
	9.1.	9	Einfluss des transienten Werkstoffverhaltens	80
	9.1.	10	Einfluss von mittels Schätzmethoden ermittelter Dehnungswöhlerlinie	
	9.1.	11	Mittlere Schadenssummen	
	9.1.	12	Güte des Berechnungskonzeptes	
	9.1.	13	Diskussion der Ergebnisse	
	9.2	De	hnungsbasiertes Bemessungskonzept	89
	9.2.	1	Einleitung, Übersicht und Gültigkeitsbereich	
	9.2.	2	Spannungs-Dehnungsverhalten	
	9.2.	3	Last-Kerbdehnungskurve (Bauteilfließkurve)	
	9.2.	4	Masing-Memory-Modell	

	9.2.5	Beanspruchbarkeit	90
	9.2.6	Schwingfestigkeitsbewertung	90
	9.2.7	Schädigungsparameter	92
	9.2.8	Einfluss von Überlasten	93
	9.2.9	Nachweis	93
	9.2.10	Statistische Absicherung	93
9	.3 Nu	umerische Untersuchungen zum spannungsbasiertes Bemessungskonzept	94
10	Bezu	ıg zum Bericht des DNV GL	99
11	Nach	weis von Veröffentlichungen	100
12	Zusa	mmenfassung und Ausblick	101
13	Liter	atur	103
Bild	lverzei	chnis	108
Tak	oellenvo	erzeichnis	112
Ab	kürzun	gs- und Symbolverzeichnis	113
Ber	icht de	s DNV GL	117
Δn	hang T		
7711 Tak		т1 к	ic T21
		ID	15 1 5 1
An	hang B		
Bilo	der	B1 b	is B31

I. Kurzdarstellung

1 Ausgangssituation und Zielsetzung des Vorhabens

In der Windenergiebranche ist ein stetiger Trend zu immer leistungsstärkeren Anlagen und somit zunehmenden Anlagengrößen zu beobachten. Die Reduzierung des Leistungsgewichtes (t/MW) und der Gondelabmessungen sowie die Steigerung des Energieertrages ist hierbei sowohl für den Onshore- und den Offshore-Bereich (Anlageninstallation, Verfügbarkeit von Kränen, Bemessung der Gründungsstrukturen) als auch für die Gießereien (Schmelzkapazität, logistische Herausforderung bei der Gussteilauslieferung) und Windenergieanlagenhersteller (Wettbewerb, Wirtschaftlichkeit, Zuverlässigkeit, Transportfähigkeit und -kosten) von höchster Bedeutung.

In diesem Zusammenhang bietet das Gießverfahren dem Anwender höchste Freiheiten bzgl. der Gestaltung und geschickten Werkstoffwahl für lokal hochbeanspruchte Bauteile mit Bauteilmassen, die im Bereich von Offshore-WEA gut 50 t erreichen können. Insbesondere Gusseisen mit Kugelgraphit (GJS) bildet mit seinem duktilen Werkstoffverhalten die Grundlage für zahlreiche WEA-Komponenten wie den Maschinenträger, die Rotornabe, die Rotoreingangswelle oder die Blattadapter. Zudem ermöglicht der GJS eine breite Werkstoffauswahl von sehr duktilen bis hin zu hochfesten Legierungen wie etwa ADI mit ausferritischem Grundgefüge. Jedoch erlauben Bemessungsrichtlinien für WEA-Komponenten wie /DNV16/ es nur unter Berücksichtigung von hohen Sicherheitsbeiwerten, höherfeste GJS-Werkstoffe für zyklisch hochbeanspruchte Bauteilbereiche zu nutzen. Zusätzliche bruchmechanische Betrachtungen sind zudem notwendig.

Darüber hinaus besteht eine Unsicherheit bei der Bewertung der werkstoffmechanischen Folgen von Überlasten bzw. Sonderereignissen und Überlasten auf die WEA, aber auch bei anderen Maschinenbaukomponenten aus GJS in Form von Not-Stopps, 1000-Jahre-Stürmen, Netzverlusten und ähnliches. Für diese Vorfälle gibt es aktuell kein einheitliches Bemessungsverfahren für GJS-Werkstoffe, die es erlauben, Bauteile gegen diese Lasten sicher zu bemessen und Reihenfolgeeinflüsse sowie Verfestigungseffekte im Werkstoff während der zyklischen Beanspruchung in ausreichendem Maße zu berücksichtigen. Hinzu kommt, dass die Auswirkungen von elastisch-plastischen Beanspruchungen infolge von Überlasten auf die resultierende Schwingfestigkeit bzw. Lebensdauer insbesondere beim ADI nur unzureichend bekannt sind und somit bisher in keinem Bemessungskonzept zutreffend berücksichtigt werden können.

Zielsetzung ist daher zum einen die sichere und zuverlässige Erhöhung des Auslastungsgrades der Bauteile in den Anlagen durch die Optimierung und Standardisierung von Methoden zur Bauteilbemessung zu ermöglichen. Zum anderen sollen mit der Steigerung der Beanspruchbarkeit durch den Einsatz höherfester Werkstoffe in der Konstruktion die steigenden Belastungen insbesondere bei zunehmender Anlagengröße sicher und zuverlässig ertragen werden.

Aus den bestehenden Herausforderungen

- die Entwicklung gewichtsoptimierter Anlagenkonzepte, z.B. durch den sicheren und zuverlässigen Einsatz innovativer ADI-Werkstoffe mit hoher Festigkeit und Duktilität bei gleichzeitig hoher Gestaltungsfreiheit und Wirtschaftlichkeit, zu unterstützen oder auch erst zu ermöglichen,

- einen Beitrag zur Sicherstellung der hohen Anlagenverfügbarkeit mit geringsten Stillstandszeiten im nahezu kontinuierlichen Betrieb durch die Steigerung der Zuverlässigkeit der Multimegawattanlagen zu leisten,
- die Zertifizierungsverfahren von Windenergieanlagen durch ein anerkanntes Bemessungsverfahren zu vereinfachen,
- das zyklische, elasto-plastische Werkstoffverhalten insbesondere höherfester GJS-Legierungen in die Bauteilbemessung einbinden zu können sowie
- höherfeste GJS-Werkstoffe für den Einsatz auch in zyklisch hochbeanspruchten Bauteilen einsetzen zu können

ergeben sich die Ziele des Vorhabens in Form

- der Bestimmung des zyklischen Werkstoffverhalten mittels dehnungsgeregelter Versuche unter konstanten und variablen Belastungsamplituden,
- der Bestimmung einer in sich schlüssigen und aus technischer Sicht anerkannten Methodik zur Bemessung hochbeanspruchter Eisengussbauteile unter Berücksichtigung von Betriebsbelastungen und Sonderereignissen in Multimegawattanlagen der Windenergie bereitzustellen
- der Charakterisierung höherfester Gusseisenwerkstoffe hinsichtlich ihrer Betriebsfestigkeit zwecks deren Einsatz in Großgussbauteilen unter Betriebsbelastungen in Kombination mit Sonderbelastungen,
- der Bestimmung der Zulässigkeit lokaler Plastifizierungen und deren Einfluss auf die Lebensdauer unter Betriebsbelastungen sowie
- des Aufbaus eines lokalen Bauteilbemessungskonzeptes für Großgusskomponenten aus GJS.

Dazu wird eine integrale Bemessungsmethode auf Basis des örtlichen Konzeptes entwickelt. Lokale Plastifizierungen am Bauteil, die aus einer Erhöhung des Auslastungsgrades oder extremen, bemessungsrelevanten Sonderbelastungen resultieren, können so konsistent in den Betriebsfestigkeitsnachweis eingebunden werden, sodass die Bewertung von Überlasten nicht länger losgelöst von den übrigen Betriebslasten bzw. anhand von quasi-statischen Kennwerten erfolgt. Sonderlasten sind in ihrer Auswirkung nicht mehr von der Bauteillebensdauer entkoppelt und lehnen sich nicht mehr nur an die statischen Kennwerte an. Diese Methode wird somit eine beanspruchungsgerechte Lebensdauerabschätzung unter der vollen Bandbreite der auftretenden Betriebs- und Sonderbelastungen sowohl für den in der Praxis häufig verwendeten Gusseisenwerkstoffe EN-GJS-400 als auch für die höherfesten Gusseisenwerkstoffe, wie z.B. EN-GJS-700 und ADI (Austempered Ductile Iron - duktiler Gusseisenwerkstoffe mit hoher Festigkeit), ermöglichen. Eine derartig konsistente Bemessung ist nach derzeitigem Stand der Richtlinien nicht möglich.

2 Voraussetzungen des Vorhabens

Am Vorhaben "GaßnerWind" nahmen neben dem Fraunhofer LBF, die Meuselwitz Guss – Eisengießerei GmbH und die Eickhoff Gießerei GmbH als Gießereien und Hersteller dickwandiger Gussbauteile für den Bereich der Windenergie und den Großmaschinenbau teil. Hinzu kamen Senvion SE als Hersteller von Windenergieanlagen, die aerodyn Energiesysteme GmbH als Konstruktionsbüro für Windenergieanlagen sowie ThyssenKrupp Industrial Solutions GmbH als Hersteller von Gesteinsmühlen. Auf Seiten der Zertifizierung hatte der DNV GL neben einer Unterbeauftragung auch einen Eigenanteil und hat als richtliniengebendes Organ das Projekt begleitet. Insbesondere wurden durch den DNV GL das Gesamtergebnis begutachtet und die übrigen Partner bei der Wahl der Überlast sowie der Lastkollektive unterstützt.

Die Gießereien stellten neben Y-Blöcken im Sinne von Halbzeugen aus den drei zu untersuchenden Werkstoffen EN-GJS-400-18U-LT, EN-GJS-700-2 sowie ADI-800 auch zwei geometriegleiche Planetenträger aus EN-GJS-700-2 sowie ADI-900 für die Schwingfestigkeitsuntersuchungen zur Verfügung. Zudem unterstützten diese die Probenentnahme aus den Halbzeugen sowie bei der Ermittlung quasi-statischer Werkstoffkennwerte.

ThyssenKrupp Industrial Solutions stellte ebenfalls Y-Blöcke aus dem für den Großmaschinenbau üblichen Werkstoff EN-GJS-400-15 zur Verfügung. Ein weiteres Bauteil in Form eines Maschinenträgers wurde durch Senvion SE aus EN-GJS-400-18U-LT für die Probenentnahme bereitgestellt.

Sowohl aerodyn Energiesysteme GmbH als auch Senvion SE stellten die für die Gaßnerversuche existenziellen Beanspruchungszeitfunktionen, gemessen in beanspruchungskritischen Bereichen einer Rotornabe sowie einem Maschinenträger, für die Schwingfestigkeitsuntersuchungen sowie den Aufbau des Bemessungskonzeptes zur Verfügung.

3 Planung und Ablauf des Vorhabens

3.1 Planung des Vorhabens

Der Arbeitsplan ist in Bild 1 dargestellt. In diesem finden sich zudem folgende Projekt-Meilensteine:

MS1a – Grundlegende Definition der Berechnungsprozessabfolge (12. Monat)

Zum Meilenstein 1a liegt die grundlegende Struktur (u.a. Flussdiagramm) des Berechnungsprozesses zur Bemessung von Eisengussbauteilen für Windenergieanlagen unter Berücksichtigung von Betriebsbelastungen und Sonderereignissen vor. Hierin fließt die langjährige Methodenkompetenz des Fraunhofer LBF in der betriebsfesten Bemessung von Komponenten und Systemen ebenso ein, wie die neuesten Erkenntnisse, die sich während der Projektlaufzeit bis zum Meilenstein 1a ergeben haben. Zudem werden die praxisrelevanten Randbedingungen durch die Mitarbeit der Projektpartner, die sowohl aus den produktverantwortlichen Unternehmen wie auch den Zertifizierungsstellen kommen, bereits in diesem frühen Projektstadium unmittelbar berücksichtigt.

MS1b - Existenz der integralen Bemessungsmethode (28. Monat)

Die Bemessungsmethode, deren grundlegende Struktur in Meilenstein 1a definiert wurde, liegt zum Meilenstein 1b in detailliert ausgearbeiteter Form anwendungsbereit vor. Zu diesem Zeitpunkt ist auch die experimentelle Werkstoffcharakterisierung abgeschlossen und ausgewertet, so dass die Bemessungskennwerte für die exemplarische Nachweisführung an ausgewählten Bauteilen ebenfalls vorliegen. Bei der detaillierten Ausarbeitung der Methode wird erwartet, dass neben den eigenen Projektarbeiten und Kompetenzen auch neueste wissenschaftliche Entwicklungen aus anderen Bereichen der Betriebsfestigkeitsforschung und anderen industriellen Branchen mit in die Methodik mit einfließen, da Themen wie z.B. die Werkstoffmodellierung oder auch die Übertragbarkeit von Kennwerten dort ebenso von höchster Wichtigkeit sind.

MS2 – Verhalten unter Betriebslasten kombiniert mit Sonderlasten (22. Monat)

Zum Meilenstein 2 sind die Schwingfestigkeitsuntersuchungen mit konstanten Beanspruchungen abgeschlossen, die mit variablen Beanspruchungen sind weit vorangeschritten. Zu diesem Zeitpunkt liegen durch den Stand der experimentellen Projektarbeiten bereits wichtige Erkenntnisse zum Schwingfestigkeitsverhalten für Windenergieanlagen typische, dickwandige Großgussbauteile unter variablen Betriebsbelastung und dem Einfluss von Sonderlasten auf die Betriebsfestigkeit vor.

MS3 – Empfehlungen zur Nachweisführung in der Bemessungspraxis (33. Monat)

Die Nachweisführung mit der neu erarbeiteten Bemessungsmethode wurde zum Meilenstein 3 an ausgewählten Bauteilen aus der Praxis exemplarisch durchgeführt. Die Bewertung mit der neu erarbeiteten Methode und die Bewertung mit Konzepten nach Stand der Technik sind abgeschlossen. Die Abweichungen zwischen der rechnerischen Lebensdauerabschätzung und den experimentellen Versuchen an bauteilähnlichen Proben sind ermittelt und der Vergleich mit Konzepten nach Stand der Technik wurde durchgeführt.

Projektabschluss (36. Monat)

Zum Projektabschluss liegt die neu erarbeitete Bemessungsmethode in einer derart aufbereiteten und dokumentierten Art und Weise vor, dass eine Standardisierung und kurzfristige Integration in den Zertifizierungsprozess von Windenergieanlagen möglich ist.

			$\left \right $								Ī	1						l			l				1			1		-
	L Persone	BF nmona	ite)			Jahr	1 (201	4/2015							ahr 2	(2015	/2016)	~						Jahr	3 (201	6/201	2			
Arbeitspakete und Meilensteine	Wiss.	(à 40h) Techn	Apr HiWi	Mai	Jun	Aug	Sep	Nov	Dez	Feb Jan	März	Apr	Jun Mai	Jul	Aug	Okt Sen	Nov	Dez	Feb	März	Apr	Mai	Jul Jun	Aug	Sep	Nov Okt	Dez	Jan	März	_
AP0: Projektleitung	3,5																									_				_
																														_
AP1: Plattenabguss, Bereitsstellung von Bauteilen und Probenfertigung					_					_													_			_				_
AP 1.1: Plattenabguss mit bauteilähnlichen Wandstärken und Erstarrungsbedingungen																						_	LEGEN	μ						_
AP 1.2: Bereitstellung von Bauteilen																								"	raunh	ofer L	н			_
AP 1.3: Charakterisierung von Gefüge (Metallographie, Zerstörungsfreie Prüfung) und stat. Kennwertermittlung																								-	Industri	epartr	ler			_
AP 1.4: Erstellung der Probenentnahmepläne	1	\vdash								\vdash						\vdash								LBF	& Ind	lustrieg	partne	-		_
AP 1.5: Probenentnahme und -fertigung	1		2																											_
					\vdash					\vdash						\vdash		H					_			_				_
AP2: Zyklische Werkstoffcharakterisierung																														_
AP 2.1: Bereitstellung und Aufbereitung praxisrelevanter Last-Zeit-Reihen und Beanspruchungskollektive	1		1																											_
AP 2.2: Schwingfestigkeitsuntersuchungen an Proben mit			\square		\vdash					\vdash			\vdash			\square		\square												_
- konstanten Beanspruchungsamplituden	1,5 3	5	2																											_
- variablen Beanspruchungsamplituden	1,5 3	5	2																											_
AP 2.3: Versuchsauswertung und Ableitung von Bemessungskennwerten	2,5		2		\vdash					\vdash																				_
AP 2.4: Bruchflächenanalyse und Metallographie zur Analyse der Schädigungsmechanismen	0,5 1	2			_																		_							_
MS 2: Verhalten unter variablen Betriebslasten in Kombination mit Sonder- und Überlasten					_													-	۲							_				_
																														_
AP3: Entwicklung einer integralen Bemessungsmethode																														_
AP 3.1: Erarbeitung der methodischen Vorgehensweise (Belastung, Werkstoffkennwerte, Berechnungsprozess)	4		m																											_
MS 1a: Grundlegende Definition der Prozessabfolge											۲																			-
AP 3.2: Studien zur Werkstoffmodellierung mit Finite-Elemente-Simulationen	4		5																											_
AP 3.3: Übertragsbarkeitsfaktoren für Schwingfestigkeitskennwerte (Probe -> Bauteil) und deren Ermittlung	4		s																				_			_			_	_
AP 3.4: Analyse und Hinweise zur Wahl Schädigungsparameter und Schadenakkumulationshypothesen	3,5		m																											_
AP 3.5: A nalyse und Hinweise zur Versuchsplanung und statistischen Versuchsauswertung	m	_	-		-		_	_															_			_			_	_
MS 1b: Existenz der integralen Bemessungsmethode																							•							_
		\vdash	\vdash		\vdash		E			\vdash						\vdash		\square					_							_
AP4: Nachweisführung in der Bemessungspraxis																														_
AP 4.1: Bereitstellung der CAD-Daten und Modellrandbedingungen zur numerischen Beanspruchungsanalyse																														_
AP 4.2: Betriebsfestigkeitsanalysen an ausgewählten Bauteilen nach dem Stand der Technik	_	\square	\square		\square					\vdash			\vdash			Н													_	_
A.P.4.3: Betriebsfestigkeitsanalysen an ausgewählten Bauteilen mit der neu erarbeiteten Bemessungsmethode	B	4	1,5		_																		_							_
MS 3: Empfehlungen zur Nachweisführung in der Bemessungspraxis																							_				٠			_
AP 4.4: Ergebnisvergleich der rechnerischen Lebensdauerabschätzungen mit den exp. Untersuchungen	-					_																	-						_	_
AP 4.5: Dokumentation der neu erarbeiteten Bemessungsmethode vorbereitend zur Standardisierung	4	┥	2		+	4		-		-		\neg	+			+		-	┥							-			_	_
																														-
Projektabschluss		┥	┥	ゴ	\neg	4		\neg		\neg		╡	-	\square		┥		\neg	4				\neg		╡	-			-	<u> </u>

3 Planung und Ablauf des Vorhabens

Bild 1 Projektplan

3.2 Ablauf des Vorhabens

Im Ablauf des Vorhabens ergaben sich Verzögerungen, sodass das Vorhaben bis einschließlich zum 30.06.2018 kostenneutral verlängert wurde.

Dies resultierte einmal aus einem im Vergleich zum Antrag späteren Projektstart zum 01.08.2014. Zum anderen ergaben sich im Projektablauf Verzögerungen ergaben sich unter anderem durch den unerwartet hohen Aufwand für die Gaßnerversuche sowie parallel durch eine sehr späte Bereitstellung der beiden Planetenträger im Rahmen des Projektes. Damit verschob sich z.B. der Meilenstein 2 vom Januar 2016 auf Dezember 2017.

Die kostenneutrale Verlängerung ermöglichte es somit, alle zur Verfügung gestellten Werkstoffe eingehend und sogar ungeplante Versuchsvarianten zu untersuchen. So wurde teilweise neben einer Überlast von -1,0 % auch eine Überlast von -0,5 % untersucht und somit ein breiterer Kenntnisstand erreicht.

Wissenschaftlicher und technischer Stand, an den ange-4 knüpft wurde

Experimentelle Ermittlung des zyklischen Werkstoffverhaltens 4.1

Um die zyklische Beanspruchbarkeit der untersuchten Werkstoffe ermitteln zu können, werden Wöhlerversuche unter konstanten Belastungsamplituden und Gaßnerversuche unter variablen Belastungsamplituden an den aus Y-Blöcken und Bauteilen entnommenen Schwingproben zum direkten Nachweis der Betriebsfestigkeit durchgeführt. Das Ergebnis der Prüfung wird in Wöhler- und Gaßnerlinien dargestellt und im Falle der Gaßnerversuche gezielt Überlasten in die Beanspruchungszeitfunktion eingestreut. Um die Werkstoffantwort auf die äußerlich aufgebrachte Beanspruchung untersuchen zu können, finden alle Versuche unter Dehnungskontrolle statt.

Versuche unter konstanten Dehnungsamplituden 4.1.1

Die durchgeführten Schwingfestigkeitsuntersuchungen unter konstanten Dehnungsamplituden erlauben die Bestimmung des zyklischen Werkstoffverhaltens auf Basis von sich zeitlich ändernden Spannungs-Dehnungshysteresen sowie auf Basis von Dehnungs-Wöhlerlinien.

Zur Ermittlung des zyklischen Werkstoffverhaltens unter Dehnungsregelung werden elastische und plastische Dehnungsanteile der werkstoffabhängigen Spannungs-Dehnungs-Hysteresen bei halber Anrissschwingspielzahl ausgewertet. Eine schematische Darstellung einer Spannungs-Dehnungs-Hysterese zeigt Bild 2. Darin ist

- **-** ε die Dehnung die Dehnungsamplitude die Mitteldehnung - ε_a - ε_m
- die elastische Dehnung - ε_e
- ε_p
- die plastische Dehnung die totale Dehnung - ε_t

Bild 2 Kenngrößen der Spannungs-Dehnungs-Hysterese in Anlehnung an /Hai06/

Um dem unterschiedlichen Werkstoffverhalten im Bereich der Kurzzeit- (elastisch-plastisch) und ab dem Beginn der Zeitfestigkeit (elastisch-plastisch) Rechnung zu tragen, erfolgt die Belastung der Prüfobjekte durch eine Dehnungsregelung mittels Extensometer und die Aufzeichnung von Dehnung ϵ , Kraft F sowie der Schwingspiele N bis zum technischen Anriss. Das Ergebnis der Prüfung sind zyklische Spannungs-Dehnungskurven nach Ramberg-Osgood /Ram43/ und die Dehnungswöhlerlinie basierend auf Coffin-Manson-Basquin-Morrow /Cof54, Man65, Bas10, Mor65/ sowie dem tri-linearen Ansatz mit einer Dreiteilung der elastischen Dehnungswöhlerlinie /Wag07/. Untersuchungen in /Ble16/ zeigen, dass die zyklische Spannungs-Dehnungskurve und die tri-lineare Dehnungswöhlerlinie das zyklische Werkstoffverhalten von duktilem Gusseisen bzw. GJS deutlich besser beschreiben als der klassische Ansatz nach /Cof54, Man65, Bas10, Mor65/. Dennoch wird im Folgenden zu Vergleichszwecken die Auswertung für beide Ansätze durchgeführt und einander gegenübergestellt, um die Auswahl des geeigneten Ansatzes zur Beschreibung von Dehnungswöhlerlinie und zyklischer Spannungs-Dehnungskurve zu verifizieren. Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie beschreiben beide das zyklische Werkstoffverhalten des untersuchten Werkstoffes und dienen etwa als Eingangsparameter für einen Bauteilfestigkeitsnachweis mit Hilfe numerischer Methoden. Die Kennwertermittlung erfolgt dabei im vorliegenden Fall unter Wechselbelastung, $R_{\epsilon} = -1$.

Die zyklische Spannungs-Dehnungskurve wird nach /Ram43/ verwendet. Die Totaldehnung $\varepsilon_{a,t}$ setzt sich nach Gleichung (1) aus der Summe der elastischen $\varepsilon_{a,e}$ und plastischen Dehnungsanteile $\varepsilon_{a,p}$ zusammen.

$$\varepsilon_{a,t} = \varepsilon_{a,e} + \varepsilon_{a,p} = \frac{\sigma_a}{E} + \left(\frac{K'}{E}\right)^{\frac{1}{n'}} \tag{1}$$

Die Auswertung der Versuchsergebnisse erfolgt für jede Spannungs-Dehnungskurve durch Bestimmung des elastischen Dehnungsanteils $\varepsilon_{a,e}$ als Quotient aus Spannungsamplitude σ_a und Elastizitätsmodul E. Der plastische Anteil $\varepsilon_{a,p}$ ergibt sich als Differenz von elastischen Dehnungsanteil $\varepsilon_{a,e}$ zur Totaldehnung $\varepsilon_{a,t}$. In doppeltlogarithmischer Auftragung der Spannungsamplitude σ_a über den plastischen Dehnungsanteilen $\varepsilon_{a,p}$ ist durch lineare Regression der zyklische Verfestigungskoeffizient K' als Wert der Spannung bei 100 % plastischer Dehnung und der zyklische Verfestigungsexponent n' aus der Steigung bestimmbar /Hai06/, Bild 3.

Bild 3 Bestimmung von K' und n' /Ble16/

Eine zyklische Spannungs-Dehnungskurve zeigt Bild 4. Zusätzlich ist im Diagramm die Erstbelastungskurve des Versuchs mit der höchsten Totaldehnung $\varepsilon_{a,t}$ aufgetragen. Die Auftragung beider Kurven lässt einen Vergleich des Werkstoffverhaltens bei quasistatischer und zyklischer Belastung zu und gibt Aufschluss darüber, ob ein Werkstoff unter der zyklischen Belastung ver- oder entfestigt oder ein neutrales Verhalten aufweist. Gusseisenwerkstoffe mit Kugelgraphit weisen in der Regel ein zyklisch verfestigendes Verhalten auf /Son90, Ble16/.

Bild 4 Zyklische Spannungs-Dehnungskurve und Erstbelastungskurve für einen EN-GJS-400 /Ble16/

Auch die Bestimmung der Dehnungswöhlerlinie basiert auf der Addition von plastischen und elastischen Dehnungsanteilen, Gleichung (2).

$$\varepsilon_{a,t} = \varepsilon_{a,e} + \varepsilon_{a,p} = \frac{\sigma'_f}{E} \cdot (2 \cdot N_i)^b + \varepsilon'_f \cdot (2 \cdot N_i)^c$$
⁽²⁾

Nach dem klassischen Ansatz beschreibt /Bas10/ eine Gerade im doppeltlogarithmischen Diagramm für den elastischen Dehnungsanteil $\varepsilon_{a,e}$ der Totaldehnung $\varepsilon_{a,t}$ in Abhängigkeit der Lebensdauer N. Auch der plastische Anteil der Totaldehnung ergibt nach Ansätzen von /Cof54, Man65/ eine Gerade. Die Addition dieser beiden Geraden führt zu der Dehnungswöhlerlinie für die Gesamtdehnung nach /Mor65/. In Gleichung (2) sind σ'_{f} der zyklische Spannungskoeffizient, ε'_{f} der zyklische Dehnungskoeffizient, b der zyklische Spannungsexponent und c der zyklische Dehnungsexponent. Jeder der beiden Summanden in Gleichung (2) bildet für sich eine Lebensdauerlinie im doppeltlogarithmischen Wöhlerdiagramm, deren Summe die (Gesamt-)Dehnungswöhlerlinie in Bild 5 ergibt.

Bild 5 Darstellung der elastischen, plastischen und der summierten Dehnungswöhlerlinie

Auf Basis der Parameter der Dehnungswöhlerlinie lassen sich, sofern die Kompatibilitätsbedingung erfüllt ist /Nie08/, die Parameter K' und n' der zyklischen Spannungs-Dehnungskurven nach Gleichung (3) und (4) ermitteln. Eine detaillierte Herleitung dieser Beziehung findet sich beispielweise in /Nie08/.

$$K' = \frac{\sigma'_f}{\left(\varepsilon'_f\right)^{n'}} \tag{3}$$

$$n' = \frac{b}{c} \tag{4}$$

Allerdings ist die Kompatibilitätsbedingung vor allem bei Gusseisenwerkstoffen mit Kugelgraphit häufig nicht erfüllt, z.B. /Ble16/, und eine Ableitung der Parameter für die zyklische Spannungs-Dehnungskurve nach Ramberg-Osgood /Ram43/ aus den Kennwerten der klassischen Dehnungswöhlerlinie nach Coffin-Manson-Basquin-Morrow /Bas10, Cof54, Man65, Mor65/ nur mit Vorbehalt möglich.

Aus diesem Grund wird in /Wag07/ ein tri-linearer Ansatz auf Basis von ebenfalls zyklisch verfestigenden Aluminiumknetlegierungen für die elastische Dehnungswöhlerlinie vorgeschlagen und in /Ble16/ für einige GJS-Werkstoffe bestätigt (Bild 9), der die elastische Dehnungswöhlerlinie in 3 Bereiche entsprechend dem zyklischen Werkstoffverhalten unterteilt, Bild 6. Dieser berücksichtigt nicht nur die ungenügende Regression der elastischen Anteile durch den Ansatz von /Bas10/, sondern auch ein Abknicken der Dehnungswöhlerlinie wie bei der Spannungswöhlerlinie zum Bereich der Langzeitfestigkeit hin. Für Gusseisenwerkstoffe liegt der Abknickpunkt N_k in der Regel im Bereich von N = $5 \cdot 10^5$ bis $2 \cdot 10^6$ Schwingspielen, z.B. /Kau98, Ble16, Son90, Woh11/. Danach wird ein Abfall der Schwingfestigkeit von 5 % pro Dekade für Stahl und Gusseisen mit Kugelgraphit angenommen, sofern kein oder nur unzureichend experimentell abgesichertes Wissen über den weiteren Verlauf der Wöhlerlinie nach dem Abknickpunkt N_k vorliegt /So05b, Son07/. Für die hier untersuchten GJS-Werkstoffe bedeutet dies eine Neigung von $k^* = 44,9$, (Abfall der Schwingfestigkeit nach dem Abknickpunkt um 5 % pro Dekade), wenn keine Korrosion, erhöhte oder verringerte Temperaturen vorliegen /So05b, Son07/.

Bei der tri-linearen Dehnungswöhlerlinie stellt Bereich I den Bereich mit elasto-plastischem Werkstoffverhalten bzw. Spannungs-Dehnungshysteresen über die gesamte Lebensdauer, d.h. für die Erstbelastung und im zyklisch stabilisierten Werkstoffzustand, dar. Für Bereich II verhält sich der Werkstoff zunächst elasto-plastisch und wird dann nach zyklischer Beanspruchung auf Grund der zyklischen Verfestigung makroskopisch elastisch, während im Bereich III sowohl im Anfang als auch am Ende der Lebensdauer ein makroskopisch elastisches Werkstoffverhalten vorliegt, Bild 7 und Bild 8. In Anlehnung an das Vorgehen in /Wag07/ werden nun für die linearisierten Bereiche I und II Werte sowohl für σ'_{f1} und σ'_{f2} als auch für b₁ und b₂ ermittelt. Es gilt $\sigma'_{f2} > \sigma'_{f} > \sigma'_{f1}$ sowie b₁ > b > b₂. Die gesamte tri-lineare Dehnungswöhlerlinie ergibt sich somit zu Gleichung (5):

$$\epsilon_a = \frac{\sigma'_{f,i}}{E} \cdot (2 \cdot N_A)^{b_i} + \epsilon'_f \cdot (2 \cdot N_A)^c \tag{5}$$

Der Übergang zwischen den 3 Bereichen wird durch die Übergangsbedingungen definiert:

$$\frac{\sigma_{f,1}'}{E} \cdot (2 \cdot N_A)^{b_1} \le \frac{\sigma_{f,2}'}{E} \cdot (2 \cdot N_A)^{b_2} \tag{6}$$

$$\frac{\sigma'_{f,2}}{E} \cdot (2 \cdot N_A)^{b_2} \ge \frac{\sigma'_{f,3}}{E} \cdot (2 \cdot N_A)^{b_3}$$

$$\tag{7}$$

Für Lebensdauerberechnung mit variabler Amplitude wird die Elementar-Modifikation empfohlen, dementsprechend ergeben sich die Kennwerte für den dritten Bereich zu, Gleichung (8) und :.

$$b_3 = b_2$$
 (8)

$$\sigma_{f,3}' = \sigma_{f,2}' \tag{9}$$

Bild 6 Regression über elastische Dehnungsanteile aus 179 Einzelversuchen

Bild 7 Werkstoffverhalten in den 3 Bereichen der elastischen Dehnungswöhlerlinie

Anrissschwingspielzahl N_i / Cycles to crack initiation N_i

Bild 8 Die tri-lineare Dehnungswöhlerlinie

Bild 9 Zyklische Spannungsdehnungskurven im Vergleich /Ble16/

4.1.2 Versuche unter variablen Dehnungsamplituden

Für die Erarbeitung eines Bemessungskonzeptes zur Berücksichtigung des Überlastverhaltens von höherfesten GJS-Werkstoffen sowie zum Nachweis deren Eignung auch für zyklisch hochbeanspruchte Bauteile finden dehnungsgeregelte Untersuchungen unter verschiedenen Beanspruchungszeitfunktionen, also Gaßnerversuchen mit und ohne Sonderlasten, statt.

Die zur Prüfung herangezogenen Lastzeitreihen mit variablen Amplituden oder Lastkollektive basieren meistens auf durch Zählverfahren aufbereitete Betriebsmessungen am Realbauteil. Im konkreten Fall basieren die Beanspruchungszeitfunktionen auf gemessenen Einzelzeitreihen, die zur Bemessung von Windkraftanalagen herangezogen werden. Diese werden durch Zählverfahren klassiert. Zählverfahren unterscheiden sich in einparametrische (z.B. Klassengrenzenüberschreitungs- oder Bereichspaarzählung) oder zweiparametrische (z.B. Rainflow-Klassierung). Eine Übersicht über die Zählverfahren und die Ermittlung von Belastungskollektiven findet sich in /Bux92, Hai06, Gud99, Koe12, Rad07/. Die dem Gaßnerversuch zu Grunde liegenden Kollektive werden charakterisiert durch den Kollektivformparameter v, den Kollektivhöchstwert (Maximallast), das Lastverhältnis \overline{R} als Verhältnis des größten zum kleinsten Wert des Kollektivs sowie den Kollektivumfang H₀ /Bux92, Hai06/. Je fülliger die Form des Kollektivs, desto näher kommt das Gesamtkollektiv dem Wöhlerversuch. Ein Beispiel für unterschiedliche Kollektiv-formen zeigt Bild 10 mit dem Kollektivumfang H₀ in Form der Summenhäufigkeit H, dem Kollektiv-höchstwert $\overline{\sigma}_a$, der Spannungsamplitude σ_a sowie dem Kollektivformparameter v. Das Kollektiv lässt sich durch Gleichung (10) unter Nutzung von v beschreiben.

$$H = H_0^{1 - \left(\frac{\sigma_a}{\sigma_a}\right)^{\nu}};$$
ionkollaktin: $n = 2$; Caughollaktin: (10)

v = 1: Geradlinienkollektiv; v = 2: Gaußkollektiv;

 $v = \infty$: Rechteckkollektiv (Wöhlerversuch)

Bild 10 Kollektivformen und Formparameter (bezogene Kollektive) nach /Bux92, Zen00/

Der Kollektivform kommt eine entscheidende Bedeutung bezüglich der Bauteillebensdauer zu. Bild 11 zeigt Ergebnisse von Untersuchungen an Spurstangen in Form einer Wöhler- und zweier Gaßnerlinien unterschiedlicher Kollektivform /Son08/. Je geringer die Kollektivfülligkeit und damit der Anteil an hohen Belastungsamplituden an der Beanspruchungszeitfunktion bei gleichem Kollektivumfang, desto höher

ist die ertragbare Schwingfestigkeit. Damit verbunden ist die Möglichkeit, den lasttragenden Bauteilquerschnitt zu verringern, um beispielsweise Gewicht einzusparen /Son08/. Aus diesem Grund werden im Rahmen der Untersuchungen ein eher fülliges und ein eher geradliniges Kollektiv für die Gaßnerversuche herangezogen.

Bild 11 Einfluss der Kollektivform auf die Lebensdauer nach /Son08/

Für die vorliegenden, dehnungsgeregelten Untersuchungen richtet sich die Durchführung der Versuche nach dem Horizontenverfahren /Son10, Zen00, Mau99/, weil dieses Verfahren auch eine statistische Auswertung der Streuung erlaubt. Hierbei sind alle Lasthorizonte mit mehreren Schwingproben belegt. Für die Verteilung der Ergebnisse wird eine logarithmische Normalverteilung zu Grunde gelegt /Bux92, Hai06, Rad07/. Die Ergebnisse werden nach dem in /Spi78/ beschriebenen Verfahren, das wiederum auf der zuerst von /Fis12/ umfangreich für quasistatische Auswertungen genutzten Maximum-Likelihood-Methode basiert, statistisch bewertet. Das Verfahren findet für einen vorgegebenen Satz Versuchsdaten, bestehend aus Schwingspielzahl N und Dehnungsamplitude $\overline{\epsilon_a}$, unter Berücksichtigung der jeweiligen Verteilungsfunktionen, den besten Wertesatz für die Dehnungsamplitude bei einer gewählten Schwingspielzahl, die Neigung \overline{k} und das Streumaß in Dehnungsrichtung $\overline{T_{\epsilon}}$.

Berücksichtigung findet, ob bei einem Versuch die Grenzschwingspielzahl N_G erreicht wird (Durchläufer). Der Algorithmus optimiert dabei nicht die Gesamtwahrscheinlichkeit P_{ges} als Produkt der Einzelwahrscheinlichkeiten P_i dafür, dass die gesuchten Einzelparameter die Versuchsergebnisse möglichst gut treffen, sondern den nach /Edw72/ definierten Support, den natürlichen Logarithmus der Einzelwahrscheinlichkeiten P_i.

4.2 Konzepte und Richtlinien für die Bemessung im Eisengroßguss

Die Bauteilauslegung im Großguss ist überwiegend gekennzeichnet durch die Nutzung von synthetischen Kennwerten auf Basis quasistatischer Zugfestigkeitskennwerte aus Angussproben. Eine umfangreiche Entnahme von Schwingproben oder gar die Prüfung des kompletten Bauteils wird entweder auf Grund einer Einzelteilfertigung und/oder Bauteilmassen von zum Teil mehr als 100 t häufig verhindert. Im Auslegungsprozess bzw. dem Festigkeitsnachweis gegen zyklische Belastungen von Großgussbauteilen kommt daher häufig die Richtlinie des Forschungskuratoriums Maschinenbau /FKM12/ oder im speziellen Fall der Auslegung von Windenergiekomponenten die Auslegungsrichtlinie des Germanischen Lloyd /DNV16/ zum Einsatz. Dabei werden Windenergieanlagen in aller Regel auf eine Lebensdauer von 20 Jahren ausgelegt. Dabei beziehen sich jedoch die für die Auslegung anzuwendenden Berechnungsgrundlagen in vielen Teilen auf das Konzept der synthetischen Wöhlerlinien, die auf /Hue81/ zurückgehen. Die Erkenntnisse hieraus erweitern /Gud99, Ber13/ in verschiedenen Arbeiten und ergänzen diese um neue Werkstoffgruppen. Die Auslegung erfolgt dabei mit Hilfe des Nennspannungskonzeptes /Gud99, Ber13/.

Aus Festigkeitsgründen bietet der Einsatz höherfester Gusseisensorten ein Potential bei der Anlagenentwicklung. Beispielhaft für den Stand der Wissenschaft und Technik werden im Folgenden wichtige Eckpunkte für die Bewertung von (Windenergie-) Bauteilen aus Eisengusswerkstoffen aus der FKM-Richtlinie "Rechnerischer Festigkeitsnachweis für Maschinenbauteile", 6. Überarbeitete Ausgabe 2012 und dem Standard DNVGL-ST-0361 (Edition September 2016) /DNV16/, "Machinery for wind turbines", dargestellt. Dabei bezieht sich die FKM Richtlinie allgemein auf Maschinenbauteile, der DNV-GL Standard hingegen explizit auf Windenergieanlagen.

In /FKM12/ wird eine rein spannungsbasierte Auslegung vorgegeben. Der Ermüdungsfestigkeitsnachweis unterscheidet dabei in ein Vorgehen auf Basis der Nennspannungen und ein Vorgehen mit Hilfe von örtlichen Spannungen. Der Gültigkeitsbereich beginnt bei N = 1·10⁴ Schwingspielen und ist für Eisengussbauteile auf Temperaturen von -25 °C bis 500 °C beschränkt. Eine Berücksichtigung von Überlasten erfolgt durch folgende vier Überlastfälle F1 bis F4:

- Für F1 bleibt die Mittelspannung σ_m konstant.
- Für F2 bleibt das Spannungsverhältnis R konstant.
- Für F3 bleibt die Minimalspannung σ_{min} konstant.
- Für F4 bleibt die Maximalspannung σ_{max} konstant.

In Praxis wird jedoch hauptsächlich Fall F2 betrachtet, worauf auch in der Richtlinie hingewiesen wird /FKM12/. Die Berücksichtigung von Überlasten ist unabhängig von ihrem Auftreten in der Zeitreihe. Dadurch und aufgrund der elastischen Berechnung werden werkstoffphysikalische Eigenschaften, wie die Relaxation der Mittelspannung und dadurch eine Änderung der Mittelspannung bei dem auf das Extremlastschwingspiel folgenden Schwingspiel, in Folge einer Überlast nicht berücksichtigt. Die Berücksichtigung erfolgt rein durch einen Mittelspannungsfaktor, welcher als Abminderungsfaktor in die ertragbare Spannungsamplitude eingeht. Es können sowohl Einstufen- als auch Mehrstufenkollektive bewertet werden, wobei jeweils eine Überlebenswahrscheinlichkeit von $P_{\tilde{u}} = 97,5$ % vorgegeben ist. Zur Berechnung der Schadenssumme ist die Darstellung der Wöhlerlinie mit dem Verlauf nach Miner-konsequent /Hai06/ zu nutzen. Für Bauteile aus GJS wird für nicht geschweißte Bauteile eine effektive Schadenssumme von D = 1 angegeben.

Für den statischen Nachweis werden Werkstoffe mit einer Bruchdehnung A \geq 6 % erwartet. Bei geringeren Bruchdehnungen wird ein zusätzlicher Teilsicherheitsfaktor eingeführt, der das Anrissrisiko von spröden Werkstoffen berücksichtigt. Für den zyklischen Festigkeitsnachweis wird eine solche Unterscheidung nicht angegeben. Höherfeste Werkstoffe mit geringer Bruchdehnung werden dadurch nicht kategorisch ausgeschlossen. Im Gegensatz hierzu dürfen nach /DNV16/ zur Zertifizierung von Windenergieanlagen maßgeblich am Kraftfluss beteiligte und zyklisch höher beanspruchte Bauteile nicht ohne weiteren Nachweis aus höherfestem Gusseisen gefertigt werden, auch wenn zur Konstruktion von lasttragenden Bauteilen die Verwendung von GJS Werkstoffen empfohlen wird.

Bei komplizierten Strukturen wird zudem eine Gießsimulation empfohlen, um das lokale Gefüge abschätzen zu können. Jedoch dürfen keine Werkstoffe mit einer Bruchdehnung A \leq 12,5 % und einer Kerbschlagarbeit K < 10 J eingesetzt werden. Dies betrifft somit alle standardisierten, höherfesten Gusseisenwerkstoffe /DIN63/. Werden diese Vorgaben nicht erfüllt, müssen vergleichsweise höhere Sicherheitsfaktoren in der Bemessung nachgewiesen werden oder zusätzliche Qualifizierungsnachweise durch weitere experimentelle Untersuchungen, bruchmechanische Analysen sowie zusätzliche Qualitätssicherungsmaßnahmen erbracht werden. Die Nachweise sind derzeit nur teilweise standardisiert, wie z.B. im Fall der bruchmechanischen Analyse /VDM13/. Damit verbunden sind hohe Kosten- und Zeitaufwände zur Erbringung der zusätzlichen Nachweise. Die konzeptbedingt notwendige Abbildung fertigungsbedingter Ungänzen als Anriss mit elliptischer Form und die Ausrichtung des Risses im Bauteil führt in der bruchmechanischen Analyse jedoch häufig zu konservativen Annahmen /DVM07, VDM13/ und folglich zu sehr konservativen Bemessungsergebnissen. Zudem fehlen häufig genormte bruchmechanische Kennwerte /DVM07, DVM10/.

Die höhere Auslastung bestehender oder neu zu entwickelnder Anlagen kann zu örtlichen Plastifizierungen an den Bauteilen führen. Diese Plastifizierungen können durch z.B. extreme Windverhältnisse, Not-Stopp-Ereignisse etc. verursacht werden. Örtliche Plastifizierungen mit einer Gesamtdehnung von bis zu 1 % sind zwar nach /DNV16/ für Bauteile aus duktilen und so genannten semiduktilen Werkstoffen (z.B. EN-GJS-400-18U-LT) für gewöhnlich zulässig. Die aktuell im Zertifizierungsprozess standardmäßig vorgesehenen, spannungsbasierten Konzepte zur betriebsfesten Bemessung integrieren jedoch zum einen nicht die aus hohen Einzellasten resultierenden Schädigungsanteile. Zum anderen wird der Einfluss hoher Einzellasten und lokaler Plastifizierungen auf den Beanspruchungszustand (z.B. Eigenspannungen) in dieser Betriebsfestigkeitsanalyse nicht berücksichtigt. Grundsätzlich ist das produktverantwortliche Unternehmen bei einer im Vergleich zur Richtlinie modifizierten Nachweisführung jedoch aufgefordert, die Modifikationen der Nachweisführung mit der Zertifizierungsstelle gesondert abzustimmen.

Die Bewertung hoher Einzellasten und lokaler Plastifizierungen erfolgt nach dem /DNV16/ mit einem statischen Festigkeitsnachweis. Im Falle von statischen Belastungen bei vom DNV-GL als spröde eingestuften Werkstoffen wird die Verwendung der maximalen Hauptspannungs-Hypothese vorgeben, wie für EN-GJS-700-2 oder ADI. Bei semiduktilen Werkstoffen hingegen wird die Verwendung der Hypothese der Vergleichsspannung (bspw. nach v. Mises) vorgegeben. Als Obergrenze der zugelassenen Dehnung wird für semiduktile Eisengusswerkstoffe eine totale Dehnung von $\varepsilon_t = 1$ % akzeptiert. Der Festigkeitsnachweis erfolgt entkoppelt von der Betriebslebensdauer, z.B. in /DVM14/. Plastifizierungen, die in versagenskritischen Bereichen am Bauteil auftreten, sollten laut /DNV16/ vermieden werden. Die Überlagerung lokaler Plastifizierungen begrenzt auf Kerbbereiche mit ermüdungskritischen Bereichen kann gemäß den Angaben in den Richtlinien akzeptiert werden, wenn die Lebensdauer nicht beeinflusst wird. Der Einfluss sollte mit nicht näher definierten adäquaten Mitteln nachgewiesen werden. Betriebs- und Sonderbelastungen treten in der Regel jedoch nicht entkoppelt voneinander auf, sodass deren lebensdauerbestimmende Interaktion beachtet und der Einfluss der Sonderbelastung auf die Lebensdauer berücksichtigt werden muss /Son08/. Auch die unter dem Aspekt der Betriebsfestigkeit wichtige Bauteil-Formdehngrenze hängt von der Belastungsart, vom Werkstoff und von der örtlichen Bauteilgeometrie ab. Eine Beanspruchung in Höhe der Formdehngrenze, verursacht durch eine Sonderbelastung, darf die Ermüdungsfestigkeit und Funktionsfähigkeit nicht beeinträchtigen /Gru98, So05a/.

Auf der Seite der Beanspruchbarkeit sind Wöhlerkurven mit einer Überlebenswahrscheinlichkeit von $P_{0} = 97,7\%$ zu nutzen. Bei Wöhlerkurven mit einer Überlebenswahrscheinlichkeit von $P_{0} = 50\%$ ist die zulässige Spannungsamplitude am Abknickpunkt entsprechend zu reduzieren, um eine Überlebenswahrscheinlichkeit von $P_{0} = 97.7\%$ zu erreichen. Bei einer Schädigungsrechnung gilt eine zulässige Schadenssumme von $D_{krit} \leq 1$.

4.3 Rechnerische Schwingfestigkeitsbewertung

Bei hoch beanspruchten Bauteilen kann es im Bereich von Kerben aufgrund der Spannungsüberhöhung im Kerbgrund zu einer lokalen Überschreitung der Fließgrenze kommen. Der Werkstoff reagiert dann nicht mehr rein elastisch, sondern elastisch-plastisch. Um den Einfluss dieser lokalen plastischen Deformationen in der Schwingfestigkeitsbewertung zu berücksichtigen wird eine Berechnung auf Basis des örtlichen Konzeptes verwendet.

In dieses Konzept fließt das lokale Spannungs-Dehnungsverhalten ein. Dies wird durch den Werkstoff und durch die Bauteilgeometrie beeinflusst. Der Zusammenhang zwischen äußerer Last und lokaler Dehnung in der Kerbe wird über die s.g. Last-Kerbdehnungsbeziehung beschrieben. Im Bereich von Kerben bleibt das umgebende Material rein elastisch und stützt den Kerbgrund. Die lokalen plastischen Deformationen im Kerbgrund führen zu Eigenspannungen und somit auch zu einer Verschiebung der Mittelspannung. Diese werden im örtlichen Konzept durch die Verwendung von Schädigungsparametern berücksichtigt.

4.3.1 Ablauf des Festigkeitsnachweises

Bild 12 Berechnungsablauf in Anlehnung an /See96/

4.3.2 Modellierung des zyklischen Werkstoffverhaltens

Das örtliche, dehnungsbasierte Konzept bewertet Schwingspiele auf Basis der lokal auftretenden Spannungen und Dehnungen. Dies wird beschrieben durch die folgenden Modelle.

Spannungs-Dehnungskurve

Hierzu wird das lokale Spannungs-Dehnungsverhalten des Werkstoffes, beschrieben nach Ramberg-Osgood /Ram43/, zu Grunde gelegt, Gleichung (1).

Masing / Memory

Das zyklische Werkstoffverhalten wird mit dem Masing-Memory-Modell /Mas26, Clo86/, Gleichung (11), beschrieben. Die Spannungs-Dehnungspfade, die bei einer zyklischen Belastung des Werkstoffes entstehen, werden durch Hysterese-Äste beschrieben, die einer verdoppelten Spannungs-Dehnungskurve entsprechen, Bild 13. Für die Gleichung aus /Ram43/ ergibt sich dadurch Gleichung (11).

$$\Delta \varepsilon = \frac{\Delta \sigma}{E} + 2 \left(\frac{\Delta \sigma}{2K'}\right)^{1/n'} \tag{11}$$

Zur Beschreibung der Spannungs-Dehnungspfade unter variabler Amplitude werden folgende drei Bedingungen verwendet:

Tabelle 1 Werkstoffgedächtnis nach /Clo86/

г

Werkstoffgedächtnis W1	Nach dem Schließen einer Hysterese, die auf der zyklischen σ-ε-Kurve be- gonnen wurde, folgt der Spannungs-Dehnungs-Pfad wieder der zyklischen (Erstbelastung) σ-ε-Kurve
Werkstoffgedächtnis W2	Nach dem Schließen einer Hysterese, die auf einem Hystereseast begonnen wurde, folgt der Spannungs-Dehnungs-Pfad dem ursprünglichen Hyste- reseast
Werkstoffgedächtnis W3	Ein auf der zyklischen σ-ε-Kurve begonnener Hysteresenast endet, sobald der Betrag der Spannung oder Dehnung seines Startpunktes im gegen- überliegenden Quadranten wieder erreicht wird. Der Spannungs-Deh- nungs-Pfad folgt anschließend weiter der zyklischen σ-ε-Kurve.

Bild 13 Masing-Verhalten und Werkstoffgedächtnis

4.3.3 Last-Kerbdehnungskurve (Bauteilfließkurve)

Das Verhalten zwischen äußerer Last und lokaler Dehnung in der Kerbe wird mit der Bauteilfließkurve beschrieben. Die Bauteilfließkurve kann mittels einer elastisch-plastischen FE-Rechnung bestimmt werden. Alternativ zu einer FE-Berechnung können Näherungsbeziehungen /See77, Gli85/ verwendet werden.

Bild 14 Schematische Bauteilfließkurve

4.3.4 Zählverfahren

Zur Identifikation von geschlossenen Hysteresen wird das HCM-Zählverfahren nach /Clo86/ verwendet. Mit diesem Algorithmus können für beliebige Beanspruchungszeitreihen Spannungs-Dehnungshysteresen identifiziert werden. Auf Basis dieser Informationen kann für jede Hysterese ein Schädigungsanteil berechnet werden.

4.3.5 Schädigungsparameter

Zur Berücksichtigung der Mittelspannungen im örtlichen Konzept werden typischerweise Schädigungsparameter verwendet. In Abhängigkeit der Hysteresenform und –lage wird für jede geschlossene Hysterese eine Schädigung berechnet. In Tabelle 2 sind einige gängige Schädigungsparameter aufgeführten.

Schädigungsparameter	Autor	Quelle
P _B	Bergmann	/Ber83/
Pε	Werner	/Wer99/
Pر	Vormwald	/Vor89/
P _{SWT}	Smith, Watson, Topper	/Smi70/

Tabelle 2 Ausgewählte Schädigungsparameter

Der Schädigungsparameter P_J wird in den vorliegenden Untersuchungen in der Variante nach /FKM18/ verwendet. Diese berücksichtigt die Manipulation der Rissöffnungsdehnung aufgrund der Belastungsvorgeschichte sowie eine Mittelspannungskorrektur. In Anlehnung an /Ble16/ werden für den P_J die Mittelspannungsempfindlichkeit M = 0,5 für alle untersuchten Werkstoffe verwendet.

Beim Schädigungsparameter nach Bergmann /Ber83/ wird der Korrekturfaktor für die Mittelspannung k (13) in Abhängigkeit der Mittelspannung gewählt /FKM18/.

$$P_B = \sqrt{(\sigma_a + k \cdot \sigma_m) \cdot \epsilon_a \cdot E}$$
(12)

$$k = \begin{cases} M \cdot (M+2), & f \ddot{\mathrm{u}} r \, \sigma_m \ge 0 \\ \frac{M}{3} \cdot \left(\frac{M}{3} + 2\right), & f \ddot{\mathrm{u}} r \, \sigma_m \le 0 \end{cases}$$
(13)

4.3.6 Beanspruchbarkeit

Die Beanspruchbarkeit des Werkstoffes wird durch die Dehnungswöhlerlinie abgebildet. Diese kann in dehnungsgeregelten Schwingfestigkeitsversuchen an ungekerbten Proben ermittelt werden. Alternativ können s.g. Schätzmethoden /Meg04/ zur Ermittlung zyklischer Kennwerte verwendet werden. Mit Schätzmethoden können auf Basis von quasi-statischen Versuchen (i.d.R. Zugversuche) die zyklischen Werkstoffeigenschaften abgeschätzt werden. Die meisten Verfahren wurden für Stähle entwickelt und sind daher für die im Rahmen des Projektes untersuchten Eisengusswerkstoffe nur bedingt geeignet. Einzige Ausnahme stellt die Median Methode /Meg04/ dar.

Im Rahmen des Projekts werden folgende Beschreibungen der Wöhlerlinie verwendet:

- Konventionelle Dehnungswöhlerlinie (CMBM) /Cof54, Man65, Bas10, Mor65/
- Tri-lineare Dehnungswöhlerlinie /Wag07/
- Lineare P_-Wöhlerlinie /Vor89/

Die P_J-Wöhlerlinie wird mit Gleichung (14) beschrieben. Der Parameter m stellt die Neigung der Wöhlerlinie dar, der Parameter Q die Stützstelle der P_J-Wöhlerlinie und N die Schwingspielzahl.

$$P_J = \left(\frac{Q}{N}\right)^{\frac{1}{m}} \tag{14}$$

Die unterschiedlichen Schädigungsparameter benötigen Schädigungsparameter-Wöhlerlinien. In Tabelle 3 sind die Schädigungsparameter und die jeweilige Wöhlerlinien-Form dargestellt. Die P_{SWT}-Wöhlerlinien werden sowohl nach der konventionellen Beschreibung der Dehnungswöhlerlinie sowie nach dem trilinearen Ansatz verwendet.

labelle 3 Schadigungsparameter und wohlerlinien-Form	Tabelle 3 Schädigungsparameter und Wöhlerlinien-Form	
--	--	--

Schädigungsparameter	Wöhlerlinien-Form
P _B	Р _{ѕмт} -Тур
P _e	P _{swr} -Typ
Pj	Р _Ј -Тур
P _{swt}	Р _{ѕwт} -Тур

Ebenfalls werden die in /Wag07/ zur Lebensdauerberechnung angegebenen Modifikationen der tri-linearen Dehnungswöhlerlinien untersucht. Durch die Modifikationen wird die Neigung der Dehnungswöhlerlinie im Langzeitfestigkeitsbereich geändert. Dies ist dadurch begründet, dass bei einer Schädigungsrechnung mit variablen Amplituden die Schädigungsanteile der Schwingspiele, die im Langzeitfestigkeitsbereich liegen, durch vorangegangen Schwingspiele mit größerer Beanspruchungsamplitude beeinflusst werden.

- (org): Original $(b_3 = b_1)$
- (el): Elementar ($b_3 = b_2$)
- (hai): Haibach ($b_3 = 1/(2/b_2+1)$)
- (5%): nach /So05b, Son07/ ($b_3 = -1/45$)

4.3.7 Schadensakkumulation

In der linearen Schadensakkumulation nach /Pal24, Min37, Lan45/ wird zu Grunde gelegt, dass jede geschlossene Hysterese eine Teilschädigung am Bauteil bewirkt. Die Hysteresen werden auf Basis von örtlichen Spannung-Dehnungsverläufen mit dem HCM-Zählerverfahren /Clo86/ identifiziert. Dieses Verfahren ist ein zwei parametrisches Zählverfahren bei dem Oberwert und Unterwert der Hysterese klassiert und in eine Rainflow-Matrix aufgezeichnet werden.

Anhand der Größe und Lage kann für jede geschlossene Hysterese ein P-Wert berechnet werden. Reihenfolgeeffekte werden dabei nur hinsichtlich des Einflusses von Mittelspannungsverschiebungen durch plastische Deformationen berücksichtigt. Die Schadenssumme D wird mittels einer linearen Schadensakkumulation berechnet. Pro geschlossene Hysterese wird eine Teilschädigung D_iberechnet. Eine Addition der Teilschädigungen ergibt die Schadenssumme D, Gleichung (15).

$$D = \sum_{i} D_{i} \tag{15}$$

Um eine ausreichende Schwingfestigkeit nachzuweisen, muss die rechnerische Schadenssumme D muss kleiner als die zulässige Schadenssumme D_{zul} sein, Gleichung (16):

 $D < D_{zul} \tag{16}$

4.4 Angabe bekannter Konstruktionen, Verfahren oder Schutzrechte, die für die Durchführung des Vorhabens benötigt wurden

Während der Zeit der Projektdurchführung sind keine Verfahren oder Schutzrechte Dritter von der Fraunhofer Gesellschaft in Anspruch genommen worden.

4.5 Angabe der verwendeten Fachliteratur

Die im gesamten Abschlussbericht verwendete Literatur wird im Kapitel 13 gesammelt dargestellt.
5 Zusammenarbeit mit anderen Stellen

Die Zusammenarbeit der einzelnen Projektpartner, deren Aufgaben und Verantwortlichkeiten im Vorhaben zeigt Tabelle 4.

Tabelle 4 Aufgabenteilung innerhalb des Vorhabens

		1	1	1	1	1	1	1
	Legende: K: Koordinierend; A: Ausführend; B: Beratend		euselwitz	khoff	noivr	yssen Krupp	rodyn	
		LBI	Μ	Eio	Sei	Th	aei	GL
AP 0	Projektleitung	А						
AD 1	Plattenabguss, Bereitstellung von Bauteilen und							
AFI	Probenfertigung							
	Abguss von Y-Blöcken mit bauteilähnlichen Wandstärken und Er-	К						
	starrungsbedingungen aus den Werkstoffen							
AP 1.1	- EN-GJS-400-15					A		
	- EN-GJS-400-18U-LT							
	- EN-GJS-700-2		A					
	- ADI-800			A				
	Bereitstellung von Bauteilen aus den Werkstoffen	K						
AP 1.2	- EN-GJS-400-18U-LT				A			
7.0 1.12	- EN-GJS-700-2			A				
	- ADI-900			A				
AP 1.3	Charakterisierung von Gefüge (Metallographie, Zerstörungsfreie	к	А	А	А	А		
	Prüfung) und statische Kennwertermittlung							
AP 1.4	Erstellung der Probenentnahmeplane	KA	B	B	В	В		A
AP 1.5	Probenentnahme und -fertigung	KA	A	A	A	A		
AP 2	Zyklische Werkstoffcharakterisierung							
AP 2.1	Erarbeitung, Bereitstellung und Aufbereitung typischer, Last-Zeit- Reihen und Beanspruchungskollektive	KA		А	А	А	А	В
	Schwingfestigkeitsuntersuchungen an Proben mit							
AP 2.2	 konstanten Beanspruchungsamplituden 	Α						
	- variablen Beanspruchungsamplituden	Α						
AP 2 3	Versuchsauswertung und Ableitung von	^						в
AI 2.5	Bemessungskennwerten	A						D
AP 2.4	Bruchflächenanalyse und Metallographie zur Analyse der Schädigungsmechanismen	А						
AP 3	Entwicklung einer integralen Bemessungsmethode							
	Erarbeitung der methodischen Vorgehensweise (Belastung,		Р	D	Б	р	Б	Р
AP 3.1	Werkstoffkennwerte, Berechnungsprozess)	ĸА	В	В	В	В	В	В
AP 3.2	Studien zur Werkstoffmodellierung mit FE-Simulationen	Α						В
AP 3.3	Übertragsbarkeitsfaktoren für Schwingfestigkeitskennwerte (Probe -> Bauteil) und deren Ermittlung	А						В
	Analyse und Hinweise zur Wahl der Schädigungs-							
AP 3.4	parameter und Schadensakkumulationshypothesen	A						В
40.2.5	Analyse und Hinweise zur Versuchsplanung und							
AP 3.5	statistischen Versuchsauswertung	A						В
AP 4	Nachweisführung in der Bemessungspraxis							
45.4.4	Bereitstellung der CAD-Daten und Modellrandbedingungen zur							
AP 4.1	numerischen Beanspruchungsanalyse	ĸ		A	A	A	A	В
AP 4.2	Betriebsfestigkeitsanalysen an ausgewählten Bauteilen nach dem	К		А	А	А	А	В
	Stand der Technik							
AP 4.3	neu erarbeiteten Bemessungsmethode	А						В
AP 4.4	Ergebnisvergleich der rechnerischen Lebensdauerabschätzungen mit den experimentellen Untersuchungen	KA		А	А	А	А	
AP 4.5	Dokumentation der neu erarbeiteten Bemessungsmethode vor- bereitend zur Standardisierung	КА	В	В	В	В	В	А

Im Rahmen der Projektdurchführung wurden die Aufgaben und Verantwortlichkeiten im Vergleich zum Antrag in Bezug auf die bereitgestellten Werkstoffe weiter präzisiert. Dabei stellte ThyssenKrupp Industrial Solutions einen EN-GJS-400-15 und Meuselwitz einen EN-GJS-400-18U-LT, also die kaltzähe und damit für Bauteile für Windenergieanlagen relevante Variante des EN-GJS-400, bereit.

Auf Grund der auf das Bauteil hin optimierten Temperaturführung beim Abguss sowie der anschließenden Wärmebehandlung konnten von Eickhoff entgegen der Y-Blöcke aus ADI-800 im Planetenträger sogar ein ADI-900 zur Verfügung gestellt werden. Somit konnte eine weitere ADI-Variante untersucht werden.

II. Eingehende Darstellung

6 Werkstoffe und Entnahme von Schwingproben

Für die dehnungsgeregelten Schwingfestigkeitsuntersuchungen kommen Schwingproben, entnommen aus Y-Blöcken und Windkraftbauteilen, zum Einsatz. Vor der Probenentnahme wird dazu jeder Y-Block sowie jedes Bauteil mit Ultraschall auf vorliegende Ungänzen hin untersucht. Neben den zyklischen Versuchen werden auch quasistatische Zugversuche zur Ermittlung der mechanischen Werkstoffkennwerte durchgeführt.

6.1 Untersuchte Werkstoffe

Aktuell wird im Bereich der Windenergie vornehmlich der EN-GJS-400-18U-LT als tieftemperaturzäher Volumenwerkstoff eingesetzt, der sich zudem in Bezug auf die Legierungselemente kostengünstig herstellen und bearbeiten lässt. Die Bestrebungen gehen jedoch dahin, auch höherfeste Legierungen wie den EN-GJS-700-2 und auch ADI (ausferritisches Gusseisen) verstärkt für zyklisch höherbeanspruchte Bauteile einer Windenergieanlage zu verwenden, was aktuell noch auf Grund der geringen Bruchdehnung seitens der Auslegungsrichtlinien /DNV16, FKM12/ für höher belastete Bauteile im Windenergiebereich eingeschränkt ist.

Da im Rahmen von GaßnerWind jedoch genau dieser Aspekt durch zyklische, mit hohen Überlasten behaftete, Betriebslastenversuche eingehend untersucht werden soll, finden die Untersuchungen neben dem EN-GJS-400-18U-LT am EN-GJS-700-2 sowie ADI statt. Zusätzlich wird der EN-GJS-400-15 in die Untersuchungen mit einbezogen, da dieser maßgeblich als duktile Legierung für allgemeine Maschinenbauanwendungen wie Motoren, Miningkomponenten, Pressenteile und ähnliches zum Einsatz kommt.

Dazu werden, bis auf den EN-GJS-400-15, Proben je Werkstoff sowohl aus Y-Blöcken als auch aus einem Maschinenträger (EN-GJS-400-18U-LT) sowie aus 2 Planetenträgern von Multimegawatt-Windenergieanlagen entnommen und den Ergebnissen aus den Y-Blöcken der jeweiligen Legierung vergleichend gegenübergestellt. Dies ermöglicht einen Vergleich der Werkstoffeigenschaften bei unterschiedlichen Abguss- bzw. Abkühlbedingungen und damit wanddickenabhängigen Gefügen und bildet somit die Grundlage für die Übertragbarkeit von Kennwerten aus den Y-Blöcken auf Bauteile.

Dabei besitzen sowohl der EN-GJS-400-15 als auch der EN-GJS-400-18U-LT eine fast rein ferritische Matrix, wobei letzterer eine gegenüber dem EN-GJS-400-15 erhöhte Duktilität bei niedrigen Temperaturen /DIN63/ aufweist. Der EN-GJS-700-2 besitzt dagegen eine fast rein perlitische Matrix sowie der ADI ein ausferritisches Gefüge. Beispielhaft für die untersuchten Bauteile und Gussplatten zeigt Bild 15 einen Y-Block aus ADI, abgegossen von Projektpartner Eickhoff, sowie Bild 16 den Maschinenträger der Firma Senvion aus EN-GJS-400-18U-LT. Bilder aller untersuchten Bauteile befinden sich im **Anhang B**.

Bild 15 Y-Block aus ADI, Wanddicke: 200 mm

Bild 16 Maschinenträger aus EN-GJS-400-18U-LT mit einer Gießmasse von ca. 12 t

Die chemischen Zusammensetzungen der untersuchten Werkstoffe sind in Tabelle 5 zusammengefasst und zeigen etwa gleiche Anteile an Magnesium Mg, Kohlenstoff C sowie Silizium, jedoch deutliche Unterschiede im Kupfer-(Cu)- sowie Nickel-(Ni)-Gehalt. Dabei fungiert Kupfer als Perlitbildner für den EN-GJS-700-2 sowie Nickel als Austenitbildner für den ADI. Die mechanischen Kennwerte der Werkstoffe werden im Kapitel 6.4 erörtert.

•	Tabelle 5	Chemisch	e Zusam	imensetz	zunger	n der ur	ntersuch	nten We	erkstoff	e

Werkstoff		Kohlenstoff C	Silizium Si	Mangan Mn	Phosphor P	Schwefel S	Magnesium Mg	Kupfer Cu	Nickel Ni
					[Ge	w%]			
EN-GJS-400-15 /Bis14/	Y-Block	3,55	2,32	0,18	-	0,005	0,048	-	-
	Y-Block	3,73	2,19	0,15	0,032	0,007	0,040	0,028	0,01
EN-033-400-180-E1	Maschinenträger	3,75	2,16	0,21	0,022	0,005	0,041	0,010	0,02
	Y-Block	3,61	2,27	0,32	0,027	0,008	0,037	0,762	0,92
EN-GJS-700-2	Planetenträger	nicht vorhanden							
ADI	Y-Block	3,54	2,12	0,28	0,026	0,007	0,053	0,983	2,36
	Planetenträger				nicht vo	rhander	1		

6.2 Entnahme der Schwingproben aus Y-Blöcken und Bauteilen

Nach dem Abguss der Y-Blöcke und der Windenergieanlagenbauteile findet zunächst in der Gießerei eine Ultraschalluntersuchung mittels handgeführtem Ultraschall statt, um eventuelle Ungänzen zu detektieren. Die dabei erstellten Prüfprotokolle aus den jeweiligen Gießereien befinden sich, soweit diese vorhanden sind, im **Anhang D** des Berichts.

Ausgehend von diesen Ergebnissen und in Abstimmung mit den beteiligten Projektpartnern werden anschließend für jeden Y-Block sowie für jedes Bauteil Probenlagepläne erstellt und diese mit dem DNV GL abgestimmt. Dabei werden die Probenposition sowie die Probenbezeichnung eindeutig und rückverfolgbar festgelegt. Als Beispiel hierzu zeigt Bild 17 den kompletten Probenlageplan für einen Y-Block des EN-GJS-700-2 mit den unterschiedlichen Probenhalbzeugen. Aus den Komplettübersichten der Probenlagepläne, Bild 17, werden Teilansichten mit exakten Bemaßungen für jede einzelne Schwingprobe für eine möglichst präzise Rückverfolgung der Probenlage erstellt. Um während der Fertigung der Schwingproben eine Rückverfolgbarkeit der Proben sicherstellen zu können, werden die in den Lageplänen festgehaltenen Probenbeschriftungen auf den Y-Block und nach dem Heraussägen auf die Probenrohlinge übertragen. Für die Bezeichnung der Schwingproben gelten ferner die Nomenklaturen in Tabelle 6. Für die Beschriftungen und Nomenklaturen der Schwingproben aus EN-GJS-400-15 sei auf /Bis14/ verwiesen. Alle Probenlagepläne finden sich im **Anhang B**, wobei für den EN-GJS-400-15 ein, für den EN-GJS-400-18U-LT drei sowie für den EN-GJS-700-2 vier Y-Blöcke zur Verfügung stehen.

Bild 17 Probenlageplan des Y-Blocks 2 aus EN-GJS-700-2 mit der Lage und Beschriftung der Halbzeuge für die anschließende Probenfertigung

Bild 18 Auf Y-Block übertragene Probenbeschriftung

Werkstoff		Hersteller	Abkürzung	Blocknummer, Ringnummer	Werkstoffkürzel	laufende Nummer	Beispiel
	Y-Block	Meuselwitz Guss	MW	IW 1, 2, 3 4		144	MW-4-1-12
EN-GJ3-400-180-L1	Maschinenträger	Senvion	SMT	-	-	1100	SMT-54
	Y-Block	Meuselwitz Guss	MW	1, 2, 3, 4	7	144	MW-7-2-19
EIN-GJS-700-2	Planetenträger	Eickhoff Gießerei	ET	-	7	1132	ET-7-38
ADI	Y-Block	Eickhoff Gießerei	ET	-	-	190	ET-67
	Planetenträger	Eickhoff Gießerei	-	1, 2, 3	-	144	23-1

Tabelle 6 Nomenklaturen der Probenbeschriftung für die Y-Blöcke und Bauteile

6.3 Schwingprobe

Für die zyklischen Versuche kommen Schwingproben mit einer Prüflänge von I = 25 mm und einem Prüfdurchmesser von d = 15 mm zum Einsatz, Bild 19. Diese Geometrie repräsentiert mit einem höchstbeanspruchten Werkstoffvolumen von 6122 mm³ ein vergleichsweise hohes Bauteilvolumen und ermöglicht nach Erfahrungen aus /Kau98, Ble16/ den Transfer der Schwingfestigkeit von der Probe auf hohe Bauteilvolumina bei überschaubarer, einzusetzender Maschinenleistung.

Bild 19 Runde Schwingprobe für Lunker und Referenzversuche, d = 15 mm, ungekerbt, Kt = 1,05, $HBV_{90\%,NH} = 6122,33$

6.4 Quasistatische Werkstoffkennwerte

Zur Charakterisierung des quasistatischen Werkstoffverhaltens werden mit Hilfe von Zugversuchen die quasistatischen Werkstoffkennwerte Zugfestigkeit R_m , 0,2 %-Dehngrenze $R_{p0,2}$, Brucheinschnürung Z

sowie Bruchdehnung A₅, Elastizitätsmodul E und das Streckgrenzenverhältnis bestimmt. Die so ermittelten Kennwerte enthält Tabelle 7 für Zugproben, die sowohl aus den Bauteilen als auch den Y-Blöcken nahe der Schwingproben entnommen wurden.

Unter Berücksichtigung der jeweils vorliegenden Wanddicke bei Y-Blöcken und Bauteilen erreichen alle Werkstoffe die Normwerte /DIN63/ bzw. übertreffen diese, wie im Falle des Maschinenträgers aus EN-GJS-400-18U-LT mit einer Bruchdehnung A₅ von 26,6 % (Normwert A₅ = 12 % /DIN63/), deutlich. Lediglich der Mittelwert der Bruchdehnung für die Y-Blöcke aus EN-GJS-400-18U-LT verfehlt mit A₅ = 10,6 % die Vorgabe durch Norm (Normwert A₅ = 12 % /DIN63/). Ebenfalls erreicht der Mittelwert der Zugfestigkeiten R_m für die Y-Blöcke aus EN-GJS-700-2 mit 531,8 MPa nicht den geforderten Normwert von 650 MPa, während die Mittelwerte der Bruchdehnung und 0,2%-Dehngrenze deutlich die Normwerte übersteigen. Hieraus ergibt sich folglich ein hohes Streckgrenzenverhältnis von 0,8.

Unter Berücksichtigung von /DIN64/ und der erreichten Werte für Zugfestigkeit R_m, R_{p0,2} und A₅ liegt für die Y-Blöcke und den Planetenträger mit ausferritischem Gefüge bei den Y-Blöcken ein ADI-800 und beim Planetenträger ein ADI-900 vor.

Werkstoff	EN-GJS-400-15	EN-GJS-400-18U-LT		EN-GJS	-700-2	ADI	
	Y-Block	Y-Block	Maschinenträger	Y-Block	Planetenträger	Y-Block	Planetenträger
Wanddicke [mm]	200,0	200,0	~85,0	200,0	~100,0	200,0	~100,0
Zugfestigkeit R _m [MPa]	384,0	367,0	363,2	531,8	737,0	782,0	827,2
0,2 %-Dehngrenze R _{p0,2} [MPa]	255,0	260,9	225,4	410,7	418,0	614,0	595,8
Bruchdehnung A ₅ [%]	16,3	10,6	26,6	2,7	4,8	2,5	7,3
Brucheinschnürung Z [%]	12,0	-	24,8	-	3,8	3,3	7,2
Streckgrenzenverhältnis [-]	0,7	0,7	0,6	0,8	0,6	0,8	0,7
E-Modul [GPa]	167,0*	168,0'	167,8	165,5'	162,0	163,0	155,2#
Anzahl der Einzelversuche	2	10	10	9	6	4	6
* nach /Bis14/ ' nach /Ble16/ [#] aus Angussprobe							

Tabelle 7 Quasistatische Materialkennwerte der untersuchten Werkstoffe

7 Zyklische Werkstoffuntersuchungen

7.1 Prüftechnik

Die zyklischen, dehnungsgeregelten Werkstoffuntersuchungen finden unter konstanten und variablen Beanspruchungsamplituden auf servo-hydraulischen Prüfmaschinen statt, bei der hydraulische Zylinder die Prüfkräfte bereitstellen. Da der Zylinder die Schwingprobe oder das Prüfobjekt direkt belastet und vor allem die Frequenz sowie die Art der Belastungsabfolge z.B. als Sinus, Rampe oder Dreieck frei einstellbar ist, bildet dieser Prüfaufbau einen Zwangsantrieb. Allerdings sind servo-hydraulische Prüfmaschinen meist auf maximale Prüffrequenzen von etwa f = 50 Hz beschränkt. Die vorliegenden Versuche finden auf zwei Prüfständen mit maximalen Lasten von 160 kN, Bild 20, statt. die Sollwertvorgabe erfolgt mit MTS-Prüfsoftware sowie über kalibrierte Dehnungsaufnehmer mit einem Schneidenabstand von 25 mm. Bild 20 zeigt eine der beiden Prüfmaschinen, mit Schwingprobe, kalibrierter Kraftmessdose und Dehnungsaufnehmer. Zwei Klammern mit einer Anpresskraft von jeweils 2 N halten dabei die Schneiden bzw. den Dehnungsaufnehmer auf der Schwingprobe gemäß /SEP06/.

Bild 20 Servo-hydraulische Prüfmaschine (160 kN Maximallast), Schwingprobe und Dehnungsaufnehmer /Ble16/

7.2 Versuchsdurchführung unter konstanten Beanspruchungsamplituden

Die Durchführung der dehnungsgeregelten Versuche ist in Richtlinien wie dem /SEP06/ festgehalten. Darin werden u.a. die Prüffrequenzen in Abhängigkeit der Dehnungsamplituden vorgegeben. Für metallische Werkstoffe wie auch für die vorliegenden GJS-Werkstoffe erfolgt das Vorgehen der Schwingprüfung meist wie auch im Rahmen dieser Untersuchung in Anlehnung an das Stahl-Eisen-Prüfblatt SEP1240 /SEP06/.

Die Grenzschwingspielzahl beträgt für die hier durchgeführten dehnungsgeregelten Versuche $N_G = 1 \cdot 10^7$ Zyklen, wobei nahezu der gesamte Lebensdauerbereich von wenigen Schwingspielen bis N_G abgedeckt wird. In Abhängigkeit der Lasthorizonte stellen sich so untere Grenzschwingspielzahlen im Bereich von mehreren 10 Zyklen ein. Die Versuche werden nicht bis zum Bruch der Schwingproben, sondern bis zum technischen Anriss, der anhand eines Steifigkeitsabfalls von einem Abfall deren Steifigkeit von 20 % untersucht. Die Schwingprüfung erfolgt unter Wechselbeanspruchung, $R_{\epsilon} = -1$.

Versuchsmatrizen der durchgeführten Versuchsreihen mit deren Bezeichnung sowie einer Unterscheidung nach Entnahmeort und der Anzahl der je Versuchsreihe durchgeführten Einzelversuche sind im **Anhang T** für alle untersuchten Werkstoffe dargestellt.

7.3 Versuchsdurchführung unter variablen Dehnungsamplituden

Für die Gaßnerversuche wird ebenfalls eine Grenzschwingspielzahl von $N_G = 1 \cdot 10^7$ Zyklen zu Grunde gelegt. Die Lebensdauer nach dem Versuch ergibt sich dann durch die Multiplikation der erreichten Lebensdauer mit dem Omissionfaktor der beiden Teilfolgen. Auch diese Versuche werden nicht bis zum Bruch der Schwingproben, sondern bis zu einem Abfall deren Steifigkeit von 20 % geprüft.

Zur Bestimmung des Einflusses von Überlasten auf das zyklische Werkstoffverhalten wird in die beiden Beanspruchungszeitfunktionen "Senvion" und "aerodyn" jeweils eine Überlast aufgebracht. Im Folgenden wird der Begriff Überlast für eine dehnungsgeregelte Stauchung der Probe verwendet. Es werden Stauchungen von 1,0% für den EN-GJS-400-15 und den EN-GJS-400-18U-LT sowie von 0,5% für den EN-GJS-700-2 und den ADI eingestreut, um Zugeigenspannungen zu erzeugen. Die Überlast wird sowohl direkt am Anfang der beiden BZF sowie nach einem Durchlauf durch die BZF aufgebracht, um den Einfluss des Überlastereignisses auf die Betriebsfestigkeit zu unterschiedlichen Zeitpunkten der Lebensdauer sowohl hinsichtlich des Spannungs-Dehnungsverhaltens als auch der Lebensdauer untersuchen zu können. So wird das Auftreten der Überlast direkt am ersten Tag der Nutzung der Windenergieanlage sowie nach einem gewissen Zeitraum simuliert. Die genaue Zuordnung von Überlasten und Versuchsreihen sowie Werkstoffen ist wiederum der Versuchsmatrix in **Anhang T** zu entnehmen.

7.3.1 Ermittlung der Beanspruchungszeitfunktionen "Senvion" und "aerodyn"

Es werden zwei unterschiedliche Beanspruchungszeitfunktionen zur Untersuchung der variablen Amplitudenbelastung verwendet, die von zwei Projektpartnern, Senvion und aerodyn, zur Verfügung gestellt werden. Beide basieren auf abgeleiteten Kräften und Momenten an der Rotornabe, die mit Simulationen erzeugt und typischerweise zur Auslegung von WEA verwendet werden. Die Last-Zeit-Reihen werden entsprechend ihrer Auftretenswahrscheinlichkeit zusammengesetzt, sodass sie jeweils einem Zeitraum von 20 Jahren Bauteillebensdauer entsprechen. Zur Reduktion der Datenkanäle werden die Last-Zeit-Reihen mittels FE-Berechnungen auf Bauteile einer WEA angewendet und an relevanten Orten des Bauteils als die Beanspruchungszeitfunktionen abgeleitet. Senvion liefert die Beanspruchungsdaten der Seitenwange des Maschinenträgers. Die Teilfolgen von aerodyn beziehen sich auf einen hochbeanspruchten Ort auf der Hebekonsole der Rotornabe, Bild 21.

Bild 21 FEM-Berechnungen zu den ausgewählten Bauteilen (links: aerodyn, rechts: Senvion)

Die mittels Rainflow-Zählung klassierten Beanspruchungszeitfunktionen werden mittels einer Amplitudentransformation gemäß der Vorgabe über den Verlauf im Haigh-Diagramm nach /FKM12/ (R \leq 0 mit M = 0,5 und 0 < R \leq 0,5 mit M* = M/3) auf R_o = -1 schädigungsäquivalent transferiert. Zur Ableitung einer geeigneten Teilfolgen werden die folgenden zwei Verfahren verwendet:

Unterteilung des Kollektivs in Teilfolgen

Dabei werden die Häufigkeiten der Klassen durch einen ausgewählten Faktor geteilt. Die dadurch berechneten Klassen-Häufigkeiten werden auf einen ganzzahligen Wert gerundet. Dadurch wird aus dem Gesamtkollektiv ein Teilfolgenkollektiv abgeleitet, das einen deutlich geringeren Umfang hat und somit für die Schwingfestigkeitsversuche mit variablen Amplituden geeignet ist.

Omission

Bei der Omission werden alle Amplituden, die kleiner als σ_{om} sind, entfernt. Die Amplituden werden unter der Annahme entfernt, dass diese so klein sind, dass sie keinen relevanten Beitrag zur Gesamtschädigung haben.

Abschließend werden die einzelnen Zyklen zufällig aneinandergereiht, sodass eine starke Durchmischung vorliegt. Die verwendeten Parameter und die Kollektiv- bzw. Teilfolgeumfänge sind in Tabelle 8 dargestellt. Die maximale Last des Senvion-Kollektivs besitzt eine Häufigkeit von 1, bei der Unterteilung in Teilfolgen wird diese aufgrund der geringen Häufigkeit entfernt. Damit entspricht die Form des Teilfolgenkollektivs zwar nicht mehr der Originalform, jedoch weiterhin einem typischerweise für die Auslegung von WEA verwendeten Kollektivform. Die maximale Last des aerodyn-Kollektivs besitzt eine Häufigkeit von 200. Nach Unterteilung des Kollektivs in Teilfolgen besitzt die max. Last nur noch eine Häufigkeit von 1, Tabelle 8. Die zwei Kollektive besitzen deutlich unterschiedliche Fülligkeiten, Bild 22 und Bild 23. Dies ist für die Untersuchung des Einflusses der Kollektivform auf die Schadenssumme relevant. In den Darstellungen der Gaßner-Linien werden die Schwingspielzahlen ohne die Reduktion der Umfänge durch die Omission angegeben. Im Falle der aerodyn-Teilfolge werden daher die tatsächliche Anrissschwingspielzahlen mit dem Faktor $f_{ae} = 2,83$ multipliziert. Im Falle der Senvion-Teilfolge mit dem Faktor $f_{sen} = 6,07$.

	Original	Unterte	ilung in Teilfolgen	Omission		
Kollektiv	Umfang des Kol- lektivs	Faktor	Erzielter Umfang der Teilfolge	Grenze σ _{om} [MPa]	Erzielter Umfang der Teilfolge	
aerodyn	2,5·10 ⁸	200	1,2·10 ⁶	30	4,95·10⁵	
Senvion	5,6·10 ⁸	287	2,8·10 ⁶	9	4,62·10⁵	

Tabelle 8 Untersuchte Teilfolgen

Bild 22 aerodyn-Kollektiv und daraus abgeleitet Teilfolgen

Bild 23 Senvion-Kollektiv und daraus abgeleitete Teilfolgen

7.3.2 Einstreuung der Überlast

Zur Auswahl einer geeigneten Überlast für die Gaßnerversuche wird mit einem analytischen Berechnungsmodell unter Annahme des Masing-Memory-Verhaltens und eines zyklisch-stabilisierten Werkstoffverhaltens (elastisch-plastisch) eine Parameterstudie durchgeführt. Das Berechnungsmodell ist auf eine einachsige Betrachtung der Spannungen und Dehnungen beschränkt. Eine zyklische Relaxation wird in dem Berechnungsmodell nicht berücksichtigt.

Die in der Parameterstudie simulierten Lasten sind in einstufige Lasten und in Überlasten eingeteilt. Die Lasthöhe wird so gewählt, dass durch die aus der Überlast entstehenden Beanspruchungen signifikante plastische Dehnungen entstehen ($\epsilon_{a, UL} = 1 \%$, $R_{\epsilon} = -1$). Durch die einstufigen Lasten hingegen entstehen keine signifikanten plastischen Dehnungen (z.B. BFZ "aerodyn": $\epsilon_{a,eL} = 0,05 \%$, $R_{\epsilon} = -1$). Die in der Parameterstudie untersuchten Einflussgrößen sind in Tabelle 9 dargestellt.

Tabelle 9 Untersuchte Parameter zum Einfluss der Überlast auf die Schadenssumme

Es werden nun $N_{eL} = 1000$ Zyklen der einstufigen Last aufgebracht und ein Überlastzyklus. In Tabelle 10 sind die berechneten Varianten sowie die berechneten Schadenssummen unter Annahme eines EN-GJS-400-18U-LT dargestellt. In Bild 24 ist ein resultierender Dehnungs-Zeit-Verlauf für den Belastungsfall, dass die Überlast in der Mitte auftritt und dass die Extremlast aus einem einzigen Zyklen besteht, dargestellt.

Bild 24 Zeitlicher Verlauf der Dehnungen

Die Schadensummen werden dabei mit dem Schädigungsparameter P_{SWT} /Smi70/ und der Dehnungswöhlerlinie CMBM /Cof54, Man65, Bas10, Mor65/ berechnet. Zur Ermittlung geschlossener Hysteresen wird das HCM-Zählverfahren /Clo86/ verwendet.

Variante	1	2	3	4	5	6
Zeitpunkt. des Auftretens	Mitte	Anfang	Ende	Mitte	Mitte	Mitte
Überlasttyp	Ein Zyklus	Ein Zyklus	Ein Zyklus	Auf- schwingend	Ein Zyklus	Auf-schwin- gend
Beanspruchungsfolge	Zug-Druck	Zug-Druck	Zug-Druck	Zug-Druck	Druck-Zug	Druck-Zug
Schadenssumme	0.0138	0.0154	0.0122	0.0413	0.0122	0.0409

Tabelle 10 Untersuchte Parameterkombinationen zum Einfluss der Überlast auf die Betriebsfestigkeit

Die Untersuchungen zeigen, dass die Überlast die Schadenssumme zum einen durch den Schädigungsanteil des Überlast-Schwingspiels und zum anderen durch eine Mittelspannungsverschiebung der folgenden Einstufen-Schwingspiele beeinflussen kann. Durch die Überlast wird die Mittelspannung der folgenden einstufigen Belastungen beeinflusst, die Schadenssumme ändert sich damit je nach Zeitpunkt des Auftretens der Überlast.

Die Reihenfolge, in der der Oberwert oder der Unterwert des Schwingspiels aufgebracht werden, hat bei einem Beanspruchungsverhältnis von $R_{\epsilon} = -1$ einen Einfluss auf die verbleibenden Eigenspannungen, Bild 25 und Bild 26:

- Startet die Überlast in den Druckbereich, so verbleiben Druckeigenspannungen.
- Startet die Überlast in den Zugbereich, so verbleiben nach der Entlastung Zugeigenspannungen.

Ein Ausschwingen der Überlast führt zu einer Reduktion der verbleibenden Eigenspannungen im Bauteil. Dies wirkt sich im Falle von Zugeigenspannungen positiv auf Schädigung (geringere Schädigung und höhere Lebensdauer) der folgenden Betriebslasten-Schwingspiele aus, da die Zugeigenspannungen beim Ausschwingen abnehmen. Der Zeitpunkt des Auftretens der Extremlast hat dann einen Einfluss auf die Schadenssumme, wenn Eigenspannungen eingebracht werden, die zu einer Mittelspannungsverschiebung der folgenden Betriebslast-Schwingspiele führen.

Schlussfolgerungen

Für die weiteren Untersuchungen soll auf Basis dieser Parameterstudie eine Überlast ausgewählt werden:

- → Um größtmögliche Eigenspannungen zu erzeugen, soll die Überlast aus einem einzelnen Zyklus bestehen
- → Die Überlast soll im Druckbereich liegen, damit Zugeigenspannungen resultieren
- → Ein Auftreten der Überlast zu Beginn des Lastkollektivs hat den größten Einfluss auf die Schadenssumme. Zur Untersuchung des Einflusses der zyklischen Verfestigung der Werkstoffe, sollen insgesamt 3 Varianten experimentell untersucht:

- 2. Es tritt eine Überlast am Anfang auf
- 3. Es tritt eine Überlast nach einem Teilfolgendurchlauf auf (ca. 5·10⁵ Zyklen)

Bild 25 Überlast startet in den Druckbereich

Bild 26 Überlast startet in den Zugbereich

Auswahl der Überlasthöhe

Da die untersuchten Werkstoffe teilweise stark unterschiedliche Streckgrenzen aufweisen, werden zwei unterschiedliche Dehnungsniveaus als Überlast ausgewählt. In Tabelle 11 sind die Dehnungen der Überlasten und die dadurch resultierenden Spannungen, die bei Verwendung des zyklischen Werkstoffverhaltens entstehen, aufgelistet. In Bild 27 sind die zyklischen Spannungs-Dehnungskurven der Werkstoffe und die Spannungen und Dehnungen, die bei Überlast entstehen, dargestellt.

Werkstoff	Spannung der Überlast	Dehnung der Überlast
EN-GJS-400-18U-LT	390 MPa	-1,0 %
EN-GJS-400-15	410 MPa	-1,0 %
EN-GJS-700-2	475 MPa	-0,5 %
ADI-800	612 MPa	-0,5 %

Bild 27 Spannungs-Dehnungskurven und Überlastniveaus

7.3.3 Spannungs-Dehnungsverhalten bei gekerbten Bauteilen

Da reale Bauteile i.d.R. Kerben aufweisen, wird zur Betrachtung des Spannungs-Dehnungsverhaltens bei Überlast eine gekerbte Probe rechnerisch untersucht. In den Untersuchungen soll der Unterschied zwischen dem semi-duktilen EN-GJS-400-18U-LT und dem höherfesten ADI-800 dargestellt werden. Daher werden auch nur diese beiden Werkstoffe (beides vom Y-Block) in den FE-Berechnungen berücksichtigt. In Bild 28 sind die verwendeten zyklischen Spannungs-Dehnungskurven dargestellt. In Bild 29 ist die Geometrie der Probe dargestellt.

Bild 28 In den FE-Berechnungen verwendete zyklische Spannungs-Dehnungskurven

Bild 29 Probenform der gekerbten Probe

Zur Untersuchung des Einflusses der Kerbschärfe auf die elastisch-plastischen Dehnungen werden die beiden Formzahlen $K_t = 1,5$ und $K_t = 2,2$ verwendet.

Formzahl	d 1	d 2	Gesamtlänge	Einspannlänge	Hebelarm	Kerbradius	Kerb-spannung (F = 1kN)
К _t	D [mm]	d [mm]	L [mm]	E [mm]	h [mm]	R [mm]	$\sigma_{_{el}}$ [MPa]
2.2	117	75	450	200	200	4.5	11.3
1.5	117	75	450	200	200	15	7.2

Tabelle 12 Parameter der gekerbten Probe

In Bild 30 sind die Randbedingungen der FE-Berechnungen dargestellt. Die Lagerung erfolgt durch das Sperren der translatorischen Freiheitsgrade u_x , u_y , u_z . Die Lasteinleitung erfolgt kraftgeregelt bis zu einer max. Kraft von F = 100 kN. In Bild 31 sind die Last-Kerbdehnungskurven der Proben dargestellt.

Bild 30 Randbedingungen und Lasteinleitung der FE-Berechnung

Bild 31 Last-Kerbdehnungskurve der gekerbten Proben

Beim EN-GJS-400-18U-LT erreicht die Probe mit der Formzahl K_t = 2,2 eine Dehnung von ε = 1 % bei einer Kraft von F ≈ 90 kN. Beim ADI-800 entstehen bei gleicher Formzahl und Kraft eine Dehnung von ε ≈ 0,7 %. Bei einer Formzahl von K_t = 1,5 erreicht der EN-GJS-400-18U-LT eine Dehnung von ε ≈ 1 % bei einer Kraft von F ≈ 130 kN. Beim ADI-800 entstehen bei gleicher Formzahl und Kraft eine Dehnung von ε ≈ 0,6 %. Dies zeigt, dass trotz der im Vergleich zum EN-GJS-400-18U-LT deutlich steiler verlaufenden Spannungs-Dehnungskurve des ADI-800, Bild 28, bei gekerbten Bauteilen vergleichsweise hohe Dehnungen erzeugt werden. Die Dehnungen sind dabei stark von der Kerbschärfe abhängig. Die experimentellen Untersuchungen in Kapitel 8.3 zeigen zudem, dass hohe Dehnungsamplituden bei den höherfesten Werkstoffen zu einer stärkeren Reduktion der Lebensdauer führen können als bei den untersuchten ferritischen GJS-Werkstoffen. In der Anwendung ist daher individuell in Abhängigkeit der Belastungssituation und Kerbschärfe zu prüfen, welcher Werkstoff besser geeignet ist und ob ein Leichtbaupotential durch die höherfesten Werkstoffe wie EN-GJS-700-2 und ADI gegeben ist.

8 Ergebnisse

8.1 Zyklische Prüfung unter konstanten Dehnungsamplituden

Zunächst werden die drei Werkstoffe unter konstanten Dehnungsamplituden untersucht, um die jeweilige zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie abzuleiten. Dabei werden je Werkstoff und Entnahmeort etwa 20 Schwingproben untersucht. Für den EN-GJS-400-18U-LT, entnommen aus den Y-Blöcken, werden beide Kurven mit 44 Einzelversuchsergebnissen belegt. Als Ergebnis dieser Untersuchungen zeigt Bild 32 die Erstbelastungskurve, die zyklische Spannungs-Dehnungskurve sowie die Dehnungswöhlerlinie ermittelt nach /Cof54, Man65, Bas10, Mor65/ sowie nach dem tri-linearen Konzept /War07/. Alle weiteren Diagramme, Einzelversuchsergebnisse und die Parameter der zyklischen Spannungs-Dehnungskurve sowie der Dehnungswöhlerlinie für beide Ansätze finden sich im **Anhang B** sowie **Anhang T**.

Bild 32 Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie für den ADI-900 entnommen aus dem Maschinenträger

Das Beispiel zeigt stellvertretenden für alle untersuchten GJS-Werkstoffe, dass die zyklische Beanspruchung eine mehr oder weniger stark ausgeprägte zyklische Werkstoffverfestigung hervorruft. Dies bestätigt Untersuchungen in /Ble16/ für weitere GJS-Werkstoffe. So zeigt der ADI-900 bei einer Dehnungsamplitude $\epsilon_{a,t}$ von 0,75 % eine zyklische Verfestigung von 50 MPa absolut und 7 % relativ. Eine deutlich höhere Verfestigung zeigt der EN-GJS-400 mit teilweise bis zu 45 % Festigkeitszuwachs bei 1,0 % Dehnungsamplitude.

Wie auch in den Untersuchungen in /Ble16/ am EN-GJS-400-18U-LT und dem EN-GJS-700-2 zeigt sich sowohl für den EN-GJS-400-15 als auch den ADI-800 und ADI-900, dass die tri-lineare Dehnungswöhlerlinie das zyklische Werkstoffverhalten dieser Werkstoffe deutlich besser beschreibt. So erfasst die daraus mittels der Kompatibilitätsbedingung abgeleitete zyklische Spannungs-Dehnungskurve die Einzelversuchspunkte, insbesondere bei höheren Dehnungen, viel genauer als der Ansatz von /Cof54, Man65, Bas10, Mor65/ zur Darstellung der Dehnungswöhlerlinie, **Anhang B**. Besonders deutlich wird dies am EN-GJS-700-2, Bild 33. Zudem passt nun der Verlauf der Dehnungswöhlerlinie im Bereich der Langzeitfestigkeit deutlich besser zu den Einzelversuchspunkten und unterstellt unter Anlehnung an /So05b/ mit einer Neigung von k* = 44,9 einen deutlich geringeren Abfall der Dehnungsamplitude nach dem Abknickpunkt als der Ansatz nach Basquin /Bas10/, Bild 32. Aus diesem Grund wird für die fortlaufenden Untersuchungen und die Arbeiten für das Bauteilbemessungskonzept nur noch auf die tri-lineare Dehnungswöhlerlinie zurückgegriffen.

Bild 33 Zyklische Spannungs-Dehnungskurve für den EN-GJS-700-2 (Y-Blöcke)

Bild 34 und Bild 35 zeigen einen Vergleich aller untersuchten Werkstoffe anhand deren zyklischer Spannungs-Dehnungskurven sowie Dehnungswöhlerlinien. Wie es ausgehend von den quasi-statischen Kennwerten der Werkstoffe zu erwarten ist, weisen die ferritischen Sorten EN-GJS-400-15 und EN-GJS-400-18U-LT die niedrigste Spannungs-Dehnungskurve, jedoch die höchste ertragbare Dehnungsamplitude auf. Hierauf folgen der EN-GJS-700-2 und die ADI-Sorten. Dabei zeigt sich im Spannungs-Dehnungsverhalten kein signifikanter Unterschied zwischen den Werkstofflegierungen bzw. Grundgefügen in Bezug auf den Entnahmeort (Y-Block oder Bauteil). Der Verlauf der zyklischen SpannungsDehnungskurve wird somit durch die Wanddicke und den Entnahmeort sowie die damit verbundene Mikrostruktur im Rahmen der vorliegenden Ergebnisse nur minimal beeinflusst, Bild 34.

Bild 34 Vergleich der untersuchten Werkstoffe anhand ihrer zyklischen Spannungs-Dehnungskurven

Wesentlich stärker beeinflusst die Entnahmeposition der Proben die Schwingfestigkeit der GJS-Werkstoffe. Hierbei zeigen die Werkstoffe EN-GJS-400-15, EN-GJS-400-18U-LT und EN-GJS-700-2 mit einer Dehnungsamplitude bei $N_G = 1 \cdot 10^7$ Schwingspielen von $\varepsilon_{a,t} = 0,10$ % die gleiche und die geringste Beanspruchbarkeit für die Entnahme aus den Y-Blöcken. Hierauf folgen der EN-GJS-400-18U-LT aus dem Maschinenträger und der ADI-800 aus den Y-Blöcken mit einer Dehnungsamplitude $\varepsilon_{a,t} = 0,12$ % bei $N_G = 1 \cdot 10^7$ Schwingspielen. Nochmals höhere ertragbare Dehnungsamplituden bei N_G zeigt der EN-GJS-700-2 sowie der ADI-900 aus den Planetenträgern. Hierbei erreicht der EN-GJS-700-2 eine Schwingfestigkeit von $\varepsilon_{a,t} = 0,16$ % sowie der ADI-900 von $\varepsilon_{a,t} = 0,23$ % bei $N_G = 1 \cdot 10^7$ Schwingspielen. Damit zeigen alle bauteilentnommenen Proben bzw. Werkstoffe eine im Vergleich zu den Y-Blöcken höhere zyklische Beanspruchbarkeit bei sonst gleicher zyklisch, stabilisierter Spannungs-Dehnungskurve. Hierbei erreicht sogar der EN-GJS-400-18U-LT aus dem Maschinenträger auf Grund günstigerer mikrostruktureller Eigenschaften eine zum ADI-800 aus dem Y-Block vergleichbare Beanspruchbarkeit.

Im Bereich kurzer Lebensdauern, also im Bereich der Kurzzeitfestigkeit hin zur plastischen Grenzbelastung, lassen die ferritischen Sorten insgesamt deutlich höhere Totaldehnungen zu, als die ausferritischen und perlitischen Sorten, was auf die duktilere Matrix des EN-GJS-400-18U-LT und des EN-GJS-400-15 zurückzuführen ist, Bild 35. Basierend auf dem zyklischen Spannungs-Dehnungsverhalten stehen jedoch den höheren zulässigen Totaldehnungen nicht zwingend auch höhere Spannungsamplituden gegenüber.

Bild 35 Vergleich der untersuchten Werkstoffe Anhand ihrer Dehnungswöhlerlinien

8.2 Regressionsanalysen der quasi-statischen und zyklischen Kennwerte

Bei der Beurteilung der Schwingfestigkeitsergebnisse fällt auf, dass sich der Schnittpunkt zwischen elastischer und plastischer Dehnungswöhlerlinie im ersten Bereich I (Bild 6) bzw. der Kurzzeitfestigkeit (Bild 8) immer weiter nach links zu kürzeren Lebensdauern hin bewegt, je höher Zugfestigkeit und je geringer die Duktilität bzw. Bruchdehnung A₅ der untersuchten Werkstoffe sind. Dies gibt Anlass, die Korrelation quasistatischer Kennwerte mit den beschreibenden Parametern der elastischen und plastischen Dehnungswöhlerlinie und damit verbunden auch mit der zyklischen Spannungs-Dehnungskurve zu untersuchen. Hierzu wird auf die ermittelten Parameter beider Kurven in Tabelle T 2 und Tabelle T 3 im Anhang T sowie auf frühere Ergebnisse für Untersuchungen am EN-GJS-400-18U-LT, EN-GJS-450-18 sowie EN-GJS-700-2 aus /Ble16/ zurückgegriffen. Aus den Untersuchungen in /Ble16/ liegen für die drei Werkstoffe Dehnungswöhlerlinien und zyklische Spannungs-Dehnungskurven an Proben vor, die aus Gussplatten mit Wanddicken von 120 mm bis 230 mm im Rand- und Mittenbereich entnommen worden sind. Als quasi-statische Eingangsparameter dienen die gemittelten Ergebnisse der Zugversuche aus /Ble16/ sowie Tabelle 7.

Für die Abschätzung der tri-linearen Dehnungswöhlerlinie sowie der zyklischen Spannungs-Dehnungskurve werden demnach die beschreibenden Parameter aus Bild 8 bzw. den Gleichungen (1) bis (4) benötigt.

Die Untersuchungen zeigen, dass in einem ersten Schritt der auf den gemittelten Elastizitätsmodul E bezogene, zyklische Schwingfestigkeitskoeffizient σ_{f1} ' für den Kurzzeitfestigkeitsbereich eine gute Regression mit der Zugfestigkeit ergibt, Bild 36. Damit liegt der Totaldehnungsamplitude $\epsilon_{a,t}$ für eine Lebensdauer von 0,5 Schwingspielen im Dehnungswöhlerdiagramm fest. Folgt man der Überlegung, dass der Schnittpunkt der elastischen und plastischen Dehnungswöhlerlinie N_{S-el-pl} im Bereich I (Bild 8) mit geringerer Duktilität weiter zu kürzeren Lebensdauern verschoben wird, macht eine Gegenüberstellung dieser Lebensdauer zur Bruchdehnung A₅ und der Dehngrenze $R_{p0,2}$ Sinn. Diese Regression ist jedoch nur dann erfolgreich, wenn die Bruchdehnung auf die Dehngrenze bezogen wird, Bild 37.

Bild 36 Regression zwischen Zugfestigkeit R_m und dem auf den Elastizitätsmodul E bezogenen zyklischen Schwingfestigkeitskoeffizient σ_{f1}'

Um die elastische Dehnungswöhlerlinie im Bereich I vollständig beschreiben zu können, fehlt die Neigung b₁ oder die Dehnungsamplitude ϵ'_{fs} am Schnittpunkt von elastischer und plastischer Dehnungswöhlerlinie im Bereich I. ϵ'_{fs} zeigt dabei eine besonders gute Regression zur Dehngrenze R_{p0,2} (Bild 38), sodass sich über den Elastizitätsmodul E, ϵ'_{fs} , N_{S-el-pl} sowie σ_{f1} ' die fehlende Neigung b₁ und damit der komplette Verlauf der elastischen Dehnungswöhlerlinie im Bereich I aus Gleichung (17) ermitteln lässt.

Bild 38 Regression der Dehnungsamplituden am Schnittpunkt ϵ'_{fs} mit der Dehngrenze $R_{p0,2}$

Um auf den Verlauf der plastischen Dehnungswöhlerlinie schließen zu können, fehlt eine Information über die Neigung c oder den Duktilitätskoeffizient $\epsilon'_{f.}$ Dies ist über einen Umweg über den Verfestigungskoeffizient K' zu erreichen, der gut mit ϵ'_{fs} regressiert, Bild 39. Ist somit die Dehnungsamplitude ϵ'_{fs} am Schnittpunkt von elastischer und plastischer Dehnungswöhlerlinie im Bereich I aus der Dehngrenze R_{p0,2} bestimmt, kann wiederum nach Bild 39 auch K' berechnet werden.

Auf Basis der Kompatibilitätsbedingung, Gleichung (3) und (4), besteht damit die Möglichkeit, entweder die Neigung c oder den Duktilitätskoeffizient $\varepsilon'_{\rm f}$ zu berechnen, sofern einer der beiden bekannt ist. Dies ergibt sich für den Duktilitätskoeffizient $\varepsilon'_{\rm f}$ daraus, dass dieser eine gute exponentielle Regression zur Schwingfestigkeitskoeffizienten $\sigma'_{\rm f1}$ bezogen auf den Verfestigungskoeffizienten K' aufweist, Bild 40. Da K' aus der Regression zu $\varepsilon'_{\rm fs}$ bekannt ist (Bild 39), lässt sich $\varepsilon'_{\rm f}$ und die Neigung der plastischen Dehnungswöhlerlinie c aus Gleichung (18), die sich durch Umstellen und Einsetzen aus Gleichung (3) und (4) ergibt, errechnen.

$$c = \frac{ln(\varepsilon_{fs})}{ln\left(\frac{\sigma_{f1}'}{K'}\right)} \cdot b_1 \tag{18}$$

Bild 39 Regression der Dehnungsamplitude am Schnittpunkt ε'_{fs} mit dem zyklischen Verfestigungskoeffizienten K'

Bild 40 Regression des Duktilitätskoeffizienten ε'f mit dem Quotienten aus Schwingfestigkeitskoeffizienten σ'f1 und zyklischem Verfestigungskoeffizienten K'

Damit sind die Werkstoffkennwerte der elastischen Dehnungswöhlerlinie und der plastischen Dehnungswöhlerlinie im Bereich I sowie auch der aus der tri-linearen Dehnungswöhlerlinie abgeleiteten zyklischen Spannungs-Dehnungskurve K' und n' bestimmt. Für die vollständige Beschreibung der Dehnungswöhlerlinie fehlt nun noch der Verlauf im Bereich II und III. Da beide Bereiche von der theoretischen Betrachtung des Verhaltens der stabilisierten Spannungs-Dehnungshysteresen gleich ist, kann die Neigung der Wöhlerlinie im Bereich II und III (b₂ und b₃) in einem ersten Ansatz aus vorliegenden Versuchen unter Spannungsregelung übernommen werden sofern ein makroskopisch elastisches Werkstoffverhalten für die Versuche im Bereich II und III vorliegt. Gleiches gilt für den Abknickpunkt als Übergangspunkt von Bereich II und III und der dort vorliegenden Schwingfestigkeitsamplitude. Diese muss lediglich von Spannung in Dehnung durch Division durch den vorliegenden E-Modul überführt werden. Für den Übergangspunkt zwischen Bereich I und II werden einfach die Geraden der elastischen Dehnungswöhlerlinie aus Bereich I und II zum Schnitt gebracht, Gleichung (6) und (7), und Schwingfestigkeit sowie Lebensdauer an diesem Punkt ermittelt.

8.3 Zyklische Prüfung unter variablen Dehnungsamplituden

Für die Bestimmung des zyklischen Werkstoffverhaltens unter den beiden Beanspruchungszeitfunktionen "aerodyn" und "Senvion" wird je Werkstoff anhand einer Gaßnerlinie ohne Überlast, eine Gaßnerlinie mit Überlast am Anfang sowie mit einer Überlast nach einem Durchlauf durch die Teilfolge untersucht. Dabei stellt die Teilfolge mit Überlast am Anfang den schlimmsten Fall der Belastung dar, wenn das Bauteil am ersten Tag der Nutzung und ohne eine mögliche zyklische Werkstoffverfestigung erfahren zu haben, maximal beansprucht wird. Auf Grund der zur Verfügung stehenden Probenanzahlen aus den Bauteilen und Y-Blöcken kann jedoch nicht jede Versuchsreihe bzw. Variante experimentell untersucht werden. Weiterhin stehen für jede Versuchsreihe maximal 12 Einzelversuche zur Verfügung, sodass auf die Ermittlung einer Streuung der Versuche verzichtet wird. Den kompletten Versuchsplan zeigt Tabelle T 1 im Anhang T sowie die Ergebnisse in Form der Dehnungsamplitude bei NG = 1·107 Schwingspielen sowie der Neigung der Gaßnerlinie in Tabelle 13 und in Tabelle 14. Alle Lebensdauerdiagramme mit den Gaßnerlinien sowie der Dehnungswöhlerlinie befinden sich im **Anhang B**. Eine Zusammenstellung der erreichten Beanspruchbarkeiten bei N_G = 1·10⁷ sowie der ermittelten Neigungen der Gaßnerlinien Schwingspielen zeigt Bild 41, Bild 42, Bild 43 und Bild 44.

Versuchsreihe Nr.	Werkstoff	Entnahmeort	BZF	Überlast	Dehnungsamplitude bei № = 1·10 ⁷ Schwingspiele E _a [%]	Neigung \overline{k} .
SMTR02	EN-GJS-400-18U-LT	Maschinenträger	aerodyn	-	0,136	18,2
SMTR03	EN-GJS-400-18U-LT	Maschinenträger	aerodyn	-1,0%, am Anfang	0,098	8,6
SMTR04	EN-GJS-400-18U-LT	Maschinenträger	aerodyn	-1,0%, nach einem Durchlauf	0,109	7,6
MWR05	EN-GJS-400-18U-LT	Y-Block	aerodyn	-	0,120	11,0
MWR07	EN-GJS-400-18U-LT	Y-Block	aerodyn	-1,0%, am Anfang	0,074	3,1
MWR09	EN-GJS-400-18U-LT	Y-Block	aerodyn	-1,0%, nach einem Durchlauf	0,082	5,5
MWR04	EN-GJS-700-2	Y-Block	aerodyn	-	0,138	9,0
MWR06	EN-GJS-700-2	Y-Block	aerodyn	-1,0%, am Anfang	0,049	3,0
MWR08	EN-GJS-700-2	Y-Block	aerodyn	-1,0%, nach einem Durchlauf	0,079	3,0
MWR15	EN-GJS-700-2	Y-Block	aerodyn	-0,5%, am Anfang	0,125	8,5
ETR02	ADI-800	Y-Block	aerodyn	-	0,189	6,1
ETR03	ADI-800	Y-Block	aerodyn	-1,0%, am Anfang	0,065	3,6
ETR04	ADI-800	Y-Block	aerodyn	-1,0%, nach einem Durchlauf	-	-
ETR08	ADI-800	Y-Block	aerodyn	-0,5%, am Anfang	0,162	9,1
ETR09	ADI-800	Y-Block	aerodyn	-0,5%, nach einem Durchlauf	0,123	3,0
ETR10	ADI-900	Planetenträger	aerodyn	-	0,275	18,5
ETR11	ADI-900	Planetenträger	aerodyn	-0,5%, am Anfang	0,263	21,3
ETR16	EN-GJS-700-2	Planetenträger	aerodyn	-	0,204	16,3
ETR17	EN-GJS-700-2	Planetenträger	aerodyn	-0,5%, am Anfang	0,182	16,9
ETR18	EN-GJS-700-2	Planetenträger	aerodyn	-0,5%, nach einem Durchlauf	0,167	4,9
TKR02	EN-GJS-400-15	Y-Block	aerodyn	-	0,114	5,1
TKR03	EN-GJS-400-15	Y-Block	aerodyn	-1,0%, am Anfang	0,090	5,7
TKR04	EN-GJS-400-15	Y-Block	aerodyn	-1,0%, nach einem Durchlauf	0,105	7,5

Tabelle 13 Parameter der Gaßnerlinien, BZF "aerodyn"

Versuchsreihe Nr.	Werkstoff	Entnahmeort	BZF	Überlast	Dehnungsamplitude bei $\overline{N} = 1 \cdot 10^7$ Schwingspiele $\overline{c_a}$ [%]	Neigung K .
SMTR05	EN-GJS-400-18U-LT	Maschinenträger	Senvion	-	0,274	5,8
SMTR06	EN-GJS-400-18U-LT	Maschinenträger	Senvion	-1,0%, am Anfang	0,232	4,3
SMTR07	EN-GJS-400-18U-LT	Maschinenträger	Senvion	-1,0%, nach einem Durchlauf	0,259	6,5
MWR11	EN-GJS-400-18U-LT	Y-Block	Senvion	-	0,226	6,0
MWR13	EN-GJS-400-18U-LT	Y-Block	Senvion	-1,0%, am Anfang	0,216	7,6
MWR10	EN-GJS-700-2	Y-Block	Senvion	-	0,282	10,4
MWR12	EN-GJS-700-2	Y-Block	Senvion	-0,5%, am Anfang	0,250	6,5
MWR14	EN-GJS-700-2	Y-Block	Senvion	-0,5%, nach einem Durchlauf	0,261	5,7
ETR05	ADI-800	Y-Block	Senvion	-	0,451	7,0
ETR13	ADI-900	Planetenträger	Senvion	-	0,545	7,1
ETR14	ADI-900	Planetenträger	Senvion	-1,0%, am Anfang	0,510	5,8
ETR15	ADI-900	Planetenträger	Senvion	-1,0%, nach einem Durchlauf	0,459	4,0
ETR21	EN-GJS-700-2	Planetenträger	Senvion	_	0,389	8,3
ETR22	EN-GJS-700-2	Planetenträger	Senvion	-0,5%, am Anfang	0,386	7,1

Bild 41 Vergleich der je Werkstoff sowie Entnahmeposition erreichten Beanspruchbarkeit bei der Grenzschwingspielzahl Ng für die BZF "aerodyn"

Bild 42 Vergleich der je Werkstoff sowie Entnahmeposition ermittelten Neigung \overline{k} bei der Grenzschwingspielzahl NG für die BZF "aerodyn"

Bild 43 Vergleich der je Werkstoff sowie Entnahmeposition erreichten Beanspruchbarkeit bei der Grenzschwingspielzahl N_G für die BZF "Senvion"

Bild 44 Vergleich der je Werkstoff sowie Entnahmeposition ermittelten Neigung \overline{k} bei der Grenzschwingspielzahl N_G für die BZF "Senvion"

Tendenziell zeigen alle Werkstoffe die höchste Beanspruchbarkeit für die Teilfolge ohne das Einstreuen von Überlasten. Wird die Überlast direkt zu Beginn der Teilfolge aufgebracht, sinkt die Beanspruchbarkeit je nach Werkstoff und je nach BZF teilweise deutlich ab. Die bereits nachgewiesene zyklische Verfestigung der Werkstoffe macht sich bei den Gaßnerversuchen mit Überlasten nach einem Durchlauf durch die Teilfolge bemerkbar, da in diesem Falle die Beanspruchbarkeit in einigen Versuchsreihen wieder ansteigt (Bild 41 und Bild 43).

EN-GJS-400-18U-LT

Maschinenträger

Für die Schwingproben aus dem Maschinenträger werden die drei Gaßnerlinien je BZF vollumfänglich untersucht. Dabei zeigt sich, dass insbesondere durch den geradlinigen und das damit wenig füllige Kollektiv der BZF "Senvion" eine deutlich höhere Beanspruchbarkeit unabhängig davon erreicht wird, ob eine Überlast oder keine Überlast auftritt. Für beide BZF gilt: Kommt eine Überlast am Anfang der BZF hinzu, fällt die Beanspruchbarkeit ab. Das Verschieben der Überlast auf einen späteren Zeitpunkt nach einem Teilfolgendurchlauf hebt die Beanspruchbarkeit wiederum leicht an. Dabei macht sich die zyklische Verfestigung der Werkstoffe deutlich bemerkbar, in dem der Werkstoff durch den vorangegangenen Durchlauf durch die Teilfolge die Möglichkeit gegeben wird, sich zu verfestigen. Für die BZF "Senvion" ist beim EN-GJS-400-18U-LT aus dem Maschinenträger der Verlauf der Gaßnerlinien gegenüber der Dehnungswöhlerlinie deutlich steiler. So erreichen die Gaßnerlinien nur eine Neigung von $\overline{k} =$ 4,3 bis 6,5 während die Neigung der Dehnungswöhlerlinie ein k = 12,4 aufweist. Ähnlich verhält es sich mit der BZF "aerodyn", bei der jedoch für die Gaßnerlinie ohne Überlast mit $\overline{k} =$ 18,2 sogar eine deutlich flacherer Verlauf gegenüber der Dehnungswöhlerlinie ermittelt wird (Bild 41, Bild 42, Bild 43 und Bild 44).

Y-Blöcke

Ein ähnliches Verhalten zeigt ebenfalls der in Y-Blöcken abgegossene EN-GJS-400-18U-LT, wenn gleich auch alle ermittelten Beanspruchbarkeiten der Gaßnerlinien wie schon bei den Versuchen unter konstanten Dehnungsamplituden deutlich unterhalb des EN-GJS-400-18U-LT aus dem Maschinenträger liegt. Aber auch hier stellt sich für die Gaßnerlinie des BZF "aerodyn" ein flacherer Verlauf ein, wenn keine Überlast aufgebracht wird. Für das Aufbringen von Überlasten sowie auch für alle Gaßnerlinien des BZF "Senvion" liegen steilere Verläufe der Gaßnerlinien gegenüber der Dehnungswöhlerlinie vor, Tabelle 13 und Tabelle 14 sowie Bild 41, Bild 42, Bild 43 und Bild 44. Die Gaßnerlinie mit einer Überlast nach einem Durchlauf durch die BZF "Senvion" kann auf Grund fehlenden Probenmaterials nicht ermittelt werden. Jedoch zeigt bereits die Versuchsreihe mit einer Überlast am Anfang, dass kaum ein Beanspruchbarkeitsverlust gegenüber der Gaßnerlinie ohne Überlast vorliegt.

EN-GJS-400-15

Y-Blöcke

Der EN-GJS-400-15 zeigt ein zum duktileren EN-GJS-400-18U-LT vergleichbares Verhalten. Die Neigungen der Gaßnerlinien nehmen ab und die Gaßnerlinie für die BZF mit Überlast nach einem Durchlauf fällt zwischen diejenige mit Überlast zu Beginn und diejenige ohne Überlast. Lediglich die Neigung der Gaßnerlinie ohne Überlast liegt mit $\overline{k} = 5,1$ für den EN-GJS-400-15 für die BZF "aerodyn" deutlich steiler und nicht wie beim EN-GJS-400-18U-LT flacher als für die Dehnungswöhlerlinie mit k = 9,9. Dies kann jedoch auch auf die vergleichsweise hohe Streuung auf dem niedrigsten Dehnungshorizont zurückzuführen sein. Wären etwa die zwei vorzeitig versagten Schwingproben auf dem Dehnungshorizont $\overline{\epsilon_a} =$ 0,11 % nicht vorhanden, ergäbe sich mit $\overline{k} = 11,2$ eine deutlich flachere Neigung und damit ein zum EN-GJS-400-18U-LT passendes Werkstoffverhalten.

EN-GJS-700-2

Y-Blöcke

Beim EN-GJS-700-2 aus Y-Blöcken liegen für beide BZF die Gaßnerlinien ohne Überlast deutlich flacher als die Dehnungswöhlerlinie im Bereich der Zeitfestigkeit. Dahingegen liegen die Gaßnerlinien mit Überlasten bei beiden BZF deutlich steiler.

Um das spätere Bemessungskonzept validieren zu können, wird bei der BZF "aerodyn" neben der 0,5%-Überlast in zwei weiteren Versuchsreihen auch das Werkstoffverhalten unter 1,0%-Überlast betrachtet. Damit wird zwar die maximale Werkstofffestigkeit angesprochen, aber damit auch das Auslegungskonzept auf seine Eignung zur Bemessung von Bauteilen an der Beanspruchungsgrenze untersucht. Dabei ist festzustellen, dass die Beanspruchbarkeit insbesondere bei der BZF mit Überlast am Anfang sehr stark abnimmt und die Gaßnerlinie ab N = $1 \cdot 10^6$ Schwingspiele sogar unter die Dehnungswöhlerlinie abfällt. Es stellen sich Neigungen für beide Gaßnerlinien mit $\overline{k} = 3,0$ ein, Tabelle 13. Zudem treten bei der BZF mit Überlast nach einem Durchlauf sehr hohe Streuungen auf. Dennoch wird die Gaßnerlinie gegenüber derjenigen mit Überlast am Anfang deutlich zu höheren Lebensdauern verschoben.

Planetenträger

Für den EN-GJS-700-2 aus dem Planetenträger liegt bei $N_G = 1 \cdot 10^7$ die Beanspruchbarkeit für die BZF "aerodyn" ohne Überlast gegenüber der Entnahme aus dem Y-Block um gut 47 % höher, wobei die Gaßnerlinie jedoch mit $\overline{k} = 16,3$ im Gegensatz zu $\overline{k} = 9,0$ deutlich flacher verläuft, Tabelle 13.

<u>ADI-800</u>

Für den ADI-800 wird zunächst eine Überlast von 0,5 % angesetzt. Dabei zeigt sich, dass im Gegensatz zu den ferritischen Sorten bei der BZF "aerodyn" ein steilerer Verlauf bei der Gaßnerlinie ohne Überlast im Vergleich zur Dehnungswöhlerlinie auftritt. Hingegen fällt die Neigung $\overline{k} = 9,1$ für die Gaßnerlinie mit Überlast am Anfang gegenüber k = 6,8 der Dehnungswöhlerlinie sehr viel flacher aus, als dies bei den ferritischen Sorten der Fall ist. Wird die Überlast nach hinten verschoben, wird die Neigung wie schon bei den ferritischen Sorten mit $\overline{k} = 3,0$ sehr viel steiler als die dies bei den Teilfolgen ohne Überlast und der Dehnungswöhlerlinie der Fall ist, Tabelle 13, Bild 41, Bild 42.

Für die BZF "Senvion" liegt nur die Gaßnerlinie ohne jegliche Überlast vor. Dabei zeigt der ADI-800 eine mit 0,451 % um exakt 60 % höhere Beanspruchbarkeit bei NG = 1.107 Schwingspielen als der EN-GJS-700-2 aus Y-Blöcken. Gegenüber dem EN-GJS-400-18U-LT aus Y-Blöcken werden sogar eine um exakt 100 % höhere Beanspruchbarkeit und damit ein enormes Leichtbaupotential gegenüber den ferritischen und perlitischen Sorten erreicht, sofern keine Überlast vorliegt, Tabelle 14.

Auch der ADI-800 wird zur Validierung des späteren Bemessungskonzeptes noch mit einer Überlast von 1,0 % für die BZF "aerodyn" untersucht. Dabei wird zwar die maximal ertragbare zyklische Spannungsamplitude angesprochen, jedoch damit der schlimmste Beanspruchungsfall für das Bauteil abgedeckt. Während die Gaßnerlinie mit Überlast am Anfang bei deutlich steilerer Neigung sogar unter die Dehnungswöhlerlinie absinkt, zeigt die Gaßnerlinie mit Überlast nach einem Teilfolgendurchlauf einen untypischen Verlauf. Dabei liegt im mittleren Lebensdauerbereich eine sehr steile Neigung vor. Zu kürzeren und längeren Lebensdauern scheint die Gaßnerlinie dann abzuknicken. Auf Grund fehlender Proben kann jedoch der exakte Verlauf unterhalb von N = $1 \cdot 10^6$ Lastwechseln und oberhalb der Grenzschwingspielzahl N_G nicht bestimmt werden, **Anhang B**, Bild B 36.

<u>ADI-900</u>

Für den ADI-900 aus dem Planetenträger wird die Gaßnerlinie für die BZF "aerodyn" ermittelt. Hierbei zeigt sich, dass die Beanspruchbarkeit gegenüber dem ADI-800 bei N_G um etwa 46 % zulegt, jedoch die Gaßnerlinie ohne Überlasten mit \overline{k} = 18,5 im Gegensatz zum ADI-800 mit \overline{k} = 5,4 deutlich flacher verläuft. Dies gilt auch für den Vergleich mit der Dehnungswöhlerlinie (k = 13,4). Zudem zeigt sich, dass zumindest für die BZF "aerodyn" eine Überlast von -1,0 % gut vom ADI-900 ertragen wird. Insofern scheint eine deutliche Abhängigkeit der Schwingfestigkeit von der Fülligkeit des BZF sowie auch der Werkstoffschwingfestigkeit vorhanden zu sein.

Vergleich und Bewertung

In die Auswertung der Gaßnerlinien gehen alle Versuchspunkte mit ein, auch wenn diese die BZF nur einmal durchlaufen haben. Dies widerspricht zwar den Vorgaben für die Durchführung von gültigen Gaßnerversuchen /Hai06/ nach denen eine Teilfolge mindestens 3-mal Durchlaufen werden muss, um einen gültigen Versuch zu erzeugen. Jedoch werden die beiden ermittelten Teilfolgen so erstellt, dass durch eine starke Durchmischung der auftretenden Amplituden der BZF, in gleichen Zeiteinheiten in etwa gleiche Schädigungen auftreten. Damit und unter Berücksichtigung der Lage der Einzelversuchspunkte lässt sich jedoch eine Auswertung aller auch kürzer gelaufener Gaßnerversuche rechtfertigen.

"aerodyn"

Über alle Versuche hinweg zeigt sich, dass die durch die Überlasten hervorgerufenen Zugmittelspannungen in den Schwingproben die Neigungen der Gaßnerlinien \overline{k} teilweise sehr deutlich zu einem steileren Verlauf hin ändern, Bild 42 und Bild 44. Dies ist insbesondere für die BZF "aerodyn" bei einer 1,0%-Überlast der Fall. Für die Untersuchungen unter einer 0,5%-Überlast jedoch wird der Verlauf der Gaßnerlinien flacher, sofern die Überlast zu Beginn des Versuches aufgebracht wird. Wird die Überlast um einen Teilfolgendurchlauf nach hinten verschoben, zeigt sich lediglich für eine 0,5%-Überlast ein einheitliches Bild, in dem die Verläufe der Gaßnerlinien deutlich steiler werden Bild 42. Für die Gaßnerlinien bei 1,0%-Überlast ergibt sich kein einheitliches Bild.

Es ist festzustellen, dass die bauteilentnommenen Proben insgesamt eine höhere Beanspruchbarkeit bei gleichzeitig flacherer Neigung \overline{k} der Gaßnerlinie gegenüber den aus Y-Blöcken entnommenen Proben erreichen. Dies ist sehr wahrscheinlich auf einen Gefügeeinfluss zurückzuführen, Bild 45.

Dabei zeigt der direkte Vergleich der Beanspruchbarkeit aller untersuchter Werkstoffe für das BZF "aerodyn ohne Überlast" eine deutlich höhere Beanspruchbarkeit für den bauteilentnommenen ADI-900 und EN-GJS-700-2 gegenüber den restlichen Werkstoffen und insbesondere dem EN-GJS-400-18U-LT aus dem Maschinenträger. So erreicht der ADI-900 bei $N_G = 1 \cdot 10^7$ Schwingspielen einen gegenüber dem EN-GJS-400-18U-LT aus dem Maschinenträger um gut 100 % erhöhte Beanspruchbarkeit bei annähernd gleicher Neigung, Bild 45.

Bild 45 Gegenüberstellung der ermittelten Gaßnerlinien für die BZF "aerodyn ohne Überlast"

Betrachtet man die Ergebnisse der BZF "aerodyn mit Überlast am Anfang" ist auch für diesen Fall ein deutlicher Beanspruchbarkeitszuwachs für die höherfesten Werkstoffe gegenüber etwa dem EN-GJS-400-18U-LT aus dem Maschinenträger festzustellen, Bild 46. Diesem gegenüber erreicht der EN-GJS-700-2 bei N_G eine um 86 % erhöhte Beanspruchbarkeit bei zudem deutlich flacherer Neigung des EN-GJS-700-2. Zwar wird der EN-GJS-700-2 lediglich mit einer Überlast von 0,5 % anstelle von 1,0 % bei

den ferritischen Sorten belastet, jedoch liegt die Beanspruchung anhand des zyklischen Spannungs-Dehnungsverhaltens, Bild 34, mit 475 MPa beim EN-GJS-700-2 im Gegensatz zum EN-GJS-400-18U-LT mit 400 MPa auf einem deutlich höheren Niveau. Bezogen auf die Erstbelastungskurve ist dieser Effekt auf Grund der stärkeren zyklischen Verfestigung des EN-GJS-400-18U-LT noch stärker ausgeprägt mit 470 MPa für den EN-GJS-700-2 und 265 MPa für den EN-GJS-400-18U-LT jeweils aus dem Bauteil entnommen.

Bild 46 Gegenüberstellung der Gaßnerlinien für die BZF "aerodyn mit Überlast am Anfang"

Wie jedoch die Untersuchungen an der abgesetzten Welle in Kapitel 7.3.3 zeigen, ist im Einzelfall zu prüfen, ob und in wie weit bei vorliegender Kerbe, äußerer Last und Bauteilabmessung durch die örtlich auftretende Dehnung tatsächlich ein Leichtbaupotential vorhanden ist, sofern eine Überlast auftritt. Tritt keine Überlast auf, bieten die höherfesten Werkstoffe, insbesondere bei einem sehr gut ausgeprägten Gefüge am Bauteil einen deutliches Leichtbaupotential. Hinzu kommt der bei allen Bauteilen vorliegende sehr flache Verlauf der Gaßnerlinien.

"Senvion"

Für alle Untersuchungen an der BFZ "Senvion" zeigt sich, das bedingt durch den linearen Verlauf des Kollektivs eine deutlich höhere Beanspruchbarkeit im Vergleich zur BFZ "aerodyn" erreicht wird. Zudem bauen sich durch die hohen Beanspruchungen innerhalb der Teilfolge die durch die aufgebrachten Überlasten entstehenden Zugmittelspannungen im Vergleich zur BFZ "aerodyn" deutlich schneller ab. Hierdurch werden ähnliche Verläufe der Gaßnerlinien sowie auch Beanspruchbarkeiten erreicht, Bild 43 und Bild 44.

/DNV16/ fordert für nicht duktile Werkstoffe wie den EN-GJS-700-2 oder die ausferritischen Sorten einen stress reserve factor (SRF) von 1,5 für zyklisch hochbeanspruchte Bauteile. Wird dieser z.B. auf den EN-

GJS-700-2 aus dem Planetenträger für den schlimmsten Fall einer Überlast am Beginn der Nutzung angewendet, liegt dieser Werkstoff bei $N_G = 1 \cdot 10^7$ Lastwechseln dennoch gut 20 % oberhalb des EN-GJS-400-18U-LT aus dem Bauteil bei zudem deutlich flacherer Neigung des perlitischen Werkstoffes, Bild 47. Eine erhöhte Leistungsfähigkeit des EN-GJS-700-2 ist somit trotz voller Ausschöpfung des SRF nachgewiesen. Eine weitere Steigerung ist durch den ADI-900 zu erwarten. Diese Ergebnisse stehen jedoch noch aus.

Bild 47 Vergleich des EN-GJS-700-2 aus dem Planetenträger (ETR17) mit dem EN-GJS-400-18U-LT unter Berücksichtigung des stress reserve factors SRF von 1,5 für das BZF "aerodyn mit Überlast am Anfang"

Die Untersuchungen zeigen, dass in Verbindung mit dem Bauteil und der dort lokal vorliegenden Geometrie zwar ein Leichtbaupotential durch die höherfesten Werkstoffe gegeben ist, diese jedoch nur dann voll ausgeschöpft werden kann, wenn keine Überlast vorliegt. Dennoch zeigt der Vergleich zu den ferritischen Sorten, dass die höherfesten Werkstoffe eine Sicherheit hinsichtlich der Lebensdauer auch bei Auftreten einer moderaten Überlast am Anfang ermöglichen. Dies ist insbesondere für einen längeren Betrieb neuer WEA oder den Weiterbetrieb bestehender Anlagen von großer Bedeutung.

Die Schwingfestigkeitsuntersuchungen zeigen insgesamt keine eindeutige Tendenz zum Werkstoffverhalten unter Überlasten. Dennoch zeigt sich, dass bei vorliegender hoher Schwingfestigkeit unter konstanten Amplituden die Schwingfestigkeit wie im Falle des ADI-900 auch bei einer hohen Überlast und trotz niedriger Bruchdehnung des Werkstoffes nicht so stark abfällt, wie dies beispielsweise beim ADI-800 unter dem deutlich fülligeren Kollektiv der Fall ist. Insgesamt zeigen die Werkstoffe aus den Bauteilen auch auf Grund der im Vergleich zum jeweiligen Werkstoff, entnommen aus dem Y-Block, höheren Bruchdehnung eine deutlich höhere Schwingfestigkeit sowie ein besseres Überlastverhalten auch bei einer Überlast von -1,0 %. Die Fülligkeit des Kollektivs wie auch die Höhe der Überlast bestimmen natürlich maßgeblich die Schwingfestigkeit der Werkstoffe. So zieht in der Regel ein Wechsel vom weniger fülligen Kollektiv zum Kollektiv "aerodyn" eine deutlich geringere Schwingfestigkeit, einen deutlich stärkeren Einfluss durch die Höhe der Überlast auf die Schwingfestigkeit sowie eine stärkere Beeinflussung der Gaßnerlinienneigung nach sich.

8.4 Streuung der Versuche mit konstanten Dehnungsamplituden

Zur Ableitung der Werkstoffstreuung wird die Versuchsreihe MWR02 (EN-GJS-400-18U-LT, Y-Block) verwendet, Bild B 15. Die Streuung wird über das Streuband 1:T_{ϵ} ausgedrückt und wird nach Gleichung (19) berechnet. Dem Streuband wird eine Überlebenswahrscheinlichkeit von P₀ = 10% bzw. 90% zugrunde gelegt. Die Standardabweichung σ wird mit Gleichung (20) berechnet.

$$\left(\frac{1}{T_{\varepsilon}}\right) = 10^{2.56 \cdot \sigma} \tag{19}$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(\log\left(\frac{\varepsilon_{Versuch}}{\varepsilon_{DWL}}\right) \right)^2}$$
(20)

Insgesamt fließen die Ergebnisse aus n = 42 Schwingfestigkeitsergebnissen in die Berechnung des Streubandes mit ein. Bei der Betrachtung der Streuung in Abhängigkeit der Schwingspielzahl wird ersichtlich, dass die Streuung bei niedrigen Schwingspielzahlen größer ist als bei großen Schwingspielzahlen, Bild 48.

Bild 48 Abweichung des Einzelversuchs in Abhängigkeit der Schwingspielzahl

Die Abhängigkeit der Streuung von der Schwingspielzahl wird auch bei einer Klassierung der Versuche in Schwingspielzahlklassen sichtbar, Bild 49. Dazu werden die einzelnen Schwingfestigkeitsversuche je nach erreichter Schwingspielzahl einer Klasse zugeordnet. Die Standardabweichung und die Streuung werden anschließend für die Versuchsergebnisse der jeweiligen Klasse berechnet. Bei Verwendung einer einzigen Klasse, d.h. alle 42 Versuche werden zur Berechnung eines Streubandes verwendet, beträgt das Streuband $1:T_{\epsilon} = 1,65$. Bei der Einteilung in zwei Klassen (Klasse 1: N < 10³, Klasse 2: N $\ge 10^3$)
betragen die Streubänder $T_{\epsilon,Klasse1}$ = 1,94 und 1: $T_{\epsilon,Klasse2}$ = 1,29. Bei der Verwendung von drei Klassen (Klasse 1: N < 10², Klasse 2: 10² ≤ N < 10⁴, Klasse 3: N ≥ 10⁴) ergeben sich Streubänder von 1: $T_{\epsilon,Klasse1}$ = 1,95, $T_{\epsilon,Klasse2}$ = 1,62 und 1: $T_{\epsilon,Klasse3}$ = 1,26. In /Kaf17/ wird gezeigt, dass bei einer großen die Streuung der Grundgesamtheit, auch eine große Anzahl an Versuchen notwendig ist, um eine zuverlässige statistische Abschätzung machen zu können. Da bei der klassenweisen Berechnung der Streubänder einzelne Klassen eine große Streuung besitzen und teils nur noch auf 13 Versuchen basieren, ist mit einer Unsicherheit der Streuung zu rechnen. Dennoch zeigt die klassenweise Auswertung der Streubänder einen plausiblen schwingspielzahlabhängigen Verlauf der Streuung auf, der auch durch Veränderung der Anzahl der Schwingspielzahlklassen nicht signifikant verändert wird. Daher wird ein schwingspielzahlabhängiges Streuband im Konzept berücksichtigt.

Verglichen mit dem nach /Kau98/ praxisüblichen Streumaß im Spannungskonzept von T_{σ} = 1:1,3 für EN-GJS-400-18U-LT, ist das Streuband der dehnungsgeregelten Versuche gerade im Bereich niedriger

Schwingspielzahlen N < 10⁴ deutlich höher. Dabei ist jedoch zu beachten, dass im Spannungskonzept i.d.R. keine Versuche im Bereich unter N > 10⁴ liegen. Eine Auswertung der Versuche im Bereich N > 10⁴ ergibt ein Streuband von T_{ε} = 1:1,26, welches somit unterhalb des praxisüblichen Streumaßes liegt. Für die Anwendung wird empfohlen das schwingspielzahlabhängige Streuband zu verwenden, dass mittels Einteilung in zwei Schwingspielzahlklassen ermittelt wird. Dies sollte jedoch im Bereich hoher Schwingspielzahlen nicht unter T_{ε} = 1:1,3 abfallen. Beschrieben wird diese Änderung, Bild 50, mit Gleichung (21).

Bild 50 Streuband für den EN-GJS-400-18U-LT

Für die Werkstoffe EN-GJS-400-15, EN-GJS-700-2 und den ADI-800 sind keine ausreichend großen Versuchsumfänge vorhanden, sodass für diese keine sinnvolle statistische Auswertung durchgeführt werden kann. Es wird jedoch angenommen, dass die weiteren untersuchten Werkstoffe eine vergleichbare Streuung aufweisen, da unterschiedliche Gusswerkstoffe im Spannungskonzept ebenfalls vergleichbare Streuung aufweisen /Ble16/.

8.5 Metallographie

Begleitend zu den Beanspruchbarkeitsuntersuchungen finden metallographische Untersuchungen zur Bestimmung der Parameter der Werkstoffmatrizen statt. Dabei werden vier Schwingproben je Halbzeug bzw. Bauteil untersucht und neben Ferrit- und Perlitgehalt auch die Graphitmenge, -Form und –Größe sowie die Nodularität bestimmt.

Eine Zusammenstellung der Ergebnisse gemittelt aus den vier einzelnen Proben zeigt Tabelle 15. Dabei zeigen die Bauteile hinsichtlich der durchschnittlichen Nodularität sowie der Anteile der durchschnittlich vorliegenden Graphitform V und VI teilweise deutlich höhere Werte wie die vergleichbaren Y-Blöcke. Dies wird auch deutlich bei der Betrachtung der Einzelergebnisse je Schwingprobe hinsichtlich Nodularitätskennzahl in Bild 53 und Anteile der Graphitphasen in Form von Kugeln und Übergangsformen in Bild 54. Dies resultiert aus der geringeren Dicke der Bauteilwandung, aus der die Schwingproben entnommen wurden, und ist unter anderen ein Grund für die gegenüber den Schwingproben aus Y-Blöcken höheren Beanspruchbarkeiten der bauteilentnommenen Schwingproben. Eine Zusammenstellung aller

metallographischen Ergebnisse hinsichtlich der Gefügeparameter nach /DIN45/ zeigen Bild 51, Bild 52, Bild 53, Bild 54 und Bild 55.

EN-GJS-400-15

Proben Y-Blöcke: C1; C7; C8-II; D5-II

Der EN-GJS-400-15 besitzt ein durchschnittliches Ferrit-Perlit-Graphitverhältnis von 83,0 zu 4,2 zu 12,8. Dabei weißt er eine überwiegend ferritische Matrix auf. Die Graphitgröße liegt nach /DIN45/ bei 70 % für die Klasse 5 und 6 während die Graphitform V und VI bei 98,9 % liegen. Die Nodularitätskennzahl liegt bei 76,9.

EN-GJS-400-18U-LT

Proben Y-Blöcke: MW4-5-11; MW4-5-26; MW4-7-43; MW4-6-34

Proben Maschinenträger: SMT-34; SMT-10; SMT-82; SMT-89

Für den EN-GJS-400-18U-LT liegt der Ferrit-Perlit-Graphitanteil durchschnittlich bei 80,5 % zu 6,6 % zu 12,9 % für die Y-Blöcke sowie bei 82,2 % zu 4,6 % zu 13,3 % für den Maschinenträger und dabei bei für diesen Werkstoff üblichen Werten. Die durchschnittliche Nodularitätskennzahl liegt mit 74,4 auf dem geringsten Wert der untersuchten Werkstoffe.

EN-GJS-700-2

Proben Y-Blöcke: MW7-2-19; MW7-2-43; MW7-1-39; MW7-4-33

Proben Planetenträger: ET-7-17; ET-7-1; ET-7-68; ET-7-58

Für den EN-GJS-700-2 liegt der Ferrit-Perlit-Graphitanteil durchschnittlich bei 5,8 % zu 82,7 % zu 11,5 % für die Y-Blöcke sowie bei 14,4 % zu 73,5 % zu 12,0 % für den Planetenträger. Für beide Entnahmeorte weißt der Werkstoff jeweils fast zu 100 % die Graphitform V und VI auf. Die Graphitgröße liegt bei den Y-Blöcken mit 80,3 % für 5 und 6 jedoch deutlich unter dem Planetenträger mit 88,9 %. Auch die Nodularität liegt beim Y-Block mit 75,9 niedriger als beim Planetenträger mit 90,1.

<u>ADI-800</u>

Proben Y-Blöcke: ET-36; ET-30; ET-79; ET-70

Der ADI-800 besitzt zu 96,7 % die Graphitformen V und VI sowie zu 72,7 % die Graphitgrößen der Klassen 5 und 6. Dabei zeigt er eine hohe Nodularität von 81,9 und übertrifft damit alle anderen Werkstoffe, die als Y-Blöcke vergossen wurden.

<u>ADI-900</u>

Proben Planetenträger: 14-3; 5-1; 15-2; 22-2

Der ADI-900 besitzt mit 91,8 die höchste Nodularitätskennzahl aller im Rahmen von GaßnerWind untersuchter Werkstoffe, was sich auch in der sehr hohen Beanspruchbarkeit wiederspiegelt. Die Graphitform liegt durchschnittlich bei 99,7 % für die Klassen V und VI sowie die Graphitgröße zu 88,3 % bei den Klassen 5 und 6.

Bild 51 Gegenüberstellung aller untersuchter Schwingproben: Graphitform

Graphitgröße nach Größenklasse

Bild 52 Gegenüberstellung aller untersuchter Schwingproben: Graphitgröße

Bild 53 Gegenüberstellung aller untersuchter Schwingproben: Nodularitätskennzahl

Bild 54 Gegenüberstellung aller untersuchter Schwingproben: Nodularität

Bild 55 Gegenüberstellung aller untersuchter Schwingproben: Ferrit- / Perlit- und Graphitanteil

EN-GJS-400-18U-LT	EN-GJS-700-2	ADI-800		
Y-Block	Y-Block	Y-Block		
geätzt mit 3%-igem Nital	geätzt mit 3%-igem Nital	geätzt mit Murakami		
	10 m	2 <u>00 µm</u>		
Gra	aphitform nach DIN EN ISO 945-1 /DIN	45/		
97,1 % (V + VI)	98,1 % (V + VI)	96,7 % (V + VI)		
90.4 % (5 + 6)	80.3 % (5 ± 6)	72.7% (5 + 6)		
90,4 % (5 + 6)	Nodularitätskonnzahl	72,7 % (5 + 6)		
74.4	75.9	81.9		
/ +, +	Ferrit- / Perlit- / Graphitanteil	5,10		
80.5 / 6.6 / 12.9	5.8 / 82.7 / 11.5	-/-/11.6		
EN-GJS-400-18U-LT	EN-GJS-700-2	ADI-900		
Maschinenträger	Planetenträger	Planetenträger		
geätzt mit 3%-igem Nital	geätzt mit 3%-igem Nital	geätzt mit 3%-igem Nital		
	200 µm	280 μm.		
Gra	aphitform nach DIN EN ISO 945-1 /DIN	1451		
99,2 % (V + VI)	99,6 % (V + VI)	99,7 % (V + VI)		
Gra	phitgröße nach DIN EN ISO 945-1 /DIN	N45/		
85,6 % (5 + 6)	88,9 % (5 + 6)	88,3 % (5 + 6)		
	Nodularitatskennzahl	01.0		
85,3	90,1 Forrit / Porlit / Craphitantoil	91,8		
877/16/177	14 4 / 72 5 / 12 0	/ / 11 2		
62,274,0715,5	14,4773,3712,0	-/-/ 11,2		
Y-Block				
Graphitform nach DIN EN ISO 945-1 98,9 % (V + VI) Graphitgröße nach DIN EN ISO 945-1 70,0 % (5 + 6) Nodularitätskennzahl 76,9 Ferrit- / Perlit- / Graphitantei 83,0 / 4,2 / 12,8	/DIN45/ 1 /DIN45/			

Tabelle 15 Schliffbilder (Durchschnittswerte aus jeweils 4 Schliffen)

9 Bauteilbemessung unter Berücksichtigung von Überlasten

9.1 Numerische Untersuchungen zum Bemessungskonzept

9.1.1 Einleitung

Im Rahmen des Projektes wird ein Bemessungskonzept erarbeitet, dass zur Bewertung von hochbeanspruchten Gusskomponenten geeignet ist. Zur Auswahl geeigneter Schädigungsparameter und Dehnungswöhlerlinien-Beschreibungen für das Bemessungskonzept aber auch zur Prüfung der Güte des Konzeptes werden einige gängige Schädigungsparameter und Dehnungswöhlerlinien-Beschreibungen miteinander verglichen. Dazu werden die experimentellen Schwingfestigkeitsversuche mit variabler Amplitude (Kap. 7) rechnerisch untersucht. Die zyklische Beanspruchung der Schwingprobe wird dazu mit unterschiedlichen Berechnungsmodellen nachgerechnet.

Es werden insgesamt zwei Berechnungsgänge durchgeführt. Die Berechnungen erfolgen einerseits auf Basis der gemessenen Spannungen und Dehnungen aus den experimentellen Untersuchungen. Hierbei wird automatisch das zyklische transiente Werkstoffverhalten berücksichtigt. Anderseits wird eine Bewertung nur auf Basis der gemessenen Dehnungen durchgeführt. Hierbei werden die Spannungen mit einem Werkstoffmodell auf Basis des zyklisch-stabilisierten Werkstoffverhaltens abgeleitet. Ziele dieser rechnerischen Untersuchungen sind:

- Bewertung der Güte unterschiedlicher Berechnungsmodelle
- Einflusses des transienten Werkstoffverhaltens auf die Schadenssumme
- Ermittlung charakteristischer Schadenssummen

9.1.2 Berechnungsablauf

Die Vorgehensweise der Schädigungsrechnung ist Kapitel 4.3 dargestellt. Da beim Nachrechnen der Schwingfestigkeitsversuche an den ungekerbten Proben keine Stützwirkung berücksichtigt werden muss, reduziert sich der Berechnungsablauf auf den in Bild 56 dargestellten Umfang. Auf Basis eines Dehnungs-Zeit-Verlaufes wird mit dem Werkstoffmodell für jede Berechnungsvariante (Schädigungsparameter, Dehnungswöhlerlinien-Beschreibung, etc.) ein Spannungs-Dehnungsverlauf berechnet. Mittels eines Zählverfahrens werden die geschlossenen Hysteresen gezählt. Für diese wird mit Schädigungsparametern die Beanspruchung ermittelt. Diese wird anschließend in der Schadensakkumulation mit der Beanspruchbarkeit verglichen. Da die Schwingproben ungekerbt sind, wird keine Stützwirkung berücksichtigt.

Bild 56 Berechnungsablauf in Anlehnung an /See96/

9.1.3 Hinweise zur Auswertung der Berechnungen

Das Mitschreiben aller im Rahmen des Schwingversuchs auftretenden Daten wie Dehnungsamplitude als Soll- und Ist-Wert sowie der Kraft mit entsprechend hoher Abtastung führt zu einem hohen Datenumfang. Da dieser nicht für alle einzelnen Versuche vorgehalten werden kann, können nicht bei allen Schwingfestigkeitsversuchen die gesamten Kraft- und Dehnungsverläufe aufgezeichnet werden. Diese unvollständig aufgezeichneten Versuche werden in den rechnerischen Untersuchungen nicht betrachtet, da auf Basis des kompletten Spannungs-Dehnungsverlaufs eine Schädigungsrechnung durchgeführt wird. In Tabelle 16 sind die Anzahlen der nachgerechneten Versuche dargestellt. Die eingeklammerte Zahl stellt die Anzahl der experimentell geprüften Proben dar.

Kollektiv	Überlast		EN-GJS-400-15 (Y-Block)	EN-GJS-400- 18U-LT (Y-Block)	EN-GJS-400- 18U-LT (MT)	EN-GJS-700-2 (Y-Block)	ADI-800 (Y-Block)
ohne		ne	7 (9)	0 (11)	5 (8)	7 (8)	5 (11)
aerodyn	Anfang	0,5 %		-	-	0 (7)	5 (8)
		1 %	0 (9)	0 (10)	11 (12)	0 (8)	9 (10)
	Nach 5∙10⁵ Zyklen	0,5 %	-	-	-	0 (7)	6 (7)
		1 %	2 (10)	7 (14)	9 (10)	11 (12)	10 (14)
Senvion	ohne		-	4 (9)	4 (10)	5 (9)	9 (11)
	Anfang	0,5 %	-	-	-	7 (8)	-
		1 %	-	0 (9)	6 (10)	-	-
	Nach 5∙10⁵ Zyklen	0,5 %	-	-	-	6 (8)	0 (7)
		1 %	-	-	1 (8)	-	-
Anzahl nachgerechneter Versuche (Anzahl experimentell geprüfter Proben)							

Tabelle 16 Anzahl der Versuche pro Werkstoff und Belastungsszenario

Da häufig gesamte Versuchsreihen auf einer Prüfmaschine geprüft werden, liegen teilweise für ganze Lastszenarien keine rechnerischen Ergebnisse vor und können somit auch nicht in die Auswertung einfließen.

Die zur Nachrechnung der Schwingfestigkeitsversuche verwendeten Kombinationen aus Schädigungsparameter, Dehnungswöhlerlinie, usw. sind in Tabelle T 2 im **Anhang T** dargestellt. Mit diesen Kombinationen wird jeder Schwingfestigkeitsversuch bis zum Anriss nachgerechnet. Folgende Module im Berechnungsprozess werden variiert:

- Schädigungsparameter
 - \circ P_B
 - $\circ \quad P_\epsilon$
 - o Pj
 - o P_{SWT}
- Dehnungswöhlerlinien-Beschreibungen
 - o CMBM
 - o Tri-linear (Modifikation: Original)
 - Tri-linear (Modifikation: Elementar)
 - o Tri-linear (Modifikation: Haibach)
 - o Tri-linear (Modifikation: 5%)
- Spannungs-Dehnungskurve
 - o Abgeleitet mit Kompatibilitätsbedingungen der jeweiligen Dehnungswöhlerlinie
 - o Abgeleitet aus Incremental Step Tests
- Dehnungswöhlerlinie
 - o Abgeleitet aus Schwingfestigkeitsversuchen mit konstanter Dehnungsamplitude
 - o Abgeleitet mittels der Schätzmethode nach /Meg04/
- Spannungsverlauf
 - Spannung rechnerisch ermittelt (Masing-Memory-Modell und zykl. Spannungs-Dehnungskurve)
 - o Spannung aus der gemessen Kraft im Versuch abgeleitet

Bewertung der Berechnungsvarianten

Die Auswertung der Berechnungen erfolgt auf Basis der Schadenssummen, die bis zum Erreichen des Anrisses berechnet werden. Zur Bewertung der Güte und des Einflusses verwendeten Module folgende Kriterien verwendet:

- Neigung der rechnerischen D=1-Gaßner-Linie
- Streuung der Schadenssummen

D=1-Gaßner-Linie

Durch die Umrechnung auf eine Schadenssumme von D = 1 wird eine evtl. vorhandene Abhängigkeit der Schadenssumme von dem Dehnungshorizont sichtbar, Gleichung (22).

$$N_{D=1} = \frac{N_{Anriss}}{D_{Anriss}}$$
(22)

Dabei wird durch diese Umrechnung des Versuchs auf die Schwingspielzahl von D = 1 die Streuung der Versuchsergebnisse entfernt. Eine schematische Darstellung hierzu zeigt Bild 57.

Bild 57 Exemplarische Darstellung der D=1-Gaßner-Linie

Zur besseren Visualisierung werden Ausgleichsgeraden in die Versuchspunkte gelegt. Die Neigung der Ausgleichgeraden für die Versuchspunkte und die auf D = 1 umgerechneten Versuchspunkte sollten idealerweise übereinstimmen. Ist dies nicht der Fall, dann sind die errechneten Schadenssummen vom

Dehnungshorizont der Teilfolge abhängig. Die drei Versuchspunkte auf dem Dehnungshorizont $\varepsilon_a = 0,5\%$ haben trotz gleicher Beanspruchung signifikant unterschiedliche Lebensdauern erreicht. Aufgrund der unterschiedlichen Schwingspielzahlen werden in der Schadensakkumulation jedoch auch unterschiedliche Schadenssummen für die drei Versuche berechnet. Der Versuchspunkt mit der Schadenssumme D = 0,4 hat die geringste Lebensdauer erreicht und wird durch die Umrechnung nach rechts verschoben, der Versuchspunkte mit der Schadenssumme D = 1,9 wird nach links verschoben, Bild 57.

In der exemplarischen Darstellung sind nur Versuche mit der Senvion-Teilfolge ohne Überlast berücksichtigt. Die Schädigungsrechnung basiert auf dem Schädigungsparameter P_B mit einer Mittelspannungsempfindlichkeit M = 0,5 und der tri-linearen Dehnungswöhlerlinie mit der Elementar-Modifikation. Die Parameter der tri-linearen Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet. Die Parameter der Spannungs-Dehnungskurve sind mittels Kompatibilitäts-Bedingungen aus der tri-linearen Dehnungswöhlerlinie abgeleitet.

Streuung der Schadenssummen

Die Streuung der Schadenssummen wird nach Gleichung (23) berechnet. Durch das Logarithmieren der Schadenssummen wird die doppel-logarithmische Darstellung der Dehnungswöhlerlinie berücksichtigt. D_i stellt die Schadenssumme des i-ten Versuchs dar und D_{mw} den Mittelwert aller Schadenssummen

$$Streuung = \sqrt{\frac{\sum_{i=1}^{n} (lg(D_i) - lg(D_{mw}))^2}{n-1}}$$
(23)

Zur ersten Bewertung wird die Streuung der Schadensummen verwendet. Wenn im Berechnungsprozess alle schädigungsrelevanten Einflüsse erfasst werden, dann sollte unabhängig vom Lastkollektiv oder der Überlast immer eine konstante Schadenssumme errechnet werden.

9.1.4 Einfluss der Überlast auf die Mittelspannung

Die Auswertung der Schwingfestigkeitsversuche zeigt, dass die Überlast zu plastischen Deformationen der Probe führt. Durch die hohe negative Dehnung der Überlast wird die Probe gestaucht, die folgenden dehnungsgeregelten Belastungszyklen müssen, um eine Mitteldehnung von $\varepsilon_m = 0$ zu erreichen, mit erhöhter Zugmittelspannung gefahren werden. In Bild 58 bis Bild 60 sind gemittelte (gleitender Mittelwert mit einer Fensterbreite von ca. 1 000 Umkehrpunkten) Spannungs- und Dehnungsverläufe dargestellt. Zum einen sind die aus den gemessenen Prüfstandskräften abgeleiteten Spannungen dargestellt, zum anderen sind die rechnerisch mittels der zykl. stab. Spannungs-Dehnungs-Kurve und dem Masing/Memory-Modell ermittelten Spannung dargestellt. Neben den Mittelspannungen bzw. –dehnungen sind jeweils Einhüllende dargestellt, die zur besseren Übersichtlichkeit mit einem gleitenden Max. bzw. Min-Wert mit einer Fensterbreite von ca. 1 000 Umkehrpunkten gefiltert sind.

Bei Versuchen ohne Überlast ist keine signifikante Mittelspannung vorhanden, Bild 58. Wenn hingegen eine Überlast am Anfang auftritt, entstehen signifikante Zugmittelspannungen, Bild 59. Am Beispiel des EN-GJS-700-2 ist zu sehen, dass diese innerhalb der folgenden ca. 1 000 Schwingspiele deutlich reduziert werden und gegen ein Mittelspannungsniveau von etwa $\sigma_m = 200$ MPa konvergieren. Der rechnerisch ermittelte Mittelspannungsverlauf stimmt dabei gut mit dem experimentellen gut überein.

Bild 58 Spannungs- bzw. Dehnungsverlauf einer Probe ohne Überlast (MW7-1-01, EN-GJS-700-2)

Bild 59 Spannungs- bzw. Dehnungsverlauf einer Probe mit -1% Überlast am Anfang (MW7-1-22, EN-GJS-700-2)

Beim Auftreten der Überlast nach einem Teilfolgedurchlauf (N ca. 500 000 Schwingspiele) entstehen ebenfalls signifikante Mittelspannungen. Am Beispiel des EN-GJS-700-2 ist zu sehen, dass diese ein Mittelspannungsniveau von etwa $\sigma_m = 100$ erreichen. Die rechnerischen Mittelspannungen sind etwas höher als die experimentell ermittelten und fallen nach der Überlast auch weniger stark ab, Bild 60.

Bild 60 Spannungs- bzw. Dehnungsverlauf einer Probe mit -1% Überlast nach einem Durchlauf (MW7-2-20, EN-GJS-700-2)

9.1.5 Einfluss der Modifikation auf die Schadenssumme

In Bild 61 sind die Streuungen, die auf Basis aller Berechnungsergebnisse pro Werkstoff mit dem Schädigungsparameter P_{SWT} berechnet werden, für unterschiedliche Modifikationen der tri-linearen Dehnungswöhlerlinien dargestellt. Zum Vergleich sind auch die mittels der CMBM-Dehnungswöhlerlinie und die mittels P_J-Wöhlerlinie ermittelten Streuungen dargestellt. In den Schädigungsrechnungen wird der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die dazu verwendete Spannungs-Dehnungskurve basiert auf Kompatibilitätsbedingungen der entsprechenden Dehnungswöhlerlinie. Die Parameter der Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet.

Zum einen ist zwischen den Werkstoffen ein Unterschied von bis zu Faktor 2 ersichtlich und zum anderen ist zwischen den Modifikationen ebenfalls ein Unterschied von bis zu Faktor zu 2 vorhanden. Da die Elementar-Modifikation die geringsten Streuungen aufweist, wird diese für die weiteren Vergleiche herangezogen.

Bild 61 Einfluss der Modifikation der Dehnungswöhlerlinie auf die Streuung

9.1.6 Einfluss des Schädigungsparameters auf die Schadenssumme

Mit dem Schädigungsparameter wird der Einfluss der Mittelspannung auf die Schädigung berücksichtigt. In Bild 62 sind die Streuungen der unterschiedlichen Schädigungsparameter dargestellt. In den Schädigungsrechnungen wird der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die dazu verwendete Spannungs-Dehnungskurve basiert beim P_B, P_E und P_{SWT} auf Kompatibilitätsbedingungen der tri-linearen Dehnungswöhlerlinie, beim P_J auf Kompatibilitätsbedingungen der CMBM-Dehnungswöhlerlinie. Die Parameter der Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet.

Bild 62 Einfluss des Schädigungsparameters auf die Streuung

Insgesamt weist der Schädigungsparameter P_J die geringste Streuung auf. Die Schädigungsparameter P_{SWT} und P_B zeigen überwiegend vergleichbare Streuungen. Ein signifikanter Einfluss der Mittelspannungsempfindlichkeit ist in dieser Darstellung nicht festzustellen.

9.1.7 Detaillierte Betrachtung des Mittelspannungseinflusses

Zur detaillierten Betrachtung des Einflusses der Mittelspannungsempfindlichkeit sind in Bild 63 bis Bild 67 die Gaßner-Versuche und die auf D = 1 umgerechneten Gaßner-Versuche dargestellt.

Da die Mittelspannungsempfindlichkeit nur bei Versuchen mit einer signifikanten Mittelspannung einen Einfluss hat, sind in den folgenden Abbildungen nur Versuche mit Überlast dargestellt. In den Schädigungsrechnungen wird der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die dazu verwendete Spannungs-Dehnungskurve basiert beim P_B, P_E und P_{SWT} auf Kompatibilitätsbedingungen der tri-linearen Dehnungswöhlerlinie, beim P_J auf Kompatibilitätsbedingungen der CMBM-Dehnungswöhlerlinie. Die Parameter der Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet.

Bei den Versuchen zum EN-GJS-400-18U-LT (Y-Block) mit der aerodyn-Teilfolge und einer Überlast ($\Delta \epsilon = 1\%$) nach einem Teilfolgedurchlauf ist die Ausgleichsgerade der Versuchspunkte aufgrund der starken Versuchsstreuung und der geringen Anzahl an verwertbaren Versuchen nicht plausibel, Bild 63. Die Ausgleichsgeraden der auf D = 1 umgerechneten Versuche liegen unabhängig von der Mittelspannungsempfindlichkeit dicht zusammen, es ist daher kein signifikanter Einfluss der Mittelspannungsempfindlichkeit auf die Schadenssumme zu erkennen.

Bild 63 Auf D = 1 umgerechnete Versuchspunkte des EN-GJS-400-18U-LT (Y-Block) mit aerodyn-Teilfolge und einer Überlast von -1% nach einem Durchlauf

Bei den Versuchen zum EN-GJS-400-18U-LT (MT) mit aerodyn-Teilfolge und Überlast ($\Delta \epsilon = 1\%$) nach einem Durchlauf stimmt die Neigung der Versuchsgerade am besten mit der Gerade des P_B mit einer Mittelspannungsempfindlichkeit von M = 3 überein, Bild 64. Dies passt zu den Ergebnisse in Bild 62, in denen der P_B mit M = 3 die geringsten Streuungen in der Schadenssumme aufweist.

Bild 64 Auf D = 1 umgerechnete Ergebnisse des EN-GJS-400-18U-LT (SMT) mit aerodyn-Teilfolge und einer Überlast von -1% nach einem Durchlauf

Bei den Versuchen zum EN-GJS-700-2 mit dem aerodyn-Teilfolge und einer Überlast ($\Delta \varepsilon = 1$ %) nach einem Durchlauf ist die Neigung der Versuchsgerade steiler als die der Geraden der auf D = 1 umgerechneten Versuchspunkte, Bild 65. Mit zunehmender Mittelspannungsempfindlichkeit nehmen die Neigungen der auf D = 1 umgerechneten Versuchspunkte zu und nähern sich der Versuchsgeraden. Dies stimmt jedoch nicht mit der abnehmenden Streuung der Schadenssummen bei steigender Mittelspannungsempfindlichkeit Bild 62 überein. Denn bei Übereinstimmung der Neigungen der Gerade wird eine geringe Streuung erwartet. Die abnehmende Streuung bei steigender Mittelspannungsempfindlichkeit ist dadurch begründet, dass beim EN-GJS-700-2 ebenfalls Versuchsreihen mit der Senvion-Teilfolge und $\Delta \varepsilon = 0,5$ % Überlast in die Streuung eingehen und bei diesen geringere Mittelspannungsempfindlichkeiten zu geringeren Streuungen führen, Bild 66. Zu den restlichen Werkstoffen sind Versuche mit Senvion-Teilfolge und Überlast nicht in ausreichender Zahl vorhanden, um diese sinnvoll gegenüberzustellen. Eine belastbare Aussage über die zu verwendenden Mittelspannungsempfindlichkeit kann auf Basis der Ergebnisse nicht getroffen werden.

Bild 65 Auf D = 1 umgerechnete Ergebnisse des EN-GJS-700-2 (Y-Block) mit aerodyn-Teilfolge und einer Überlast von -1% nach einem Durchlauf

Bild 66 Auf D = 1 umgerechnete Ergebnisse des EN-GJS-700-2 (Y-Block) mit Senvion-Teilfolge und einer Überlast von -0,5% am Anfang

Beim ADI-800 (Y-Block) ist die Neigung der Versuchsgerade deutlich steiler als die der Geraden der auf D = 1 umgerechneten Versuchspunkte, Bild 67. Das bedeutet, dass die Schädigung kleiner Dehnungsamplitude unterschätzt oder die großer überschätzt wird. Mit zunehmender Mittelspannungsempfindlichkeit nehmen die Neigungen der auf D = 1 umgerechneten Versuchspunkte zu und nähern sich somit der Versuchsgeraden. Dies stimmt mit der abnehmenden Streuung der Schadenssummen überein, Bild 62.

Bild 67 Auf D = 1 umgerechnete Versuchspunkte des ADI-800 (Y-Block) mit aerodyn-Teilfolge und einer Überlast von -1% nach einem Durchlauf

9.1.8 Einfluss der Spannungs-Dehnungskurve auf die Schadenssumme

In Bild 68 ist der Einfluss der Spannungs-Dehnungskurve auf die Streuung der Schadenssummen dargestellt. Dazu werden zum einen Spannungs-Dehnungskurven verwendet, die mittels Kompatibilitätsbedingungen (CMBM-Dehnungswöhlerlinie) abgeleiteten wurden und zum anderen, welche die auf Basis von Incremental-Step-Tests (IST) abgeleiteten wurden. Die Spannungs-Dehnungskurven sind im Anhang B Bild B 48-52 einander gegenübergestellt. In den Schädigungsrechnungen wird daher der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die Parameter der Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet.

Bild 68 Streuung der Schadenssummen in Abhängigkeit der verwendeten Spannungs-Dehnungskurve

Die Schadenssummen, die auf Basis von IST abgeleiteten Spannungs-Dehnungskurven weisen um bis zu 10 % geringere Streuungen auf als die mittels Kompatibilitätsbedingungen abgeleitete Spannungs-Dehnungskurven. Dies ist darauf zurückzuführen, dass die mittels Kompatibilitätsbedingungen von den CMBM-Dehnungswöhlerlinien abgeleiteten Spannungs-Dehnungskurven das zyklisch stabilisierte Werkstoffverhalten nicht gut treffen. Im Gegensatz zur abgeleiteten Spannungs-Dehungskurve aus der CMBM-Dehnungswöhlerlinie beinhaltet die Spannungs-Dehnungskurve aus dem Incremental Step Test den Einfluss des Gleitcharakters, d.h. Rückwirkungen aus hohen Beanspruchungen auf das zyklische Spannungs-Dehnungs-Verhalten bei kleineren Beanspruchungen. Daher sollte bei einer Lebensdauerabschätzung das Spannungs-Dehnungs-Verhalten eines IST mit einem Kollektivhöchstwert in Höhe der maximalen Beanspruchung des Bemessungskollektiv verwendet werden /Hel15/.

9.1.9 Einfluss des transienten Werkstoffverhaltens

In Bild 69 sind die Streuungen der Schadenssummen für die beiden unterschiedlichen ermittelten Spannungsverläufe dargestellt. In der ersten Berechnung ($\sigma_{rechnerisch}$) werden auf Basis der aufgezeichneten Ist-Dehnungen aus den Versuchen Schadenssummen berechnet. Die Spannung wird in dem Fall über die zyklische Spannungs-Dehnungskurve und das Masing-Memory-Modell ermittelt. Die dazu verwendete Spannungs-Dehnungskurve basiert beim P_B auf Kompatibilitätsbedingungen der tri-linearen Dehnungswöhlerlinie und beim P_J auf Kompatibilitätsbedingungen der CMBM-Dehnungswöhlerlinie. In der zweiten Berechnung ($\sigma_{gemessen}$) werden die aufgezeichneten Ist-Dehnungen und Ist-Spannungen für die Schädigungsrechnung verwendet. Dieser Fall berücksichtigt die zyklische Verfestigung und die Mittelspannungsrelaxation, da das reale Werkstoffverhalten in der Berechnung berücksichtigt wird.

Bild 69 Streuung der Schadenssummen unter Berücksichtigung des transienten Werkstoffverhaltens

Die Streuungen sind in beiden Berechnungsprozessen überwiegend vergleichbar. Die Streuungen weichen je nach Werkstoff und Schädigungsparameter um bis zu ca. 10 % voneinander ab. Ein signifikanter Einfluss der Berücksichtigung des transienten Werkstoffverhaltens und der Mittelspannungsrelaxation kann bei Betrachtung aller Versuche nicht festgestellt werden, wobei zu beachten ist, dass sowohl der Schädigungsparameter nach Smith-Watson-Topper P_{SWT} und somit auch der nach Bergmann P_B nicht besonders empfindlich auf unterschiedliches Spannungs-Dehnungsverhalten reagieren /Möl17/.

9.1.10 Einfluss von mittels Schätzmethoden ermittelter Dehnungswöhlerlinie

Bild 70 Streuung der Schadenssummen bei Schätzmethoden

In Bild 70 sind die Streuungen der Berechnungen, die auf geschätzten Dehnungswöhlerlinien /Meg04/ basieren und die auf mittels Wöhlerversuchen abgeleiteten Dehnungswöhlerlinien basieren, dargestellt. In den Schädigungsrechnungen wird der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die dazu verwendete Spannungs-Dehnungskurve basiert auf Kompatibilitätsbedingungen der tri-linearen Dehnungswöhlerlinie.

Die Abweichungen in den Streuungen sind abhängig vom Werkstoff. Überwiegend liegt die Zunahme der Streuung bei der Schätzmethode im Bereich von -10 bis 10 %, beim EN-GJS-700-2 beträgt sie bis zu 20% und beim ADI-800 bis zu 45%.

9.1.11 Mittlere Schadenssummen

Der Mittelwert der Schadenssummen wird nach Gleichung (24) berechnet. Durch das Logarithmieren wird der doppel-logarithmische Raum der Dehnungswöhlerlinie berücksichtigt.

$$D_{mw} = 10^{\frac{\sum_{i=1}^{n} \lg(D_i)}{n}}$$
(24)

Die mittlere Schadenssumme aller nachgerechneter Versuche beträgt D = 0,38. Dieser Schadenssumme liegt der Schädigungsparameter P_B (M = 0,5) und die tri-lineare Dehnungswöhlerlinie mit der Elementar-Modifikation zugrunde. In den Schädigungsrechnungen wird der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die dazu verwendete Spannungs-Dehnungskurve basiert auf Kompatibilitätsbedingungen der tri-linearen Dehnungswöhlerlinie. Die Parameter der Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet.

Einfluss der Modifikation auf die Schadenssummen

In Bild 71 sind mittlere Schadenssummen für unterschiedliche Modifikationen der Dehnungswöhlerlinie für jeden Werkstoff dargestellt. Zum Vergleich sind zusätzlich die mittlere Schadenssumme des CMBM und P_J dargestellt. In den Schädigungsrechnungen wird der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die dazu verwendete Spannungs-Dehnungskurve basiert beim P_B und P_{SWT} auf Kompatibilitätsbedingungen der tri-linearen Dehnungswöhlerlinie, beim P_J auf Kompatibilitätsbedingungen der CMBM-Dehnungswöhlerlinie. Die Parameter der Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet.

Zwischen den unterschiedlichen Modifikationen der Dehnungswöhlerlinie liegen Abweichungen in der mittleren Schadenssumme von bis zu Faktor ca. 2. Zwischen den unterschiedlichen Werkstoffen liegen bei Verwendung des P_{SWT} Abweichungen in der mittleren Schadenssumme von bis zu ca. Faktor 15.

Bild 71 Mittlere Schadenssummen für unterschiedliche Modifikationen der Dehnungswöhlerlinien

Einfluss des Schädigungsparameters auf die Schadenssumme

In Bild 72 sind mittlere Schadenssummen für unterschiedliche Schädigungsparameter dargestellt. In den Schädigungsrechnungen wird der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die dazu verwendete Spannungs-Dehnungskurve basiert beim P_B und P_{SWT} auf Kompatibilitätsbedingungen der tri-linearen Dehnungswöhlerlinie, beim P_J auf

Kompatibilitätsbedingungen der CMBM-Dehnungswöhlerlinie. Die Parameter der Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet.

Bild 72 Mittlere Schadenssummen bei unterschiedlichen Schädigungsparametern

Zwischen den unterschiedlichen Schädigungsparametern liegen Abweichungen in der mittleren Schadenssumme von bis zu Faktor ca. 7, eine Ausnahme stellt der PJ dar. Dieser liefert vergleichsweise hohe Schadenssummen. Zwischen den unterschiedlichen Werkstoffen liegen Abweichungen in der mittleren Schadenssumme von bis zu ca. Faktor 15. Die unterschiedlichen Mittelspannungsempfindlichkeiten bei Verwendung des P_B führen zu Abweichung von bis zu ca. Faktor 2.

Einfluss der Kollektivform auf die Schadenssumme

In Bild 73 sind die Schadenssummen für die beiden unterschiedlichen Teilfolgen (aerodyn-Teilfolge und Senvion-Teilfolge) darstellt. Es sind nicht für alle Werkstoffe alle benötigten Daten zum Nachrechnen vorhanden, daher fehlen für einige Werkstoffe die mittleren Schadenssummen. In den Schädigungsrechnungen wird der rechnerisch ermittelte Spannungsverlauf berücksichtigt (auf Basis des gemessenen Dehnungsverlaufs berechnet). Die dazu verwendete Spannungs-Dehnungskurve basiert auf Kompatibilitätsbedingungen der tri-linearen Dehnungswöhlerlinie. Die Parameter der Dehnungswöhlerlinie sind aus Wöhlerversuchen abgeleitet.

Bild 73 Mittlere Schadenssummen bei unterschiedlichen Schädigungsparametern

Teilweise sind signifikante Unterschiede in den mittleren Schadenssummen zwischen den beiden Teilfolgen festzustellen. Dabei ist zu beachten, dass teilweise sehr wenige Versuche in die Berechnung der mittleren Schadenssummen eingeflossen sind, Tabelle 16. Bei diesem sind die mittleren Schadenssumme für die Senvion-Teilfolge beim P_B mit M=0,5 etwas größer als bei der aerodyn-Teilfolge.

9.1.12 Güte des Berechnungskonzeptes

Zur weiteren Prüfung der Güte des Berechnungskonzeptes werden rechnerische und experimentelle Anrissschwingspielzahlen gegenübergestellt. Dazu werden zu den verwendeten Teilfolgen, Bild 22 und Bild 23, mit dem in Abschnitt 4.3 beschrieben Berechnungsablauf die Schadenssummen D_{TF} berechnet. Mit Gleichung (25) wird anschließend die Schwingspielzahl N_A zum Erreichen der charakteristischen Schadenssumme D_{ch} berechnet. LS entspricht dem Umfang der jeweiligen Teilfolge.

$$N_A = \frac{D_{TF}}{D_{ch}} \cdot LS \tag{25}$$

Im Falle einer zu berücksichtigenden Überlast sind nach der Überlast zwei weitere Teilfolgedurchläufe zu berechnen. In der Extrapolation wird dann nur der letzte Teilfolgedurchlauf verwendet, um ein evtl. Abklingen der Mittelspannung korrekt zu erfassen.

In der Schädigungsrechnung wird eine charakteristische Schadenssumme von $D_{ch} = 0,3$ verwendet. Die Dehnungswöhlerlinie wird nach dem tri-linearen Ansatz mit der "elementar" Modifikation beschrieben. Die Beanspruchung wird mit dem Schädigungsparameter nach Bergmann mit einer Mittelspannungsempfindlichkeit von M = 0,5 berechnet.

Die Versuche ohne Überlast sind in Bild 74 dargestellt. Dabei ist zu beobachten, dass je nach Werkstoff etwas zu hohe (EN-GJS-400-15 und EN-GJS-400-18U-LT (MT)) oder zu niedrige (ADI-800) rechnerische

Schwingspielzahlen ermittelt werden. Dies ist vermutlich auf die verwendeten charakteristischen Schadenssummen zurückzuführen und stimmt mit den werkstoffabhängigen, rechnerisch ermittelten Schadenssummen auf Bild 73 überein. Für den ADI-800 wird z.B. eine charakteristische Schadenssumme von $D_{ch} = 0,8$ ermittelt, die Verwendung von $D_{ch} = 0,3$ führt dazu, dass zu geringe rechnerische Schwingspielzahlen berechnet werden. Des Weiteren ist zu beobachten, dass die Neigung der Gaßnerlinie gut getroffen wird. Dies ist daran zu erkennen, dass die Versuchspunkte parallel zur gestrichelten Mittellinie angeordnet sind.

Bild 74 N-N-Diagramme für Versuchen ohne Überlast

Die Versuche mit einer Überlast am Anfang sind auf Bild 75 und die mit einer Überlast nach einem Teilfolgedurchlauf sind auf Bild 76 dargestellt. Bei diesen Versuchen ist zu beobachten, dass die rechnerischen Schwingspielzahlen tendenziell niedriger ausfallen als die experimentellen Schwingspielzahlen. Die Neigung der Gaßnerlinie wird bei einigen Werkstoffen nicht gut getroffen. In Bild 75 lässt sich bei einigen Werkstoffen (EN-GJS-400-18U-LT und EN-GJS-700-2) erkennen, dass in Abhängigkeit der Teilfolge die rechnerischen Anrissschwingspielzahlen zu hoch (Senvion-Teilfolge) oder zu niedrig (aerodyn-Teilfolge) ausfällt.

In Bild 77 bis Bild 78 sind Versuche ohne Überlast für die aerodyn-Teilfolge und für die Senvion-Teilfolge dargestellt. Auch hier kann beobachtet werden, dass die rechnerischen Anrissschwingspielzahlen für die Senvion-Teilfolge i.d.R. oberhalb der für die aerodyn-Teilfolge liegt.

Bild 75 N-N-Diagramm für Versuchen mit einer Überlast am Anfang

Bild 76 N-N-Diagramm für Versuche mit einer Überlast nach einer Teilfolge

Bild 77 N-N-Diagramm für Versuche mit aerodyn-Teilfolge (ohne Überlast)

Bild 78 N-N-Diagramm für Versuche mit Senvion-Teilfolge (ohne Überlast)

9.1.13 Diskussion der Ergebnisse

Anzahl verwendbarer Versuche

Da nicht zu allen Schwingfestigkeitsversuchen der gesamte Spannungs-Dehnungsverlauf aufgezeichnet werden konnten, sind teilweise für ganze Versuchsreihen keine Daten vorhanden. Dies ist beim Vergleich der beiden Teilfolgen ersichtlich, mit der aerodyn-Teilfolge können 94 Versuche nachgerechnet werden, während es für die Senvion-Teilfolge nur 43 sind. In den Berechnungen der Streuungen und der mittleren Schadenssummen wird die aerodyn-Teilfolge dadurch stärker gewichtet als die Senvion-Teilfolge.

Einfluss der Mittelspannungsempfindlichkeit

Die Mittelspannungsempfindlichkeit wird mit dem Schädigungsparameter nach P_B mit den Mittelspannungsempfindlichkeiten M = 0,3, M = 0,4 und M = 0,5 untersucht. Generell ist zu beobachten, dass eine höhere Mittelspannungsempfindlichkeit bei Zugeigenspannungen zu höheren Schadenssummen führt. Die Streuung zeigt für die unterschiedlichen Werkstoffe unterschiedliche Tendenzen, beim ADI-800 (Y-Block) nimmt die Streuung mit steigender Mittelspannungsempfindlichkeit ab, Bild 62. Bei den anderen Werkstoffen nimmt die Streuung eher zu. Der EN-GJS-700-2 zeigt in Abhängigkeit der Teilfolge, der Überlasthöhe und des Zeitpunktes des Auftretens der Überlast eine uneinheitliche Tendenz der Mittelspanungsempfindlichkeit. Bei der aerodyn-Teilfolge mit einer Überlast von $\Delta \varepsilon = 1\%$ nach einem Durchlauf weist die Mittelspannung von M = 0,5 die geringsten Abweichungen zum Versuch auf, Bild 65. Bei der Senvion-Teilfolge mit einer Überlast von $\Delta \varepsilon = 0,5\%$ am Anfang weist hingegen die Mittelspannungsempfindlichkeit von M = 0,3 die geringsten Abweichungen zum Versuch auf, Bild 66. Ebenfalls wird dabei ersichtlich, dass die Abweichungen zwar durch die Mittelspannungsempfindlichkeit von M = 0,3 die geringsten Abweichungen zum Versuch auf, Bild 66. Ebenfalls wird dabei ersichtlich, dass die Abweichungen zwar durch die Mittelspannungsempfindlichkeiten beeinflusst werden, diese aber noch größer bzw. kleiner gewählten werden müssten, um die Abweichungen noch weiter zu reduzieren. Daher ist davon auszugehen, dass es weitere Einflussgrößen gibt, die im Berechnungsprozess nicht korrekt erfasst werden.

Empfehlungen für das Bemessungskonzept

Die untersuchten Modifikationen der Dehnungswöhlerlinie zur linearen Schadensakkumulation haben einen signifikanten Einfluss auf die Streuung und auch auf die Höhe der Schadenssumme. Die geringsten Streuungen weist die Elementar-Modifikation auf. Die Modifikationen werden nur für die tri-lineare Dehnungswöhlerlinie angewandt, da sich diese als am besten zur Beschreibung des zyklischen Werkstoffverhaltens von GJS-Werkstoffen und Dehnungsregelung in diesem Projekt herausgestellt hat. Der P_J weist bei Betrachtung aller Versuchsergebnisse die geringsten Streuungen auf und liefert daher die zuverlässigsten Ergebnisse. Bezogen auf die Streuungen beim P_J liegen die Streuungen bei Verwendung des P_{SWT} mit tri-linearer Dehnungswöhlerlinie und der Elementar-Modifikation je nach Werkstoff im Bereich von ca. ± 20 %, Bild 62. Zwischen dem P_{SWT} und dem P_B mit den drei untersuchen Mittelspannungsempfindlichkeiten konnte kein signifikanter Unterschied festgestellt werden. Da jedoch in einigen Belastungsszenarien ein deutlicher Einfluss der Mittelspannungsempfindlichkeit festgestellt wurde, wird der P_B empfohlen.

Aufgrund des vergleichsweise hohen Aufwandes bei der Implementation und der hohen Komplexität des P_J wird der P_B empfohlen.

Bewertung höherfester Werkstoffe

Die Untersuchungen haben gezeigt, dass mit dem örtlichen Konzept die Beanspruchbarkeit höherfester Werkstoffe auch unter Berücksichtigung von Überlasten zuverlässig bewertet werden kann. Bild 62 zeigt, dass die Streuung der Schadenssummen bei den höherfesten Werkstoffen niedriger ist als bei den duktilen Werkstoffen. Ein zusätzlicher Sicherheitsfaktor zur Bewertung der Einsatzfähigkeit höherfester Werkstoffe, wie der SRF /DNV16/, scheint daher im Rahmen des Konzepts nicht erforderlich.

9.2 Dehnungsbasiertes Bemessungskonzept

9.2.1 Einleitung, Übersicht und Gültigkeitsbereich

Anwendungs- und Gültigkeitsbereich

Das Bemessungskonzept ist ein Verfahren zur Bewertung der Schwingfestigkeit von Bauteilen aus Gusseisen mit Kugelgraphit, wobei von folgenden Randbedingungen ausgegangen wird:

- (1) Die Bewertung von ausgeprägten mehrachsigen Beanspruchungszuständen wird in diesem Konzept nicht behandelt. Die Richtung der ersten Hauptnormalspannung sollte nicht mehr als innerhalb eines Beanspruchungszyklus variieren: $\alpha = 20^{\circ}$
- (2) Die Bewertung von Gussfehlern (Lunker, Dross, Chunky-Graphit) wird in diesem Konzept nicht behandelt.
- (3) Wenn der Temperaturbereich unter t = -20 °C oder über t = 50 °C liegt, ist dieser gesondert zu berücksichtigen.
- (4) Korrosion wird in diesem Konzept nicht berücksichtigt.

Auswahl eines Bemessungsansatzes

Das dehnungsbasierte Bemessungskonzept kann zur Schwingfestigkeitsbewertung im gesamten Festigkeitsbereich, also von der Kurzeit- bis zur Langzeitfestigkeit, verwendet werden. Dies ist mit spannungsbasierten Bemessungskonzepten, wie z.B. /DNV16/ nur bedingt möglich, da die im Kurzzeitfestigkeitsbereich beim Überschreiten der Fließgrenze auftretenden Plastifizierungen und sich dadurch einstellenden Mittel- bzw. Eigenspannung nicht richtig abbildet und somit bewertet werden können.

Die Anwendung des dehnungsbasierten Bemessungskonzepts wird empfohlen, wenn die Fließgrenze lokal am Bauteil durch die max. bzw. min. auftretenden Belastungen so weit überschritten, dass die verbleibenden Eigenspannungen größer als 5% der Dehngrenze R_{p0,2} sind.

<u>Anmerkung:</u>

Wird die Fließgrenze lokal am Bauteil durch die max. bzw. min. auftretenden Belastungen nicht bzw. nicht signifikant überschritten, dann kann der Anwender zwischen spannungs- und dehnungsbasiertem Bewertungsansatz frei wählen. Als Kriterium wird die Höhe der eingebrachten Eigenspannungen verwendet. Diese sollten nicht größer als 5 % der Dehngrenze R_{p0,2} sein.

Soll bei Mittelspannungen größer als 5 % der Dehngrenze R_{p0,2} dennoch ein spannungsbasierter Ansatz zur Anwendung kommen, dann wird folgendes vereinfachtes Verfahren angewandt werden, das jedoch zu teils stark konservativen Ergebnissen (siehe Kap. 9.3) führt:

1. Ermittlung der max. Eigenspannungen, die durch die max. bzw. min auftretenden Belastungen entstehen. Hierzu wird die Durchführung einer FE-Berechnung mit elastisch-plastischen Werkstoffverhalten empfohlen. Dabei sollte sowohl das zyklisch stabilisierte Werkstoffverhalten als auch das nicht stabilisierte Werkstoffverhalten berücksichtigt werden.

- 2. Verwendung der Eigenspannungen als eine Mittelspannung im spannungsbasierten Bewertungsansatz. Dabei ist zu beachten, dass
 - a. Druckeigenspannungen nicht berücksichtigt werden
 - b. Eine Relaxation der Eigenspannungen nicht berücksichtigt wird

9.2.2 Spannungs-Dehnungsverhalten

Zur Bestimmung der Hysteresen ist ein Modell zur Beschreibung des zyklischen Spannungs-Dehnungsverhaltens notwendig. Dies erfolgt nach Ramberg-Osgood /Ram43/ und Annahme eines zyklisch stabilisierten Werkstoffzustandes.

9.2.3 Last-Kerbdehnungskurve (Bauteilfließkurve)

Das Verhalten zwischen äußerer Last und lokaler Dehnung in der Kerbe wird mit der Bauteilfließkurve beschrieben. Es wird empfohlen die Bauteilfließkurve mittels einer elastisch-plastischen FE-Rechnung zu bestimmen. Bei der FE-Berechnung ist auf eine ausreichend feine Vernetzung zu achten. Im Falle der Verwendung der Submodell-Technik sollte die Abmessung des Submodells groß im Vergleich zu der elastisch-plastischen Zone sein. Alternativ zu einer FE-Berechnung können Näherungsbeziehungen /See77, Gli85/ verwendet werden. Zur Bestimmung der Last-Kerbdehnungskurve müssen folgende Daten vorliegen:

- Bauteilgeometrie (Makrogeometrie, ohne Oberflächenrauigkeit)
- Randbedingungen (Lagerung, Einspannungen)
- Belastungssituation (Einheitslastfälle)

9.2.4 Masing-Memory-Modell

Das zyklische Werkstoffverhalten wird mit dem Masing-Memory-Modell beschrieben /Mas26, Clo86/.

9.2.5 Beanspruchbarkeit

Die Beanspruchbarkeit des Werkstoffes wird durch die tri-lineare Dehnungswöhlerlinie abgebildet.

9.2.6 Schwingfestigkeitsbewertung

Einflussfaktoren

Zur Übertragung der Schwingfestigkeitseigenschaften von der Schwingfestigkeitsprobe auf das Bauteil, werden die werkstoffmechanische Stützzahl n_{σ} und der Einflussfaktor der Oberflächenrauigkeit n_o Anlehnung an /FKM12/ berücksichtigt:

$$f = \frac{n_o}{n_\sigma} \tag{26}$$

Werkstoffmechanische Stützzahl

In die werkstoffmechanische Stützzahl no gehen folgende Einzelfaktoren ein:

$$n_{\sigma} = n_{st} \cdot n_{vm} \cdot n_{bm} \tag{27}$$

n_{st} Statistische Stützzahl (28)

 n_{vm} Verformungsmechanische Stützzahl (30)

n_{bm} Bruchmechanische Stützzahl (31)

Statistische Stützzahl

Der Einfluss der Bauteilgröße wird mit der statistischen Stützzahl nach /FKM12/ erfasst

$$n_{st} = \left(\frac{A_{ref,st}}{A_{\sigma,st}}\right)^{1/k_{st}}$$
(28)

Aref Referenzoberfläche (Hoch beanspruchte Oberfläche der Probe)

 $A_{\sigma.st}$ Höchst beanspruchte Oberfläche des Bauteils

k_{st} Weibull-Exponent

Für Eisenguss gilt nach /FKM12/:

$$k_{st} = 10 \tag{29}$$

Verformungsmechanische Stützzahl

Die Makrostützwirkung wird durch die Bauteilfließkurve berücksichtigt, daher gilt:

$$n_{vm} = 1 \tag{30}$$

Bruchmechanische Stützzahl

Zur Berücksichtigung des Ermüdungsrisswachstums wird die bruchmechanische Stützzahl n_{bm} nach /FKM12/ berücksichtigt:

$$n_{bm} = \frac{5 + \sqrt{G_{\sigma}}}{5 \cdot n_{vm} \cdot n_{st} + \frac{R_m}{R_{m,bm}} \cdot \sqrt{\frac{7,5 + \sqrt{G_{\sigma} \cdot mm}}{1 + 0,2 \cdot \sqrt{G_{\sigma}} \cdot mm}}}$$
(31)

- *n_{st}* Statistische Stützzahl (28)
- *n*_{vm} Verformungsmechanische Stützzahl (30)
- *R_m* Zugfestigkeit aus Zugversuch
- R_{m,bm} Referenzzugfestigkeit für Stahl
- G_{σ} Bezogenes Spannungsgefälle (32)

Das bezogene Spannungsgefälle wird wie folgt berechnet:

$$G_{\sigma} = \frac{1}{\Delta s} \cdot \left(1 - \frac{\sigma_{2a}}{\sigma_{1a}} \right) \tag{32}$$

 σ_{1a}, σ_{2a} Spannungsamplituden bei Δs

 Δs Abstand des Nachbarpunktes vom Rand

Hinweis: Der Nachbarpunkt ist dabei so zu wählen, dass der Wert für G_{σ} maximal wird.

Bild 79 Bestimmung des bezogenen Spannungsgefälles

Oberflächenrauigkeit

Die Oberflächenrauigkeit wird nach /Hue81/ berücksichtigt:

$$n_0 = 1 - 0.22 \left(\log(R_z) \right)^{0.64} \log(R_m) + 0.45 \left(\log(R_z) \right)^{0.53}$$
(33)

- R_z Oberflächenrauigkeit in μ m
- *R_m* Zugfestigkeit

9.2.7 Schädigungsparameter

Zur Berücksichtigung der Mittelspannungen wird der Schädigungsparameter nach Bergmann /Ber83/ verwendet, Gleichung (12). Der Korrekturfaktor für die Mittelspannung k wird in Abhängigkeit der Mittelspannung gewählt /FKM18/, Gleichung (13).

9.2.8 Einfluss von Überlasten

Im Falle eines möglichen Auftretens von Überlasten sind Schadenssummen für folgende Szenarien zu berechnen:

1. *D*_{Sz1}: Schadenssumme für Szenario 1:

Die Überlast tritt zu einem Zeitpunkt auf, an dem kein zyklisch stabilisiertes Werkstoffverhalten vorliegt. Die plastischen Deformationen, die durch die Sonderlast eingebracht werden, sind auf Basis der Erstbelastungskurve zu ermitteln.

 D_{Sz2}: Schadenssumme für Szenario 2: Die Überlast tritt zu einem Zeitpunkt auf, an dem zyklisch stabilisiertes Werkstoffverhalten vorliegt. Die plastischen Deformationen, die durch die Überlast eingebracht werden, sind auf Basis der zyklisch stabilisierten Spannungs-Dehnungskurve zu ermitteln.

Zur Bemessung ist das Szenario mit der höheren Schadenssumme zu verwenden. Es gilt:

$$D = max(D_{Sz1}; D_{Sz2}) \tag{34}$$

9.2.9 Nachweis

Die rechnerische Schadenssumme D muss kleiner als die zulässige Schadenssumme D_{zul} sein:

$$D < D_{zul} \tag{35}$$

Die Schadenssumme D wird mittels einer linearen Schadensakkumulation berechnet. Pro geschlossene Hysterese wird eine Teilschädigung D_iberechnet. Die Addition der Teilschädigungen ergibt die Schadenssumme D, Gleichung (36).

$$D = \sum_{i} D_i \tag{36}$$

9.2.10 Statistische Absicherung

Das Sicherheitskonzept zur statistischen Absicherung ist in Absprache mit dem DNVGL zu wählen. Die Untersuchungen haben gezeigt, dass mit dem örtlichen Konzept die Beanspruchbarkeit höherfester Werkstoffe auch unter Berücksichtigung von Überlasten zuverlässig bewertet werden kann. Ein zusätzlicher Sicherheitsfaktor zur Bewertung der Einsatzfähigkeit höherfester Werkstoffe, wie der SRF /DNV16/, scheint daher im Rahmen des Konzepts nicht erforderlich.

9.3 Numerische Untersuchungen zum spannungsbasiertes Bemessungskonzept

Zur Prüfung der Eignung eines spannungsbasierten Berechnungsansatzes werden für die verwendeten Teilfolgen, Bild 22 und Bild 23, mit und ohne Überlast Schädigungsrechnungen mit dem Spannungskonzept durchgeführt. Um eine Teilschädigung für die Überlast berechnen zu können, wird die Spannungswöhlerlinie um eine Beschreibung im Kurzzeitfestigkeitsbereich erweitert. In Bild 80 ist dieser beispielhaft für den EN-GJS-400-18U-LT (Y-Block) dargestellt.

Bild 80 Dreiteilige Spannungswöhlerlinie (EN-GJS-400-18U-LT, Y-Block)

Zur Ableitung der Neigungen und Abknickpunkte wird die Maximum-Likelihood-Methode /Spi78/ verwendet. Grundlage der dreiteiligen Spannungswöhlerlinie sind die dehnungsgeregelten Schwingfestigkeitsversuche. Da die untersuchten Werkstoffe eine zyklische Verfestigung aufweisen, wird die Spannungsamplitude bei N_A/2 verwendet. Aufgrund der wenigen Versuchsergebnisse im Bereich N > 10⁶ Schwingspiele, wird ein Abknickpunkt bei einer Schwingspielzahl von N = 2·10⁶ und eine Neigung von k* = 45 für alle Werkstoffe angenommen. Die Neigungen und Abknickpunkte sind in Tabelle 17 dargestellt.

Werkstoff	Bereich 1			Bereich 2			Bereich 3
	k1	S ₁ [MPa]	N_1	k ₂	S ₂ [MPa]	N_2	k₃
EN-GJS-400-15	18	305	7,9·10³	9	173	2·10 ⁶	45
EN-GJS-400-18U-LT (Y-Block)	16	275	7,9·10³	9	148	2·10 ⁶	45
EN-GJS-400-18U-LT (MT)	16	301	5·10³	14	193	2·10 ⁶	45
EN-GJS-700-2	17	330	1,6·10 ⁴	6	148	2·10 ⁶	45
ADI-800	18	546	2·10 ³	7	189	2·10 ⁶	45

Tabelle 17	7 Parameter	der	dreiteiligen	Spannung	aswöhlerlinie
Tabelle II	- arameter		arenegen	opannan	go o

Die Wöhlerlinie wird durch Gleichung (37) beschrieben:

$$N = \begin{cases} N_1 \cdot \left(\frac{S_a}{S_1}\right)^{-k_1} , & f \ddot{\mathrm{u}}r \, N \leq N_1 \\ N_2 \cdot \left(\frac{S_a}{S_2}\right)^{-k_2} , & f \ddot{\mathrm{u}}r \, N_1 < N \leq N_2 \\ N_2 \cdot \left(\frac{S_a}{S_2}\right)^{-k_3} , & f \ddot{\mathrm{u}}r \, N > N2_1 \end{cases}$$
(37)

Um die Mittelspannungsverschiebungen zu berücksichtigen, die sich aus plastischen Deformationen der Überlast ergeben, wird der Halbzyklus der Überlast mit dem Masing/Memory-Modell berechnet. Die verbleibenden Spannungen, die sich daraus ergeben sind in Tabelle 18 dargestellt. Dabei ist zu beachten, dass in der Schädigungsbewertung für die dehnungsgeregelte Überlast Spannungen verwendet werden, die auf einem elastisch-plastischen Werkstoffverhalten basieren. Die Mittelspannungsempfindlichkeit ist in Bild 81 dargestellt.

Bild 81 Haigh-Diagramm

Manlash off	Spannung bei	Überlast [MPa]	Spannung bei e = 0 % [MPa]		
VVErKSTOTT	ÜL: ε = -0,5 % ÜL: ε = -1 %		ÜL: ε = -0,5 %	ÜL: ε = -1 %	
EN-GJS-400-15	-366	-413	248	319	
EN-GJS-400-18U-LT (Y-Block)	-346	-393	234	299	
EN-GJS-400-18U-LT (MT)	-346	-385	249	307	
EN-GJS-700-2	-464	-585	206	344	
ADI-800	-613	-915	122	311	

Tabelle 18 Rechnerisch ermittelte Spannungen während und nach der Überlast

In Bild 82 sind die Häufigkeiten der Spannungsamplituden und Mittelspannungen zu den Überlasten dargestellt. Im Gegensatz zum dehnungsbasierten Ansatz, kann keine Relaxation der Mittelspannung durch ein Überschreiten der Streckgrenze abgebildet werden. Beispielsweise wird beim EN-GJS-700-2 die rechnerische Mittelspannung beim dehnungsbasierten Ansatz von σ_m = 344 MPa innerhalb von ca.

1 000 Schwingspielen auf ca. σ_m = 200 MPa reduziert, Bild 59. Beim spannungsbasierten Ansatz bleibt diese konstant bei σ_m = 344 MPa.

Bild 82 Häufigkeiten der Spannungsamplitude und Mittelspannungen der aerodyn-Teilfolge (ADI-800)

Auf Bild 83 bis Bild 85 sind experimentelle Anrissschwingspielzahlen und rechnerisch mit dem Spannungskonzept ermittelte Schwingspielzahlen gegenübergestellt. Die Versuche ohne Überlast sind in Bild 83 dargestellt. Wie beim dehnungsbasiertem Ansatz (Bild 74) ist auch hier zu beobachten, dass je nach Werkstoff etwas zu hohe (EN-GJS-400-15 und EN-GJS-400-18U-LT (MT)) oder zu niedrige (ADI-800) rechnerische Schwingspielzahlen ermittelt werden. Als Ursache wird auch hier die verwendeten charakteristischen Schadenssummen vermutet.

Bild 83 N-N-Diagramm der Versuche ohne Überlast

Die Versuche mit einer Überlast am Anfang sind auf Bild 84 und die mit einer Überlast nach einem Teilfolgedurchlauf sind auf Bild 85 dargestellt. Bei diesen Versuchen ist zu beobachten, dass die rechnerischen Schwingspielzahlen deutlich niedriger ausfallen als die experimentellen Schwingspielzahlen. Die Ursache dafür liegt in den hohen Mittelspannungen, die durch die Betriebslasten nicht reduziert werden. Die rechnerischen Ergebnisse sind somit konservativ. Bei den Versuchen mit einer Überlast nach einem Teilfolgendurchlauf stimmen Anrissschwingspielzahlen der höherfesten Werkstoffe deutlich besser mit den experimentellen Anrissschwingspielzahlen überein als die Semiduktilen. Als Ursache dafür wird das Mittelspannungsniveau vermutet, dass sich bei den semiduktilen Werkstoffen deutlich stärker unterscheidet als bei den höherfesten. Dies ist auf Bild 86 dargestellt.

Bild 84 N-N-Diagramm der Versuche mit einer Überlast am Anfang

Bild 85 N-N-Diagramm der Versuche mit einer Überlast nach einem Teilfolgedurchlauf

Bild 86 Mittelspannungsverläufe bei Versuchen mit einer Überlast nach einem Teilfolgedurchlauf

10 Bezug zum Bericht des DNV GL

Der diesem Bericht beigefügte Bericht des DNV GL beurteilt die Projektergebnisse im Rahmen von GaßnerWind. Darin erachtet der DNV GL das vorgeschlagene Bemessungskonzept als geeignet, um den Einfluss von Überlasten zu beurteilen. Auch wenn dies, wie bereits erläutert, zunächst nur für die untersuchten Werkstoffe gezeigt werden kann, besteht somit eine Möglichkeit, das Überlastverhalten von Bauteilen lokal bewerten zu können. Eine Akzeptanz von Neukonstruktionen oder Nachberechnungen durch den DNV GL, die dem Bemessungskonzept unterliegen, erscheint somit als möglich, auch wenn ein genauer Vergleich der Randbedingungen aus dem Vorhaben und dem jeweiligen, zu bemessenden Einzelfall nicht ausbleiben kann.

Im Rahmen der Beurteilung der Projektergebnisse merkt der DNV GL in seinem Bericht einen wünschenswerten Vergleich zu spannungsbasierten Ansätzen sowie Grenzkriterien der Nutzung des dehnungsbasierten Konzeptes an. Diesen Aspekten wurde mit entsprechenden Anmerkungen im Schlussbericht in Kapitel 9.3 Rechnung getragen, die dem DNV GL in der zur Begutachtung eingereichten Vorabversion des Schlussberichtes am 12.07.2018 noch nicht vorlagen.

11 Nachweis von Veröffentlichungen

Die Ergebnisse des Vorhabens wurden bisher veröffentlicht in:

- Hesseler, J., Bleicher, C., Baumgartner, J., Schnabel, K., Wagener, R., Kaufmann, H., & Melz, T. (2017). FATIGUE ASSESSMENT OF THICK-WALLED NODULAR CAST IRON WITH REGARD TO HIGHLY LOADED MACHINE STRUCTURES USING THE STRAIN-LIFE APPROACH, LCF8 Eight International Conference on Low Cycle Fatigue, DVM, 2017
- Bleicher, C.: Influence of Different Load Histories on the Cyclic Material Behavior of Nodular Cast Iron for Thick-walled Application. International Journal of Offshore and Polar Engineering. Transactions of The ISOPE, Volume 28, Number 3, September 2018, ISSN: 1053-5381, S. 294 – 302
- C. Bleicher, R. Wagener, T. Melz: Bewertung des zyklischen, dehnungsbasierten Werkstoffverhaltens von Gusseisen mit Kugelgraphit. In: Christ, H.-J. (HRSG.): Fortschritte in der Werkstoffprüfung für Forschung und Praxis, Tagungsband Werkstoffprüfung 2016, Verlag Stahleisen GmbH, Düsseldorf 2016, S. 257 – 262
- C. Bleicher, R. Wagener, H. Kaufmann, T. Melz: Bewertung des Einflusses von Extremlasten auf das zyklische Werkstoffverhalten von Gusseisen mit Kugelgraphit. In: Frenz, H.; Langer, J. B. (HRSG.): Fortschritte in der Werkstoffprüfung für Forschung und Praxis, Tagungsband Werkstoffprüfung 2017, Verlag Stahleisen GmbH, Düsseldorf 2017, S. 77-82
- C. Bleicher, R. Wagener, H. Kaufmann, T. Melz: Zur Beurteilung der Betriebsfestigkeit von Gusseisen mit Kugelgraphit unter Beanspruchungszeitfunktionen mit Überlasten. Fortschritte in der Werkstoffprüfung für Forschung und Praxis, Tagungsband Werkstoffprüfung 2018, Verlag Stahleisen GmbH, Düsseldorf 2018
- C. Bleicher: Leichtbauanforderungen bei Großgusskomponenten. Konstruktion. Springer VDI Verlag, 10/2016, S. IW8 – IW10

Zusätzlich sind Veröffentlichungen in Vorbereitung:

- Bleicher, C.; Wagener, R.; Kaufmann, H.; Melz, T.: Fatigue behavior of large cast components under variable amplitude loading with overloads. WCX SAE World Congress Experience, 9.-11. April 2019 – Annahme des Paper Stand 27.11.2019 bestätigt
- 2. Vortrag bei der VAL2021, Fourth International Conference on Material and Component Performance under Variable Amplitude Loading, 30.03.-03.04.2020 – Titel noch nicht festgelegt

12 Zusammenfassung und Ausblick

Im Rahmen des vorliegenden Berichts wird auf die Ergebnisse des BMWi-Forschungsvorhabens Gaßner-Wind eingegangen. Darin werden dickwandige, sowohl ferritische, perlitische als auch ausferritische Gusslegierungen hinsichtlich ihres zyklischen Werkstoffverhaltens unter konstanten und variablen Beanspruchungsamplituden mit und ohne Überlasten eingehend untersucht

Dabei zeigt sich für alle untersuchten Werkstoffe, und insbesondere für die ferritischen Legierungen, eine deutliche zyklische Verfestigung unter zyklischer Beanspruchung, die eine Leistungssteigerung des Werkstoffes bewirkt. Die Auswertung der Versuche unter konstanten Amplituden zeigt, dass die trilineare Dehnungswöhlerlinie für GJS-Werkstoffe das quasi-statische Werkstoffverhalten deutlich besser beschreibt, als dies die klassischen Methoden können.

Darüber hinaus werden zwei unterschiedliche Beanspruchungszeitfunktionen zur Untersuchung der variablen Amplitudenbelastung verwendet. Beide basieren auf abgeleiteten Kräften und Momenten an der Rotornabe, die mit Simulationen erzeugt und typischerweise zur Auslegung von WEA verwendet werden. Die Last-Zeit-Reihen werden mittels FE-Berechnungen zu Bauteilen einer WEA in Beanspruchungszeitfunktionen umgewandelt. Zur Reduktion werden die Daten mittels einer Teilfolgenanalyse und einer Omission reduziert und die Beanspruchungszeitfunktionen in Teilfolgen von je etwa H₀ = $5 \cdot 10^5$ Schwingspielen für die experimentellen Untersuchungen abgebildet.

Zusätzlich zu den Betriebsbeanspruchungen wird der Einfluss von Überlasten auf die Schwingfestigkeit der Guss-Werkstoffe untersucht. Die Überlast wird so gewählt, dass lokal hohe Zugeigenspannungen entstehen, welche sich negativ auf die resultierende Lebensdauer auswirken. Zur Untersuchung des Einflusses des Zeitpunktes des Auftretens der Überlast werden insgesamt drei Szenarien in den Schwingfestigkeitsversuchen verwendet: Die Überlast tritt am Anfang auf, was den schlimmsten anzunehmenden Fall im Betrieb eine WEA darstellt; die Überlast tritt nach einem Teilfolgendurchlauf auf (zyklische Verfestigung hat bis dahin stattgefunden); es tritt keine Überlast auf.

Mit Hilfe von diesen Beanspruchungszeitfunktionen mit eingestreuten Überlasten wird das Werkstoffverhalten unter realen Beanspruchungen untersucht. Hierbei zeigt sich, dass der EN-GJS-700-2 wie auch der ADI in der Lage ist, bei enormer Lebensdauersteigerung im Vergleich zum EN-GJS-400-18U-LT auch hohe Überlasten zu ertragen. Selbst wenn hohe Sicherheitsbeiwerte, wie der vom DNV GL geforderte stress reserve factor SRF, in ihrer vollen Höhe berücksichtigt werden, liegt beispielsweise der EN-GJS-700-2 noch deutlich in seiner Schwingfestigkeit oberhalb eines EN-GJS-400-18U-LT bei vergleichbaren Wanddicken am Bauteil. Damit eröffnen die höherfesten Werkstoffe Sicherheiten bzw. längere Lebensdauern für WEA-Bauteile. Weiterhin eröffnet sich mit den Forschungsergebnissen die Möglichkeit, auch höherfeste GJS-Werkstoffe im Bereich der Windenergie einzusetzen. Jedoch kann ein zusätzliches Leichtbaupotential nur dann ausgenutzt werden, wenn die Überlasten begrenzt vorliegen. Stellen sich auf Grund der Last-Kerbdehnungsbeziehung hohe lokale Beanspruchungsamplituden beim EN-GJS-700-2 und ADI ein, fällt dieser in seiner Beanspruchbarkeit je nach Höhe der Überlast stark ein. Das Leichtbaupotential der höherfesten Werkstoffe kann nur ausgenutzt werden, wenn Bauteilgeometrie und Belastung aufeinander abgestimmt werden.

Zusätzlich wird im Rahmen des Berichts ein örtlich, dehnungsbasiertes Bemessungskonzept für GJS-Bauteile erarbeitet. Dafür findet zunächst die Auswahl eines geeigneten Schädigungsparameters statt. Mit der tri-linearen Beschreibung der Dehnungswöhlerlinie wird anschließend das Bemessungskonzept anhand der Schwingfestigkeitsversuche rechnerisch optimiert. Dazu wird jeder einzelne Schwingfestigkeitsversuch in einer Schädigungsrechnung mit unterschiedlichen Schädigungsparametern und Dehnungswöhlerlinien-Beschreibungen nachgerechnet. Auf Basis dieser Rechnungen wird für das Bemessungskonzept der Schädigungsparameter nach Bergmann P_B und die Tri-Lineare Dehnungswöhlerlinie mit der Elementar-Modifikation ausgewählt und das gesamte Vorgehen in einem Ablaufschema zusammengefasst.

Die Gesamtheit der erzielten Erkenntnisse zum zyklischen Werkstoffverhalten tragen somit den bestehenden Herausforderungen,

- der Bewertung des Betriebsfestigkeitsverhaltens höherfester Gusseisenwerkstoffe in dickwandigen Komponenten der Windenergieanlagen unter Betriebs- und Überbelastungen,
- der Entwicklung innovativer Anlagenkonzepte, z.B. durch den sicheren und zuverlässigen Einsatz von ADI-Werkstoffen mit hoher Festigkeit und Duktilität bei gleichzeitig hoher Gestaltungsfreiheit und Wirtschaftlichkeit,
- der Sicherstellung der hohen Anlagenverfügbarkeit mit geringsten Stillstandzeiten im nahezu kontinuierlichen Betrieb durch die Steigerung der Zuverlässigkeit der Multimegawattanlagen,
- das Zertifizierungsverfahren von Windenergieanlagen durch ein anerkanntes Bemessungsverfahren zu vereinfachen,
- das zyklische, elasto-plastische Werkstoffverhalten, insbesondere höherfester GJS-Legierungen, in die Bauteilbemessung einbinden zu können sowie
- höherfeste GJS-Werkstoffe für den Einsatz auch in zyklisch hochbeanspruchten Bauteilen einsetzen zu können

durch

- die ermittelten zyklischen Spannungs-Dehnungskurven und Dehnungswöhlerlinien für die wichtigsten dickwandigen GJS-Werkstoffe,
- die Ermittlung der Leistungsfähigkeit aktuell eingesetzter sowie höherfester GJS-Werkstoffe in Form von Lebensdauer und Schwingfestigkeit,
- die Beschreibung eines Bemessungskonzeptes auf Basis dehnungsbasierter Kennwerte,
- den Nachweis der Einsatzfähigkeit auch höherfester GJS-Werkstoffe in zyklisch hoch beanspruchten Bauteilen

Rechnung.

Die Ergebnisse im Projekt geben einen ersten guten Einblick in die Betriebsfestigkeit dickwandiger GJS-Werkstoffe für die Windenergie und den Großmaschinenbau. Jedoch zeigen sie auch weiteren Forschungspotential auf. So fehlen noch immer Übertragbarkeitsmethoden auf unterschiedliche Gefügezustände sowie weitere GJS-Werkstoffe, etwa die Silizium-mischkristallverfestigten Werkstoffe. Zudem sollte der Überlasteinfluss zukünftig auch im Rahmen multiaxialer Beanspruchungen und zeitlich veränderlichen Hauptspannungsrichtungen untersucht werden. Für ein Folgeprojekt bietet sich auch die genauere Untersuchung der Streuung der Dehnungswöhlerlinie und der Gaßnerlinie sowie der Verlauf der Gaßnerlinie bei hohen Schwingspielzahlen an. Insbesondere letztere Aspekte sind nach wie vor wissenschaftlich nur ungenügend untersucht und nicht nur für den dickwandigen Eisenguss relevant. Im Kontext könnten diese Untersuchungen jedoch helfen, aktuelle Sicherheitsbeiwerte nochmals genauer zu untersuchen und gegebenenfalls zu senken. Dies war im Rahmen von GaßnerWind nicht möglich.

13 Literatur

/Bas10/	Basquin, O. H.: The exponentional law of endurance tests. American Society Test, Ma- terials Proceedings, Nr. 10, 1910, S. 625 – 630				
/Ber13/	Bergmann, J. W.; Thumser, R.: Synthetische Wöhlerlinien für Eisenwerkstoffe – Synth tische Wöhlerlinien 1999. Aktualisierte Fassung vom 31.07.2013, (überarbeitet durch Dr. T. Richter), Materialforschungs- und –prüfanstalt an der Bauhaus-Universtität Wie mar, F-45/044/99, Weimar, 2013				
/Ber83/	Zur Betriebsfestigkeitsbemessung gekerbter Bauteile auf der Grundlage örtlicher Bean spruchungen, 1983.				
/Bis14/	Bisping, J. R.: Entwicklung einer Bemessungsmethode für Mahlanlagen in der Zement- industrie am Beispiel von Vertikalrollenmühlen. Dissertation, Technische Universität Darmstadt, Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt, LBF-Bericht Nr. FB-242, 2014				
/Ble16/	C. Bleicher: Ein Beitrag zur Beurteilung der Schwingfestigkeit von Gusseisen mit Kugel- graphit mit besonderer Berücksichtigung der Auswirkungen von Lunkern auf die Bau- teillebensdauer, Dissertation, Technische Universität Darmstadt, Fraunhofer LBF, Darm- stadt, LBF-Bericht FB-246, 2016				
/Bux92/	Buxbaum, O.: Betriebsfestigkeit – Sichere und wirtschaftliche Bemessung schwing- bruchgefährdeter Bauteile. 2., erweiterte Auflage, Verlag Stahleisen GmbH, Düsseldorf, 1992				
/Clo86/	U.H. Clormann und T. Seeger, "RAINFLOW – HCM Ein Zählverfahren für Betriebsfestig- keitsnachweise auf werkstoffmechanischer Grundlage," Stahlbau, Bd. 55, pp. 65-71, 1986.				
/Cof54/	Coffin, L. A.: A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME, Nr. 76, 1954, S. 931 – 950				
/DIN06/	Normenausschuss Materialprüfung (NMP) im DIN Deutsches Institut für Normung e.V.: DIN EN ISO 6506-1: Metallische Werkstoffe – Härteprüfung nach Brinell – Teil 1: Prüf- verfahren (ISO 6506-1:2005). Deutsche Fassung EN ISO 6506-1:2005, ICS 77.040.10, Beuth Verlag, Berlin, März 2006				
/DIN45/	Normenausschuss Gießereiwesen (GINA) im DIN Deutsches Institut für Normung e.V.: DIN EN ISO 945-1: Mikrostruktur von Gusseisen – Teil 1: Graphitklassifizierung durch visuelle Auswertung (ISO 945-1:2008 + Cor. 1:2010). Deutsche Fassung EN ISO 945- 1:2008 + AC:2010, Beuth Verlag, Berlin, September 2010				
/DIN63/	Normenausschuss Gießereiwesen (GINA) im DIN Deutsches Institut für Normung e.V.: DIN EN 1563: Gießereiwesen – Gusseisen mit Kugelgraphit. Deutsche Fassung EN 1563:2011, ICS 77.080.10, Beuth Verlag, Berlin, März 2012				
/DIN64/	Normenausschuss Gießereiwesen (GINA) im DIN Deutsches Institut für Normung e.V.: DIN EN 1564: Gießereiwesen – Ausferritisches Gusseisen mit Kugelgraphit. Deutsche Fassung EN 1564:2011, ICS 77.080.10, Beuth Verlag, Berlin, Januar 2012				

/DNV16/	DNV GL: "Machinery for wind turbines, DNVGL-ST-0361," DNV GL AS, September 2016			
/DVM07/	Pollicino, F.: Bruchmechanische Fragestellung bei der Lebensdauerberechnung von Windenergieanlagen. In: DVM-Bericht 239, Bruchmechanik und Bauteilsicherheit, The- menschwerpunkt: Ermüdungsbruch, Berlin, 2007.			
/DVM10/	Lagemann, C.: Qualifizierung von höherfestem Gusseisen in Getriebestrukturen von Windenergieanlagen (WEA). Sitzung der DVM AG Industrielle Anwendung der Bruch- mechanik vom 11.5.2010, http://www.dvm-berlin.de/index.php?id=59, 2010.			
/DVM14/	Kamps, A.; Chassanidis, S.: Die Betriebsfestigkeit im simulationsbasierten Auslegungs- prozess von Strukturkomponenten in Windkraftgetrieben. In: Tagungsband, DVM- Workshop "Numerische Simulation in der Betriebsfestigkeit", Mannheim, 2014.			
/Edw72/	Edwards, A. W. F.: Likelihood. Cambridge University Press, 1972			
/Fis12/	Fisher, R. A.: On an absolute criterion for fitting frequency curves. Messenger of Math- matics, Nr. 41, 1912, S. 155 – 160			
/FKM12/	FKM-Richtlinie – Rechnerischer Festigkeitsnachweis für Maschinenbauteile aus Stahl, Ei- senguss- und Aluminiumwerkstoffen, 6., überarbeitete Ausgabe, Forschungskurato- rium Maschinenbau (FKM), Frankfurt am Main, 2012			
/FKM18/	Arbeitsstand der unveröffentlichten FKM- Richtlinie "Rechnersicher Festigkeitsnachweis für Maschinenbauteile unter expliziter Erfassung nichtlinearen Werkstoffverformungs- verhaltens" vom 26.03.2018			
/Gli85/	G. Glinka. Energy Density Approach to Calculation of Inelastic Strain-Stress Near Notches and Cracks. Eng. Frac. Mech., 22:485_508, 1985.			
/GRU98/	Grubišić, V.: Bedingungen und Forderungen für einen zuverlässigen Betriebsfestigkeits- nachweis. DVM-Bericht 125, S. 9-22, 1998.			
/Gud99/	Gudehus, H.; Zenner, H.: Leitfaden für eine Betriebsfestigkeitsberechnung – Empfeh- lungen zur Lebensdauerabschätzung von Maschinenbauteilen. 4. Auflage aktualisiert und erweitert von H. Gudehus und H. Zenner, Verein zur Förderung der Forschung und der Anwendung von Betriebsfestigkeits-Kenntnissen in der Eisenhüttenindustrie (VBFEh) im Verein Deutscher Eisenhüttenleute (VDEh), Verlag Stahleisen, Düsseldorf, ISBN 3-514-00584-2, 1999			
/Hai06/	Haibach, E.: Betriebsfestigkeit, Verfahren und Daten zur Bauteilberechnung. 3., korri- gierte und ergänzte Auflage, Springer-Verlag, Berlin, Heidelberg, New York, ISBN-10 3- 540-29363-9, 2006			
/Hel15/	Hell, M; Wagener, R.; Kaufmann, H.; Melz, T.: Fatigue Life Design of Components un- der Variable Amplitude Loading with Respect to Cyclic Material Behaviour, Procedia En- gineering: Elsevier 101, 2015			
/Hue81/	Hück, M.; Thrainer, L.; Schütz, W.: Berechnung von Wöhlerlinien für Bauteile aus Stahl, Stahlguß und Grauguß – Synthetische Wöhlerlinien. Bericht Nr. ABF 11, 2., überarbei- tete Fassung, Verlag Stahleisen, Düsseldorf, 1981			

/Kaf17/	Kaffenberger, M; Störzel, K.: Bauteilauslegung unter Berücksichtigung von Beanspru- chungen mit variablen Amplituden und sehr hohen Schwingspielzahlen, 2017				
/Kau98/	Kaufmann, H.: Zur schwingfesten Bemessung dickwandiger Bauteile aus GGG-40 unte Berücksichtigung gießtechnisch bedingter Gefügeungänzen. Fraunhofer-Institut für Be triebsfestigkeit LBF, Darmstadt, LBF-Bericht Nr. FB-214, 1998				
/Koe12/	Köhler, M.; Jenne, S.; Pötter, K.; Zenner, H.: Zählverfahren und Lastannahme in der Be triebsfestigkeit. Springer-Verlag, Berlin, 2012				
/Lan37/	Langer, B. F.: Fatigue failure from stress cycles of varying amplitude. In: Journal of Applied Mechanics. Band59, 1937, S.A160–A162.				
/Man65/	Manson, S. S.: Fatigue: A complex subject – some simple approximations. Experimenta Mechanics, 5, Nr. 7, 1965, S. 45 – 87				
/Mau99/	Mauch, H.: Statistische Methoden zu Beurteilung von Bauteillebensdauer und Zuverläs sigkeit und ihre beispielhafte Anwendung auf Zahnräder. Abschlußbericht. Forschung vorhaben AiF-Nr. 11154 / N, "Lebensdauerstatistik", Institut für Maschinelle Anlagen- technik und Betriebsfestigkeit IMAB, TU Clausthal, 1999				
/Meg04/	Meggiolaro, M. A.; Castro, J. T. P.: Statistical evaluation of strain-life fatigue crack initi ation predictions, Int. J. Fatigue, Band 26, Seite 463 – 476, 2004				
/Min45/	Miner, M. A.: Cumulative damage in fatigue. In: Journal of applied mechanics. Band12, Nr.3, 1945, S.159–164				
/Möl17/	Möller, B. et al.: Fatigue Life Assessment of Welded Joints by the Notch Strain Concep Considering Transient Effects of the Cyclic Material Behavior, Proc. Of the 5 th Int. Con- on Steels in Cars and Trucks, Amsterdam, June 18-22, 2017				
/Mor65/	Morrow, J. D.: Cyclic plastic strain energy and fatigue of metals, ASTM STP 378, Ame- rican Society for Testing and Materials, 1965, S. 45 – 87				
/Nie08/	Niesłony, A.; el Dsoki, C.; Kaufmann, H.; Krug, P.: New method for evaluation of the Manson-Coffin-Basquin and Ramberg-Osgood equations with respect to compatibility International Journal of Fatigue, Nr. 30, 2008, S. 1967 – 1977				
/Pal26/	Palmgren, A.: Die Lebensdauer von Kugellagern. In: Zeitschrift des Vereins Deutscher Ingenieure. Band68, Nr.14, 1924, S.339–341.				
/Rad07/	Radaj, D.; Vormwald, M.: Ermüdungsfestigkeit, Grundlagen für Ingenieure. 3., neube- arbeitete und erweiterte Auflage mit 453 Abbildungen, Springer-Verlag, Berlin, Heidel berg, New York, ISBN 978-3-540-71458-3, 2007				
/Ram43/	Ramberg, W; Osgood, W. R.: Description of stress–strain curves by three parameters. NACA Techn. Rep. 902, NACA, 1943				
/See77/	T. Seeger und A. Beste, "Zur Weiterentwicklung von Näherungsformeln für die Berechnung von Kerbbeanspruchungen im elastisch-plastischen Bereich (Improvement of approximation formulae for calculating notch stresses and strains in the elastic- plastic range)," in Fortschrittsbericht der VDI Zeitschriften: Kerben und Bruch (Notches and fracture), Reihe 18, Nr. 2, VDI-Verlag, 1977.				

/See96/	Seeger, T.: Grundlagen für Betriebsfestigkeitsnachweise. In: Stahlbau-Handbuch – Für Studium und Praxis, Band 1, Stahlbau-Verlagsgesellschaft, Köln, 1996				
/SEP06/	Stahlinstutit VDEh: Prüf- und Dokumentationsrichtlinie für die experimentelle Ermitt- lung mechanischer Kennwerte von Feinblechen aus Stahl für die CAE-Berechnung. Stahl-Eisen-Prüfblatt SEP 1240, 1. Ausgabe, Düsseldorf, 2006				
/Smi70/	Smith, K. N.; Watson, P.; Topper, T. H.: A stress–strain function for the fatigue of met- als. Journal of Materials, 5, Nr. 4, 1970, S. 767 – 778				
/So05a/	Sonsino, C. M.; Berg, A.; Grubišić, V.: Betriebsfestigkeit von Aluminium-Sicherheitsbau- teilen – Stand der Technik. Materialprüfung 47 (7-8), S. 404-409, 2005.				
/So05b/	Sonsino, C. M.: "Dauerfestigkeit" – Eine Fiktion. Konstruktion, 57, Nr. 4, 2005, S. 87 – 92				
/Son07/	Sonsino, C. M.: Course of SN-curves especially in the high-cycle fatigue regime with re- gard to component design and safety. International Journal of Fatigue, Nr. 29, 2007, S. 2246 – 2258				
/Son08/	Sonsino, C. M.: Betriebsfestigkeit – Eine Einführung in die Begriffe und ausgewählte Bemessungsgrundlagen. MP Materials Testing, Hanser Verlag, 50, Nr. ½, 2008, S. 77 – 90				
/Son10/	Sonsino, C. M.: Vorlesungs-Skript Betriebsfestigkeit – Bauteilauslegung unter Schwing- beanspruchung mit konstanten und variablen Amplituden. Technische Universität Darmstadt, Sommersemester, 2010				
/Son90/	Sonsino, C. M.; Kaufmann, H.; Engels, A.: Schwingfestigkeit von festgewalzten, induk- tionsgehärteten sowie kombiniert behandelten Eisen-Graphit-Gußwerkstoffen unter konstanten und zufallsartigen Belastungen. Sonderdruck aus "Giessereiforschung", 42, Nr. 3, 1990, S. 110 – 121				
/Spi78/	Spindel, J. E.; Haibach, E.: The method of maximum likelihood applied to the statistical analysis of fatigue data including run-outs. S.E.E. International Conference, University of Warwick, Coventry, 3. bis 6. April, 1979, S. 7.1 – 7.23				
/Vor89/	Vormwald, M. Anrißlebensdauervorhersage auf der Basis der Schwingbruchmechanik kurzer Risse, 1989.				
/VDM13/	VDMA 23902:2013-10: Leitlinie für den bruchmechanischen Nachweis von Planetenträ- gern aus EN-GJS-700-2 für Getriebe von Windenergieanlagen. Verband Deutscher Ma- schinen- und Anlagenbau e.V. (VDMA), 2013.				
/Wag07/	Wagener, R. W.: Zyklisches Werkstoffverhalten bei konstanter und variabler Beanspru- chungsamplitude, Dissertation, Clausthal-Zellerfeld, Papierflieger, 2007				
/Who11/	Wohlfahrt, M.; Oberwinkler, C.; Tunzini, S.; Rauscher, A.; de la Prida Caballero, R.; Ei- chelseder, W.: Einflüsse auf die Schwingfestigkeit von Gusseisen und deren Einbindung in die Berechnung der Bauteillebensdauer. VDI-Bericht 2122, Gießtechnik im Motoren- bau – Anforderungen an die Automobilindustrie, VDI Verlag, 2011				

/Zen00/ Zenner, H.; Esderts, A.; Pötter, K.; Hübner, K.; Traupe, M.: Betriebsfestigkeit I – Skript zur Vorlesung, Institut für Maschinelle Anlagentechnik und Betriebsfestigkeit, Technische Universität Clausthal, 2000

Bildverzeichnis

Bild 1 Projektplan	6
Bild 2 Kenngrößen der Spannungs-Dehnungs-Hysterese in Anlehnung an /Hai06/	8
Bild 3 Bestimmung von K' und n' /Ble16/	9
Bild 4 Zyklische Spannungs-Dehnungskurve und Erstbelastungskurve für einen EN-GJS-400 /Ble16/	′ 10
Bild 5 Darstellung der elastischen, plastischen und der summierten Dehnungswöhlerlinie	11
Bild 6 Regression über elastische Dehnungsanteile aus 179 Einzelversuchen	13
Bild 7 Werkstoffverhalten in den 3 Bereichen der elastischen Dehnungswöhlerlinie	13
Bild 8 Die tri-lineare Dehnungswöhlerlinie	14
Bild 9 Zyklische Spannungsdehnungskurven im Vergleich /Ble16/	14
Bild 10 Kollektivformen und Formparameter (bezogene Kollektive) nach /Bux92, Zen00/	15
Bild 11 Einfluss der Kollektivform auf die Lebensdauer nach /Son08/	16
Bild 12 Berechnungsablauf in Anlehnung an /See96/	20
Bild 13 Masing-Verhalten und Werkstoffgedächtnis	21
Bild 14 Schematische Bauteilfließkurve	22
Bild 15 Y-Block aus ADI, Wanddicke: 200 mm	29
Bild 16 Maschinenträger aus EN-GJS-400-18U-LT mit einer Gießmasse von ca. 12 t	29
Bild 17 Probenlageplan des Y-Blocks 2 aus EN-GJS-700-2 mit der Lage und Beschriftung der Halbze für die anschließende Probenfertigung	euge 31
Bild 18 Auf Y-Block übertragene Probenbeschriftung	31
Bild 19 Runde Schwingprobe für Lunker und Referenzversuche, d = 15 mm, ungekerbt, $K_t = 1,05$, $HBV_{90\%,NH} = 6122,33$	32
Bild 20 Servo-hydraulische Prüfmaschine (160 kN Maximallast), Schwingprobe und Dehnungsaufnehmer /Ble16/	34
Bild 21 FEM-Berechnungen zu den ausgewählten Bauteilen (links: aerodyn, rechts: Senvion)	36
Bild 22 aerodyn-Kollektiv und daraus abgeleitet Teilfolgen	37
Bild 23 Senvion-Kollektiv und daraus abgeleitete Teilfolgen	37
Bild 24 Zeitlicher Verlauf der Dehnungen	38
Bild 25 Überlast startet in den Druckbereich	40
Bild 26 Überlast startet in den Zugbereich	40
Bild 27 Spannungs-Dehnungskurven und Überlastniveaus	41
Bild 28 In den FE-Berechnungen verwendete zyklische Spannungs-Dehnungskurven	42
Bild 29 Probenform der gekerbten Probe	42

Bild	30	Randbedingungen und Lasteinleitung der FE-Berechnung	43
Bild	31	Last-Kerbdehnungskurve der gekerbten Proben	43
Bild	32	Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie für den ADI-900 entnommer aus dem Maschinenträger	ו 45
Bild	33	Zyklische Spannungs-Dehnungskurve für den EN-GJS-700-2 (Y-Blöcke)	46
Bild	34	Vergleich der untersuchten Werkstoffe anhand ihrer zyklischen Spannungs-Dehnungskurven	47
Bild	35	Vergleich der untersuchten Werkstoffe Anhand ihrer Dehnungswöhlerlinien	48
Bild	36	Regression zwischen Zugfestigkeit R_m und dem auf den Elastizitätsmodul E bezogenen zyklischen Schwingfestigkeitskoeffizient σ_{f1} '	49
Bild	37	Regression zwischen der auf die Dehngrenze R _{p0,2} bezogenen Bruchdehnung A ₅ und der Lebensdauer am Schnittpunkt von elastischer und plastischer Dehnungswöhlerlinie N _{S-el-pl} im Bereich I	49
Bild	38	Regression der Dehnungsamplituden am Schnittpunkt $\epsilon_{\rm fs}'$ mit der Dehngrenze $R_{p0,2}$	50
Bild	39	Regression der Dehnungsamplitude am Schnittpunkt $\epsilon'_{\rm fs}$ mit dem zyklischen Verfestigungskoeffizienten K'	51
Bild	40	Regression des Duktilitätskoeffizienten ε [·] f mit dem Quotienten aus Schwingfestigkeitskoeffizienten σ'r1 und zyklischem Verfestigungskoeffizienten K'	51
Bild	41	Vergleich der je Werkstoff sowie Entnahmeposition erreichten Beanspruchbarkeit bei der Grenzschwingspielzahl N_G für die BZF "aerodyn"	53
Bild	42	Vergleich der je Werkstoff sowie Entnahmeposition ermittelten Neigung \overline{k} bei der Grenzschwingspielzahl N _G für die BZF "aerodyn"	54
Bild	43	Vergleich der je Werkstoff sowie Entnahmeposition erreichten Beanspruchbarkeit bei der Grenzschwingspielzahl N_G für die BZF "Senvion"	54
Bild	44	Vergleich der je Werkstoff sowie Entnahmeposition ermittelten Neigung \overline{k} bei der Grenzschwingspielzahl N _G für die BZF "Senvion"	55
Bild	45	Gegenüberstellung der ermittelten Gaßnerlinien für die BZF "aerodyn ohne Überlast"	58
Bild	46	Gegenüberstellung der Gaßnerlinien für die BZF "aerodyn mit Überlast am Anfang"	59
Bild	47	Vergleich des EN-GJS-700-2 aus dem Planetenträger (ETR17) mit dem EN-GJS-400-18U-LT unter Berücksichtigung des stress reserve factors SRF von 1,5 für das BZF "aerodyn mit Überla am Anfang"	ast 60
Bild	48	Abweichung des Einzelversuchs in Abhängigkeit der Schwingspielzahl	61
Bild	49	Einfluss der Schwingspielzahlklassen auf die Streubänder	62
Bild	50	Streuband für den EN-GJS-400-18U-LT	63
Bild	51	Gegenüberstellung aller untersuchter Schwingproben: Graphitform	65
Bild	52	Gegenüberstellung aller untersuchter Schwingproben: Graphitgröße	65
Bild	53	Gegenüberstellung aller untersuchter Schwingproben: Nodularitätskennzahl	66

Bild 54	Gegenüberstellung aller untersuchter Schwingproben: Nodularität	66
Bild 55	Gegenüberstellung aller untersuchter Schwingproben: Ferrit- / Perlit- und Graphitanteil	66
Bild 56	5 Berechnungsablauf in Anlehnung an /See96/	69
Bild 57	7 Exemplarische Darstellung der D=1-Gaßner-Linie	71
Bild 58	3 Spannungs- bzw. Dehnungsverlauf einer Probe ohne Überlast (MW7-1-01, EN-GJS-700-2)	73
Bild 59	9 Spannungs- bzw. Dehnungsverlauf einer Probe mit -1% Überlast am Anfang (MW7-1-22, EN GJS-700-2)	- 73
Bild 60) Spannungs- bzw. Dehnungsverlauf einer Probe mit -1% Überlast nach einem Durchlauf (MW 2-20, EN-GJS-700-2)	7- 74
Bild 61	Einfluss der Modifikation der Dehnungswöhlerlinie auf die Streuung	75
Bild 62	2 Einfluss des Schädigungsparameters auf die Streuung	75
Bild 63	3 Auf D = 1 umgerechnete Versuchspunkte des EN-GJS-400-18U-LT (Y-Block) mit aerodyn- Teilfolge und einer Überlast von -1% nach einem Durchlauf	76
Bild 64	4 Auf D = 1 umgerechnete Ergebnisse des EN-GJS-400-18U-LT (SMT) mit aerodyn-Teilfolge und einer Überlast von -1% nach einem Durchlauf	่ 77
Bild 65	5 Auf D = 1 umgerechnete Ergebnisse des EN-GJS-700-2 (Y-Block) mit aerodyn-Teilfolge und einer Überlast von -1% nach einem Durchlauf	78
Bild 66	5 Auf D = 1 umgerechnete Ergebnisse des EN-GJS-700-2 (Y-Block) mit Senvion-Teilfolge und einer Überlast von -0,5% am Anfang	78
Bild 67	7 Auf D = 1 umgerechnete Versuchspunkte des ADI-800 (Y-Block) mit aerodyn-Teilfolge und einer Überlast von -1% nach einem Durchlauf	79
Bild 68	3 Streuung der Schadenssummen in Abhängigkeit der verwendeten Spannungs-Dehnungskurv 79	e
Bild 69	Streuung der Schadenssummen unter Berücksichtigung des transienten Werkstoffverhaltens	80
Bild 70) Streuung der Schadenssummen bei Schätzmethoden	81
Bild 71	Mittlere Schadenssummen für unterschiedliche Modifikationen der Dehnungswöhlerlinien	82
Bild 72	2 Mittlere Schadenssummen bei unterschiedlichen Schädigungsparametern	83
Bild 73	B Mittlere Schadenssummen bei unterschiedlichen Schädigungsparametern	84
Bild 74	N-N-Diagramme für Versuchen ohne Überlast	85
Bild 75	N-N-Diagramm für Versuchen mit einer Überlast am Anfang	86
Bild 76	5 N-N-Diagramm für Versuche mit einer Überlast nach einer Teilfolge	86
Bild 77	7 N-N-Diagramm für Versuche mit aerodyn-Teilfolge (ohne Überlast)	87
Bild 78	8 N-N-Diagramm für Versuche mit Senvion-Teilfolge (ohne Überlast)	87
Bild 79	Bestimmung des bezogenen Spannungsgefälles	92
Bild 80) Dreiteilige Spannungswöhlerlinie (EN-GJS-400-18U-LT, Y-Block)	94

Bild 81 Haigh-Diagramm	95
Bild 82 Häufigkeiten der Spannungsamplitude und Mittelspannungen der aerodyn-Teilfolge (AD 96	N-800)
Bild 83 N-N-Diagramm der Versuche ohne Überlast	96
Bild 84 N-N-Diagramm der Versuche mit einer Überlast am Anfang	97
Bild 85 N-N-Diagramm der Versuche mit einer Überlast nach einem Teilfolgedurchlauf	97
Bild 86 Mittelspannungsverläufe bei Versuchen mit einer Überlast nach einem Teilfolgedurchlaur	f 98

Tabellenverzeichnis

Tabelle 1 Werkstoffgedächtnis nach /Clo86/	21
Tabelle 2 Ausgewählte Schädigungsparameter	22
Tabelle 3 Schädigungsparameter und Wöhlerlinien-Form	24
Tabelle 4 Aufgabenteilung innerhalb des Vorhabens	26
Tabelle 5 Chemische Zusammensetzungen der untersuchten Werkstoffe	
Tabelle 6 Nomenklaturen der Probenbeschriftung für die Y-Blöcke und Bauteile	32
Tabelle 7 Quasistatische Materialkennwerte der untersuchten Werkstoffe	
Tabelle 8 Untersuchte Teilfolgen	
Tabelle 9 Untersuchte Parameter zum Einfluss der Überlast auf die Schadenssumme	
Tabelle 10 Untersuchte Parameterkombinationen zum Einfluss der Überlast auf die Betrie	bsfestigkeit 39
Tabelle 11 Überlastniveaus	41
Tabelle 12 Parameter der gekerbten Probe	42
Tabelle 13 Parameter der Gaßnerlinien, BZF "aerodyn"	52
Tabelle 14 Parameter der Gaßnerlinien, BZF "Senvion"	53
Tabelle 15 Schliffbilder (Durchschnittswerte aus jeweils 4 Schliffen)	67
Tabelle 16 Anzahl der Versuche pro Werkstoff und Belastungsszenario	70
Tabelle 17 Parameter der dreiteiligen Spannungswöhlerlinie	94
Tabelle 18 Rechnerisch ermittelte Spannungen während und nach der Überlast	95

Abkürzungs- und Symbolverzeichnis

Abkürzungsverzeichnis

ADI	Austempered Ductile Iron (Ausferritisches Gusseisen mit Kugelgraphit)			
BZF	Beanspruchungszeitfunktion			
С	Kohlenstoff			
Cu	Kupfer			
DIN	Deutsches Institut für Normung e.V.			
EN	Europäische Norm			
FKM	Forschungskuratorium Maschinenbau			
HBV	höchstbeanspruchtes Werkstoffvolumen			
GJS	Gusseisen mit Kugelgraphit (neue Bezeichnung)			
GL	Germanischer Lloyd			
ISO	International Organization for Standardization			
Mg	Magnesium			
Mn	Mangan			
MW	Megawatt			
Ni	Nickel			
Р	Phosphor			
S	Schwefel			
Si	Silizium			
WEA	Windenergieanlage			

Symbolverzeichnis

Symbol	Einheit	Bezeichnung
b, b ₁ , b ₂ , b ₃	-	Zyklischer Spannungsexponent
С	-	Zyklischer Dehnungsexponent
d	mm, m	Prüfdurchmesser
f	Hz, 1/s	(Prüf-)frequenz
k	-	Wöhlerlinienneigung im Bereich der Zeitfestigkeit
k	-	Gaßnerlinienneigung im Bereich der Zeitfestigkeit
k*	-	Wöhlerlinienneigung im Bereich der Langzeitfestigkeit
I	mm, m	Länge
m	kg, t	Masse
n'	-	zyklischer Verfestigungsexponent
r	mm, m	(Kerb-)Radius
A, A ₅	%	Bruchdehnung
D	-	Schadenssumme
D _{krit}	-	kritische Schadenssumme
E	GPa	Elastizitätsmodul
F	N	Kraft
Н	-	Summenhäufigkeit
H _o	-	Kollektivumfang
$HBV_{90\%}$	mm³	höchstbeanspruchtes Werkstoffvolumen für 90% der maxi- malen Spannung
Kv	[]	Kerbschlagarbeit
K'	GPa	zyklischer Verfestigungskoeffizient
K _t	-	Kerbformzahl
N, N _B , N _i	-	Schwingspielzahl
N _{BL}	-	Schwingspielzahl der Beanspruchungszeitfunktione
N _k	-	Schwingspielzahl am Abknickpunkt
N _G	-	Grenzschwingspielzahl
N _{S-el-pl}	-	Lebensdauer am Schnittpunkt von elastischer und plasti- scher Dehnungswöhlerlinie
Μ	-	Mittelspannungsempfindlichkeit
N _G	-	Grenzschwingspielzahl

P _i , P _{ges}	-	Wahrscheinlichkeit
P _{SWT}	%	Schädigungsparameter nach Smith, Watson und Topper
Pü	-	Überlebenswahrscheinlichkeit
$R, \overline{R}, R_{\epsilon}, R_{\sigma}$	-	Lastverhältnis
R _m	MPa	Zugfestigkeit
R _{p0,2}	MPa	0,2 %-Dehngrenze
R' _{p0,2}	MPa	zyklische 0,2 %-Dehngrenze
R _z	μm	mittlere Rauheit
Т	S	Periode / Schwingspiel / Temperatur
T _N	-	Streuung in Lebensdauerrichtung
Τσ	-	Streuung in Spannungsrichtung
$\overline{T_{\epsilon}}$	-	Streumaß Gaßnerversuch in Dehnungsrichtung
Z	%	Brucheinschnürung
Δσ	MPa	Schwingbreite
Δε	%	Dehnungsschwingbreite
٤	%	Dehnung
ε _a , ε _a	%	Dehnungsamplitude
E a,BL	%	Dehnung durch die Betriebslast
Ea,t, Et	%	Totaldehnung
ε a,ÜL	%	Dehnung durch die Überlast
Ea,e	%	elastische Dehnungsamplitude
ε _{a,p}	%	plastische Dehnungsamplitude
εe	%	elastische Dehnung
ε' _f	%	zyklischer Dehnungskoeffizient
ε' _{fs}	%	Dehnungsamplitude am Schnittpunkt von elastischer und plastischer Dehnungswöhlerlinie
εlin	%	örtliche Dehnung bei linear-elastischer Maximalspannung
٤m	%	Mitteldehnung
ε _p	%	plastische Dehnung
ν	-	Kollektivformparameter, Neigung im Diagramm des höchst- beanspruchten Werkstoffvolumens (Volumenexponent)
$\sigma_a, \overline{\sigma_a}$	MPa	Spannungsamplitude
$\sigma'_{f}, \ \sigma'_{f1}, \ \sigma'_{f2}, \ \sigma'_{f3}$	MPa	Zyklischer Spannungskoeffizient

σ _m	MPa	Mittelspannung, Mittelspannungsamplitude
σ _{max}	MPa	Spannungsüberhöhung
σ _{min}	MPa	minimale Spannung
σ _{om}	MPa	Spannungsamplitude der Omission
x	-	Spannungsgradient
χ*	1/MPa	bezogener Spannungsgradient
	l	

Bericht des DNV GL

Germanischer Lloyd Industrial Services GmbH • Brooktorkai 18• 20457 Hamburg Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF Dr. Christoph Bleicher Bartningstr. 47 64289 Darmstadt

DNV GL - Energy Renewables Certification Brooktorkai 18 20457 Hamburg Tel: +49 40 36 149 - 0 Fax:+49 40 36 149 - 1720 renewablescertification.energy@dnvgl.com

Our reference: Date: 04409-0 26.11.2019 [Your Ref]

Your reference:

GaßnerWind

Vereinfachte Bemessung von Eisengussbauteilen für Windenergieanlagen unter Berücksichtigung von Betriebsbelastungen und Sonderereignissen

Im Zuge des Forschungsvorhabens GaßnerWind bewertete DNVGL den am 12.07.2018 eingereichten Abschlussbericht.

Einleitung:

Im Vorhaben GaßnerWind wurde der Einfluss von Überlasten auf große Bauteile aus Gusseisen mit Kugelgraphit (GJS) sowie die Einsatzfähigkeit höherfester Legierungen für zyklisch hoch-beanspruchte Bauteile aus dem Bereich der Windenergie untersucht. Hierzu wurden im Rahmen des Vorhabens sowohl ferritische als auch perlitische und ausferritische Werkstoffe unter konstanten und variablen Belastungsamplituden untersucht. Dabei wurden die Versuche unter variablen Belastungsamplituden mit Beanspruchungszeitfunktionen mit linearem sowie relativ fülligem Kollektiv zu Grunde gelegt und mit gezielt eingestreuten Überlasten durchgeführt. Weiterhin wurde im Vorhaben mit Erkenntnissen aus den Versuchsreihen ein Bemessungskonzept erarbeitet, dass eine Lebensdauer- bzw. Beanspruchbarkeitsabschätzung von dickwandigen GJS-Bauteilen unter Berücksichtigung von Überlasten berücksichtigt.

Werkstoffe

Für die dehnungsgeregelten Schwingfestigkeitsuntersuchungen kamen Schwingproben, entnommen aus Y-Blöcken und Windkraftbauteilen, zum Einsatz. Vor der Probenentnahme wurde dazu jeder Y-Block sowie jedes Bauteil mit Ultraschall auf vorliegende Ungänzen hin untersucht. Neben den zyklischen Versuchen wurden auch quasistatische Zugversuche zur Ermittlung der mechanischen Werkstoffkennwerte durchgeführt. Die folgenden Werkstoffe wurden im Zuge des Vorhabens untersucht: EN-GJS-400-18U-LT, EN-GJS-700-2 und ADI 800 und 900. Weiterhin wurde der EN-GJS-400-15 in reduziertem Umfang in die Untersuchungen mit einbezogen. Die aus den Bauteilen (Maschinenträger und Planetenträger) entnommenen Proben wurden denen aus den Y-Proben gegenübergestellt. Dies ermöglicht einen Vergleich der Werkstoffeigenschaften bei unterschiedlichen Abguss- bzw. Abkühlbedingungen und damit wanddickenabhängigen Gefügen und bildet somit die Grundlage für die Übertragbarkeit von Kennwerten aus den Y-Blöcken auf Bauteile. Für jedes Bauteil wurden Probenlagepläne in Abstimmung mit dem DNVGL erstellt. Dabei werden die Probenposition sowie die Probenbezeichnung eindeutig und rückverfolgbar festgelegt.

Germanischer Lloyd Industrial Services GmbH, Registered Office: Hamburg. HRB 86804. Managing Directors: Dr. Kim Mørk, Dr. Felix Weise. Place of performance and jurisdiction is Hamburg. General Terms and Conditions of DNV

GL apply. German law applies.

Page 2 of 9

Versuche

Um die zyklische Beanspruchbarkeit der untersuchten Werkstoffe ermitteln zu können, wurden Wöhlerversuche unter konstanten Belastungsamplituden und Gaßnerversuche unter variablen Belastungsamplituden an den aus Y-Blöcken und Bauteilen entnommenen Schwingproben zum direkten Nachweis der Betriebsfestigkeit durchgeführt. Im Falle der Gaßnerversuche wurden gezielt Überlasten in die Beanspruchungszeitfunktion eingestreut. Das Ergebnis der Prüfung ist in Wöhler- und Gaßnerlinien dargestellt.

Sowohl die Versuche unter variabler als auch die unter konstanter Beanspruchungsamplitude wurden bis zu einer Grenzspielzahl von $N_G=1\cdot 10^7$ Zyklen bzw. bis zu einem Steifigkeitsabfall von 20% durchgeführt.

Überlast

Um den Einfluss von Überlasten zu untersuchen wurde bei den "Senvion" und "aerodyn" Beanspruchungzeitfunktionen (BZF) je eine Überlast in einem Zyklus aufgebracht. Es wurden durch Stauchung der Proben Zugeigenspannungen bei den duktilen Werkstoffen in Höhe von 1,0% und bei den höherfesten Werkstoffen von 0,5% und 1,0% aufgebracht. Die Überlast wurde sowohl direkt am Anfang der beiden BZF sowie nach einem Durchlauf durch die BZF aufgebracht, um den Einfluss des Überlastereignisses auf die Betriebsfestigkeit zu unterschiedlichen Zeitpunkten der Lebensdauer sowohl hinsichtlich des Spannungs-Dehnungsverhaltens als auch der Lebensdauer untersuchen zu können.

Die genannte Vorgehensweise resultiert aus einer Parameterstudie, in der mit einem analytischen Berechnungsmodell unter Annahme des Masing-Memory-Verhaltens und eines zyklisch-stabilisierten Werkstoffverhaltens (elastisch-plastisch) der Zeitpunkt des Überlastauftretens, der Überlasttyp (ein Zyklus oder aufschwingend) sowie die Beanspruchungsfolge untersucht wurden.

Das Berechnungsmodell ist auf eine einachsige Betrachtung der Spannungen und Dehnungen beschränkt. Eine zyklische Relaxation wurde in dem Berechnungsmodell nicht berücksichtigt.

Beanspruchungszeitfunktion (BZF)

Es wurden windenergiespezifische Beanspruchungszeitfunktionen in kritischen Bereichen der Nabe und des Maschinenträgers von den Projektpartnern aerodyn und Senvion zur Verfüng gestellt. Das Kollektiv wurde durch Klassierung der überlagerten Spannungszeitreihe ermittelt. Unter Verwendung des Haigh-Diagramms wurden die Amplituden auf eine Mittelspannung von R=-1 unter Berücksichtigung einer Mittelspannungsempfindlichkeit M=0,5 umgerechnet. Zur Erhöhung der Vergleichbarkeit wurden die so erhaltenen Kollektive in 100 Kollektivstufen neu klassiert sowie die Kollektivvölligkeit bewertet. Durch DNVGL wurden weitere Windenergiebauteile zur Bestätigung der final erhaltenen Kollektivformen untersucht.

Aus dem jeweiligem Gesamtkollektiv wurd ein Teilkollektiv mit reduziertem Umfang abgeleitet, welches sich für die Schwingfestigkeitsversuche eignet. Zusätzlich wurde eine Omission durchgeführt, um Amplituden zu entfernen, welche keinen signifikanten Einfluss auf die Gesamtschädigung haben. Anschließend wurden die Zyklen zufällig aneinander gereiht, sodass eine starke Durchmischung vorliegt.

Um den Einfluss der Kollektivform auf die Schadenssumme zu untersuchen, wurde final ein völliges (aerodyn) und ein lineares Kollektiv (Senvion) ausgewählt.

Versuchsauswertung

Für die vorliegenden, dehnungsgeregelten Untersuchungen richteet sich die Durchführung der Versuche nach dem Horizontenverfahren, weil dieses Verfahren auch eine statistische Auswertung der Streuung erlaubt. Hierbei wurden alle Lasthorizonte mit mehreren Schwingproben belegt. Für die Verteilung der Ergebnisse wurde eine logarithmische Normalverteilung zu Grunde gelegt. Die Ergebnisse wurden nach einem Verfahren, das wiederum auf der Maximum-Likelihood-Methode basiert, statistisch bewertet.

Page 3 of 9

Versuchsergebnisse unter konstanten Dehnungsamplituden

Zunächst wurden die Werkstoffe unter konstanten Dehnungsamplituden untersucht, um die jeweilige zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie abzuleiten. Dabei wurden je Werkstoff und Entnahmeort etwa 20 Schwingproben untersucht. Die durchgeführten Untersuchungen zeigen für alle Werkstoffe, dass

- die zyklische Beanspruchung eine mehr oder weniger stark ausgeprägte zyklische Werkstoffverfestigung hervorruft.
- die tri-lineare Dehnungswöhlerlinie das zyklische Werkstoffverhalten dieser Werkstoffe besser beschreibt als der herkömmliche analytische Ansatz nach Manson, Coffin und Morrow.
- die ferritischen Sorten EN-GJS-400-15 und EN-GJS-400-18U-LT die niedrigste Spannungs-Dehnungskurve, jedoch die höchste ertragbare Dehnungsamplitude im LCF-Bereich aufweisen. Hierauf folgen der EN-GJS-700-2 und die ADI-Sorten. Dabei zeigt sich im Spannungs-Dehnungsverhalten kein signifikanter Unterschied zwischen den Werkstofflegierungen bzw. Grundgefügen in Bezug auf den Entnahmeort (Y-Block oder Bauteil). Der Verlauf der zyklischen Spannungs-Dehnungskurve wird somit durch die Wanddicke und den Entnahmeort sowie die damit verbundene Mikrostruktur im Rahmen der vorliegenden Ergebnisse nur minimal beeinflusst.
- die Entnahmeposition der Proben die Schwingfestigkeit der GJS-Werkstoffe wesentlich stärker beeinflusst. Alle bauteilentnommenen Proben bzw. Werkstoffe zeigen eine im Vergleich zu den Y-Blöcken höhere zyklische Beanspruchbarkeit bei sonst gleicher zyklisch, stabilisierter Spannungs-Dehnungskurve.
- im Bereich kurzer Lebensdauern, also im Bereich der Kurzzeitfestigkeit hin zur plastischen Grenzbelastung, die ferritischen Sorten insgesamt deutlich höhere Totaldehnungen zulassen, als die ausferritischen und perlitischen Sorten, was auf die duktilere Matrix zurückzuführen ist. Basierend auf dem zyklischen Spannungs-Dehnungsverhalten stehen jedoch den höheren zulässigen Totaldehnungen nicht zwingend auch höhere Spannungsamplituden gegenüber.

Versuchsergebnisse unter variablen Dehnungsamplituden

Für die Bestimmung des zyklischen Werkstoffverhaltens unter den beiden Beanspruchungszeitfunktionen "aerodyn" und "Senvion" wurde je Werkstoff anhand einer Gaßnerlinie ohne Überlast, eine Gaßnerlinie mit Überlast am Anfang sowie mit einer Überlast nach einem Durchlauf durch die Teilfolge untersucht. Dabei stellte die Teilfolge mit Überlast am Anfang den schlimmsten Fall der Belastung dar, wenn das Bauteil am ersten Tag der Nutzung und ohne eine mögliche zyklische Werkstoffverfestigung erfahren zu haben, maximal beansprucht wird.

Auf Grund der zur Verfügung stehenden Probenanzahlen aus den Bauteilen und Y-Blöcken konnte jedoch nicht jede Versuchsreihe bzw. Variante experimentell untersucht werden. Für jede Versuchsreihe standen maximal 12 Einzelversuche zur Verfügung, sodass auf die Ermittlung einer Streuung der Versuche verzichtet wurde.

Die durchgeführten Untersuchungen zeigen für alle Versuche, dass:

- tendenziell alle Werkstoffe die höchste Beanspruchbarkeit für die Teilfolge ohne das Einstreuen von Überlasten haben. Wird die Überlast direkt zu Beginn der Teilfolge aufgebracht, sinkt die Beanspruchbarkeit je nach Werkstoff und je nach BZF teilweise deutlich ab. Die bereits nachgewiesene zyklische Verfestigung der Werkstoffe macht sich bei den Gaßnerversuchen mit Überlasten nach einem Durchlauf durch die Teilfolge bemerkbar, da in diesem Falle die Beanspruchbarkeit in einigen (jedoch nicht allen) Versuchsreihen wieder ansteigt.
- tendenziell die Überlast Einfluss auf die Neigung der Ga
 ßnerlinie hat. Sie wird in den meisten F
 ällen steiler. Eine einheitliche Aussage l

 ässt sich hier jedoch nicht ableiten, da jeder Werkstoff anders in Abh

 ängigkeit der aufgebrachten Vordehnung und der verwendeten Kollektivform reagiert.
- das geradlinige Kollektiv grundsätzlich eine höhere Belastbartkeit erzielt.
- die Beanspruchbarkeit der Gaßnerlinien aus den Y-Blöcken unterhalb derer aus den Bauteilen liegt. Hierfür könnte das schlechtere Gefüge verantwortlich sein (siehe Metallographie).

Page 4 of 9

Metallographie

Begleitend zu den Beanspruchbarkeitsuntersuchungen fanden metallographische Untersuchungen zur Bestimmung der Parameter der Werkstoffmatrizen statt. Dabei wurden vier Schwingproben je Halbzeug bzw. Bauteil untersucht und neben Ferrit- und Perlitgehalt auch die Graphitmenge, -Form und –Größe sowie die Nodularität bestimmt.

Eine Zusammenstellung der Ergebnisse gemittelt aus den vier einzelnen Proben zeigt Tabelle 14 im Abschlussbericht. Dabei zeigen die Bauteile hinsichtlich der durchschnittlichen Nodularität sowie der Anteile der durchschnittlich vorliegenden Graphitform V und VI teilweise deutlich höhere Werte als die vergleichbaren Y-Blöcke. Dies resultiert aus der geringeren Dicke der Bauteilwandung, aus der die Schwingproben entnommen werden, und ist unter anderem ein Grund für die gegenüber den Schwingproben aus Y-Blöcken höheren Beanspruchbarkeiten der bauteilentnommenen Schwingproben.

Numerische Untersuchungen zum Bemessungskonzept

Zur Auswahl geeigneter Schädigungsparameter und Dehnungswöhlerlinienbeschreibungen für das Bemessungskonzept aber auch zur Prüfung der Güte des Konzeptes wurden einige gängige Schädigungsparameter und Dehnungswöhlerlinien-beschreibungen miteinander verglichen. Dazu wurden die experimentellen Schwingfestigkeitsversuche mit variabler Amplitude rechnerisch untersucht. Die zyklische Beanspruchung der Schwingprobe wurde dazu mit unterschiedlichen Berechnungsmodellen nachgerechnet.

Es wurden insgesamt zwei Berechnungsgänge durchgeführt. Die Berechnungen erfolgten einerseits auf Basis der gemessenen Spannungen und Dehnungen aus den experimentellen Untersuchungen. Hierbei wurde automatisch das zyklische transiente Werkstoffverhalten berücksichtigt. Anderseits wurde eine Bewertung nur auf Basis der gemessenen Dehnungen durchgeführt. Hierbei wurden die Spannungen mit einem Werkstoffmodell auf Basis des zyklisch-stabilisierten Werkstoffverhaltens abgeleitet.

Eine Kerbwirkung wurde im Zuge der Berechnung nicht berücksichtigt, da es sich bei den Versuchsproben um ungekerbte Proben handelt.

Das Mitschreiben aller im Rahmen des Schwingversuchs auftretenden Daten wie Dehnungsamplitude als Soll- und Ist-Wert sowie der Kraft mit entsprechend hoher Abtastung führte zu einem hohen Datenumfang. Da dieser nicht für alle einzelnen Versuche vorgehalten werden konnte, konnten nicht bei allen Schwingfestigkeitsversuchen die gesamten Kraft- und Dehnungsverläufe aufgezeichnet werden. Tabelle 15 auf S. 64 des Abschlussberichts zeigt die Anzahl der nachgerechneten Versuche und die experimentell geprüften Proben.

Mit Hilfe der numerischen Untersuchungen wurde der Einfluss der verschiedenen Parameter auf das Ergebnis untersucht. Untersucht wurde unter anderem der Einfluss verschiedener Modifikationen der trilinearen Dehnungswöhlerlinie, der Mittelspannung, des Schädigunsparameters, der Spannungs-Dehnungskurve und der Kollektivform auf die Schadenssumme. Als Bewertungsgröße wurde die Streuung der Schadenssummen verwendet.

Bemessungskonzept

Zur Bewertung der Schwingfestigkeit von Bauteilen aus Gusseisen mit Kugelgraphit wurde ein Bemessungskonzept basierend auf experimentellen Untersuchungen unter konstanten und variablen Belastungsamplituden mit und ohne Sonderlasten entwickelt. Die Beanspruchungszeitfunktionen in Gaßnerversuchen mit variablen Belastungsamplituden basieren auf gemessenen Einzelzeitreihen, die zur Bemessung von Windkraftanalagen herangezogen werden. Grundlage der Bemessungsmethode sind die Ergebnisse und Erkenntnisse aus den durchgeführten experimentellen Untersuchungen. Die vorgeschlagene Methodik ist für alle untersuchten Materialien anwendbar, nämlich EN-GJS-400-18U-LT, EN-GJS-400-15, EN-GJS-700-2 und ADI 800, 900.

Um den Einfluss dieser lokalen plastischen Deformationen in der Schwingfestigkeitsbewertung zu berücksichtigen, wurde eine Berechnung auf Basis des örtlichen Konzeptes verwendet. In dieses Konzept fließt das lokale Spannungs-Dehnungsverhalten ein. Dies wird durch den Werkstoff und durch die Bauteilgeometrie beeinflusst. Der Zusammenhang zwischen äußerer Last und lokaler Dehnung in der

Kerbe wird über die so genannte Last-Kerbdehnungsbeziehung beschrieben. Im Bereich von Kerben bleibt das umgebende Material rein elastisch und stützt den Kerbgrund.

Anwendungs- und Gültigkeitsbereich

Die Randbedingungen für die Anwendung des Bemessungskonzeptes sind sowohl für den Spannungszustand als auch für die Materialeigenschaften und die Materialqualität definiert:

- Die Bewertung von ausgeprägten mehrachsigen Beanspruchungszuständen wird in diesem Konzept nicht behandelt. Die Richtung der ersten Hauptnormalspannung sollte nicht mehr als 20° innerhalb eines Beanspruchungszyklus variieren.
- Die Bewertung von Gussfehlern (Lunker, Dross, Chunky-Graphit) wird in diesem Konzept nicht behandelt.
- Der anwendbare Temperaturbereich liegt zwischen T=-20 °C und T=50 °C. Abweichungen in Temperatur sind gesondert zu berücksichtigen.
- Korrosion wird in diesem Konzept nicht berücksichtigt.

Spannungs-Dehnungsverhalten

Zur Bestimmung der Hysterese ist ein Modell zur Beschreibung des zyklischen Spannungs-Dehnungsverhaltens notwendig. Dies erfolgt nach Ramberg-Osgood unter Annahme eines zyklisch stabilisierten Werkstoffzustandes. Die allgemeine Anwendbarkeit der Ergebnisse der experimentellen Untersuchungen unter konstanten Dehnungsamplituden für alle GJS-Werkstoffe und die mittels der Kompatibilitätsbedingung abgeleiteten zyklischen Spannungs-Dehnungskurven ist noch zu prüfen. Diese kann zum Beispiel basierend auf Ergebnissen von Benchmark Anwendungsbeispielen nachgewiesen werden. Dabei wird empfohlen, bei einer Lebensdauerabschätzung das Spannungs-Dehnungs-Verhalten eines Incremental-Step-Tests mit einem Kollektivhöchstwert in Höhe der maximalen Beanspruchung des Bemessungskollektivs zu verwenden.

Last-Kerbdehnungskurve (Bauteilfließkurve)

Das Verhalten zwischen äußerer Last und lokaler Dehnung in der Kerbe wird mit der Bauteilfließkurve beschrieben. Es wird empfohlen die Bauteilfließkurve mittels einer elastisch-plastischen FEM-Rechnung zu bestimmen. Dabei sollen die Bauteilgeometrie, die Randbedingungen und die Belastung realitätsnah abgebildet werden. Bei der FE-Berechnung ist auf eine ausreichend feine Vernetzung zu achten. Falls der Einfluss des bezogenen Spannungsgradients in der Berechnung der Ermüdung benutzt wird, ist dieser in der Vernetzung entsprechend zu berücksichtigen.

Alternativ zu einer FE-Berechnung können Näherungsbeziehungen verwendet werden.

Masing-Memory-Modell

Das zyklische Werkstoffverhalten wird mit dem Masing-Memory-Modell beschrieben.

Beanspruchbarkeit

Die Beanspruchbarkeit des Werkstoffes wird durch die tri-lineare Dehnungswöhlerlinie abgebildet. Im Rahmen des Projekts wurden folgende Beschreibungen der Wöhlerlinie verwendet:

- Konventionelle Dehnungswöhlerlinie
- Tri-lineare Dehnungswöhlerlinie
- Lineare PJ-Wöhlerlinie

Schwingfestigkeitsbewertung – Einflussfaktoren

- Zur Übertragung der Schwingfestigkeitseigenschaften von der Schwingfestigkeitsprobe auf das Bauteil dienen die werkstoffmechanische Stützzahl und der Einflussfaktor der Oberflächenrauigkeit.
- 2. Der Einfluss der Bauteilgröße wird mit der statistischen Stützzahl erfasst.
- 3. Zur Berücksichtigung des Ermüdungsrisswachstums wird die bruchmechanische Stützzahl ausgerechnet.

Die oben genannten Einflussfaktoren werden in der vorgeschlagenen Methode basierend auf

Page 6 of 9

unterschiedlichen Referenzen definiert. Da deren Anwendbarkeit immer mit einem gewissen Gesamtsicherheitskonzept verbunden ist, soll basiernd auf gezielt ausgesuchten Benchmark Anwendungsbeispielen überprüft werden, ob die vorgeschlagene Kombination der Einflussfaktoren sinvoll und sicher ist.

Schädigungsparameter

Die lokalen plastischen Deformationen im Kerbgrund führen zu Eigenspannungen und somit auch zu einer Verschiebung der Mittelspannung. Diese werden im örtlichen Konzept durch die Verwendung des Schädigungsparameters nach Bergmann berücksichtigt. Der Korrekturfaktor für die Mittelspannung k wird in Abhängigkeit von der Mittelspannung basierend auf dem FKM-Vorhaben Nr.301, Heft 326 gewählt.

Die Ergebnisse der Testreihen mit variabler Belastungsamplitude wurden extensiv in der Abschätzung der Anwendbarkeit unterschiedlicher Schädigungsparameter untersucht. Aufgrund des vergleichsweise hohen Aufwandes bei der Implementation und der hohen Komplexität des PJ nach Vormwald wird der PB nach Bergmann empfohlen.

Einfluss von Überlasten

Im Falle eines möglichen Auftretens von Überlasten sind Schadenssummen für zwei unterschiedliche Szenarien zu berechnen:

- 1. Schadenssumme für Szenario 1:
 - Die Überlast tritt zu einem Zeitpunkt auf, an dem kein zyklisch stabilisiertes Werkstoffverhalten vorliegt. Die plastischen Deformationen, die durch die Sonderlast eingebracht werden, sind auf Basis der Erstbelastungskurve zu ermitteln.
- Schadenssumme f
 ür Szenario 2: Die Überlast tritt zu einem Zeitpunkt auf, an dem zyklisch stabilisiertes Werkstoffverhalten vorliegt. Die plastischen Deformationen, die durch die Überlast eingebracht werden, sind auf Basis der zyklisch stabilisierten Spannungs-Dehnungskurve zu ermitteln.

Zur Bemessung ist das Szenario mit der höheren Schadenssumme maßgebend.

Die Schadenssumme D wird mittels einer linearen Schadensakkumulation berechnet. Pro geschlossene Hysterese wird eine Teilschädigung berechnet. Die Addition der Teilschädigungen ergibt die Schadenssumme D, die kleiner als die zulässige Schadenssumme sein muss.

Schlussfolgerung

<u>Bemessungskonzept</u>: Das vorgeschlagene Bemessungskonzept wird als eine Möglichkeit erachtet, um den Einfluss von Überlasten bewertbar zu machen. Die Übertragbarkeit der Einflussfaktoren der FKM-Richtlinie wurde im Zuge dieses Projektes nicht geprüft. Es wird allerdings für sinnvoll erachtet, den technischen Sachverhalt der hinter dem einzelnen Faktor steht, im Zuge des Nachweises zu berücksichtigen. Es ist jedoch, bei der Mischung von Richtlinien und Standards, auf das globale Sicherheitskonzept zu achten.

<u>Fehlende Anwendungsbeispiele:</u> Das vorgeschlagene Bemessungskonzept für die Auswertung der Dauerfestigkeit der massiven Bauteile aus Gusseisen mit Kugelgraphit in Windenergieanlagen ist generell anwendbar. Die Methode ist in Vorgehensweise, angewendeten Materialgesetzen, numerischen Methoden und Randbedingungen vergleichbar mit anderen gängigen Bemessungsmethoden. Allerdings kann die Qualität, Anwendbarkeit und Sicherheit einer Berechnungsmethode erst nach der Auswertung ausreichender Anwendungsbeispiele geprüft, validiert und letztendlich bestätigt werden.

<u>Versuche:</u> Die Bewertung der Versuchsergebnisse lassen kaum allgemein gültige Aussagen zu. Dies liegt zum Teil an der geringen Versuchsanzahl, wodurch die Streuung nicht beurteilt werden konnte. Weiterhin konnten nicht alle Material- und Kollektivkombinationen getestet werden. Zudem überlagern sich auch eventuell verschiedene Effekte wie z.B. Einflüsse durch die unterschiedlichen Kollektivformen oder auch Materialunterschiede. Es lassen sich aber Aussagen in Form von Tendenzen ableiten.

Page 7 of 9

In einem Folgeprojekt könnte mit weiteren Untersuchungen die Versuchsanzahl erhöht oder auch fehlende Untersuchungen ergänzt werden, um die Vergleichbarkeit zu erhöhen. Die Überlast sollte deshalb konservativ am Anfang aufgebracht werden. Aussagen auf die Neigung oder auch Neigungsvergleich zwischen den Dehnungs- und Gaßnerlinine sind aufgrund der geringenen Versuchsanzahl nicht sinnvoll.

<u>Sicherheitskonzept</u>: Die allgemeinen Sicherheitsfaktoren sind gemäß der jeweiligen Richtlinie oder Standards zu wählen. Die durchgeführten Untersuchungen und Ergebnisse lassen keine Aussage zu, ob und in welcher Höhe das Sicherheitsniveau anzupassen wäre.

Dies gilt auch für die zusätzlichen Anforderungen für höherfestes Gusseisen nach DNVGL-ST-0361:2016 Abs. 2.2.7.3. Aktuell muss ein erweiterter Nachweis (z.B. mittels Bruchmechanik) erbracht werden, wenn die Restsicherheit (unter Berücksichtigung der Sicherheitsfaktoren siehe Kapitel 4.7 des Abschlussberichts) zwischen 1 und 1.5 liegt. Alternativ kann bei entsprechender Materialqualität auf diese Nachweise verzichtet werden, siehe 2.2.7.3 DNVGL-ST-0361:2016.

Allerdings kann untersucht werden, ob die Sicherheitsfaktoren der IEC 61400-1, IEC 61400-4 und der DVNGL Standards für das dehnungsbasierte Nachweiskonzept neu kalibriert werden sollten. Hierzu müsste untersucht werden, ob der dehnungsbasierte Ansatz mit einer eigenen Limit State Function kalibriert werden kann. Hieraus würden dann eigene Sicherheitsfaktoren für dieses Nachweiskonzept resultieren.

Als Fazit kann das Bemessungskonzept grundsätzlich zur Bewertung von Überlasten für Bauteile aus den untersuchten Sphärogussen eingesetzt werden. Im Zuge des Projektes werden für die untersuchten Werkstoffe (EN-GJS-400-18U-LT, EN-GJS-700-2, ADI 800 und ADI 900) Dehnungswöhlerlinien, Spannungs-Dehnungskurven und Gaßnerlinien ermittelt. Die ermittelten Kennlinien sind abhängig von der Legierungszusammensetzung, vom Werkstoffgefüge, von dem verwendeten Lastkollektiv sowie von der Probenanzahl und der damit in Verbindung stehenden statistischen Auswertung. Eine Allgemeingültigkeit der ermittelten Kennlinien wurde nicht nachgewiesen.

Für den Anwender fehlen Aussagen zur Übertragbarkeit des Konzeptes auf eigene Materialien. Hierzu gehören z.B. zusätzliche Tests, Untersuchungen und Vergleiche. Dies gilt besonders im Hinblick auf die teilweise geringe Probenanzahl, auf die untersuchten Materialqualitäten sowie die verwendeten Kollektivformen.

Im Zuge der Versuche wurde die plastische Verformung in einem Zyklus durch Stauchung der Proben aufgebracht. Hierdurch werden Zugeigenspannungen eingebracht. Druckeigenspannungen sowie der Einfluss von höheren Zyklenzahlen wurde im Projekt nicht untersucht.

Weiterhin wurde in den Versuchen und dem Konzept davon ausgegangen, dass keine Mikrorisse in den Proben durch die Vordehnung entstehen. Diese Annahme lässt sich nicht allgemein auf das Bauteil übertragen, da sich die Vordehnung hier anders auswirken kann. Mikroanrisse durch plastische Verformungen sind aufgrund des "Safe life" Ansatzes nicht zulässig, dies gilt im besonderen für die höherfesten Werkstoffe. Das Vorkommen von Mikroanrissen ist bei Anwendung der Methodik auszuschließen.

Hilfreich wäre auch die Ableitung oder Empfehlung eines Grenzkriteriums aus den Versuchsergebnissen, z.B. zulässige Grenzdehnung, bis zu welcher der Einfluss auf die Schadenssumme vernachlässigbar ist. Weiterhin fehlt ein Verleich zu den bisherig durchgeführten Spannunsbasieren Nachweiskonzepten.

Page 8 of 9

Sincerely for Germanischer Lloyd Industrial Services GmbH

Digitally signed by Schmidt, Peter Date: 2018.11.26 14:26:19 +01'00'

i.A. Peter Schmidt Head of Section Mechanical Components

Direct: +49 40 36149 7014 peter.schmidt@dnvgl.com

(Thives Uldier

Digitally signed by Maier, Oliver Michael Date: 2018.11.26 14:23:30 +01'00'

i.A. Oliver Michael Maier Principal Engineer

Mobile: +49 151 629 14 371 Direct: +49 40 36149 7141 Oliver-michael.maier@dnvgl.com

Page 9 of 9

Anhang 1: Dokumentenliste

[1] Fraunhofer LBF

Titel, Doc. Nr., Rev. Nr.	Datum	Status
Abschlussbericht zum BMWi-Vorhaben "GaßnerWind" Vereinfachte Bemessung von Eisengussbauteilen für Windenergieanlagen unter Berücksichtigung von Betriebsbelastungen und Sonderereignissen, [1]	Darmstadt 2018, submitted 12.07.2018	gesehen

Anhang T

Tabellen

Inhalt	Tabelle	Seite
Versuchsmatrix	Tabelle T 1	T 2
Untersuchte Berechnungsvarianten für die Schädigungsrechnung	Tabelle T 2	Т З
Zusammenfassung der Wöhlerlinienparameter	Tabelle T 3; Tabelle T 4	Τ4
Einzelversuchsergebnisse der Wöhlerlinien	Tabelle T 5 bis Tabelle T 11	T 5 bis T 11
Einzelversuchsergebnisse der Gaßnerlinien	Tabelle T 12 bis Tabelle T 49	T 12 bis T 31

Tabelle T 1 Versuchsmatrix

Ver- suchsreihe	Versuchsart	Kollektiv	Werkstoff	Entnahmeort
SM101	DWL	-	EN-GJS-400-18U-LI	Maschinentrager
SMT02	Gaßner	aerodyn ohne Uberlast	EN-GJS-400-18U-LT	Maschinenträger
SMT03	Gaßner	aerodyn mit neg. 1,0%-Uberlast am Anfang	EN-GJS-400-18U-LT	Maschinenträger
SMI04	Gaßner	aerodyn mit neg. 1,0%-Uberlast Mitte	EN-GJS-400-18U-LI	Maschinentrager
SM105	Gaßner	Servion ohne Überlast	EN-GJS-400-18U-LI	Maschinentrager
SM106	Gaßner	Servion mit neg. 1,0%-Uberlast am Anfang	EN-GJS-400-18U-LT	Maschinentrager
SMI07	Gaßner	Senvion mit neg. 1,0%-Uberlast Mitte	EN-GJS-400-180-LI	Maschinentrager
MWR01	DWL	-	EN-GJS-700-2	Y-Block
MWR02	DWL	-	EN-GJS-400-18U-LI	Y-Block
MWR04	Gaßner	aerodyn ohne Überlast	EN-GJS-700-2	Y-Block
MWR05	Gaßner	aerodyn ohne Uberlast	EN-GJS-400-18U-LI	Y-Block
MWR06	Gaßner	aerodyn mit neg. 1,0%-Uberlast am Anfang	EN-GJS-700-2	Y-Block
MWR07	Gaßner	aerodyn mit neg. 1,0%-Uberlast am Anfang	EN-GJS-400-18U-LI	Y-Block
MWR08	Gaßner	aerodyn mit neg. 1,0%-Uberlast Mitte	EN-GJS-700-2	Y-Block
MWR09	Gaßner	aerodyn mit neg. 1,0%-Uberlast Mitte	EN-GJS-400-180-L1	Y-Block
MVVR10	Gaisner	Servion onne Uberlast	EN-GJS-700-2	Y-BIOCK
MVVR11	Gaisner	Servion onne Uberlast	EN-GJS-400-180-L1	Y-BIOCK
	Galsner	Servion mit neg. 0,5%-Uberlast am Anfang	EN-GJS-700-2	Y-BIOCK
IVIVVR13	Galsner	Servion mit neg. 1,0%-Uberlast am Antang	EN-GJS-400-180-L1	Y-BIOCK
IVIVR14	Gabher	Servion mit neg. 0,5%-Oberlast Mitte	EN-GJS-700-2	Y-BIOCK
	Gabher	aerodyn mit neg. 0,5%-Oberlast am Anfang	EN-GJS-700-2	Y-BIOCK
EIRUI	DVVL	-	ADI-800	Y-BIOCK
ETRU2	Gabrier	aerodyn onne Oberiast	ADI-800	Y-BIOCK
ETRU3	Gabrier	aerodyn mit neg. 1,0%-Uberlast am Anlang	ADI-800	Y-BIOCK
	Gabrier	aerouyn mit neg. 1,0%-oberlast Mitte	ADI-800	T-DIUCK
	Gabrier	Servion onne Oberlast	ADI-800	I-DIOCK V Plock
ETROO	Gabrier	aerodyn mit neg. 0,5%-Oberlast am Arriang	ADI-800	I-DIOCK V Plock
	Calper	aerodyn mit neg. 0,5 %-Obenast Mitte	ADI-800	Dianatanträgar
	Gabrier	derodyn onne Oberiast	ADI-900	Planetenträger
	Caliner	aerodyn mit neg. 0,5%-diff Afridig	ADI-900	Planetenträger
	Gabrier	Aerodyn mit neg. 0,5%-Oberlast Mitte	ADI-900	Planetenträger
	Gaßner	Service mit pag. 0.5% am Anfang	ADI-900	Planetenträger
ETR14	Gaßnor	Servion mit neg. 0,5% Überlest Mitte	ADI-900	Planetenträger
ETR16	Gaßnor	service http://www.communications.com/		Planetenträger
ETR17	Gaßnor	aerodyn mit pog. 0.5% Überlast Mitte	ENLCIS 700-2	Planetenträger
ETR18	Gaßner	aerodyn mit neg. 0,5%-Oberlast Mitte	ENLGIS-700-2	Planetenträger
ETR19		-		Planetenträger
ETR20	DWI		ENI-GIS-700-2	Planetenträger
ETR21	Gaßner	Servion ohne Überlast	ENI-GIS-700-2	Planetenträger
FTR22	Gaßner	Servion mit neg. 0.5%-am Anfang	EN-GIS-700-2	Planetenträger
ETR23	Gaßner	Senvion mit neg. 0,5%-Üherlast Mitte	EN-GIS-700-2	Planetenträger
TKR01	DW/I	-	EN-GIS-400-15	Y-Block
TKR02	Gaßnor	aerodyn ohne Überlast	EN-GIS-/100-15	Y-Rlock
TKR02	Gaßner	aerodyn mit neg 10%-Überlast am Anfang	EN-GIS-400-15	Y-Block
TKR04	Gaßner	aerodyn mit neg. 1.0%-Überlast Mitte	EN-GIS-400-15	Y-Block
	Guinti	derough mit neg. 1,0 /0 Obenast witte	ENLGIS-400-1811-1T	1 DIOCK
IST	IST	IST	EN-GJS-700-2	Y-Block
		• •	ADI-800	Maschinenträger

Nr.	Р	Μ	DWL	Modifikation	Basis der DWL	SDK
1	PB	0.3	СМВМ	-	Versuch	Komp. Bed.
2	PB	0.3	Tri-Linear	original	Versuch	Komp. Bed.
3	PB	0.3	Tri-Linear	elementar	Versuch	Komp. Bed.
4	PB	0.3	Tri-Linear	Haibach	Versuch	Komp. Bed.
5	PB	0.3	Tri-Linear	Dauerfest	Versuch	Komp. Bed.
6	PB	0.3	CMBM	-	Versuch	IST
7	PB	0.3	CMBM	-	Schätzmethode	Komp. Bed.
8	PB	0.4	CMBM	-	Versuch	Komp. Bed.
9	Рв	0.4	Tri-Linear	original	Versuch	Komp. Bed.
10	PB	0.4	Tri-Linear	elementar	Versuch	Komp. Bed.
11	Рв	0.4	Tri-Linear	Haibach	Versuch	Komp. Bed.
12	PB	0.4	Tri-Linear	Dauerfest	Versuch	Komp. Bed.
13	Рв	0.4	CMBM	-	Versuch	IST
14	Рв	0.4	СМВМ	-	Schätzmethode	Komp. Bed.
15	Рв	0.5	СМВМ	-	Versuch	Komp. Bed.
16	PB	0.5	Tri-linear	original	Versuch	Komp. Bed.
17	PB	0.5	Tri-linear	elementar	Versuch	Komp. Bed.
18	Рв	0.5	Tri-linear	Haibach	Versuch	Komp. Bed.
19	Рв	0.5	Tri-linear	Dauerfest	Versuch	Komp. Bed.
20	Рв	0.5	СМВМ	-	Versuch	IST
21	PB	0.5	СМВМ	-	Schätzmethode	Komp. Bed.
34	Pε	-	CMBM	-	Versuch	Komp. Bed.
35	Pε	-	Tri-Linear	original	Versuch	Komp. Bed.
36	Pε	-	Tri-Linear	elementar	Versuch	Komp. Bed.
37	Pε	-	Tri-Linear	Haibach	Versuch	Komp. Bed.
38	Pε	-	Tri-Linear	Dauerfest	Versuch	Komp. Bed.
39	Pε		CMBM	-	Versuch	IST
40	Pε	-	CMBM	-	Schätzmethode	Komp. Bed.
41	Pر	0.5	Linear	-	Versuch	Komp.Bed. CMBM
42	P _{swt}	-	CMBM	-	Versuch	Komp. Bed.
43	Pswt	-	Tri-Linear	original	Versuch	Komp. Bed.
44	Pswt	-	Tri-Linear	elementar	Versuch	Komp. Bed.
45	Pswt	-	Tri-Linear	Haibach	Versuch	Komp. Bed.
46	P _{SWT}	-	Tri-Linear	Dauerfest	Versuch	Komp. Bed.
47	P _{SWT}		CMBM	-	Versuch	IST
48	Pswt	-	CMBM	-	Schätzmethode	Komp. Bed.

Tabelle T 2 Untersuchte Berechnungsvarianten für die Schädigungsrechnung

Ar Versuchsreihe Einz su	Anzahl Einzelver- suche	zyki	ische Kennwerte nach Coffin, M	zyklische Kennwerte nach Ramberg, Osgood				
		Schwingfestigkeitskoeffizient	Schwingfestigkeitsexponent	Duktilitätskoeffizient	Duktilitätsexponent	Dehngrenze	Verfestigungskoeffizient	Verfestigungsexponent
		σ' _f / [MPa]	b	ε' _f / [m/m]	c	R' _{p0,2} / [MPa]	K' / [MPa]	n'
SMT01	20	566,6	-0,0677	0,2638	-0,6208	333	655,2	0,1090
MWR01	20	685,3	-0,0860	0,0135	-0,4022	455	1720,3	0,2139
MWR02	18	1106,2	-0,1077	0,0093	-0,3542	692	4581,4	0,3041
ETR01	44	540,4	-0,0797	0,1006	-0,6320	330	712,9	0,1261
ETR19	20	1156,5	-0,0802	0,0895	-0,5429	660	1651,9	0,1477
ETR20	20	830,9	-0,0794	0,0871	-0,5113	462	1213,8	0,1553
TKR01	19	596,0	-0,0761	0,1561	-0,6268	351	746,8	0,1214

Tabelle T 3 Parameter der Dehnungswöhlerlinien für die untersuchten Werkstoffe nach Coffin, Manson, Basquin, Morrow sowie Ramberg-Osgood

Tabelle T 4 Parameter der Dehnungswöhlerlinien für die untersuchten Werkstoffe nach Wagener sowie Ramberg-Osgood

Versuchsreihe E	Anzahl Einzelver- suche	zyklische Ken	nwerte der tri-linearen Dehnun	zyklische Kennwerte nach Ramberg, Osgood				
		Schwingfestigkeitskoeffizient	Schwingfestigkeitsexponent	Duktilitätskoeffizient	Duktilitätsexponent	Dehngrenze	Verfestigungskoeffizient	Verfestigungsexponent
		σ' _{f1} ; σ' _{f2} ; σ' _{f3} / [MPa]	b1; b2; b3	ε' _f / [m/m]	c	R' _{p0,2} / [MPa]	K' / [MPa]	n'
SMT01	20	507,4; 674,7; 281,0	-0,0490; -0,0806; -0,0222	0,2638	-0,6208	345	563,7	0,0789
MWR01	20	574,7; 1630,0; 229,3	-0,0463; -0,1557; -0,0222	0,1350	-0,4022	461	942,7	0,1150
MWR02	44	479,2; 758,7; 231,0	-0,0532; -0,1053; -0,0222	0,0926	-0,6110	343	589,6	0,0871
ETR01	18	901,1; 1842,5; 274,4	-0,0667; -0,1473; -0,0222	0,0093	-0,3541	674	2168,9	0,1880
ETR19	20	1048,6; 1076,4; 496,1	-0,0615; -0,0745; -0,0222	0,0335	-0,3916	674	1787,2	0,1570
ETR20	20	756,5; 671,3; 377,5	-0,0656; -0,0628; -0,0222	0,0871	-0,5113	466	1034,4	0,1282
TKR01	19	494,1; 811,3; 236,2	-0,0453; -0,1013; -0,0222	0,1238	-0,5820	358	581,3	0,0778

Versuchsreihe Nr	Schwingproben Nr	Schwingproben Nr Dehnung [%] bei Ni/2		ei N/2	Dehnungsverhältnis	Versuchsfrequenz	ersuchsfrequenz Spannung [MPa]		Spannungsverhältnis	nungsverhältnis Schwingspielzahl		Remerkung Risslage
versuchstellte M.	Schwingproben M.	ε _{a,t}	ε _{a,p}	ε _{a,e}	$R_{\epsilon} = \epsilon_u / \epsilon_o$	[Hz]	$\sigma_a (n = N_i/2)$	$\sigma_{max} (n = N_i/2)$	$R_{\sigma} = \sigma_u / \sigma_o$	Ni+)	NB	bernerkung, hissiage
SMTR01	SMT-64_3,00%	3,002	2,737	0,264	-1	0,1	443,30	414,53	-1,14	18	20	В
SMTR01	SMT-82_3,00%	3,001	2,737	0,264	-1	0,1	442,76	416,46	-1,13	23	27	В
SMTR01	SMT-100_2,00%	2,166	1,918	0,248	-1	0,1	415,54	395,45	-1,10	48	55	В
SMTR01	SMT-90_1,40%	1,401	1,154	0,247	-1	0,1	415,04	386,02	-1,15	85	93	В
SMTR01	SMT-20_1,40%	1,400	1,170	0,230	-1	0,1	385,99	371,24	-1,08	65	73	В
SMTR01	SMT-07_1,00%	1,001	0,781	0,221	-1	0,1	369,97	361,04	-1,05	105	120	В
SMTR01	SMT-12_1,00%	1,000	0,782	0,218	-1	0,1	366,39	356,75	-1,05	115	133	В
SMTR01	SMT-88_0,60%	0,600	0,388	0,212	-1	0,1	354,89	348,78	-1,04	585	650	В
SMTR01	SMT-96_0,60%	0,600	0,391	0,209	-1	0,1	350,94	344,67	-1,04	435	481	В
SMTR01	SMT-68_0,35%	0,350	0,158	0,192	-1	0,2	322,85	317,35	-1,03	1.289	1.477	В
SMTR01	SMT-70_0,35%	0,350	0,147	0,203	-1	25,0	340,54	335,91	-1,03	3.052	3.317	В
SMTR01	SMT-76_0,25%	0,250	0,056	0,194	-1	0,5	325,23	320,50	-1,03	9.685	10.599	В
SMTR01	SMT-34_0,25%	0,250	0,057	0,192	-1	0,5	322,62	316,88	-1,04	9.589	10.255	В
SMTR01	SMT-30_0,15%	0,150	0,005	0,145	-1	2,0	243,97	232,71	-1,10	168.952	185.684	В
SMTR01	SMT-51_0,15%	0,150	0,000	0,150	-1	2,0	256,20	244,61	-1,09	99.586	108.714	С
SMTR01	SMT-40_0,13%	0,130	0,000	0,130	-1	20,0	222,43	208,73	-1,13	435.268	475.081	С
SMTR01	SMT-04_0,12%	0,120	0,000	0,120	-1	20,0	204,37	187,60	-1,18	1.626.448	1.690.047	В
SMTR01	SMT-18_0,12%	0,120	0,000	0,120	-1	20,0	208,74	188,38	-1,22	1.345.720	1.350.781	В
SMTR01	SMT-26_0,11%	0,110	0,000	0,110	-1	25,0	186,56	167,66	-1,23	7.852.685	8.243.876	В
SMTR01	SMT-02_0,11%	0,110	0,000	0,110	-1	25,0	190,52	183,21	-1,08	3.153.589	3.536.550	C

Tabelle T 5 Einzelergebnisse der Dehnungswöhlerlinie SMTR01 (EN-GJS-400-18U-LT), Senvion Maschinenträger, R_{ϵ} = -1

Schwingprobe: d = 15 mm; l = 25 mm; Elastizitätsmodul: E = 167,800 GPa; Umgebung: Luft, T = 296 K; +) 10% Kraftabfall; Formzahl Kt = 1,05

Risslage: A = von der Walzoberfläche; B = zwischen den Schneiden; C = außerhalb der Schneiden; D = unter den Schneiden (oben); E = unter den Schneiden (unten)

Versuchsreihe Nr	Schwingproben Nr	chwingproben Nr Dehnung [%] bei Ni/2		ei Ni/2	Dehnungsverhältnis	Versuchsfrequenz	Spannu	ung [MPa]	Spannungsverhältnis	Schwings	pielzahl	Bemerkung Risslage
versuensrenne rvr.	Serwingprober Mr.	ε _{a,t}	ε _{a,p}	ε a,e	$R_{\epsilon} = \epsilon_u / \epsilon_o$	[Hz]	$\sigma_a (n = N_i/2)$	$\sigma_{max} (n = N_i/2)$	$R_{\sigma} = \sigma_u / \sigma_o$	Ni+)	NB	bemerkung, hissiage
MWR01	MW-7-2-29_1,00%	1,000	0,677	0,324	-1	0,1	535,63	512,09	-1,09	3	4	В
MWR01	MW-7-4-33_0,80%	0,800	0,483	0,317	-1	0,1	524,27	502,24	-1,09	4	5	В
MWR01	MW-7-2-43_0,80%	0,800	0,489	0,311	-1	0,1	514,61	490,31	-1,10	22	25	С
MWR01	MW-7-4-16_0,60%	0,600	0,311	0,289	-1	0,1	478,50	460,30	-1,08	9	10	В
MWR01	MW-7-2-23_0,60%	0,600	0,312	0,288	-1	0,1	476,06	456,91	-1,08	48	53	В
MWR01	MW-7-4-42_0,40%	0,400	0,138	0,262	-1	0,2	433,32	415,80	-1,08	80	89	В
MWR01	MW-7-2-33_0,40%	0,400	0,138	0,262	-1	0,2	433,09	413,34	-1,10	270	307	С
MWR01	MW-7-4-39_0,30%	0,300	0,059	0,241	-1	0,2	398,34	377,13	-1,11	411	439	С
MWR01	MW-7-2-01_0,30%	0,300	0,052	0,248	-1	0,2	409,90	384,70	-1,13	1.759	1.855	В
MWR01	MW-7-2-36_0,20%	0,200	0,005	0,195	-1	1,0	322,91	305,66	-1,11	17.564	19.545	С
MWR01	MW-7-4-24_0,20%	0,200	0,003	0,197	-1	1,0	326,27	315,01	-1,07	21.564	25.445	С
MWR01	MW-7-2-37_0,15%	0,150	0,001	0,149	-1	5,0	246,69	242,42	-1,04	48.652	54.015	С
MWR01	MW-7-2-12_0,15%	0,150	0,001	0,149	-1	5,0	246,64	239,26	-1,06	132.564	158.548	В
MWR01	MW-7-2-06_0,15%	0,150	0,000	0,150	-1	5,0	248,59	237,07	-1,10	156.235	175.717	В
MWR01	MW-7-4-11_0,15%	0,150	0,000	0,150	-1	5,0	253,32	248,90	-1,04	215.632	245.679	С
MWR01	MW-7-2-19_0,14%	0,140	0,000	0,140	-1	8,0	233,67	212,81	-1,20	99.856	103.444	С
MWR01	MW-7-4-37_0,13%	0,130	0,000	0,130	-1	8,0	218,85	217,21	-1,02	68.205	78.011	С
MWR01	MW-7-2-18_0,12%	0,120	0,000	0,120	-1	8,0	202,89	200,48	-1,02	489.521	518.376	С
MWR01	MW-7-4-13_0,11%	0,110	0,000	0,110	-1	10,0	185,53	177,33	-1,09	556.203	583.505	С
MWR01	MW-7-4-31_0,10%	0,100	0,0013	0,0984	-1	10,0	162,89	157,55	-1,07	721.000	788.840	В

Tabelle T 6 Einzelergebnisse der Dehnungswöhlerlinie MWR01 (EN-GJS-700-2), Meuselwitz Y-Block, R_{ϵ} = -1

Schwingprobe: d = 15 mm; l = 25 mm; Elastizitätsmodul: E = 165,479 GPa; Umgebung: Luft, T = 296 K; +) 10% Kraftabfall; Formzahl Kt = 1,05

Risslage: A = von der Walzoberfläche; B = zwischen den Schneiden; C = außerhalb der Schneiden; D = unter den Schneiden (oben); E = unter den Schneiden (unten)

Dehnung [%] bei N/2 Dehnungsverhältnis Spannung [MPa] Spannungsverhältnis Versuchsfrequenz Schwingspielzahl Versuchsreihe Nr. Schwingproben Nr. Bemerkung, Risslage [Hz] $\sigma_a (n = N_i/2)$ $\sigma_{max} (n = N_i/2)$ ε_{a.p} ε_{a.e} $R_{\epsilon} = \epsilon_u / \epsilon_o$ $R_{\sigma} = \sigma_u / \sigma_o$ N_i+) NΒ ε_{a.t} MW-4-6-12_3,00% 0,261 MWR02 3,001 2,740 -1 0,1 438,50 417,33 -1,10 2 3 В MWR02 MW-4-5-11 3.00% 3.001 2.726 0.276 -1 0.1 463.20 429.84 -1.16 3 5 В MWR02 MW-4-6-34_2,00% 2,000 1.740 0,261 -1 0.1 437.86 412.71 -1.12 8 10 В 12 MWR02 MW-4-5-13_2,00% 2,000 1,742 0,258 -1 0,1 433,65 407,92 -1,13 10 В MWR02 MW-4-5-40_1,50% 1,501 1,260 0,241 -1 0,1 404,38 381,06 -1,12 4 7 В 13 MWR02 MW-4-6-24 1,50% 1.499 1,254 0,246 -1 0,1 412.43 391,76 -1,11 10 E MWR02 MW-4-7-44 1,50% 1,500 1,249 0,251 0,1 422,06 402,12 -1,10 18 19 -1 В MWR02 MW-4-7-27_1,50% 1,500 1,251 0,249 -1 0,1 417.97 398,53 -1,10 21 22 В MWR02 MW-4-6-16_1,00% 0,786 0,214 -1 0,1 358,82 359,55 -1,00 29 30 В 1,000 MWR02 MW-4-6-22 1,00% 0,228 368,94 28 30 1,000 0,772 -1 0,1 382.96 -1,08 В MWR02 MW-4-7-16_1,00% 0,999 0,785 0,214 -1 0,1 359,72 361,25 -0,99 35 36 В MWR02 MW-4-5-20_1,00% 380,72 366,01 35 40 1.000 0,773 0,227 -1 0,1 -1,08 В MWR02 MW-4-5-37_0,80% 0.800 0.584 0,216 -1 0.1 363,61 349,67 -1.08 30 32 В 85 MWR02 MW-4-6-18 0.80% 0.800 0.576 0.224 -1 0.1 375.67 363.92 -1.06 93 F MWR02 MW-4-5-21 0,80% 0,800 0,577 0,222 -1 0,1 373,70 362,14 -1,06 109 110 D MWR02 MW-4-7-40_0,60% 0,599 0,198 332,77 336,95 -0,98 85 95 0.401 -1 0,1 В MWR02 MW-4-5-23 0,60% 341,64 100 107 0,600 0,391 0,209 0,1 351,84 -1,06 -1 В MWR02 MW-4-6-37_0,60% 0.600 0.384 0.216 -1 0.1 362.01 351.84 -1.06 198 214 В MW-4-6-42_0,60% 208 MWR02 0.600 0.388 0.211 -1 0.1 354.87 351.22 -1.02 217 В MWR02 MW-4-5-02 0,40% 0,400 0,207 0,192 -1 0,2 323,29 315,59 -1,05 155 161 В MWR02 MW-4-7-03 0,40% 0,203 0,196 328,08 -1,01 241 0,399 -1 0,2 329,72 224 В 683 MWR02 MW-4-6-01 0.40% 0.400 0.191 0.209 -1 0.2 350.22 340.86 -1.05 612 В MWR02 MW-4-7-10_0,20% 0.199 0.021 0,178 -1 0.1 299.74 288,48 -1.08 4.403 4.581 С MWR02 MW-4-6-14_0,20% 0.199 0.029 0,171 -1 1.0 286.95 296,66 -0.93 4.580 4.860 В MWR02 MW-4-6-27 0,20% 0,024 0,176 -1 1,0 294,76 287,30 -1,05 4.598 5.761 0,200 В MWR02 MW-4-6-36 0,20% 298,48 289,08 -1,07 8.282 12.295 0.199 0,022 0,178 -1 0,1 В MWR02 MW-4-5-27 0.15% 0.143 0.012 0.131 -1 5.0 220.45 254.18 -0.73 8.448 9.700 В MWR02 MW-4-6-21_0,15% 0.150 0.006 0,144 -1 5,0 242.48 246,74 -0,97 31.144 31.766 В MW-4-5-26_0,15% 240.58 233.06 38,456 40.049 MWR02 0.150 0.007 0.143 -1 5.0 -1.06 В MWR02 MW-4-6-02 0,15% 0,143 240,31 235,80 -1,04 49.587 57.291 0,150 0,007 -1 5,0 В MW-4-7-18_0,14% 247,30 -0,84 MWR02 0,140 0,005 0,135 -1 8,0 227,09 49.098 50.079 В MWR02 MW-4-5-14_0,14% 8.0 224.77 249,64 -0,80 52.101 54.205 0.140 0.007 0.134 -1 В MWR02 MW-4-6-04_0,14% 0,136 8,0 228,80 216,47 -1,11 75.846 80.525 0,140 0,004 -1 В MWR02 MW-4-5-30 0,12% 0,002 0,118 197,55 192,90 -1,05 185.926 212.032 0,120 -1 8,0 В MWR02 164,90 -0,93 285.956 MW-4-6-23 0,10% 0,100 0.002 0,098 -1 8,0 170,85 280.349 В MWR02 MW-4-5-31 0,10% 0,100 0.004 0,096 -1 8,0 161,58 177,38 -0,82 285.956 291.675 В 165.63 MWR02 MW-4-7-15_0,10% 0.100 0.001 0.099 -1 8.0 164.88 -1.01 528.314 683.426 В MWR02 MW-4-6-17_0,10% -1 10,0 164,74 163,89 -1,01 3.609.500 3.613.278 В 0,100 0,002 0,098 MW-4-5-24 0,09% 148,32 -0,82 MWR02 0.090 0,002 0,088 -1 10.0 163,32 754.555 769.646 С MW-4-7-34 0,09% 150,04 1.030.799 1.091.599 MWR02 0,090 0,001 0,089 -1 10,0 160,94 -0,86 В MWR02 MW-4-6-30_0,09% 0,090 0,001 0,089 -1 10,0 149,59 149,78 -1,00 1.147.299 1.156.099 R 132.27 -1.05 MWR02 MW-4-7-04 0.08% 0.080 0.002 0,079 -1 10.0 129.06 10.000.000 10.000.000 Durchläufer MWR02 MW-4-5-29 0.08% 0.080 0.001 0.079 10.0 132.07 130.44 -1.03 10.000.000 10.000.000 Durchläufer -1

Tabelle T 7 Einzelergebnisse der Dehnungswöhlerlinie MWR02 (EN-GJS-400-18U-LT), Meuselwitz Y-Block, R_{ϵ} = -1

Schwingprobe: d = 15 mm; l = 25 mm; Elastizitätsmodul: E = 168,000 GPa; Umgebung: Luft, T = 296 K; +) 10% Kraftabfall; Formzahl K; = 1,05;

Risslage: A = von der Walzoberfläche; B = zwischen den Schneiden; C = außerhalb der Schneiden; D = unter den Schneiden (oben); E = unter den Schneiden (unten)
Vorsuchsroibo Nr	Schwingprobon Nr	Dehnu	ung [%] b	ei Ni/2	Dehnungsverhältnis	Versuchsfrequenz	Spannu	ung [MPa]	Spannungsverhältnis	Schwing	spielzahl	Pomorkung Pissbago
versuchstellie M.	schwingproben Mr.	ε _{a,t}	ε _{a,p}	ε _{a,e}	$R_{\epsilon} = \epsilon_u / \epsilon_o$	[Hz]	$\sigma_a (n = N_i/2)$	$\sigma_{max} (n = N_i/2)$	$R_{\sigma} = \sigma_u / \sigma_o$	Ni+)	NB	bemerkung, Nissiage
ETR01	ET-48_1,00%	1,001	0,517	0,484	-1	0,1	789,62	742,36	-1,13	3	4	В
ETR01	ET-63_0,80%	0,799	0,359	0,441	-1	0,1	718,65	689,92	-1,08	13	15	В
ETR01	ET-31_0,80%	0,799	0,340	0,460	-1	0,1	749,19	721,65	-1,08	22	26	В
ETR01	ET-87_0,60%	0,599	0,180	0,419	-1	0,1	682,89	655,10	-1,08	12	15	D
ETR01	ET-17_0,60%	0,600	0,192	0,408	-1	0,1	664,70	642,36	-1,07	35	41	В
ETR01	ET-55_0,50%	0,500	0,105	0,395	-1	1,0	644,52	613,34	-1,10	108	121	В
ETR01	ET-68_0,50%	0,497	0,132	0,365	-1	1,0	595,10	560,68	-1,12	426	500	В
ETR01	ET-02_0,40%	0,397	0,057	0,341	-1	2,0	555,34	510,15	-1,18	1.056	1.240	С
ETR01	ET-66_0,40%	0,398	0,067	0,332	-1	2,0	540,34	501,55	-1,15	2.358	2.689	В
ETR01	ET-27_0,30%	0,300	0,025	0,275	-1	2,0	448,21	435,13	-1,06	6.598	7.251	В
ETR01	ET-74_0,30%	0,300	0,024	0,276	-1	2,0	450,14	438,83	-1,05	11.596	12.952	В
ETR01	ET-65_0,20%	0,200	0,007	0,193	-1	3,0	314,00	310,55	-1,02	60.257	67.943	В
ETR01	ET-08_0,20%	0,200	0,007	0,193	-1	3,0	314,50	321,67	-0,96	88.562	98.465	В
ETR01	ET-73_0,15%	0,150	0,003	0,147	-1	5,0	239,16	225,78	-1,12	350.621	402.146	C
ETR01	ET-26_0,15%	0,150	0,006	0,144	-1	5,0	234,93	231,01	-1,03	478.925	530.963	В
ETR01	ET-59_0,14%	0,140	0,003	0,137	-1	10,0	223,62	233,77	-0,91	489.562	531.720	В
ETR01	ET-01_0,13%	0,130	0,004	0,126	-1	10,0	205,63	222,42	-0,85	1.266.874	1.425.533	C
ETR01	ET-45_0,13%	0,130	0,004	0,126	-1	10,0	205,96	212,23	-0,94	1.548.956	1.712.054	С

Tabelle T 8 Einzelergebnisse der Dehnungswöhlerlinie ETR01 (ADI-800), Eickhoff Y-Block, R_{ϵ} = -1

Schwingprobe: d = 15 mm; l = 25 mm; Elastizitätsmodul: E = 163,000 GPa; Umgebung: Luft, T = 296 K; +) 10% Kraftabfall; Formzahl Kt = 1,05

Versuchsreihe Nr	Schwingproben Nr	Dehnu	ung [%] b	ei Ni/2	Dehnungsverhältnis	Versuchsfrequenz	Spannu	ing [MPa]	Spannungsverhältnis	Schwing	spielzahl	Bemerkung Risslage
versuchistenie m.	Schwingproben Nr.	ε _{a,t}	ε _{a,p}	ε _{a,e}	$R_{\epsilon} = \epsilon_u / \epsilon_o$	[Hz]	$\sigma_a (n = N_i/2)$	$\sigma_{max} (n = N_i/2)$	$R_{\sigma} = \sigma_u / \sigma_o$	Ni+)	NB	bernerkung, hissiage
ETR19	15-2_0,85%	0,850	0,365	0,485	-1	0,1	752,00	724,48	-1,08	186	188	В
ETR19	15-1_0,85%	0,849	0,360	0,489	-1	0,1	759,22	729,82	-1,08	278	282	В
ETR19	01-1_0,80%	0,798	0,325	0,472	-1	0,1	733,03	733,02	-1,00	252	258	В
ETR19	17-1_0,80%	0,798	0,322	0,476	-1	0,1	738,28	711,50	-1,08	416	424	В
ETR19	24-3_0,70%	0,700	0,260	0,440	-1	0,1	682,70	661,63	-1,06	114	120	В
ETR19	24-1_0,70%	0,699	0,249	0,450	-1	0,1	699,03	674,44	-1,07	706	720	В
ETR19	11-2_0,60%	0,599	0,181	0,419	-1	0,1	649,57	680,62	-0,91	510	520	В
ETR19	10-1_0,60%	0,598	0,169	0,429	-1	0,1	665,61	647,94	-1,05	1.386	1.414	D
ETR19	23-3_0,50%	0,498	0,118	0,380	-1	0,2	590,44	571,34	-1,07	1.078	1.098	В
ETR19	25-2_0,50%	0,498	0,103	0,396	-1	0,2	614,39	592,77	-1,07	2.694	2.746	В
ETR19	17-2_0,40%	0,399	0,044	0,355	-1	0,5	551,41	640,03	-0,72	4.150	4.234	В
ETR19	06-3_0,40%	0,399	0,056	0,343	-1	0,5	532,44	536,44	-0,99	3.990	4.764	В
ETR19	04-3_0,30%	0,300	0,009	0,292	-1	2,0	452,66	510,37	-0,77	16.212	16.536	С
ETR19	10-3_0,30%	0,300	0,009	0,291	-1	2,0	452,00	511,46	-0,77	18.992	20.556	В
ETR19	11-1_0,25%	0,250	0,000	0,250	-1	2,0	390,09	503,32	-0,55	82.144	83.786	С
ETR19	05-1_0,25%	0,250	0,000	0,250	-1	2,0	388,85	544,08	-0,43	132.110	134.752	В
ETR19	14-1_0,22%	0,220	0,000	0,220	-1	4,0	354,45	308,75	-1,30	9.793.586	9.810.248	В
ETR19	25-1_0,22%	0,220	0,000	0,220	-1	4,0	348,63	335,25	-1,08	9.999.710	10.000.000	Durchläufer
ETR19	05-2_0,20%	0,200	0,000	0,200	-1	4,0	318,28	376,37	-0,69	2.929.410	2.948.172	В
ETR19	06-2_0,20%	0,200	0,000	0,200	-1	25,0	320,45	343,08	-0,87	6.125.416	6.128.450	В

Tabelle T 9 Einzelergebnisse der Dehnungswöhlerlinie ETR19 (ADI-900), Eickhoff Planetenträger, R_{ϵ} = -1

Schwingprobe: d = 15 mm; l = 25 mm; Elastizitätsmodul: E = 155,200 GPa; Umgebung: Luft, T = 296 K; +) 10% Kraftabfall; Formzahl Kt = 1,05

Versuchsreihe Nr	Schwingproben Nr	Dehnu	ung [%] b	ei Ni/2	Dehnungsverhältnis	Versuchsfrequenz	Spannu	ıng [MPa]	Spannungsverhältnis	Schwing	spielzahl	Bemerkung Risslage
versuensienne mi.	Schwingproben Mr.	ε _{a,t}	ε _{a,p}	ε _{a,e}	$R_{\epsilon} = \epsilon_u / \epsilon_o$	[Hz]	$\sigma_a (n = N_i/2)$	$\sigma_{max} (n = N_i/2)$	$R_{\sigma} = \sigma_u / \sigma_o$	Ni+)	NB	bernerkung, hissiage
ETR20	ET-7-21_0,90%	0,899	0,563	0,336	-1	0,05	544,38	533,36	-1,04	115	125	В
ETR20	ET-7-71_0,90%	0,899	0,563	0,335	-1	0,05	543,34	531,67	-1,04	138	141	D
ETR20	ET-7-82_0,80%	0,799	0,478	0,321	-1	0,05	519,37	509,27	-1,04	78	79	В
ETR20	ET-7-09_0,80%	0,799	0,474	0,325	-1	0,05	526,01	515,69	-1,04	135	137	В
ETR20	ET-7-58_0,60%	0,599	0,302	0,297	-1	0,10	481,14	471,67	-1,04	389	410	С
ETR20	ET-7-67_0,60%	0,599	0,300	0,300	-1	0,10	485,24	475,75	-1,04	615	639	В
ETR20	ET-7-20_0,50%	0,499	0,212	0,287	-1	0,20	465,08	453,67	-1,05	589	763	В
ETR20	ET-7-68_0,50%	0,499	0,214	0,285	-1	0,20	462,37	452,56	-1,04	865	945	В
ETR20	ET-7-48_0,40%	0,400	0,131	0,269	-1	0,50	435,90	425,35	-1,05	2.056	2.223	В
ETR20	ET-7-17_0,40%	0,400	0,130	0,269	-1	0,50	436,44	426,75	-1,05	2.210	2.405	В
ETR20	ET-7-51_0,30%	0,300	0,054	0,246	-1	2,00	397,94	387,05	-1,06	6.758	7.490	В
ETR20	ET-7-75_0,30%	0,300	0,051	0,249	-1	2,00	402,70	390,51	-1,06	10.356	11.566	С
ETR20	ET-7-19_0,20%	0,200	0,006	0,194	-1	1,00	314,11	319,34	-0,97	84.569	93.616	С
ETR20	ET-7-84_0,20%	0,200	0,003	0,197	-1	1,00	318,52	309,92	-1,06	145.988	157.968	В
ETR20	ET-7-36_0,18%	0,179	0,000	0,179	-1	4,00	291,77	285,41	-1,04	199.856	221.325	В
ETR20	ET-7-63_0,18%	0,180	0,000	0,180	-1	5,00	293,09	287,41	-1,04	269.587	299.237	E
ETR20	ET-7-24_0,17%	0,169	0,000	0,169	-1	10,00	279,31	274,87	-1,03	254.965	278.967	В
ETR20	ET-7-52_0,17%	0,170	0,000	0,170	-1	25,00	276,86	266,60	-1,08	10.000.000	10.000.000	Durchläufer
ETR20	ET-7-47_0,15%	0,150	0,000	0,150	-1	25,00	247,62	239,13	-1,07	10.000.000	10.000.000	Durchläufer
ETR20	ET-7-05_0,15%	0,120	0,000	0,120	-1	25,00	198,07	201,10	-0,97	10.000.000	10.000.000	Durchläufer

Tabelle T 10 Einzelergebnisse der Dehnungswöhlerlinie ETR20 (EN-GJS-700-2), Eickhoff Planetenträger, R_{ϵ} = -1

Schwingprobe: d = 15 mm; l = 25 mm; Elastizitätsmodul: E = 162,000 GPa; Umgebung: Luft, T = 296 K; +) 10% Kraftabfall; Formzahl Kt = 1,05

Versuchsreihe Nr	Schwingproben Nr	Dehnu	ung [%] b	ei N/2	Dehnungsverhältnis	Versuchsfrequenz	Spannu	ing [MPa]	Spannungsverhältnis	Schwing	spielzahl	Romerkung Risslage
versuchsiehte Mr.	Schwingproben Mr.	ε _{a,t}	ε _{a,p}	ε _{a,e}	$R_{\epsilon} = \epsilon_u / \epsilon_o$	[Hz]	$\sigma_a (n = N_i/2)$	$\sigma_{max} (n = N_i/2)$	$R_{\sigma} = \sigma_u / \sigma_o$	Ni+)	NB	bemerkung, Rissiage
TKR01	C7-II_2,00%	2,001	1,743	0,258	-1	0,1	430,82	409,21	-1,11	7	8	В
TKR01	A1-II_2,00%	1,999	1,736	0,264	-1	0,1	440,39	419,23	-1,10	20	24	В
TKR01	C5-II_1,00%	1,000	0,768	0,232	-1	0,1	386,53	375,13	-1,06	45	57	В
TKR01	D2-II_1,00%	1,000	0,765	0,235	-1	0,1	392,60	381,87	-1,06	95	106	В
TKR01	D6-II_0,60%	0,600	0,380	0,220	-1	0,1	366,83	357,97	-1,05	290	341	В
TKR01	A3-II_0,60%	0,600	0,378	0,222	-1	0,1	370,19	361,45	-1,05	400	447	В
TKR01	D11_0,35%	0,351	0,139	0,212	-1	0,1	354,64	347,03	-1,04	1.787	1.846	В
TKR01	B8_0,35%	0,351	0,146	0,205	-1	0,1	342,04	334,22	-1,05	942	1.006	В
TKR01	D5_0,30%	0,301	0,099	0,202	-1	0,1	337,68	329,65	-1,05	1.770	1.824	В
TKR01	A7_0,30%	0,301	0,094	0,206	-1	0,1	344,62	336,76	-1,05	2.304	2.563	В
TKR01	B2_0,25%	0,250	0,055	0,195	-1	0,2	325,11	316,95	-1,05	2.800	2.838	В
TKR01	D9_0,25%	0,249	0,052	0,197	-1	0,3	329,18	320,70	-1,05	3.837	4.271	В
TKR01	C6_0,20%	0,200	0,019	0,181	-1	1,0	301,76	291,68	-1,07	6.535	6.796	В
TKR01	B4_0,16%	0,160	0,005	0,155	-1	2,0	258,99	244,45	-1,12	33.050	39.132	В
TKR01	C7_0,16%	0,160	0,006	0,154	-1	4,0	257,78	244,68	-1,11	15.200	15.576	В
TKR01	B12_0,11%	0,109	0,000	0,109	-1	12,0	184,49	174,61	-1,11	619.003	626.014	С
TKR01	C1_0,10%	0,099	0,000	0,100	-1	12,0	167,55	160,14	-1,09	4.030.000	4.040.000	В
TKR01	B9_0,09%	0,090	0,000	0,090	-1	4,0	152,17	136,34	-1,23	10.000.000	10.000.001	Durchläufer
TKR01	B8_2_0,09%	0,089	0,000	0,089	-1	12,0	150,18	139,79	-1,15	10.000.000	10.003.923	Durchläufer

Tabelle T 11 Einzelergebnisse der Dehnungswöhlerlinie TKR01 (EN-GJS-400-15), ThyssenKrupp Y-Block, R_{ϵ} = -1

Schwingprobe: d = 15 mm; l = 25 mm; Elastizitätsmodul: E = 167,000 GPa; Umgebung: Luft, T = 296 K; +) 10% Kraftabfall; Formzahl Kt = 1,05

Tabelle T 12 Einzelergebnisse der Gaßnerlinie SMTR02 (EN-GJS-400-18U-LT), Senvion Maschinenträger, BZF "aerodyn ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude E. [%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a.82} .	Bemerkung, Versagensort
SMTR02	SMT-05_0,15%	-	0,1500	552.639	1.563.968	
SMTR02	SMT-32_0,15%	-	0,1500	872.473	2.469.099	
SMTR02	SMT-94_0,15%	-	0,1500	1.144.772	3.239.705	
SMTR02	SMT-16_0,1375%	-	0,1375	771.464	2.183.243	
SMTR02	SMT-59_0,1375%	-	0,1375	890.330	2.519.634	
SMTR02	SMT-68_0,1375%	-	0,1375	8.186.942	23.169.046	
SMTR02	SMT-37_0,125%	-	0,1250	10.000.000	28.300.000	Durchläufer
SMTR02	SMT-78_0,125%	-	0,1250	10.000.000	28.300.000	Durchläufer

Tabelle T 13 Einzelergebnisse der Gaßnerlinie SMTR02 (EN-GJS-400-18U-LT), Senvion Maschinenträger, BZF "aerodyn mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\epsilon_{\rm s}}.[\%]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a.817} .	Bemerkung, Versagensort
SMTR03	SMT-13_0,150%	-1,0	0,1500	177.757	503.052	
SMTR03	SMT-61_0,1375%	-1,0	0,1375	504.228	1.426.965	
SMTR03	SMT-67_0,1375%	-1,0	0,1375	802.100	2.269.943	
SMTR03	SMT-97_0,1375%	-1,0	0,1375	829.712	2.348.085	
SMTR03	SMT-24_0,125%	-1,0	0,1250	701.306	1.984.696	
SMTR03	SMT-17_0,125%	-1,0	0,1250	846.334	2.395.125	
SMTR03	SMT-31_0,125%	-1,0	0,1250	1.695.074	4.797.059	
SMTR03	SMT-36_0,125%	-1,0	0,1250	1.529.759	4.329.218	
SMTR03	SMT-83_0,110%	-1,0	0,1100	2.363.564	6.688.886	
SMTR03	SMT-84_0,110%	-1,0	0,1100	3.010.005	8.518.314	
SMTR03	SMT-29_0,110%	-1,0	0,1100	3.692.100	10.448.643	
SMTR03	SMT-48_0,100%	-1,0	0,1000	10.000.000	28.300.000	Durchläufer

Tabelle T 14 Einzelergebnisse der Gaßnerlinie SMTR04 (EN-GJS-400-18U-LT), Senvion Maschinenträger, BZF "aerodyn mit negativer Überlast nach einem Durchlauf"

Maximale Dehnungsamplitude $\overline{\epsilon_{\rm s}}\,[\%]$ Anrissschwingspielzahl N_{a,BLZ} Anrissschwingspielzahl $\overline{\mathsf{N}}_{\mathrm{a}}$ Bemerkung, Versagensort Schwingproben Nr. Versuchsreihe Nr. Überlast [%] SMTR04 SMT-19_0,150% 0,1500 712.161 2.015.416 -1,0 873.368 2.471.631 SMTR04 SMT-41_0,150% -1.0 0,1500 SMTR04 SMT-69_0,150% -1,0 0,1500 1.260.299 3.566.646 SMTR04 SMT-86_0,1375% -1,0 0,1375 1.231.517 3.485.193 SMTR04 SMT-66 0,1375% -1,0 0,1375 1.446.652 4.094.025 SMTR04 SMT-98_0,1375% -1,0 0,1375 2.740.823 7.756.529 SMTR04 SMT-45_0,125% 0,1250 2.423.321 6.857.998 -1,0 SMTR04 SMT-99_0,125% -1,0 0,1250 2.774.283 7.851.221 SMTR04 SMT_71_0,125% -1,0 0,1250 3.851.111 10.898.644 SMTR04 SMT-39_0,110% -1,0 0,1100 10.000.000 28.300.000 Durchläufer Tabelle T 15 Einzelergebnisse der Gaßnerlinie SMTR05 (EN-GJS-400-18U-LT), Senvion Maschinenträger, BZF "Senvion ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\epsilon_{\rm s}}[\%]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{anz} .	Bemerkung, Versagensort
SMTR05	SMT-14_0,30%	1	0,300	512.924	3.113.449	
SMTR05	SMT-85_0,30%	1	0,300	1.229.772	7.464.716	
SMTR05	SMT-79_0,30%	1	0,300	905.632	5.497.186	
SMTR05	SMT-38_0,275%	1	0,275	1.778.042	10.792.715	
SMTR05	SMT-33_0,275%	1	0,275	1.797.659	10.911.790	
SMTR05	SMT-44_0,275%	-	0,275	2.492.359	15.128.619	
SMTR05	SMT-81_0,225%	-	0,225	3.899.434	23.669.564	
SMTR05	SMT-62_0,225%	-	0,225	6.274.079	38.083.660	
SMTR05	SMT-25_0,20%	-	0,200	9.330.753	56.637.671	
SMTR05	SMT-93_0,20%	-	0,200	10.000.000	60.700.000	Durchläufer

T 13

Tabelle T 16 Einzelergebnisse der Gaßnerlinie SMTR06 (EN-GJS-400-18U-LT), Senvion Maschinenträger, BZF "Senvion mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\mathbf{e}}_a}[\%]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl $\overline{N_{a,BLZ}}$	Bemerkung, Versagensort
SMTR06	SMT-92_0,350%	-1,0	0,350	397.584	2.413.335	
SMTR06	SMT-56_0,300%	-1,0	0,300	305.008	1.851.399	
SMTR06	SMT-03_0,300%	-1,0	0,300	493.657	2.996.498	
SMTR06	SMT-11_0,300%	-1,0	0,300	502.659	3.051.140	
SMTR06	SMT-52_0,300%	-1,0	0,300	609.732	3.701.073	
SMTR06	SMT-63_0,300%	-1,0	0,300	723.782	4.393.357	
SMTR06	SMT-57_0,200%	-1,0	0,200	2.138.836	12.982.735	
SMTR06	SMT-75_0,200%	-1,0	0,200	2.480.211	15.054.881	
SMTR06	SMT-54_0,200%	-1,0	0,200	4.816.734	29.237.575	
SMTR06	SMT-89_0,150%	-1,0	0,150	10.000.000	60.700.000	Durchläufer

Tabelle T 17 Einzelergebnisse der Gaßnerlinie SMTR07 (EN-GJS-400-18U-LT), Senvion Maschinenträger, BZF "Senvion mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\mathbf{e}}_{\mathbf{s}}$ [%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{aerz} .	Bemerkung, Versagensort
SMTR07	SMT-9_0,300%	-1,0	0,300	587.147	3.563.982	
SMTR07	SMT-30_0,300%	-1,0	0,300	742.972	4.509.840	
SMTR07	SMT-43_0,300%	-1,0	0,300	894.597	5.430.204	
SMTR07	SMT-6_0,250%	-1,0	0,250	1.301.815	7.902.017	
SMTR07	SMT-23_0,250%	-1,0	0,250	1.650.779	10.020.229	
SMTR07	SMT-28_0,250%	-1,0	0,250	1.974.059	11.982.538	
SMTR07	SMT-87_0,200%	-1,0	0,200	9.424.990	57.209.689	
SMTR07	SMT-53_0,200%	-1,0	0,200	10.000.000	60.700.000	Durchläufer

Tabelle T 18 Einzelergebnisse der Gaßnerlinie MWR04 (EN-GJS-700-2), Meuselwitz Y-Block, BZF "aerodyn ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\mathbf{E}}_a} \left[96 \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}_{\mathrm{s}}}$	Anrissschwingspielzahl N _{a.842} .	Bemerkung, Versagensort
MWR04	MW7-2-09_0,200%	-	0,200	126.952	359.274	
MWR04	MW7-4-07_0,200%	-	0,200	140.947	398.880	
MWR04	MW7-4-04_0,175%	-	0,175	263.706	746.288	
MWR04	MW7-4-35_0,175%	-	0,175	395.930	1.120.482	
MWR04	MW7-2-26_0,175%	-	0,175	553.651	1.566.832	
MWR04	MW7-4-40_0,150%	-	0,150	351.905	995.891	
MWR04	MW7-4-41_0,150%	-	0,150	1.693.666	4.793.075	
MWR04	MW7-4-43_0,150%	-	0,150	8.621.802	24.399.700	

Tabelle T 19 Einzelergebnisse der Gaßnerlinie MWR06 (EN-GJS-700-2), Meuselwitz Y-Block, BZF "aerodyn mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude E. [%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a.az} .	Bemerkung, Versagensort
MWR06	MW7-4-41_0,150%	-1,0	0,150	187.696	531.180	
MWR06	MW74-27_0,125%	-1,0	0,125	141.001	399.033	
MWR06	MW7-4-25_0,110%	-1,0	0,110	272.821	772.083	
MWR06	MW7-4-36_0,080%	-1,0	0,080	567.606	1.606.325	
MWR06	MW7-4-08_0,080%	-1,0	0,080	857.965	2.428.041	
MWR06	MW7-4-05_0,060%	-1,0	0,060	1.719.580	4.866.411	
MWR06	MW7-4-06_0,060%	-1,0	0,060	2.026.083	5.733.815	
MWR06	MW7-4-17_0,060%	-1,0	0,060	2.631.529	7.447.227	

Tabelle T 20 Einzelergebnisse der Gaßnerlinie MWR08 (EN-GJS-700-2), Meuselwitz Y-Block, BZF "aerodyn mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\mathbf{E}}_a} \left[96 \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.842} .	Bemerkung, Versagensort
MWR08	MW7-4-23_0,1750%	-1,0	0,1750	257.675	729.220	
MWR08	MW7-4-09_0,1750%	-1,0	0,1750	347.325	982.930	
MWR08	MW7-4-14_0,1750%	-1,0	0,1750	640.069	1.811.395	
MWR08	MW7-2-04_0,1500%	-1,0	0,1500	238.013	673.577	
MWR08	MW7-2-39_0,1500%	-1,0	0,1500	559.821	1.584.293	
MWR08	MW7-2-08_0,1500%	-1,0	0,1500	575.365	1.628.283	
MWR08	MW7-2-20_0,1500%	-1,0	0,1500	908.340	2.570.602	
MWR08	MW7-2-2_0,1375%	-1,0	0,1375	752.318	2.129.060	
MWR08	MW7-2-17_0,1375%	-1,0	0,1375	852.625	2.412.929	
MWR08	MW7-2-14_0,1375%	-1,0	0,1375	867.340	2.454.572	
MWR08	MW7-2-24_0,1250%	-1,0	0,1250	830.914	2.351.487	
MWR08	MW7-2-07_0,1100%	-1,0	0,1100	626.525	1.773.066	

Tabelle T 21 Einzelergebnisse der Gaßnerlinie MWR15 (EN-GJS-700-2), Meuselwitz Y-Block, BZF "aerodyn mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{M}_{\overline{\mathbf{E}}_a}[96]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a,842} .	Bemerkung, Versagensort
MWR15	MW7-1-03_0,1750%	-0,5	0,1750	159.893	452.497	
MWR15	MW7-1-13_0,1750%	-0,5	0,1750	279.777	791.769	
MWR15	MW7-1-09_0,1500%	-0,5	0,1500	441.971	1.250.778	
MWR15	MW7-1-31_0,1500%	-0,5	0,1500	468.353	1.325.439	
MWR15	MW7-1-26_0,1500%	-0,5	0,1500	1.311.458	3.711.426	
MWR15	MW7-1-21_0,1375%	-0,5	0,1375	1.304.501	3.691.738	
MWR15	MW7-1-32_0,1375%	-0,5	0,1375	1.627.942	4.607.076	
MWR15	MW7-1-30_0,1375%	-0,5	0,1375	2.104.619	5.956.072	

Tabelle T 22 Einzelergebnisse der Gaßnerlinie MWR10 (EN-GJS-700-2), Meuselwitz Y-Block, BZF "Senvion ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\mathbf{E}}_a} \left[96 \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.842} .	Bemerkung, Versagensort
MWR10	MW7-1-01_0,300%	-	0,300	733.787	4.454.087	
MWR10	MW7-2-22_0300%	-	0,300	868.729	5.273.185	
MWR10	MW7-2-13_0,300%	-	0,300	920.808	5.589.305	
MWR10	MW7-2-02_0,275%	-	0,275	1.285.084	7.800.460	
MWR10	MW7-1-15_0,275%	-	0,275	1.548.514	9.399.480	
MWR10	MW7-1-12_0,275%	-	0,275	3.250.908	19.733.012	
MWR10	MW7-1-23_0,250%	-	0,250	5.030.190	30.533.253	
MWR10	MW7-1-01_0,250%	-	0,250	5.315.608	32.265.741	
MWR10	MW7-1-25_0,250%	-	0,250	6.502.681	39.471.274	

Tabelle T 23 Einzelergebnisse der Gaßnerlinie MWR12 (EN-GJS-700-2), Meuselwitz Y-Block, BZF "Senvion mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude E. [%]	Anrissschwingspielzahl $\overline{\mathrm{N}_{\mathrm{s}}}$	Anrissschwingspielzahl $\overline{N_{a,\underline{n}\underline{z}}}$.	Bemerkung, Versagensort
MWR12	MW7-1-38_0,275%	-0,5	0,275	716.960	4.351.947	
MWR12	MW7-1-06_0,275%	-0,5	0,275	1.133.166	6.878.318	
MWR12	MW7-1-17_0,275%	-0,5	0,275	1.154.026	7.004.938	
MWR12	MW7-1-33_0,250%	-0,5	0,250	894.363	5.428.783	
MWR12	MW7-2-10_0,250%	-0,5	0,250	1.650.825	10.020.508	
MWR12	MW7-1-35_0,250%	-0,5	0,250	2.255.775	13.692.554	
MWR12	MW7-1-40_0,200%	-0,5	0,200	4.908.190	29.792.713	
MWR12	MW7-1-04_0,200%	-0,5	0,200	7.198.845	43.696.989	

Tabelle T 24 Einzelergebnisse der Gaßnerlinie MWR14 (EN-GJS-700-2), Meuselwitz Y-Block, BZF "Senvion mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underset{\overline{\mathbf{c}}_{s}}{Maximale Dehnungsamplitude}$	Anrissschwingspielzahl $\overline{\mathrm{N}_{\mathrm{a}}}$	Anrissschwingspielzahl N _{a.az} .	Bemerkung, Versagensort
MWR14	MW7-2-25_0,275%	-0,5	0,275	840.231	5.100.202	
MWR14	MW7-1-10_0,275%	-0,5	0,275	1.544.160	9.373.051	
MWR14	MW7-1-34_0,275%	-0,5	0,275	1.641.754	9.965.447	
MWR14	MW7-1-05_0,250%	-0,5	0,250	1.331.011	8.079.237	
MWR14	MW7-1-44_0,250%	-0,5	0,250	1.793.409	10.885.993	
MWR14	MW7-1-24_0,250%	-0,5	0,250	2.441.765	14.821.514	
MWR14	MW7-1-20_0,250%	-0,5	0,250	2.904.163	17.628.269	
MWR14	MW7-1-11_0,200%	-0,5	0,200	10.000.000	60.700.000	Durchläufer

Tabelle T 25 Einzelergebnisse der Gaßnerlinie MWR05 (EN-GJS-400-18U-LT), Meuselwitz Y-Block, BZF "aerodyn ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude E. [%]	Anrissschwingspielzahl $\overline{\mathrm{N}_{\mathrm{s}}}$	Anrissschwingspielzahl N _{a.812} .	Bemerkung, Versagensort
MWR05	MW4-7-08_0,1375%	-	0,1375	594.435	1.682.251	
MWR05	MW4-6-39_0,1375%	-	0,1375	1.497.760	4.238.661	
MWR05	MW4-5-44_0,1375%	-	0,1375	1.481.382	4.192.311	
MWR05	MW4-7-17_0,1300%	-	0,1300	976.817	2.764.392	
MWR05	MW4-5-41_0,1300%	-	0,1300	1.006.240	2.847.659	
MWR05	MW4-7-41_0,1300%	-	0,1300	1.120.595	3.171.284	
MWR05	MW4-7-02_0,1250%	-	0,1250	1.236.110	3.498.191	
MWR05	MW4-7-13_0,1250%	-	0,1250	941.649	2.664.867	
MWR05	MW4-6_32_0,1250%	-	0,1250	1.641.845	4.646.421	
MWR05	MW4-7-13_0,1250%	-	0,1250	5.459.669	15.450.863	
MWR05	MW4-6-09_0,1100%		0,1100	10.000.000	28.300.000	Durchläufer

Tabelle T 26 Einzelergebnisse der Gaßnerlinie MWR07 (EN-GJS-400-18U-LT), Meuselwitz Y-Block, BZF "aerodyn mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\boldsymbol{\epsilon}_{\scriptscriptstyle a}}\left[\%\right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a.az} .	Bemerkung, Versagensort
MWR07	MW4-6-33_0,125%	-1,0	0,125	772.416	2.185.937	
MWR07	MW4-7-12_0,125%	-1,0	0,125	791.063	2.238.708	
MWR07	MW4-6-13_0,125%	-1,0	0,125	827.313	2.341.296	
MWR07	MW4-7-09_0,100%	-1,0	0,100	1.043.819	2.954.008	
MWR07	MW4-6-41_0,100%	-1,0	0,100	1.099.517	3.111.633	
MWR07	MW4-7-26_0,100%	-1,0	0,100	1.179.421	3.337.761	
MWR07	MW4-6-25_0,080%	-1,0	0,080	2.432.398	6.883.686	
MWR07	MW4-6-28_0,080%	-1,0	0,080	2.708.096	7.663.912	
MWR07	MW4-7-38_0,080%	-1,0	0,080	5.167.161	14.623.066	
MWR07	MW4-6-07_0,060%	-1,0	0,060	6.528.769	18.476.416	

Tabelle T 27 Einzelergebnisse der Gaßnerlinie MWR09 (EN-GJS-400-18U-LT), Meuselwitz Y-Block, BZF "aerodyn mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude <u>e</u> , [%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a.812} .	Bemerkung, Versagensort
MWR09	MW4-7-07_0,1375%	-1,0	0,1375	709.264	2.007.217	
MWR09	MW4-7-36_0,1375%	-1,0	0,1375	846.795	2.396.430	
MWR09	MW4-7-21_0,1300%	-1,0	0,1300	655.289	1.854.468	
MWR09	MW4-5-09_0,1300%	-1,0	0,1300	682.086	1.930.303	
MWR09	MW4-7-39_0,1300%	-1,0	0,1300	717.840	2.031.487	
MWR09	MW4-6-10_0,1300%	-1,0	0,1300	903.228	2.556.135	
MWR09	MW4-5-06_0,1250%	-1,0	0,1250	573.446	1.622.852	
MWR09	MW4-5-22_0,1250%	-1,0	0,1250	732.753	2.073.691	
MWR09	MW4-7-24_0,1250%	-1,0	0,1250	1.047.169	2.963.488	
MWR09	MW4-7-30_0,1250%	-1,0	0,1250	1.099.599	3.111.865	
MWR09	MW4-7-37_0,1100%	-1,0	0,1100	1.376.837	3.896.449	
MWR09	MW4-7-31_0,1100%	-1,0	0,1100	1.400.181	3.962.512	
MWR09	MW4-7-32_0,1100%	-1,0	0,1100	2.736.665	7.744.762	
MWR09	MW4-7-01_0,1000%	-1,0	0,1000	4.982.407	14.100.212	

Tabelle T 28 Einzelergebnisse der Gaßnerlinie MWR11 (EN-GJS-400-18U-LT), Meuselwitz Y-Block, BZF "Senvion ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\mathbf{E}}_a} \left[96\right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.e.z} .	Bemerkung, Versagensort
MWR11	MW4-7-33_0,300%	-	0,300	172.580	1.047.561	
MWR11	MW4-7-28_0,300%	-	0,300	406.214	2.465.719	
MWR11	MW4-7-35_0,300%	-	0,300	458.281	2.781.766	
MWR11	MW4-5-36_0,250%	-	0,250	744.771	4.520.760	
MWR11	MW4-5-25_0,250%	-	0,250	1.005.669	6.104.411	
MWR11	MW4-5-28_0,225%	-	0,225	1.011.551	6.140.115	
MWR11	MW4-7-23_0,200%	-	0,200	2.552.819	15.495.611	
MWR11	MW4-5-7_0,200%	-	0,200	4.105.754	24.921.927	
MWR11	MW4-5-22_0,200%	-	0,200	5.820.268	35.329.027	

Tabelle T 29 Einzelergebnisse der Gaßnerlinie MWR13 (EN-GJS-400-18U-LT), Meuselwitz Y-Block, BZF "Senvion mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\boldsymbol{\epsilon}}_a} \left[96 \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.842} .	Bemerkung, Versagensort
MWR13	MW4-5-39_0,250%	-1,0	0,250	474.671	2.881.253	
MWR13	MW4-5-19_0,250%	-1,0	0,250	644.445	3.911.781	
MWR13	MW4-7-42_0,250%	-1,0	0,250	725.244	4.402.231	
MWR13	MW4-5-35_0,225%	-1,0	0,225	646.056	3.921.560	
MWR13	MW4-5-42_0,225%	-1,0	0,225	734.228	4.456.764	
MWR13	MW4-7-06_0,225%	-1,0	0,225	1.650.104	10.016.131	
MWR13	MW4-5-08_0,200%	-1,0	0,200	1.322.773	8.029.232	
MWR13	MW4-5-34_0,200%	-1,0	0,200	4.433.047	26.908.595	
MWR13	MW4-5-01_0,200%	-1,0	0,200	5.861.742	35.580.774	

Tabelle T 30 Einzelergebnisse der Gaßnerlinie ETR02 (ADI-800), Eickhoff Y-Block, BZF "aerodyn ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude E. [%]	Anrissschwingspielzahl $\overline{\mathrm{N}_{\mathrm{s}}}$	Anrissschwingspielzahl N _{a,842} .	Bemerkung, Versagensort
ETR02	ET-03_0,300%	-	0,300	230.081	651.129	
ETR02	ET-81_0,225%	-	0,225	1.573.270	4.452.354	
ETR02	ET-04_0,225%	-	0,225	3.441.678	9.739.949	
ETR02	ET-29_0,200%	-	0,200	1.640.408	4.642.355	
ETR02	ET-36_0,200%	-	0,200	2.305.715	6.525.173	
ETR02	ET-44_0,200%	-	0,200	2.553.838	7.227.362	
ETR02	ET-70_0,175%	-	0,175	1.392.424	3.940.560	
ETR02	ET-32_0,175%	-	0,175	4.019.508	11.375.208	
ETR02	ET-56_0,175%	-	0,175	5.294.906	14.984.584	
ETR02	ET-20_0,175%	-	0,175	10.000.000	28.300.000	Durchläufer
ETR02	ET-68_0,150%	-	0,150	10.000.000	28.300.000	Durchläufer

Tabelle T 31 Einzelergebnisse der Gaßnerlinie ETR03 (ADI-800), Eickhoff Y-Block, BZF "aerodyn mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude <u>e</u> a.[%]	Anrissschwingspielzahl $\overline{\mathrm{N}_{\mathrm{s}}}$	Anrissschwingspielzahl N _{a.az} .	Bemerkung, Versagensort
ETR03	ET-37_0,225%	-1,0	0,225	57.034	161.406	
ETR03	ET-40_0,150%	-1,0	0,150	172.002	486.766	
ETR03	ET-62_0,125%	-1,0	0,125	245.284	694.154	
ETR03	ET-24_0,100%	-1,0	0,100	772.781	2.186.970	
ETR03	ET-54_0,100%	-1,0	0,100	720.839	2.039.974	
ETR03	ET-33_0,100%	-1,0	0,100	629.376	1.781.134	
ETR03	ET-49_0,080%	-1,0	0,080	993.359	2.811.206	
ETR03	ET-22_0,080%	-1,0	0,080	1.046.289	2.960.998	
ETR03	ET-05_0,080%	-1,0	0,080	3.580.527	10.132.891	
ETR03	ET-60_0,060%	-1,0	0,060	7.091.125	20.067.884	

Tabelle T 32 Einzelergebnisse der Gaßnerlinie ETR04 (ADI-800), Eickhoff Y-Block, BZF "aerodyn ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\mathbf{E}}_a} \left[96\right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.842} .	Bemerkung, Versagensort
ETR04	ET-39_0,300%	-1,0	0,300	122063	345.438	
ETR04	ET-67_0,225%	-1,0	0,225	536962	1.519.602	
ETR04	ET-71_0,225%	-1,0	0,225	563443	1.594.544	
ETR04	ET-59_0,225%	-1,0	0,225	603735	1.708.570	
ETR04	ET-61_0,200%	-1,0	0,200	572959	1.621.474	
ETR04	ET-15_0,200%	-1,0	0,200	582115	1.647.385	
ETR04	ET-38_0,200%	-1,0	0,200	582567	1.648.665	
ETR04	ET-58_0,175%	-1,0	0,175	596669	1.688.573	
ETR04	ET-12_0,175%	-1,0	0,175	604441	1.710.568	
ETR04	ET-88_0,175%	-1,0	0,175	689243	1.950.558	
ETR04	ET-75_0,150%	-1,0	0,150	602482	1.705.024	
ETR04	ET-47_0,150%	-1,0	0,150	730894	2.068.430	
ETR04	ET-34_0,110%	-1,0	0,110	801841	2.269.210	
ETR04	ET-43_0,080%	-1,0	0,080	1000000	28.300.000	Durchläufer

Tabelle T 33 Einzelergebnisse der Gaßnerlinie ETR08 (ADI-800), Eickhoff Y-Block, BZF "aerodyn mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\epsilon_{\rm s}}[\%]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a.82} .	Bemerkung, Versagensort
ETR08	ET-64_0,225%	-0,5	0,225	157.902	446.863	
ETR08	ET-35_0,225%	-0,5	0,225	248.701	703.824	
ETR08	ET-18_0,200%	-0,5	0,200	330.512	935.349	
ETR08	ET-11_0,200%	-0,5	0,200	455.745	1.289.758	
ETR08	ET-42_0,175%	-0,5	0,175	911.251	2.578.840	
ETR08	ET-44_0,175%	-0,5	0,175	1.144.665	3.239.402	
ETR08	ET-90_0,175%	-0,5	0,175	5.845.578	16.542.986	

Tabelle T 34 Einzelergebnisse der Gaßnerlinie ETR09 (ADI-800), Eickhoff Y-Block, BZF "aerodyn mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\mathbf{E}}_a} \left[96 \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.812} .	Bemerkung, Versagensort
ETR09	ET-53_0,225%	-0,5	0,225	431.932	1.222.368	
ETR09	ET-06_0,225%	-0,5	0,225	791.760	2.240.681	
ETR09	ET-52_0,200%	-0,5	0,200	888.596	2.514.727	
ETR09	ET-72_0,200%	-0,5	0,200	965.408	2.732.105	
ETR09	ET-25_0,175%	-0,5	0,175	662.063	1.873.638	
ETR09	ET-85_0,175%	-0,5	0,175	1.069.701	3.027.254	
ETR09	ET-50_0,175%	-0,5	0,175	1.938.110	5.484.851	

Tabelle T 35 Einzelergebnisse der Gaßnerlinie ETR05 (ADI-800), Eickhoff Y-Block, BZF "Senvion ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\mathbf{s}}_{*}$ [%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a.82} .	Bemerkung, Versagensort
ETR05	ET-07_0,500%	-	0,500	448.128	2.720.137	
ETR05	ET-76_0,500%	-	0,500	652.421	3.960.195	
ETR05	ET-54_0,500%	-	0,500	2.002.338	12.154.192	
ETR05	ET-79_0,450%	-	0,450	1.229.770	7.464.704	
ETR05	ET-30_0,450%	-	0,450	2.192.480	13.308.354	
ETR05	ET-23_0,400%	-	0,400	3.029.000	18.386.030	
ETR05	ET-82_0,400%	-	0,400	3.116.177	18.915.194	
ETR05	ET-21_0,400%	-	0,400	4.277.572	25.964.862	
ETR05	ET-28_0,350%	-	0,350	8.044.995	48.833.120	
ETR05	ET-10_0,350%	-	0,350	10.000.000	60.700.000	Durchläufer
ETR05	ET-46_0,250%	-	0,250	10.000.000	60.700.000	Durchläufer

Tabelle T 36 Einzelergebnisse der Gaßnerlinie ETR10 (ADI-900), Eickhoff Planetenträger, BZF "aerodyn ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\epsilon_{\rm s}}[\%]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.842} .	Bemerkung, Versagensort
ETR10	ET-14-3_0,300%	-	0,300	158.545	448.682	
ETR10	ET-25-3_0,300%	-	0,300	387.958	1.097.921	
ETR10	ET-22-2_0,300%	-	0,300	2.021.311	5.720.310	
ETR10	ET-22-1_0,275%	-	0,275	10.000.000	28.300.000	Durchläufer
ETR10	ET-22-3_0,250%	-	0,250	4.172.669	11.808.653	
ETR10	ET-24-2_0,250%	-	0,250	10.000.000	28.300.000	Durchläufer

Tabelle T 37 Einzelergebnisse der Gaßnerlinie ETR11 (ADI-900), Eickhoff Planetenträger, BZF "aerodyn mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\boldsymbol{\epsilon}_{s}}\left[9\boldsymbol{\delta}\right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl $\overline{N_{a,BLZ}}$.	Bemerkung, Versagensort
ETR11	ET-16-3_0,275%	-0,5	0,275	325.100	920.033	
ETR11	ET-16-2_0,275%	-0,5	0,275	660.915	1.870.389	
ETR11	ET-14-2_0,275%	-0,5	0,275	767.544	2.172.150	
ETR11	ET-23-1_0,275%	-0,5	0,275	10.000.000	28.300.000	Durchläufer
ETR11	ET-5-3_0,250%	-0,5	0,250	1.037.391	2.935.817	
ETR11	ET-19-2_0,250%	-0,5	0,250	10.000.000	28.300.000	Durchläufer
ETR11	ET-23-2_0,225%	-0,5	0,225	10.000.000	28.300.000	Durchläufer

T 24

Tabelle T 38 Einzelergebnisse der Gaßnerlinie ETR13 (ADI-900), Eickhoff Planetenträger, BZF "Senvion ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\overline{\mathbf{E}}_a} [96]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.812} .	Bemerkung, Versagensort
ETR13	ET-4-2_0,600%	-	0,6000	1.111.152	6.744.693	
ETR13	ET-3-1_0,600%	-	0,6000	1.416.276	8.596.795	
ETR13	ET-4-1_0,600%	-	0,6000	1.809.779	10.985.359	
ETR13	ET-1-3_0,550%	-	0,5500	313.016	1.900.007	
ETR13	ET-3-3_0,550%	-	0,5500	734.059	4.455.738	
ETR13	ET-2-3_0,550%	-	0,5500	853.383	5.180.035	
ETR13	ET-2-2_0,550%	-	0,5500	2.121.235	12.875.896	
ETR13	ET-3-2_0,500%	-	0,5000	4.445.762	26.985.775	
ETR13	ET-2-1_0,500%	-	0,5000	8.594.522	52.168.749	

Tabelle T 39 Einzelergebnisse der Gaßnerlinie ETR14 (ADI-900), Eickhoff Planetenträger, BZF "Senvion mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude <u>e</u> .[%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl $\overline{N_{a,\underline{n}\underline{x}}}$.	Bemerkung, Versagensort
ETR14	ET-16-1_0,600%	-1,0	0,6000	729.273	4.426.687	
ETR14	ET-18-2_0,600%	-1,0	0,6000	733.765	4.453.954	
ETR14	ET-10-2_0,600%	-1,0	0,6000	774.674	4.702.271	
ETR14	ET-1-2_0,550%	-1,0	0,5500	859.868	5.219.399	
ETR14	ET-21-1_0,550%	-1,0	0,5500	1.216.483	7.384.052	
ETR14	ET-6-1_0,550%	-1,0	0,5500	2.797.705	16.982.069	
ETR14	ET-21-3_0,500%	-1,0	0,5000	726.087	4.407.348	
ETR14	ET-18-3_0,500%	-1,0	0,5000	733.918	4.454.882	
ETR14	ET-21-2_0,500%	-1,0	0,5000	2.218.708	13.467.558	
ETR14	ET-51-3_0,500%	-1,0	0,3500	10.000.000	60.700.000	
ETR14	ET-19-1_0,350%	-1,0	0,3500	10.000.000	60.700.000	

Tabelle T 40 Einzelergebnisse der Gaßnerlinie ETR15 (ADI-900), Eickhoff Planetenträger,, BZF "Senvion mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\boldsymbol{\epsilon}_{_{\boldsymbol{\theta}}}}\left[\boldsymbol{\%}\right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.812} .	Bemerkung, Versagensort
ETR15	ET-19-3_0,600%	-	0,6000	328.011	1.991.027	
ETR15	ET-20-2_0,600%	-	0,6000	612.899	3.720.297	
ETR15	ET-7-2_0,600%	-	0,6000	638.428	3.875.258	
ETR15	ET-20-3_0,550%	-	0,5500	464.121	2.817.214	
ETR15	ET-9-2_0,550%	-	0,5500	1.202.728	7.300.559	
ETR15	ET-18-1_0,550%	-	0,5500	1.757.890	10.670.392	
ETR15	ET-9-3_0,500%	-	0,5500	512.793	3.112.654	
ETR15	ET-7-3_0,500%	-	0,5000	655.378	3.978.144	
ETR15	ET-9-1_0,500%	-	0,5000	3.491.487	21.193.326	

Tabelle T 41 Einzelergebnisse der Gaßnerlinie ETR16 (EN-GJS-700-2), Eickhoff Planetenträger, BZF "aerodyn ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\boldsymbol{\epsilon}_{\mathrm{s}}}\left[\%\right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.812} .	Bemerkung, Versagensort
ETR16	ET-7-23_0,225%	-	0,225	821.974	2.326.186	
ETR16	ET-7-01_0,225%	-	0,225	1.140.892	3.228.724	
ETR16	ET-7-18_0,225%	-	0,225	449.169	1.271.148	
ETR16	ET-7-25_0,200%	-	0,200	1.102.239	3.119.336	
ETR16	ET-7-02_0,200%	-	0,200	10.000.000	28.300.000	Durchläufer
ETR16	ET-7-22_0,175%	-	0,175	10.000.000	28.300.000	Durchläufer

Tabelle T 42 Einzelergebnisse der Gaßnerlinie ETR17 (EN-GJS-700-2), Eickhoff Planetenträger, BZF "aerodyn mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude E.[%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.nz} .	Bemerkung, Versagensort
ETR17	ET-7-03_0,200%	-0,5	0,200	565.902	1.601.503	
ETR17	ET-7-31_0,200%	-0,5	0,200	591.214	1.673.136	
ETR17	ET-7-14_0,200%	-0,5	0,200	746.109	2.111.488	
ETR17	ET-7-15_0,200%	-0,5	0,200	999.046	2.827.300	
ETR17	ET-7-28_0,175%	-0,5	0,175	3.389.039	9.590.980	
ETR17	ET-7-07_0,175%	-0,5	0,175	9.385.848	26.561.950	
ETR17	ET-7-16_0,175%	-0,5	0,175	9.818.328	27.785.868	

Tabelle T 43 Einzelergebnisse der Gaßnerlinie ETR18 (EN-GJS-700-2), Eickhoff Planetenträger, BZF "aerodyn mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\textbf{E}_a} \left[\% \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}_{\mathrm{s}}}$	Anrissschwingspielzahl N _{a.812} .	Bemerkung, Versagensort
ETR18	ET-7-6_0,225%	-0,5	0,225	550.513	1.557.952	
ETR18	ET-7-10_0,225%	-0,5	0,225	944.800	2.673.784	
ETR18	ET-7-27_0,225%	-0,5	0,225	1.184.976	3.353.482	
ETR18	ET-7-40,225%	-0,5	0,225	1.538.266	4.353.293	
ETR18	ET-7-12_0,200%	-0,5	0,200	916.536	2.593.797	
ETR18	ET-7-13_0,200%	-0,5	0,200	934.396	2.644.341	
ETR18	ET-7-29_0,200%	-0,5	0,200	981.208	2.776.819	
ETR18	ET-7-30_0,175%	-0,5	0,175	2.739.153	7.751.803	
ETR18	ET-7-32_0,175%	-0,5	0,175	5.605.886	15.864.657	

Tabelle T 44 Einzelergebnisse der Gaßnerlinie ETR21 (EN-GJS-700-2), Eickhoff Planetenträger, BZF "Senvion ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude <u>e</u> .[%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a,842} .	Bemerkung, Versagensort
ETR21	ET-7-64_0,450%	-	0,450	411.117	2.495.480	
ETR21	ET-7-86_0,450%	-	0,450	567.552	3.445.041	
ETR21	ET-7-35_0,450%	-	0,450	651.332	3.953.585	
ETR21	ET-7-41_0,400%	-	0,400	677.245	4.110.877	
ETR21	ET-7-39_0,400%	-	0,400	1.089.874	6.615.535	
ETR21	ET-7-66_0,400%	-	0,400	1.295.200	7.861.864	
ETR21	ET-7-34_0,400%	-	0,400	2.048.159	12.432.325	
ETR21	ET-7-42_0,350%	-	0,350	1.237.834	7.513.652	
ETR21	ET-7-65_0,350%	-	0,350	7.645.819	46.410.121	
ETR21	ET-7-72_0,350%	-	0,350	7.857.040	47.692.233	

Tabelle T 45 Einzelergebnisse der Gaßnerlinie ETR22 (EN-GJS-700-2), Eickhoff Planetenträger, BZF "Senvion mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underline{Maximale} \ Dehnungsamplitude \\ \overline{\boldsymbol{\epsilon}_{\mathrm{s}}} \left[[\%] \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a 82} .	Bemerkung, Versagensort
ETR22	ET-7-70_0,450%	-0,5	0,450	334.974	2.033.292	
ETR22	ET-7-55_0,450%	-0,5	0,450	615.194	3.734.228	
ETR22	ET-7-11_0,450%	-0,5	0,450	840.204	5.100.038	
ETR22	ET-7-59_0,400%	-0,5	0,400	722.475	4.385.423	
ETR22	ET-7-77_0,400%	-0,5	0,400	1.187.707	7.209.381	
ETR22	ET-7-44_0,400%	-0,5	0,400	1.852.562	11.245.051	
ETR22	ET-7-80_0,350%	-0,5	0,350	3.035.047	18.422.735	
ETR22	ET-7-26_0,350%	-0,5	0,350	3.191.266	19.370.985	
ETR22	ET-7-53_0,350%	-0,5	0,350	3.691.800	22.409.226	

Tabelle T 46 Einzelergebnisse der Gaßnerlinie ETR23 (EN-GJS-700-2), Eickhoff Planetenträger, BZF "Senvion mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude E.[%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a,81} 2.	Bemerkung, Versagensort
ETR23	ET-7-40_0,450%	-0,5	0,450	455.913	2.767.392	
ETR23	ET-7-74_0,450%	-0,5	0,450	542.890	3.295.342	
ETR23	ET-7-76_0,450%	-0,5	0,450	609.704	3.700.903	
ETR23	ET-7-54_0,350%	-0,5	0,350	2.361.307	14.333.133	
ETR23	ET-7-8_0,350%	-0,5	0,350	2.617.252	15.886.720	
ETR23	ET-7-87_0,350%	-0,5	0,350	2.803.610	17.017.913	

Tabelle T 47 Einzelergebnisse der Gaßnerlinie TKR02 (EN-GJS-400-15), Thyssen-Krupp Y-Block, BZF "aerodyn ohne Überlast"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	Maximale Dehnungsamplitude $\overline{\boldsymbol{\epsilon}_{a}}\left[\% \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{s}}$	Anrissschwingspielzahl N _{a.81Z} .	Bemerkung, Versagensort
TKR02	B9-II_0,1375%	-	0,1375	732.472	2.072.896	
TKR02	D4-II_0,1375%	-	0,1375	1.477.037	4.180.015	
TKR02	D9-II_0,1375%	-	0,1375	1.262.167	3.571.933	
TKR02	A8-II_0,1250%	-	0,1250	2.733.996	7.737.209	
TKR02	A7-II_0,1250%	-	0,1250	2.940.143	8.320.605	
TKR02	D5-II_0,1250%	-	0,1250	3.557.700	10.068.291	
TKR02	C6-II_0,1100%	-	0,1100	1.532.989	4.338.359	
TKR02	C8-II_0,1100%	-	0,1100	2.278.973	6.449.494	
TKR02	A5-II_0,1100%	-	0,1100	10.000.000	28.300.000	Durchläufer

Tabelle T 48 Einzelergebnisse der Gaßnerlinie TKR03 (EN-GJS-400-15), Thyssen-Krupp Y-Block, BZF "aerodyn mit negativer Überlast am Anfang"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	$\underbrace{Maximale}_{\textbf{E}_a} \left[\% \right]$	Anrissschwingspielzahl $\overline{\mathrm{N}_{\mathrm{s}}}$	Anrissschwingspielzahl N _{a.817} .	Bemerkung, Versagensort
TKR03	B6-II_0,1250%	-1,0	0,1250	172.226	487.400	
TKR03	B8-II_0,1250%	-1,0	0,1250	500.133	1.415.376	
TKR03	D11-II_0,1250%	-1,0	0,1250	656.972	1.859.231	
TKR03	A10-II_0,1250%	-1,0	0,1250	1.056.513	2.989.932	
TKR03	B7-II_0,1100%	-1,0	0,1100	625.064	1.768.931	
TKR03	D3-II_0,1100%	-1,0	0,1100	1.809.953	5.122.167	
TKR03	B1-II_0,1100%	-1,0	0,1100	2.409.532	6.818.976	
TKR03	C2-II_0,1000%	-1,0	0,1000	1.161.835	3.287.993	
TKR03	D8-II_0,1000%	-1,0	0,1000	2.090.472	5.916.036	

Tabelle T 49 Einzelergebnisse der Gaßnerlinie TKR04 (EN-GJS-400-15), Thyssen-Krupp Y-Block, BZF "aerodyn mit negativer Überlast nach einem Durchlauf"

Versuchsreihe Nr.	Schwingproben Nr.	Überlast [%]	<u>M</u> aximale Dehnungsamplitude <u>e</u> , [%]	Anrissschwingspielzahl $\overline{\mathrm{N}}_{\mathrm{a}}$	Anrissschwingspielzahl N _{a,81} .	Bemerkung, Versagensort
TKR04	C11-II_0,1375%	-1,0	0,1375	571.343	1.616.901	
TKR04	B11-II_0,1375%	-1,0	0,1375	553.755	1.567.127	
TKR04	B4-II_0,1250%	-1,0	0,1250	675.830	1.912.599	
TKR04	D7-II_0,1250%	-1,0	0,1250	866.182	2.451.295	
TKR04	C3-II_0,1250%	-1,0	0,1250	963.771	2.727.472	
TKR04	A6-II_0,1100%	-1,0	0,1100	1.618.149	4.579.362	
TKR04	C1-II_0,1100%	-1,0	0,1100	1.941.681	5.494.957	
TKR04	A11-II_0,1100%	-1,0	0,1100	2.099.606	5.941.885	
TKR04	C12-II_0,1000%	-1,0	0,1000	3.823.598	10.820.782	
TKR04	A2-II_0,1000%	-1,0	0,1000	10.000.000	28.300.000	Durchläufer

Anhang B

Bilder

Inhalt	Bild	Seite
Schnittplan Maschinenträger EN-GJS-400-18U-LT von Senvion	Bild B 1	B 2
Schnittpläne Planetenträger EN-GJS-700-2 und ADI-900 von Eick- hoff	Bild B 2 bis Bild B 4	B 4
Schnittpläne Y-Blöcke EN-GJS-400-18U-LT und EN-GJS-700-2 von Meuselwitz	Bild B 5 bis Bild B 11	B 5 bis B 11
Probenlage Y-Blöcke ADI-800 von Eickhoff	Bild B 12 bis Bild B13	B 12 bis B 13
Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie Y- Maschinenträger EN-GJS-400-18U-LT von Senvion	Bild B 14 und Bild B 15	B 14
Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie Y- Blöcke EN-GJS-700-2 von Meuselwitz	Bild B 16 und Bild B 17	B 15
Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie Y- Blöcke EN-GJS-400-18U-LT von Meuselwitz	Bild B 18 und Bild B 19	B 16
Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie Y- Blöcke ADI-800 von Eickhoff	Bild B 20 und Bild B 21	B 17
Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie Pla- netenträger ADI-900 von Eickhoff	Bild B 22 und Bild B 23	B 18
Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie Pla- netenträger EN-GJS-700-2 von Eickhoff	Bild B 24 und Bild B 25	B 19
Zyklische Spannungs-Dehnungskurve und Dehnungswöhlerlinie Y- Blöcke EN-GJS-400-15 von ThyssenKrupp	Bild B 26 und Bild B 27	B 20
Gaßnerlinien ohne und mit Überlast	Bild B 28 bis Bild B 42	B 21 bis B 28
Abgeleitete PJ-Wöhlerlinien	Bild B 43 bis Bild B 47	B 28 bis B 30
Berechnete zyklische Spannungs-Dehnungskurven	Bild B 48 bis Bild B 52	B 31 bis B 33
Dreiteilige Spannungswöhlerlinie	Bild B 53 bis Bild B 55	B 33 bis B 34

Bild B 1 Maschinenträger aus EN-GJS-400-18U-LT mit Probenlage links und rechts

Bild B 2 Planetenträger aus EN-GJS-700-2 und ADI

Bild B 3 Probenlageplan Planetenträger aus EN-GJS-700-2

Bild B 4 Probenlageplan Planetenträger aus ADI

Bild B 5 Probenlageplan Y-Block 1 aus EN-GJS-400-18U-LT

Bild B 6 Probenlageplan Y-Block 2 aus EN-GJS-400-18U-LT

Bild B 7 Probenlageplan Y-Block 3 aus EN-GJS-400-18U-LT

Bild B 8 Probenlageplan Y-Block 1 aus EN-GJS-700-2

Bild B 9 Probenlageplan Y-Block 2 aus EN-GJS-700-2

Bild B 10 Probenlageplan Y-Block 3 aus EN-GJS-700-2

Bild B 11 Probenlageplan Y-Block 4 aus EN-GJS-700-2

Bild B 12 Probenlageplan Y-Block 1 aus ADI

Anhang B

Bild B 13 Probenlageplan Y-Block 2 aus ADI

