Claudio Steuer’s Post

View profile for Claudio Steuer, graphic

Country Manager IHRDC | Director SyEnergy

China’s National Nuclear Security Administration (NNSA) issued an operational permit on July 6, 2023, for the first Thorium Molten Salt Reactor (TMSR) demonstration reactor with a 2 MWe capacity for 10 years. Capable of supplying power for ~1,000 homes, this reactor has the potential to accelerate the Chinese Energy Transition – and the global one as well.   Why? * Thorium is 3-4x more abundant than uranium. * Thorium is not a fissile material but can be converted into uranium-233. * Higher thermal efficiency (reactors operate @ ~1,000C which is lower than uranium reactors). * Reactors operate at lower pressure and are less expensive to build. * Reactors used to take 6 years to build -> re-designed for 3 years. * Thorium cannot be used for military uses. * Reactor can use Uranium-238 (spent fuel from NPP reactors). * Reactor can use decommissioned nuclear weapons as a fuel source. * Liquid salts are utilised as both fuels and coolants. * Does not require water cooling and can be used in arid climates.   This experimental, potentially game-changing reactor is located in the city of Wuwei, on the edge of the Gobi desert, in Gansu province, China.   It is the first reactor of its kind since the early conceptual tests conducted at the Oak Ridge National Laboratory in the USA during the 1960s.   China has been developing this technology since 2011 when it launched its TMSR project led by the Shanghai Institute of Applied Physics of the Chinese Academy of Sciences, with the support of the National Nuclear Safety Administration and other institutions.   According to Ritsuo Yoshioka, former president of the International Thorium Molten-Salt Forum in Oiso, Japan, China has invested about 3 billion yuan (US$500 million) in the project.   The reactor uses a mixture of lithium fluoride, beryllium fluoride, thorium fluoride, and uranium fluoride salts as fuel. The uranium can be enriched or be natural uranium, mainly consisting of U238. The reactor can run on both thorium-uranium and uranium-plutonium cycles, depending on the composition of the salts and the configuration of the core.   If successful in the tests, a 373 MWe reactor is planned by 2030, capable of supplying power to ~180,000 homes. The larger reactor would utilize thorium as a fuel but with a higher proportion of Uranium-233, which is more efficient and produces less waste compared to Uranium-235 or Plutonium-239.   This reactor could greatly accelerate China's ability to achieve its stated goal of achieving peak carbon emissions by 2030 and carbon neutrality by 2060.   If successful, this strategic project can also create the opportunity for multi-billion high-tech exports from China to countries seeking solutions to address the energy trilemma. https://lnkd.in/efsM3H4R Note: Digital Image created with AI from Midjourney #nuclearpower #thorium #energytrilemma #energysecurity #energytransition #netzero2050 #china

  • No alternative text description for this image
Steffen Schleicher

WAB e.V. bundesweiter Windindustrieverband und Wasserstoffcluster, die Stimme der Offshore-Windindustrie, ehrenamtlicher Stammcrew/Wachführer-Esprit-Sailtraining.de, Wald/Natur Enthusiast

9mo

Interessanter Artikel: Sollen die Chinesen in der Wüste mal machen. Wenn es dort schief geht - egal. Aber Thorium hat einige höhere Risiken als die bisherigen Kernkraftwerke.Thorium wird oft als sicherere Technologie dargestellt als die herkömmlichen Nukleartechnologien, wie Druckwasserreaktoren. Da die Technologien unterschiedlich sind, ist es sehr wahrscheinlich, dass sich einige gefährliche Aspekte unterscheiden und weniger wichtig sind. Dennoch ist es höchst irreführend, nur die geringeren Risiken zu erwähnen und über die höheren Risiken zu schweigen. Tatsächlich sind Thoriumreaktoren Brutreaktoren - das Züchten von Uran 233 aus Thorium 232 -, die eine kontinuierliche Wiederaufarbeitung an jedem Standort mit Thoriumreaktoren erfordern. Diese Wiederaufbereitungsanlagen sind hochriskante Anlagen. Weitere spezifische Risiken sind die erhöhten Undichtigkeiten und Bruch Gefahren in den Rohrleitungen, die extremer Hitze, Korrosion und Neutronenstrahlung durch den Flüssigsalzbrennstoff standhalten müssen. Auf die Entstehung von thoriumspezifischen, langlebigen und risikoreichen Elementen, wie z.B. Protactinium, wird ebenso hingewiesen." Quelle: https://www.ippnw.de/atomenergie/sicherheit/artikel/de/nein-zur-thorium-kernenergie.html

Nigel P.

30 year Environmental and HSE risk Professional in oil gas and mining

9mo

The elephant in the room is surely what obstacle has prevented the west from pursuing this technology? Granted, China has the most to do in absolute terms, closely followed by India, if Net Zero is ever going to be achieved. But why doesn’t any country (certainly in the G20) aspire to maximise sovereign energy security, towards which Gen IV / thorium reactors takes us a long way. At the moment we’re on track to trading an oil cartel for a green metals one, once the penny fully drops with supplier countries.

Christophe Rimlinger

Co-founder @ SEAL | Founder @ X Rimlinger AS | Entrepreneur | Innovator | Leader | Creative Visionary | Passionate about developing African energy sector efficiently through technology.

9mo

Thank you Mr. Claudio Steuer for posting such interesting article. China is taking the lead with this TMSR projet in the Gansu province and NTNU in Norway is working on a similar concept for the deep-sea shipping industry. As you stated, it is the first reactor of its kind and it is worth to mention that an MSR operated perfectly between 1965 and 1969 at 7 MWth. For the energy transition, the TMSR is ideal due to scalability, safety, simplicity and costs. Safety is probably the most beneficial feature of this concept as all MSRs are walk-away safe by design. Source: Haubenreich, P. N. and J. R. Engle (1970). "Experience with the Molten-Salt Reactor Experiment." Nuclear Applications and Technology 8(2) Source: Moir, R. W. and E. Teller (2005). "Thorium-Fueled Underground Power Plant based on Molten Salt Technology." Nuclear Technology 151(9) Source: Emblemsvåg, J. (2021). "How Thorium-based Molten Salt Reactor can provide clean, safe and cost-effective technology for deep-sea shipping." The MTS Journal. Vol 55, No. 1. 

  • No alternative text description for this image
Marcelo Viotto

Profissional de Petróleo e energia

9mo

Most of the Thorium reserves are concentrated in India and Brazil.

Benjamin Turner, P.E.

Principal Consultant at Latticept

9mo

I think this holds potential but the major “???” is how well the materials will hold up to very high temperature molten salts of random radioactive isotopes. Everyone thought alloy 600 was the GOAT (it was at the time) but suffered severe embrittlement issues that required lots and lots of clad overlay welding with alloy 625.

Robert Taylor

Housing | Clean Energy | Learner

9mo

This is interesting. Thorium, I believe is incompatible with fast breeders which are best positioned to manage waste and reproduce fissile material for a continuous and sustained use. U-238 is non-fissile and U-233 cannot be enriched to meet the quality standards of HALEU. Also considering that the thermal value of reactors are becoming more important in addressing district heating and cooling capabilities for climate mitigation, 1000°C lower than uranium reactors may not necessarily be optimizing its value. Would appreciate some counter-feedback if possible.

Sreekanth Pannala, Ph.D.

Stay Curious | Sustainable energy, processes, and materials

9mo

India has been working on Thorium fast breeder reactors for a while including recent upgrade to 40MWt. Obviously, all this started at Oak Ridge National Laboratory and then lab director, Weinberg lost his directorship for being the most ardent advocate for molten salt reactors. https://world-nuclear-news.org/Articles/Indian-test-reactor-reaches-operation-landmark

Mark Beuvink

Electronics, EMC and LabVIEW consultant

9mo

I stopped reading at the first sentence.. it so wrong, it shows this is just a hype post. It isn’t MWe (electricity) it is MWt (thermal). That would be good enough for 300 homes. But it isn’t. This is just a plant to investigate the possibility of using thorium. When successful, in 10 years time this could lead to further developments. But probably it isn’t… these things have been tried and tested a dozen of times since the 60s. Result: they destroy themselves in operation and will never be commercially viable.

Steffen Schleicher

WAB e.V. bundesweiter Windindustrieverband und Wasserstoffcluster, die Stimme der Offshore-Windindustrie, ehrenamtlicher Stammcrew/Wachführer-Esprit-Sailtraining.de, Wald/Natur Enthusiast

9mo

Das muss noch gezeigt werden! Vor allem des es wirtschaftlich betreibbar ist inkl. der Müll Behandlung. Der radioaktive Zerfall des Abfalls ist zwar nach mehreren 100 Jahren beendet, aus der Zerfallskette von U-232 entstehen aber hochenergetisch durchdringende Gammastrahlen. Aufgrund der radioaktiven Gammastrahlung besteht eine hohe Wärmeentwicklung. Deshalb wäre für eine sichere Endlagerung eine Kühlung notwendig. Bisher existiert kein Reaktor mit dem die Technologie praktisch getestet wurde. Wahrscheinlich könnte erst nach einem Bau des Demonstrationsreaktors der langfristige Betrieb zeigen, ob sich die ausgewählten Materialien in einer korrosiven und dabei radioaktiven Salzlösung bewähren würden. Die zeitlichen Entwicklungshorizonte von (Thorium)-Flüssigsalzreaktoren reichen derzeit nicht aus, um im Rahmen der CO2-Einsparung eine Alternative für die sichere Bereitstellung von Energie in Frage zu kommen. Zu diesem Ergebnis kommt u.a. auch die oben erwähnte norwegische Studie zur Entwicklung thoriumbasierter Reaktortechnologien." Quelle: https://www.bundestag.de/.../902.../WD-8-049-20-pdf-data.pdf

See more comments

To view or add a comment, sign in

Explore topics