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ABSTRACT

The  purpose  of  this paper  is  to  delineate  an  infinitesimal  affine  transformation  in  a  Para-

Sasakian  manifolds.  In  section  1,  we  have  defined  and  studied  infinitesimal

transformations  in  a  Para-Sasakian  manifolds.  Section 2  is  devoted  to  an  infinitesimal

automorphism  in  a  Para-Sasakian  manifolds.
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1. INTRODUCTION :

Definition 1.1:

In  a  Riemannian  manifold,  if  a  vector  field  u  satisfies  the  following  condition

(1.1) Lu{

}= u + Ru = 0

is  termed  an infinitesimal  affine  transformation  of  a Para-Sasakian

manifold.

Wherein  Lu  denotes  the  Lie-derivative  with  regard  to  a  vector  field  u.

Definition 1.2:

A vector field  u  is called curvature preserving infinitesimal  transformation of

Para-Sasakian manifold if it satisfies the condition

(1.2) LuR = 0

Wherein R is  an  Riemannian  curvature  tensor.

Definition 1.3:

A  vector  field  u  is  called  an infinitesimal  homothetic  transformation  of  Para -

Sasakian  manifold  if  usatisfies  the  condition
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(1.3) Lug = g

Wherein  is  any  constant.

Definition 1.4:

If  = 0  in  equation  (1.3)  then  the  vector  field  uis  called infinitesimal

isometry.

In  a  Riemannian  manifold,  we  have  [4]:

(1.4) LuR = Lu{

}- Lu{


}

(1.5) Lu{

}= (1/2)g(Lug + Lug - Lug)

(1.6) R

 = g- g.

In this regard, we have the following theorems:

Theorem 1.1:

If  a  vector  field  ube  an  infinitesimal  affine  transformation  of  Para-Sasakian

manifold  then  ubecomes  curvature  preserving  infinitesimal  transformation.
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Proof:

Since a  vector  field uis an infinitesimal affine transformation  of  Para-Sasakian

manifold  then

(1.7) Lu{

}= 0

By  virtue  of  equations  (1.4)  and  (1.7),  we  get

LuR = 0

Hence,  uis  curvature preserving infinitesimal  transformation  of  Para-Sasakian

manifold.

Theorem 1.2:

If  a  vector  field  uis  an  infinitesimal  affine  transformation  of  Para-Sasakian

manifold  then  the  condition

(u) = 0

holds  good.

Proof:

Since uis  an  infinitesimal  affine  transformation  of  Para-Sasakian manifold  then
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(1.8) u + Ru = 0

Transvecting  equation  (1.8)  by ,  we  get

(1.9) (u) + R

u

 = 0

By  virtue  of  equations  (1.6)  and  (1.9),  we  obtain

(1.10) (u) + (g- g)u
 = 0

Transvecting  equation  (1.10)  with   and  using  equation    (C-2,1.9),  we  get

(1.11) (u) + (g- g)u
 = 0

Again  transvecting  equation  (1.11)  by   and  using  equation    (C-2,1.4),  we  obtain

(1.12) (u) = 0

Theorem 1.3:

If  a  vector  field  u is  an   infinitesimal   isometry   of   Para-

Sasakian  manifold  then  the  condition
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LuR =  Lu-  Lu

holds  good.

Proof:

Taking  the  Lie-derivative  with  regard  to  u  on  both  sides   of  equation  (1.6),  we

get

(1.13) R Lu +  LuR = g Lu +  Lug

- g Lu -  Lug

Transvecting  equation  (1.13)  by   and  using  equation    (1.6),  we  obtain

(1.14) (g- g)Lu +  LuR = g Lu

+  Lug - g Lu -  Lug

Transvecting  equation  (1.14)  with   and  using  equation     (C-2,1.4),  we  get

(1.15)  LuR =  Lu +  Lug

-  Lu -  Lug
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Since  u is  an  infinitesimal  isometry  of  Para-Sasakian  manifold  then  equation

(1.15)  reduces  in  the  form

(1.16)  LuR =  Lu -  Lu ,

2. INFINITESIMAL AUTOMORPHISM IN A PARA-SASAKIAN

MANIFOLDS:

Definition 2.1:

A  vector  field uis  said to  be an infinitesimal  automorphism  if  it  satisfies  the

relations

(2.1) Lug = 0

(2.2) Lu = 0

(2.3) Lu = 0

And

(2.4) Lu = 0.

Wherein  Lu  denotes  the  Lie-derivative  with  regard  to a  vector  field  u.

In this regard, we have the following theorem:
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Theorem 2.1:

In  a  Para-Sasakian  manifold,  if  a  vector  field  ube  an  infinitesimal

automorphism   then   uis    curvature    preserving infinitesimal  transformation.

Proof:

If  a  vector  field uis  an  infinitesimal automorphism  then  equation  (1.13)  reduces

in  the  form

(2.5)  LuR = 0

Transvecting  equation  (2.5) by   and using equation (C-2,1.9),  we  obtain

(2.6) LuR = 0

Hence,  uis  curvature preserving infinitesimal  transformation  of  Para-Sasakian

manifold.
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