Mathematica Aeterna, Vol. 2, 2012, no. 4, 357 - 365

INFINITESIMAL AFFINE TRANSFORMATION IN A PARA - SASAKIAN MANIFOLDS

T.S Chauhan

Deptt. Of Mathematics, Bareilly College, Barielly, India

R.C. Dimri

Deptt. Of Mathematics, HNB Garhwal University, Srinagar, India

V. K. Srivastava

Deptt. Of Mathematics, Uttaranchal Institute of Technology, Dehradun, India

Indiwar Singh Chauhan

Gangdundwara P.G. College, Kashi Ram Nagar, India

ABSTRACT

The purpose of this paper is to delineate an infinitesimal affine transformation in a Para-Sasakian manifolds. In section 1, we have defined and studied infinitesimal transformations in a Para-Sasakian manifolds. Section 2 is devoted to an infinitesimal automorphism in a Para-Sasakian manifolds.

Mathematics Subject Classification: 53C25

Keywords: Sasakian manifold, P-Sasakian manifold, infinitesimal affine transformation, infinitesimal automorphism, infinitesimal homothetic transformation

1. INTRODUCTION :

Definition 1.1:

In a Riemannian manifold, if a vector field u^{α} satisfies the following condition

(1.1)
$$Lu\{\alpha^{\lambda}_{\beta}\} = \nabla_{\alpha}\nabla_{\beta}u^{\lambda} + R^{\lambda}_{\gamma\alpha\beta}u^{\gamma} = 0$$

is termed an **infinitesimal affine transformation** of a Para-Sasakian manifold.

Wherein Lu denotes the Lie-derivative with regard to a vector field u^{α} .

Definition 1.2:

A vector field u^{α} is called **curvature preserving infinitesimal transformation** of Para-Sasakian manifold if it satisfies the condition

(1.2)
$$LuR^{\lambda}_{\gamma\alpha\beta} = 0$$

Wherein $R^{\lambda}_{\ \gamma\alpha\beta}$ is an Riemannian curvature tensor.

Definition 1.3:

A vector field u^{α} is called an **infinitesimal homothetic transformation** of Para -Sasakian manifold if u^{α} satisfies the condition

(1.3)
$$\operatorname{Lug}_{\alpha\beta} = \lambda g_{\alpha\beta}$$

Wherein λ is any constant.

Definition 1.4:

If $\lambda = 0$ in equation (1.3) then the vector field u^{α} is called **infinitesimal** isometry.

In a Riemannian manifold, we have [4]:

(1.4)
$$LuR^{\lambda}_{\gamma\alpha\beta} = \nabla_{\alpha}Lu\{^{\lambda}_{\beta\gamma}\} - \nabla_{\beta}Lu\{^{\lambda}_{\alpha\gamma}\}$$

(1.5)
$$\operatorname{Lu}\left\{\frac{\lambda}{\alpha\beta}\right\} = (1/2)g^{\lambda\gamma}(\nabla_{\alpha}\operatorname{Lug}_{\beta\gamma} + \nabla_{\beta}\operatorname{Lug}_{\gamma\alpha} - \nabla_{\gamma}\operatorname{Lug}_{\alpha\beta})$$

(1.6)
$$\eta_{\lambda} R^{\lambda}_{\ \gamma\alpha\beta} = \eta_{\alpha} g_{\beta\gamma} - \eta_{\beta} g_{\alpha\gamma}$$

In this regard, we have the following theorems:

Theorem 1.1:

If a vector field u^{α} be an infinitesimal affine transformation of Para-Sasakian manifold then u^{α} becomes curvature preserving infinitesimal transformation.

Proof:

Since a vector field u^{α} is an infinitesimal affine transformation of Para-Sasakian manifold then

(1.7)
$$\operatorname{Lu}\left\{\begin{matrix}\lambda\\\alpha&\beta\end{matrix}\right\}=0$$

By virtue of equations (1.4) and (1.7), we get

$$LuR^{\lambda}_{\gamma\alpha\beta} = 0$$

Hence, \mathbf{u}^{α} is curvature preserving infinitesimal transformation of Para-Sasakian manifold.

Theorem 1.2:

If a vector field u^{α} is an infinitesimal affine transformation of Para-Sasakian manifold then the condition

$$\xi^{\beta}(\nabla_{\alpha}\nabla_{\beta}u^{\lambda}) = 0$$

holds good.

Proof:

Since u^{α} is an infinitesimal affine transformation of Para-Sasakian manifold then

(1.8)
$$\nabla_{\alpha}\nabla_{\beta}u^{\lambda} + R^{\lambda}_{\gamma\alpha\beta}u^{\gamma} = 0$$

Transvecting equation (1.8) by $\eta_\lambda,$ we get

(1.9)
$$\eta_{\lambda}(\nabla_{\alpha}\nabla_{\beta}u^{\lambda}) + \eta_{\lambda}R^{\lambda}_{\gamma\alpha\beta}u^{\gamma} = 0$$

By virtue of equations (1.6) and (1.9), we obtain

(1.10)
$$\eta_{\lambda}(\nabla_{\alpha}\nabla_{\beta}u^{\lambda}) + (\eta_{\gamma}g_{\alpha\beta} - \eta_{\alpha}g_{\beta\gamma})u^{\gamma} = 0$$

Transvecting equation (1.10) with ξ^{λ} and using equation (C-2,1.9), we get

(1.11)
$$(\nabla_{\alpha}\nabla_{\beta}u^{\lambda}) + \xi^{\lambda}(\eta_{\gamma}g_{\alpha\beta} - \eta_{\alpha}g_{\beta\gamma})u^{\gamma} = 0$$

Again transvecting equation (1.11) by ξ^{β} and using equation (C-2,1.4), we obtain

(1.12)
$$\xi^{\beta}(\nabla_{\alpha}\nabla_{\beta}u^{\lambda}) = 0$$

Theorem 1.3:

If a vector field u^{α} is an infinitesimal isometry of Para-Sasakian manifold then the condition

$$\xi^{\gamma} \eta_{\lambda} Lu R^{\lambda}_{\ \alpha\beta\gamma} = \eta_{\beta} Lu \eta_{\alpha} - \eta_{\alpha} Lu \eta_{\beta}$$

holds good.

Proof:

Taking the Lie-derivative with regard to u^{α} on both sides of equation (1.6), we get

(1.13)
$$R^{\lambda}_{\ \alpha\beta\gamma}Lu\eta_{\lambda} + \eta_{\lambda}LuR^{\lambda}_{\ \alpha\beta\gamma} = g_{\beta\gamma}Lu\eta_{\alpha} + \eta_{\alpha}Lug_{\beta\gamma}$$

 $- g_{\alpha\gamma}Lu\eta_{\beta} - \eta_{\beta}Lug_{\alpha\gamma}$

Transvecting equation (1.13) by η_λ and using equation (1.6), we obtain

(1.14)
$$(\eta_{\alpha}g_{\beta\gamma} - \eta_{\beta}g_{\alpha\gamma})Lu\eta_{\lambda} + \eta_{\lambda}\eta_{\lambda}LuR^{\lambda}_{\ \alpha\beta\gamma} = \eta_{\lambda}g_{\beta\gamma}Lu\eta_{\alpha}$$

+ $\eta_{\lambda}\eta_{\alpha}Lug_{\beta\gamma} - \eta_{\lambda}g_{\alpha\gamma}Lu\eta_{\beta} - \eta_{\lambda}\eta_{\beta}Lug_{\alpha\gamma}$

Transvecting equation (1.14) with ξ^{γ} and using equation (C-2,1.4), we get

(1.15)
$$\xi^{\gamma}\eta_{\lambda}\eta_{\lambda} \operatorname{LuR}^{\lambda}{}_{\alpha\beta\gamma} = \eta_{\lambda}\eta_{\beta} \operatorname{Lu\eta}_{\alpha} + \xi^{\gamma}\eta_{\lambda}\eta_{\alpha} \operatorname{Lug}_{\beta\gamma}$$

- $\eta_{\lambda}\eta_{\alpha} \operatorname{Lu\eta}_{\beta} - \xi^{\gamma}\eta_{\lambda}\eta_{\beta} \operatorname{Lug}_{\alpha\gamma}$

Since u^{α} is an infinitesimal isometry of Para-Sasakian manifold then equation (1.15) reduces in the form

(1.16)
$$\xi^{\gamma} \eta_{\lambda} \operatorname{LuR}^{\lambda}_{\alpha\beta\gamma} = \eta_{\beta} \operatorname{Lu}\eta_{\alpha} - \eta_{\alpha} \operatorname{Lu}\eta_{\beta}$$

2. INFINITESIMAL AUTOMORPHISM IN A PARA-SASAKIAN MANIFOLDS:

Definition 2.1:

A vector field \mathbf{u}^{α} is said to be an **infinitesimal automorphism** if it satisfies the relations

(2.1)
$$\operatorname{Lug}_{\alpha\beta} = 0$$

(2.2)
$$\operatorname{Lu}\xi^{\lambda} = 0$$

(2.3)
$$Lu\eta_{\alpha} = 0$$

And

(2.4)
$$\operatorname{Lu}\phi^{\lambda}_{\alpha} = 0.$$

Wherein Lu denotes the Lie-derivative with regard to a vector field u^{α} . In this regard, we have the following theorem:

Theorem 2.1:

In a Para-Sasakian manifold, if a vector field u^{α} be an infinitesimal automorphism then u^{α} is curvature preserving infinitesimal transformation.

Proof:

If a vector field \mathbf{u}^{α} is an infinitesimal automorphism then equation (1.13) reduces in the form

(2.5)
$$\eta_{\lambda} \operatorname{LuR}^{\lambda}_{\alpha\beta\gamma} = 0$$

Transvecting equation (2.5) by ξ^{λ} and using equation (C-2,1.9), we obtain (2.6) $LuR^{\lambda}_{\alpha\beta\gamma} = 0$

Hence, \mathbf{u}^{α} is curvature preserving infinitesimal transformation of Para-Sasakian manifold.

REFERENCES

[1]. A.Bucki: Infinitesimal variations of invariant submanifolds of an almost r-paracontact Riemannian manifolds of Para-Sasakian type, Tensor, N.S., p. (270-277),41,(1984).

[2]. A.K. Singh and U.C. Gupta: Some theorems on Sasakian spaces with recurrent H -Curvature tensor, Acta Ciencia Indica, XXXII M, 2, p. (219-220), (2006).

[3]. K. Takamatsu and H. Mizusawa: On infinitesimal CL - transformations of compact normal contact metric spaces, Sci. Rep. Niigata Univ., Ser. A, p. (31-39), 3(1966).

[4]. K. Yano: The geometry of Lie-derivatives and its applications, North-Holland Pub. Com., Amsterdam, (1955).

[5]. K. Yano: Differential geometry on complex and almost complex spaces,

Pergamenan Press, (1965).

[6]. M. Okumura: Some remarks on space with a certain contact structure, Tohoku Math. Journ., p. (135-145), 14(1962).

[7]. M. Okumura: On infinitesimal conformal and projective transformations on normal contact spaces, Tohoku Math. Journ., p. (398-412), 14(1962).

[8]. S. Ishihara: On infinitesimal concircular trans-formation, Kodai Math. Seminar reports, p. (45-56), 12, (1960).

[9]. S. Sasaki and Y. Hatakeyama: On differentiable manifold with contact metric structures, Journ. of Math. Soc. Japan, p. (249-271), 14, (1962).

[10]. T. Nagano: The projective transformation on a space with parallel Ricci tensor, Kodai Math. Sem. Rep., p. (131-138), 11, (1959).

Received: April, 2012