104. Betrachte den von den Vektoren

$$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

aufgespannten Teilraum W in \mathbb{R}^4 . Verwende das Gram-Schmidt Orthonormalisierungsverfahren, um eine Orthonormalbasis von W sowie einen Normalektor, $v \in W^{\perp}$, zu bestimmen.

105. Bestimme die QR-Zerlegung der invertierbaren Matrizen

$$A = \begin{pmatrix} 2 & -2 \\ 2 & 4 \end{pmatrix}$$
 und $B = \begin{pmatrix} -2 & -4 & -5 \\ 1 & 3 & 6 \\ 1 & 1 & 2 \end{pmatrix}$.

106 (Operatornorm). Sei $\varphi \colon V \to W$ eine lineare Abbildung zwischen endlich dimensionalen Euklidischen oder unitären Vektoräumen. Zeige

$$\|\varphi\| := \sup_{0 \neq v \in V} \frac{\|\varphi(v)\|}{\|v\|} = \sup_{v \in V, \|v\| = 1} \|\varphi(v)\| < \infty,$$

und verifiziere, dass dies eine Norm auf dem Vektorraum L(V, W) definiert die folgende Eigenschaften besitzt:

- (a) $\|\varphi(v)\| \le \|\varphi\| \|v\|$, für jedes $v \in V$.
- (b) $\|\psi \circ \varphi\| \leq \|\psi\| \|\varphi\|$, für jede weiter lineare Abbildung $\psi \colon W \to U$.
- (c) $\|\varphi^*\| = \|\varphi\|$
- (d) $\|\varphi^*\varphi\| = \|\varphi\|^2$

107 (Kreuzprodukt). Sei a, b ein Orthonormalsystem in \mathbb{R}^3 , d.h. ||a|| = 1 = ||b|| und $\langle a, b \rangle = 0$. Zeige, dass $a, b, a \times b$ eine Orthonormalbasis von \mathbb{R}^3 ist. Schließe daraus, dass die Matrix $A := (a|b|a \times b)$ orthogonal ist. Berechne $\det(A)$.

108. Zeige, dass

$$O_n = \{ A \in M_{n \times n}(\mathbb{R}) : A^t A = I_n \}$$

eine kompakte Teilmenge von $M_{n\times n}(\mathbb{R}) = \mathbb{R}^{n^2}$ ist. Hinweis: Zeige, dass O_n beschränkt und abgschlossen ist; die Norm $||A||^2 = \operatorname{tr}(A^t A)$ auf $M_{n\times n}(\mathbb{R})$ ist dabei hilfreich. Zeige auch, dass

$$U_n = \{ A \in M_{n \times n}(\mathbb{C}) : A^*A = I_n \}$$

eine kompakte Teilmenge von $M_{n\times n}(\mathbb{C}) = \mathbb{C}^{n^2} = \mathbb{R}^{2n^2}$ ist.

109. Zeige $\det(A^*) = \overline{\det(A)}$, für jede Matrix $A \in M_{n \times n}(\mathbb{C})$. Folgere daraus, $|\det(A)| = 1$, für jede unitäre Matrix $A \in U_n$. Zeige, analog, dass $\det(A) \in \{\pm 1\}$, für jede orthogonale Matrix $A \in O_n$.

110 (Legendre-Polynome). Betrachte den Euklidischen Vektorraum der stetigen Funktionen, $C^0([-1,1],\mathbb{R})$, mit innerem Produkt

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

Wende das Gram–Schmidt Orthonormalisierungsverfahren auf die linear unabhängige Teilmenge $1, x, x^2, x^3$ an, und bestimme so eine Orthonormalbasis des davon aufgespannten Teilraums.

111. Betrachte den Vektorraum der stetigen Funktionen, $C^0([0,2\pi],\mathbb{C})$, mit innerem Produkt

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} \overline{f(t)} g(t) dt.$$

Zeige, dass die Funktionen e^{int} , $n \in \mathbb{Z}$, ein Orthonormalsystem bilden.

- 112. Zeige, dass die Menge der reellen bzw. komplexen oberen Dreiecksmatrizen mit positiven Diagonaleinträgen eine Untergruppe von $\mathrm{GL}_n(\mathbb{R})$ bzw. $\mathrm{GL}_n(\mathbb{C})$ bilden.
- 113. Seien W und W' zwei komplementäre Teilräume eines endlich dimensionalen reellen Vektorraums V, d.h. $V=W\oplus W'$. Zeige, dass ein inneres Produkt auf V existiert, für das $W^{\perp}=W'$ gilt. Formuliere und beweise die analoge Aussage für komplexe Vektorräume.
- 114. Bestimme die Matrix (bezüglich der Standardbasis) der Orthogonalprojektion auf den Teilraum

$$W = \langle \begin{pmatrix} 2\\2\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\-1\\2 \end{pmatrix} \rangle$$

von \mathbb{R}^4 , sowie den Abstand d(v, W) des Punktes $v = \begin{pmatrix} 3 \\ -1 \\ 1 \\ -2 \end{pmatrix}$ zu W.

- 115. Sei V ein endlich dimensionaler Euklidischer oder unitärer Vektorraum und $p:V\to V$ ein Projektor, $p^2=p$. Zeige, dass folgende Aussagen äquivalent sind:
- (a) p ist selbstadjungiert, d.h. $p^* = p$.
- (b) $V = \operatorname{img}(p) \oplus \ker(p)$ ist eine orthogonale Zerlegung, d.h. $\ker(p) = \operatorname{img}(p)^{\perp}$.
- (c) p ist die Orthogonalprojektion auf img(p).
- 116. Sei V ein endlich dimensionaler Euklidischer oder unitärer Vektorraum, bezeichne $\iota \colon W \to V$ die Inklusion eines Teilraums und $p \colon V \to W$ die Orthogonalprjektion. Zeige $\iota^* = p$ und $p^* = \iota$.

117. Sei V ein endlich dimensionaler unitärer Vektorraum. Zeige, dass

$$\langle v, w \rangle_{\mathbb{R}} := \operatorname{Re}(\langle v, w \rangle)$$

ein inneres Produkt auf dem zugrundeliegenden reellen Vektorraum $V_{\mathbb{R}} = V$ liefert. Für eine lineare Abbildung $\varphi \colon V \to V$ bezeichne $\varphi_{\mathbb{R}} \colon V_{\mathbb{R}} \to V_{\mathbb{R}}$ die selbe Abbildung, aber als reell lineare Abbildung aufgefasst. Zeige weiters:

- (a) Ist $\varphi \colon V \to V$ selbstadjungiert, so ist $\varphi_{\mathbb{R}} \colon V_{\mathbb{R}} \to V_{\mathbb{R}}$ symmetrisch.
- (b) Ist $\varphi \colon V \to V$ unitär, so ist $\varphi_{\mathbb{R}} \colon V_{\mathbb{R}} \to V_{\mathbb{R}}$ orthogonal.

118. Sei V ein endlich dimensionaler Euklidischer oder unitärer Vetorraum und $\varphi\colon V\to V$ linear. Zeige:

$$\varphi(W) \subseteq W \quad \Leftrightarrow \quad \varphi^*(W^{\perp}) \subseteq W^{\perp}$$

119. Für jede der folgenden symmetrischen Matrizen A bestimme eine orthogonale Matrix U, sodass $U^{-1}AU = U^tAU$ Diagonalgestalt hat:

$$A_2 = \begin{pmatrix} 9 & -1 \\ -1 & 9 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

120. Für jede der folgenden selbstadjungierten Matrizen A bestimme eine unitäre Matrix U, sodass $U^{-1}AU = U^*AU$ Diagonalgestalt hat:

$$A_2 = \begin{pmatrix} 6 & -2\mathbf{i} \\ 2\mathbf{i} & 9 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 1 & -2\mathbf{i} & 2 \\ 2\mathbf{i} & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

- 121. Zeige, dass die Drehung ρ_E^{θ} in Beispiel VII.4.4 nicht von der Wahl der Orthonormalbasis B abhängt. $Hinweis: Die Gruppe SO_2$ ist Abelsch.
- 122. Seien a_1 und a_2 zwei linear unabhängige Einheitsvektoren eines endlich dimensionalen Euklidischen Vektorraums, $||a_1|| = 1 = ||a_2||$, und bezeichne α den Winkel zwischen a_1 und a_2 . Weiters seien $\sigma_{a_1}, \sigma_{a_2} \colon V \to V$ die orthogonalen Spiegelungen an a_1^{\perp} bzw. a_2^{\perp} . Zeige, dass die Komposition $\rho := \sigma_{a_1}\sigma_{a_2} \colon V \to V$ mit der Drehung in dem von a_1 und a_2 erzeugten 2-dimensionalen Teilraum $E \subseteq V$ um den Winkel $\theta = 2\alpha$ übereinstimmt, d.h. zeige, $\rho = \rho_E^{\theta}$, mit der Notation in Beispiel VII.4.4. Hinweis: Die Verdoppelungsformel für den Cosinus lautet: $\cos(2\alpha) = 2\cos^2\alpha 1$.