

6. Übung zur Funktionentheorie 2: Riemannsche Flächen

Abgabe: Donnerstag, 21. Mai vor der Übung

Aufgabe 1

Seien abelsche Gruppen und Homomorphismen wie im folgenden Diagramm gegeben.

$$C^{0} \xrightarrow{\delta_{0}} C^{1} \xrightarrow{\delta_{1}} C^{2}$$

$$t_{0} \downarrow \qquad t_{1} \downarrow \qquad t_{2} \downarrow$$

$$\hat{C}^{0} \xrightarrow{\hat{\delta}_{0}} \hat{C}^{1} \xrightarrow{\hat{\delta}_{1}} \hat{C}^{2}$$

Wir nehmen an, dass $\delta_1 \delta_0 = 0$ und $\hat{\delta}_1 \hat{\delta}_0 = 0$, so dass wir Gruppen $H := \ker \delta_1 / \operatorname{im} \delta_0$ und $\hat{H} := \ker \hat{\delta}_1 / \operatorname{im} \hat{\delta}_0$ definieren können. Wir nehmen weiter an, dass im obigen Diagramm beide Quadrate kommutieren, dass also $t_{k+1} \delta_k = \hat{\delta}_k t_k$ für k = 0, 1 gilt.

Zeige, dass durch t ein Homomorphismus $H \to \hat{H}$ definiert wird.

Aufgabe 2

Sei \mathcal{F} eine PRÄgarbe auf dem topologischen Raum X, und sei \mathcal{U} eine offene Überdeckung von X. Genau wie für Garben definiert man Cohomologiegruppen $H^1(\mathcal{U},\mathcal{F})$ und Homomorphismen $t_{\mathcal{V}}^{\mathcal{U}} \colon H^1(\mathcal{U},\mathcal{F}) \to H^1(\mathcal{V},\mathcal{F})$ falls \mathcal{V} eine feinere offene Überdeckung von X ist.

Gib ein (möglichst konkretes) Beispiel von Daten $(X, \mathcal{F}, \mathcal{U}, \mathcal{V})$ so dass $t_{\mathcal{V}}^{\mathcal{U}}$ NICHT injektiv ist.

Aufgabe 3

Sei X eine Riemannsche Fläche und sei \mathcal{F} eine Garbe abelscher Gruppen auf X. Zeige, dass $H^1(X,\mathcal{F})$ mit repräsentantenweiser Addition zu einer abelschen Gruppe wird.

Aufgabe 4

Sei X eine Riemannsche Fläche und sei $\mathcal{F} = \mathcal{E}^{0,1}$ die Garbe der differenzierbaren 1-Formen vom Typ (0,1). Zeige, dass $H^1(X,\mathcal{F}) = 0$.