Next Article in Journal
Invasion Consequences in Communities Maintained by Niche and Intransitive Coexistence Mechanisms
Next Article in Special Issue
DNA Barcodes for Evolution and Biodiversity
Previous Article in Journal
Spatial Distribution, Diversity Mapping, and Gap Analysis of Wild Vigna Species Conserved in India’s National Genebank
Previous Article in Special Issue
Phylogeographic and Morphological Analysis of Botrylloides niger Herdman, 1886 from the Northeastern Mediterranean Sea
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

DNA Barcoding Data Reveal Important Overlooked Diversity of Cortinarius sensu lato (Agaricales, Basidiomycota) in the Romanian Carpathians

1
Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, University of Babeș-Bolyai Cluj-Napoca, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
2
Doctoral School of Integrative Biology, Babeş-Bolyai University, Republicii 44, 400015 Cluj-Napoca, Romania
3
Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian 42, 400271 Cluj-Napoca, Romania
4
Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
5
Department of Botany, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary
6
Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, University of Babeș-Bolyai Cluj-Napoca, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Diversity 2023, 15(4), 553; https://doi.org/10.3390/d15040553
Submission received: 14 March 2023 / Revised: 3 April 2023 / Accepted: 9 April 2023 / Published: 13 April 2023
(This article belongs to the Special Issue DNA Barcodes for Evolution and Biodiversity)

Abstract

:
Cortinarius s.l. is a globally distributed agaricoid genus that has been well studied in Europe with over 1000 described species. However, the information about their taxonomy and diversity in eastern Central Europe is still limited. Only 124 species have been reported so far from Romania, based solely on morphological observations. The aim of this study was to re-examine the diversity of the genus Cortinarius s.l. in the Romanian Carpathian area, employing molecular phylogenetic and morphological methods. During intensive field work in the period 2017–2020, a total of 234 Cortinarius s.l. specimens were collected and studied with integrative taxonomic methods. For all the samples, we amplified and sequenced the nrDNA ITS region, which is the widely used official barcode marker of fungi. These sequences were compared to the data found in public databases (GenBank, UNITE, BOLD). Based on phylogenetic analyses, we identified 109 Cortinarius s.l. species, which represent 40 sections and 3 clades. Out of these species, 43 have previously been documented from Romania based on morphological identification methods, while 66 species are reported as new to the country.

1. Introduction

Cortinarius (Pers.) Gray s.l. (sensu lato) has been considered to be the biggest genus of the order Agaricales [1], with a cosmopolitan distribution of over 3000 described species [2]. Cortinarius species are important ectomycorrhizal fungi (EcM) associated with different trees and shrubs, belonging to the order Fagales, families Caesalpiniaceae, Cistaceae, Dipterocarpaceae, Myrtaceae, Pinaceae, Polygonaceae, Rhamnaceae, Rosaceae and Salicaceae as well as a few herbaceous plants in the Cyperaceae. Because of their EcM nutritional mode, they also play a key role in carbon cycling, especially in boreal forests. Several groups have narrow ecological preferences, and they are sensitive to environmental changes; therefore, some species have been used as indicators for valuable natural environments [3]. Species belonging to Cortinarius have a highly variable appearance, from mycenoid to tricholomatoid basidiomata. Their color can be uniformly brown or colorful, and the surface of the pilei is dry, fibrillose, silky, squamose or viscid [4]. Another common feature of Cortinarius is a cobweb-like partial veil, the usually rusty-brown spore print and the lack of a germ pore and perisporium [5]. In the beginning of the 21st century, molecular phylogenetic studies showed that the genus also contains several species (mainly extra-European) with sequestrate fruiting body forms [6]. According to IndexFungorum (http://www.indexfungorum.org, accessed on 7 March 2023), 5819 Cortinarius names have been published worldwide (accessed 2 March 2023). However, this number includes all infrageneric taxa, and still the number of existing species names are estimated to be over 5000. Many of these names were inconsistently used in the literature, and there is also a high number of synonyms. One of the most challenging parts of Cortinarius taxonomy is to examine which species have already been described [3].
Since the early 19th century, many researchers have focused on the genus Cortinarius in Europe, e.g., [7,8,9]. From the 20th century onwards, several fundamental morphological works were published from Europe, e.g., [10,11,12,13,14,15,16,17,18]. From the late 1980s, two taxonomic schools have spread in Europe, representing the South European (especially French, Italian and Spanish) and the Scandinavian directions. During this period, the Atlas des Cortinaires [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45] described approximately 1500 new species, while the more conservative species concept of the Scandinavian school, the Cortinarius, Flora Photographica [46,47,48,49], dealt with only 300 species. The introduction of molecular tools in addition to the macro- and micromorphological character-based identification led to a more precise and reliable classification and helped avoid misunderstandings in the taxonomy and nomenclature of the genus. Northern Europe became one of the most investigated and well-studied regions [4,50,51,52,53,54,55,56,57,58,59,60,61,62,63], but in the last few decades, several other studies focused also on the Central European region [64,65,66,67,68,69,70]; however, the information from this region is still limited. Similarly, there is a lack of information regarding the southern parts of Europe [3], with only a few papers [71,72,73] published from the Mediterranean area so far. Depending on the identification and classification concepts, the genus Cortinarius s.l. was separated into several subgenera by different authors. Moser [15] named seven subgenera, while Moënne-Loccoz et al. [19,20] and Bidaud et al. [25,26] mentioned six subgenera in their works. Scandinavian researchers [46,47,48,49] separated the genus into five subgenera. In the molecular era, phylogenetic analyses showed that these subgenera are mostly artificial, e.g., [3,70]. New infrageneric classifications of Cortinarius based on multigene phylogenetic analyses were proposed by Garnica et al. [74] and Soop et al. [75]. Recently, Liimatainen et al. [76] has split the genus Cortinarius into 10 genera based on genomic and multi-gene sequence data. This new classification, however, is not adopted in the current study, due to practical reasons.
Fungal research in Romania has received increasing interest since 1950, leading to 8727 reported fungal species [77,78], including both macro- and microfungi. Although there are a number of publications that mention the genus Cortinarius and provide scarce species lists from few areas in the Carpathians [79,80,81,82,83,84,85,86,87,88,89], systematic study that only focuses on this genus is still lacking. Based on an extensive literature search, we know about 124 reported Cortinarius species from Romania, identified based only on their morphological characteristics. This is a relatively low number when compared to the more than 1000 known European Cortinarius species [90].
Using solely morphological characteristics to identify Cortinarius species is very challenging and needs a lot of experience and solid knowledge. During the development of the basidiocarps, several characteristics may change significantly and overlap with other species, i.e., their intraspecific variability is high. Micromorphological characteristics, such as the size, shape or ornamentation of the basidiospores, also play an important role in the identification process, e.g., [4]. Nonetheless, DNA-sequence-based analyses (e.g., DNA barcoding) are the most reliable identification methods to date, allowing the investigation of the differences between species and varieties too. The nrDNA ITS (Internal Transcribed Spacer) region has been proposed and started to be widely used in molecular taxonomy as the universal and official barcoding region for fungi [91]. ITS is composed of three subregions: ITS1, 5.8S and ITS2, of which the ITS1 and ITS2 spacers show higher evolutionary rates than the 5.8S; therefore, these are the best suited for studying interspecific level differences [92]. This region evolved relatively rapidly compared to the mitochondrial genes; therefore, in the case of Cortinarius too, it is useful and widely used for species identification purposes [3,56,74,93,94].
To study fresh material, we based our study mainly on sampling in the Apuseni Mts, which is a prominent forested area of Romania [95] and located in northern part of the Western Romanian Carpathians. The mountain range is regarded as an important biogeographical area between the Pannonian Plain and the Transylvanian Plateau as well as in the Southern and Eastern Carpathians. Due to its location, several biogeographical regions are present in the area (e.g., alpine, arctic, Mediterranean, etc.), which has resulted in it being one of the regions in Europe with high biodiversity [96]. Several suitable forest types and hot spots for Cortinarius are represented in the area, both on calcareous and siliceous bedrocks. The forest vegetation is dominated by oak (Quercus petraea agg.), mixed hornbeam–beech (Carpinus betulus, Fagus sylvatica), beech (F. syvatica), mixed beech and spruce (F. sylvatica, Picea abies) and spruce (P. abies) forests [97]. Additionally, we also extended our sampling to some localities in the Eastern Carpathians (Ținutul Sării, Baraolt and Liban).
Due to the limited knowledge and the lack of molecular genetic data of the genus Cortinarius in Romania, the aims of this study were to make a pilot revision of the diversity, taxonomy and distribution of Cortinarius s.l. species, using DNA barcoding combined with morphological methods, and update the list of species of this important ectomycorrhizal genus.

2. Materials and Methods

2.1. Taxon Sampling

For our pilot survey, samples were collected from sites including the main habitat types, characteristic for the Transylvanian part of Romania, such as broad-leaved forests (40%), coniferous forests (35%), mixed forests (11%) and other habitat types (14%; e.g., transitional woodland–shrub, pastures, natural grasslands). The collections were made from 2017 to the autumn of 2020, with the professional collaboration of K. Babos, L. Bartha, G. Bélfenyéri, A. Dénes, R. Erös, K. Fehér, L. Gál, B. Jancsó, K. Macalik and Cs. Szabó.
A total of 234 Cortinarius samples were collected (Table 1). Every sample has a unique code (e.g., C001, where the C means the first letter of the genus name), and in every case the collection coordinates were recorded. The coordinates were registered in the decimal degrees (DD) format, with six decimals (Table 1). The majority of the samples were photographed in the field (Figure 1), and gross morphology was noted. All samples were dried with a dehydrator at 45 °C. Samples were deposited at the Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.

2.2. Micromorphological Study

We studied the basidiospores of our collections (Figure 2). In general, the size of the spores are 5–15 × 3–8 µm. Basidiospores were studied in 3% KOH or Melzer’s reagent, the latter to observe the dextrinoid reaction of the spore wall in some groups [98]. The analyses were performed with an Olympus CX23 microscope with 1000× magnification using immersion oil and an oil immersion lens. The photographs were taken with a Canon 700D camera attached to the microscope. Photos were stacked with Zerene Stacker (zerenesystems.com/cms/home), and the size of the spores was measured with Piximètre (http://ach.log.free.fr/Piximetre/) software. In addition to the basidiospore sizes, coloration and the ornamentation were also noted. From the measured parameters, the Q value (length/width ratio) was calculated, which indicates the shape of the spores (Q = 1.01–1.05: globose, Q = 1.05–1.15: subglobose, Q = 1.15–1.30: broadly ellipsoid, Q = 1.30–1.60: ellipsoid, Q = 1.60–2.0: oblong, Q = 2.0–3.0: cylindrical). Basidiospore ranges for the species new to Romania are given in Table 2. To exclude aberrant spores, the values are based on spores within the 0.75 confidence interval.

2.3. Molecular Genetic Analysis

DNA extractions, PCR amplifications, gel electrophoreses, and the purification of the PCR products were performed in the molecular laboratory at the Interdisciplinary Research Institute on Bio-Nano-Sciences of Babeș-Bolyai University, Cluj-Napoca, Romania.
Genomic DNA was extracted from a small piece of the lamella (10–15 mg) under sterile conditions using the ISOLATE II Genomic DNA Kit (Bioline Meridian Bioscience, Inc. Cincinnati, OH, USA) following a modified protocol: (1) After the crushing the dried samples, 180 µL of Lysis Buffer GL and 25 µL of Proteinase K solution were added to the sample and were mixed using Thermoblock for 3 h at 56 °C for better amalgamation; (2) the elution of the DNA was performed in two steps with 30–30 µL of Elution Buffer G solution (before spinning, the elution buffer stayed in the column for 3 min). The concentration of the DNA solutions was measured with a NanoDrop ND-1000 Spectrophotometer (Nano-Drop Technologies, Wilmington, DE, USA). All DNA concentrations fell between 30 and 100 ng/µL.
The target region was amplified using the following primers: ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [94]. The PCR was performed in a volume of 50 µL of the reaction mixture, which contained 0.5 µL of MyTaq™ DNA Polymerase (Bioline Reagents Ltd., London, UK), 10 µL of 5× MyTaq™ Reaction Buffer, 1 µL of the primer pairs (20 µM each, from the following primer mix: 10 µL ITS1F + 10 µL ITS4 + 80 µL PCR-grade water), 1 µL of DNA solution and 37.5 µL of PCR-grade water. The PCR conditions included an initial 5 min denaturation step at 95 °C, followed by 35 cycles of denaturation of 1 min at 95 °C, 1 min of annealing at 52 °C and 1 min of elongation at 72 °C. Finally, there was a 10 min final extension at 72 °C.
The success of the PCR was confirmed with a 1% agarose gel electrophoresis of 2 µL from each sample, performed at 120 V for 20 min. The gel was dyed with ethidium-bromide and was examined under UV light. After the run, the positive samples were purified using Wizard SV Gel and a PCR Clean-Up System (Promega, Madison, Wisconsin, USA USA) following the provided protocol, with one modification: for a more concentrated solution of the PCR product, the elution of the PCR product was performed in two steps with 20–20 µL of nuclease free water (before spinning, the buffer stayed in the column for 3 min). The purity of the PCR product and the concentration of the solution was measured with a spectrophotometer.
The PCR products were sent to Macrogen Europe (Amsterdam, The Netherlands) for Sanger sequencing with ITS1F and ITS4 primers.

2.4. Phylogenetic Analysis

The results of the sequencing were downloaded from the Macrogen Europe website. The quality of the sequences was analyzed using Trev from the Staden Program Package [99], and the primers’ connection region was cut manually. Homologous sequences were searched by using the BLASTn algorithm [100] both in public, non-curated database (GenBank; http://www.ncbi.nlm.nih.gov/, accessed on 12 November 2021), and in curated public databases (UNITE; http://unite.ut.ee/, BOLD; http://www.boldsystems.org/). Reference and type sequences (Table S1) were downloaded and added to our own dataset.
The sequences were aligned in BioEdit [101] using MAFFT with the E-INS-I strategy [102]. To refine the nucleotide alignment, the phylogenetically informative indel positions were coded in FastGap 1.2 [103], and the binary matrix was added to the nucleotide alignment (ITS1, 5.8S, ITS2) in SeaView 4 [104]. Our dataset was analyzed based on Maximum Likelihood (ML) and Bayesian Inference (BI) methods. The ML phylogenetic reconstruction was performed in raxmlGUI [105] using rapid bootstrap analysis with 1000 replicates. Three nucleotide partitions (ITS1, 5.8S, ITS2) were set to the GTRGAMMA substitution model in addition to one binary partition (indel characters) that was set to default. The BI analysis was inferred in MrBayes 3.2.6 [106], with a MCMC (Markov chain Monte Carlo) algorithm, and the GTR + Γ substitution model with gamma distribution. The nucleotide partitions and the binary matrix from gap coding were treated as a mixed data type. The analysis ran for 10,000,000 generations with 25% burn-in. The resulting phylogenetic tree was visualized in FigTree v1.4.2 [107], MEGA 7 [108] and Adobe Illustrator CS4.

3. Results

In total, 234 sequences were analyzed (Table 1). BI and ML analyses of the nrDNA ITS region revealed topologically similar phylograms. A preliminary survey was conducted to see whether the 10 different genera of Cortinariaceae established by Liimatainen et al. [76] could be reconstructed based only on single gene analysis, but ITS was not found to be suitable for recognizing these genera. Therefore, we decided to treat Cortinarius in a classical sense. In order to achieve a better overview of the morphological similarities of the studied species, the dataset was divided into two parts. The first alignment was composed of 760 characters. After gap coding, a binary set of 267 characters was added to the nucleotide alignment, leading to a mixed data matrix containing 1027 characters. The alignment contained ITS sequences of leprocyboid, dermocyboid, rozitoid, telamonioid, and myxacioid species, i.e., from the classical morphological groups such as subgen. Cortinarius, subgen. Telamonia, and subgen. Myxacium. Our results showed (Figure 3) that the studied species belonged to sections Anomali, Bovini, Brunnei, Camphorati, Cortinarius, Defibulati, Delibuti, Dermocybe, Exulares, Firmiores, Flexipedes, Hinnulei, Hydrocybe, Leprocybe, Myxacium, Obtusi, Orellani, Renidentes, Rozites, Rubricosi, Spilomei, Squalidi, Telamonia, Tragani, Uracei, Urbici and Vibratiles, as well as to the clades /Gallurae and /Ultrodistortus. The second alignment included ITS sequences of species from the morphological subgen. Phlegmacium and was composed of 712 characters. In this case, 185 binary characters from the gap coding were added to the nucleotide characters, resulting in a final alignment of 897 characters. Our results showed (Figure 4) that the studied species belonged to sections Arguti, Aureocistophili, Calochroi, Claricolores, Glaucopodes, Infracti, Multiformes, Phlegmacioides, Phlegmacium, Purpurascentes, Subtorti, Turmales and Varii, and the clade /Dionysae (= Phlegmacium sect. Dionysae). Most sections and clades are well-supported with ML bootstrap support values between 80–100% and BI posterior probabilities between 0.92–1. For the sectional names, the taxonomic work of Liimatainen et al. [3,56,76] were followed.
Based on our study, we were able to recognize 109 Cortinarius s.l. species from Romania, belonging to 40 sections and 3 clades. Out of these, 43 species have been previously documented, but their identifications were based only on morphology (Table S2). The remaining 66 species are reported here as new to Romania (Table 2). Among these, we were not able to link any of the described Cortinarius names to six phylogenetically well-separated species; therefore, we used the ‘aff.’ prefix before the epithets which link them to their closest phylogenetic or morphological species (Figure 3 and Figure 4). These are C. aff. delibutus in sect. Delibuti, C. aff. glaucopus and C. aff. magicus in sect. Glaucopodes, C. aff. sublilacinopes in sect. Calochroi, C. aff. trivialis in sect. Mycaxium and C. aff. vibratilis in sect. Vibratiles. Concerning the ongoing Cortinarius studies in Europe, our unpublished results (data not shown) indicate that these species are likely taxonomic novelties, but unveiling their taxonomy and nomenclature needs further analyses and the results will be included in different publications.

4. Discussion

In this study, we updated the checklist of the largest agaric genus, Cortinarius s.l., in Romania, employing nrDNA ITS barcoding. Macrofungi, including Cortinarius, were only studied using classical morphological methods in Romania to date; thus, our work presents the first biodiversity study using the combination of molecular phylogenetic and morphological methods in the country. Similar to the results of other national barcoding projects in Europe, e.g., in Norway [109,110,111], Finland [112], the Netherlands [113] or in Austria (https://www.abol.ac.at/en/project/higher_fungi/, accessed on 1 July 2022), our results showed a high number of previously not reported taxa at the country level. From the 109 Cortinarius s.l. species identified in the course of this study, 66 species are reported here as new to Romania, raising the known number of species up to ca. 190. This number is, however, lagging far behind that from Western and Northern European countries, where species observation activities and DNA barcoding campaigns and databases are in a more advanced stage compared to Romania or its neighboring countries, e.g., in Bulgaria or Hungary. For example, in Norway, the listed number of Cortinarius species is over 550 [114], while based on data from the older literature, the number of species in Bulgaria is 105 [115], and in Hungary, there are 169 species [116]; however, these numbers are hardly comparable with each other due to the different methods used in species identification (i.e., integrative taxonomy vs. morphological species recognition).
The majority of the species discovered as new to Romania belongs to phlegmacioid lineages/sections, especially to sect. Calochroi (nine species) as well as sect. Glaucopodes and sect. Phlegmacioides (six species in either section). Sect. Dermocybe is represented with 7 new species to the country, whereas 29 other sections/clades are represented by only 1–3 species in our dataset. Altogether, the 109 identified species in this study belong to 43 sections/clades. After actualizing the species list of genus Cortinarius s.l. with our new data, we assessed ca. 190 species now known in Romania. However, we are aware of the fact that among the previously published data, there could be wrongly identified and named collections; thus, without taxonomic revision of these materials, the correct number of Cortinarius species cannot be accurately established. Based on the various valuable habitats and nature types in the Carpathian Mountains and adjacent regions in Romania (out of which we only conducted samplings from the Apuseni Mts, and few sites in the Eastern Carpathians), we anticipate discovering an even larger diversity of Cortinarius s.l. species than that established in this work, when the sampling is extended to all areas with suitable habitats for Cortinarius in Romania. We also believe that other groups of macrofungi will be shown to be more species-rich when accurate investigations combining molecular techniques (e.g., DNA barcoding) together with morphological identification methods will be applied in the future.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/d15040553/s1, Table S1: Cortinarius sequences from public databases used in this study, Table S2: Cortinarius taxa published to date from Romania and identified with morphological methods. References [53,79,81,85,87,117,118,119,120,121,122,123,124,125,126,127,128,129] are cited in Supplementary Materials.

Author Contributions

Conceptualization, E.S., B.D. and L.K.; methodology, E.S. and B.D.; molecular analysis, E.S., B.D. and A.L.D., resources, L.K. and V.P., data curation, E.S. and B.D., writing—original draft preparation, E.S. and B.D., writing—review and editing, E.S., B.D., A.L.D., L.K. and V.P., supervision B.D. and L.K., funding acquisition L.K. and V.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research was partially funded by the Collegium Talentum Program of Hungary. The work of B.D. was funded by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences; the National Research, Development and Innovation Office of Hungary (OTKA FK-143061); and the ELTE Thematic Excellence Programme 2020 (TKP2020-IKA-05), financed by the National Research, Development and Innovation Office of Hungary. The support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences to V.P. is highly appreciated.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Data are contained within the article and Supplementary Materials. Some data can also be found in publicly available datasets: https://www.ncbi.nlm.nih.gov/; http://www.mycobank.org/; http://www.indexfungorum.org/, accessed on 2 March 2023.

Acknowledgments

We would like to thank Krisztina Babos, László Bartha, Gábor Bélfenyéri, Anna Dénes, Réka Erös, Kinga Fehér, László Gál, Boróka Jancsó, Kunigunda Macalik and Csilla Szabó for their help with the sample collection, Boróka Jancsó for her help with the microscopical spore photos, and Ágota Szabó for her help in recording habitat composition. We are grateful to the three anonymous reviewers (especially to one of them) for their valuable comments which greatly improved our manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008. [Google Scholar]
  2. Roskov, Y.; Ower, G.; Orrell, T.; Nicolson, D.; Bailly, N.; Kirk, P.M.; Bourgoin, T.; DeWalt, R.E.; Decock, W.; Nieukerken, E.; et al. Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist, 2019, (2405-884X). Available online: http://www.catalogueoflife.org/annual-checklist/2019/ (accessed on 1 July 2022).
  3. Liimatainen, K.; Niskanen, T.; Dima, B.; Kytövuori, I.; Ammirati, J.F.; Frøslev, T.G. The largest type study of Agaricales species to date: Bringing identification and nomenclature of Phlegmacium (Cortinarius) into the DNA era. Pers. Mol. Phylogeny Evol. Fungi 2014, 33, 98–140. [Google Scholar] [CrossRef] [PubMed]
  4. Peintner, U.; Moncalvo, J.M.; Vilgalys, R. Toward a better understanding of the infrageneric relationships in Cortinarius. Mycologia 2004, 96, 4. [Google Scholar] [CrossRef]
  5. Singer, R. The Agaricales in Modern Taxonomy; Koeltz Scientific Books: Koenigstein, Germany, 1986; pp. 859–889. [Google Scholar]
  6. Peintner, U.; Bougher, N.L.; Catellano, M.A.; Moncalvo, J.M.; Moser, M.M.; Trappe, J.M.; Vilgalys, R. Multiple origins of sequestrate fungi related to Cortinarius (Cortinariaceae). Am. J. Bot. 2001, 88, 2168–2179. [Google Scholar] [CrossRef]
  7. Fries, E. Systema Mycologicum; Lundae: Ex Officina Berlingiana: Uppsala, Sweden, 1821; Volume 1. [Google Scholar]
  8. Fries, E. Epicrisis Systematis Mycologici seu Synopsis Hymenomycetum; Typographia Academica: Uppsala, Sweden, 1838. [Google Scholar]
  9. Fries, E. Monographia Cortinariorum Sueciae; Excudebat Reg. Acad. Typograph: Uppsala, Sweden, 1851. [Google Scholar]
  10. Henry, R. Étude de quelques cortinaires du groupe des Scauri. Deux espèces nouvelles. Bull. De La Société Mycol. De Fr. 1951, 51, 34–100. [Google Scholar]
  11. Henry, R. Suite à l’étude des Cortinaires. Bull. De La Société Mycol. De Fr. 1958, 74, 365–422. [Google Scholar]
  12. Henry, R. Les Cortinaires. Bull. De La Société Mycol. De Fr. 1981, 97, 157–279. [Google Scholar]
  13. Henry, R. Suite à l’étude des Cortinaires. Bull. De La Société Mycol. De Fr. 1986, 102, 19–96. [Google Scholar]
  14. Moser, M. Die Röhrlinge und Blätterpilze; Kleine Kryptogamenflora: Stuttgart, Germany, 1983; Volume IIb. [Google Scholar]
  15. Moser, M. Die Gattung Phlegmacium (Schleimköpfe). Die Pilze Mitteleuropas; Julius Klinikhalt: Bad Heilbrunn, Germany, 1960; Volume IV. [Google Scholar]
  16. Moser, M.M. Keys to Agarics and Boleti: Polyporales, Boletales, Agaricales, Russulales, 4th ed.; Mad River Pr Inc.: London, UK, 1985. [Google Scholar]
  17. Orton, P.D. The Genus Cortinarius I. Myxacium and Phlegmacium; The Naturalist: Leeds, UK, 1955. [Google Scholar]
  18. Velenovský, J. České Houby; Česká Botanická Společnost: Praha, Czech Republic, 1921; Volume 3, pp. 425–632. [Google Scholar]
  19. Moënne-Loccoz, P.; Reumaux, P.; Bidaud, A. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Annecy, France, 1990; Volume I-1. [Google Scholar]
  20. Moënne-Loccoz, P.; Reumaux, P.; Bidaud, A. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Annecy, France, 1990; Volume I-2. [Google Scholar]
  21. Moënne-Loccoz, P.; Reumaux, P.; Bidaud, A. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Annecy, France, 1991; Volume II. [Google Scholar]
  22. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Annecy, France, 1991; Volume III. [Google Scholar]
  23. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Henry, R. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Annecy, France, 1992; Volume IV-1. [Google Scholar]
  24. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Henry, R. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Annecy, France, 1992; Volume IV-2. [Google Scholar]
  25. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Henry, R. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Annecy, France, 1994; Volume V-1. [Google Scholar]
  26. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Henry, R. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Annecy, France, 1994; Volume V-2. [Google Scholar]
  27. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: La Roche-sur-Foron, France, 1995; Volume VI. [Google Scholar]
  28. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: La Roche-sur-Foron, France, 1996; Volume VII. [Google Scholar]
  29. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: La Roche-sur-Foron, France, 1997; Volume VIII. [Google Scholar]
  30. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Seynod, France, 1999; Volume IX. [Google Scholar]
  31. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Lyon, France, 2000; Volume X. [Google Scholar]
  32. Bidaud, A.; Carteret, X.; Eyssartier, G.; Moënne-Loccoz, P.; Reumaux, P.; Carteret, X.; Eyssartier, G. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2001; Volume XI. [Google Scholar]
  33. Bidaud, A.; Carteret, X.; Eyssartier, G.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2002; Volume XII. [Google Scholar]
  34. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Carteret, X.; Eyssartier, G. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2003; Volume XIII. [Google Scholar]
  35. Bidaud, A.; Carteret, X.; Eyssartier, G.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2004; Volume XIV. [Google Scholar]
  36. Bidaud, A.; Carteret, X.; Eyssartier, G.; Moënne-Loccoz, P.; Reumaux, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2005; Volume XV. [Google Scholar]
  37. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Carteret, X.; Eyssartier, G. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2006; Volume XVI. [Google Scholar]
  38. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Carteret, X.; Eyssartier, G. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2008; Volume XVII. [Google Scholar]
  39. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Carteret, X. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2009; Volume XVIII. [Google Scholar]
  40. Bidaud, A.; Moënne-Loccoz, P.; Reumaux, P.; Carteret, X. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2010; Volume XIX. [Google Scholar]
  41. Bidaud, A.; Carteret, X.; Reumaux, P.; Moënne-Loccoz, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2012; Volume XX. [Google Scholar]
  42. Bidaud, A.; Carteret, X.; Reumaux, P.; Moënne-Loccoz, P.; Bellanger, J.M. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2013; Volume XXI. [Google Scholar]
  43. Bidaud, A.; Bellanger, J.M.; Carteret, X.; Reumaux, P.; Moënne-Loccoz, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2014; Volume XXII. [Google Scholar]
  44. Bidaud, A.; Bellanger, J.M.; Carteret, X.; Reumaux, P.; Moënne-Loccoz, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2015; Volume XXIII. [Google Scholar]
  45. Bidaud, A.; Bellanger, J.M.; Carteret, X.; Reumaux, P.; Moënne-Loccoz, P. Atlas des Cortinaires; Éditions Fédération Mycologique Dauphiné-Savoie: Marlioz, France, 2017; Volume XXIV. [Google Scholar]
  46. Brandrud, T.E.; Lindström, H.; Marklund, H.; Melot, J.; Muskos, S. Cortinarius, Flora Photographica; Cortinarius HB: Matfors, Sweden, 1990; Volume 1. [Google Scholar]
  47. Brandrud, T.E.; Lindström, H.; Marklund, H.; Melot, J.; Muskos, S. Cortinarius, Flora Photographica; Cortinarius HB: Matfors, Sweden, 1992; Volume 2. [Google Scholar]
  48. Brandrud, T.E.; Lindström, H.; Marklund, H.; Melot, J.; Muskos, S. Cortinarius, Flora Photographica; Cortinarius HB: Matfors, Sweden, 1995; Volume 3. [Google Scholar]
  49. Brandrud, T.E.; Lindström, H.; Marklund, H.; Melot, J.; Muskos, S. Cortinarius, Flora Photographica; Cortinarius HB: Matfors, Sweden, 1998; Volume 4. [Google Scholar]
  50. Brandrud, T.E. Cortinarius subgenus Phlegmacium section Phlegmacium in Europe: Descriptive part. Edinb. J. Bot. 1996, 53, 331–400. [Google Scholar] [CrossRef]
  51. Brandrud, T.E. Cortinarius subgenus Phlegmacium section Phlegmacioides (=Variecolores) in Europe. Edinb. J. Bot. 1998, 55, 65–156. [Google Scholar] [CrossRef]
  52. Brandrud, T.E.; Dima, B. Cortinarius subgenus Phlegmacium section Multiformes in Europe. J. Des. J.E.C. 2014, 16, 162–199. [Google Scholar]
  53. Brandrud, T.E.; Scmidt-Stohn, G.; Liimatainen, K.; Niskanen, T.; Frøslev, T.G.; Soop, K.; Bojantchev, D.; Kytövuori, I.; Jeppesen, T.S.; Bellù, F.; et al. Cortinarius sect. Riederi: Taxonomy and phylogeny of the new section with European and North American distribution. Mycol. Prog. 2018, 17, 1323–1354. [Google Scholar] [CrossRef]
  54. Brandrud, T.E.; Frøslev, T.G.; Dima, B. Rare, whitish–pale ochre Cortinarius species of sect. Calochroi from calcareous Tilia forests in South East Norway. Agarica 2018, 38, 3–20. [Google Scholar]
  55. Liimatainen, K. Towards a Better Understanding of the Systematics and Diversity of Cortinarius, with an Emphasis on Species Growing in Boreal and Temperate Zones of Europe and North America. Ph.D. Thesis, Faculty of Biological and Environmental Sciences of the University of Helsinki, Helsinki, Finland, 2013. [Google Scholar]
  56. Liimatainen, K.; Niskanen, T.; Dima, B.; Ammirati, J.F.; Kirk, P.M.; Kytövuori, I. Mission impossible completed: Unlocking the nomenclature of the largest and most complicated subgenus of Cortinarius, Telamonia. Fungal Divers. 2020, 104, 291–331. [Google Scholar] [CrossRef]
  57. Niskanen, T.; Liimatainen, K.; Mahiques, R.; Ballarà, J.; Kytövuori, I. Cortinarius badiolaevis, a new conifer-associated, darkening species in the subgenus Telamonia (Basidiomycota, Agaricales). Mycol. Prog. 2011, 10, 101–105. [Google Scholar] [CrossRef]
  58. Niskanen, T.; Kytövuori, I.; Liimatainen, K. Cortinarius sect. Armillati in northern Europe. Mycologia 2011, 103, 1080–1101. [Google Scholar] [CrossRef]
  59. Niskanen, T.; Kytövuori, I.; Liimatainen, K.; Lindström, H. The species of Cortinarius, section Bovini, associated with conifers in northern Europe. Mycologia 2013, 105, 977–993. [Google Scholar] [CrossRef]
  60. Niskanen, T.; Laine, S.; Liimatainen, K.; Kytövuori, I. Cortinarius sanguineus and equally red species in Europe with an emphasis on Northern European material. Mycologia 2012, 104, 242–253. [Google Scholar] [CrossRef]
  61. Niskanen, T.; Liimatainen, K.; Kytövuori, I. Two new species in Cortinarius subgenus Telamonia, Cortinarius brunneifolius and C. leiocastaneus, from Fennoscandia (Basidiomycota, Agaricales). Mycol. Prog. 2008, 7, 239–247. [Google Scholar] [CrossRef]
  62. Niskanen, T.; Liimatainen, K.; Kytövuori, I.; Ammirati, J.F. New Cortinarius species from conifer-dominated forests of North America and Europe. Botany 2012, 90, 743–754. [Google Scholar] [CrossRef]
  63. Niskanen, T.; Liimatainen, K.; Kytövuori, I.; Lindström, H.; Dentinger, B.T.M.; Ammirati, J.F. Cortinarius subgenus Callistei in North America and Europe-type studies, diversity, and distribution of species. Mycologia 2016, 108, 1018–1027. [Google Scholar] [CrossRef]
  64. Dima, B.; Liimatainen, K.; Niskanen, T.; Kytövuori, I.; Bojantchev, D. Two new species of Cortinarius, subgenus Telamonia, sections Colymbadini and Uracei, from Europe. Mycol. Prog. 2014, 13, 867–879. [Google Scholar] [CrossRef]
  65. Dima, B.; Lindström, H.; Liimatainen, K.; Olson, Å.; Soop, K.; Kytövuori, I.; Dahlberg, A.; Niskanen, T. Typification of Friesian names in Cortinarius sections Anomali, Spilomei, and Bolares, and description of two new species from northern Europe. Mycol. Prog. 2016, 15, 903–919. [Google Scholar] [CrossRef]
  66. Frøslev, T.G.; Jeppesen, T.S.; Dima, B. Cortinarius koldingensis—A new species of Cortinarius, subgenus Phlegmacium related to Cortinarius sulfurinus. Mycol. Prog. 2015, 14, 73. [Google Scholar] [CrossRef]
  67. Frøslev, T.G.; Jeppesen, T.S.; Læssøe, T. Seven new calochroid and fulvoid species of Cortinarius. Mycol. Res. 2006, 110, 1046–1058. [Google Scholar] [CrossRef]
  68. Frøslev, T.G.; Jeppesen, T.S.; Læssøe, T.; Kjøller, R. Molecular phylogenetics and delimitation of species in Cortinarius section Calochroi (Basidiomycota, Agaricales) in Europe. Mol. Phylogenetics Evol. 2007, 44, 217–227. [Google Scholar] [CrossRef] [PubMed]
  69. Garnica, S.; Weiß, M.; Oertel, B.; Oberwinkler, F. Phylogenetic relationships of European Phlegmacium species (Cortinarius, Agaricales). Mycologia 2003, 95, 1155–1170. [Google Scholar] [CrossRef] [PubMed]
  70. Garnica, S.; Weiß, M.; Oertel, B.; Oberwinkler, F. A framework for a phylogenetic classification in the genus Cortinarius (Basidiomycota, Agaricales) derived from morphological and molecular data. Can. J. Bot. 2005, 83, 1457–1477. [Google Scholar] [CrossRef]
  71. Bidaud, A.; Loizides, M.; Armada, F.; Reyes, J.D.D.; Carteret, X.; Corriol, G.; Consiglio, G.; Reumaux, P.; Bellanger, J.-M. Cortinarius subgenus Leprocybe in Europe: Expanded Sanger and Next Generation Sequencing unveil unexpected diversity in the Mediterranean. Persoonia 2021, 46, 188–215. [Google Scholar] [CrossRef]
  72. Garrido-Benavent, I.; Ballara, J.; Mahiques, R. New insights into subg. Phlegmacium sect. Calochroi: Adding morphological and molecular data from Mediterranean representatives, with special regard to Cortinarius prasinus, C. natalis and C. murellensis species complexes. J. Des. J.E.C. 2015, 17, 38–78. [Google Scholar]
  73. Suárez-Santiago, V.N.; Ortega, A.; Peintner, U.; López-Flores, I. Study on Cortinarius subgenus Telamonia section Hydrocybe in Europe, with especial emphasis on Mediterranean taxa. Mycol. Res. 2009, 113, 1070–1090. [Google Scholar] [CrossRef]
  74. Garnica, S.; Schön, M.E.; Abarenkov, K.; Riess, K.; Liimatainen, K.; Niskanen, T.; Dima, B.; Soop, K.; Frøslev, T.G.; Jeppesen, T.S.; et al. Determining threshold values for barcoding fungi: Lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol. Ecol. 2016, 92, fiw045. [Google Scholar] [CrossRef]
  75. Soop, K.; Dima, B.; Cooper, J.A.; Park, D.; Oertel, B. A phylogenetic approach to a global supraspecific taxonomy of Cortinarius (Agaricales) with an emphasis on the southern mycota. Persoonia 2019, 42, 261–290. [Google Scholar] [CrossRef]
  76. Liimatainen, K.; Kim, J.T.; Pokorny, L.; Kirk, P.M.; Dentinger, B.; Niskanen, T. Taming the beast: A revised classification of Cortinariaceae based on genomic data. Fungal Divers. 2022, 112, 89–170. [Google Scholar] [CrossRef]
  77. Bontea, V. Ciuperci Parazite și Saprofite din România; Academia Republicii Socialiste Romania: Bucharest, Romania, 1985; Volume 1. [Google Scholar]
  78. Bontea, V. Ciuperci Parazite și Saprofite din România; Academia Republicii Socialiste Romania: Bucharest, Romania, 1986. [Google Scholar]
  79. Bellù, F.; Zsigmond, G.Y.; Szász, B. Liste der Cortinarienfunde während den Journées européennes du Cortinaire in Bálványos. J. Des. J. E. C. 2018, 21, 80–81. [Google Scholar]
  80. Bîrsan, C.; Tănase, C.; Mardari, C. Variation of Macromycetes Species Composition in Two Forest Habitats From Giumalău Massif (Eastern Carpathians, Romania). J. Plant Dev. 2013, 20, 79–103. [Google Scholar]
  81. Bucșa, L. Macromycetes of the Breite Nature Reserve of ancient oaks (Transylvania, Romania). Transylv. Rev. Sys-Temat. Ecol. Res. 2007, 4, 33–42. [Google Scholar]
  82. Chinan, V.C.; Mânzu, C. Macrofungal diversity of a peat bog from Dorna Depression (eastern Carpathians, Romania). An. Științifice Ale Univ. Al. I. Cuza Iași S. II. A Biol. Veg. 2014, 60, 43–52. [Google Scholar]
  83. Chinan, V.C.; Tanase, C. Coenological observations referring to macromycetes from peat bogs situated in eastern carpathians (Romania). In Proceedings of the 8th International Scientific Conference on Modern Management of Mine Producing, Geology and Environmental Protection, Albena, Bulgaria, 16–20 June 2008. [Google Scholar]
  84. Ciortan, I. Contributions to the mycobiota knowledge of spruce forests from Obârşia Lotrului health resort (Romania). For. Biotechnol. 2013, 17, 16–21. [Google Scholar]
  85. Ciortan, I. The taxonomic diversity of the macromycetes from Căpăţânii mountains (Romania). For. Biotechnol. 2013, 17, 41–50. [Google Scholar]
  86. Elekes, C.C.; Busuioc, G. The mycoremediation of metals polluted soils using wild growing species of mushrooms. In Proceedings of the International Conference on Engineering Education and International Conference on Education and Educational Technologies-Proceedings, Changzhou, China, 18–19 December 2010. [Google Scholar]
  87. Elekes, C.C.; Busuioc, G.; Dumitriu, I. Bioaccumulation and Translocation Factors of Some Wild Growing Mushrooms Species of Cortinarius Genus. Adv. Biomed. Res. 2010, 61, 464–468. [Google Scholar]
  88. Oross, K.; Benedek, L.; Pál-Fám, F. Macrofungi from Apuseni Mountains, Transylvania, Romania. Acta Biol. Plant. Agriensis 2017, 5, 38. [Google Scholar] [CrossRef]
  89. Pál-Fám, F. Adatok a Baróti-hegység nagygombáinak ismeretéhez. In Acta: A Csíki Székely Múzeum és a Székely Nemzeti Múzeum évkönyve; Székely Nemzeti Múzeum: Sfântu Gheorghe, Romania, 1997; pp. 61–68. [Google Scholar]
  90. Garnica, S.; Spahn, P.; Oertel, B.; Ammirati, J.; Oberwinkler, F. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions. BMC Evol. Biol. 2011, 11, 213. [Google Scholar] [CrossRef]
  91. Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
  92. Nilsson, R.H.; Ryberg, M.; Abarenkov, K.; Sjökvist, E.; Kristiansson, E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett. 2009, 296, 97–101. [Google Scholar] [CrossRef] [PubMed]
  93. Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 2010, 10, 189. [Google Scholar] [CrossRef]
  94. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc: Cambridge, UK, 1990; pp. 315–322. [Google Scholar] [CrossRef]
  95. Kern, Z.; Popa, I. Climate–growth relationship of tree species from a mixed stand of Apuseni Mts., Romania. Dendrochronologia 2007, 24, 109–115. [Google Scholar] [CrossRef]
  96. Buza, M.; Dimen, L.; Pop, G.; Turnock, D. Environmental protection in the Apuseni Mountains: The role of Environmental Non-Governmental Organisation (ENGOs). GeoJournal 2001, 54, 631–653. [Google Scholar] [CrossRef]
  97. Pop, A.A.; Pop, V.V.; Csuzdi, C.S. Significance of the Apuseni Mountains (the Carpathians) in the origin and distribution of Central European earthworm fauna (Oligochaeta: Lumbricidae). Zool. Middle East Suppl. 2010, 2, 89–110. [Google Scholar] [CrossRef]
  98. Leonard, L.M. Melzer’s, Lugol’s or Iodine for Identification of white-spored Agaricales? McIlvainea 2006, 16, 43–51. [Google Scholar]
  99. Bonfield, J.; Beal, K.; Jordan, M.; Cheng, Y.; Staden, R. The Staden Package Manual; Medical Research Council, Laboratory of Molecular Biology: Cambridge, UK, 2002; pp. 1–514. [Google Scholar]
  100. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
  101. Hall, A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
  102. Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
  103. Borchsenius, F. FastGap. Department of Biosciences, Aarhus University, Denmark. 2009. Available online: http://www.aubot.dk/FastGap_home.htm (accessed on 13 March 2023).
  104. Gouy, M.; Guindon, S.; Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [PubMed]
  105. Silvestro, D.; Michalak, I. RaxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
  106. Ronquist, F.; Teslenko, M.; Van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
  107. Rambault, A. FigTree v1.4.2, A Graphical Viewer of Phylogenetic Trees. 2014. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 13 March 2023).
  108. Kumar, S.; Stecher, G.; Tamura. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
  109. Brandrud, T.E.; Bendiksen, E.; Dima, B. Some new and little known telamonioid Cortinarius species from Norway. Agarica 2015, 36, 11–42. [Google Scholar]
  110. Brandrud, T.E.; Bendiksen, E.; Jordal, J.B.; Weholt, Ø.; Eidissen, S.E.; Lorås, J.; Dima, B.; Noordeloos, M.E. Entoloma species of the rhodopolioid clade (subgenus Entoloma; Tricholomatinae, Basidiomycota) in Norway. Agarica 2018, 38, 21–46. [Google Scholar]
  111. Brandrud, T.E.; Bendiksen, E.; Jordal, J.B.; Weholt, Ø.; Dima, B.; Morozova, O.; Noordeloos, M.E. On some Entoloma species (Tricholomatinae, Basidiomycota) little known or new to Norway. Agarica 2019, 39, 31–52. [Google Scholar]
  112. von Bonsdorff, T.; Niskanen, T.; Liimatainen, K.; Kytövuori, I.; Huhtinen, S.; Vauras, J.; Höijer, P.; Kekki, T.; Lahti, M.; Puolasmaa, A.; et al. New national and regional biological records for Finland 8. Contributions to agaricoid, gastroid and ascomycetoid taxa of fungi 5. Memo. Soc. Pro Fauna Et Flora Fenn. 2016, 92, 120–128. Available online: http://ojs.tsv.fi/index.php/msff/article/view/60364/21223 (accessed on 13 March 2023).
  113. Noordeloos, M.E.; Nuytinck, J.; Dima, B. Some new results of the ITS barcoding project—About Boletales, Paxillus and Entoloma. Coolia 2019, 62, 127–140. [Google Scholar]
  114. Available online: https://artsdatabanken.no/ (accessed on 2 April 2023).
  115. Dentchev, C.M.; Assyov, B. Checklist of the larger basidiomycetes in Bulgaria. Mycotaxon 2010, 111, 279–282. [Google Scholar] [CrossRef]
  116. Rimóczi, I. Gefährdete Cortinariaceae-Taxa in Ungarn. J. Des. J. E. C. 1998, 16–27. [Google Scholar]
  117. Eliade, E. Conspectul Macromicetelor din România. Acta Bot. Horti București 1965, 5, 185–324. [Google Scholar]
  118. Chifu, T.; Vițălariu, G. Contribuții la cunoașterea macromicetelor din bazinul Crasnei. Stud. Și Com. Bacău 1971, 637–640. [Google Scholar]
  119. Pop, A.; Tănase, C.; Negrean, G.; Buscă, L.; Toma, D.; Robu, T. Contribuţii la studiul macromicetelor din Masivul Rarău. Bul. Grădinii Bot. Iași 1999, 8, 37–44. [Google Scholar]
  120. Todorescu, V. Macromicetele din Munții Ciucaș. An. Univ. București Biol. Veg. 1972, 21, 159–166. [Google Scholar]
  121. Popovici, A. Contribution à la flore micologique de la Romanie. Ann. Sci. Univ. De Jassy 1903, 2, 31–44. [Google Scholar]
  122. Czihac, J.; Szabó, J. Heil- und Nahrungsmittel, Farbstoffe, Nutz-und Hausgeräthe welche Ost-Romänien, Moldauer und Valachen aus dem Pflanzenreiche gewinnen. Flora Oder Allg. Bot. Ztg. 1975, 21, 308–315. [Google Scholar]
  123. Tănase, C.; Pop, A. Red List of Romanian Macrofungi Species. In Bioplatform-Romanian National Platform for Biodiversity; Editura Academiei Române: Bucharest, Romania, 2001; pp. 101–107. [Google Scholar]
  124. László, K. Noi contribuții la cunoașterea macromicetelor din R.S. România. Muz. Sf. Gheorghe. Aluta 1972, 41–60. [Google Scholar]
  125. Tănase, C.; Chifu, T. Biodiversitatea speciilor de macromicete în păduri din Bazinul Superior al Râului Jijia. Bul. Grădinii Bot. Iaşi 2000, 9, 79–82. [Google Scholar]
  126. Sălăgeanu, A. Macromicete din Grădina Botanică a Universității din Cluj. In Contribuții Botanice; Universitatea “Babeș-Bolyai”: Cluj, Romania, 1966; pp. 95–108. [Google Scholar]
  127. Lupoi, A. Materiale pentru flora micologică a Munților Lăpuş. In Contribuții Botanice; Universitatea “Babeș-Bolyai”: Cluj, Romania, 1965; pp. 71–74. [Google Scholar]
  128. Bohlin, A.; Senn-Irlet, B. (Eds.) Secretary Newsletter; European Council for the Conservation of Fungi: Brussels, Belgium, 13 December 2003; Available online: http://www.eccf.eu/newsletter13.pdf (accessed on 13 March 2023).
  129. Chinan, V. Macrofungi from “Tinovul de la Româneşti” peat bog (Dornelor Depression, Romania). AAB Bioflux 2010, 2, 65–70. [Google Scholar]
Figure 1. Basidiomata of some Cortinarius s.l. species new to Romania: (A,B) C. catharinae C089 (sect. Calochroi), (C) C. daulnoyae C298 (sect. Phlegmacioides), (D) C. fulminoides C334 (sect. Aureocistophili), (E) C. hadrocroceus C140 (sect. Dermocybe), (F) C. lacustris C387 (sect. Hinnulei), (G,H) C. masseei C388 (sect. Obtusi), (I) C. subdecolorans C229 (singleton), (J) C. subfoetens C333 (sect. Glaucopodes), Photos. (A,C,E,F,I,J) E. Szabó; (B,D) A. Dénes, (G,H) K. Babos and K. Fehér.
Figure 1. Basidiomata of some Cortinarius s.l. species new to Romania: (A,B) C. catharinae C089 (sect. Calochroi), (C) C. daulnoyae C298 (sect. Phlegmacioides), (D) C. fulminoides C334 (sect. Aureocistophili), (E) C. hadrocroceus C140 (sect. Dermocybe), (F) C. lacustris C387 (sect. Hinnulei), (G,H) C. masseei C388 (sect. Obtusi), (I) C. subdecolorans C229 (singleton), (J) C. subfoetens C333 (sect. Glaucopodes), Photos. (A,C,E,F,I,J) E. Szabó; (B,D) A. Dénes, (G,H) K. Babos and K. Fehér.
Diversity 15 00553 g001
Figure 2. Basidiospores of some Cortinarius s.l. species new to Romania: (A) C. catharinae C089 (sect. Calochroi), (B) C. daulnoyae C298 (sect. Phlegmacioides), (C) C. fulminoides C334 (sect. Aureocistophili), (D) C. subdecolorans C229 (singleton), (E) C. subfoetens C333 (sect. Glaucopodes), (F) C. hadrocroceus C140 (sect. Dermocybe), (G) C. masseei C388 (sect. Obtusi), (H) C. lacustris C387 (sect. Hinnulei). Scale bar: 10 µm. Photos: E. Szabó.
Figure 2. Basidiospores of some Cortinarius s.l. species new to Romania: (A) C. catharinae C089 (sect. Calochroi), (B) C. daulnoyae C298 (sect. Phlegmacioides), (C) C. fulminoides C334 (sect. Aureocistophili), (D) C. subdecolorans C229 (singleton), (E) C. subfoetens C333 (sect. Glaucopodes), (F) C. hadrocroceus C140 (sect. Dermocybe), (G) C. masseei C388 (sect. Obtusi), (H) C. lacustris C387 (sect. Hinnulei). Scale bar: 10 µm. Photos: E. Szabó.
Diversity 15 00553 g002
Figure 3. Maximum likelihood phylogenetic tree of the dermocyboid, leprocyboid, rozitoid, telamonioid, and myxacioid sections/clades of the genus Cortinarius s.l. based on nrDNA ITS sequence analyses with gap coding. Sequences produced in this study are in blue and boldface and labelled with their voucher numbers. Sequences from public repositories are marked with their GenBank/UNITE accession numbers. ML bootstrap values of >70% as well as Bayesian posterior probabilities of >0.9 are placed above or below branches. The scale bar indicates 0.03 expected change per site per branch.
Figure 3. Maximum likelihood phylogenetic tree of the dermocyboid, leprocyboid, rozitoid, telamonioid, and myxacioid sections/clades of the genus Cortinarius s.l. based on nrDNA ITS sequence analyses with gap coding. Sequences produced in this study are in blue and boldface and labelled with their voucher numbers. Sequences from public repositories are marked with their GenBank/UNITE accession numbers. ML bootstrap values of >70% as well as Bayesian posterior probabilities of >0.9 are placed above or below branches. The scale bar indicates 0.03 expected change per site per branch.
Diversity 15 00553 g003aDiversity 15 00553 g003b
Figure 4. Maximum likelihood phylogenetic tree of the phlegmacioid sections/clades of the genus Cortinarius s.l. based on nrDNA ITS sequence analyses with gap coding. Sequences produced in this study are in blue and boldface and labelled with their voucher numbers. Sequences from public repositories are marked with their GenBank/UNITE accession numbers. ML bootstrap values of >70% as well as Bayesian posterior probabilities of >0.9 are placed above or below branches. The scale bar indicates 0.03 expected change per site per branch.
Figure 4. Maximum likelihood phylogenetic tree of the phlegmacioid sections/clades of the genus Cortinarius s.l. based on nrDNA ITS sequence analyses with gap coding. Sequences produced in this study are in blue and boldface and labelled with their voucher numbers. Sequences from public repositories are marked with their GenBank/UNITE accession numbers. ML bootstrap values of >70% as well as Bayesian posterior probabilities of >0.9 are placed above or below branches. The scale bar indicates 0.03 expected change per site per branch.
Diversity 15 00553 g004aDiversity 15 00553 g004b
Table 1. Metadata of Cortinarius samples studied and identified during this work. All sequences are newly generated.
Table 1. Metadata of Cortinarius samples studied and identified during this work. All sequences are newly generated.
SpeciesDNA-CodesCollection DateLocationLatitudeLongitudeGenBank acc. no.
C. alboviolaceusC21304.10.2020Sovata46.66200325.215961OP099671
C. anfractoidesC36107.11.2020Făgetul Clujului46.699384823.5488839OP099771
C. anfractoidesC36307.11.2020Făgetul Clujului46.699384823.5488839OP099773
C. anomalusC14530.08.2020Liban46.55261125.525509OP099625
C. anomalusC16010.10.2020Statiunea Stana de Vale46.69764722.626014OP099635
C. anomalusC32407.11.2020Cheile Someșului Cald46.6707105822.81810123OP099745
C. anomalusC159 *10.10.2020Statiunea Stana de Vale46.69764722.626014OP132853
C. aureopulverulentusC33807.11.2020Cheile Someșului Cald46.6292889422.7806518OP099756
C. balteatocumatilisC29001.11.2020Chinteni46.89515423.520302OP099723
C. balteatocumatilisC29101.11.2020Chinteni46.89515423.520302OP099724
C. balteatusC10310.07.2020Zetea46.473337325.3454161OP099607
C. bergeroniiC22324.10.2020Cheile Vârghişului46.18319125.590322OP099680
C. brunneusC246A24.10.2020Statiunea Muntele Baisoara46.5062709823.26640838OP099695
C. bulliardiiC35907.11.2020Făgetul Clujului46.699384823.5488839OP099769
C. caesiophylloidesC00927.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099571
C. calochrousC22124.10.2020Cheile Vârghişului46.20505425.558222OP099678
C. calochrousC23324.10.2020Cheile Vârghişului46.20320725.559007OP099685
C. camphoratusC09719.08.2017Statiunea Muntele Baisoara46.52013923.271811OP099603
C. camphoratusC15310.10.2020Statiunea Stana de Vale46.69764722.626014OP099630
C. camphoratusC20204.10.2020Chiheru de Jos46.67942825.035528OP099661
C. caninusC04022.09.2018Valea Ierii46.52423923.275145OP099579
C. caninusC14630.08.2020Liban46.55210325.524967OP099626
C. caninusC14903.09.2020Mărtiniș46.264725.355OP099627
C. caninusC18904.10.2020Chiheru de Jos46.68690325.040178OP099648
C. caninusC19204.10.2020Pădurea Buneților46.08161725.034936OP099651
C. caninusC19304.10.2020Pădurea Buneților46.08161725.034936OP099652
C. caninusC19404.10.2020Pădurea Buneților46.08161725.034936OP099653
C. caninusC19904.10.2020Chiheru de Jos46.67942825.035528OP099658
C. caninusC20004.10.2020Chiheru de Jos46.67942825.035528OP099659
C. caninusC20604.10.2020Chiheru de Jos46.68169725.035186OP099665
C. caninusC20704.10.2020Chiheru de Jos46.68169725.035186OP099666
C. caninusC25501.11.2020Harghita46.53850625.612982OP099701
C. caperatusC07413.10.2019Statiunea Muntele Baisoara46.52237523.273463OP099594
C. caperatusC09219.08.2017Statiunea Muntele Baisoara46.52013923.271811OP099598
C. caperatusC09326.08.2017Statiunea Muntele Baisoara46.52013923.271811OP099599
C. caperatusC12028.07.2020Cheile Somesului Cald46.62686222.788439OP099617
C. caperatusC143 *08.08.2020Statiunea Muntele Baisoara46.5326252723.28001233OP132852
C. catharinaeC08902.12.2019Făgetul Clujului46.73513323.539162OP099596
C. cinereobrunneolusC34307.11.2020Făgetul Clujului46.699384823.5488839OP099759
C. cinnamomeusC10510.07.2020Zetea46.473337325.34546OP099608
C. claricolorC09426.08.2017Statiunea Muntele Baisoara46.52013923.271811OP099600
C. collinitusC00327.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099565
C. collinitusC01127.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099573
C. collinitusC04522.09.2018Valea Ierii46.52557123.274678OP099580
C. collinitusC04822.09.2018Valea Ierii46.52445623.274586OP099583
C. collocandoidesC34907.11.2020Făgetul Clujului46.699384823.5488839OP099760
C. colymbadinusC11423.06.2020Liban46.55398325.520218OP099613
C. corrosusC26301.11.2020Ghimes46.52827726.033167OP099704
C. corrosusC27301.11.2020Ghimes46.52827726.033167OP099710
C. croceusC108 *23.06.2020Liban46.55398325.520218OP132850
C. croceusC11523.06.2020Liban46.55398325.520218OP099614
C. croceusC11623.06.2020Liban46.55398325.520218OP099615
C. croceusC12428.07.2020Cheile Somesului Cald46.634200422.7476044OP099618
C. daulnoyaeC17518.10.2020Făgetul Clujului46.73830623.539194OP099639
C. daulnoyaeC17618.10.2020Făgetul Clujului46.73830623.539194OP099640
C. daulnoyaeC28601.11.2020Chinteni46.89515423.520302OP099720
C. daulnoyaeC298 *01.11.2020Făgetul Clujului46.73255223.543583OP142445
C. daulnoyaeC30701.11.2020Făgetul Clujului46.72985723.254839OP099735
C. daulnoyaeC31001.11.2020Făgetul Clujului46.73469623.540594OP099737
C. daulnoyaeC36007.11.2020Făgetul Clujului46.699384823.5488839OP099770
C. delibutusC25301.11.2020Harghita46.53850625.612982OP099699
C. delibutusC25401.11.2020Harghita46.53850625.612982OP099700
C. aff. delibutusC11023.06.2020Liban46.55398325.520218OP099612
C. elatiorC35207.11.2020Făgetul Clujului46.699384823.5488839OP099762
C. elegantiorC32207.11.2020Cheile Someșului Cald46.6707105822.81810123OP099743
C. elegantissimusC24124.10.2020Cheile Vârghişului46.20174325.560039OP099690
C. eliaeC29301.11.2020Chinteni46.89515423.520302OP099725
C. eliaeC29401.11.2020Chinteni46.89515423.520302OP099726
C. eliaeC29501.11.2020Chinteni46.89515423.520302OP099727
C. fraudulosusC25701.11.2020Harghita46.53850625.612982OP099702
C. fulminoidesC33407.11.2020Cheile Someșului Cald46.6436904422.7320642OP099753
C. galluraeC37921.10.2020Bătarci48.01405323.146755OP099780
C. geniculatusC35707.11.2020Făgetul Clujului46.699384823.5488839OP099767
C. gentilisC05122.09.2018Valea Ierii46.52488823.274323OP099585
C. glaucopusC01227.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099574
C. glaucopusC24802.11.2020Mănăstireni46.79211823.153491OP099697
C. glaucopusC32807.11.2020Cheile Someșului Cald46.6437785322.73244046OP099748
C. glaucopusC32907.11.2020Cheile Someșului Cald46.6437785322.73244046OP099749
C. glaucopusC33207.11.2020Cheile Someșului Cald46.6436904422.7320642OP099751
C. glaucopusC33507.11.2020Cheile Someșului Cald46.6442099722.72738871OP099754
C. aff. glaucopusC32607.11.2020Cheile Someșului Cald46.631098422.76807258OP099746
C. aff. glaucopusC33107.11.2020Cheile Someșului Cald46.6436904422.7320642OP099750
C. aff. glaucopusC341 *07.11.2020Cheile Someșului Cald46.6406098622.81455206OP132857
C. hadrocroceusC10610.07.2020Zetea46.473337325.34546OP099609
C. hadrocroceusC14008.08.2020Statiunea Muntele Baisoara46.5109252723.27111959OP099621
C. hillieriC17118.10.2020Făgetul Clujului46.73830623.539194OP099637
C. hinnuleusC37721.10.2020Bătarci48.01405323.146755OP099779
C. holoxanthusC04622.09.2018Valea Ierii46.52445623.274586OP099581
C. holoxanthusC05222.09.2018Valea Ierii46.52488823.274323OP099586
C. holoxanthusC09519.08.2017Statiunea Muntele Baisoara46.52013923.271811OP099601
C. huronensisC01615.08.2018Statiunea Muntele Baisoara46.538223.3071099OP099575
C. huronensisC02115.08.2018Statiunea Muntele Baisoara46.53725323.305079OP099578
C. huronensisC15103.09.2020Mărtiniș46.264725.355OP099629
C. hydrotelamonioidesC20504.10.2020Chiheru de Jos46.67942825.035528OP099664
C. incognitusC00427.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099566
C. lacustrisC38721.10.2020Bătarci48.01405323.146755OP099783
C. largusC23224.10.2020Cheile Vârghişului46.19980425.583554OP099684
C. largusC24224.10.2020Cheile Vârghişului46.63034225.835442OP099691
C. largusC385 *21.10.2020Bătarci48.01405323.146755OP132858
C. leproleptopusC35607.11.2020Făgetul Clujului46.699384823.5488839OP099766
C. lilacinovelatusC30501.11.2020Făgetul Clujului46.72973423.548487OP099734
C. luridusC39021.10.2020Bătarci48.01405323.146755OP099785
C. luridusC123 *28.07.2020Cheile Somesului Cald46.64364822.7281299OP132851
C. luridusC289 *01.11.2020Chinteni46.89515423.520302OP132856
C. masseeiC38821.10.2020Bătarci48.01405323.146755OP099784
C. aff. magicusC28501.11.2020Chinteni46.89515423.520302OP099719
C. aff. magicusC30301.11.2020Făgetul Clujului46.72959923.548782OP099732
C. multiformisC00127.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099564
C. multiformisC00827.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099570
C. multiformisC13808.08.2020Statiunea Muntele Baisoara46.5062709823.26640838OP099619
C. multiformisC14408.08.2020Statiunea Muntele Baisoara46.5035837223.264886235OP099624
C. multiformisC18104.10.2020Sovata46.69975625.173806OP099642
C. multiformisC18404.10.2020Sovata46.69975625.173806OP099645
C. multiformisC09619.08.2017Statiunea Muntele Baisoara46.52013923.271811OP099602
C. multiformisC00627.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099568
C. napusC21404.10.2020Sovata46.66200325.215961OP099672
C. neofurvolaesusC04722.09.2018Valea Ierii46.52445623.274586OP099582
C. neofurvolaesusC04922.09.2018Valea Ierii46.52445623.274586OP099584
C. ochraceopallescensC05522.09.2018Valea Ierii46.52407623.274521OP099587
C. ochraceopallescensC05618.11.2018Făgetul Clujului46.72061223.5606OP099588
C. ochraceopallescensC28301.11.2020Făgetul Clujului46.71731723.536817OP099717
C. odoratusC28401.11.2020Borsa46.95179723.60519OP099718
C. odoratusC29901.11.2020Făgetul Clujului46.73458323.543577OP099730
C. odoratusC30401.11.2020Făgetul Clujului46.72974323.54856OP099733
C. olearioidesC35407.11.2020Făgetul Clujului46.699384823.5488839OP099764
C. olearioidesC35507.11.2020Făgetul Clujului46.699384823.5488839OP099765
C. olidoamarusC28801.11.2020Chinteni46.89515423.520302OP099722
C. olidoamarusC29601.11.2020Chinteni46.89515423.520302OP099728
C. olidoamarusC38121.10.2020Bătarci48.01405323.146755OP099781
C. ominosusC18204.10.2020Sovata46.69975625.173806OP099643
C. pallidostriatusC31506.11.2020Cheile Someșului Cald46.6702338622.81820682OP099741
C. peleriniiC219 *24.10.2020Brăduț46.20163125.598088OP132854
C. persoonianusC17418.10.2020Făgetul Clujului46.73830623.539194OP099638
C. pilatiiC07013.10.2019Statiunea Muntele Baisoara46.677603523.4564326OP099591
C. pruinatusC39121.10.2020Bătarci48.01405323.146755OP099786
C. pseudodaulnoyaeC31101.11.2020Almașu46.86982223.146055OP099738
C. pseudodaulnoyaeC38621.10.2020Bătarci48.01405323.146755OP099782
C. pseudofervidusC14208.08.2020Statiunea Muntele Baisoara46.511375323.27106945OP099623
C. pseudofervidusC14108.08.2020Statiunea Muntele Baisoara46.5110100723.277106504OP099622
C. pseudonaevosusC00727.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099569
C. purpurascensC20804.10.2020Sovata46.66200325.215961OP099667
C. purpurascensC32707.11.2020Cheile Someșului Cald46.6311005922.76854548OP099747
C. purpurascensC36718.11.2020Romuli47.56076724.530413OP099775
C. purpurascensC37019.11.2020Parva47.4447324.64913OP099777
C. purpurascensC37120.11.2020Rebrișoara47.4488424.58896OP099778
C. radicosissimusC313A06.11.2020Cheile Someșului Cald46.6702338622.81820682OP099740
C. renidensC01915.08.2018Statiunea Muntele Baisoara46.53833823.305955OP099577
C. renidensC10923.06.2020Liban46.55398325.520218OP099611
C. renidensC11928.07.2020Cheile Somesului Cald46.62686222.788439OP099616
C. rubellusC09805.08.2017Ponok46.63822822.815111OP099604
C. rubricosusC28101.11.2020Făgetul Clujului46.71731723.536817OP099715
C. rubrophyllusC10210.07.2020Zetea46.5618225.3733821OP099606
C. rufoallutusC00527.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099567
C. saginusC15003.09.2020Mărtiniș46.264725.355OP099628
C. salorC29701.11.2020Rediu46.73372226.537746OP099729
C. saporatusC36919.11.2020Parva47.44011224.650527OP099776
C. scaurocaninusC22224.10.2020Cheile Vârghişului46.20399125.558544OP099679
C. scaurocaninusC23024.10.2020Cheile Vârghişului46.2032225.559007OP099683
C. scaurocaninusC23924.10.2020Cheile Vârghişului46.20505425.558222OP099688
C. scaurocaninusC24024.10.2020Cheile Vârghişului46.21555225.5473OP099689
C. semisanguineusC01027.07.2018Statiunea Muntele Baisoara46.538223.3071099OP099572
C. semivelatusC35007.11.2020Făgetul Clujului46.699384823.5488839OP099761
C. sodagnitusC28001.11.2020Făgetul Clujului46.71731723.536817OP099714
C. sodagnitusC28201.11.2020Făgetul Clujului46.71731723.536817OP099716
C. spadicellusC15410.10.2020Statiunea Stana de Vale46.69764722.626014OP099631
C. spadicellusC15510.10.2020Statiunea Stana de Vale46.69764722.626014OP099632
C. spadicellusC15710.10.2020Statiunea Stana de Vale46.69764722.626014OP099633
C. spadicellusC15810.10.2020Statiunea Stana de Vale46.69764722.626014OP099634
C. spadicellusC21104.10.2020Sovata46.66200325.215961OP099670
C. spilomeusC19604.10.2020Chiheru de Jos46.67223125.051561OP099655
C. subargyronotusC35807.11.2020Făgetul Clujului46.699384823.5488839OP099768
C. subdecoloransC22924.10.2020Cheile Vârghişului46.20594725.557701OP099682
C. subfoetensC33307.11.2020Cheile Someșului Cald46.6436904422.7320642OP099752
C. aff. sublilacinopesC30901.11.2020Făgetul Clujului46.73827523.537126OP099736
C. subparvannulatusC07113.10.2019Statiunea Muntele Baisoara46.677603523.4564326OP099592
C. subporphyropusC17810.10.2020Groșii Țibleșului47.5217424.15647OP099641
C. subpurpurascensC09130.11.2019Făgetul Clujului46.69808623.587791OP099597
C. subpurpurascensC19504.10.2020Chiheru de Jos46.67223125.051561OP099654
C. subpurpurascensC21619.10.2020Feleacu46.69545923.58806OP099674
C. subpurpurascensC21719.10.2020Feleacu46.69545923.58806OP099675
C. subpurpurascensC23724.10.2020Cheile Vârghişului46.19984225.583542OP099686
C. subtortusC01715.08.2018Statiunea Muntele Baisoara46.538223.3071099OP099610
C. subtortusC07513.10.2019Statiunea Muntele Baisoara46.52237523.273463OP099595
C. subtortusC09919.08.2017Statiunea Muntele Baisoara46.52013923.271811OP099605
C. subtortusC13908.08.2020Statiunea Muntele Baisoara46.5035837223.262648623OP099620
C. subtortusC24324.10.2020Statiunea Muntele Baisoara46.5062709823.26640838OP099692
C. subtortusC24524.10.2020Statiunea Muntele Baisoara46.5062709823.26640838OP099694
C. subtortusC24724.10.2020Statiunea Muntele Baisoara46.5062709823.26640838OP099696
C. subtortusC07313.10.2019Statiunea Muntele Baisoara46.52237523.273463OP099593
C. sulphurinusC31806.11.2020Cheile Someșului Cald46.6707105822.81810123OP099742
C. talimultiformisC18504.10.2020Sovata46.69975625.173806OP099646
C. talimultiformisC20104.10.2020Chiheru de Jos46.67942825.035528OP099660
C. talimultiformisC31206.11.2020Cheile Someșului Cald46.6702338622.81820682OP099739
C. talimultiformisC32307.11.2020Cheile Someșului Cald46.6707105822.81810123OP099744
C. testaceomicaceusC34207.11.2020Făgetul Clujului46.699384823.5488839OP099758
C. tirolianusC21824.10.2020Cheile Vârghişului46.20448625.558374OP099676
C. tirolianusC259 *01.11.2020Harghita46.53850625.612982OP132855
C. tirolianusC26801.11.2020Ghimes46.52827726.033167OP099707
C. tirolianusC26901.11.2020Ghimes46.52827726.033167OP099708
C. tirolianusC27601.11.2020Ghimes46.52827726.033167OP099712
C. tirolianusC27701.11.2020Ghimes46.52827726.033167OP099713
C. torvusC35307.11.2020Făgetul Clujului46.699384823.5488839OP099763
C. traganusC18304.10.2020Sovata46.69975625.173806OP099644
C. traganusC210A04.10.2020Sovata46.66200325.215961OP099669
C. traganusC24424.10.2020Statiunea Muntele Baisoara46.5062709823.26640838OP099693
C. trivialisC22024.10.2020Brăduț46.20163125.598088OP099677
C. trivialisC36607.11.2020Făgetul Clujului46.699384823.5488839OP099774
C. aff. trivialisC22524.10.2020Cheile Vârghişului46.20399125.5585445OP099681
C. aff. trivialisC36207.11.2020Făgetul Clujului46.699384823.5488839OP099772
C. turgidusC06404.10.2019Valea Bratcutei46.88625622.58647OP099590
C. turgidusC16319.10.2020Făgetul Clujului46.73830623.539194OP099636
C. turmalisC20304.10.2020Chiheru de Jos46.67942825.035528OP099662
C. turmalisC20904.10.2020Sovata46.66200325.215961OP099668
C. turmalisC21519.10.2020Feleacu46.69545923.58806OP099673
C. ultrodistortusC10710.07.2020Zetea46.473337325.34546OP099610
C. uraceonemoralisC23824.10.2020Cheile Vârghişului46.19905625.573537OP099687
C. variicolorC05706.09.2019Demsus45.562345622.700035OP099589
C. variicolorC18604.10.2020Chiheru de Jos46.68690325.040178OP099647
C. variicolorC19704.10.2020Chiheru de Jos46.67223125.051561OP099656
C. variicolorC19804.10.2020Chiheru de Jos46.67223125.051561OP099657
C. variicolorC20404.10.2020Chiheru de Jos46.67942825.035528OP099663
C. variusC27501.11.2020Ghimes46.52827726.033167OP099711
C. variusC33707.11.2020Cheile Someșului Cald46.6292889422.7806518OP099755
C. variusC34007.11.2020Cheile Someșului Cald46.6292889422.7806518OP099757
C. venetusC25101.11.2020Harghita46.53850625.612982OP099698
C. venetusC26001.11.2020Harghita46.53850625.612982OP099703
C. venetusC26501.11.2020Ghimes46.52827726.033167OP099705
C. venetusC26601.11.2020Ghimes46.52827726.033167OP099706
C. venetusC27101.11.2020Ghimes46.52827726.033167OP099709
C. aff. vibratilisC18804.10.2020Chiheru de Jos46.68690325.040178ON832643
C. violaceusC19004.10.2020Chiheru de Jos46.68690325.040178OP099649
C. violaceusC191A04.10.2020Pădurea Buneților46.08161725.034936OP099650
C. xanthochlorusC28701.11.2020Chinteni46.89515423.520302OP099721
C. xanthochlorusC30101.11.2020Făgetul Clujului46.72957623.548556OP099731
* Short sequences excluded from the phylogenetic analyses.
Table 2. Cortinarius species discovered new to Romania. Infrageneric classification, habitat types as well as basidiospore measurements and Q values are given for each species. BLf–broad-leaved forest; Cf–coniferous forest; Mf–mixed forest; P–pastures; TWS–transitional woodland–shrub; NG–natural grasslands.
Table 2. Cortinarius species discovered new to Romania. Infrageneric classification, habitat types as well as basidiospore measurements and Q values are given for each species. BLf–broad-leaved forest; Cf–coniferous forest; Mf–mixed forest; P–pastures; TWS–transitional woodland–shrub; NG–natural grasslands.
SpeciesSection/CladeHabitatNo. of Collected SamplesBasidiospores
Cortinarius anfractoides Rob. Henry and Trescol 1987InfractiBLf28.8–9.5 × 7.2–7.4 μm
Q = 1.2–1.3
Cortinarius aureopulverulentus M.M. Moser 1952CalochroiCf112.4–13.1 × 8.0–8.7 μm
Q = 1.5–1.6
Cortinarius balteatocumatilis Rob. Henry 1939PhlegmacioidesP28.4–9.2 × 5.2–5.9 μm
Q = 1.5–1.7
Cortinarius brunneus (Pers.) Fr. 1838BrunneiCf18.2–9.5 × 6.1–6.8 μm
Q = 1.2–1.5
Cortinarius caesiophylloides Kytöv., Liimat., Niskanen, Brandrud and Frøslev 2014MultiformesCf110.4–11.0 × 6.2–6.6 μm
Q = 1.57–1.73
Cortinarius catharinae Consiglio 1997CalochroiBLf19.7–10.5 × 5.8–6.3 μm
Q = 1.6–1.8
Cortinarius cinereobrunneolus Chevassut and Rob. Henry 1982UrbiciBLf17.7–8.4 × 5.0–5.2 μm
Q = 1.5–1.7
Cortinarius claricolor (Fr.) Fr. 1838ClaricoloresCf16.4–7.2 × 3.5–3.7 μm
Q = 1.8–1.9
Cortinarius colymbadinus Fr. 1838UraceiMf18.5–9.4 × 5.4–5.8 μm
Q = 1.5–1.7
Cortinarius corrosus Fr. 1838CalochroiCf112.5–14.1 × 7.5–7.9 μm
Q = 1.6–1.9
Cortinarius daulnoyae (Quél.) Sacc. 1910PhlegmacioidesCf712.4–13.2 × 7.3–7.7 μm
Q = 1.7–1.8
Cortinarius aff. delibutusDelibutiMf18.5–8.9 × 7.0–7.4 μm
Q = 1.2–1.3
Cortinarius eliae Bidaud, Moënne-Locc. and Reumaux 1996PhlegmacioidesP311.5–12.5 × 6.8–7.1 μm
Q = 1.7–1.8
Cortinarius fraudulosus Britzelm. 1885ArgutiCf115.9–16.6 × 8.6–9.0 μm
Q = 1.8–1.9
Cortinarius fulminoides (M.M. Moser) M.M. Moser 1967AureocistophiliMf19.4–10.2 × 5.9–6. 5 μm
Q = 1.5–1.6
Cortinarius gallurae D. Antonini, M. Antonini and Consiglio 2005/GalluraeBLf18.6–9.4 × 5.7–6.5 μm
Q = 1.4–1.6
Cortinarius geniculatus Bidaud 2014BoviniBLf110.7–12.0 × 6.4–6.7 μm
Q = 1.6–1.8
Cortinarius glaucopus aff.GlaucopodesCf28.5–9.3 × 5.4–5.7 μm
Q = 1.6–1.7
Cortinarius hadrocroceus Ammirati, Niskanen, Liimat. and Bojantchev 2014DermocybeCf27.3–7.8 × 4.3–4.7 μm
Q = 1.6–1.8
Cortinarius hillieri Rob. Henry 1938BoviniBLf110.7–11.8 × 6.1–6.7 μm
Q = 1.7–1.8
Cortinarius holoxanthus (M.M. Moser and I. Gruber) Nezdojm. 1980DermocybeNG39.3–9.9 × 4.8–5.2 μm
Q = 1.8–2.1
Cortinarius huronensis Ammirati and A.H. Sm. 1972DermocybeCf38.0–8.5 × 4.9–5.4 μm
Q = 1.47–1.65
Cortinarius hydrotelamonioides Rob. Henry 1970FirmioresBLf19.3–10.3 × 5.1–5.8 μm
Q = 1.7–1.9
Cortinarius incognitus Ammirati and A.H. Sm. 1972DermocybeCf17.4–8.0 × 5.2–5.4 μm
Q = 1.3–1.6
Cortinarius lacustris Moënne-Locc. and Reumaux 1997HinnuleiBLf19.6–11.1 × 5.9–6.6 μm
Q = 1.5–1.8
Cortinarius leproleptopus Chevassut and Rob. Henry 1988LeprocybeBLf17.9–8.5 × 6.8–7.3 μm
Q = 1.1–1.2
Cortinarius lilacinovelatus Reumaux and Ramm 2001CalochroiBLf111.1–11.7 × 6.1–6.5 μm
Q = 1.7–1.8
Cortinarius luridus Rob. Henry 1969HinnuleiBLf38.9–9.7 × 6.3–6.7 μm
Q = 1.4–1.5
Cortinarius masseei Bidaud, Moënne-Locc. and Reumaux 1993ObtusiBLf17.0–7.8 × 4.9–5.3 μm
Q = 1.4–1. 6
Cortinarius aff. magicusGlaucopodesCf27.6–8.0 × 5.0–5.3 μm
Q = 1.5–1.6
Cortinarius neofurvolaesus Kytöv., Niskanen, Liimat. and H. Lindstr. 2005BoviniNG28.5–9.5 × 5.1–5.9 μm
Q = 1.5–1.8
Cortinarius ochraceopallescens Moënne-Locc. and Reumaux 2001CalochroiBLf312.4–13.2 × 6.4–6.9 μm
Q = 1.8–2.0
Cortinarius odoratus (Joguet ex M.M. Moser) M.M. Moser 1967CalochroiBLf311.6–12.5 × 6.8–7.2 μm
Q = 1.7–1.8
Cortinarius olidoamarus A. Favre 1986GlaucopodesP38.4–9.2 × 5.2–5.9 μm
Q = 1.5–1.7
Cortinarius ominosus Bidaud 1994DermocybeTWS16.8–7.7 × 4.4–4.7 μm
Q = 1.5–1.6
Cortinarius pallidostriatus Rob. Henry 1968HydrocybeCf18.6–9.6 × 5.5–6.0 μm
Q = 1.5–1.7
Cortinarius pelerinii Bellanger, Carteret and Reumaux 2013AnomaliBLf18.8–9.4 × 6.3–7.0 μm
Q = 1.3–1.4
Cortinarius persoonianus Bidaud 2009InfractiBLf18.7–9.5 × 7.2–7.6 μm
Q = 1.2–1.3
Cortinarius pilatii Svrček 1968FlexipedesCf19.0–9.7 × 6.0–6.5 μm
Q = 1.4–1.6
Cortinarius pruinatus Bidaud, Moënne-Locc. and Reumaux 1993ObtusiBLf110.5–11.7 × 6.2–7.3 μm
Q = 1.5–1.7
Cortinarius pseudodaulnoyae Rob. Henry and Ramm 1991PhlegmacioidesBLf212.7–13.2 × 7.2–7.7 μm
Q = 1.7–1.8
Cortinarius pseudofervidus Niskanen, Liimat., Ammirati and Kytöv. 2014DermocybeNG26.9–7.6 × 4.3–4.9 μm
Q = 1.4–1.7
Cortinarius pseudonaevosus Rob. Henry 1957PhlegmacioidesCf112.9–14.4 × 7.5–8.3 μm
Q = 1.7–1.8
Cortinarius radicosissimus Moënne-Locc. 1997HinnuleiCf18.6–9.4 × 6.8–8.0 μm
Q = 1.2–1.3
Cortinarius renidens Fr. 1838RenidentesCf37.8–8.1 × 5.6–6.0 μm
Q = 1.3–1.4
Cortinarius rubricosus (Fr.) Fr. 1838RubricosiBLf110.0–10.9 × 7.0–7.5 μm
Q = 1.4–1.6
Cortinarius rubrophyllus (Moënne-Locc.) Liimat., Niskanen, Ammirati and Dima 2014DermocybeCf16.0–6.3 × 3.8–4.3 μm
Q = 1.5–1.6
Cortinarius rufoallutus Rob. Henry ex Bidaud and Reumaux 2006MultiformesCf19.7–10.3 × 5.7–5.93 μm
Q = 1.7–1.8
Cortinarius saginus (Fr.) Fr. 1838PhlegmaciumTWS110.5–10.8 × 6.0–6.5 μm
Q = 1.7–1.8
Cortinarius saporatus Britzelm. 1897CalochroiMf110.5–11.7 × 6.4–7.6 μm
Q = 1.5–1.8
Cortinarius scaurocaninus Chevassut and Rob. Henry 1982GlaucopodesCf48.7–9.3 × 5.2–5.4 μm
Q = 1.6–1.8
Cortinarius semivelatus Rob. Henry 1970SqualidiBLf18.0–8.7 × 4.9–5.7 μm
Q = 1.4–1.7
Cortinarius sodagnitus Rob. Henry 1935CalochroiBLf211.5–12.5 × 6.3–7.1 μm
Q = 1.6–1.9
Cortinarius spadicellus Brandrud 1997PhlegmacioidesMf510.9–11.5 × 6.9–7.1 μm
Q = 1.5–1.7
Cortinarius subargyronotus Niskanen, Liimat. and Kytöv. 2014UraceiBLf19.5–10.3 × 5.9–6.4 μm
Q = 1.5–1.8
Cortinarius subdecolorans M. Langl. and Reumaux 2000/DionysaeBLf19.8–10.6 × 6.2–6.6 μm
Q = 1.5–1.6
Cortinarius subfoetens M.M. Moser and McKnight 1995GlaucopodesMf18.3–8.8 × 5.4–5.7 μm
Q = 1.5–1.6
Cortinarius aff. sublilacinopesCalochroiBLf111.7–12.2 × 7.0–7.4 μm
Q = 1.6–1.7
Cortinarius subporphyropus Pilát 1954PurpurascentesMf111.1–12.1 × 6.6–7.3 μm
Q = 1.6–1.7
Cortinarius subpurpurascens (Batsch) J. Kickx f. 1867PurpurascentesBLf510.6–11.2 × 6.0–6.5 μm
Q = 1.7–1.8
Cortinarius testaceomicaceus Bidaud 2014ExsularesBLf19.5–11.2 × 6.8–7.5 μm
Q = 1.3–1.6
Cortinarius tirolianus Bidaud, Moënne-Locc. and Reumaux 2005GlaucopodesCf67.5–7.9 × 5.0–5.2 μm
Q = 1.5–1.6
Cortinarius aff. trivialisMyxaciumBLf213.4–14.7 × 8.0–8.8 μm
Q = 1.6–1.7
Cortinarius ultrodistortus Rob. Henry and Vagnet 1992/UltrodistortusCf17.4–8.8 × 4.5–5.0 μm
Q = 1.5–1.9
Cortinarius uraceonemoralis Niskanen, Liimat., Dima, Kytöv., Bojantchev and H. Lindstr. 2014UraceiBLf19.1–10.3 × 5.5–6.0 μm
Q = 1.58–1.87
Cortinarius aff. vibratilisVibratilesBLf18.4–8.9 × 5.2–5.6 μm
Q = 1.6–1.7
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Szabó, E.; Dima, B.; Dénes, A.L.; Papp, V.; Keresztes, L. DNA Barcoding Data Reveal Important Overlooked Diversity of Cortinarius sensu lato (Agaricales, Basidiomycota) in the Romanian Carpathians. Diversity 2023, 15, 553. https://doi.org/10.3390/d15040553

AMA Style

Szabó E, Dima B, Dénes AL, Papp V, Keresztes L. DNA Barcoding Data Reveal Important Overlooked Diversity of Cortinarius sensu lato (Agaricales, Basidiomycota) in the Romanian Carpathians. Diversity. 2023; 15(4):553. https://doi.org/10.3390/d15040553

Chicago/Turabian Style

Szabó, Emerencia, Bálint Dima, Avar L. Dénes, Viktor Papp, and Lujza Keresztes. 2023. "DNA Barcoding Data Reveal Important Overlooked Diversity of Cortinarius sensu lato (Agaricales, Basidiomycota) in the Romanian Carpathians" Diversity 15, no. 4: 553. https://doi.org/10.3390/d15040553

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop