

Dr. B. Köhler.

RIPAC-LABOR GmbH, Potsdam

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

30.11.2011 Tierärztliche Hochschule Hannover

Dr. Bernd Köhler

Wechselwirkungen von Clostridien-Toxinfektionen ripac labor mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Übersicht der Clostridien-Erkrankungen

- 1. Gasödeminfektionen (Rauschbrand, Pararauschbrand, Gasbrand, Bradsot, Nekrotisierende Hepatitis u.a.)
- 2. Enterotoxämien (Breiniere, Nekrotisierende Enteritis, Cl. perfringens Typ A- Enterotoxämie, Cl. sordellii- Enterotoxämie u.a.)
- 3. Intoxikationen durch Neurotoxine (Tetanus, Botulismus)
- 4. Lokale Infektionen [Ulzerative Enteritis (Cl. colinum), Antibiotikainduzierte Colitis durch Cl. difficile) u.a.]

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Definition des Botulismus

Botulismus = Intoxikation durch Neurotoxine von

Clostridium botulinum

2

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

 $\hbox{Dr. B. K\"{o}hler},$

RIPAC-LABOR GmbH, Potsdam

Gruppen der Cl. botulinum- Toxin bildenden Clostridien

(nach Raffestin et al. 2009)

Neurotoxin bildende Clostridien	Gruppe I	Gruppe II	Gruppe III	Gruppe IV (CI. argentinense)	CI. butyricum	CI. barati	CI. limosum 1)
Toxintypen	A, prot. B/F	E, nonprot. B/F	C/D	G	Е	F	С
Toxinsubtypen	A ₁ -A ₄ B ₁ -B ₃ prot.	E ₁ -E ₃ , E ₆ B/F nonprot.	C, D, C/D	G	E ₄ , E ₅	barati F	limosum C
Proteolyse	+	-	-	+	-	-	+
Lipase- Produktion	+	+	+	-	-	-	+
Wichtige physiologische Eigenschaften	Thermoresistente Sporen	Wachstum bereits bei 3°C (Psychrophil)	Wachstum auch bei 40°C				

Eigene Untersuchung
 Proteolytisch
 Nonprot. = Nicht proteolytisch

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Bildung von Clostridium botulinum- Toxin

Clostridium botulinum - 7 Toxintypen A-G

Clostridium barati - Typ F

Clostridium butyricum - Typ E

Clostridium limosum - Typ C (eigene Untersuchungen)

Clostridium barati und Clostridium butyricum- wahrscheinlich durch die Aufnahme von Toxinplasmiden von Clostridium botulinum

4

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

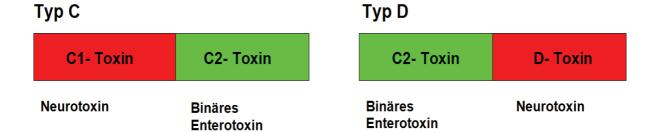
 $\hbox{Dr. B. K\"{o}hler,}$

RIPAC-LABOR GmbH, Potsdam

Empfindlichkeit von Tieren und dem Menschen gegen die Toxine der *Clostridium botulinum-* Typen A-G

Toxintyp	Tiere	Mensch
Α	Huhn, Nerz, Nutria, Fuchs	E
В	Schwein, Rind, Schaf, Ziege, Pferd	E
С	Vögel, Fische, Rind u.a. Wiederkäuer, Pferd, Nerz, Fuchs, Hund, Wolf, Schwein	R
D	Rind u.a. Wiederkäuer, Pferd	R
E	Nerz, Fische (Karpfen, Forelle u.a.)	E
F	nicht bekannt	E
G	nicht bekannt	E

E = empfindlich


R = resistent

rıpac labor

RIPAC-LABOR GmbH, Potsdam

Vorkommen von C2-Toxin bei Clostridium botulinum Typ C und Typ D

6

Wechselwirkungen von Clostridien-Toxinfektionen ripac labor mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Cl. botulinum C2- Toxin (Enterotoxin)

- Binäres Toxin aus Hafttoxin und Enterotoxin, kein Neurotoxin!
- Bildung während der Sporulation
- Ursache verlustreicher Darmerkrankungen bei Wasservögeln
- Cytopathogen für viele Zellarten besonders für Enterozyten
- Erhöhung der Permeabilität der Darmschleimhaut
- Hochgradige Flüssigkeitsakkumulation im Darm und in der Lunge (Lungenödem)
- Nekrotisch-haemorrhagische Schäden der Darmschleimhaut bei fortgeschrittenen Erkrankungen

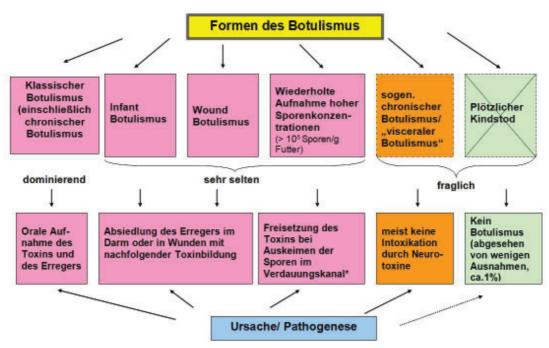
Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Kodierung der Toxinbildung von pathogenen Clostridienstämmen

Species	Kodierung	Stabilität der Toxinbildung
Gasödemclostridien (Cl. perfringens, Cl. septicum, Cl. novyi, Cl. chauvoei u.a.)	Chromosomal- Kodiert	Weitgehend stabil
Cl. botulinum Neurotoxine der Toxintypen A, B, E, F, G	Plasmid-Kodiert	Instabil, Umweltstämme "meist" atoxisch bzw. schwach toxisch
Cl. botulinum Neurotoxin der Toxintypen C und D	Plasmid-Kodiert Phagen-Kodiert	Sehr instabil, überwältigende Mehrzahl der Umweltstämme atoxisch ¹⁾
C-2 Toxin von <i>Cl. botulinum</i> Typ C und Typ D- Toxin	Vermutlich Chromosomal- und Phagen-Kodiert ²⁾	Stabilität <u>unbekannt</u>

- 1) Aktivierung der Toxinbildung setzt spezielle Ereignisketten voraus
- 2) Toxinbildung chromosomal geprägt


8

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Dr. B. Köhler.

RIPAC-LABOR GmbH, Potsdam

Ergebnis der Kontrolluntersuchung von Rindern (8 Bestände) und Pferden (1 Bestand) mit Verdacht auf endogenen Botulismus

Bestand	Tierart Untersuchung auf Botulismus		auf Botulismus	Constige Refunds/ Diagnosen
Bestand	Herart	Nachweis	Toxintyp	Sonstige Befunde/ Diagnosen
1	Rind	Positiv	D ¹⁾	Negativ
2	Rind	Positiv	ABCD	Negativ
3	Rind	Negativ		Clostridium perfringens Typ D- Enterotoxămie
4	Rind	Negativ		Clostridium perfringens Typ A- Enterotoxämie mit β2-Toxin bildenden Stämmen²)
5	Rind	Negativ		Negativ (Verdacht Ketose)
6	Pferd	Negativ		Kriminelle Chloralhydratvergiftung
7	Rind	Negativ		Cl. perfringens Typ A- Enterotoxämie durch Stämme mit starker α- Toxinbildung, β2- Toxin negativ²)
8	Rind	Negativ		Proteolyse verdorbener Silage
9	Rind	Negativ		

¹⁾ von 16 Proben von 4 Rindern bei einem Tier 1 mal *Cl. botulinum* Typ D-Toxin nach Anreicherung des Darminhaltes in einem die Toxinbildung förderndem Medium in einer Konzentration von 10 Dlm/ml

10

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Verdacht / These

Sogenannter
"Chronischer Botulismus"
bzw.
"Visceraler Botulismus"

Cl. botulinum Typ C/D-Toxinfektionen durch C2-Toxin meist in Assoziation mit Cl. perfringens Typ A- Toxinfektion oder anderen pathogenen Clostridia spp.

²⁾ hochgradiger Clostridium perfringens Typ A-Gehalt in Mägen und Dünndarm

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Komplexe Diagnostik von Botulismus

	Labordiaç	Epidemiologie/	Diagnose			
Direkter Toxinnachweis (Mäuseversuch)*	Toxinanreicherung (> 10 Dlm/ml)*	Erregeranzüchtung (toxische Stämme)* PCR¹) Toxingene		Klinik	Diagnose	
+	+	+		+	Botulismus	
+	+			+	Botulismus	
+				+	Botulismus	
	+			v	Botulismus	
		+		v	Botulismus	
	+				Verdacht Botulismus	
		+			Verdacht Botulismus	
			+	v	Verdacht Botulismus	
				v	Verdacht Botulismus	
			+		kein Botulismus	
					kein Botulismus	

- * mit spezifischer Neutralisation
- v verdächtig für Botulismus
- 1) einschließlich Realtime PCR
- + positiv

12

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Aus

"Clostridia Molecular Biology in the Post-genomic Era"

by Holger Brüggemann and Gerhard Gottschalk

Caister Academic Press 2009, Norfolk KK Seite 108

- "Compared with culture methods, molecular detection techniques are sensitive, specific, and rapid to perform."
- "A disadvantage of molecular detection assays is that they do not detect biologically active neurotoxin or even activity of genes."

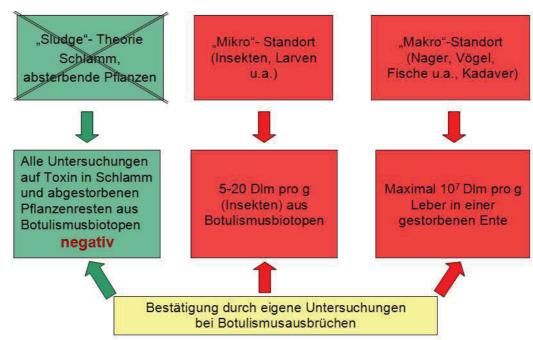
Dr. B. Köhler.

RIPAC-LABOR GmbH, Potsdam

Begünstigende Faktoren für die Vermehrung und Toxinbildung von Clostridium botulinum in der Umwelt

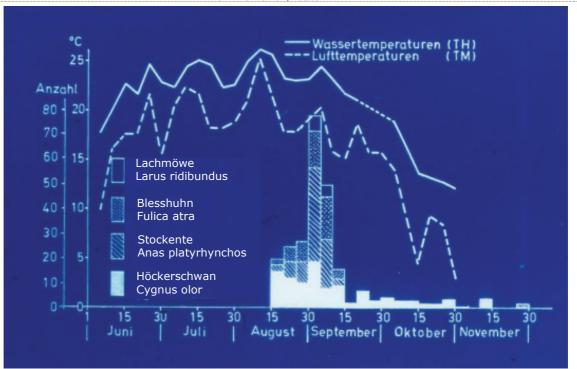
- 1. Anaerobiose bzw. Vorkommen von sauerstoffzehrenden Bakterien
- 2. Ausreichende Nährsubstrate
- 3. Optimaler pH-Wert
- 4. Längere Hitzeperiode mit Wassertemperaturen über 20°C für mindestens 10 -14 Tage
- 5. Relevantes Toxinbildungsvermögen des Erregers bzw. Bedingungen, die seine Toxinbildung induzieren
- 6. Stabilität des Neurotoxinbildungsvermögens von Cl. botulinum-Stämmen in der Umwelt

14



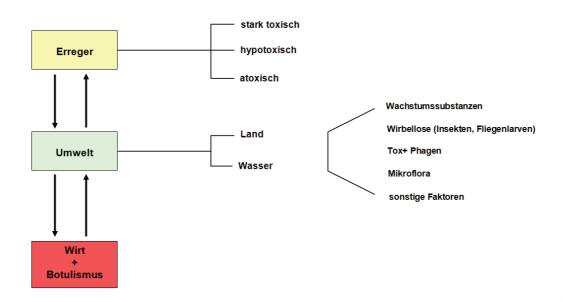
Wechselwirkungen von Clostridien-Toxinfektionen ripac labor mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,


RIPAC-LABOR GmbH, Potsdam

Toxinbildung von Clostridium botulinum in der Umwelt

RIPAC-LABOR GmbH, Potsdam



Wechselwirkungen von Clostridien-Toxinfektionen ripac labor mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Faktoren, die die Erreger- Wirt- Beziehung von Cl. botulinum Typ C entscheidend beeinflussen

16

Dr. B. Köhler.

RIPAC-LABOR GmbH, Potsdam

Nachweis Botulinum- Neurotoxin bildender Keime im Boden eines Areals mit akutem Auftreten von Botulismus bei Wasservögeln

Zeitpunkt der Probenahme	Anzahl der Proben	Botulism	Nachweis von otulismustoxin im Mäuseversuch		Toxintyper	1	Epidemiologische Bemerkungen	
	Trobbin	Anzahl Prozent		C E B				
August 1999	20	11	55	9			Verlustreicher Ausbruch von Botulismus bei Wasservögeln (Typ C)	
Oktober 1999	20	3	15	2	2	1	Vereinzelt Botulismusfälle (Typ C)	
Dezember 1999	20	1	5		1			
Februar 2000	20	0			0		Winter keine Edwardsungen	
April 2000	20	0					Winter, keine Erkrankungen	
Juni 2000	20	0						
August 2000	20	1	5	1			Sporadische Botulismusfälle (Typ C)	
13 Monate	140	16	11,4	12	4	1		
Juli/August 2001	30	0					Keine Erkrankungen	

18

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Untersuchungen zum Vorkommen von *Cl. botulinum*- Neurotoxin bildenden Stämmen im Biokompost, in Gärrückständen, in Gülle aus landwirtschaftlichen Betrieben und in Klärschlämmen von Kläranlagen

Untersuchungsmaterial	Anzahl der Anzahl der			xin bildender m- Stämme ¹⁾	Sonstiges	
Ontersuchungsmaterial	Betriebe	Proben	Anzahl	Prozent	Consuges	
Kompostproben	20	102	22)	2	2 Proben schwach toxisch/ Ohne Zuordnung zu speziellem Toxintyp	
Klärschlamm	14	56	0	0		
Gülle aus Rinder- Schwein- und Geflügelbetrieben (ca. 6-wöchige Vergärung)	31	94	0	0		
Proben aus Biotonne	11	22	0	0		
Biogasanlagen (Studie 2010)	12	83	9	11	3x Typ C, Rohstoffe 2x Typ B Rohstoffe 1x Typ D Rohstoffe 3x Typ A, Gärrückstand	
Summe	88	357	9	2		

¹⁾ Nachweis mittels Mausbioassay nach 7 tägiger Anreicherung in cooked meat-Medium bzw. Maltose Kalbfleischbouillon nach Nishida und Nakagawara (Grenzwert ≥10 Dlm/ml)

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Untersuchung von 10 Biogasanlagen auf *Clostridium botulinum* Neurotoxin bildende Stämme im Jahr 2010

	Anlage Robstoff- Gärrück-		Untersuchte Gärrück-	Nachweis Neurotoxinbildender Cl. botulinum-Stämme						Positive Proben insgesamt		Herkunft positiver
(1)	lr.)	proben	standsproben	Α	В	С	D	E	Poly- valent	Anzahl	%	Proben
1	-7	21	28									
	8	4	4	3	1	1	1			6	78	3 x Gärrück- stände 3 x Rohstoffe
	9	3	4			2				2	28	Rohstoffe
	10	3	4		1					1	14	Rohstoffe
Σ	10	31	40	3	2	3	1			9	13	

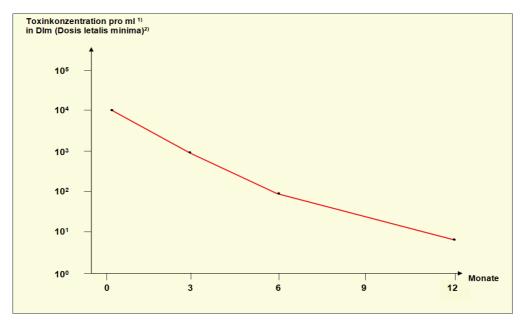
20

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Ergebnisse der Stufenkontrolle in einer Biogasanlage mit Nachweis Neurotoxin Typ A bildender *Cl. botulinum*- Stämme im Gärrückstand


Untersuchungs-	Untersuchungs- Anzahl der		Neurotoxintypen von Clostridium botulinum						
material	Proben	Proben	Α	В	С	D	E		
Gärrückstände	3	3	3						
Vorerhitzungscontainer	2	2	1		1				
Gärtanks/Leitungssysteme zwischen den Tanks	6	5	2	1	1	1			
Summe	11	10	6	1	2	1			

Dr. B. Köhler.

RIPAC-LABOR GmbH, Potsdam

Persistenz von Neurotoxin Typ A bildenden Clostridium botulinum-Stämmen in einer positiven Gärrückstandsprobe

1) Nach 7 tägiger Anreicherung im cooked meat medium

2) ca. 25g schwere Mäuse

22

ripac labor

Wechselwirkungen von Clostridien-Toxinfektionen ripac labor mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Hemmung der Vermehrung von Cl. botulinum in Gärrückständen von Biogasanlagen

- Vergleichsweise lange Generationszeit von Cl. botulinum von 20-30 Minuten im Verhältnis zu Cl. perfringens (Generationszeit 8-10 Minuten) u.a. schnell wachsenden Bakterienarten
- Suboptimale Temperaturen (Klärschlamm und Gülle)
- Verschiebung des Nährsubstrates in Richtung Zellulose u.a. pflanzlichen Rohstoffen
- Dominanz Zellulose abbauender Mikroflora
- Mangel von ausreichenden Nährstoffen für Cl. botulinum, die zudem von schnell wachsenden Keimen aufgebraucht werden
- Unzureichende Anaerobiose
- Konkurrenzmikroflora, die Cl. botulinum durch Bacteriozide hemmt
- pH-Wert (saurer pH-Wert hemmend, leicht alkalischer pH-Wert optimal f
 ür pathogene Clostridien)

Dr. B. Köhler.

RIPAC-LABOR GmbH, Potsdam

Hygienische Probleme beim Betreiben von Biogasanlagen, die die Verbreitung von pathogenen Clostridien fördern

- Breites Rohstoffspektrum einschließlich von Produkten aus Tierproduktionsanlagen (Gülle, Einstreu, Kadaver u.a.) und verdorbenen Lebensmitteln
- Erhöhte Betriebstemperatur von 35-41°C, die die Vermehrung pathogener Clostridien begünstigt
- Kontinuierlicher Produktionsprozess (z. T. über mehrere Jahre), der die Entwicklung von Erregerkreisläufen fördert
- Kurze Vergärungsdauer (< 1 Woche), was die Passage pathogener Clostridien begünstigt
- Verbringung der Gärrückstände in die Umwelt insbesondere auf landwirtschaftliche Nutzflächen, was zur Kontamination von Futtermitteln, Lebensmitteln und industriellen Rohstoffen mit Neurotoxin bildenden Clostridium botulinum- Stämmen u.a. pathogenen Clostridien führen kann

24

Wechselwirkungen von Clostridien-Toxinfektionen ripac labor mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Veterinärhygienische Mängel beim Betrieb von Biogasanlagen

- Annahme und Lagerung der Rohstoffe in nur einem Vorratssilo
- Vermehrung pathogener Clostridien im Rohstoffvorratssilo, was die stationäre Kontamination der Anlagen begünstigt und den Infektionsdruck in der Biogasanlage erhöht
- Einsatz von Starterkulturen ohne veterinärhygienische Kontrolle (häufig aus benachbarter Anlage)
- Fehlende Möglichkeiten zur Unterbrechung des Produktionsprozesses bei Kontamination mit Neurotoxin bildenden Clostridium botulinum- Stämmen und zur Durchführung von Reinigungs- und Desinfektionsmaßnahmen
- Sammlung der Gärrückstände meist in einem einzigen Lagertank bzw. in miteinander verbundenen Tanks, was die laufende Rekontamination der Gärrückstände fördert
- Fehlendes Schwarz- Weiß-Prinzip, was ebenfalls zur Rekontamination der Gärrückstände führen kann

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Veterinärhygienische Richtlinien/Anforderungen für den Betrieb von Biogasanlagen

- Regelmäßige Rohstoffkontrolle insbesondere von tierischen Rohstoffen
- Kein Einsatz von tierischen und pflanzlichen Rohstoffen aus Beständen mit Botulismusausbrüchen
- Mikrobiologische Untersuchung von Starterkulturen auf Neurotoxin bildende Clostridium botulinum- Stämme
- Ausstattung aller Biogasanlagen mit 2 Rohstoffsilos, die wechselseitig (etwa 4 wöchiger Rhythmus) nach Reinigung und Desinfektion betrieben werden sollten
- Ausstattung aller Biogasanlagen mit 2 Gärrückstandssilos, die abwechselnd in ca. 3 monatigem Abstand zu befüllen sind
- Sicherung der Gärrückstände vor nachträglichen Kontaminationen (Schwarz-Weiß-Prinzip)
- Jährliche Kontrolluntersuchung der Gärrückstände aller Biogasanlagen hinsichtlich des Vorkommens Neurotoxin bildender Clostridium botulinum-Stämme

26

Wechselwirkungen von Clostridien-Toxinfektionen mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

 $\hbox{Dr. B. K\"{o}hler,}$

RIPAC-LABOR GmbH, Potsdam

Verfahrensweisen bei positivem Befund von Toxin bildenden *Cl. botulinum* in Biogasanlagen

Untersuchungsergebnisse

Rohstoffe	Gärrückstände	Bewertung/Schlussfolgerung
-	-	Keine Beanstandung
+1)	-	Keine Beanstandung
-	+ 1)	Stufenkontrolle ———————————————————————————————————
+1)	+1)	- Stufenkontrolle - Hygienische Maßnahmen - Sperrung positiver Rohstoffe

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam

Vielen Dank für Ihre Aufmerksamkeit!

RIPAC-LABOR GmbH Am Mühlenberg 11 14476 Potsdam-Golm

Tel: +49(0)331 581840-0 Fax: +49(0)331 581840-10 www.ripac-labor.de

Email: info@ripac-labor.de

28

Wechselwirkungen von Clostridien-Toxinfektionen ripac labor mit der Umwelt unter besonderer Berücksichtigung von Clostridium botulinum und Entsorgungsverfahren in der Tierhaltung

Dr. B. Köhler,

RIPAC-LABOR GmbH, Potsdam