Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biogeochemistry of Earth before exoenzymes

Abstract

Microorganisms that transform and oxidize organic material (that is, heterotrophs) play a fundamental role in the geochemical cycling of key elements in the ocean. Through their growth and activity, heterotrophic microorganisms degrade much of the organic matter produced by phytoplankton in the surface ocean, leading to the regeneration and redistribution of nutrients and carbon back into the water column. However, most organic matter is physically too large to be taken up directly by heterotrophic microorganisms. Consequently, many heterotrophs secrete exoenzymes that break down large molecules outside the cell into smaller substrates that can then be directly taken up by the cell. The complex nature of the biochemical systems that microorganisms use to secrete these enzymes suggests that they were unlikely to have been present in the earliest heterotrophs. In a pre-exoenzyme ocean, heterotrophic microorganisms would only be able to access a small fraction of organic matter such that most dead phytoplankton biomass would have passed directly through the water column and settled onto the seafloor. Here we synthesize existing geobiological evidence to examine the fate of organic matter in the absence of exoenzymes in early oceans. We propose that on an Earth before exoenzymes, organic matter preservation, metal availability and phosphorus recycling would have operated differently than they do on the contemporary Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emergence of known heterotrophic and autotrophic metabolic processes in the early oceans that may have given rise to exoenzymes.
Fig. 2: Important exoenzyme-mediated, abiotic and biotic processes in the early oceans.

Similar content being viewed by others

References

  1. Neidhardt, F. C. & Umbarger, E. H. Chemical Composition of Escherichia Coli 2nd edn (American Society of Microbiology, 1996).

  2. Benz, R. & Bauer, K. Permeation of hydrophilic molecules through the outer membrane of gram‐negativ bacteria: review of bacterial porins. Eur. J. Biochem. 176, 1–19 (1988).

    Google Scholar 

  3. Arnosti, C. Microbial extracellular enzymes and the marine carbon cycle. Annu. Rev. Mar. Sci. 3, 401–425 (2011).

    Google Scholar 

  4. Mahmoudi, N., Hagen, S. M., Hazen, T. C. & Steen, A. D. Patterns in extracellular enzyme activity and microbial diversity in deep-sea Mediterranean sediments. Deep Sea Res. Pt I 158, 103231 (2020).

    Google Scholar 

  5. Schmidt, J. M., Royalty, T. M., Lloyd, K. G. & Steen, A. D. Potential activities and long lifetimes of organic carbon-degrading extracellular enzymes in deep subsurface sediments of the Baltic Sea. Front. Microbiol. 12, 702015 (2021).

    Google Scholar 

  6. Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 119651 (2016).

  7. Mahmoudi, N., Enke, T. N., Beaupré, S. R., Teske, A. P., Cordero, O. X. & Pearson, A. Illuminating microbial species-specific effects on organic matter remineralization in marine sediments. Environ. Microbiol. 22, 1734–1747 (2020).

    Google Scholar 

  8. Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    Google Scholar 

  9. Green, E. R. & Mecsas, J. Bacterial secretion systems: an overview. Microbiol. Spectr. 4, 4.1 (2016). 13.

    Google Scholar 

  10. Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

    Google Scholar 

  11. Gruen, D. S., Wolfe, J. M. & Fournier, G. P. Paleozoic diversification of terrestrial chitin-degrading bacterial lineages. BMC Evol. Biol. 19, 34 (2019).

  12. Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2, 725–729 (2009).

    Google Scholar 

  13. Czaja, A. D., Johnson, C. M., Beard, B. L., Roden, E. E., Li, W. & Moorbath, S. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363, 192–203 (2013).

    Google Scholar 

  14. Warke, M. R., Strauss, H. & Schröder, S. Positive cerium anomalies imply pre-GOE redox stratification and manganese oxidation in Paleoproterozoic shallow marine environments. Precambr. Res. 344, 105767 (2020).

    Google Scholar 

  15. Grossman, A. S., Mauer, T. J., Forest, K. T. & Goodrich-Blair, H. A widespread bacterial secretion system with diverse substrates. mBio 12, e01956–01921 (2021).

    Google Scholar 

  16. Meuskens, I., Saragliadis, A., Leo, J. C. & Linke, D. Type v secretion systems: an overview of passenger domain functions. Front. Microbiol. 10, 1163 (2019).

    Google Scholar 

  17. Korotkov, K. V., Sandkvist, M. & Hol, W. G. J. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10, 336–351 (2012).

    Google Scholar 

  18. Vetter, Y., Deming, J., Jumars, P. A. & Krieger-Brockett, B. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36, 75–92 (1998).

    Google Scholar 

  19. Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl Acad. Sci. USA 116, 23309–23316 (2019).

    Google Scholar 

  20. Reintjes, G., Arnosti, C., Fuchs, B. & Amann, R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 13, 1119–1132 (2019).

    Google Scholar 

  21. Krupke, A., Hmelo, L. R., Ossolinski, J. E., Mincer, T. J. & Van Mooy, B. A. Quorum sensing plays a complex role in regulating the enzyme hydrolysis activity of microbes associated with sinking particles in the ocean. Front. Mar. Sci. 3, 55 (2016).

    Google Scholar 

  22. Cuskin, F., Lowe, E. C., Temple, M. J., Zhu, Y., Cameron, E. A. & Pudlo, N. A. et al. Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517, 165–169 (2015).

    Google Scholar 

  23. Moran, M. A. & Zepp, R. G. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr. 42, 1307–1316 (2003).

    Google Scholar 

  24. Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E., van Aken, H. M. & Herndl, G. J. High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquat. Microb. Ecol. 58, 287–302 (2010).

    Google Scholar 

  25. Quigg, A. et al. From nano-gels to marine snow: a synthesis of gel formation processes and modeling efforts involved with particle flux in the ocean. Gels 7, 114 (2021).

    Google Scholar 

  26. Kipp, M. A., Krissansen-Totton J. & Catling D. C. High organic burial efficiency is required to explain mass balance in Earth’s early carbon cycle. Glob. Biogeochem. Cycles 35, e2020GB006707 (2021).

  27. Buick, R., Des Marais, D. J. & Knoll, A. H. Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. Chem. Geol. 123, 153–171 (1995).

    Google Scholar 

  28. Kipp, M. A. & Stüeken, E. E. Biomass recycling and Earth’s early phosphorus cycle. Sci. Adv. 3, eaao4795 (2017).

    Google Scholar 

  29. Moore, E. K., Jelen, B. I., Giovannelli, D., Raanan, H. & Falkowski, P. G. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017).

    Google Scholar 

  30. Bruland, K. W. & Franks, R. P. in Trace Metals in Sea Water (eds. Goldberg, E.D. et al.) 395–414 (Springer, 1983).

  31. Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).

    Google Scholar 

  32. Morel, F. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).

    Google Scholar 

  33. Noble, A. E., Ohnemus, D. C., Hawco, N. J., Lam, P. J. & Saito, M. A. Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03. Biogeosciences 14, 2715–2739 (2017).

    Google Scholar 

  34. Toner, B. M. et al. Preservation of iron(ii) by carbon-rich matrices in a hydrothermal plume. Nat. Geosci. 2, 197–201 (2009).

    Google Scholar 

  35. Robbins, L. et al. Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology 11, 295–306 (2013).

    Google Scholar 

  36. Benner, R. Loose ligands and available iron in the ocean. Proc. Natl Acad. Sci. USA 108, 893–894 (2011).

    Google Scholar 

  37. Swaren, L., Alessi, D. S., Owttrim, G. W. & Konhauser, K. O. Acid-base properties of Synechococcus-derived organic matter. Geochim. Cosmochim. Acta 315, 89–100 (2021).

    Google Scholar 

  38. Zhang, J., Kattner, G. & Koch, B. P. Interactions of trace elements and organic ligands in seawater and implications for quantifying biogeochemical dynamics: a review. Earth Sci. Rev. 192, 631–649 (2019).

    Google Scholar 

  39. Reinhard, C. T. et al. Evolution of the global phosphorus cycle. Nature 541, 386–389 (2017).

    Google Scholar 

  40. Kipp, M. A. A double-edged sword: the role of sulfate in anoxic marine phosphorus cycling through Earth history. Geophys. Res. Lett. 49, e2022GL099817 (2022).

    Google Scholar 

  41. Lomas, M. W. et al. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP). Biogeosciences 7, 695–710 (2010).

    Google Scholar 

  42. Hori T., Horiguchi M. & Hayashi A. Biochemistry of Natural CP compounds (Maruzen Ltd, 1984).

  43. Luo, H., Benner, R., Long, R. A. & Hu, J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl Acad. Sci. USA 106, 21219–21223 (2009).

    Google Scholar 

  44. Ingall, E. D., Bustin, R. & Van Cappellen, P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57, 303–316 (1993).

    Google Scholar 

  45. Van Cappellen, P. & Ingall, E. D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692 (1994).

    Google Scholar 

  46. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Google Scholar 

  47. Alcott, L. J., Mills, B. J., Bekker, A. & Poulton, S. W. Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling. Nat. Geosci. 15, 210–215 (2022).

    Google Scholar 

  48. Garcia, A. K. & Kaçar, B. How to resurrect ancestral proteins as proxies for ancient biogeochemistry. Free Radic. Biol. Med. 140, 260–269 (2019).

    Google Scholar 

  49. Zimmerman, A. E., Martiny, A. C. & Allison, S. D. Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J. 7, 1187–1199 (2013).

    Google Scholar 

  50. Fakhraee, M., Tarhan, L. G., Planavsky, N. J. & Reinhard, C. T. A largely invariant marine dissolved organic carbon reservoir across Earth’s history. Proc. Natl Acad. Sci. USA 118, e2103511118 (2021).

  51. Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).

Download references

Acknowledgements

This research was supported financially by Natural Sciences & Engineering Research Council of Canada (NSERC) grants to K.O.K. (RGPIN-2020-05189) and G.P.H. N.M. was supported by a New Frontiers in Research Fund Exploration Grant (NFRFE-2019-00794). A.D.S. was supported by NSF grant numbers OPP-2147046 and OCE- 2145434. We thank A. Grossman for helpful conversations about enzyme secretion systems.

Author information

Authors and Affiliations

Authors

Contributions

N.M. and A.D.S conceptualized the Perspective. All authors extensively contributed ideas and provided critical feedback in the research, interpretation and writing.

Corresponding author

Correspondence to Nagissa Mahmoudi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Jason Sylvan, Joanne Boden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, N., Steen, A.D., Halverson, G.P. et al. Biogeochemistry of Earth before exoenzymes. Nat. Geosci. 16, 845–850 (2023). https://doi.org/10.1038/s41561-023-01266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-023-01266-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing