Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles and regulation of microglia activity in multiple sclerosis: insights from animal models

Abstract

As resident macrophages of the CNS, microglia are critical immune effectors of inflammatory lesions and associated neural dysfunctions. In multiple sclerosis (MS) and its animal models, chronic microglial inflammatory activity damages myelin and disrupts axonal and synaptic activity. In contrast to these detrimental effects, the potent phagocytic and tissue-remodelling capabilities of microglia support critical endogenous repair mechanisms. Although these opposing capabilities have long been appreciated, a precise understanding of their underlying molecular effectors is only beginning to emerge. Here, we review recent advances in our understanding of the roles of microglia in animal models of MS and demyelinating lesions and the mechanisms that underlie their damaging and repairing activities. We also discuss how the structured organization and regulation of the genome enables complex transcriptional heterogeneity within the microglial cell population at demyelinating lesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microglial functions in the CNS.
Fig. 2: Microglial functions mediating damage in demyelinating disorders.
Fig. 3: Microglial functions contributing to myelin repair.
Fig. 4: Molecular regulators of microglial activity in demyelinating disorders.
Fig. 5: Mechanisms of microglial response coordination by distal cis-regulatory genomic elements.

Similar content being viewed by others

References

  1. Reich, D. S., Lucchinetti, C. F. & Calabresi, P. A. Multiple sclerosis. N. Engl. J. Med. 378, 169–180 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gold, S. M., Willing, A., Leypoldt, F., Paul, F. & Friese, M. A. Sex differences in autoimmune disorders of the central nervous system. Semin. Immunopathol. 41, 177–188 (2019).

    Article  PubMed  Google Scholar 

  3. Walton, C. et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult. Scler. 26, 1816–1821 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lassmann, H. The contribution of neuropathology to multiple sclerosis research. Eur. J. Neurol. 29, 2869–2877 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luchetti, S. et al. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 135, 511–528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Chitnis, T. & Prat, A. A roadmap to precision medicine for multiple sclerosis. Mult. Scler. 26, 522–532 (2020).

    Article  PubMed  Google Scholar 

  8. Prineas, J. W., Barnard, R. O., Kwon, E. E., Sharer, L. R. & Cho, E. S. Multiple sclerosis: remyelination of nascent lesions. Ann. Neurol. 33, 137–151 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    Article  PubMed  Google Scholar 

  10. Yong, V. W. Microglia in multiple sclerosis: protectors turn destroyers. Neuron 110, 3534–3548 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Absinta, M., Lassmann, H. & Trapp, B. D. Mechanisms underlying progression in multiple sclerosis. Curr. Opin. Neurol. 33, 277–285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Healy, L. M., Stratton, J. A., Kuhlmann, T. & Antel, J. The role of glial cells in multiple sclerosis disease progression. Nat. Rev. Neurol. 18, 237–248 (2022).

    Article  PubMed  Google Scholar 

  14. Airas, L. & Yong, V. W. Microglia in multiple sclerosis—pathogenesis and imaging. Curr. Opin. Neurol. 35, 299–306 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Cree, B. A. C., Oksenberg, J. R. & Hauser, S. L. Multiple sclerosis: two decades of progress. Lancet Neurol. 21, 211–214 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rivest, S. Regulation of innate immune responses in the brain. Nat. Rev. Immunol. 9, 429–439 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Tremblay, M. E. et al. The role of microglia in the healthy brain. J. Neurosci. 31, 16064–16069 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Loughlin, E., Madore, C., Lassmann, H. & Butovsky, O. Microglial phenotypes and functions in multiple sclerosis. Cold Spring Harb. Perspect. Med. 8, a028993 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schirmer, L., Schafer, D. P., Bartels, T., Rowitch, D. H. & Calabresi, P. A. Diversity and function of glial cell types in multiple sclerosis. Trends Immunol. 42, 228–247 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh, S. et al. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 125, 595–608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Horssen, J. et al. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J. Neuroinflammation 9, 156 (2012).

    PubMed  PubMed Central  Google Scholar 

  23. van den Bosch, A. M. R. et al. Ultrastructural axon-myelin unit alterations in MS correlate with inflammation. Ann. Neurol. 93, 856–870 (2022).

    Article  Google Scholar 

  24. Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ramaglia, V. et al. Multiplexed imaging of immune cells in staged multiple sclerosis lesions by mass cytometry. eLife 8, e48051 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Patani, R., Balaratnam, M., Vora, A. & Reynolds, R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol. Appl. Neurobiol. 33, 277–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Park, C. et al. The landscape of myeloid and astrocyte phenotypes in acute multiple sclerosis lesions. Acta Neuropathol. Commun. 7, 130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Masuda, T. et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566, 388–392 (2019). This work provides the earliest, most comprehensive characterization of gene signatures at the single-cell level of microglia that populate myelin lesions in individuals with MS.

    Article  CAS  PubMed  Google Scholar 

  30. Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Absinta, M. et al. A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021). This study investigates, at deep resolution, the different cell types and their states of activity at edges of chronic active lesions in MS; data suggest that microglia endowed with iron-processing capabilities are closely intertwined with these lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bottcher, C. et al. Single-cell mass cytometry reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis. Acta Neuropathol. Commun. 8, 136 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miedema, A. et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol. Commun. 10, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Menassa, D. A. et al. The spatiotemporal dynamics of microglia across the human lifespan. Dev. Cell 57, 2127–2139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ginhoux, F. & Prinz, M. Origin of microglia: current concepts and past controversies. Cold Spring Harb. Perspect. Biol. 7, a020537 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mass, E. et al. Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Askew, K. et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18, 391–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014). Together with Lavin et al. (2014), this work defines for the first time the repertoire of genomic regulatory elements in various subsets of tissue-resident macrophages and reveals how distal CREs interact with SDTFs in a tissue-dependent manner to specify cell identity of the different macrophage subsets.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gautier, E. L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, aal3222 (2017). This study characterizes for the first time the repertoire of genomic regulatory elements in human microglia, and identifies the key transcriptional regulators that enable their cell identity.

    Article  Google Scholar 

  44. Butovsky, O. et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143 (2014). This work identifies for the first time how a soluble factor, TGFB, that is present in the brain promotes the microglial cell identity.

    Article  CAS  PubMed  Google Scholar 

  45. Galatro, T. F. et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat. Neurosci. 20, 1162–1171 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Prinz, M., Jung, S. & Priller, J. Microglia biology: one century of evolving concepts. Cell 179, 292–311 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Butovsky, O. & Weiner, H. L. Microglial signatures and their role in health and disease. Nat. Rev. Neurosci. 19, 622–635 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krasemann, S. et al. The TREM2–APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50, 253–271 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Hasselmann, J. et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103, 1016–1033 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beckmann, N. et al. Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945. Acta Neuropathol. Commun. 6, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hagan, N. et al. CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis. 11, 904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hwang, D. et al. CSF-1 maintains pathogenic but not homeostatic myeloid cells in the central nervous system during autoimmune neuroinflammation. Proc. Natl Acad. Sci. USA 119, e2111804119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marzan, D. E. et al. Activated microglia drive demyelination via CSF1R signaling. Glia 69, 1583–1604 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nissen, J. C., Thompson, K. K., West, B. L. & Tsirka, S. E. Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp. Neurol. 307, 24–36 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wies Mancini, V. S. B. et al. Colony-stimulating factor-1 receptor inhibition attenuates microgliosis and myelin loss but exacerbates neurodegeneration in the chronic cuprizone model. J. Neurochem. 160, 643–661 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Voet, S. et al. A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nat. Commun. 9, 2036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017). This comprehensive work provides insights into the molecular signals that trigger the acquisition of highly toxic functions by astrocytes in diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burda, J. E. et al. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 606, 557–564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article  PubMed  Google Scholar 

  64. Bretheau, F. et al. The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat. Commun. 13, 5786 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Habbas, S. et al. Neuroinflammatory TNFα impairs memory via astrocyte signaling. Cell 163, 1730–1741 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Levesque, S. A. et al. Myeloid cell transmigration across the CNS vasculature triggers IL-1β-driven neuroinflammation during autoimmune encephalomyelitis in mice. J. Exp. Med. 213, 929–949 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014). This study provides compelling evidence demonstrating that monocytes and microglia interact differently with axons and myelin in demyelinating lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gao, H. et al. Opposing functions of microglial and macrophagic TNFR2 in the pathogenesis of experimental autoimmune encephalomyelitis. Cell Rep. 18, 198–212 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pare, A. et al. IL-1β enables CNS access to CCR2hi monocytes and the generation of pathogenic cells through GM-CSF released by CNS endothelial cells. Proc. Natl Acad. Sci. USA 115, E1194–E1203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jordao, M. J. C. et al. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363, eaat7554 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Haimon, Z. et al. Cognate microglia–T cell interactions shape the functional regulatory T cell pool in experimental autoimmune encephalomyelitis pathology. Nat. Immunol. 23, 1749–1762 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Wolf, Y. et al. Microglial MHC class II is dispensable for experimental autoimmune encephalomyelitis and cuprizone-induced demyelination. Eur. J. Immunol. 48, 1308–1318 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Kassiotis, G. & Kollias, G. Uncoupling the proinflammatory from the immunosuppressive properties of tumor necrosis factor (TNF) at the p55 TNF receptor level: implications for pathogenesis and therapy of autoimmune demyelination. J. Exp. Med. 193, 427–434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Madsen, P. M. et al. Oligodendrocytes modulate the immune-inflammatory response in EAE via TNFR2 signaling. Brain Behav. Immun. 84, 132–146 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Madsen, P. M. et al. Oligodendroglial TNFR2 mediates membrane TNF-dependent repair in experimental autoimmune encephalomyelitis by promoting oligodendrocyte differentiation and remyelination. J. Neurosci. 36, 5128–5143 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mailhot, B. et al. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J. Exp. Med. 217, e20191430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wheeler, M. A. et al. TNF-α/TNFR1 signaling is required for the development and function of primary nociceptors. Neuron 82, 587–602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Binshtok, A. M. et al. Nociceptors are interleukin-1β sensors. J. Neurosci. 28, 14062–14073 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ramaglia, V. et al. Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol. 142, 643–667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Werneburg, S. et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52, 167–182 (2020). This investigation shows that excessive complement activity may contribute to aberrant synaptic remodelling and removal in demyelinating lesions.

    Article  CAS  PubMed  Google Scholar 

  82. Ramaglia, V. et al. C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc. Natl Acad. Sci. USA 109, 965–970 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Szalai, A. J., Hu, X., Adams, J. E. & Barnum, S. R. Complement in experimental autoimmune encephalomyelitis revisited: C3 is required for development of maximal disease. Mol. Immunol. 44, 3132–3136 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bourel, J. et al. Complement C3 mediates early hippocampal neurodegeneration and memory impairment in experimental multiple sclerosis. Neurobiol. Dis. 160, 105533 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Michailidou, I. et al. Complement C1q–C3-associated synaptic changes in multiple sclerosis hippocampus. Ann. Neurol. 77, 1007–1026 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012). This study provides elegant evidence demonstrating that microglia are the key effector cells in the brain for the removal of synapses tagged by C1q complement factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, 712–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). This seminal work implicates for the first time the complement cascade in the development of neuronal circuitries in the brain.

    Article  CAS  PubMed  Google Scholar 

  89. Michailidou, I. et al. Complement C3 on microglial clusters in multiple sclerosis occur in chronic but not acute disease: implication for disease pathogenesis. Glia 65, 264–277 (2017).

    Article  PubMed  Google Scholar 

  90. Radi, R., Beckman, J. S., Bush, K. M. & Freeman, B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288, 481–487 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Li, J., Baud, O., Vartanian, T., Volpe, J. J. & Rosenberg, P. A. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc. Natl Acad. Sci. USA 102, 9936–9941 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cross, A. H., Manning, P. T., Keeling, R. M., Schmidt, R. E. & Misko, T. P. Peroxynitrite formation within the central nervous system in active multiple sclerosis. J. Neuroimmunol. 88, 45–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Haider, L. et al. Oxidative damage in multiple sclerosis lesions. Brain 134, 1914–1924 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nikic, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Michaels, N. J. et al. Aging-exacerbated acute axon and myelin injury is associated with microglia-derived reactive oxygen species and is alleviated by the generic medication indapamide. J. Neurosci. 40, 8587–8600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mendiola, A. S. et al. Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation. Nat. Immunol. 21, 513–524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lambeth, J. D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Hu, C. F. et al. Microglial Nox2 plays a key role in the pathogenesis of experimental autoimmune encephalomyelitis. Front. Immunol. 12, 638381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ravelli, K. G. et al. Nox2-dependent neuroinflammation in an EAE model of multiple sclerosis. Transl. Neurosci. 10, 1–9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Allan, E. R. et al. NADPH oxidase modifies patterns of MHC class II-restricted epitopic repertoires through redox control of antigen processing. J. Immunol. 192, 4989–5001 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Fischer, M. T. et al. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135, 886–899 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bagnato, F. et al. Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 134, 3602–3615 (2011).

    Article  PubMed  Google Scholar 

  103. Hametner, S. et al. Iron and neurodegeneration in the multiple sclerosis brain. Ann. Neurol. 74, 848–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Stephenson, E., Nathoo, N., Mahjoub, Y., Dunn, J. F. & Yong, V. W. Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat. Rev. Neurol. 10, 459–468 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Connor, J. R. & Menzies, S. L. Cellular management of iron in the brain. J. Neurol. Sci. 134, 33–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Soares, M. P. & Hamza, I. Macrophages and iron metabolism. Immunity 44, 492–504 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kenkhuis, B. et al. Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients. Acta Neuropathol. Commun. 9, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rodriguez-Callejas, J. D. et al. Loss of ferritin-positive microglia relates to increased iron, RNA oxidation, and dystrophic microglia in the brains of aged male marmosets. Am. J. Primatol. 81, e22956 (2019).

    Article  PubMed  Google Scholar 

  109. Lampron, A. et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 212, 481–495 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lloyd, A. F. et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat. Neurosci. 22, 1046–1052 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cantuti-Castelvetri, L. et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359, 684–688 (2018). This study proposes a mechanism that explains how prolonged endocytic activity of microglia may incapacitate their ability to efficiently dispose of their internalized cargo, causing aberrent excessive inflammatory, tissue-damaging activity.

    Article  CAS  PubMed  Google Scholar 

  112. Bosch-Queralt, M. et al. Diet-dependent regulation of TGFβ impairs reparative innate immune responses after demyelination. Nat. Metab. 3, 211–227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013). This work provides compelling evidence demonstrating how different states of microglia and macrophage activity can promote remyelination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dong, Y. et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci. 24, 489–503 (2021). This work shows that oxidized phospholipids are highly toxic to myelin, and that their removal by microglia in a TREM2-dependent manner confers neuroprotection in demyelinating lesions.

    Article  CAS  PubMed  Google Scholar 

  115. Chen, M. S. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Schwab, M. E. & Caroni, P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8, 2381–2393 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chuang, T. Y. et al. LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathol. Commun. 4, 68 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Butler, C. A. et al. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. 158, 621–639 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Shen, K. et al. Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep. 34, 108835 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. International Multiple Sclerosis Genetics Consortium et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article  Google Scholar 

  122. Weinger, J. G. et al. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis. J. Neuroinflammation 8, 49 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Binder, M. D. et al. Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J. Neurosci. 28, 5195–5206 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Westman, J., Grinstein, S. & Marques, P. E. Phagocytosis of necrotic debris at sites of injury and inflammation. Front. Immunol. 10, 3030 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Safaiyan, S. et al. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19, 995–998 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Storti, F. et al. Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration. eLife 8, e45100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dove, D. E., Linton, M. F. & Fazio, S. ApoE-mediated cholesterol efflux from macrophages: separation of autocrine and paracrine effects. Am. J. Physiol. Cell Physiol. 288, C586–C592 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Lin, C. Y., Duan, H. & Mazzone, T. Apolipoprotein E-dependent cholesterol efflux from macrophages: kinetic study and divergent mechanisms for endogenous versus exogenous apolipoprotein E. J. Lipid Res. 40, 1618–1627 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Hirsch-Reinshagen, V. et al. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J. Biol. Chem. 279, 41197–41207 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Meyers, E. A. & Kessler, J. A. TGF-β family signaling in neural and neuronal differentiation, development, and function. Cold Spring Harb. Perspect. Biol. 9, a022244 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hayakawa, K. et al. Vascular endothelial growth factor regulates the migration of oligodendrocyte precursor cells. J. Neurosci. 31, 10666–10670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hill, R. A., Patel, K. D., Medved, J., Reiss, A. M. & Nishiyama, A. NG2 cells in white matter but not gray matter proliferate in response to PDGF. J. Neurosci. 33, 14558–14566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wlodarczyk, A. et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 36, 3292–3308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. McKinnon, R. D., Piras, G., Ida, J. A. Jr. & Dubois-Dalcq, M. A role for TGF-β in oligodendrocyte differentiation. J. Cell Biol. 121, 1397–1407 (1993).

    Article  CAS  PubMed  Google Scholar 

  135. Locatelli, G. et al. IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation. Glia 71, 616–632 (2022).

    Article  PubMed  Google Scholar 

  136. DiToro, D. et al. Insulin-like growth factors are key regulators of T helper 17 regulatory T cell balance in autoimmunity. Immunity 52, 650–667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Berghoff, S. A. et al. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat. Neurosci. 24, 47–60 (2021). This work provides compelling evidence demonstrating how desmosterol and cholesterol processing in microglia may support myelin repair in demyelinating lesions.

    Article  CAS  PubMed  Google Scholar 

  138. Berghoff, S. A., Spieth, L. & Saher, G. Local cholesterol metabolism orchestrates remyelination. Trends Neurosci. 45, 272–283 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Sherafat, A., Pfeiffer, F., Reiss, A. M., Wood, W. M. & Nishiyama, A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat. Commun. 12, 2265 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Giera, S. et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. eLife 7, e33385 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Baror, R. et al. Transforming growth factor-β renders ageing microglia inhibitory to oligodendrocyte generation by CNS progenitors. Glia 67, 1374–1384 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Huang, W., Bai, X., Meyer, E. & Scheller, A. Acute brain injuries trigger microglia as an additional source of the proteoglycan NG2. Acta Neuropathol. Commun. 8, 146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lau, L. W. et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann. Neurol. 72, 419–432 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Skuljec, J. et al. Matrix metalloproteinases and their tissue inhibitors in cuprizone-induced demyelination and remyelination of brain white and gray matter. J. Neuropathol. Exp. Neurol. 70, 758–769 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Rempe, R. G., Hartz, A. M. S. & Bauer, B. Matrix metalloproteinases in the brain and blood–brain barrier: versatile breakers and makers. J. Cereb. Blood Flow. Metab. 36, 1481–1507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Goncalves DaSilva, A. & Yong, V. W. Matrix metalloproteinase-12 deficiency worsens relapsing–remitting experimental autoimmune encephalomyelitis in association with cytokine and chemokine dysregulation. Am. J. Pathol. 174, 898–909 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Madala, S. K. et al. Matrix metalloproteinase 12-deficiency augments extracellular matrix degrading metalloproteinases and attenuates IL-13-dependent fibrosis. J. Immunol. 184, 3955–3963 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Kaufmann, M. et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 25, 944–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  149. Buttgereit, A. et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397–1406 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. International Multiple Sclerosis Genetics, C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365, aav7188 (2019).

    Article  Google Scholar 

  151. Bryois, J. et al. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25, 1104–1112 (2022). This significant work comprehensively catalogues for the first time on a genome-wide level the genetic risk factors for MS that may disrupt microglial functions by interfering with activity at their distal CREs.

    Article  CAS  PubMed  Google Scholar 

  152. Davalos, D. et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3, 1227 (2012).

    Article  PubMed  Google Scholar 

  153. Petersen, M. A., Ryu, J. K. & Akassoglou, K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 19, 283–301 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Adams, R. A. et al. The fibrin-derived γ377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J. Exp. Med. 204, 571–582 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ryu, J. K. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat. Immunol. 19, 1212–1223 (2018). Together with Adams et al. (2007), this work demonstrates how vascular leakage of fibrin may trigger neuroinflammatory responses in the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Kirk, J., Plumb, J., Mirakhur, M. & McQuaid, S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. J. Pathol. 201, 319–327 (2003).

    Article  PubMed  Google Scholar 

  157. Baecher-Allan, C., Kaskow, B. J. & Weiner, H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron 97, 742–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446, 1091–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cantoni, C. et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 129, 429–447 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Poliani, P. L. et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170 (2015). Together with Cantoni et al. (2015), this work demonstrates for the first time the critical role of TREM2 signalling in coordinating microglial inflammatory responses in demyelinating lesions.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cignarella, F. et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 140, 513–534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837–854 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Gouna, G. et al. TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J. Exp. Med. 218, e20210227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dong, Y. & Yong, V. W. Oxidized phospholipids as novel mediators of neurodegeneration. Trends Neurosci. 45, 419–429 (2022).

    Article  CAS  PubMed  Google Scholar 

  168. Atagi, Y. et al. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J. Biol. Chem. 290, 26043–26050 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cochain, C. et al. Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ. Res. 122, 1661–1674 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Piccio, L. et al. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol. 37, 1290–1301 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Alaamery, M. et al. Role of sphingolipid metabolism in neurodegeneration. J. Neurochem. 158, 25–35 (2021).

    Article  CAS  PubMed  Google Scholar 

  173. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Calabresi, P. A. et al. Safety and efficacy of fingolimod in patients with relapsing–remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 545–556 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Groves, A., Kihara, Y. & Chun, J. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J. Neurol. Sci. 328, 9–18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Colombo, E. & Farina, C. Lessons from S1P receptor targeting in multiple sclerosis. Pharmacol. Ther. 230, 107971 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Kim, S. et al. Functional antagonism of sphingosine-1-phosphate receptor 1 prevents cuprizone-induced demyelination. Glia 66, 654–669 (2018).

    Article  PubMed  Google Scholar 

  178. Kim, H. J. et al. Neurobiological effects of sphingosine 1-phosphate receptor modulation in the cuprizone model. Faseb J. 25, 1509–1518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Jackson, S. J., Giovannoni, G. & Baker, D. Fingolimod modulates microglial activation to augment markers of remyelination. J. Neuroinflammation 8, 76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bogie, J. F. J. et al. Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J. Exp. Med. 217, e20191660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chu, T. T. et al. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature 596, 570–575 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kollias, G., Douni, E., Kassiotis, G. & Kontoyiannis, D. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann. Rheum. Dis. 58, I32–I39 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Witmer-Pack, M. D. et al. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J. Cell Sci. 104, 1021–1029 (1993).

    Article  PubMed  Google Scholar 

  185. De, I. et al. CSF1 overexpression has pleiotropic effects on microglia in vivo. Glia 62, 1955–1967 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Wegiel, J. et al. Reduced number and altered morphology of microglial cells in colony stimulating factor-1-deficient osteopetrotic op/op mice. Brain Res. 804, 135–139 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Gomez-Nicola, D., Fransen, N. L., Suzzi, S. & Perry, V. H. Regulation of microglial proliferation during chronic neurodegeneration. J. Neurosci. 33, 2481–2493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Tanabe, S., Saitoh, S., Miyajima, H., Itokazu, T. & Yamashita, T. Microglia suppress the secondary progression of autoimmune encephalomyelitis. Glia 67, 1694–1704 (2019).

    PubMed  Google Scholar 

  189. Wlodarczyk, A. et al. CSF1R stimulation promotes increased neuroprotection by CD11c+ microglia in EAE. Front. Cell Neurosci. 12, 523 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Laflamme, N. et al. mCSF-induced microglial activation prevents myelin loss and promotes its repair in a mouse model of multiple sclerosis. Front. Cell Neurosci. 12, 178 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kocur, M. et al. IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathol. Commun. 3, 20 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Traugott, U. & Lebon, P. Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann. Neurol. 24, 243–251 (1988).

    Article  CAS  PubMed  Google Scholar 

  193. McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Prinz, M. et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28, 675–686 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Goldmann, T. et al. USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J. 34, 1612–1629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Schmidt, H. et al. Type I interferon receptor signalling is induced during demyelination while its function for myelin damage and repair is redundant. Exp. Neurol. 216, 306–311 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Trebst, C. et al. Lack of interferon-β leads to accelerated remyelination in a toxic model of central nervous system demyelination. Acta Neuropathol. 114, 587–596 (2007).

    Article  CAS  PubMed  Google Scholar 

  199. Csumita, M. et al. Specific enhancer selection by IRF3, IRF5 and IRF9 is determined by ISRE half-sites, 5′ and 3′ flanking bases, collaborating transcription factors and the chromatin environment in a combinatorial fashion. Nucleic Acids Res. 48, 589–604 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Rothlin, C. V., Ghosh, S., Zuniga, E. I., Oldstone, M. B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  201. Lemke, G. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 5, a009076 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Yan, Z. et al. Deficiency of Socs3 leads to brain-targeted EAE via enhanced neutrophil activation and ROS production. JCI Insight 5, e126520 (2019).

    Article  PubMed  Google Scholar 

  203. Chinetti, G. et al. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat. Med. 7, 53–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Bogie, J. F. et al. Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol. Commun. 1, 43 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Straus, D. S. & Glass, C. K. Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms. Trends Immunol. 28, 551–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  206. Doroshenko, E. R. et al. Peroxisome proliferator-activated receptor-δ deficiency in microglia results in exacerbated axonal injury and tissue loss in experimental autoimmune encephalomyelitis. Front. Immunol. 12, 570425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Boven, L. A. et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129, 517–526 (2006).

    Article  PubMed  Google Scholar 

  208. Jovanovic, M. et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science 347, 1259038 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Lee, M. J. et al. IKKβ-mediated inflammatory myeloid cell activation exacerbates experimental autoimmune encephalomyelitis by potentiating TH1/TH17 cell activation and compromising blood brain barrier. Mol. Neurodegener. 11, 54 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Jie, Z. et al. Microglia promote autoimmune inflammation via the noncanonical NF-κB pathway. Sci. Adv. 7, eabh0609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ennerfelt, H. et al. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell 185, 4135–4152 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Montalban, X. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med. 380, 2406–2417 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Reich, D. S. et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 20, 729–738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Baba, Y. et al. BLNK mediates Syk-dependent Btk activation. Proc. Natl Acad. Sci. USA 98, 2582–2586 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hendriks, R. W., Yuvaraj, S. & Kil, L. P. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat. Rev. Cancer 14, 219–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  217. Pellerin, K. et al. MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain 144, 2361–2374 (2021).

    Article  PubMed  Google Scholar 

  218. Middendorp, S. et al. Tumor suppressor function of Bruton tyrosine kinase is independent of its catalytic activity. Blood 105, 259–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Nam, H. Y. et al. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J. Neuroinflammation 15, 271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010). Together with Heinz et al. (2010), this work characterizes for the first time the repertoire of distal CREs in macrophages, and provides evidence for a general, hierarchical model for the selection and function of cell-type-specific enhancers.

    Article  CAS  PubMed  Google Scholar 

  222. Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Karr, J. P., Ferrie, J. J., Tjian, R. & Darzacq, X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer–promoter communication. Genes Dev. 36, 7–16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ren, B. & Yue, F. Transcriptional enhancers: bridging the genome and phenome. Cold Spring Harb. Symp. Quant. Biol. 80, 17–26 (2015).

    Article  PubMed  Google Scholar 

  225. Xavier, A. M. et al. Systematic delineation of signaling and epigenomic mechanisms underlying microglia inflammatory activity in acute and chronic brain pathologies. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2022.08.04.502805v1 (2022).

  226. Perera, R. M., Di Malta, C. & Ballabio, A. MiT/TFE family of transcription factors, lysosomes, and cancer. Annu. Rev. Cancer Biol. 3, 203–222 (2019).

    Article  PubMed  Google Scholar 

  227. Haney, M. S. et al. Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat. Genet. 50, 1716–1727 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Daniel, B. et al. The transcription factor EGR2 is the molecular linchpin connecting STAT6 activation to the late, stable epigenomic program of alternative macrophage polarization. Genes. Dev. 34, 1474–1492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Belhocine, S. et al. Context-dependent transcriptional regulation of microglial proliferation. Glia 70, 572–589 (2022).

    Article  CAS  PubMed  Google Scholar 

  230. Glass, C. K. & Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  231. Mishra, M. K. et al. Harnessing the benefits of neuroinflammation: generation of macrophages/microglia with prominent remyelinating properties. J. Neurosci. 41, 3366–3385 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Heinz, S. et al. Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Novakovic, B. et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167, 1354–1368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhang, X. et al. Epigenetic regulation of innate immune memory in microglia. J. Neuroinflammation 19, 111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kaikkonen, M. U. et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Cheng, Q. J. et al. NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages. Science 372, 1349–1353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Mehta, V. et al. Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS ONE 8, e57573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Schuh, C. et al. Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models. Acta Neuropathol. 128, 247–266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pandur, E. et al. Relationship of iron metabolism and short-term cuprizone treatment of C57BL/6 mice. Int. J. Mol. Sci. 20, 2257 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022). This study provides the most robust evidence to date implicating EBV infection as a causative factor in MS aetiology.

    Article  CAS  PubMed  Google Scholar 

  244. Wirtz, T. et al. Mouse model for acute Epstein–Barr virus infection. Proc. Natl Acad. Sci. USA 113, 13821–13826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Li, R., Patterson, K. R. & Bar-Or, A. Reassessing B cell contributions in multiple sclerosis. Nat. Immunol. 19, 696–707 (2018).

    Article  CAS  PubMed  Google Scholar 

  246. Jain, R. W. & Yong, V. W. B cells in central nervous system disease: diversity, locations and pathophysiology. Nat. Rev. Immunol. 22, 513–524 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Weber, M. S. et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann. Neurol. 68, 369–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Franklin, R. J. M. & Simons, M. CNS remyelination and inflammation: from basic mechanisms to therapeutic opportunities. Neuron 110, 3549–3565 (2022).

    Article  CAS  PubMed  Google Scholar 

  249. Green, A. J. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390, 2481–2489 (2017).

    Article  CAS  PubMed  Google Scholar 

  250. Brown, J. W. L. et al. Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): a randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurol. 20, 709–720 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Brown, J. W. L. et al. Remyelination varies between and within lesions in multiple sclerosis following bexarotene. Ann. Clin. Transl. Neurol. 9, 1626–1642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Roszer, T., Menendez-Gutierrez, M. P., Cedenilla, M. & Ricote, M. Retinoid X receptors in macrophage biology. Trends Endocrinol. Metab. 24, 460–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  253. Mundt, S., Greter, M. & Becher, B. The CNS mononuclear phagocyte system in health and disease. Neuron 110, 3497–3512 (2022).

    Article  CAS  PubMed  Google Scholar 

  254. Kierdorf, K., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20, 547–562 (2019).

    Article  CAS  PubMed  Google Scholar 

  255. Mildenberger, W., Stifter, S. A. & Greter, M. Diversity and function of brain-associated macrophages. Curr. Opin. Immunol. 76, 102181 (2022).

    Article  CAS  PubMed  Google Scholar 

  256. Lee, J. et al. QUAKING regulates microexon alternative splicing of the Rho GTPase pathway and controls microglia homeostasis. Cell Rep. 33, 108560 (2020).

    Article  CAS  PubMed  Google Scholar 

  257. Ren, J. et al. Qki is an essential regulator of microglial phagocytosis in demyelination. J. Exp. Med. 218, e201903 (2021).

    Article  Google Scholar 

  258. Becher, B., Spath, S. & Goverman, J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 17, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Vela, J. M., Molina-Holgado, E., Arevalo-Martin, A., Almazan, G. & Guaza, C. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Mol. Cell Neurosci. 20, 489–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  260. Grajchen, E., Hendriks, J. J. A. & Bogie, J. F. J. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol. Commun. 6, 124 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Borggrewe, M. et al. VISTA regulates microglia homeostasis and myelin phagocytosis, and is associated with MS lesion pathology. Acta Neuropathol. Commun. 9, 91 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Ransohoff, R. M. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat. Neurosci. 15, 1074–1077 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Constantinescu, C. S., Farooqi, N., O’Brien, K. & Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol. 164, 1079–1106 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hoftberger, R. et al. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol. 139, 875–892 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  265. T Hart, B. A., Gran, B. & Weissert, R. EAE: imperfect but useful models of multiple sclerosis. Trends Mol. Med. 17, 119–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  266. Wagner, C. A., Roque, P. J., Mileur, T. R., Liggitt, D. & Goverman, J. M. Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. J. Clin. Invest. 130, 203–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  267. Hauser, S. L. et al. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann. Neurol. 19, 578–587 (1986).

    Article  CAS  PubMed  Google Scholar 

  268. Frischer, J. M. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132, 1175–1189 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Caravagna, C. et al. Diversity of innate immune cell subsets across spatial and temporal scales in an EAE mouse model. Sci. Rep. 8, 5146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Lindsey, J. W. et al. Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis. Ann. Neurol. 36, 183–189 (1994).

    Article  CAS  PubMed  Google Scholar 

  271. van Oosten, B. W. et al. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49, 351–357 (1997).

    Article  PubMed  Google Scholar 

  272. Cobbold, S. P., Jayasuriya, A., Nash, A., Prospero, T. D. & Waldmann, H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312, 548–551 (1984).

    Article  CAS  PubMed  Google Scholar 

  273. Dang, A. K., Jain, R. W., Craig, H. C. & Kerfoot, S. M. B cell recognition of myelin oligodendrocyte glycoprotein autoantigen depends on immunization with protein rather than short peptide, while B cell invasion of the CNS in autoimmunity does not. J. Neuroimmunol. 278, 73–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  274. Jain, R. W. et al. Autoreactive, low-affinity T cells preferentially drive differentiation of short-lived memory B cells at the expense of germinal center maintenance. Cell Rep. 25, 3342–3355 (2018).

    Article  CAS  PubMed  Google Scholar 

  275. Hauser, S. L. et al. Ocrelizumab versus interferon β-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. Hauser, S. L. et al. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med. 383, 546–557 (2020).

    Article  CAS  PubMed  Google Scholar 

  277. Zirngibl, M., Assinck, P., Sizov, A., Caprariello, A. V. & Plemel, J. R. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol. Neurodegener. 17, 34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Denic, A. et al. The relevance of animal models in multiple sclerosis research. Pathophysiology 18, 21–29 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Boisvert for assistance with manuscript editing, and M. Toghi for assistance with preparation of figures. F.D.-G. is supported by a Doctoral award from the Canadian Institutes of Health Research (CIHR). This work was supported by grants awarded to D.G. from the Scottish Rite Charitable Foundation of Canada, Multiple Sclerosis Society of Canada, Alzheimer’s Society of Canada and CIHR.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to David Gosselin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks L. Piccio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antigen presentation

A process whereby antigens bound to a cell’s major histocompatibility complex (MHC) class I or II surface receptors are presented, respectively, to CD8 or CD4 lymphocytes to induce their activation.

Chemokines

Soluble proteins that mediate recruitment of cells through chemotaxis.

Cis-regulatory elements

(CREs). Genomic regulatory elements that encompass binding sites for transcription factors implicated in the regulation of associated genes.

Complement pathway

A coordinated protein cascade involved in immune defence; also increasingly involved in mediating essential functions in the development and maintenance of neuronal circuitries.

Cytokine

A soluble protein that mediates cell-to-cell communication.

Damage-associated molecular patterns

(DAMPs). Endogenous molecules typically released by injured cells that are endowed with the ability to trigger potent inflammatory responses.

Demyelinating lesions

Lesions of the nervous system characterized by damage and/or loss of myelin on axons.

Endolysosomal system

A system of cell biology that mediates trafficking, recycling and/or disposal through proteolysis of molecular cargo contained within membranous organelles.

Gene promoters

Genomic regulatory elements that encompass transcriptional start sites of protein-coding genes along with binding sites for transcription factors involved in the recruitment and positioning of the RNA polymerase II transcriptional complex.

Genetic susceptibility variants

Genetic alterations that increase risk for the development of a disease or disorder.

Inflammasome

A protein complex that cleaves the pro-form of interleukin-1β (IL-1B) and other IL-1 family members to produce their mature, signalling forms.

Lipofuscin

Granules, largely composed of lipid remains, that may form and persist over time in lysosomes under certain circumstances.

Multiplexed protein imaging

Techniques that enable the detection and quantification of multiple target proteins in parallel, or serially, in situ.

Opsonization

A process whereby proteins bind and coat targeted structures to enable and/or facilitate their disposal.

Phagocytosis

A form of endocytosis involved in the internalization of particles larger than 0.5 μm in diameter.

Reactive oxygen species

(ROS). Highly reactive chemicals produced through the partial reduction of oxygen.

Scavenger receptors

A diverse group of cell surface receptors that mediate endocytosis of a wide variety of particles, including lipids, carbohydrates and apoptotic cells.

Single-cell RNA sequencing

A gene profiling technique that allows the comprehensive assessment of relative gene expression at the single-cell level.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Distéfano-Gagné, F., Bitarafan, S., Lacroix, S. et al. Roles and regulation of microglia activity in multiple sclerosis: insights from animal models. Nat Rev Neurosci 24, 397–415 (2023). https://doi.org/10.1038/s41583-023-00709-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00709-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing