

California 2021 Solar PV Events

NERC/WECC Event Analysis and Engineering

Ryan Quint, Rich Bauer, NERC James Hanson, Curtis Holland, WECC Industry Webinar – May 2022

Opening Remarks

Branden Sudduth

Vice President Reliability Planning and Performance Analysis

Introductions

Ryan Quint Senior Manager, NERC

Curtis Holland Staff Reliability Specialist, WECC

Rich Bauer Associate Principal Engineer, NERC

James Hanson Senior Engineer, WECC

NERC Disturbance Reports and Alerts

CA 2021 Disturbances Report

Multiple Solar PV Disturbances in

CAISO

NERC

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Disturbances between June and August 2021 Joint NERC and WECC Staff Report

April 2022

RELIABILITY | RESILIENCE | SECURITY

3353 Peachtree Road NE Suite 600, North Tower Atlanta, GA 30326 404-446-2560 | www.nerc.com

https://www.nerc.com/pa/rrm/ea/Pages/CAISO-2021-Disturbance-Report.aspx

Interconnection Queues

Overview of Disturbances and Causes of Generation Reductions

- Situational awareness tools identified disturbances WECC and NERC low frequency alarms coincident with fault events
- WECC and CAISO confirmed widespread solar PV reduction coincident with fault
- Categorized as NERC <u>Event Analysis</u> Program Category 1i event
- CAISO provided Brief Reports for each events, identifying resources involved
- WECC initiated RFIs to affected facilities follow-up discussions needed to identify root causes of reduction for most facilities
- NERC and WECC engaged affected generator owners for facilities that reduced output more than 10 MW

Overview of Events

Table ES.1: Overview of Disturbances				
Disturbance and Name	Initiating Fault Event	Description of Resource Loss*		
June 24, 2021 "Victorville"	Phase-to-Phase Fault on 500 kV Line	Loss of 765 MW of solar PV resources (27 facilities) Loss of 145 MW of DERs		
July 4, 2021 "Tumbleweed"	Phase-to-Phase Fault on 500 kV Line	Loss of 605 MW of solar PV resources (33 facilities) Loss of 125 MW at natural gas facility Loss of 46 MW of DERs		
July 28, 2021 "Windhub"	Single-Line-to-Ground Fault on 500 kV Circuit Breaker	Loss of 511 MW of solar PV resources (27 facilities) Loss of 46 MW of DERs		
August 25, 2021 "Lytle Creek Fire"	Phase-to-Phase Fault on 500 kV Line	Loss of 583 MW of solar PV resources (30 facilities) Loss of 212 MW at natural gas facility Loss of 91 MW at a different natural gas facility		

* All events occurred in afternoon (12:00 and 4:00 p.m. Pacific)

Four Events in California in 2021

Table 1.1: CAISO Predisturbance Operating Conditions [Source: CAISO]								
Operating Condition	June 24, 2021		July 4, 2021		July 28, 2021		Aug 25, 2021	
	Value	%	Value	%	Value	%	Value	%
CAISO Internal Net Demand	30,513	N/A	28,185	N/A	33,003	N/A	32,523	N/A
Solar PV Output [MW]	11,373	37.3%	11,404	40.5%	10,892	33%	11,526	35.4%
Wind Output [MW]	2,268	7.4%	3,156	11.2%	172	0.5%	1,407	4.3%
BESS Output [MW]	-115	-0.4%	-249	-0.9%	-169	-0.5%	100	0.3%

Growing Solar PV Portfolio

Table 2.1: Causes of Reduction						
Cause of Reduction	June 24 [MW]	July 4 [MW]	July 28 [MW]	August 25 [MW]		
Slow Active Power Recovery	111	193	184	91		
Momentary Cessation	310	120	192	447		
Cause Unknown	103	103	112	24		
Inverter DC Voltage Unbalance	-	77	15	4		
Inverter AC Overcurrent	49	74	17	13		
Inverter DC Overcurrent	98	9	47	3		
Inverter UPS Failure	-	4	-	-		
Inverter Overfrequency	-	-	43	18		
Inverter Underfrequency	14	-	-	-		
Inverter AC Undervoltage	100	-	16	-		
Total	785	566	626	600		

Causes of Solar PV Reduction

Figure 2.1: June 24 Disturbance Causes of Solar PV Reduction

Figure 2.3: July 28 Disturbance Causes of Solar PV Reduction

Figure 2.2: July 4 Disturbance Causes of Solar PV Reduction

Figure 2.4: August 25 Disturbance Causes of Solar PV Reductions

Cause Unknown – Inability to Perform Root Cause Analysis

- Lacking necessary recording data
 - Poor resolution SCADA data, difficulties coordinating with plant personnel
 - No fault code data retrievable from inverters, inverter overwriting
 - No high-speed recording (e.g., DFR data) at plant POI
- Plant personnel unaware facility reduced output
- Plant personnel unable to access inverter information
 - Fault codes, inverter oscillography, inverter settings, etc.
- Inverters from manufacturers now out of business—no access to inverter information, no ability to make changes
- Difficulties for plant personnel working with manufacturers
 - Workload, prioritization, long lead times for support, etc.
- Plant change in ownership
- Non-BES facilities chose not to respond to RFIs nor participate in follow-up
- Challenges coordinating between inverter and plant-level controller manufacturers (and third-party consultants)

Momentary Cessation

- Plants with legacy inverters no means of eliminating or modifying settings
 - Will continue adverse performance for lifetime of project
 - Momentary cessation applied when voltage falls below ~ 0.9 pu
 - Inverters should recover to predisturbance output relatively quickly when voltage recovers
- Some newer plants tripped but also stated they have momentary cessation
 - Appear to conflict with existing CAISO interconnection requirements
- Ongoing plant-level controller interactions very slow active power recovery
 - Uncoordinated control of inverter and plant-level controllers
 - Inappropriate use of plant controller limits; negatively impacts grid stability
- Not meeting recommended performance in NERC reliability guidelines

Plant Controller Interactions Persist

Example: Plant with Legacy Inverters

- Momentary cessation settings:
 - Voltage threshold: 0.875 pu
 - Delay to recover: 1.020 sec
 - Recovery ramp rate: 8.2%/sec
- Expect recovery to pre-disturbance in about 13-14 seconds
- Plant requires about 4 minutes to restore output

• Systemic issue seen across many facilities – big and small, old and new

Plant Controller Interactions Persist ...Yet Can Be Fixed

- NERC and WECC engaged affected entity to inform them of issues
- Plant owner worked with internal controls team and inverter manufacturer to develop mitigation
- Legacy plant-level controller from entity now out of business
 - Problem: Slower response time due to set point change that plant-level controller sends after faults, trigger "normal" plant-level ramp rate rather than the faster 8.2%/second ramp rate expected from the inverters after faults
 - Solution: Plant owner/operator added latch to plant-level controller that holds P and Q set points when voltage is outside of nominal (i.e., below 0.9 pu or above 1.1 pu) and for a specified time delay to allow inverters to fully recover
 - Allow inverters to respond as fast as possible to faults while maintaining ability to control plant voltage within schedule.
- NERC and WECC monitoring performance of plant for future events

- Dynamic response to fault event
 - Inverters programmed with momentary cessation *disabled* reactive current injection (e.g., K-factor control) enabled.
- Fault clears in ~50 ms, voltage recovers very quickly
- Active power recovery to predisturbance levels extended many seconds (or minutes)
 - Beyond the recommendations specified in NERC reliability guidelines

Overcurrent Protection

DC Overcurrent

- One large solar PV facility, legacy inverters; most inverters tripped
- Inverters have parallel-connected IGBT bridges (dc in, 3-phase ac out)
 All parallel bridges initiated a dc overcurrent trip
- Issue identified in Blue Cut Fire, led inverter manufacturer to disable fast dc current protection for all newer inverters
 - Legacy inverters require fast dc overcurrent protection remain enabled

AC Overcurrent

- Multiple facilities and three inverter manufacturers
 - Pronounced issue for one inverter manufacturer specifically
- Appears to be issue for older inverter models
- Inverter protection typically set at 110–150% of rated ac current (instantaneous peak)

- Facility #1: Inverters trip on overfrequency (61.7 Hz for 1 ms)
- Facility #2: Inverters trip on underfrequency (59.3 Hz for 20 ms)
- Near-instantaneous trip timer, unnecessary tripping risk
 - Spikes in calculated frequency during voltage phase jumps during faults
 - Exact issue identified in Blue Cut Fire
 - Attempted to be corrected/clarified in PRC-024-3
 - Protection settings not based on equipment limitations
- Recommendation that inverter manufacturer proactively update settings at all existing facilities

Table 2.2: Inverter Frequency Protection Settings				
Setting	Threshold and Timer	Setting	Threshold and Timer	
OF1	61.7 Hz for 0.001 seconds	UF1	57.0 Hz for 0.0 seconds	
OF2	61.6 Hz for 30 seconds	UF2	57 Hz for 0.02 seconds	
OF3	60.6 Hz for 180 seconds	UF3	59.3 Hz for 0.02 seconds	

- Two facilities involved
- One non-BES facility ac undervoltage protection set within PRC-024-3 voltage boundaries
 - NERC recommended facility owner consider extending undervoltage trip settings, if possible, to help ensure resource ride-through for BPS faults
- Feedback from OEM enabled modified settings based on equipment capabilities

- DC Voltage Imbalance
 - Inverters from one manufacturer
 - Unbalanced DC voltage conditions
 - DC positive and negative voltages relative to midpoint dc voltage exceeded a pre-defined threshold
 - May be unstable negative sequence voltage
- Uninterruptible Power Supply Failure
 - A few inverters tripped on uninterruptible power supply failure, remained off-line for rest of day
 - Plant owner manually restored inverters to service after inspection
 - No additional details were provided regarding the failure

- One plant owner planning changes to default return-to-service delay following "minor faults"
 - Minor faults: inverter initiates automatic restart (no manual intervention)
 - Inverters typically attempt automatic restart after restart timer (assuming healthy grid voltage and frequency)
- Most common timer is 300 seconds artifact of IEEE 1547
 - IEEE 1547 should not be used or applied to BPS-connected resources
- Default restart time can be much faster as low as 0 seconds
- Recommendations:
 - All plant owners/operators should seek input and feedback from their Balancing Authority and Reliability Coordinator on appropriate return-toservice settings
 - NERC guidelines recommend this be established clearly in interconnection requirements

- June 24 145 MW July 4 46 MW July 28 46 MW
 - Observed in past events Angeles Forest, Palmdale Roost, San Fernando
- Challenging to quantify aggregate DER response during faults
 - Non-synchronized, area-wide load SCADA points may be calculated using summations pre- and post-fault
 - Area Load = Intertie + Metered Generation
 - Difficulty differentiating load response from DER response with lack of metering information available
 - Individual SCADA load points provides more reliable data of net load changes and possible DER tripping
 - Example: power flow across a 230/66 kV transformer bank
 - Process is more time consuming, and should be automated if possible

• July 4

- Combustion turbine at a combined cycle plant (125 MW)
- Tripped due to two unhealthy sensors power transducer and one dead fuel humidity sensor
 - Turbine controls operated incorrectly during fault

• August 25

- Unexpected/unplanned RAS operation
 - Natural gas turbine tripped (212 MW) when 220 kV line exceeded RAS trip level
 - RAS initiated generator trip during power swing after fault
- Combustion turbine tripping
 - Natural gas turbine tripped (91 MW) excitation system diode failures
 - Redundant diodes requires manual inspection to identify failure undetected prior to event
 - Response of unit to fault likely led to failure of second diode and unit tripping
 - The plant has increased their inspection rate to avoid this issue in the future

Discussion on Modeling and Studies *The Real Root Cause of These Events*

- Accurate modeling critical to BPS reliability
 - Inaccurate models \rightarrow inaccurate studies \rightarrow inaccurate reliability decisions
- Systemic modeling risks for solar PV fleet today

Example: Model recovers in 0.25 seconds. Actual recovers in 90+ seconds.

- All the disclaimers in the positive sequence column lead to modeling errors
- EMT models have much better capability require expertise to create, parameterize, validate, and use

Table: Modeling Capabilities and Challenges					
Name	Positive Sequence RMS	Electromagnetic Transient			
AC Overcurrent	No	Yes			
DC Overcurrent	No	Yes			
AC Overvoltage	No, Sub-Cycle	Maybe			
AC Undervoltage	Yes, If Modeled	Yes			
Underfrequency	Yes, If Modeled	Yes			
Overfrequency	Yes, If Modeled	Yes			
Momentary Cessation	Yes	Yes			
Plant Controller Interactions	Maybe*	Maybe*			
Slow Active Power Recovery	Poor Parameterization	Yes			
DC Voltage Imbalance	No	Maybe			
UPS Failure	Not Modeled	Not Modeled			

* Unlikely to be identified during interconnection studies

Modeling Requirements

Reliability CORPORATION Reliability Guideline Improvements to Interconnection Requirements for BPS-Connected Inverter-Based Resources

September 2019

NFR

RELIABILITY | RESILIENCE | SECURITY

3353 Peachtree Road NE Suite 600, North Tower Atlanta, GA 30326 404-446-2560 | www.nerc.com

- Recommendation:
 - Establish clear, detailed, and necessary modeling requirements per FAC-001 and FAC-002 standards
 - Ensure sufficient model quality checks are in place
 - Enforce model quality reviews and checks throughout interconnection study process, planning studies, and operational planning assessments
 - Recognize that bad models lead to unnecessary or inaccurate studies, which lead to re-work and possible reliability risks

Complex Generator Interconnection Study Process

- Complex process
- Inconsistent modeling and study requirements
- Lack of clarity at time of request
- Changes in equipment and settings throughout process
- Short timeline to run detailed studies, if needed
- Lack of transparency and "sign-offs" on critical decisions
- Lack of mutual agreement and understanding about equipment settings/models
- Little to no model "true-up" at time of commissioning
- Process improvements needed
 - Difficult for both generation and transmission sides

Balancing Act

Under Conditions of High Penetrations of Inverter-Based Resources...

Adequate Assurance of Reliability

- Accurate and validated models
- Model quality checks
- Detailed stability studies
- EMT studies when needed

Speed of Interconnection

- Fast, effective, streamlined
- Minimal re-work
- Clear modeling requirements
- Quick studies

Rapidly Increasing Levels of Inverter-Based Resources

Key Findings and Recommendations

Reiterating the Odessa Report Recommendations

Recommendation #1: Adopt the Reliability Guidelines

- IRPS guidelines widely known and referenced across industry
- However, industry not comprehensively adopting recommendations – leaves gaps
- All GOs, GOPs, developers, and equipment manufacturers should adopt the performance recommendations
- All TOs should establish or improve clear and consistent interconnection requirements for BPS-connected inverter-based resources
 - NERC FAC-001 and FAC-002

- Inverter-based resources currently being interconnected in an unreliable manner
- Significant improvements needed to FERC Generator Interconnection Process and Generator Interconnection Agreement
- Need comprehensive requirements that must be met during interconnection process
 - Should ensure reliable operation of resources *prior to* commercial operation
 - Poor models, inadequate studies, gaps in performance requirements
- Needs to be addressed in GIP and GIA; should not be left up to individual interconnecting TOs using only NERC FAC-001-3

- Significant enhancements needed to NERC Reliability Standards to address gaps in modeling, studies, and performance of BES inverter-based resources
 - Strong technical justification based on multiple disturbance reports
- NERC strongly recommends the RSTC to ensure development of SARS to address the following performance issues:
 - Performance Validation Standard Needed
 - Ride-Through Standard to Replace PRC-024-3
 - Analysis and Reporting for Abnormal Inverter Operations
 - Monitoring Data Improvements
 - Inverter-Specific Performance Requirements

- NERC strongly recommends the RSTC to ensure development of SARS to address the following modeling/studies issues:
 - Requirements for Accurate EMT Models at Time of Interconnection Update FAC-001 and FAC-002
 - Update NERC MOD-032 to Include EMT Modeling
 - Updates to Ensure Model Quality Checks and Model Improvements

- Adopting the Recommendations in NERC Guidelines
 - Improvements to Interconnection Requirements
- Performance Validation and Follow-Up with Affected Facilities
- Event Analysis Improvements
 - Understanding momentary cessation versus tripping
 - Analyzing smaller events
 - Proactively engaging plant owners
 - Clarifying plant naming conventions
- Detailed Model Quality Review

- Tailored recommendations to affected plant owners
- Quarterly follow-up until recommendations completed
 - Understanding of limitations or inability to mitigate issues
- Better tracking and documenting "legacy" facilities
- Concerted modeling improvement efforts

NERC Technical Follow-Up

- Better outreach to development community
 - Project developers
 - Engineering, procurement, and construction (EPC) entities
 - Protection and control contractors
 - Consultants
 - Etc.
- Ongoing engagement and outreach to manufacturers
 - Plant controller manufacturers
 - Inverter manufacturers
- Coordination with industry groups
 - SEIA, ESIG, NATF, NAGF, etc.

NER NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

NERC Inverter-Based Resource Performance Subcommittee Activities

Questions and Answers

If interested in participating in the NERC Inverter-Based Resource Performance Subcommittee (IRPS), please reach out to Ryan Quint (<u>ryan.quint@nerc.net</u>).