


































In this way we will obtain all possible (finite dimensional) representations
of the Lorentz group.

In order to obtain the transformation law for spinors we will consider the
set of 2 × 2 complex matrices with determinant =1. These form the group
called SL(2,C). We will represent the Lorentz group by the action of these
matrices on two component complex spinors. Equivalently we could build the
spinor transformation law from the spin 1

2
angular momentum representation

matrices familiar from quantum mechanics, the Pauli matrices. Once we
know the action of �N and �N † on the spinors we can reconstruct that of Mμν .
However, it is more useful and to the point to proceed by considering directly
SL(2,C). To obtain the relation of the Lorentz group to SL(2,C) we must first
recall that there exists a one to one correspondence between 2× 2 Hermitian
matrices and space-time points. The Pauli matrices

(σ0)αα̇ ≡
(

1 0
0 1

)
αα̇

(σ1)αα̇ ≡
(

0 1
1 0

)
αα̇

(σ2)αα̇ ≡
(

0 −i
+i 0

)
αα̇

(σ3)αα̇ ≡
(

1 0
0 −1

)
αα̇

, (II.1)

where α = 1, 2 labels the two rows and α̇ = 1, 2 labels the two columns, form
a basis for 2 × 2 Hermitian matrices. Let Xαα̇ be a Hermitian matrix, that
is,

X† = X

(X∗)α̇α = (X)αα̇. (II.2)

It has the general form

Xαα̇ =
(

(x0 + x3) (x1 − ix2)
(x1 + ix2) (x0 − x3)

)
αα̇

= xμ(σ
μ)αα̇ ≡� xαα̇ (II.3)

for xμ real with � x called “x slash”. Thus corresponding to any 4 vector xμ

we associate a 2 × 2 Hermitian matrix Xαα̇ by equation (II.3). Using the
trace relation for the product of two Pauli matrices

(σμ)αα̇(iσ2)α̇β̇(σ
ν T )β̇β(iσ2)βα = −2gμν ,
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or more succinctly written

Tr[σμ(iσ2)σν T (iσ2)] = −2gμν , (II.4)

we have for every Hermitian matrix Xαα̇ an associated four vector xμ

xμ = −1

2
Tr[X(iσ2)σμ T (iσ2)]. (II.5)

This correspondence is one to one (we will use X = � x in what follows to
underscore this correspondence).

Simplifying the notation, since we would like to keep our dotted and
undotted indices separate that is when we sum over indices we would like
them to be of the same type in order to avoid extra confusion, we introduce
an antisymmetric tensor εαβ, that is, εαβ = −εβα with ε12 = +1 and with
lowered indices

εαβ = −εαβ = −εβα,

that is ε12 = −ε12 = −1. Note that the matrix is the same when we use
dotted indices, that is,

εαβ = (iσ2)αβ =
(

0 1
−1 0

)
αβ

εα̇β̇ = (iσ2)α̇β̇ =
(

0 1
−1 0

)
α̇β̇

. (II.6)

Also note that
εαβεβγ = δα

γ

εα̇β̇εβ̇γ̇ = δα̇
γ̇.

Then we can define the Pauli matrices with upper indices

(σ̄μ)α̇α ≡ εαβεα̇β̇(σμ)ββ̇

= −(iσ2)α̇β̇(σμ T )β̇β(iσ2)βα. (II.7)

We can write the trace condition as

(σμ)αα̇(σ̄ν)α̇α = +2gμν (II.8)
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and equation (II.5) has the simple form

xμ = +
1

2
( � x)αα̇(σ̄μ)α̇α = +

1

2
Tr[ � xσ̄μ]. (II.9)

The σ̄μ matrices are given by

(σ̄0)α̇α ≡
(

1 0
0 1

)
α̇α

= +(σ0)α̇α

(σ̄1)α̇α ≡
(

0 −1
−1 0

)
α̇α

= −(σ1)α̇α

(σ̄2)α̇α ≡
(

0 +i
−i 0

)
α̇α

= −(σ2)α̇α

(σ̄3)α̇α ≡
(−1 0

0 +1

)
α̇α

= −(σ3)α̇α. (II.10)

We can readily derive the completeness properties of the Pauli matrices

(σμ)αα̇(σ̄ν)α̇α = +2gμν (II.11)

(σμ)αα̇(σ̄μ)
β̇β = +2δ β

α δ
β̇
α̇. (II.12)

Further products of two yield

(σμ)αα̇(σ̄ν)α̇β + (σν)αα̇(σ̄μ)α̇β = 2gμνδ β
α

(σ̄μ)α̇α(σν)αβ̇ + (σ̄ν)α̇α(σμ)αβ̇ = 2gμνδα̇
β̇
. (II.13)

If S is an element of SL(2,C) (that is 2 × 2 complex matrices with deter-
minant equal to one) with matrix elements S β

α , where α labels the rows and
β labels the columns, and � x is a Hermitian matrix, then we can define the
transformed matrix � x′ as

( � x′)αα̇ = S β
α ( � x)ββ̇S

∗β̇
α̇ (II.14)

with S∗ the complex conjugate of S, again with α̇ labelling the rows and

β̇ labelling the columns, or taking the transpose we have (S†)β̇
α̇ = (S∗) β̇

α̇ ,
with β̇ labelling the rows and α̇ labeling the columns of S†. Since detS =
S 1

1 S
2

2 − S 2
1 S

1
2 = 1 we have

det � x′ = det � x. (II.15)
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Calculating the determinant we find

det � x = (x0+x3)(x0−x3)−(x1− ix2)(x1+ ix2) = (x0)2−(x1)2−(x2)2−(x3)2

= xμx
μ

= det � x′ = x′μx
′μ; (II.16)

the determinant is the Minkowski interval and is invariant. Thus, the trans-
formation

� x′ = S � xS† (II.17)

corresponds to a Lorentz transformation, Λμν, of the coordinates. In order
to determine it in terms of the SL(2,C) matrix S consider

x′μ =
1

2
( � x′)αα̇(σ̄μ)α̇α

=
1

2
S β

α ( � x)ββ̇S
∗β̇
α̇ (σ̄μ)α̇α =

1

2
S β

α S∗β̇
α̇ (σν)ββ̇(σ̄

μ)α̇αxν

≡ Λμνxν (II.18)

where we identify

Λμν ≡ 1

2
Tr[SσνS†σ̄μ] (II.19)

that is,

Λμν(σμ)αα̇ =
1

2
S γ

β S
∗γ̇

β̇
(σν)γγ̇(σ̄μ)β̇β(σμ)αα̇ = S γ

β S
∗γ̇

β̇
(σν)γγ̇δ

β
α δ

β̇
α̇

= S γ
α S

∗γ̇
α̇ (σν)γγ̇,

or more simply written
Λμνσμ = SσνS†. (II.20)

So for every element ±S of SL(2,C) there is an element Λ of the Lorentz
group, the mapping of SL(2,C) into L↑

+ is 2 to 1 since ±S → Λ.
We can use the SL(2,C) matrices to define the spinor representations of

the Lorentz group. The spinor transformation laws are given by

ψ′
α(x′) ≡ S β

α ψβ(x)

ψ′α(x′) ≡ ψβ(x)(S−1) α
β (II.21)
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where S β
α (S−1) γ

β = δ γ
α and ψα and ψα are two different two component

complex spinors transforming (as we will see) as the (1
2
, 0) representation of

the Lorentz group, the ψ are called Weyl spinors. Similarly, we can use S† and
(S†)−1 to define two more different Weyl spinors, the complex conjugates of
ψ, denoted ψ̄, which transform as (0, 1

2
) representations of the Lorentz group

ψ̄′
α̇(x′) ≡ ψ̄β̇(x)(S

†)β̇
α̇

ψ̄′α̇(x′) ≡ (S†−1)α̇
β̇
ψ̄β̇(x) (II.22)

where, for the adjoint matrices (S†)α̇
β̇
, α̇ labels the rows and β̇ labels the

columns. As with tensors, higher rank spinors transform just like products
of the basic rank 1 spinors, for example,

ψ′
α1···αn

(x′) = S β1
α1

· · ·S βn
αn

ψβ1···βn(x)

ψ′
α1···αnα̇1···α̇m

(x′) = S β1
α1

· · · S βm
α1

ψβ1···βnβ̇1···β̇m
(x)(S†)β̇1

α̇1
· · · (S†)β̇m

α̇m
.

(II.23)
Since S is special, i.e. det S = 1, we have

(S−1) β
α =

(
S 2

2 −S 2
1

−S 1
2 S 1

1

)
αβ

= εαγεβδS
γ

δ (II.24)

or in matrix notation
S−1 = −εST ε. (II.25)

Further ε is an anti-symmetric invariant second rank spinor, that is

ε′αβ = S γ
α S

δ
β εγδ

or again in matrix form

ε′ = SεST = SS−1ε = ε.

Since the indices can be confusing, let’s write this out explicitly

ε′12 = S 1
1 S

2
2 ε12 + S 2

1 S
1

2 ε21 = − detS = −1 = ε12.
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So indeed ε′αβ = εαβ, ε is an invariant second rank spinor. Hence, we can use
ε to lower and raise indices of the spinors analogous to the invariant metric
tensor gμν which lowers and raises vector indices

ψα = εαβψβ

ψα = εαβψ
β

ψ̄α̇ = εα̇β̇ψ̄β̇

ψ̄α̇ = εα̇β̇ψ̄
β̇. (II.26)

As a consequence of (II.26) the transformation law for ψα, for instance, fol-
lows from that of ψα

ψ′α(x′) = εαβψ′
β(x

′) = εαβS γ
β ψγ(x)

= εαβS γ
β εγδψ

δ(x) = −εδγS
γ

β εβαψ
δ(x) = ψδ(x)(S−1) α

δ . (II.27)

Thus, we can contract similar spinor indices to make Lorentz scalars

ψ′α(x′)ψ′
α(x′) = (S−1) α

β S
γ

α ψ
β(x)ψγ(x)

= δ γ
β ψ

β(x)ψγ(x) = ψα(x)ψα(x) (II.28)

and similarly for ψ̄α̇ψ̄
α̇. Also using the properties of the Pauli matrices we

can make a four vector object whose vector index then contracts with another
four vector index in order to make a scalar, for example

ψ′α(x′)(σμ)αα̇∂
′
μψ̄

′α̇(x′) = (S−1) α
β (S†−1)α̇

β̇
(Λ−1)ν

μψ
β(x)(σμ)αα̇∂νψ̄

β̇(x).

But

(S−1) α
β (σμ)αα̇(S†−1)α̇

β̇
Λμν = (S−1) α

β (σμ)αα̇(S†−1)α̇
β̇

(
1

2
Tr[SσνS†σ̄μ]

)

=
1

2
(S−1) α

β (S†−1)α̇
β̇
(SσνS†)δδ̇(σμ)αα̇(σ̄μ)δ̇δ

= (S−1) α
β (S†−1)α̇

β̇
(SσνS†)δδ̇δ

δ
α δ

δ̇
α̇ = (S−1) α

β (S†−1)α̇
β̇
(SσνS†)αα̇

= (σν)ββ̇ , (II.29)

hence
ψ′α(x′)(σμ)αα̇∂

′
μψ̄

′α̇(x′) = ψα(x)(σμ)αα̇∂μψ̄
α̇(x). (II.30)
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As stated, ψ � ∂ψ̄ is a Lorentz invariant.
Finally, let’s consider infinitesimal Lorentz transformations

x′μ = xμ + ωμνxν (II.31)

where now, for infinitesimal transformations, S differs from the identity by
an infinitesimal matrix Σ

S β
α = δ β

α + Σ β
α

S∗β̇
α̇ = δ β̇

α̇ + Σ∗β̇
α̇ . (II.32)

Since ε is invariant we have that

εαβ = S γ
α S

δ
β εγδ = (δ γ

α + Σ γ
α )(δ δ

β + Σ δ
β )εγδ

=
[
δ γ
α δ

δ
β + Σ γ

α δ
δ

β + Σ δ
β δ

γ
α

]
εγδ = εαβ + εγβΣ γ

α + εαγΣ
γ

β (II.33)

which implies that Σ is symmetric. With lowered indices we have

Σβα − Σαβ = 0. (II.34)

Now given ωμν we desire Σαβ; using Λμν = 1
2
Tr[SσνS†σ̄μ] we find

gμν + ωμν =
1

2

(
δ β
α + Σ β

α

)
(σν)ββ̇

(
δ β̇
α̇ + Σ∗β̇

α̇

)
(σ̄μ)α̇α

=
1

2
(σν)αα̇(σ̄μ)α̇α +

1

2
Σ β

α (σν)βα̇(σ̄μ)α̇α +
1

2
(σν)αβ̇Σ

∗β̇
α̇ (σ̄μ)α̇α

= gμν +
1

2
Σ β

α (σν)βα̇(σ̄μ)α̇α +
1

2
Σ∗β̇

α̇ (σ̄μ)α̇α(σν)αβ̇ . (II.35)

Thus, we must find a solution for

ωμν =
1

2
Σ β

α (σν)βα̇(σ̄μ)α̇α +
1

2
Σ∗β̇

α̇ (σ̄μ)α̇α(σν)αβ̇

=
1

2
Tr

[
Σσνσ̄μ + Σ†σ̄μσν

]
. (II.36)

Multiplying by σμ and σ̄ν we have

(σμ)γγ̇(σ̄ν)
δ̇δωμν =

1

2

[
(σμ)γγ̇(σ̄ν)

δ̇δ − (σν)γγ̇(σ̄μ)
δ̇δ
]
ωμν
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= 2Σ δ
γ δ

δ̇
γ̇ + 2Σ∗δ̇

γ̇ δ
δ

γ . (II.37)

Using Σ α
α = 0 = Σ∗α̇

α̇ , we find

Σ δ
γ =

1

8

[
(σμ)γγ̇(σ̄ν)

γ̇δ − (σν)γγ̇(σ̄ν)
γ̇δ
]
ωμν (II.38)

and similarly

Σ∗δ̇
γ̇ =

1

8

[
(σ̄ν)

δ̇γ(σμ)γγ̇ − (σ̄μ)
δ̇γ(σν)γγ̇

]
ωμν . (II.39)

The above commutators of the Pauli matrices arise frequently and so we
define the matrices

(σμν) β
α ≡ i

2

[
(σμ)αα̇(σ̄ν)α̇β − (σν)αα̇(σ̄μ)α̇β

]
=
i

2
(σμσ̄ν − σνσ̄μ) β

α

(σ̄μν)α̇
β̇
≡ i

2

[
(σ̄μ)α̇α(σν)αβ̇ − (σ̄ν)α̇α(σμ)αβ̇

]
=
i

2
(σ̄μσν − σ̄νσμ)α̇

β̇
. (II.40)

Thus we secure

Σ β
α =

−i
4
ωμν(σ

μν) β
α

(Σ†)β̇
α̇ =

+i

4
ωμν(σ̄μν)β̇

α̇. (II.41)

From our definitions of (σμ)αα̇ we see that

(σμ)αα̇(σ̄ν)α̇β = gμνδ β
α − i(σμν) β

α

(σ̄μ)α̇α(σν)αβ̇ = gμνδα̇
β̇
− i(σ̄μν)α̇

β̇
. (II.42)

The infinitesimal spinor transformations can now be obtained

ψ′
α(x′) = S β

α ψβ(x) = ψα(x) − i

4
ωμν(σ

μν) β
α ψβ(x)

≡ ψα(x) − 1

2
ωμν(D

μν) β
α ψβ(x) (II.43)

and

ψ̄′
α̇(x′) = ψ̄β̇(x)(S

†)β̇
α̇ = ψ̄α̇(x) +

i

4
ωμνψ̄β̇(x)(σ̄

μν)β̇
α̇

≡ ψ̄α̇(x) − 1

2
ωμν(D̄

μν)β̇
α̇. (II.44)
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Hence, the spinor representations are given by

(Dμν) β
α ≡ +i

2
(σμν) β

α

(D̄μν)β̇
α̇ ≡ −i

2
(σ̄μν)β̇

α̇. (II.45)

We must check that these matrices indeed obey the Lorentz algebra as did
the tensor representation matrices. After some tedious Pauli matrix algebra
we find

[σμν, σρσ] β
α =

−1

4
[(σμσ̄ν − σνσ̄μ), (σρσ̄σ − σσσ̄ρ)]

β
α

= −2i (gμρσνσ − gμσσνρ + gνσσμρ − gνρσμσ) β
α . (II.46)

Thus the spinor representation obeys the Lorentz algebra

[Dμν , Dρσ ] β
α = (gμρDνσ − gμσDνρ + gνσDμρ − gνρDμσ)

β
α , (II.47)

and ψα is the (1
2
, 0) spinor representation of the Lorentz group. Similarly the

commutation relation for σ̄μν can be worked out and we find that the complex
conjugate dotted spinors ψ̄α̇ are the (0, 1

2
) representation of the Lorentz group

with the D̄μν obeying the Lorentz algebra.
As with tensors, we find the intrinsic variations of the spinor fields are

given by
δ̄ψα = ψ′

α(x) − ψα(x) = δψα − δxμ∂μψα

δ̄ψ̄α̇ = ψ̄′
α̇(x) − ψ̄α̇(x) = δψ̄α̇ − δxμ∂μψ̄α̇. (II.48)

For Poincare’ transformations

x′μ = xμ + ωμνxν + εμ

we find that

δ̄ψα =
1

2
ωμν

[
(xμ∂ν − xν∂μ)δ β

α − (Dμν) β
α

]
ψβ(x) − εμ∂μψα(x)

≡ − i

2
ωμν(Mμν) β

α ψβ(x) + iεμPμψα(x) (II.49)

and

δ̄ψ̄α̇ =
1

2
ωμν

[
(xμ∂ν − xν∂μ)δβ̇

α̇ − (D̄μν)β̇
α̇

]
ψβ̇(x) − εμ∂μψ̄α̇(x)
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≡ − i

2
ωμν(M

μν)β̇
α̇ψ̄β̇(x) + iεμPμψ̄α̇(x). (II.50)

As with tensors, the P μ and Mμν obey the defining commutation relations
of the Poincare’ group. Note that in the rest frame for ψ(x), assuming it
describes a massive particle with rest frame four momentum pμ = (m, 0, 0, 0),

J i ≡ 1

2
εijkM

jk =
i

2
εijkD

jk = −1

4
εijkσ

jk

= +
1

2
σi, (II.51)

hence the third component of the intrinsic angular momentum J3 has eigen-
values ±1

2
and the particle has spin 1

2
. Similarly finding �K we have that

�N · �N = 1
2
(1

2
+ 1) and �N † · �N † = 0, so ψα is the (1

2
, 0) representation of the

Lorentz group. Similarly we find that ψ̄α̇ is the (0, 1
2
) representation of the

Lorentz group.
For finite Poincare’ transformations

x′μ = Λμνxν + aμ (II.52)

we again exponentiate the generators to obtain

ψ′
α(x) = S β

α ψβ(Λ−1(x− a))

=
[
e+iaμPμe−

i
2
ωμν(Λ)Mμν

] β

α
ψβ(x) (II.53)

and
ψ̄′

α̇(x) = ψ̄β̇(Λ−1(x− a))(S†)β̇
α̇

=
[
e+iaμPμe−

i
2
ωμν(Λ)Mμν

]β̇
α̇
ψ̄β̇(x) (II.54)

with

Λμν =
1

2
Tr[SσνS†σ̄μ] (II.55)

and ωμν(Λ) as given earlier

e
1
2
ωμν(Λ)(xμ∂ν−xν∂μ)xρ = (Λ−1)ρ

σx
σ. (II.56)

Thus we have found all representations of the Poincare’ group.
Finally, let’s relate our two-component Weyl spinors to the usual Dirac

four-component spinors. We can realize the Clifford algebra defining the
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4 × 4 Dirac matrices γμa
b by using the Pauli matrices, this representation

being referred to as the Weyl basis (or representation) or the chiral basis (or
representation). Defining the Dirac matrices as

γμ ≡
(

0 σμ

σ̄μ 0

)
, (II.57)

that is,

γ0a
b =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎠

ab

γ1a
b =

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟⎠

ab

γ2a
b =

⎛
⎜⎜⎜⎝

0 0 0 −i
0 0 +i 0
0 +i 0 0
−i 0 0 0

⎞
⎟⎟⎟⎠

ab

γ3a
b =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎠

ab

. (II.58)

Thus, the γμ obey the defining Dirac anti-commutation relations

γμγν + γνγμ = 2gμν1. (II.59)

Also, we can define an additional matrix γ5

γ5 ≡ +iγ0γ1γ2γ3

=
(−σ0 0

0 +σ̄0

)
=

⎛
⎜⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 +1 0
0 0 0 +1

⎞
⎟⎟⎟⎠ . (II.60)
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In this basis the 4 component complex Dirac spinor, denoted ψa
D, is given in

terms of two Weyl spinors ψα and χ̄α̇

ψa
D ≡

(
ψα

χ̄α̇

)
=

⎛
⎜⎜⎜⎝
ψ1

ψ2

χ̄1

χ̄2

⎞
⎟⎟⎟⎠

a

. (II.61)

Under a Lorentz transformation the Dirac spinor transforms as

ψ′a
D(x′) = La

bψ
b
D(x) (II.62)

where

La
b =

(
S β

α 0
0 (S†−1)α̇

β̇

)
ab

. (II.63)

Further since Λμνσμ = SσνS† and Λμν σ̄μ = S†−1σ̄νS−1 we have

Λμνγa
μb = La

cγ
νc

d(L
−1)d

b. (II.64)

For left, ψDL, and right, ψDR, handed spinors we have

ψDL ≡ 1

2
(1 − γ5)ψD

=

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
ψ1

ψ2

χ̄1

χ̄2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
ψ1

ψ2

0
0

⎞
⎟⎟⎟⎠ (II.65)

and

ψDR ≡ 1

2
(1 + γ5)ψD

=

⎛
⎜⎜⎜⎝

0
0
χ̄1

χ̄2

⎞
⎟⎟⎟⎠ . (II.66)

Thus, we have that ψDL corresponds to our (1
2
, 0) spinor ψα while ψDR cor-

responds to our (0, 1
2
) spinor χ̄α̇. If the Dirac spinor is a Majorana spinor,

ψM , that is ψD is self charge conjugate, then

ψC
M = Cψ̄T

M ≡ ψM (II.67)
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with the charge conjugation matrix C given by

C = iγ2γ0

=
(
iσ2 0
0 iσ̄2

)
=

⎛
⎜⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎠ (II.68)

with CγμC−1 = −γμT and the conjugate Dirac spinor is defined as

ψ̄D ≡ ψ†
Dγ

0. (II.69)

The Majorana condition (II.67) implies that

Cψ̄T
M = iγ2γ0γ0ψ∗

M

=
(

0 iσ2

iσ̄2 0

)(
ψ̄
χ

)

=
(
χα

ψ̄α̇

)
≡ ψM =

(
ψα

χ̄α̇

)
, (II.70)

or ψ = χ, ψ̄ = χ̄. Hence we find that a 4 component Majorana spinor is
made up of a 2 component Weyl spinor and its complex conjugate

ψM =
(
ψα

ψ̄α̇

)
. (II.71)

Needless to say the Weyl representation for the Dirac γ matrices is not
the only way we could have reralized the Dirac algebra

γμγν + γνγμ = 2gμν1. (II.72)

After all, this remains invariant under unitary transformations U, U † = U−1

γ̂μ ≡ U †γμU,

and so (II.72) becomes

γ̂μγ̂ν + γ̂νγ̂μ = 2gμν1. (II.73)
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Further we can use these unitary transformations to define linear combi-
nations of the Weyl spinor components to form a four-component complex
spinor

ψ̂D ≡ U †ψD. (II.74)

Under a Poincare’ transformation we have

ψ̂′
D(x′) = U †ψ′

D(x′) = U †LψD(x) = U †LUU †ψD(x)

= U †LUψD(x) = L̂ψ̂D(x) (II.75)

where L̂ ≡ U †LU . As before we have for the hatted transformations

Λμν γ̂μ = ΛμνU †γμU = U †LγνL−1U = U †LUU †γνUU †L−1U

= L̂γ̂νL̂−1. (II.76)

Thus, all relations go through as before with all quantities replaced by their
hatted values.

There are several common choices for the four- component Dirac quanti-
ties. We have first defined the Weyl (or chiral) representation, in brief review
in obvious notation

γμ
Weyl ≡

(
0 σμ

σ̄μ 0

)
. (II.77)

That is

γ0
Weyl =

(
0 1
1 0

)

γi
Weyl =

(
o σi

σ̄i 0

)
=
(

0 σi

−σi 0

)
. (II.78)

The Weyl basis Dirac spinor, now denoted ψWeyl, is given as

ψWeyl ≡
(
ψα

χ̄α̇

)
=

⎛
⎜⎜⎜⎝
ψ1

ψ2

χ̄1

χ̄2

⎞
⎟⎟⎟⎠ . (II.79)

Under Poincare’ transformations

ψ′
Weyl(x

′) = LψWeyl(x) (II.80)

with

L =
(
S 0
0 S†−1

)
. (II.81)
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Left handed and right handed chiral spinors are defined by

ψWeyl L ≡ 1

2
(1 − γ5 Weyl)ψWeyl(x) =

(
ψα

0

)

ψWeyl R ≡ 1

2
(1 + γ5 Weyl)ψWeyl(x) =

(
0
χ̄α̇

)
(II.82)

with

γ5 Weyl =
(−1 0

0 +1

)
.

Another common representation is that of Dirac

γμ
Dirac ≡ U †γμ

WeylU (II.83)

with

U ≡ 1√
2

(
1 −1
1 1

)

U † =
1√
2

(
1 1
−1 1

)
. (II.84)

Hence

γμ
Dirac =

1

2

(
(σ + σ̄)μ (σ − σ̄)μ

(σ̄ − σ)μ −(σ + σ̄)μ

)
(II.85)

that is

γ0
Dirac =

(
1 0
0 −1

)

γi
Dirac =

(
0 σi

σ̄i 0

)
=
(

0 σi

−σi 0

)
. (II.86)

Writing out all the components in order to be explicit, we have

γ0
Dirac =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠

γ1
Dirac =

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟⎠
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γ2
Dirac =

⎛
⎜⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞
⎟⎟⎟⎠

γ3
Dirac =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎠ . (II.87)

The γ5 matrix becomes

γ5 Dirac ≡ U †γ5 WeylU =
(

0 1
1 0

)
. (II.88)

Note the γ matrices in all representations obey γ0† = γ0, γi† = −γi, γ†5 = γ5.
The Dirac four component spinors (or bi-spinors as they are sometimes called)
in the Dirac representation are

ψDirac ≡ U †ψWeyl =
1√
2

(
1 1
−1 1

)(
ψ
χ̄

)

=
1√
2

(
(ψ + χ̄)

(−ψ + χ̄)

)
. (II.89)

Hence, the chiral spinors are given by

ψDirac L =
1

2
(1 − γ5 Dirac)ψDirac = U †ψWeyl L =

1√
2

(
ψ
−ψ

)

ψDirac R =
1

2
(1 + γ5 Dirac)ψDirac = U †ψWeyl R =

1√
2

(
χ̄
χ̄

)
. (II.90)

Another common representation is the Majorana representation in which
all the γ matrices have pure imaginary matrix elements. In this basis we
have

γμ
Majorana ≡ U †γμ

DiracU (II.91)

with the unitary transformation matrix also being hermitian and given as

U ≡ 1√
2

(
1 σ2

σ2 −1

)
= U †. (II.92)
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Let us connect this classical discussion with the treatment of the fields as
quantum mechanical operators.

Theorem: The Quantum Mechanical Poincare’ Group.

Every continuous unitary representation up to a phase of P↑
+ can be

brought, by an appropriate choice of phase factor, into the form of a con-
tinuous representation (a,S)→ U(a,S) of the inhomogeneous SL(2,C). The
multiplication law becoming

U(a, S) = U(a1, S1)U(a2, S2) (II.93)

for
(a, S) = (a1 + S1a2S

†
1, S1S2). (II.94)

Recall that the inhomogeneous SL(2,C) transformations are defined by

� x′ = S � xS†+ � a (II.95)

where � a is a two-by-two Hermitian matrix corresponding to the space-time
translation by the four vector aμ. It is understood that the SL(2,C) trans-
formations are performed before the translation. So

� x2 = S2 � xS†
2+ � a2 (II.96)

and

� x1 = S1 � x2S
†
1+ � a1

= S1S2 � xS†
2S

†
1+ � a1 + S1 � a2S

†
1

= S1S2 � x(S1S2)
†+ � a1 + S1 � a2S

†
1

≡ S � xS†+ � a. (1)

Hence, (a, S) = (a1, S1)(a2, S2) = (a1 + S1a2S
†
2, S1S2) gives the composition

law for ISL(2,C).
Finally, let’s just point out that if we have an operator, perhaps depending

on space-time, A(x), an observer in another frame describes the operator
in the same way, it is only translated, rotated or boosted as compared to
the original frame. That is, an observer S ′ uses A(x′) to study states Ψ′

while an observer S uses A(x) to study states Ψ. Since the theory is to be
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relativistically invariant the corresponding matrix elements, the experimental
observations, should transform covariantly like a tensor or a spinor, hence,

< φ(a,S)|A(α)(x′)|ψ(a,s) >= D
(α)

(β)(S) < φ|A(β)(x)|ψ > (II.97)

where x′μ = Λμ
ν(S)xν + aμ and |ψ(a,S) >= U(a, S)|ψ > so that

U−1(a, S)A(α)(x′)U(a, S) = D
(α)

(β)(S)A(β)(x) (II.98)

is the corresponding transformation law for operators; in particular our field
operators will transform thusly. Note that ϕ′(α)(x′) ≡< φ(a,S)|A(α)(x′)|ψ(a,S) >
is like the classical field ϕ′(α)(x′) with the original field ϕ(α)(x) ≡< φ|A(α)(x)|ψ >
so that they transform as

ϕ′(α)(x′) = D
(α)

(β)(S)ϕ(β)(x). (II.99)

Thus quantum mechanical operators transform as

U(a, S)A(α)(x)U−1(a, S) = D
−1(α)

(β)(S)A(β)(x′). (II.100)

We are now ready to study the quantum mechanical representations of
the inhomogeneous SL(2,C). Since U(a,S) is unitary we can always write it
as the exponential map. In addition, we have that

U(a, S) = U(a, 1)U(0, S)

where
U(a, 1) ≡ eiaμPμ

U(0, S) ≡ e
−i
2

ωμν(S)Mμν

(II.101)

where the Hermitian (since U is unitary) operators are Pμ the space-time
translation generators identified with the energy and momentum operators
and Mμν are the Lorentz transformation (rotation) generators identified with
the angular momentum operators. aμ is just the translation vector aμ =
1
2
Tr[ � aσ̄μ] while ωμν(S) are just the angles of rotation in the xμ − xν plane

parameterizing the finite SL(2,C) transformation S, that is

S = e−
i
4
ωμν(S)σμν

, (II.102)

this is related to Λμν by

Λμν = Λμν(S) =
1

2
Tr

[
SσνS†σ̄μ

]
. (II.103)
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For infinitesimal transformations

x′μ = xμ + εμ + ωμ
νx

ν , (II.104)

with εμ and ωμν infinitesimal parameters, we can expand the unitary opera-
tors to first order

U(a, S) = 1 + iεμPμ − i

2
ωμνMμν (II.105)

where now ωμν(S) = ωμν , the infinitesimal rotation angles. Recall that since

gμν = (gαμ + ωαμ)gαβ(gβν + ωβν)
= gνμ + ωνμ + ωμν , (2)

we find ωμν = −ωνμ is antisymmetric and hence so is the generator Mμν =
−Mμν.

To make more explicit the identification of Mμν with rotations consider
the transformation U = 1 − iω12M12 describing the change in the state
vector. The corresponding infinitesimal coordinate change is

x′0 = x0

x′1 = x1 − ω12x2

x′2 = x2 + w12x1

x′2 = x3. (II.106)

This is a rotation in the x1 − x2 plane. Hence, −iMij is the generator of
rotations in the xi − xj plane for the state vectors and corresponds to the
total angular momentum operator

J i ≡ 1

2
εijkMjk = (M23,M31,M12). (II.107)

For an infinitesimal Lorentz boost along the x1 direction

x′0 = x0 − x1ω01

x′1 = x1 − x0ω01

x′2 = x2
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x′3 = x3, (II.108)

the state vector is transformed by

U = 1 − iω01M01. (II.109)

Hence, −iM0i generates Lorentz boosts along the ith axis for the state vec-
tors. We write Ki for the three-vector Ki ≡ M0i.

Since Pμ,Mμν are the genrators of the Poincare’ or SL(2,C) group they
obey commutation relations which characterize their group multiplication
law (the commutation relations for P↑

+ and SL(2,C) generators are the same)

U(a1, S1)U(a2, S2) = U(a1 + S1a2S
†
1, S1S2)

U(a, S)−1 = U(−S−1aS−1†, S−1). (II.110)

Using the above laws we find

U(a1, 1)U(a2, 1) = U(a1 + a2, 1) (II.111)

which implies [Pμ,Pν] = 0 . Further, we have

U(0, S−1)U(a, 1)U(0, S) = U(S−1aS−1†, 1) (II.112)

that is
U(0, S−1)eiaμPμ

U(0, S) = e(Λ−1(S)a)μPμ

. (II.113)

For infinitesimal aμ this yields

U−1(0, S)aμPμU(0, S) = Λ−1ν
μ (S)aνPμ (II.114)

or
e

i
2
ωμν(S)Mμν

aλPλe
−i
2

ωμν(S)Mμν

= Λ−1ν
μ (S)aνPμ. (II.115)

For infinitesimal S we have

aλPλ + aλ
i

2
ωμν [Mμν,Pλ] = (δ ν

μ − ω ν
μ )aνPμ

= aλPλ − aλ

2
(ωμλ − ωλμ)Pμ. (3)

Thus we obtain the commutator

[Mμν,Pλ] = i[gλνPμ − gλμPν]. (II.116)
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Finally we obtain the angular momentum commutation relations by con-
sidering the infinitesimal S’ transformations

U(0, S−1)U(0, S ′)U(0, S) = U(0, S−1S ′S) (II.117)

or
e

i
2
ωμν(S)Mμν

e
−i
2

ω′
ρλMρλ

e
−i
2

ωαβ(S)Mαβ

= e
−i
2

ωμν(S−1S′S)Mμν

. (II.118)

Now the parameter describing the product of Lorentz transformations S−1S ′S
is found by considering the action of the three successive transformations on
xμ . First we transform to

xμ
1 = Λμν(S)xν, (II.119)

then to
xα

2 = Λαβ(S ′)Λβν(S)xν, (II.120)

and finally back by

xμ
3 = Λ−1μα(S)Λαβ(S ′)Λβν(S)xν . (II.121)

For S’ infinitesimal we have

Λαβ(S ′) = gαβ + ω′
αβ (II.122)

so

xμ
3 = Λ−1μα(S)gαβΛβν(S)xν + Λ−1μα(S)ω′

αβΛβν(S)xν

= (gμν + Λ−1μα(S)ω′
αβΛβν(S))xν. (4)

Hence, we have that

ωμν(S−1S ′S) = Λ−1
μα(S)ω′αβΛβν(S) (II.123)

and thus,

U(0, S−1)MμνU(0, S) = Λ−1αμ(S)Λνβ(S)Mαβ

= Λμα(S)Λνβ(S)Mαβ. (5)

Taking S to be infinitesimal also, we find

ωρλ
i

2
[Mρλ,Mμν ] = (ωμαgνβ + gμαωνβ)Mαβ
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=
1

2
ωρλ[gρμgλαgνβ − gλμgραgνβ + gμαgρνgλβ

−gμαgλνgρβ ]Mαβ

=
1

2
ωρλ[gρμMλν − gλμMρν + gρνMμλ − gλνMμρ]. (6)

We finally secure the angular momentum commutation relations

[Mμν,Mρλ] = i(gμλMνρ − gμρMνλ + gνρMμλ − gνλMμρ). (II.124)

As before with the space-time differential operators we define

J i ≡ 1

2
εijkMjk

Ki ≡ M0i (II.125)

and see that they obey the algebra

[Ji,Jj] = +iεijkJk

[Ki,Kj] = −iεijkJk

[Ji,Kj] = +iεijkKk. (II.126)

Hence �J are the angular momentum operators, �K the boost operators and
Pμ the translation operators.

In particular let’s consider the action of the space-time translations fur-
ther. In the Heisenberg representation the states are independent of time
while the operators depend on time. Thus the space-time translation of our
operators is determined by the action of Pμ. Recall Poincare’ invariance
implies

< φ(a,S)|A(α)(x′)|ψ(a,S) >= D
(α)

(β)(S) < φ|A(β)(x)|ψ > (II.127)

or equivalently

U(a, S)A(α)(x)U−1(a, S) = D
−1(α)

(β)(S)A(β)(x′). (II.128)

For � x′ = � x+ � a we find

eiaμPμ

A(α)(x)e−iaμPμ

= A(α)(x+ a). (II.129)
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For aμ infinitesimal we expand the exponentials and Taylor expand the op-
erator

(1 + iaμPμ)A(α)(x)(1 − iaμPμ) = A(α)(x) + aμ∂μA
(α)(x), (II.130)

which implies
iaμ[Pμ, A(α)(x)] = aμ∂μA

(α)(x). (II.131)

Thus for the translation operator we find

[Pμ, A(α)(x)] = −i∂μA(α)(x) = −P μA(α)(x) (II.132)

with P μ ≡ i∂μ, as earlier. Likewise, we can consider Lorentz transformations
x′μ = Λμν(S)xν

e
i
2
ωμν(S)Mμν

A(α)(x)e
−i
2

ωμν(S)Mμν

= D
−1(α)

(β)(S)A(β)(x′). (7)

For infinitesimal Lorentz transformations x′μ = xμ+ωμνxν andD
−1(α)

(β)(S) =

δ
(α)

(β) + 1
2
ωμν [Dμν ]

(α)
(β) this becomes

(1 − i

2
ωμνMμν)A

(α)(x)(1 +
i

2
ωμνMμν) = A(α)(x)

−1

2
ωμν

[
(xμ∂ν − xν∂μ)δ

(α)
(β) − [Dμν ]

(α)
(β)

]
A(β)(x).

(8)

Hence

[Mμν, A
(α)(x)] = −i

[
(xμ∂ν − xν∂μ)δ

(α)
(β) − [Dμν ]

(α)
(β)

]
A(β)(x)

= −MμνA
(α)(x), (9)

with Mμν as we found earlier for the classical fields.
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