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Abstract

The topics of this thesis are the mathematical models of the magnetic recording channel and

their ultimate information-theoretic limit, the capacity.

Source and channel of a magnetic recording system can be represented by a single finite-

state model (FSM). The joint source/channel FSM is fully specified by the state-transition

probabilities of the source model and the output probability distribution. In our case, this dis-

tribution is a parameterized Gaussian mixture density. We focus on aperiodic and irreducible

FSMs whose state and observation process are stationary and ergodic. Thus, by the Shannon-

McMillan-Breiman theorem, the entropy rates of the state and the observation process are

determined by the probability of a typical sequence of those processes.

A new and practical method is presented for computing estimates of lower and upper

bounds (information rates) on the capacity of FSMs. The pivotal observation behind the

method is that the entropy rate of the channel output can be computed by standard forward

sum-product trellis processing of simulated or (in principle) measured channel output data.

The method is applied to various FSMs representing the magnetic recording channel.

These models are (generalized) partial-response polynomials with additive white Gaussian

noise (AWGN), sources with run-length limit constraints observed through AWGN, FSMs

that are trained on synthetically generated waveforms (microtrack model) with continuous

mixture noise including medium noise, and the binary jitter channel with discrete-valued

data-dependent noise.

Keywords: Channel capacity, finite-state models, information rate, magnetic recording,

medium noise, Shannon-McMillan-Breiman theorem, sum-product algorithm.
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Kurzfassung

Die Arbeit handelt von den mathematischen Modellen des Schreib- und Lesekanals in Syste-

men zur magnetischen Datenaufzeichnung und deren informationstheoretischen Grenze, der

Kanalkapazität.

Bei der magnetischen Datenspeicherung kann der Schreib- und Lesevorgang durch ein ein-

ziges Modell mit endlicher Anzahl Zuständen (MEZ) dargestellt werden. Das MEZ für Quelle

und Übertragungskanal ist durch die Verzweigungswahrscheinlichkeiten der Quelle und die

Wahrscheinlichkeitsverteilung am Ausgang vollständig bestimmt. Wir nehmen als Verteilung

eine parametrisierte Mischung von Gaussdichten an. Ferner betrachten wir aperiodische und

nicht-zerlegbare MEZe, deren Zustands- und Ausgangsprozess stationär und ergodisch sind.

Es gilt daher der Satz von Shannon-McMillan-Breiman, der besagt, dass die Entropieraten des

Zustands- und Beobachtungsprozesses durch die Wahrscheinlichkeit einer typischen Sequenz

dieser Prozesse bestimmt sind.

Eine neue und einfach anzuwendende Methode zur Berechnung von Schätzwerten der In-

formationsrate von MEZe wird vorgestellt. Diese Informationsraten stellen untere und obe-

re Schranken für die Kanalkapazität dieser Modelle dar. Der Methode liegt die Erkenntnis

zu Grunde, dass die Entropierate mittels eines einzigen Vorwärtslaufes des Summe-Produkt-

Algorithmus berechnet werden kann. Dazu können simulierte oder (im Prinzip) gemessene

Kanalausgangsdaten verwendet werden.

Verschiedene MEZe für den Schreib- und Lesekanals in Systemen der magnetischen Da-

tenaufzeichnung werden mit dieser Methode studiert. Diese Modelle sind verallgemeinerte

Polynome mit endlicher Stossantwort und AWGN, restringierte Markovquellen mit AWGN,

mittels künstlich erzeugter Daten (Microtrack-Model als Kanalmodel) trainierte MEZe mit

gemischtem Rauschen (AWGN und datenabhängigem Rauschen) und schliesslich der binäre

Jitterkanal mit diskretem, datenabhängigem Rauschen.

Stichworte: Kanalkapazität, Modelle mit endlichem Zustandsraum, Informationsrate, ma-

gnetische Datenaufzeichnung, datenabhängiges Rauschen, der Satz von Shannon-McMillan-
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Chapter 1

Introduction

RAMAC (which stands for random access method of accounting and control) was the world’s

first computer disk storage system, developed by IBM engineers in San Jose, CA, and intro-

duced in 1957. Prior to this, computer storage was largely reliant on magnetic tape. The

disk-based storage introduced movable read/write heads, which enabled a semi-random access

capability; this ability was a momentous achievement, both for IBM and for the comput-

ing world in general, because fast random access to large volumes of data made interactive

computer systems practical.

Although less popular than the celebrated chip technology, disk-based storage is considered

a major driver of the information technology (IT) revolution in the past four decades. The

most important customer-oriented parameter of disk storage is the cost per megabyte. Lower

costs are achieved by packing more and more bits on the same surface area, resulting in what

is termed increase in “areal density”.

Areal density in magnetic recording increased from 100 MBits/in2 in 1991 to 18 GBits/in2

in 2001, i.e. a 180-fold improvement. In the same period, the speed of personal computers

augmented from 40 MHz to 1.5 GHz — a 40-fold increase in speed only. Thus, the areal

density road map of magnetic recording outpaced the chip road map, known as Moore’s law,

by a factor of 4, and it can truly be said that disk-based storage is the “unsung” hero of IT!

This thesis is about the mathematical models of the magnetic recording channel and their

ultimate information-theoretic limit, the capacity. We present a practical method for comput-

ing bounds on the capacity of such channel models and thereby reveal potential gains in areal

density in today’s products.

1



2 Chapter 1. Introduction

1.1 Motivation

Consider the binary-input linear channel with memory two and additive white Gaussian noise

(AWGN) at the output depicted in Fig. 1.1. It serves as a model for the data channel in

hard disk-drives. As simple as this channel model looks, its information-theoretic limit, the

channel capacity, is unknown. In fact, the capacity computation of intersymbol interference

(ISI) channels with discrete input has remained an open problem in information theory since

its inception by C. E. Shannon in 1948. Surprisingly, not even a practical algorithm has been

known for the much simpler problem of computing the average mutual information between

the input and the output of such ISI channels for the case that the discrete input is independent

and uniformly distributed (i.u.d.) over the input alphabet. This problem has usually been

circumvented by neglecting the channel memory, leading to loose bounds on capacity. On

the occasion of the 50th anniversary of information theory, Immink, Siegel, and Wolf state in

their contribution [46] to the commemorative issue that: The general problem of computing, or

developing improved bounds for, the capacity of discrete-time ISI models of recording channels

remains a significant challenge.

Yk

Zk

Xk 2 f+1;�1g
(1�D2)=

p
2

Figure 1.1: ISI channel with discrete input.

In addition to being an exciting theoretical challenge, the computation of tight bounds

on capacity has also substantial practical implications. In the past, major breakthroughs

in the head and material technologies have been responsible for the spectacular growth in

storage density. But now, signal processing and coding are recognized as cost-efficient means

to further improve areal density. The ultimate limit of any signal processing and coding

scheme is the channel capacity. The signal-to-noise ratio (SNR) gap between the capacity

and the performance — in terms of sector error-rate — in today’s products can (in principle)

be closed by more sophisticated signal-processing and coding schemes. Thus, knowing the

capacity reveals how much current signal processing and coding schemes can be improved.

This improvement would result in the same sector error-rate performance at a lower SNR,

which implies that more bits can be packed on the same surface, i.e. an increase in areal

density.



1.2. Survey of the Literature 3

1.2 Survey of the Literature

The information rate between the input process X = (X1, X2, . . .) and the output process

Y = (Y1, Y2, . . .) of a discrete-time channel with memory m and some well-defined starting

state s0 is given in the limit as

I(X ;Y|S0 = s0) , lim
n→∞

1

n
I(X1, . . . , Xn;Y1, . . . , Yn|S0 = s0). (1.1)

In general, this limit, i.e. the information rate, may not be well-defined and/or may depend

on the starting state s0. We will assume that X is Markov or hidden Markov, and we are

primarily interested in the case where the channel input alphabet X (i.e., the set of possible

values of Xk) is finite.

In [34], Gallager defined finite-state channels (FSC) and introduced the notion of inde-

composable FSCs. The information rate of indecomposable FSCs is well-defined and does not

depend on the starting state. Nevertheless, in many cases of practical interest, the computa-

tion of (1.1) is a problem. Analytical simplifications of (1.1) are usually not available even if

the input symbols Xk are i.u.d.. The complexity of the direct numerical computation of

I(n) , 1

n
I(X1, . . . , Xn;Y1, . . . , Yn|S0 = s0) (1.2)

is exponential in n, but the sequence I(1), I(2), I(3), . . . converges rather slowly even for

channels with small memory.

The problem of computing the information rate for i.u.d. input was studied by Hirt [41]

and by Shamai et al. [68]. Using input blocks of finite length n, Hirt [41] evaluated directly

(1.1) and obtained via stochastic averaging (Monte-Carlo simulations) estimates of an upper

and a conjectured lower bound on the i.u.d. information rate. The upper bound is not an

upper bound on the information rate but rather on the conjectured lower bound. If m is the

channel memory, the difference between the upper bound and the conjectured lower bound

is at most m/n bits/symbol, and the complexity of this method is proportional to 2n. The

bounds reported in [68] neglect the memory in the channel and are loose even for channels

with small memory.

Mushkin and Bar-David [57] analyzed the Gilbert-Elliot channel and Goldsmith and Varaiya

[37] extended that work to a more general channel model with a freely evolving state. For

such a channel model, the channel state is independent of the input. Thus, the channel model

used in [37] does not include ISI channels. Goldsmith and Varaiya gave expressions for the

information rate and the capacity of their channel model and showed that both depend on the

stationary distribution of the channel state. Exploiting the Markov structure of the channel,
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Goldsmith and Varaiya devised recursive methods for the evaluation of the stationary state-

distribution as well as the information rate and the capacity of channels with a freely evolving

state.

Recently, a lower bound on the capacity has been conjectured by Shamai and Laroia [67].

In contrast to Hirt’s method, this conjectured lower bound is easy to compute even for channels

with large memory. By numerical comparison, it has been observed [67] that the conjectured

Shamai-Laroia lower bound (CSLLB) on the capacity lies in the region of Hirt’s bound on

the i.u.d. information rate for a channel with memory one. The tightness of the CSLLB

depends on the channel memory and the relative values of the coefficients of the channel

transfer function. For a channel with memory six and Gaussian-like distributed coefficients,

we found that the inherent assumption of the CSLLB, i.e. that the mixture of ISI and AWGN is

Gaussian distributed, is well met. In [5], it was shown that numerical results obtained from the

CSLLB coincide with the ones obtained from the forward sum-product method — the method

about which actually this thesis is. In addition to being easily computable, the CSLLB is

attractive, because it is based on the power spectral density of the underlying channel. Thus,

the influence of various channel parameters on the information rate is transparent. As a

substitute for the channel capacity, the CSLLB was applied in [44] to partial-response class-4

polynomials and in [26] to generalized partial-response polynomials to assess different coding

schemes. In [3], the CSLLB was applied to the microtrack channel model to investigate the

effects of medium noise in magnetic recording systems on the channel capacity. As the CSLLB

requires the underlying channel to be linear, and as channels with data-dependent (medium)

noise are nonlinear, this was only possible by considering the average channel transfer function

— averaged over all possible input patterns. In [2], the CSLLB was generalized to Markovian

input processes, enabling the computation of non-i.u.d. information rates.

However, the CSLLB possesses several disadvantages: first it is a conjectured lower bound.

Thus all results have to be taken with caution. Moreover, no upper bound is known that bases

on the same method. As the CSLLB requires the underlying channel to be linear, it can only

be applied to data-dependent channels using an average power spectral density. Finally, the

closely related problem of computing information rates of constraint input sources, such as

run-length-limited sources, observed through a memoryless noisy channel cannot be addressed.

The capacity of linear continuous-time channels with peak constraint input and AWGN at

the output was investigated by Shamai and Bar-David [64, 65]. In [65], the input signal was

assumed to be a continuous-time stationary binary signal with zero mean that can take on

only the values +1 and −1 with equal probability. If no restriction is made on the distribution

of the transition from −1 to +1 and vice-versa, the binary input process is termed a unit

process. It encompasses as special case the random telegraph waveform, where the transitions
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are distributed according to a Poisson distribution. Unit processes were studied by Shepp [72]

who proved the covariance description of unit processes discovered by McMillan in the early

50s [56]. McMillan showed that a unit process must fulfill not only an infinite but also an

uncountable number of constraints (see also [55]).

For such an unit process, Wu et al. computed upper bounds on the capacity of the magnetic

recording channel with stationary medium noise [78]. They used the covariance description

and frequency interpretation of unit processes together with Gaussian input signals and the

“water-filling” technique to compute upper bounds on the capacity of the constraint channel.

The starting point of the method presented in [78] is a finite number of constraints such

that the optimization is easily executed by the “water-filling” technique. By progressively

increasing the number of constraints, the upper bound becomes tighter and the number of

allowed input sequences is constantly thinned out such that at the end (ideally) only those

sequences remain which fulfill the ±1 constraint. The weakness of this approach is that in

practice only a small fraction of all constraints can be considered, that it cannot be used for

data-dependent, nonlinear channels, and that it does not provide lower bounds on the capacity.

French and Wolf computed upper and conjectured lower bounds on the capacity for the

magnetic recording channel for various noise scenarios (including medium noise) by assuming

Gaussian inputs and physically motivated channel models [33]. However, the Gaussian as-

sumption fails — in particular at high rates, where our main interest resides. Moreover, the

channel models of French and Wolf are not easily describable and are difficult to use for signal

processing and coding.

The effect of pulse jitter on the capacity of binary input ISI channels was investigated

using the Arimoto–Blahut algorithm in [58]. To this end, the channel output was quantized to

three levels resulting in considerable quantization loss even for the binary phase-shift keying

channel and AWGN, i.e. without memory and jitter.

The capacity of run-length limited (RLL) sequences over noisy channels is a closely related

problem and has been investigated by Zehavi and Wolf [79], Shamai et al. [66], and Heegard

et al. [39, 40]. Zehavi and Wolf considered RLL sequences transmitted over the discrete-time

binary symmetric channel (BSC). They derived a set of lower bounds theoretically by assuming

the input to be Markov, and showed results obtained by brute-force computation for the case

where the order of the Markov input process equals the minimal state-space realization of the

RLL constraint. Shamai et al. presented in [66] upper and lower bounds on the information

rate of noisy RLL sequences for the BSC as well as the AWGN channel by exploiting the

property of stationarity. Heegard et al. focused on the continuous-time AWGN channel with

peak constraint input [39, 40]. The bounds are quite loose.
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1.3 Objective of the Thesis

The objective of this thesis is to present a practical method for computing estimates of infor-

mation rates of finite-state channel models. The method consists of two steps: a collection

and a computation step. First, a large amount of data is collected from the channel model,

which can be done either by simulations or (in principle) by measurements. The collected data

comprise the entire statistics of the channel model. In a second step, the data are processed

on the trellis induced by the joint source/channel model. The pivotal observation behind the

method is that estimates of entropy rates and, hence, information rates of finite-state chan-

nel models can be computed exactly by standard forward sum-product trellis processing of

simulated or (in principle) measured data.

Three key properties of FSMs make this possible:

• Simple representation of FSMs: An FSM is fully specified by the state-transition prob-

abilities and the parameterized conditional output distribution.

• Stationarity and ergodicity: The output process of a stationary and ergodic FSM is

stationary and ergodic. Thus, by the Shannon-McMillan-Breiman theorem, the entropy

rate of the output process is determined by the probability of a typical sequence.

• Markov property: The Markov structure of the FSM allows to factor the probability

measure of the state as well as the output process and enables efficient computation

methods.

The main contribution of this thesis is not a theoretical result but a practical computation

method. Remembering R. W. Hamming’s maxim that The purpose of computing is insight,

not numbers and A. Ralston’s reply that ...but for the student, numbers are often the best road

to insight this method is underpinned by theoretical results as well as elucidated by various

computer experiments. The application in mind here is magnetic recording in longitudinal

direction, although the presented method clearly is not restricted thereto.

1.4 Outline of the Thesis

The thesis is subdivided into five chapters and three appendices. The first chapter contains

the introduction.
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Background and Definitions

The second chapter introduces the mathematical notation and terminology along with the

three cornerstones on which the thesis builds: finite-state models, magnetic recording, and

information theory. The subsection on finite-state models and information theory state well-

known results and build up the mathematical framework needed for the main part of the

thesis, Chapter 3. The subsection on magnetic recording starts with briefly explaining the

magnetization process, continues with the ideal write and read process, and leads to the

magnetic recording channel models used in today’s hard-disk drives, i.e. the partial-response

channel models. The chapter concludes with the problem statement.

Sampling-based Computation of Information Rates

The third chapter contains the main part of the thesis. It presents a new method for computing

estimates of entropy rates of hidden Markov models. This method can be considered as a

stochastic version of the “power-method” which is commonly used to compute the largest

eigenvalue and corresponding largest eigenvector of non-negative primitive matrices. The

proposed method can be used to exactly compute estimates of information rates of finite-state

source/channel models that are ubiquitous in magnetic recording — but arise in other areas as

well. Moreover, algorithms are presented for shaping the Markov source to the channel. Such

Markov sources lead to noticeably higher information rates and thus to tight lower bounds on

the channel capacity. Further, a new upper bound on the capacity of finite-state channels is

proposed. This upper bound is obtained in a similar spirit as the lower bound. Finally, the

sampling-based computation method is extended to compute upper and lower bounds on the

information rate of general (non-finite state) ergodic channels. The chapter concludes with

reduced-state versions of these bounds.

Information Rates of Magnetic Recording Channel Models

Numerical results are provided for various channel models. The first part focuses on channel

models without medium noise. For selected channel models, estimates of information rates are

presented under the assumption that the input is i.u.d.. Next, estimated information rates are

presented that result from optimizing the state-transition probabilities of the Markov input

source. It is shown that by increasing the order of the input source over its minimal state-space

realization, a set of tight lower bounds on the channel capacity is obtained. Numerical results

for the proposed upper bound are provided as well.

The second part of this chapter is devoted to channel models for medium noise. Such data-
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dependent channel models are obtained by training a parameterized FSM with synthetically

generated waveforms (microtrack model). By means of such an auxiliary FSM, the information

rate of the microtrack channel can be lower bounded. Finally, inspired by the microtrack

channel, a new model for the medium-noise-dominated magnetic recording channel is presented

along with numerical results: the binary jitter channel.

Summary and Concluding Remarks

The last chapter summarizes the thesis and states some concluding remarks.

Appendices

Appendix A contains a numerical example of a Markov source (a (0, 2)-RLL constrained

Markov source) to illustrate the concepts presented in Chapter 2.

Appendix B presents the well-known Perron-Frobenius theorem from matrix theory and de-

tails the so-called “power-method”. It touches the heart of this thesis, namely the interwoven

connection between analytical (combinatorial) and sampling-based (probabilistic) computa-

tion of entropy rates of FSMs.

In Appendix C, Shannon’s formula for maxentropic, i.e. capacity-achieving, state-transition

probabilities of Markov sources is derived.



Chapter 2

Background and Definitions

The three cornerstones of this thesis are finite-state models, magnetic recording, and infor-

mation theory. Finite-state models serve as source and channel model for magnetic record-

ing systems. They are related to information theory via stationarity and ergodicity, i.e. the

Shannon-McMillan-Breiman theorem. This allows us to use finite-state models as a computa-

tion vehicle for accurately estimating information rates of magnetic recording systems.

2.1 Finite-State Models

A finite-state model M�(L) is a doubly stochastic random process. It consists of a non-

observable process S, called state process, and an observable process Y , called output process.

The former is of finite size, i.e. L = |S| < ∞, and determines the structure of the finite-state

model. The latter, the observable output process, can take on values in a finite or infinite

alphabet. It can be a deterministic or probabilistic function of the state process, and it is

characterized by a parameter vector θ(L) which belongs to Θ(L), a subset of the Euclidean

space with dimension Υ (which is proportional to L). The output process inherits its statistical

properties from the underlying state process.

The stochastic state process is assumed to be a Markov process. The state-space of a

Markov process contains a countable (possibly infinite) number of states [30, 38]. Hidden

Markov models (HMMs) form a large and useful class of stochastic process models. They

assume a sequence of random variables to be conditionally independent given a sequence of

state variables which forms a Markov process. In signal processing and estimation problems,

HMMs are usually assumed to have a finite state-space [10–13, 62], although they can be

extended to infinite state-spaces [15]. We will use the notion of a finite-state model (FSM) for

9
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a HMM with finite state-space. The observable output process of the FSM is termed hidden

Markov process (HMP) [28].

2.1.1 Structure

States and State-Transitions

The state process of an FSM is determined by states and branches connecting the states.

More formally: Let the state-space S be a nonempty finite set with cardinality |S| < ∞, the

elements of which will be called states. The cardinality of the state set, L = |S|, is termed

structure index or order of the FSM. Let B be a finite set, the elements of which will be called

state-transitions or branches. Every branch b ∈ B has a well-defined left state lst(b) ∈ S and

a well-defined right state rst(b) ∈ S. Two branches b and b′ are parallel if both lst(b) = lst(b′)

and rst(b) = rst(b′). We will assume that both maps lst(·) : B → S and rst(·) : B → S are

surjective (i.e., there are no unused states).

A path of length n in an FSM is a sequence bn = (b1, b2, . . . , bn) of branches bk ∈ B, k =

1, 2, . . . , n, such that rst(bk) = lst(bk+1). Note that every path bn originates from a unique

state sequence, i.e. sn
0 = (s0, s1, . . . , sn) =

(
lst(b1), rst(b1) = lst(b2), . . . , rst(bn)

)
.

Adjacency Matrix, Directed Graph, and Trellis Representation

The structure of an FSM can be represented by the adjacency matrix A of size L× L. Each

entry A(i, j) = [A]ij in row i and column j for i, j ∈ S = {1, . . . , L} of A is assigned a 1 if

state i is directly (without any intermediate state) connected to state j. If there is no such

branch, that entry is a 0. Clearly, matrix A is non-negative, denoted as A ≥ 0. Note that

we preclude parallel branches for the sake of simplicity and without loss of generality of the

subsequent results1.

The structure of the FSM is visualized in a directed graph, termed state-transition diagram,

where each branch is labeled with the associated output symbol. Unfolding the state-transition

diagram over time results in a time-invariant trellis representation.

A trellis is defined as follows. Let n be a positive integer. There is a collection S0, S1, . . . , Sn

of nonempty disjoint finite sets; the elements of Sk are called time-k states. There is also a

collection B1,B2, . . . ,Bn of nonempty disjoint finite sets; the elements of Bk are called time-k

branches. Each branch bk ∈ Bk has a well-defined left state lst(bk) ∈ Sk−1 and a well-defined

right state rst(bk) ∈ Sk. We will assume that lst(Bk) = Sk−1 and rst(Bk) = Sk.

One also says that a trellis of length n consists of n concatenated trellis sections. The time-k

trellis section Tk is a set that contains all possible transitions (sk−1, sk) = (i, j), i.e. Tk =

{(i, j) ∈ Sk−1 × Sk|A(i, j) = 1}. If the trellis is time-invariant, all trellis sections are identical,

1An example for an FSM with parallel branches is given in Appendix A.
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Figure 2.1: State-transition diagram and trellis section of a (1,∞)-RLL source.

and the time index k is neglected.

Example 2.1 ((1,∞)-RLL Source)

Consider a binary source emitting 0s and 1s in such a way that each 1 must be followed by

at least one 0. Such a source is termed a (d = 1, k = ∞)-RLL source because the minimum

number of 0s between two 1s must be d = 1, and the maximum number of 0s between two 1s

is not restricted, i.e. k = ∞ (for a definition of (d, k)-RLL sources see Appendix A).

A state-transition diagram and the corresponding trellis section are shown in Fig. 2.1. The

branches are labeled with the associated output symbols. We observe that the (d, k)-constraint

can be satisfied with two states, i.e. L = 2, and three branches. The corresponding 2 × 2

adjacency matrix contains three 1s, each 1 representing one branch, i.e.

A =

(
1 1

1 0

)
.

Example 2.2 (DICODE Channel)

Consider a linear discrete-time channel with impulse response (1 −D)/
√

2. Assume that the

time-k input Xk is constrained to be bipolar, i.e. xk ∈ {+1,−1}. This channel is termed

DICODE channel in magnetic recording. The time-(k − 1) state is given by the time-(k − 1)

bipolar input in the following way Sk−1 = 0.5 · (Xk−1 + 3). The time-k output Vk = (Xk −
Xk−1)/

√
2 with X0 = −1 can take on values in the set V = {−√

2, 0,+
√

2}. A state-transition

diagram and the corresponding trellis diagram are depicted in Fig. 2.2 with the associated

input and output pair xk/vk on each branch. As all states are connected with each other, the

corresponding adjacency matrix is given by

A =

(
1 1

1 1

)
.

For any integer n > 1 the (i, j)-th entry of the n-th power of A equals the number of all

possible paths of length n starting in state i and ending in state j after n time steps, i.e.

[An]ij =
∑

k1,k2,··· ,kn−1

A(i, k1) · A(k1, k2) · · ·A(kn−1, j) (2.1)

where the summand is zero unless the state sequence sn
0 = (i, k1, . . . , kn−1, j) induces a valid

path bn = (b1, b2, . . . , bn), i.e. unless(
i = lst(b1)

) ∩ ( rst(b1) = k1

) ∩ · · · ∩ ( rst(bn) = j
)
. (2.2)
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Figure 2.2: State-transition diagram and trellis section of the DICODE channel.

If there exits more than one path, the summand equals the number of all such paths.

Example 2.3 ((1,∞)-RLL Source)

There are two paths in the (1,∞)-RLL source that lead from state 1 to state 1 in two time

steps (see Fig. 2.3 left part), i.e.

A2 =

(
2 1

1 1

)
.

The adjacency matrix A implicitly assumes a direction along the time-axis from left to

right. To be precise, we should call A the forward adjacency matrix Af , but, as we will

generally operate in the forward direction, we will not do so. The backward adjacency matrix

Ab is the transpose of the forward adjacency matrix (see Appendix A for an illustrative

example).

Moreover, we assume that the adjacency matrix A contains all state-transitions that are

possible within one time step (as outlined above). Hence, we do not call A2 an adjacency

matrix, because it contains all state-transitions within two time steps. This restriction is

somewhat arbitrary and does not change the subsequent results (see also Appendix A), but it

is a consequence of our assumption that the adjacency matrix contains no parallel branches.

Minimal State-Space Realization

The (1,∞)-RLL constraint can be realized with different FSMs. In Fig. 2.1, a two-state FSM

is depicted. A three-state realization is shown in Fig. 2.3 (right part). Of course, the two-state

realization is computationally less expensive and therefore, in the light of trellis-processing al-

gorithms (such as the Viterbi or the sum-product algorithm), preferable in general.

We are interested in a minimal state-space realization, i.e. an FSM with the smallest number

of states (or equivalently the smallest order) such that all constraints are fulfilled. A minimal

state-space realization is in general not unique, because the states are not strictly identifi-

able [52].
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Figure 2.3: Two trellis sections of the (1,∞)-RLL trellis (left part) and a realization of the

(1,∞)-RLL constraint with three states (right part).

We will not address the question of how to find the minimal state-space realization for a

given set of constraints, but assume to have one available. Note that the minimal state-space

realization does not mean that the adjacency matrix has full rank. A counterexample is the

DICODE channel.

2.1.2 Markov Property

We assume that the sequence of states Sk forms a Markov process in the sense that the

probability of being in state j at time k conditioned on all states up to the state i at time

k − 1, depends only on the state i at time k − 1. Thus, given the present state, the future is

independent of the past. More precisely, we have

Pr(Sk = j|Sk−1 = i, Sk−2 = i
′
, . . .) = Pr(Sk = j|Sk−1 = i), (2.3)

which is called the Markov property. The probability of going from state Sk−1 = i to state

Sk = j is called forward state-transition probability (STP). The STPs are collected in the

forward state-transition probability matrix Q of size L × L, where the entry Q(i, j) in row i

and column j equals the STP, i.e.

Q(i, j) , Pr(Sk = j|Sk−1 = i). (2.4)

For each row, the row entries must sum up to one, i.e.∑
j∈S

Q(i, j) =
∑
j∈S

Pr(Sk = j|Sk−1 = i) = 1 ∀i ∈ S. (2.5)

Thus, the matrix Q is termed a stochastic matrix and contains positive entries only at positions

where the adjacency matrix A has positive entries, i.e. Q is non-negative as well.
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Example 2.4 ((1,∞)-RLL Source)

Q =

(
Q(1, 1) Q(1, 2)

Q(2, 1) 0

)

with Q(1, 1) + Q(1, 2) = 1 and Q(2, 1) = 1.

There exists also a backward state-transition probability matrix Qb with entries Qb(i, j) =

Pr(Sk−1 = j|Sk = i), i.e. positive entries only at positions where Ab contains positive entries.

Thus, Qb is a stochastic and non-negative matrix as well. Note that Qb cannot be obtained

simply by transposing the forward state-transition probability matrix Q, as the row constraint

is the same for both directions (forward and backward). In other words, while the time axis

can be changed from forward to backward direction through transposition, i.e. Ab = AT , the

forward and backward state-transition probability matrices, Q and Qb, are both subject to a

row constraint (for an illustrative example see in Appendix A).

In general, the state-transition probabilities of a Markov source may depend on time. We

do not assume this here and therefore say that the Markov process is homogenous in time.

Such Markov processes are called Markov chains [30].

2.1.3 Persistent, Aperiodic, and Irreducible Markov Chains

A state i of a Markov chain is said to be persistent if starting in state i the chain is certain

sometime to return to state i, i.e. if

Pr

( ∞⋃
k=1

[Sk = i]|S0 = i

)
= 1. (2.6)

A Markov chain is presistent, if all states of the Markov chain are presistent.

Consider a Markov chain with a finite state-space. A state i is called periodic with period

d > 1, if the probability of re-entering state i in n steps is zero unless n is divisible by d, and

d is the largest integer with this property. A state with period d = 1 is called aperiodic. A

Markov chain is said to be aperiodic if all its states have period 1.

A state i of a Markov chain is said to be accessible from state j if there is a finite sequence

of transitions from j to i with positive probability. If the states i and j are accessible to each

other, the states i and j of the Markov chain are said to communicate with each other and

belong to the same class. In general, a Markov chain consists of one or more disjoint classes.

If all the states belong to a single class, the Markov chain is referred to as irreducible. In other

words, starting at any state of an irreducible Markov chain, we can reach any other state with
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positive probability, i.e. for every pair (s, s′) of states, there is a positive and finite integer n

such that

Pr(Sk+n = s′|Sk = s) > 0. (2.7)

If the Markov chain is finite (as we generally assume), (2.7) guarantees that all states of the

Markov chain are persistent and the chain is then said to be persistent. Thus, for finite-state

Markov chains the property of presistence follows from the property of irreducibility. Moreover,

if the Markov chain is aperiodic, (2.7) guarantees that there exists a positive and finite integer

n such that the matrix An is positive, denoted by An > 0, i.e. An(i, j) > 0 ∀ (i, j) ∈ S2

(mixing property).

2.1.4 Stationary State-Distribution

Existence

Let the row vector π(k) of length L denote the state-distribution vector of a Markov chain at

time k. The i-th element of π(k) is by definition the probability that the chain is in state i at

time k, i.e.

π(k)(i) , Pr(Sk = i). (2.8)

The state-distribution vector at time k is given by the state-distribution vector at time k − 1

in the following way:

π(k) = π(k−1)Q. (2.9)

By iteration, we obtain

π(k) = π(0)Qk, (2.10)

where π(0) is the initial state-distribution vector. In words, the state-distribution vector of a

finite-state Markov chain at time k is the product of the initial state-distribution vector π(0)

and the k-th power of the stochastic state-transition probability matrix Q.

A Markov chain is said to be a stationary process if and only if it has a stationary state-

distribution π such that π(k) = π ∀k or equivalently,

π = πQ. (2.11)

Thus, the stationary state-distribution vector π is the left eigenvector corresponding to the

largest eigenvalue (which is actually 1) of Q. Note that (2.11) may in general not have a

solution, and when it has one, it may not be unique.
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Convergence to the Stationary Distribution

If the finite-state Markov chain S is irreducible, the stationary distribution is positive, i.e.

π(s) > 0 ∀ s ∈ S, and unique (see [28] and references therein). Thus, S is a stationary

process. The question is now whether any initial state-distribution vector π(0) converges to

the stationary state-distribution vector π and if so how this convergence behaves.

For a finite-state, irreducible, and aperiodic Markov chain it holds that all states are

ergodic [30], i.e.

lim
n→∞

[Qn]ij = π(j) ∀ i, j ∈ S (2.12)

and the Markov chain is said to be an ergodic process [17]. From (2.10), it follows that for

n→ ∞

π = π(0)Q∞, (2.13)

i.e. that any initial state-distribution converges to the stationary state-distribution which is

then called steady-state distribution. Moreover, the convergence occurs at an exponential

rate [17], i.e.

|[Qn]ij − π(j)| ≤ cψn, (2.14)

where c ≥ 0 and 0 ≤ ψ < 1. This implies that there exists an integer n such that [Qn]ij > 0

for all i, j ∈ S (mixing property of STPs). An ergodic Markov chain satisfying (2.14) is called

geometrically ergodic [29].

A matrix Q is called primitive, if there is an integer n such that Qn > 0, i.e. all entries of

the n-th power of Q are positive. The smallest such integer n is called the index of primitivity

of Q.

The state-transition probability matrix Q of a finite-state, irreducible, and aperiodic Markov

chain is primitive [17]. A finite-state Markov chain with primitive Q possesses thus a unique

positive stationary state-distribution. Moreover, this stationary state-distribution is a the

steady-state distribution and the chain is an ergodic process.

Note that a sufficient, but not necessary condition, for a Markov chain to be ergodic is for

it to be aperiodic.
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Example 2.5 (Switching Process)

Consider a switching process given by the adjacency matrix

A =

(
0 1

1 0

)
.

This is a finite-state and irreducible process. Thus, the stationary state-distribution is unique

and positive; in fact π = (0.5 0.5). The process is therefore stationary. Moreover, the process

is also ergodic, because the long-run relative frequency of a sequence (generated by this process)

converges stochastically to the probability assigned to the sequence [6]. However, the mixing

property of (2.12) is not satisfied and there is no steady-state distribution, i.e. the chain does

not convergence to the stationary state-distribution (except if the initial state-distribution is

the stationary state-distribution itself).

2.1.5 Ergodicity Theorem and Representation of Markov Chains

There exists a vast literature on ergodic theorems for general Markov processes. As we focus on

finite-state, irreducible, and aperiodic Markov chains, we summarize the important properties

for such processes from [6,28, 30, 38] in the following theorem.

Theorem 2.1 (Ergodicity Theorem for Finite-State, Irreducible, and Aperiodic

Markov Chains) Let a finite-state ergodic Markov chain with state sequence S0, S1, . . . , Sn

and a stochastic state-transition matrix Q be irreducible and aperiodic. The chain has a unique

stationary distribution to which it converges from any initial state. This stationary distribution

π is called the steady-state distribution and it fulfills the following properties

1. lim
n→∞

[Qn]ij = π(j) ∀ i ∈ S (2.15)

2. π(j) > 0 ∀ j ∈ S (2.16)

3.
∑
j∈S

π(j) = 1 (2.17)

4. π(j) =
∑
i∈S

π(i)Q(i, j) ∀ j ∈ S. (2.18)

Conversely, suppose that the finite-state Markov chain is irreducible and aperiodic, and

that there exists a vector π satisfying conditions 2. – 4.. Then the chain is ergodic, and the

steady-state probabilities are given by the first condition. Note that property 4. in the theorem

above is termed global balance condition.

The probability distribution π is called an invariant or stationary distribution because it

persists forever once it is established. In light of the ergodicity theorem, we may thus say the

following:

• Because of the mixing property, all entries of π will be strictly positive.
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• Starting from an arbitrary initial distribution, the state-transition probabilities of a

finite-state, irreducible, and aperiodic Markov chain will converge to a stationary distri-

bution.

• The unique stationary distribution of a finite-state, irreducible, and aperiodic Markov

chain is completely independent of the initial distribution and is called steady-state

distribution.

Representation of Markov Chains

The collection of all state-transition probabilities Q(i, j) for all transitions (i, j) : A(i, j) = 1

satisfying the constraints Q(i, j) ≥ 0 and
∑

j∈S Q(i, j) = 1 for all i ∈ S determines a Markov

chain. We will denote this collection of STPs by the set

Q = {Q(i, j) : for all (i, j) : A(i, j) = 1} . (2.19)

Note that a given set of probability measure function (pmf) Q uniquely determines the state-

transition probabilities Q(i, j) and state probabilities π(i), such that Q is a complete descrip-

tion of a Markov chain. The set Q is a manifold.

An equivalent representation of the Markov chain is the set of all joint state-transition

probabilities

Q(i, j) = π(i)Q(i, j) ∀ (i, j) : A(i, j) = 1. (2.20)

Denote this collection of joint state-transition probabilities by

Q =
{
Q(i, j) : for all (i, j) : A(i, j) = 1

}
. (2.21)

Thereby, the values Q(i, j) must satisfy

Q(i, j) ≥ 0 ∀ (i, j) : A(i, j) = 1 (2.22)∑
(i,j):A(i,j)=1

Q(i, j) = 1, (2.23)

∑
j:A(i,j)=1

Q(i, j) =
∑

`:A(`,i)=1

Q(`, i), (2.24)

where (2.24) is a constraint that is equivalent to the global balance condition (2.18). A state-

transition probability Q(i, j) is obtained from the joint state-transition probability Q(i, j) in

the following way:

Q(i, j) =
Q(i, j)

π(i)
=

Q(i, j)∑
j′∈S Q(i, j′)

. (2.25)

We refer to Q as the set of STPs, and to Q as the set of joint STPs. There is a one-to-one

correspondence between the two descriptions Q and Q of a Markov chain.
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2.1.6 Output Process

Contrary to the state process S, the output process Y is observable. Moreover, a realization

yk at time k is not restricted to being discrete, but can take any value in the Euclidean space,

i.e. yk ∈ R
Υ, or equivalently, Y = R

Υ, with dimension Υ to be defined in the next subsection.

The output sequence Y n = (Y1, Y2, . . . , Yn) is a sequence of conditionally independent

random variables for a given realization of the non-observable state sequence Sn
0 = (S0, S

n) =

(S0, S1, . . . , Sn). The output Yk is associated with the transition from a state i at time k−1 to

a state j at time k. Its probability is conditioned on the state-transition and is by assumption

time-independent. We can write

Pr(yk, sk|sk−1) = Pr(yk|sk, sk−1)Pr(sk|sk−1) k = 1, 2, . . . . (2.26)

The n-dimensional probability distribution of the output process is then given by

p(yn) =
∑
sn
0

p(yn, sn
0 ). (2.27)

where the summation goes over all |S|n+1 terms. Noting that

p(yn, sn
0 ) = p(s0)

n∏
k=1

p(yk, sk|sk−1) (2.28)

and using (2.26), this yields

p(yn) =
∑
sn
0

p(s0)
n∏

k=1

p(yk|sk, sk−1)p(sk|sk−1) (2.29)

=
∑
sn
0

π(s0)
n∏

k=1

w
(
yk|sk−1, sk; θ(L)

)
Q
(
sk−1, sk

)
(2.30)

where w
( · |sk−1, sk; θ(L)

)
is the conditional observation probability distribution — parame-

terized by the parameter vector θ(L) — associated with the state-transition (sk−1, sk).

If the FSM represents a communication channel, the time-k state Sk can be given by some

previous channel inputs or a combination of channel inputs and internal channel states.



20 Chapter 2. Background and Definitions

Example 2.6 (Linear Filter with Finite Impulse Response and AWGN)

Let

Yk =
m∑

i=0

giXk−1 + Zk

with fixed real coefficients gi, with Xk taking values in {+1,−1}, and where Z = (Z1, Z2, . . .)

is white Gaussian noise. If X is Markov with memory m′, i.e., if

p(xk|xk−1) = p(xk|xk−1
k−m′),

then the time-(k − 1) state is Sk−1 = (Xk−1, Xk−2, . . . , Xk−M) with total memory M =

max{m,m′}.

We observe that owing to the underlying Markov process, the output distribution of our

FSM can be factored, thereby expressing the global behavior p(yn) in terms of local depen-

dencies. This paves the way for implementing efficient trellis processing algorithms such as

the sum-product algorithm.

2.1.7 Models and Probability Distributions

The purpose of a model is to represent a family of output distributions in an efficient way.

This is accomplished by parameterizing the distributions. A model is therefore characterized

by the distribution family and its parameters.

Throughout this thesis, we assume the conditional observation probability distribution to

be a mixture of Gaussian densities. Let ξ be the mixture degree indicating of how many

Gaussian pdfs the Gaussian mixture is composed. As a Gaussian pdf G(·) is fully specified by

its mean and variance, the Gaussian mixture pdf p(i,j)(·) associated with the transition from

state i to state j is given by the means, µ(i,j,`), variances, σ2
(i,j,`), and mixture coefficients c(i,j,`),

for 1 ≤ ` ≤ ξ, i.e.

p(i,j)(·) =

ξ∑
`=1

c(i,j,`) · G(·;µ(i,j,`), σ
2
(i,j,`)) ∀ A(i, j) = 1. (2.31)

The stochastic constraints

c(i,j,`) ≥ 0 ∀ (i, j) : A(i, j) = 1 and 1 ≤ ` ≤ ξ (2.32)

ξ∑
`=1

c(i,j,`) = 1 ∀ (i, j) : A(i, j) = 1 (2.33)

assure that the pdf is properly normalized, i.e.∫ ∞

−∞
p(i,j)(y)dy = 1 ∀ (i, j) : A(i, j) = 1. (2.34)
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The vector θ(L) contains the means, variances, and correlation coefficients associated with the

transition from state i to state j. The space of the output has dimension Υ =
(
2 · ξ + (ξ − 1)

)·
|{(i, j) : A(i, j) = 1}|. The parameter vector θ(L) is said to be the coordinate projection or

the realization of Θ(L), a subspace of R
Υ.

The parameter vector θ(L) is at our disposal to fit the model to particular observations.

The reason for choosing a Gaussian mixture is that it belongs to the class of log-concave or

elliptic symmetric densities, the most general representation of a pdf for which the Baum-

Welch algorithm, the famous training procedure for finite-state HMMs, has been formulated

(see [62] and references therein).

To summarize, our FSM M�(L) has order L = |S| and is fully determined by the set of

state-transition probabilities Q and the parameter vector θ(L).

2.1.8 Stationarity and Ergodicity

A stochastic process is an indexed sequence of random variables, i.e. X = (X1, X2, . . .).

Definition 2.1 (Stationarity [24]) A stochastic process X is said to be stationary if the

joint distribution of any subset of the sequence of random variables is invariant with respect

to shifts in the time index, i.e. if

Pr(Xi1 = xi1, Xi2 = xi2 , . . . , Xin = xin) =

Pr(Xi1+` = xi1, Xi2+` = xi2, . . . , Xin+` = xin) (2.35)

for every shift ` > 0 (right shift) and for all x1, x2, . . . , xn ∈ X.

A realization xn = (x1, x2, . . . , xn) ofXn = (X1, X2, . . . , Xn) is called invariant if xn = xn+`
1+`

for some ` > 0, i.e. invariant with respect to (right) time shifts.

Definition 2.2 (Ergodic Process) A stochastic process X is said to be ergodic if each in-

variant realixzation has probability either zero or one; i.e. if

Pr(xn) = 0 or Pr(xn) = 1 ∀ invariant events xn. (2.36)

For an engineer, ergodicity simply means that the average over time equals the average over

the ensemble [38].

Theorem 2.2 (Ergodic Output) If a finite-state Markov chain is irreducible and aperiodic

(and thus stationary and ergodic), then the output process Y is stationary and ergodic.
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This theorem follows from the fact that the output signals are conditionally independent

random variables for a given realization of the non-observable state sequence. An elegant

proof can be found in [52]. We note that the HMP Y inherits the properties of stationarity

and ergodicity from the underlying Markov process S.

2.1.9 Sum-Product Algorithm operating on a Trellis

The sum-product algorithm subsumes many algorithms in signal processing and coding [51].

It operates on a factor graph by passing messages and is therefore also called message-passing

algorithm. Here, the messages are metrics, i.e. scaled versions of a-posteriori probabilities.

The factorization of (2.30) can be expressed by the graph in Fig. 2.4. This graph is a

so-called Forney-style factor graph [32, 53]. A factor graph is obtained by adding circles on

each branch [51]. The input sequence xn is not shown in (2.30) as it is usually part of the

state sequence sn
0 .

. . .

Y3Y2Y1

S2 S3S1

X1 X2 X3

S0

Figure 2.4: The Forney-style factor graph of (2.30).

We will assume that there is a forward “metric”

µf(bk) ∝ Pr(Sk = j, Yk = yk|Sk−1 = i) (2.37)

assigned to each trellis branch bk, and that the metric of a path bn = (b1, b2, . . . , bn) is defined

as µf(b
n) ,

∏n
k=1 µf(bk).
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Example 2.7 (Branch Metric in the Presence of AWGN)

Assume that the output of an FSM is corrupted by AWGN with variance σ2. The time-k

branch metric µf(bk) associated with the transition from state i at time k−1 to state j at time

k becomes

µf(bk) = Pr(Sk = j, Yk = yk|Sk−1 = i)

= Pr(Sk = j|Sk−1 = i) · Pr(Yk = yk|Sk = j, Sk−1 = i)

= Q(i, j) · 1√
2πσ

e−(yk−vk)2/(2σ2)

where vk is the noiseless output of the FSM associated with the state-transition (i, j) and yk

is a noisy output at time k of the FSM.

We will assume that the underlying factor graph is always a trellis (graph without loops)

and that the update schedule consists of a forward (left-to-right) and a backward (right-to-left)

recursion through the trellis. With this topology and this update schedule, the sum-product

algorithm becomes the Bahl-Cocke-Jelinek-Raviv algorithm (BCJR algorithm [8]).

The forward recursion and the backward recursion of the sum-product algorithm are com-

pletely independent2. The forward recursion computes state “metrics” µf(s1), first, for all

s1 ∈ S1, then for all s2 ∈ S2, and so on up to Sn. At time zero, there exists a state s′0 ∈ S0

such that µf(s
′
0) = 1 and µf(s0) = 0 ∀ s0 ∈ S0\{s′0}. Depending on the context, other initial-

izations may also make sense. For k = 1, 2, . . . , n, µf(sk) is computed for all sk ∈ Sk according

to

µf(sk) = ϕk

∑
bk:rst(bk)=sk

µf

(
lst(bk)

)
µf(bk). (2.38)

In words, apart from the scaling factor ϕk, the metric of some state sk is the sum — over all

branches that end in sk — of the product of the branch metric and the metric of the starting

state of that branch. The scale factor ϕk may be chosen freely; its purpose is to prevent the

state metrics from tending to zero or to infinity as k increases.

By forward recursion, the state metrics at time-k can be expressed through time-(k − 2)

state metrics in the following way

µf(sk) = ϕk

∑
bk:rst(bk)=sk

µf(bk)

·

ϕk−1

∑
bk−1:rst(bk−1)=lst(bk)

µf(bk−1)µf

(
lst(bk−1)

)
︸ ︷︷ ︸

µf

(
lst(bk)

)
. (2.39)

2For a “forward-only” way to organize the computation, see [54].
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The backward recursion is identical to the forward recursion except for the reversal of

“time”; it computes state metrics µr(sk−1) for every sk−1 ∈ Sk−1 according to

µr(sk−1) = βk

∑
bk:lst(bk)=sk−1

µr

(
rst(bk)

)
µf(bk) (2.40)

with scale factor βk (which may be chosen freely) and with a state s′n ∈ Sn such that µr(s
′
n) =

1 and µr(sn) = 0 ∀ sn ∈ Sn\{s′n}. These forward and backward computation steps are

visualized in Fig. 2.5.

. . .S0

X3X2X1

S1 S3S2

�f(s0) �f(s2) �r(s2) �r(s3)

y1 y2 y3

�f(s1)

Figure 2.5: Computing forward and backward metrics in the Forney-style factor graph rep-

resenting (2.30).

In principle, the forward and backward metrics can be any number associated with the state

sk and sk−1 respectively. For our purpose, these metrics are scaled versions of the following

probabilities

µf(sk) ∝ Pr(Sk = sk, Y
k = yk) (2.41)

µr(sk−1) ∝ Pr(Y n
k = yn

k |Sk−1 = sk−1) (2.42)

From (2.39), (2.41), and (2.42), it follows that the probability of the output sequence, i.e.

p(yn), can be given (upon a factor of proportionality) either by the forward recursion

p(yn) ∝
∑

sn∈Sn

µf(sn) =
n∏

k=1

ϕk

∑
all paths bn

µf(b
n), (2.43)

or alternatively by the backward recursion

p(yn) ∝
∑

s0∈S0

µr(s0) =
n∏

k=1

βk

∑
all paths bn

µf(b
n). (2.44)

The main properties of the sum-product algorithm are the following. First, for every state

s′k ∈ S′
k we have the a-posteriori state metric

µtot(s
′
k) , µf(s

′
k) · µr(s

′
k) (2.45)

=
k∏

i=1

ϕi

n∏
j=k+1

βj

∑
all paths bn through s′k

µf(b
n). (2.46)
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Secondly, the a-posteriori state-transition metric for every branch b′k ∈ B′
k is

µtot(b
′
k) , µf

(
lst(b′k)

) · µf(b
′
k) · µr

(
rst(b′k)

)
(2.47)

=
k−1∏
i=1

ϕi

n∏
j=k+1

βj

∑
all paths bn through b′k

µf(b
n). (2.48)

The a-posteriori state metric and the a-posteriori state-transition metric are proportional to

the a-posteriori state probability and the a-posteriori state-transition probability respectively,

i.e.

µtot(s
′
k) ∝ Pr(Sk = s′k|Y n = yn) (2.49)

µtot(b
′
k) ∝ Pr(Sk−1 = lst(b′k), Sk = rst(b′k)|Y n = yn). (2.50)

2.2 Magnetic Recording Systems as Communication

Channels

The essential elements of a magnetic recording system are the write head, the magnetic

medium, and the read head. The current into the write head induces a magnetization pattern

on the track directly below the write head. This pattern is arranged in equidistant cells on

tracks that are concentrically aligned around the center and represent the digital data stored.

A magnetic recording system can be viewed as a communication channel. Communication

stands for reliable transmission of data in space from here to there, whereas magnetic recording

involves preserving information in time from now to then.

The magnetic recording process is inherently nonlinear because of the hysteresis effect.

The recording channel is linearized by artificially constraining the write current to the two

extreme levels such that the magnetic material always saturates. This so-called saturation

recording [76] eliminates the hysteresis effect at the cost of the input being binary and thus

clearly differentiates the magnetic recording channel from ordinary communication links.

2.2.1 Fundamentals of the Magnetization Process

According to Faraday’s law, every electric current generates a magnetic field
−→
Hm = Hm ·−→e . If

this field penetrates ferromagnetic material, the material is magnetized with a certain strength,

which is denoted by the magnetization strength Hm. Magnetizing a magnetic medium by

an applied external field is a complicated process because the magnetization is a nonlinear
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function of the applied magnetic field, and the present magnetization depends on this field

and the previous magnetization. The trajectory of the medium magnetization as a function

of the magnetic field strength Hm is usually visualized by a hysteresis loop (see Fig. 2.6).

mc

c

r

r

Figure 2.6: Hysteresis loop.

As the magnetization strength Hm is increased, the medium becomes magnetized in the

same direction. At a certain strength of the magnetic field, the medium magnetization sat-

urates and remains constant. This phenomenon is explained by noting that ferromagnetic

material consists of magnetic domains of finite size. These domains are called grains. A

magnetic grain, or magnetic domain, is a local region of the material which encounters a ho-

mogenous magnetization. If the magnetic orientations of the grains are completely random,

the total magnetization is locally neutralized and the material is not magnetized.

By applying an external magnetic field, the number of grains magnetized in the direction

parallel to the applied field increases. Because of grain interaction, this process is nonlinear.

The magnetization of the medium is saturated when all grains point in the same direction. Af-

ter removing the external field, not all grains switch back into their original, random direction,

resulting in a certain residual medium magnetization. The amount of medium magnetization

is termed the remanence or remanent state Mr. To change the magnetization orientation, a

reverse field needs to be applied. The minimal strength of this field is referred to as the co-

ercivity Hc. Coercivity and remanence are individual material constants. For magnetic disks,

materials with high coercivity and high remanence are preferable. They are called hard mag-

netic materials. A high coercivity prevents incidental demagnetization by an external field

(induced for instance by the room temperature). A high remanence leads to high read-back

signal amplitudes. More information on the magnetization process with respect to magnetic

recording can be found in [16].
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2.2.2 Ideal Write Process

The current into the write head induces a magnetization pattern on the track directly below

the write head. For saturation recording, the current x(t) is a two-level waveform taking on

values +xk and −xk, resulting in an alternating (left/plus and right/minus) polarization of

the underlying medium, i.e.

x(t) =
∑

k

xk · u(t− kT ) with u(t) =


1 for t ∈ [0, T ) .

0 else.
(2.51)

In the sequel, we assume −xk = −1 and +xk = +1 (see Fig. 2.7).

The magnetization changes as a function of the location ζ along the track, but does not

change abruptly in response to the applied field. Thus, the transition is assigned a certain

width. The widely used Williams–Comstock model for saturation recording [76] defines a

tanh-like average magnetization profile m0(ζ) according to

m0(ζ) = Mr tanh
2ζ

aπ
, (2.52)

where a denotes the so-called transition-width parameter. For a position ζ far away from the

transition, we experience the magnetization of the remanent state, i.e.

m0(ζ → +∞) = −m0(ζ → −∞) = Mr. (2.53)

The transition-width parameter a is a measure of the transition width. This can be seen from

d

dζ
m0(ζ)|ζ=0 =

2Mr

πa
. (2.54)

A useful equation for a is given in [16] by

a = c

√
Mrδ

√
d(d+ δ)

Hc

, (2.55)

where c is a constant ranging from 0.6 to 0.9. The transition-width parameter a can either

be decreased by reducing the medium thickness δ and the head-to-surface separation d, or by

increasing the coercivity Hc of the medium.

For the time being, we assume an ideal write process and set the transition width a to zero.

We discuss the nonideal write process in Chapter 4.

2.2.3 Ideal Read Process

If we assume an optimum synchronization of the disk rotation with the read channel elec-

tronics, the medium appears to be moving at a constant velocity under the read head. Thus,
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the equations describing the medium magnetization m0(ζ) and the read-back signal can be

expressed either in terms of a distance ζ to an arbitrary reference point, or in terms of the

time t which is required to move the medium by the distance ζ. Both are related to each

other by the linear velocity ν of the disk such that ζ = ν · t. Note also that we only deal with

reading a single track or even a single sector, so that a one-dimensional expression of ζ or t

satisfies our needs.

Although the areal density depends on both cell length and track width, we focus only on

the cell length. This is justified by the general practice of “writing wide and reading narrow”,

which allows adjacent tracks to be neglected in a first approximation. The cell length ζcell is

determined by the bit spacing parameter T , i.e. ζcell = ν · (kT − (k − 1)T
)

= ν · T .

+1
−1

+1 −1 +1 0 −1

T

t

t

k = 0 k = 1 � � �

v(t)

t = k � T

x(t)

vk

Figure 2.7: From top to bottom: Write signal x(t), magnetized medium, sequence of recorded

transitions {vk}, and read-back signal v(t).

During the read-back process, not the medium magnetization but rather the magnetic

transitions, the “derivatives” of the medium magnetization, are sensed by the read-back head.

Therefore, an isolated transition results in a certain shape g(t) of the read-back signal, which

is called transition response or step response. The specific shape varies according to the read-

head types. When sensing a number of transitions, the individual transition responses will

superpose linearly. Moreover, as the medium has been saturated during the write process, the

read-back signal ideally is independent of the previous magnetization of the disk medium.
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Formally, the recorded transition at time k is denoted by vk, where

vk =


0 no transition at time t = kT

±1 otherwise.
(2.56)

This notation corresponds directly to the sequence of magnetic transitions, and the sign of

an element vk denotes the direction of the transitions (and of the polarization). Note that

{vk} is a correlated sequence, and related to the uncorrelated sequence {xk} of write current

amplitudes by

vk =
1

2
(xk − xk−1) (2.57)

with initial condition x0 = −1. With these assumptions, we obtain a linear model for the

read-back channel. We can write the read-back signal as

v(t) =
∑

k

vkg(t− kT ) (2.58)

=
∑

k

xkh(t− kT ), (2.59)

where

h(t) =
1

2

(
g(t) − g(t− T )

)
. (2.60)

We note that h(t) represents the effective impulse response of the magnetic recording channel

as it corresponds to the response of head and medium to a rectangular pulse, i.e. to exactly two

subsequent transitions (called dibit). In the literature, h(t) is commonly termed dipulse. The

linear channel model and its signal waveforms are shown in Fig. 2.8 and Fig. 2.7 respectively.

D

y(t)v(t)

g(t)

1

2
N0

Xk vk

Figure 2.8: Linear channel model.

The particular shape of the transition response g(t) depends on the read-head type. Basi-

cally, there are two types. Until a few years ago, inductive heads were prevalent in disk-drives.
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Inductive heads operate on the principle of magnetic induction, i.e. the change of magnetic flux

generates a voltage in the head coil. Nowadays, magnetoresistive (MR) read-heads and their

derivative, the giant magnetoresistive (GMR) read-heads, are standard in products. Their op-

eration is based on the change of the resistivity of certain metals in the presence of a magnetic

field. This effect is called magnetoresistance.

As MR heads measure directly the flux from the medium, the read-back signal is funda-

mentally independent of the linear velocity of the rotating disk [16]. Thus, almost identical

signal levels are generated at the outer and the inner track of the disk drive. Moreover, a suf-

ficiently high output voltage is achieved with small and slowly rotating disks that operate at

low linear velocity. This feature of the MR element was vital for the development of low-power

notebook drives. Another significant advantage of MR read-elements is their low inductance,

which leads to an increase of the read-back signal bandwidth. The most important advantage,

however, is that MR heads generate a read-back signal with higher SNR than the old inductive

heads do. The disadvantages of MR heads are that they produce a slightly broader pulse than

inductive heads do and that the read-back pulse is asymmetric. Nevertheless, MR read-heads

are considered a major breakthrough in magnetic recording towards higher areal densities.

For shielded, biased, and thus linearized MR read-heads, analytical expressions have been

derived for the transition response in [16]. The shape of the read-back transition response is

well approximated by the Lorentzian pulse, which is determined by a single parameter, PW50,

the pulse width at 50% amplitude. The Lorentzian read-back pulse is given by

g(t) =
1

1 +
(

2t
PW50

)2 , (2.61)

with the pulse width in a first approximation

PW50 = 2(a+ d) (2.62)

as given in [16]. The pulse width can be narrowed by decreasing the transition-width, a,

and/or the head-to-surface distance, d, of the read-back head.

The ratio PW50/T , where T is the data rate (or bit spacing parameter), is a measure of

the normalized linear density in a hard-disk system. It is the single most important parameter

to characterize the channel in a magnetic recording system. A small PW50/T causes less

dispersion and therefore less ISI. It can be achieved, for a given rotation speed ν, either by

high-quality magnetic materials and read-heads (i.e. small PW50) or alternatively by a low

data rate (i.e. a large T ).
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2.2.4 Simple Channel Models

The magnetic recording channel is an inherently bad channel, as it contains ISI due to the

overlapping read-back pulses, a spectral null at frequency zero (DC) due to acting as a differen-

tiator, and strong attenuation at high frequencies due to the Lorentzian read-back waveform.

Complete removal of the ISI is therefore not possible without strong noise boosting at DC

and the Nyquist frequency. Moreover, the necessary receive filter can often physically not be

realized. The remedy is to control the ISI by shaping the channel to a target channel. The

desired properties of the target channel are spectral nulls at DC and the Nyquist frequency,

and a finite impulse response. Hence, ISI is introduced in a deterministic form that is favorable

for subsequent signal processing.

For a Lorentzian pulse with a normalized linear density of PW50/T = 2.0, little equaliza-

tion is required to force the magnetic recording channel to match a class-4 partial-response

(PR4) channel [50] with impulse response g(D) = (1−D2). Moreover, this target polynomial

is desirable because it enables extremely efficient sequence detection by means of the Viterbi

algorithm (interleaved operation mode). The technique of shaping the channel to a desired

PR polynomial with subsequent Viterbi detection has been commercialized in the early 90’s

under the name of partial-response maximum-likelihood detection (PRML) [23].

At higher normalized linear densities, the channel spectrum becomes quite different from

the PR4 target channel. The main part of the spectrum is bent towards DC. The necessary

equalization to the PR4 channel requires strong equalization schemes and leads to undesired

noise enhancement at high frequencies. This noise boosting is substantial and detrimental

to the performance of PRML systems. Moreover, the noise is no longer white but becomes

strongly colored after equalization. By allowing the PR target polynomial to take on non-

integer coefficients, a better match to the channel is possible, requiring less equalization. As

this polynomial is obtained via prediction theory, the sequence detection approach is termed

noise-predictive maximum-likelihood (NPML) detection [22,27]. Many of IBM’s current prod-

ucts use NPML detection technology for reliable recovery of data from read-back signals. The

target channel typically has sixteen states and can be given as

g(D) = (1 −D2) · (1 + p0D + p1D
2), (2.63)

where p0 and p1 are the predictor coefficients.

To summarize, channel models used in today’s products consist of a bipolar discrete-time

input Xk, a linear finite-impulse response (FIR) channel with memory four and AWGN at

the output. They give rise to aperiodic and irreducible FSMs whose output distribution is a
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combination of Gaussian densities determined by means that depend on the state-transition

and a single variance.

2.3 Information Theory for Memoryless and ISI Chan-

nels

We briefly summarize well-known results in information theory that will be needed in the next

chapter and follow thereby the book of Cover and Thomas [24] very closely.

Entropy, Divergence, and Mutual Information

Definition 2.3 (Entropy of a Discrete Random Variable) The entropy of a discrete

random variable X with pmf pX(x) = p(x) (the subscript will be omitted) is given by

H(X) , −
∑

x∈supp(pX)

p(x) logb p(x). (2.64)

The choice of the base “b” determines the unit. When b = 2, the unit is called bit (a word

suggested to Shannon by J. W. Tukey as the contraction of “binary digit”). When b = e,

the only other base commonly used in information theory, the unit is called nat. Because

log2(e) ≈ 1.443, it follows that one nat equals about 1.443 bits. In the sequel, we will use

(without loss of generality) the logarithm to the base b = 2 and the unit is thus a “bit”.

Definition 2.4 (Conditional Entropy of two Discrete Random Variables) The en-

tropy of a discrete random variable X conditioned on a discrete random variable Y is given

by

H(X|Y ) , −
∑

x,y∈supp(pXY )

p(x, y) log2 p(x|y). (2.65)

Differential entropies and conditional differential entropies of continuous random variables are

defined by replacing the summation with an integration. They are denoted by the lower-case

letter “h”, i.e. h(X) and h(X|Y ), respectively.

Definition 2.5 (Discrete Memoryless Channel (DMC)) A discrete memoryless channel

consists of two finite sets X and Y and a collection of pmfs w(y|x), one for each x ∈ X, such

that for every x and y, w(y|x) ≥ 0, and for every x,
∑

y w(y|x) = 1. The pmf w(y|x) is

termed forward channel law, and X is the input and Y the output of the channel.
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Definition 2.6 (Mutual Information) The mutual information between the input X and

output Y of a DMC with input distribution q(·) and forward channel law w(·|·) is defined as

I(X;Y ) ,
∑

x,y∈supp(pX,Y )

p(x, y) log2

p(x, y)

p(x)p(y)
(2.66)

=
∑

x,y∈supp(qXwY |X)

q(x)w(y|x) log2

w(y|x)
r(y)

(2.67)

=
∑

x,y∈supp(rY vX|Y )

r(y)v(x|y) log2

v(x|y)
q(x)

(2.68)

where r(y) is the output distribution defined as

r(y) ,
∑

x∈supp(qX )

q(x)w(y|x) ∀y ∈ Y (2.69)

and v(·|·) is the backward channel law3 defined as

v(x|y) =
w(y|x)q(x)

r(y)
with r(y) > 0, ∀y ∈ Y. (2.70)

In terms of entropies, we can write the mutual information as

I(X;Y ) = H(X) −H(X|Y ) (2.71)

= H(Y ) −H(Y |X). (2.72)

For continuous random variables differential entropies are used.

For a DMC, H(Y ) is a concave and H(Y |X) is a linear function (i.e. concave and convex)

of the input probability distribution q(·) [34]. Hence, the mutual information of a DMC is a

concave function of the input probability distribution q(·).

Definition 2.7 (Divergence between Two Probability Distributions) The divergence

is a measure of the “distance” between two probability distributions p(·) and q(·). It is given

by

D
(
p(·)||q(·)) ,

∑
x∈supp(pX )

p(x) log2

p(x)

q(x)
≥ 0. (2.73)

For continuous random variables, the condition that q(x) is nonzero in supp(pX), equals the

condition that d pX(·)/d qX(·), the Radon-Nikodym derivative, exists (which we will always

assume). In the sequel, we will omit supp(·) in the summation.

The divergence is always positive with equality if and only if p(·) = q(·). It is a pseudo-

distance, as it is not symmetric, i.e. in general D
(
p(·)||q(·)) 6= D

(
q(·)||p(·)). The divergence

is also called “relative entropy” or “Kulback-Leibler distance”.

3Note that v(·|·) depends on the input distribution q(·).
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Example 2.8 (Mutual Information as Divergence)

The mutual information between the input X and output Y of a DMC can be rewritten as a

divergence in the following way

I(X;Y ) =
∑

x

q(x)
∑

y

w(y|x) log2

w(y|x)
r(y)

=
∑

x

q(x)D
(
w(·|x)||r(·)) ,

where w(·|x) is a probability distribution for every x, or alternatively as follows

I(X;Y ) =
∑
x,y

pX,Y (x, y) log2

pX,Y (x, y)

q(x)r(y)

= D
(
pX,Y (·, ·)||q(·)r(·)) .

Capacity

Definition 2.8 (Capacity Formula of a DMC) The capacity of a DMC is defined as the

maximum mutual information between the input X and the output Y , i.e.

C , max
q(·)

I(X;Y ) (2.74)

with the constraints that q(x) ≥ 0 ∀x ∈ X and
∑

x q(x) = 1. Any q(·) that maximizes (2.74)

is called a capacity-achieving input distribution. Note that such a distribution may not be

unique.

In general, there exists no analytical solution for computing the capacity. For discrete-

memoryless channels, the Arimoto-Blahut algorithm [1, 18] is an elegant iterative algorithm

to determine a capacity-achieving input distribution and to compute capacity. For general

channels, the capacity can be found numerically by non-linear optimization techniques such

as gradient search or by so-called interior point methods [19]. The Karush-Kuhn-Tucker

conditions are first-order necessary conditions for local optima [14] in non-linear programming

problems. They give rise to a geometric interpretation that is particularly illustrative for the

discrete memoryless channel. The capacity of a DMC can be expressed as follows

C = max
q(·)

∑
x

q(x)D
(
w(·|x)||r(·)) (2.75)

with the constraints that q(x) ≥ 0 ∀x ∈ X and
∑

x q(x) = 1. Applying Lagrange multipliers

one obtains the so called Karush-Kuhn-Tucker conditions, i.e.
D

(
w(·|x)||r(·)) = C if q(x) > 0

D
(
w(·|x)||r(·)) ≤ C if q(x) = 0.

(2.76)
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Any input distribution q(·) that fulfills these conditions is a capacity-achieving input distri-

bution.

For illustrative purposes, we consider now a DMC with a three-valued input and a three-

valued output. The output distribution w(·|x) is a point in the simplex shown in Fig 2.9. In

this case, the Karush-Kuhn-Tucker conditions require that all distributions w(·|x) must lie

on a circle with center at r∗(·) =
∑

xw(·|x)q∗(x) where q∗(·) is a capacity-achieving input

distribution; those w(·|x) that correspond to inputs x with q∗(x) = 0 can also lie inside the

circle. The “radius” of the circle is the capacity. Thus the summation over x in (2.75) can be

neglected, and capacity can be rewritten as a divergence in the following way

C = min
r(·)

max
x

D
(
w(·|x)||r(·)) , (2.77)

where r(·) is a distribution over the output alphabet. Therefore, choosing a fixed r(·), one

obtains the upper bound

C ≤ max
x

D
(
w(·|x)||r(·)) . (2.78)

This upper bound appeared in a work by Topsøe [73] and was brought to our attention by

Lapidoth.

According to Boyd [19], computing capacity is a geometric program. It can be formulated

either as constraint maximization problem, see (2.74), or as a constraint minimization problem,

see (2.77). The latter is termed dual expression of capacity whereas (2.74) is called primal

expression [19].

Referring to Fig. 2.9 and (2.77), we note that it is not possible to change the min-max operation

into a max-min. Hence, we first have to select a center, i.e. r(·), and then choose the radius

in such a way that it contains all points, i.e. the max operation. As there is only one center,

the output distribution induced by a capacity-achieving input distribution is unique.

To prove the uniqueness of the output distribution, the channel capacity is expressed as

follows

C = D
(
w(·|x)||r∗(·)) (2.79)

where r∗(·) the true output distribution, i.e. the one obtained from the channel law w(·|·) and

a capacity-achieving input distribution q∗(·). If r(·) is different from r∗(·), we obtain an upper

bound on capacity because

∆ = max
x

D
(
w(·|x)||r(·))− C (2.80)

= max
x

(∑
y

w(y|x) log2

w(y|x)
r(y)

)

−
∑

x

q∗(x)
∑

y

w(y|x) (2.81)
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r(2)

r(3)

r(1) w(�j2)

r(�)

w(�j1)

C
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Figure 2.9: Simplex interpretation of capacity [25].

≥
∑

x

q∗(x)
∑

y

w(y|x) log2

w(y|x)
r(y)

−
∑

x

q∗(x)
∑

y

w(y|x) log2

w(y|x)
r∗(y)

(2.82)

=
∑

x

∑
y

q∗(x)w(y|x) log2

r∗(y)
r(y)

(2.83)

= D
(
r∗(·)||r(·)) (2.84)

≥ 0 (2.85)

with equality if and only if r(y) = r∗(y) for all y.

Entropy Rate and AEP for i.i.d. Processes

Definition 2.9 (Entropy Rate) The entropy rate of a stochastic process X is defined by

H(X ) , lim
n→∞

1

n
H(X1, X2, . . . , Xn) (2.86)

, lim
n→∞

H(Xn|Xn−1, . . . , X1) (2.87)

when the limit exist. On the first line, the right-hand side expression is the per-symbol entropy

rate. On the second line, the right-hand side expression is the conditional entropy rate of the

last random variable given the past. For stationary stochastic processes, both are equal.

The entropy rate is the average description length for a stationary ergodic process. For sta-

tionary processes it is well defined.
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Example 2.9 (i.i.d. Process)

Let X1, X2, . . . , Xn be a sequence of independent and identically distributed (i.i.d.) random

variables. Applying the chain rule yields

H(X ) = lim
n→∞

1

n
H(X1, . . . , Xn) = H(X).

Example 2.10 (Entropy Rate of a Markov Chain)

Because of the Markov property, the entropy rate of a Markov chain is

H(X ) = lim
n→∞

H(Xn|Xn−1, . . . , X1) = H(Xn|Xn−1).

Asymptotic Equipartition Property and Typicality

We look now at the asymptotic equipartition property (AEP) that is referred to as the law

of large numbers in information theory. The AEP says that the probability assigned to a

sequence of the process X is close to 2−nH(X ) with probability 1 for n → ∞. This allows us

to divide the set of all sequences into two sets, the set of typical sequences, where the sample

entropy is close to the ensemble entropy, and the set of nontypical sequences containing all

other sequences. We introduce the AEP first for i.i.d. processes, i.e. H(X ) = H(X), and

extend it afterwards to general processes (see Shannon-McMillan-Breiman theorem).

Theorem 2.3 (Asymptotic Equipartition Property (AEP) [24]) If X1, X2, . . . , Xn are

i.i.d. and distributed according to p(x), then

−1

n
log2 p(X1, X2, . . . , Xn) → H(X) (2.88)

in probability.

Proof:

−1

n
log2 p(X1, X2, . . . , Xn) = −1

n

n∑
i=1

log2 p(Xi) (2.89)

= −E[log2 p(X)] in prob. (2.90)

= H(X). (2.91)

�

Definition 2.10 (Typical Set [24]) Let X1, X2, . . . , Xn be i.i.d.. A typical set Xn
ε with re-

spect to the probability measure p(x) is the set of sequences (x1, x2, . . . , xn) ∈ Xn having the

following property:

2−n(H(X)+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X)−ε). (2.92)
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As a consequence of the asymptotic equipartition property (AEP), the typical set has proba-

bility nearly 1 and all elements of the typical set are nearly equiprobable. The elements of the

set are called typical sequences and their number is nearly 2nH(X). All other sequences have

probability nearly zero.

Shannon-McMillan-Breiman Theorem — AEP for Stationary and Ergodic Pro-

cesses

The Shannon-McMillan-Breiman theorem [24] is the fundamental ergodic theorem for the sam-

ple entropy rate of stationary ergodic processes with finite alphabet, i.e. the AEP for stationary

ergodic processes with finite alphabet. It states that for long sequences, the entropy rate is

proportional upon a scaling factor to the logarithm of the probability of a typical sequence.

Barron extended the Shannon-McMillan-Breiman theorem to densities [9] of processes with

infinite alphabet. For the particular case where the process is an ergodic finite-state HMP, i.e.

the output process of an FSM, Leroux provided an elegant proof in [52].

Before we focus on hidden Markov processes, we start with some general thoughts valid

for any stationary and ergodic process X . Our objective here is to gain some insight, not to

provide proofs. We define the sample sequence entropy H(xn) as follows

H(xn) , − log2 p(x
n). (2.93)

Note that for small n the sample sequence entropy is a random variable and its value depends

on the particular realization xn. The ensemble sequence entropy, H(Xn), is the average

sample sequence entropy, i.e.

H(Xn) ,
∑

xn∈Xn

p(xn)H(xn) (2.94)

= −
∑

xn∈Xn

p(xn) log2 p(x
n). (2.95)

For infinitely long sequences, it converges to the entropy rate of the process X , i.e.

H(X ) = lim
n→∞

1

n
H(Xn). (2.96)

For large n, almost all sequences are typical and exhibit the same probability p(xn). Thus, for

large n, H(xn)/n converges to H(Xn)/n. But for large n, H(Xn)/n converges to the entropy

rate H(X ), provided that the process X is stationary. Therefore, we conclude that for large

n the expression H(xn)/n converges to the entropy rate H(X ), i.e.

−1

n
log2 p(x

n) → H(X ) (2.97)
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with probability one provided that the process X is ergodic. As this holds for all typical

sequences xn, the expression − 1
n

log2 p(x
n) is no longer a random variable but rather a constant,

and one uses a capital Xn and writes

−1

n
log2 p(X

n) → H(X ) w. p. 1. (2.98)

For finite n, the averaged sample sequence entropy is thus an estimate of the entropy rate, i.e.

Ĥ(X ) , 1

n
H(xn) = −1

n
log2 p(x

n). (2.99)

Now, we return to a hidden Markov process Y with underlying state process S.

Theorem 2.4 (Shannon-McMillan-Breiman Theorem for Hidden Markov Proces-

ses [52]) We consider a hidden Markov process Y = (Y1, Y2, . . .). Let the sequence Y n be

distributed according to the pdf r(·). Provided that the underlying finite-state Markov chain is

irreducible and it holds that E[| log2 p(Y1|S1 = j, S0 = i; θ(L))|] < ∞ for all i, j ∈ {1, . . . , L},
then

h(Y) = − lim
n→∞

E [log2 r(Yn|Yn−1, Yn−2, . . . , Y1)] (2.100)

is finite and

h(Y) = − lim
n→∞

1

n
E [log2 r(Y

n)] (2.101)

h(Y) = − lim
n→∞

1

n
log2 r(Y

n) w. p. 1. (2.102)

Hence, the sample sequence entropy converges with probability one to the entropy rate of the

process, i.e.

−1

n
log2 r(Y

n) → h(Y) w. p. 1. (2.103)

A proof can be found in [52]. Note: the convergence is with probability 1 — or equivalently

“almost surely”— and not only in probability.

Information Rate and Capacity of Stationary and Ergodic Processes

Definition 2.11 (Information Rate) The information rate between two stationary and er-

godic processes X and Y is defined as

I(X ;Y) , lim
n→∞

1

n
I(X1, X2, . . . , Xn;Y1, Y2, . . . , Yn) (2.104)

= lim
n→∞

1

n
[H(X1, X2, . . . , Xn) −H(X1, X2, . . . , Xn|Y1, Y2, . . . , Yn)] (2.105)

= H(X ) −H(X|Y) (2.106)

= h(Y) − h(Y|X ) (2.107)

provided that the limit exists. Note: we assume here that X is finite-valued and Y continuous-

valued.
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Referring to X as input process and Y as output process of a communication channel, the

limit in (2.104) exists if the channel law preserves the property of stationarity and ergodicity

of the input process. We call such channels ergodic channels. All channel models used in this

thesis are of this type.

Definition 2.12 (Capacity of Stationary Ergodic Channels) The capacity between a sta-

tionary and ergodic input process X and a stationary and ergodic output process Y is defined

by

C , lim
n→∞

max
qXn

1

n
I(X1, X2, . . . , Xn;Y1, Y2, . . . , Yn). (2.108)

2.3.1 Capacity of Memoryless Channels

Assume a DMC with discrete-time input Xk and input power 1. Assume further that a white

Gaussian noise sample, Zk, of power σ2 is added to the noiseless output Vk at the channel

output. We are interested in the maximal amount of information per symbol4, i.e. the capacity,

that can be conveyed across such a channel.

Gaussian Input Channel

Assume that the discrete input is allowed to take on any real value and the only constraint

imposed on the input is the average symbol energy. In this case, capacity is given by

C =
1

2
log2

(
1 +

1

σ2

)
. (2.109)

This is the discrete-time equivalent of Shannon’s famous formula via the sampling theorem [70].

The capacity-achieving input distribution is a Gaussian pdf. If logarithms to the base two are

used (as we will generally do), the unit of capacity is bits/symbol.

Binary Input Channel

In addition to the average symbol constraint considered above, the channel input is now

constrained to take on only the two possible symbols +1 and −1. By straight-forward manip-

ulation of the capacity formula as in [61], we obtain the capacity of the binary input channel

without memory and AWGN:

C = 1 − 1√
2π

∫
Y

e−y2/2 log2

(
1 + exp

[
−2

y

σ
− 2

1

σ2

])
dy . (2.110)

4As we only consider single-input single-output channels, the unit “information per symbol” is equivalent

to the unit “information per channel use”.
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It is the ultimate limit for binary phase-shift keying (BSPK). The discrete-time capacity-

achieving input distribution is symmetric, i.e. Pr(Xk = +1) = Pr(Xk = −1) = 0.5.

2.3.2 Capacity of Channels with Memory

Real communication channels are often degraded by a combination of additive, multiplicative,

and input-dependent interferences of time-varying nature. Whatever the underlying physical

phenomena in a particular situation are, the demodulator output signals are no longer in-

dependent events given the input sequence. The discrete-time channel is then said to have

“memory”. Moreover, the dependency between the output and the input is given by the

channel state.

Finite-State Channels

We start by giving Gallager’s definition of finite-state channels.

Definition 2.13 (Finite-State Channel [34]) The output at time k of a finite-state chan-

nel is statistically independent of the state at time k, given the state at time k − 1 and the

input at time k, i.e.

Pr(yk, sk|xk, sk−1) = Pr(yk|xk, sk−1)Pr(sk|xk, sk−1). (2.111)

If Pr(sk|xk, sk−1) = Pr(sk|sk−1), i.e. if the input has no influence on the next state given

the actual state, we obtain the subclass of channels with freely evolving state to which the

Gilbert-Elliot channel belongs [57]. On the other hand, if Pr(sk|xk, sk−1) is either 0 or 1,

we have the subclass of “deterministic” channels to which discrete-time channels with finite

impulse response belong.

An important subclass of FSCs is the class of indecomposable FSCs. For an indecomposable

FSC, the effect of the starting state s0 dies away with time.

Definition 2.14 (Indecomposable Channels [34]) A FSC is indecomposable if for every

ε > 0, no matter how small, there exists an n′ such that for all n > n′,

|Pr(sn|xn, s0) − Pr(sn|xn, s′0)| ≤ ε (2.112)

for all sn, x
n, s0, and s′0.

The probability Pr(sn|xn, s0) is equivalent to Pr(sn|sn−1) with sn−1 = (xn, s0). We can think

of Pr(sn|sn−1) as being the (n − 1, n)-th entry of a state-transition matrix. Thus, (2.112)

states that in any column all entries must be identical. Remember now that for an irreducible
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and aperiodic FSM all entries of a column of Q∞ are identical (see also (2.14)). Thus, the

properties of being irreducible and aperiodic is equivalent to being indecomposable. We note

that an indecomposable FSC can be represented by an aperiodic and irreducible FSM (mixing

property).

We modify slightly the definition of the capacity of indecomposable finite-state channels

from Gallager [34] for the purpose of our needs.

Definition 2.15 (Capacity Formula of Indecomposable Finite-State Channels) As-

sume a finite-state channel with starting state S0 that is driven by a discrete input Xk. The

time-k discrete input Xk can take on values only in the finite set X. The capacity is given by

CFSC , lim
n→∞

max
Kn

min
s0

1

n
I(Xn;Y n|S0 = s0) (2.113)

= lim
n→∞

max
Kn

max
s0

1

n
I(Xn;Y n|S0 = s0) (2.114)

where Kn = {pXn(xn) : xn ∈ Xn} denotes the allowed input pmfs. For bipolar input, we have

Xn = {+1,−1}n.

Channels with Gaussian Input

Hirt [41] showed in his thesis that the capacity of the discrete-time Gaussian input channel

with memory and per symbol average-energy input constraint is also the capacity of the same

channel but subject to a per block average-energy constraint.

The optimization procedure of the input spectrum to compute capacity is preferably trans-

formed together with the energy constraint to the frequency domain. It turns out that in the

frequency domain, the optimization procedure can be done easier and has also a nice intuitive

interpretation (“water-filling” technique).

Channels with Binary Input

In his seminal work [70], Shannon established many fundamental properties of noiseless, input-

constraint communication channels. Most notably, he defined the capacity C of a discrete-time

noiseless system that is characterized by the adjacency matrix A as

C = lim
n→∞

1

n
log2 |Σ(n)| (2.115)

where |Σ(n)| is the maximum number5 of sequences of length n that satisfy the constraint

imposed by A. The capacity can be computed by a combinatorial or equivalently by a prob-
5This implies that if there are parallel branches then these branches are countable, i.e. labeled with different

symbols.
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abilistic approach.

Combinatorial Approach

Assume a Markov process is given by the adjacency matrix A, then the maximal entropy rate

(the capacity) of the Markov process is given by the following theorem.

Theorem 2.5 (Capacity of a Markov Process [70]) The maximal entropy rate of a

Markov process determined by the adjacency matrix A is given by the spectral radius (largest

eigenvalue) of A, i.e.

C = lim
n→∞

1

n
max
qXn

H(X1, X2, . . . , Xn) = log2 ρ(A) bits/symbol. (2.116)

Proof: The entropy rate is the average growth rate of the number of sequences. The number

of sequences is counted for instance by starting in all states with an all-one row vector x(0).

The i-th entry of the vector x(n) = x(0) · A(n) contains the number of sequences that after n

time steps end in state i. Using singular value decomposition and denoting the i-th eigenvalue

of A with λi, we can rewrite x(n) in the following way

x(n) = x(0)A(n) (2.117)

= x(0)U−1



λn

1 0 0 · · ·
0 λn

2 0

0 0 λn
3 · · ·

...
...

. . .


U (2.118)

= x(0) · U−1



∑

i




. . .
...

...
...

· · · 0 0 0 · · ·
0 λn

i 0

· · · 0 0 0 · · ·
...

...
...

. . .






· U (2.119)

= x(0) ·
∑

i



λn

i U
−1 ·




. . .
...

...
...

· · · 0 0 0 · · ·
0 1 0

· · · 0 0 0 · · ·
...

...
...

. . .




· U




(2.120)

=
∑

i

λn
i x̃i. (2.121)

The vectors x̃i do not depend on n. For n large, the number of sequences grows therefore in

first order proportional to λ1 = ρ(A).
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Note: as there is an singular value decomposition of A, we can start with any x(0) without

affecting the result, i.e. ergodic (mixing) property of A. �

Example 2.11 (Capacity of the (1,∞)-RLL Source)

C = log2 ρ(A) = log2 1.6180 = 0.6942 bits/symbol.

Probabilistic Approach

We know that the entropy rate of a Markov process is also given by

H(X ) = H(Xn|Xn−1) (2.122)

=
∑

i∈Xn−1

Pr(Xn−1 = i)H(Xn|Xn−1 = i). (2.123)

Introducing states, i.e. Sk = Xk, yields

H(X ) =
∑

i

π(i)


−

∑
j:A(i,j)=1

Q(i, j) log2 Q(i, j)


 (2.124)

= −
∑

(i,j):A(i,j)=1

π(i)Q(i, j) log2 Q(i, j). (2.125)

To achieve the maximal entropy rate, we have to maximize over the set of state-transition

probabilities, i.e.

C = max
Q

H(X ). (2.126)

The entropy rate of a Markov source is a concave function over the convex set of STPs Q (see

Appendix C.). Shannon [70] showed that the capacity achieving state-transition probabilities

are given by

Q∗(i, j) =
r(j)

r(i)

A(i, j)

ρ(A)
(2.127)

where r(i) is the i-th entry of rT , the right eigenvector associated with the largest eigenvalue

(Perron-root) of A.

Example 2.12 (Capacity of the (1,∞)-RLL Source (cont.))

The two eigenvalues of the (1,∞)-RLL source are

ρ1 = 1.6180 ρ2 = −0.6180

with corresponding right eigenvectors

rT
1 = (+0.8507 + 0.5257) rT

2 = (+0.5257 − 0.8507) .
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The optimal state-transition probabilities are therefore

Q∗ =

(
0.6181 0.3819

1 0

)

with the corresponding state-distribution vector

π∗ = (0.7236 0.2764) .

With these numbers, the capacity of the (1,∞)-RLL source amounts to

C = −
∑

(i,j):A(i,j)=1

π∗(i)Q∗(i, j) log2 Q∗(i, j) = 0.6942 bits/symbol,

which is (of course) the same value as we have obtained with (2.116), see Example 2.11.

2.4 Problem Statement

Computing the capacity of an FSC as given by (2.113) or (2.114) is difficult because the input

can be any stationary process fulfilling the constraint Kn. There is no handy description of

such a process; i.e. there exists no simple parameterization, frequency interpretation, or the

like.

Of course, the constraints Kn can also satisfied by a Markov source. The distinct advantage

of a Markov source is that it is easily describable: a Markov source is fully specified by the

set of state-transition probabilities Q. The disadvantage of using Markov sources is that the

occurrence probability of a sequence generated by a Markov process cannot be arbitrary. This

limitation can be circumvented by artificially increasing the Markov source over its minimal

state-space realization. By doing so, the rigid structure of small Markov sources is relaxed.

The flexibility is then increased to assign each input sequence its occurence probability almost

“individually” (thereby approximating general stationary processes).

We assume causal channels without feedback. The channel law, i.e. the conditional distri-

bution of the output given the input, is given as follows

wY n|Xn(yn|xn
1−m) =

n∏
k=1

wYk|Xk
k−m

(yk|xk
k−m) =

n∏
k=1

w(yk|xk
k−m) (2.128)

with well-defined initial condition x0
1−m for m > 0. As the input is finite-valued, the channel is

a so-called FSC and can be represented by an FSM. Moreover, any finite-state Markov source

(MS), representing the input process, and any FSC together can be represented by a single

joint source/channel FSM.

We focus an indecomposable FSCs that are driven by a Markov source and call both the
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MS

FSM

FSC

FSC

YkXk

YkXk

Figure 2.10: Finite-State channel (top) and FSM (bottom).

source and the channel a finite-state model (see Fig. 2.10). The state-transition probabilities

of the input (Markov) process are free parameters that are at our disposal to maximize the

information rate. Thus, we have the following definition for the capacity of FSMs.

Definition 2.16 (Capacity Formula of FSMs) Assume that an indecomposable finite-state

channel is driven by a finite-state ergodic Markov source. The capacity of the joint source/channel

FSM is given in the limit as

CFSM , lim
n→∞

max
Q

min
s0

1

n
I(Xn;Y n|S0 = s0) (2.129)

= lim
n→∞

max
Q

max
s0

1

n
I(Xn;Y n|S0 = s0) (2.130)

where Q denotes the set of STPs imposed by the Markov source and where s0 is a well-defined

starting state of the joint source/channel FSM.

Note that the capacity of an FSM is a lower bound on the capacity of the FSC, as the input

of the FSC is not constrained to be a finite-state Markov process.

Thus, the objective of the thesis is to compute for a fixed Markov source at the input

information rates of indecomposable FSCs, i.e. information rates of aperiodic and irreducible

FSMs. In particular, we are interested in FSMs that model the magnetic recording channel.



Chapter 3

Sampling-based Computation of

Information Rates

Our goal is to compute the information rate between the finite-state input process X (or

equivalently state process S) and the output process Y of an FSM. Both processes, input

and output, are assumed to be stationary and ergodic. Thus, the Shannon-McMillan-Breiman

theorem applies. The input process is a Markov process and satisfies the Markov property,

but the output process in general does not. It is a hidden Markov process.

In the first two sections of this chapter, a new and practical computation method is pre-

sented for numerically evaluating estimates of the entropy rate of hidden Markov processes.

It consists of sampling both input and output of the channel and of processing the resulting

sequences on the trellis of the joint source/channel model. With increasing length of the se-

quences, the estimates converge with probability one to the limiting values predicted by the

Shannon-McMillan-Breiman theorem.

This sampling-based method has been developed independently in [5], by Sharma and

Singh [71], and by Pfister et al. [60]. The approach of Sharma and Singh differs from the

other two approaches in that it focuses on binary-valued output processes. Thus, the theory

of regenerative processes can be used rather than the Shannon-McMillan-Breiman theorem.

Regenerative processes include periodic ergodic processes. However, the computation method

proposed in [71] applies only to aperiodic processes and turns out to be identical to the forward

recursion of the sum-product algorithm (although the authors do not seem to be aware of this).

The method of Pfister et al. is the same as the one in [5].

We will show that given a finite-state Markov source, estimates of the information rate

can be evaluated by the sampling-based computation method. This holds also for finite-state

47
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Markov sources that were tailored to the channel for the purpose of maximizing the output

SNR, which in turn maximizes the information rate. Such sources will deliver tight lower

bounds on the capacity of the channel.

In all three papers [5,60,71], this idea was investigated and supported by numerical exper-

iments. The latter two used gradient techniques to optimize the STPs of the Markov source

and showed numerical results for a four-state input process. In [5], a systematic method was

devised using the Arimoto-Blahut algorithm and exploiting the Markov property of the input

process. By doing so, it was possible to optimize a 64-state input process. At the time of

publication of [5], we were positively surprised that this method worked so well, but did not

understand its theoretical underpinnings. We did not explain this method in [5].

Shortly afterwards, Kavčić proposed independently an elegant iterative method for max-

imizing the information rate [47]. Kavčić’s algorithm is a highly nontrivial generalization of

the Arimoto-Blahut algorithm [74] and fits nicely between Shannon’s formula for the capacity-

achieving state-transition probabilities of Markov sources and the Arimoto-Blahut algorithm.

Kavčić’s method and our (used for the numerical results in [5]) are identical with respect

to the computation of the a-posteriori state-transition weights (which will be defined shortly).

Kavčić’s method however differs from our method in that his update equation for the new

state-transition probabilities, i.e. (3.96), contains also the eigenvector of the noisy adjacency

matrix. Thus, Kavčić clearly realized the connection to Shannon’s equation for the optimal

state-transition probabilities [70]. We present his method in the third section of this chapter.

The fourth section of this chapter is devoted to an upper bound on the capacity of finite-

state channels. Like the lower bound, this upper bound bases on computing the entropy rate

of hidden Markov processes. The idea for the upper bound is from Vontobel, and numerical

results show that the capacity of small channels can be well bounded [75].

In the last section of this chapter, we consider the general case where the actual channel is

not a finite-state channel. In this case, the aforementioned method is applied to an auxiliary

FSM that approximates the original channel. By means of the auxiliary FSM, estimates of

upper and lower bounds on the information rate of the original (non finite-state) channel can

be computed.
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3.1 Computing Entropy Rates of Markov and Hidden

Markov Processes

By exploiting the structure of the underlying Markov process, estimates of the entropy rates

of Markov and hidden Markov processes are easily computed.

3.1.1 Computing the Hidden Markov Entropy Rate h(Y)

In our context, the hidden Markov entropy rate h(Y) is the output entropy rate of our FSM.

By definition, it is given for n → ∞ by the expectation of − 1
n

log2 r(y
n) with respect to the

output density rY n(·), i.e.

h(Y) = lim
n→∞

1

n
h(Y n) (3.1)

= lim
n→∞

−1

n
ErY n [log2 r(Y

n)] . (3.2)

For any given block length n and any given channel output yn, the probability r(yn) can be

computed by the forward recursion of the sum-product algorithm as shown in (2.43). If the

scale factor in (2.38) is chosen such that the sum of the state metrics equals one, i.e. if

ϕk =
1∑

bk∈Bk
µf

(
lst(bk)

)
µf(bk)

, (3.3)

the state metrics are normalized at each time step. Because of this normalization, the sum

of the forward state metrics at time n equals one as well. Hence, we have to divide by all

normalization factors up to time n to recover r(yn), i.e.

r(yn) =
1∏n

k=1 ϕk

∑
sn∈Sn

µf(sn)

︸ ︷︷ ︸
=1

(3.4)

=
1∏n

k=1 ϕk

. (3.5)

Thus, r(yn) equals the inverse of the product of the normalizing factors ϕk. Note: this holds

also if scaling factors ϕk are chosen such that
∑

sn∈Sn
µf(sn) = 1.

Ensemble Expectation via the Law of Large Numbers

An estimate of h(Y n) = −E[log2 r(Y
n)] is obtained by the following algorithm. Take K ′

different channel output sequences yn. For each such sequence, compute r(yn) as described

above. Let φk′ be the resulting − log2 r(y
n) of the k′-th output sequence. The stochastic



50 Chapter 3. Sampling-based Computation of Information Rates

average 1
K′
∑K′

k=1 φk′ is an estimate of h(Y n) that converges (with probability one) to h(Y n)

for K ′ → ∞ (law of large numbers).

Ensemble Expectation via Ergodicity

The above algorithm for the computation of h(Y n) was formulated mainly to gain some insight.

By exploiting the ergodic property of the output process Y , we can obtain the same estimate

by a single long sequence yn.

First, we note that an output sequence yn is easily generated by feeding a random input

sequence through the channel and sampling the corresponding channel output. For large n,

r(yn) is computed as described above with the help of scaling factors in the forward recursion

of the sum-product algorithm. Recalling (3.5), we obtain

r(yn) =
1∏n

k=1 ϕk

, (3.6)

and an estimate of the entropy rate h(Y) is then for finite n given by

ĥ(Y) = −1

n
log2 r(y

n) (3.7)

=
1

n

n∑
k=1

log2 ϕk . (3.8)

The right-hand side converges for n→ ∞ with probability one to h(Y) because of ergodicity.

An estimate of h(Y) is thus obtained by a single long sequence yn, and the corresponding

single long forward sum-product recursion yields r(yn) as the sum of the logarithms of the

scaling factors. By increasing the length n of the output sequence, the entropy rate can be

estimated to any desired level of accuracy.

As the underlying FSM is by assumption irreducible and aperiodic, the influence of the starting

state fades away. For long sequences n, we can therefore start in any state without affecting

the estimate ĥ(Y).
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Algorithm 3.1 Computing the Hidden Markov Entropy Rate h(Y)

Step 0: Fix the set of state-transitions probabilities Q of the joint source/channel FSM.

Step 1: Start in any state of the FSM and generate yn for n large.

Step 2: Execute the forward sum-product algorithm on the trellis induced by the FSM with

scaling factors ϕk as in (2.38).

Step 3: Compute ĥ(Y) = 1
n

∑
k log2 ϕk.

ĥ(Y) → h(Y) for n→ ∞ with probability one.

3.1.2 Computing the Markov Entropy Rate H(X )

The entropy rate of a Markov process is given analytically as

H(X ) = −
∑

(i,j):A(i,j)=1

π(i)Q(i, j) log2 Q(i, j). (3.9)

Note that (3.9) is efficient provided that π is known. This can be done by solving

π
(
A − I

)
= 0 (3.10)

via Gauss-elimination.

Alternatively we can compute an estimate of H(X ) with the sum-product algorithm in

essentially the same way as estimates of h(Y) are computed. The time-k forward branch

metric though changes now to µf(bk) = Pr
(
Sk = rst(bk)|Sk−1 = lst(bk)

)
= Q

(
lst(bk), rst(bk)

)
.
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Algorithm 3.2 Computing the Markov Entropy Rate H(X )

Step 0: Fix the set of state transition probabilities Q of the Markov source.

Step 1: Start in any state and generate xn for n large.

Step 2: Execute the forward sum-product algorithm on the source trellis with scaling factors

ϕk as in (2.38).

Step 3: Compute Ĥ(X ) = 1
n

∑
k log2 ϕk.

Ĥ(X ) → H(X ) for n→ ∞ with probability one.

The maximal Markov entropy rate is obtained analytically in (3.9) using the optimal state-

transition probabilities

Q∗(i, j) =




r(j)
r(i)

1
ρ(A)

∀(i, j) : A(i, j) = 1

0 otherwise
(3.11)

where r(i) is the i-th entry of the right Perron-vector. Plugging the optimal state-transition

probabilities into (3.9) delivers the maximal entropy rate analytically as

H(X ) = log2 ρ(A). (3.12)

A sampling-based estimate of the maximal entropy rate is obtained with the forward

recursion of the sum-product algorithm for Q = Q∗.

Computing eigenvalues and eigenvectors such as in (3.12) is for large matrices computa-

tionally very costly (in terms of computing power and storage requirements). If (as in our

case) only the largest eigenvalue and corresponding eigenvector of a non-negative, primitive,

real matrix A are of interest, the so-called power-method is an efficient computation method

(see Appendix B). The power-method operates on the trellis spanned by the adjacency matrix

A and computes iteratively an estimate of the largest (in magnitude) eigenvalue and corre-

sponding eigenvector by means of the sum-product algorithm. If the trellis length goes to

infinity, the estimate converges with probability one to the exact solution. Thus, computing

H(X ) reveals the interwoven connection between the analytical solution and the sampling-

based computation method. Computing h(Y) according to Algorithm 3.1 can therefore be

seen as a stochastic power-method.
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3.1.3 Computing the Conditional Hidden Markov Entropy Rate

h(Y|X )

First, we note that

h(Y|X ) = lim
n→∞

1

n
h(Y n|Xn) (3.13)

= lim
n→∞

1

n
EqXn [h(Y n|Xn = xn)] (3.14)

= lim
n→∞

−1

n
EqXn

[
EwY n|Xn=xn [log2w(Y n|Xn = xn)]

]
. (3.15)

For any given sequence length n, any given channel input xn, and channel output yn, the prob-

ability w(yn|xn) can be computed by the forward recursion of the sum-product algorithm. In

contrast to the computation of r(yn) (see above), the sum-product algorithm now operates

on a (possibly) reduced trellis induced by the input sequence xn or equivalently by the corre-

sponding state sequence sn
0 . This (possibly) reduced trellis is time-varying as xn is a random

sequence. It is given at time k by the reduced state set S̄k ⊆ Sk and reduced branch set

B̄k ⊆ Bk. The forward state and forward branch metrics at time k of the reduced trellis are

denoted by µ̄f(sk) and µ̄f(bk), respectively. For sk /∈ S̄k and bk /∈ B̄k, these metrics are zero.

The reduced trellis is irreducible and aperiodic as well, because it originates from an irreducible

and aperiodic trellis. It starts in a well-defined state determined by the initial (leftmost) state

of the (complete) joint source/channel trellis. This implies that µ̄f(s0) = 1 for a state s0 ∈ S̄0

and zero otherwise. The trellis is then processed from left (initial states) to right (final states),

computing the forward state metrics µ̄f(sk) according to the reduced forward recursion rule

µ̄f(sk) =

{ ∑
bk:rst(bk)=sk

µ̄f

(
lst(bk)

)
µ̄f(bk) if sk ∈ S̄k

0 otherwise.
(3.16)

Note that because of the time-varying nature of the reduced trellis, S̄k depends on time.

On this reduced trellis, the state metrics also tend quickly to zero, and the reduced forward

recursion rule is changed to

µ̄f(sk) =

{
ϕ̄k

∑
bk:rst(bk)=sk

µ̄f

(
lst(bk)

)
µ̄f(bk) if sk ∈ S̄k

0 otherwise,
(3.17)

where ϕ̄k is the time-k scale factor. If the scale factor ϕ̄k is chosen such that at each time step

the sum of the reduced state metrics equals one, i.e. if

ϕ̄k =
1∑

bk∈Bk
µ̄f

(
lst(bk)

)
µ̄f(bk)

, (3.18)
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the state metrics are normalized at each time step. To recover w(yn|xn), µ̄f(sn) for sn ∈ Sn

has to be divided by the normalization factors up to time n, which yields

w(yn|xn) =
1∏n

k=1 ϕ̄k

∑
sn∈S̄n

µ̄f(sn)

︸ ︷︷ ︸
=1

(3.19)

=
1∏n

k=1 ϕ̄k

. (3.20)

Thus, w(yn|xn) equals the inverse of the product of the normalizing factors ϕ̄k on the trellis

induced by the input xn. This holds also if scaling factors are used such that
∑

sn∈S̄n
µ̄f(sn) = 1.

Ensemble Expectation via the Law of Large Numbers

An estimate of h(Y n|Xn = xn) = −E [log2w(Y n|Xn = xn)] is obtained by the following

algorithm. For a randomly selected input xn, generate K ′ different output sequences yn each

time starting with an initial state according to the stationary state-distribution π. For each

such sequence, compute w(yn|xn) as described above. Let φ̄k′ be the resulting − log2w(yn|xn)

of the k′-th output sequence yn associated with the input sequence xn. Then 1
K′
∑K′

k′=1 φ̄k′ is

an estimate of h(Y n|Xn = xn) that converges (with probability one) to h(Y n|Xn = xn) for

K ′ → ∞ (law of large numbers).

An estimate of h(Y n|Xn) is obtained by averaging all |X|n different input sequences xn

over q(xn), i.e.

h(Y n|Xn) =
∑

xn∈Xn

q(xn)h(Y n|Xn = xn). (3.21)

By the AEP all input sequences exhibit the same probability for n large, and thus a single

long input sequence is sufficient.

Ensemble Expectation via Ergodicity

The conditional hidden Markov entropy rate can be expressed in the following way

h(Y|X ) = h(X ,Y) −H(X ) (3.22)

where we note that h(X ,Y)1 is a hidden Markov entropy rate as Y is not a Markov process.

Both h(X ,Y) andH(X ) can be computed by a single long sequence invoking ergodic arguments

1We use here a small “h” to denote the entropy rate although X is a finite-valued process.
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as shown in the previous subsections. Thus, h(Y|X ) can be computed by a single long sequence

using ergodic arguments as well, i.e. it holds that

−1

n
log2w(Y n|Xn) → h(Y|X ) (3.23)

for n→ ∞ with probability one.

For large n, w(yn|xn) is computed as described above by introducing scaling factors in the

forward recursion of the sum-product algorithm. Thus, an estimate of the conditional hidden

Markov entropy rate h(Y|X ) is for finite n given by

ĥ(Y|X ) =
1

n

n∑
k=1

log2 ϕ̄k . (3.24)

For n→ ∞, the right-hand side of (3.24) converges to h(Y|X ) with probability one.

As the (possibly) reduced state process is by assumption indecomposable, the influence of

the starting state fades away. For long sequences n, we can therefore start in any state of the

(possibly) reduced trellis without affecting the estimate ĥ(Y|X ).

Algorithm 3.3 Computing the Conditional Hidden Markov Entropy

Rate h(Y|X )

Step 0: Fix the set of state-transition probabilities Q of the joint source/ channel FSM.

Step 1: Start in any state of the FSM and generate xn and yn for n large.

Step 2: Execute the forward sum-product algorithm on the trellis induced by xn with scaling

factors ϕ̄k as in (3.17).

Step 3: Compute ĥ(Y|X ) = 1
n

∑
k log2 ϕ̄k.

ĥ(Y|X ) → h(Y|X ) for n→ ∞ with probability one.
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Example 3.1 (DICODE Channel with AWGN)

Assume that the output of the DICODE channel is corrupted with AWGN. The input/state

sequence induces exactly one path trough the trellis such that each ϕ̄k is one sample estimate

of the noise variance. The sum of the logarithms of the normalizing factors ϕ̄k amounts to

1

n

n∑
k=1

log2 ϕ̄k =
1

n

n∑
k=1

log2

(
1√

2πσ2
e−

(yk−vk)2

2σ2

)−1

=
1

2
log2

(
2πσ2

)
+ log2

(
exp

[
1

2

1
n

∑n
k=1(yk − vk)

2

σ2

])
→ 1

2
log2

(
2πeσ2

)
w. p. 1 for n→ ∞.

The numerator of the last term in the penultimate line is the empirical estimate of the noise

variance. It converges for large block lengths to σ2 such that the entire expression equals the

entropy of a continuous Gaussian random variable with variance σ2.

3.1.4 Computing the Conditional Markov Entropy Rate H(X|Y)

Expanding the conditional Markov entropy rate H(X|Y) in a straight-forward way yields

H(X|Y) = lim
n→∞

1

n
H(Xn|Y n) (3.25)

= lim
n→∞

1

n
ErY n [H(Xn|Y n = yn)] (3.26)

= lim
n→∞

−1

n
ErY n

[
EvXn|Y n=yn [log2 v(X

n|Y n = yn)]
]
, (3.27)

where the backward conditional probability v(xn|yn) is given by

v(xn|yn) =
w(yn|xn)q(xn)∑
x̃n w(yn|x̃n)q(x̃n)

. (3.28)

For any given block length n, any given output yn and input xn, v(xn|yn) can be com-

puted by the forward and backward recursion of the sum-product algorithm on the joint

source/channel trellis.

First, we note that the input process X is a Markov process. This allows us to factor the

sequence xn, (which is crucial for efficiently executing the sum-product algorithm). Because

any input sequence xn defines (by assumption) uniquely a state sequence s′n0 and vice versa,

we have

v(xn|yn) = v(s′n0 |yn) (3.29)

=
n∏

k=1

v(s′k|s′k−1, y
n) (3.30)

=
n∏

k=1

v(s′k−1, s
′
k|yn)

v(s′k−1|yn)
. (3.31)
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Both, v(s′k−1, s
′
k|yn) and v(s′k−1|yn) are computed with the forward and backward recursion of

the sum-product algorithm as follows:

v(s′k−1, s
′
k|yn) =

1∏k−1
i=1 ϕi

∏n
j=k+1 βj

µtot(b
′
k), (3.32)

provided it holds that

b′k :
(
S ′

k−1 = s′k−1 = lst(b′k)
) ∩ (S ′

k = s′k = rst(b′k)
)
, (3.33)

and

v(s′k−1|yn) =
1∏k−1

i=1 ϕi

∏n
j=k βj

µtot(s
′
k−1), (3.34)

with µtot(b
′
k) and µtot(s

′
k−1) determined by (2.48) and (2.46), respectively; thus

v(xn|yn) =
n∏

k=1

∑
all bn through b′k

µf(b
n)∑

all bn through s′k−1
µf(bn)

, (3.35)

where b′k and s′k are induced by the input sequence xn.

Ensemble Expectation via the Law of Large Numbers

An estimate of H(Xn|Y n = yn) is obtained similarly as for h(Y n|Xn = xn). As it is difficult

to select yn at random, the output sequence is first generated. For a given output sequence

yn, all possible input sequences xn are listed in the trellis.

Thus, for a randomly selected xn, generateK ′ different output sequences, each time starting

in an initial state according to the stationary state-distribution. For each such output sequence

compute v(xn|yn) with the forward-backward sum-product algorithm for all input sequences

as described above. With φk′′ being the logarithm of the a-posteriori probability of an input

sequence xn, i.e. − log2 v(x
n|yn), we obtain for each output sequence

H(Xn|Y n = yn) =
1

|X|n
|X|n∑
k′′=1

φk′′ , (3.36)

where the summation goes over all input sequences.

An estimate of H(Xn|Y n) is obtained from approximating the expectation over Y n (inte-

gration) by averaging over all K ′ output sequences yn collected in the set K′, i.e.

H(Xn|Y n) ≈

∑
yn∈K′

r(yn)H(Xn|Y n = yn) (3.37)

with equality for K ′ → ∞ with probability one.
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Ensemble Expectation via Ergodicity

The conditional Markov entropy rate can be expressed in the following way

H(X|Y) = h(X ,Y) − h(Y) (3.38)

where we note that h(X ,Y) is a hidden Markov entropy rate as Y is not a Markov process.

Both h(X ,Y) and h(Y) can be computed by a single long sequence invoking ergodic arguments

as shown above. Thus, H(X|Y) can be computed by a single long sequence using ergodic

arguments and it holds that

−1

n
log2 v(X

n|Y n) → H(X|Y) (3.39)

for n→ ∞ with probability one.

An estimate of H(X|Y) is thus obtained by a single long output sequence yn and the

corresponding forward and backward recursion of the sum-product algorithm. As the under-

lying FSM is by assumption irreducible and aperiodic, the influence of the starting state fades

away. For long sequences n, we can therefore start in any state without affecting the estimate

Ĥ(X|Y).

Algorithm 3.4 Computing the Conditional Markov Entropy Rate H(X|Y)

— Version A

Step 0: Fix the set of state-transition probabilities Q of the joint source/ channel FSM.

Step 1: Start in any state and generate xn and yn.

Step 2: Execute the forward and the backward recursion of the sum-product algorithm and

compute the a-posteriori state-transition probabilities and a-posteriori state proba-

bilities.

Step 3: Compute

Ĥ(X|Y) = −1

n
log2

n∏
k=1

∑
all bn through b′k

µf(b
n)∑

all bn through s′k−1
µf(bn)

(3.40)

= −1

n

n∑
k=1

log2

∑
all bn through b′k

µf(b
n)∑

all bn through s′k−1
µf(bn)

. (3.41)

where b′k and s′k−1 are induced by the input xn.

Ĥ(X|Y) → H(X|Y) for n→ ∞ with probability one.
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Note that the computation of (3.41) is numerically problematic if the input sequence trav-

els through some branches considerably less frequently than through others. The following

computation method is mathematically equivalent, more intuitive, and numerically advanta-

geous.

Exploiting the Markov Structure

Exploiting the Markov structure right from the beginning, we can expand the conditional

Markov entropy rate as in [47]:

H(X|Y) = lim
n→∞

1

n
H(Xn|Y n) (3.42)

= lim
n→∞

1

n
H(Sn

0 |Y n) (3.43)

= lim
n→∞

1

n

n∑
k=1

H(Sk|Sk−1, Y
n) (3.44)

where we assumed that Xn implies Sn
0 and vice versa. A single entropy term is further

expanded as follows

H(Sk|Sk−1, Y
n) = −EpSk,Sk−1,Y n [log2 Pr(Sk|Sk−1, Y

n)] (3.45)

= −
∑

(i,j):A(i,j)=1

(
π(i)Q(i, j)

EpY n|Sk=j,Sk−1=i
[log2 Pr(Sk = j|Sk−1 = i, Y n)]

)
. (3.46)

In the absence of noise, Y n determines Sn
0 and thus H(X|Y) = 0. In the presence of noise, we

need to compute a-posteriori probabilities. To do so, we first define

vk(i, j|Y n) , Pr(Sk−1 = i, Sk = j|Y n) (3.47)

vk−1(i|Y n) , Pr(Sk−1 = i|Y n) (3.48)

and rearrange the expectation from above as follows:

H(Sk|Sk−1, Y
n) = −

∑
(i,j):A(i,j)=1

(
π(i)Q(i, j)EpY n|Sk=j,Sk−1=i

[
log2

vk(i, j|Y n)

vk−1(i|Y n)

])
(3.49)

such that

H(X|Y) = −
∑

(i,j):A(i,j)=1

(
π(i)Q(i, j) lim

n→∞
1

n

n∑
k=1

EpY n|Sk=j,Sk−1=i

[
log2

vk(i, j|Y n)

vk−1(i|Y n)

])
. (3.50)

To simplify this expression, we define a-posteriori state-transition weights.
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Definition 3.1 (A-posteriori State-Transition Weight) For all transitions (i, j) :

A(i, j) = 1, we define the a-posteriori state-transition weight in the following way:

T(i, j) , lim
n→∞

1

n

n∑
k=1

EpY n|Sk=j,Sk−1=i

[
log2

vk(i, j|Y n)

vk−1(i|Y n)

]
. (3.51)

For all transitions (i, j) : A(i, j) = 0, we define T(i, j) , −∞. Note: the a-posteriori state-

transition weight depends on a particular source, i.e. on the set of (a-priori) STPs Q. We

call this version of the a-posteriori state-transition weights the conditioned version, as the

expectation is conditioned on a particular state-transition. The a-posteriori state-transition

weights are collected in the matrix T.

We return now to (3.46) and expand H(Sk|Sk−1, Y
n) in a different way, i.e.

H(Sk|Sk−1, Y
n) = −

∑
(i,j):A(i,j)=1

(
π(i)Q(i, j)E vk(i,j|Y n)

pSk=j,Sk−1=i
rY n

[
log2

vk(i, j|Y n)

vk−1(i|Y n)

])
(3.52)

= −
∑

(i,j):A(i,j)=1


π(i)Q(i, j)ErY n


log2

vk(i, j|Y n)
vk(i,j|Y n)

�(i)Q(i,j)

vk−1(i|Y n)
vk−1(i|Y n)

�(i)




 . (3.53)

Similarly to (3.50), this yields

H(X|Y) = −
∑

(i,j):A(i,j)=1


π(i)Q(i, j) lim

n→∞
1

n

n∑
k=1

ErY n


log2

vk(i, j|Y n)
vk(i,j|Y n)

�(i)Q(i,j)

vk−1(i|Y n)
vk−1(i|Y n)

�(i)




 . (3.54)

We recognize the expectation term in (3.54) as the a-posteriori state-transition weight T(i, j)

defined above. This time, the expectation is slightly different. It is unconditioned. Thus, we

define the unconditioned version of the a-posteriori state-transition weight.

Definition 3.2 (Unconditioned Version of the A-posteriori State-Transition

Weight) For all transitions (i, j) : A(i, j) = 1, we define the unconditioned version of the

a-posteriori state-transition weight in the following way

T(i, j) , lim
n→∞

1

n

n∑
k=1

ErY n


log2

vk(i, j|Y n)
vk(i,j|Y n)

�(i)Q(i,j)

vk−1(i|Y n)
vk−1(i|Y n)

�(i)


 . (3.55)

For all transitions (i, j) : A(i, j) = 0, we define T(i, j) , −∞. The unconditioned a-posteriori

state-transition weights are collected in the matrix T. They are a function of the set of a-priori

STPs Q.

As (3.55) is mathematically equivalent to (3.51), we use the same symbol for both the condi-

tioned and unconditioned version. The difference between the conditioned and unconditioned

version of the a-posteriori state-transition weights becomes visible for n finite (see below).
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In the absence of noise, the a-posteriori state-transition weight T(i, j) is zero as both

vk(i, j|Y n) and vk−1(i|Y n) are either 0 or 1. In the presence of noise, the output sequence Y n

can in the worst case not provide any information at all about the state-transitions; meaning

that vk(i, j|Y n) and vk−1(i|Y n) are both independent of Y n. Thus, we obtain the following

lemma.

Lemma 3.1 (Range of A-posteriori State-Transition Weight)

log2 Q(i, j) ≤ T(i, j) ≤ 0 ∀ (i, j) : A(i, j) = 1 . (3.56)

Proof: The upper limit is clear. The lower limit follows from (3.46) with Pr(Sk = j|Sk−1 =

i, Y n = yn) = Pr(Sk = j|Sk−1 = i). �

The conditional Markov entropy rate is now more compactly expressed as

H(X|Y) = −
∑

(i,j):A(i,j)=1

π(j)Q(i, j)T(i, j). (3.57)

Applying ergodicity, we replace the ensemble expectation in (3.55) by a single long sequence

yn and obtain the empirical counterpart as

T̂(i, j) =
1

n

n∑
k=1

log2

vk(i, j|yn)
vk(i,j|yn)

�(i)Q(i,j)

vk−1(i|yn)
vk−1(i|yn)

�(i)

. (3.58)

Equivalently, we can compute by means of ergodicity the conditioned version for the a-

posteriori state-transition weight from (3.51) as follows

T̂(i, j) =
1

n(i, j)

n∑
k=1

(Sk−1=i,Sk=j)∈xn

log2

vk(i, j|yn)

vk−1(i|yn)
. (3.59)

where n(i, j) is the number of state-transitions (i, j) that were induced by the input sequence

xn. We recognize here the same potential for numerical problems as in (3.41); because for finite

n the input sequence xn may have visited some state-transitions considerably less frequently

than others.

Finally, an estimate of the conditional Markov entropy rate is expressed as follows

Ĥ(X|Y) = −
∑

(i,j):A(i,j)=1

π(j)Q(i, j)T̂(i, j) , (3.60)

and it holds that Ĥ(X|Y) → H(X|Y) for n → ∞ with probability one, because T̂(i, j) →
T(i, j) for n→ ∞ with probability one. Thus, we have the following algorithm:
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Algorithm 3.5 Computing the Conditional Markov Entropy Rate H(X|Y)

— Version B

Step 0: Fix the set of state-transition probabilities Q of the joint source/ channel FSM.

Step 1: Start in any state of the FSM and generate xn and yn for n large.

Step 2: Execute the forward and the backward recursion of the sum-product algorithm and

compute the a-posteriori state-transition probabilities and a-posteriori state proba-

bilities according to (2.46) and (2.48)

Step 3: Compute T̂(i, j) according (3.58) or (3.59).

Step 4: Compute Ĥ(X|Y) according to (3.60).

Ĥ(X|Y) → H(X|Y) for n→ ∞ with probability one.

3.1.5 Backward Sum-Product Recursion

Instead of performing a single long forward recursion of the sum-product algorithm, estimates

of the entropy rates can also be computed by a single long backward recursion. This follows

from (2.44). An estimate of the hidden Markov entropy rate h(Y) is then obtained by

ĥ(Y) =
1

n

n∑
k=1

log2 βk . (3.61)

The same holds for computing estimates of h(Y|X ) and H(X ). The conditional Markov

entropy rate H(X|Y) requires forward-backward computation anyway, unless it is computed

as h(X ,Y) − h(Y).

3.1.6 Reduced-State Version

Let S′
k be a subset of the time-k states for 0 ≤ k ≤ n. If the sum in the recursion rule in

(2.38) for states sk ∈ S′
k is modified to

µf(sk) = ϕ̃k

∑
bk:rst(bk)=sk∈S′

k

µf

(
lst(bk)

)
µf(bk), (3.62)

the sum of the final state metrics will be a lower bound on r(yn) and the corresponding

estimate ĥ(Y) = 1
n

∑
k log2 ϕ̃k will be an upper bound on h(Y) for n→ ∞. We have proved:
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Theorem 3.2 (Reduced-State Upper Bound on h(Y)) Omitting states from the compu-

tation in (2.38) yields an upper bound on h(Y).

The set S′
k may be chosen arbitrarily. An obvious strategy is to keep only a fixed number of

states with the largest metrics (see also Chapter 4). By a similar argument, one may obtain

a lower bound.

Theorem 3.3 (Reduced-State Lower Bound on h(Y)) Merging states in the computation

(2.38) yields a lower bound on h(Y).

The idea of the merging procedure is to increase the number of allowed paths in the trellis

while at the same time reduce the number of states. There are various merging procedures.

We will detail one in Chapter 4.

Similarly, these reduced-state bounds deliver upper and lower bounds on h(Y|X ), H(X ),

and H(X|Y) for n→ ∞.

3.2 Computing Information Rates

The algorithms presented in the first section of this chapter enable us to compute estimates

of information rates of FSMs. We distinguish between a “forward-only” and a “forward-

backward” method. While the former is computationally preferable, the latter is used for

maximizing the information rate (see next section).

3.2.1 Forward-Only Method

The information rate between the input (or equivalently the state) process X and the output

process Y of an FSM is expressed as follows

I(X ;Y) = h(Y) − h(Y|X ) (3.63)

= lim
n→∞

1

n

n∑
k=1

log2 ϕk − lim
n→∞

1

n

n∑
k=1

log2 ϕ̄k (3.64)

= lim
n→∞

1

n

n∑
k=1

log2

ϕk

ϕ̄k

(3.65)

where ϕk the scaling factor given by (2.38) and where ϕ̄k is the scaling factor from (3.17).

Thus, an estimate of the information rate is obtained for finite sequence length n by a single
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long output sequence yn followed by the computation of the scaling factors ϕk and ϕ̄k, i.e.

Î(X ;Y) =
1

n

n∑
k=1

log2

ϕk

ϕ̄k

. (3.66)

Both scaling factors can be computed simultaneously with a single forward recursion of the

sum-product algorithm.

3.2.2 Forward-Backward Method

The information rate is given in terms of Markov entropy rates as follows

I(X ;Y) = H(X ) −H(X|Y) . (3.67)

Estimates of H(X ) and H(X|Y) can be computed as described in the previous section.

Alternatively, the Markov property of the state process yields directly

I(X ;Y) = −
∑

(i,j):A(i,j)=1

π(i)Q(i, j)

[
log2 Q(i, j) − T(i, j)

]
. (3.68)

An estimate of the information rate is therefore obtained by computing the empirical coun-

terpart of the a-posteriori state-transition weights according to (3.58) or (3.59), i.e.

Î(X ;Y) = −
∑

(i,j):A(i,j)=1

π(i)Q(i, j)

[
log2 Q(i, j) − T̂(i, j)

]
. (3.69)

Noisy Adjacency Matrix

In the sequel, it will be advantageous to arrange the a-posteriori state-transition weights in a

slightly different way. We start by defining the noisy adjacency matrix as follows:

Definition 3.3 (Noisy Adjacency Matrix) The noisy adjacency matrix Ã is given by its

entries Ã(i, j) that are defined as follows

Ã(i, j) ,
{

2T(i,j) ∀(i, j) : A(i, j) = 1

0 otherwise
(3.70)

with T(i, j) being the a-posteriori state-transition weight. Note that the entries of the noisy

adjacency matrix, Ã(i, j), depend on Q.

From Lemma 3.1 follows immediately

Lemma 3.4 (Range of Ã(i, j))

Q(i, j) ≤ Ã(i, j) ≤ 1 ∀ (i, j) : A(i, j) = 1 . (3.71)
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By means of (3.70), the information rate of an FSM for a fixed Markov input process

determined by Q can be written as

I(X ;Y) =
∑

(i,j):A(i,j)=1

π(i)Q(i, j) log2

Ã(i, j)

Q(i, j)
. (3.72)

Each valid transition (i, j) is assigned a weight Ã(i, j) that depends on the associated output

SNR. As the state and state-transition probabilities are all smaller than one, the entries of

the noisy adjacency matrix Ã are reduced by the noise. In absence of noise, clearly Ã(i, j) =

A(i, j).

Example 3.2 (i.u.d. Binary Input in the very low SNR Regime) Assume that the

input is i.u.d. and that the input xn induces a unique branch sequence in the FSM. If the noise

is completely dominating (very low SNR regime), then Ã(i, j) = Q(i, j) and

I(X ;Y) =
∑

(i,j):A(i,j)=1

π(i)Q(i, j) log2

Q(i, j)

Q(i, j)
= 0. (3.73)

For finite n, an estimate of the information rate is given by the empirical counterpart of

(3.72) as follows

Î(X ;Y) =
∑

(i,j):A(i,j)=1

π(i)Q(i, j) log2

ˆ̃A(i, j)

Q(i, j)
, (3.74)

where ˆ̃A is obtained from (3.70) using T̂(i, j)s, the empirical counterparts of the T(i, j)s.

3.2.3 Convergence Behavior

The central limit theorem (CLT) for ergodic Markov processes states that estimates of the

entropy rate converge in distribution to a Gaussian random variable, with the ensemble entropy

rate as mean and a variance that decays with O(n− 1
2 ) to zero [21]. More formally, let the

ergodic Markov chain have the stationary state-distribution π, then the partial sum

PS (n) =

n∑
k=1

f(Sk), (3.75)

where f(·) : S → R is any measurable function from the set of states S to the number of reals,

converges in distribution to a Gaussian random variable, i.e.

PS (n)/
√
n→ G(0, σ2

∞). (3.76)



66 Chapter 3. Sampling-based Computation of Information Rates

The function f(·) can be for instance the difference between the entropy rate and the time-k

sample estimate, i.e.

f(Sk) =
(
h(Y) − log2 φk

)
. (3.77)

The variance of the partial sum of (3.77) depends on the structure, i.e. the number of states,

of the underlying FSM and the conditional observation function (must be square integrable),

and it is difficult to quantify.

To give some intuition, we consider the forward-backward method from above. The ac-

curacy of the estimated information rate depends on the accuracy of the T̂(i, j)s. Assuming

AWGN, i.u.d. input, and aiming at an accuracy of 1% for the estimated information rate, each

branch should be visited at least 10000-times (the confidence interval decreases with 1/
√
n).

Thus, the length of the input sequence should be roughly 10000 times the number of branches

of the joint/source channel model.

It was proven by Chen [21] that if the normalized sum PS (n)/
√
n is bounded (as in our

case), the CLT implies that the Gaussian distribution is the only possible distribution. From

the Shannon-McMillan-Breiman theorem, we know that for stationary and ergodic Markov

processes the average sum of the logarithm of the scaling factors converges with probability

one to the entropy rate; thus the variance σ2
∞ is zero. For general Markov processes, this may

not be true and there is a variance in the limit that is strictly bigger than zero (see Chen [21]).

3.3 Computing Lower Bounds on Capacity

In absence of noise, the capacity of an FSM depends only on the maximum number of different

sequences it generates. This number is independent of a particular “encoder” realization,

and thus artificially increasing the state-space of the FSM beyond its minimal state-space

realization does not increase capacity.

In the presence of noise, this is different because the mutual information between the FSM

input Xn, or equivalently the FSM state sequence Sn, and the output Y n can be expanded as

follows:

I(Xn;Y n) = H(Xn) −H(Xn|Y n) (3.78)

= H(Xn) −
n∑

i=1

H(Xi|X i−1
1 , Y n) (3.79)

≥ H(Xn) −
n∑

i=1

H(Xi|Xi−1, Y
n) . (3.80)
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In case of Gaussian inputs, this is exploited by the “water-filling” technique [42]. The “water-

filling” technique aims at increasing the SNR at the channel output by shaping the input

spectrum to the channel spectrum. The input bits are no longer i.i.d. but correlated and

their spectrum is proportional to the inverse of the channel spectrum (thus the name “water-

filling”).

As mentioned in Chapter 2, we assume Markov sources as input processes because they

are easily describable. For a given order of the Markov input process, the state-transition

probabilities are free parameters that can be optimized in order to maximize the SNR at the

channel output which in turn will increase the information rate. Additional free parameters

are obtained by artificially increasing the Markov model of the source beyond its minimal

state-space realization. By doing so, the rigid structure of the Markov source is relaxed.

Example 3.3 (Extension of Bernoulli Processes)

If the input signals are i.i.d. distributed, the input process is a Bernoulli process and the

minimal state-space realization requires only one state. The first extension of a Bernoulli

process is a memory-one (two states) Markov process, and the second extension is a memory-

two (four states) Markov process.

Example 3.4 (Extension of the (1,∞)-RLL Source)

As mentioned in Chapter 2, the (1,∞)-RLL constraint can be realized by a two state Markov

source. This is the minimal state-space realization. The first extension has three and second

extension five states.

3.3.1 FSM Information Rate and FSM Capacity

We start by defining for a given extension η of the input process the FSM information rate.

The minimal state-space realization is always denoted by η = 0.

Definition 3.4 (FSM Information Rate) For a given extension η of the input process,

and a given set of state-transition probabilities Q of that process, the FSM information rate is

defined as

Iη(Q) , −
∑

(i,j):A(i,j)=1

π(i)Q(i, j) [log2 Q(i, j) − T(i, j)] (3.81)

=
∑

(i,j):A(i,j)=1

π(i)Q(i, j) log2

Ã(i, j)

Q(i, j)
. (3.82)

We continue and define the FSM capacity Cη as the maximal FSM information rate achiev-

able when the Markov input process is the η-th extension of the input process.
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Definition 3.5 (FSM Capacity) Let the η-th extension of the Markov input process be de-

termined by the set of state-transition probabilities Q. For a fixed extension η of the Markov

input process, the FSM capacity is defined by

CFSM
η , max

Q
Iη(Q) (3.83)

= max
Q


− ∑

(i,j)
A(i,j)=1

π(i)Q(i, j) [log2 Q(i, j) − T(i, j)]


 (3.84)

= −
∑

(i,j):A(i,j)=1

π∗(i)Q∗(i, j) [log2 Q∗(i, j) − T∗(i, j)] (3.85)

=
∑

(i,j):A(i,j)=1

π∗(i)Q∗(i, j) log2

Ã∗(i, j)
Q∗(i, j)

(3.86)

where the maximization is performed over all sets of state-transition probabilities Q that form

a valid set for the η-th extension of the input process. The set of state-transition probabilities

that achieve the FSM capacity are denoted by Q∗. Note that in (3.86), the probabilities π∗(i)
and Q∗(i, j) are uniquely determined by Q∗ and that T∗(i, j) (and thus Ã∗(i, j)) depends on

Q∗ as given in (3.55) and (3.70) respectively.

Thus, a sequence of lower bounds on the capacity of the FSC is obtained in the following

way

CFSM
0 ≤ CFSM

1 ≤ . . . ≤ CFSM
∞ = CFSC (3.87)

which in the limit (for an infinite extension of the input process) equals the FSC channel

capacity.

3.3.2 Lagrangian and Gradient-Based Search

Computing the FSM capacity requires a maximization of the state-transition probabilities of

the source. This is complicated by the fact that analytical expressions for the information

rate itself and for its derivatives in function of Q are very complicated.

Our objective-function is the Lagrangian consisting of the FSM information rate and the

constraints which are imposed on the Markov input source. Thus we want to maximize the
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Lagrangian

L = Iη(Q) +
∑
i∈S

λi

∑
j∈S

Q(i, j)

+
∑
j∈S

λ′j

(∑
i∈S

π(i)Q(i, j) − π(j)

)
+ λ

′′∑
i∈S

π(i) (3.88)

=
∑

(i,j):A(i,j)=1

π(i)Q(i, j) log2

Ã(i, j)

Q(i, j)

+
∑
i∈S

λi

∑
j∈S

Q(i, j) +
∑
j∈S

λ′j

(∑
i∈S

π(i)Q(i, j) − π(j)

)

+ λ
′′∑

i∈S

π(i) (3.89)

over Q, where all entries Ã(i, j) of the noisy adjacency matrix depend on the set of state-

transition probabilities Q.

Gradient-Based Search

Brute force optimization of the state-transition probabilities is only a practical approach for

very small input processes. For a higher order input process, iterative gradient techniques

can be used. The starting point is a randomly selected set of state-transition probabilities

Q(0) that fulfills the Markov constraints. The update equation for a particular state-transition

probability Q(`+1)(i, j) at the (`+ 1)-th iteration can be given in the following form

Q(`+1)(i, j) = Q(`)(i, j) + ς
Iη
(
Q(`)(i, j)

)− Iη
(
Q(`)(i, j) + ∆(i, j)

)
∆(i, j)

. (3.90)

For finite-block lengths, the evaluation of the FSM information rate (using the forward-only

method) is reliable only within O(n− 1
2 ). Assuming that the information rate is concave in

Q(`)(i, j), ∆(i, j) must be roughly twice as large as this tolerance; otherwise the numerator

in (3.90) is a random variable. The update equation (3.90) is most efficiently implemented

in a zooming way: First short block-lengths and large ∆(i, j) are used and afterwards long

block-lengths with small ∆(i, j) so as to increase the precision from iteration to iteration. The

step size ς is chosen to be sufficiently small, but may depend on the state-transition and can

be decreased in a similar way as ∆(i, j) is decreased.

3.3.3 Markov Constrained Arimoto-Blahut Algorithm

We construct the Arimoto-Blahut algorithm under the constraint that the source is a Markov

process. To construct this algorithm, we need to define a skewed a-posteriori state-transition
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weight matrix t with entries t(i, j) for every state-transition (i, j) : A(i, j) = 1 .

Definition 3.6 (Skewed A-posteriori State-Transition Weight) For all transitions (i, j) :

A(i, j) = 1, we define the skewed a-posteriori state transition weight in the following way:

t(`)(i, j) , lim
n→∞

1

n

n∑
k=1

ErY n


log2

v
(Q(`))
k (i, j|Y n)

v
(Q)
k (i,j|Y n)
�(i)Q(i,j)

v
(Q(`))
k−1 (i|Y n)

v
(Q)
k−1

(i|Y n)

�(i)


 (3.91)

otherwise t(`)(i, j) = −∞. The output pdf rY n(·) is a function of the set of STPs Q. Note

that the backward channel laws in the exponent of numerator and denominator depend on a

different set of STPs, namely on Q instead of Q(`) (where ` = 0, 1, 2, . . . is an index).

Note that substituting t(`)(i, j) for T(i, j) in (3.81) does not provide an “FSM information

rate” unless t(`)(i, j) = T(i, j). This is the case if Q(`) = Q.

An estimate of the value t(i, j) can be computed using the sum-product algorithm with

two long output sequences yn (one for the source Q and one for the source Q(`)) , i.e.

t̂(`)(i, j) =
1

n

n∑
k=1

log2

v
(Q(`))
k (i, j|yn)

v
(Q)
k (i,j|yn)
�(i)Q(i,j)

v
(Q(`))
k−1 (i|yn)

v
(Q)
k−1

(i|yn)

�(i)

. (3.92)

For n large, t̂(i, j) converges to t(i, j) with probability 1.

We can now formulate the Markov-constrained Arimoto-Blahut algorithm.

Algorithm 3.6 Markov-Constrained Arimoto-Blahut Algorithm

Step 0: Initialize the algorithm with an arbitrary set of STPs Q(0).

Step 1: Find Q(`+1) as

Q(`+1) = argmax
Q


− ∑

(i,j):A(i,j)=1

π(i)Q(i, j)
[
log2 Q(i, j) − t(`)(i, j)

] . (3.93)

Increment ` by 1, and repeat Step 1 until convergence. Note that t(`)(i, j) depends

on both Q and Q(`) but the probabilities π(i) and Q(i, j) are uniquely determined

by Q.

An obvious difficulty with the Markov-constrained Arimoto-Blahut algorithm is that the

algorithm is computationally extremely complex to execute. This is because we need to run the

sum-product algorithm at every point Q in order to numerically evaluate t(`)(i, j), which we
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need in order to evaluate the maximum in Step 1. This is clearly computationally prohibitive.

On the other hand, this algorithm provably converges to a local maximum. Moreover, if Iη(Q)

is concave in Q (which we actually don’t know), this algorithm converges to CFSM
η .

From (3.87) follows that for an infinite extension of the input process, we obtain a capacity-

achieving input distribution of the FSC (although this distribution may be impossible to

compute in practice).

3.3.4 Iterative Information Rate Maximization Method

The following elegant algorithm to maximize the information rate is due to Kavčić [47]. It is

an iterative algorithm that is initialized with an arbitrary choice of STPs. Steps 0 and 1 are

performed iteratively.

Algorithm 3.7 Iterative Information Rate Maximization Method [47]

Step 0: Given Q(`), evaluate T(`)(i, j). We write T(`)(i, j) instead of T(i, j) to emphasize

that the a-posteriori state-transition weight is a function of Q(`) and not of Q.

Step 1: Find Q(`+1) as

Q(`+1) = argmax
Q


− ∑

(i,j):A(i,j)=1

π(i)Q(i, j)
[
log2 Q(i, j) − T(`)(i, j)

] . (3.94)

Increment ` by one and go back to Step 0. In (3.94), the probabilities π(i) and Q(i, j)

are determined by Q.

Step 0 is performed by running the forward-backward sum-product algorithm and numer-

ically evaluating estimates of T(`)(i, j) using (3.58).
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Theorem 3.5 Let ρ(Ã) denote the Perron-root of the noisy adjacency matrix Ã, and let r̃T

be the right Perron-vector.

a) With (3.94) we obtain the following information rate

I(`)
η (Q(`+1)) , max

Q


 ∑

(i,j)
A(i,j)=1

π(i)Q(i, j)

[
log2

1

Q(i, j)
+ T(`)(i, j)

]
=

∑
(i,j):A(i,j)=1

π(i)Q(`+1)(i, j)

[
log2

1

Q(`+1)(i, j)
+ T(`)(i, j)

]

= log2 ρ(Ã) (3.95)

The superscript ` in I
(`)
η (Q(`+1)) reminds that T(`)(i, j) depends on Q(`).

b) The set of state-transition probabilities Q(`+1) that achieves the maximization in (3.94)

contains the following individual state-transition probabilities

Q(i, j)(`+1) =
r̃(j)

r̃(i)
· 2T(`)(i,j)

ρ(Ã)
. (3.96)

The right Perron-vector r̃T originates from the noisy adjacency matrix Ã with entries

Ã(i, j) = 2T(`)(i,j).

Proof: A proof can be found in Appendix C. �

From (3.96), we know that

I(`)
η (Q(`)) ≤ I(`)

η (Q(`+1)) . (3.97)

If

I(`)
η (Q(`+1)) ≤ I(`+1)

η (Q(`+1)) (3.98)

also holds, then

I(1)
η (Q(1)) ≤ I(1)

η (Q(2)) ≤ I(2)
η (Q(2)) ≤ · · · ≤ I(∞)

η (Q(∞)) = CFSM
η . (3.99)

Conjecture 3.6 (Kavčić Conjecture [47]) For a given order of the input process, the iter-

ative information maximization method increases the information rate and converges (at least)

to a local maximum.

Note the iterative information maximization method is not an expectation-maximization al-

gorithm because each update of the state-transition probabilities operates on a new sequence

yn. This algorithm and its relation to the Arimoto-Blahut algorithm have been investigated

by Vontobel in [74].
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3.4 Computing Upper Bounds on Capacity

The idea of the following upper bound is based on the information-theoretic fact that although

there are in general several capacity-achieving input distributions, the corresponding output

distribution is unique (for a proof see (2.80)). The tightness of the upper bound depends on

how close the output distribution is to the unique output distribution. The weakness of the

following upper bound is that it does not take into account the Markov property of the input

process. Thus it is also an upper bound on the capacity of the FSC.

Consider a DMC with input X and output Y . From Chapter 2, we know that capacity

can be written as a weighted divergence between the channel law w(y|x) and the output

distribution r∗(·) induced by q∗(·) as

C =
∑

x

q∗(x)D
(
w(·|x)||r∗(·)) (3.100)

where the summation of the divergence goes over y for every x. The divergence term can also

be written as in (2.77). In order to achieve capacity, the divergence terms, must be equal for

all x with probability greater than zero (Karush-Kuhn-Tucker condition). Hence, we have

C = min
r(·)

max
x

∑
x

q(x)D
(
w(·|x)||r(·)) (3.101)

= D
(
w(·|x)||r∗(·)) ∀ x ∈ X (3.102)

≤ max
x

D
(
w(·|x)||r(·)) for any r(·) over Y. (3.103)

The inequality in the last line follows from the fact that capacity is a strictly convex function

of the output distribution r(·) (see also (2.78)).

Generalizing the upper bound to sequences, the capacity of an indecomposable FSC and

therefore of an irreducible and aperiodic FSM with memory m > 0 can be upper bounded by

C ≤ lim
n→∞

max
xn

1

n
D
(
w(·|xn

1−m)||r(·)) , (3.104)

where the maximization is over all possible branch sequences xn of length n starting at time

zero in a well-defined state x0
1−m. Again, we assume here that the input sequence induces

an unique branch sequence through the FSM. We will call this maximizing branch sequence

the “worst-case” branch sequence. The output distribution r(·) may be any n-dimensional

probability distribution. If we assume additive white noise, the channel law can be factored

in the usual way, i.e.

w(yn|xn
1−m) =

n∏
k=1

w(yk|xk
k−m). (3.105)



74 Chapter 3. Sampling-based Computation of Information Rates

As we are free in choosing r(·), the approach here is to model/approximate the output as

a Markov process of order M ≥ m, i.e.

r(yn) =

n∏
k=1

r(yk|yk−1
k−M). (3.106)

This approximation is crucial because it allows us to rebuild the output at time k from a

finite number M < ∞ of previous outputs, i.e. to predict yk from M past output samples.

In other words, the output distribution of the hidden Markov model that in general is not

Markov, i.e. M = ∞, is approximated by an FSM of order L = 2M (we consider binary input

signals). It has been realized by Vontobel [75], that this allows us to compute the divergence

term D
(
w(·|xn

1−m)||r(·)) in a similar way as the output entropy rate h(Y) with probability

one for n→ ∞.

By definition, the divergence term is

D
(
w(·|xn

1−m)||r(·)) =
∑
yn

w(yn|xn
1−m) log2

w(yn|xn
1−m)

r(yn)
. (3.107)

The numerator is rewritten with the help of (3.105) as follows

∑
yn

w(yn|xn
1−m) log2w(yn|xn

1−m) = EwY n|Xn
1−m=xn

1−m

[
log2 w(yn|xn

1−m)
]

(3.108)

= EwY n|Xn
1−m=xn

1−m

[
n∑

k=1

log2w(yk|xk
k−m)

]
(3.109)

=
n∑

k=1

Ew
Yk|Xk

k−m
=xk

k−m

[
log2 w(yk|xk

k−m)
]

(3.110)

= −
n∑

k=1

H(Zk) (3.111)

= −H(Z1) (3.112)

where the last line follows from the assumption that the statistics of the additive noise is

independent of time. The denominator in (3.107) is expanded with the help of (3.106) in the

following way

∑
yn

w(yn|xn) log2 r(y
n) = EwY n|Xn

1−m=xn
1−m

[log2 r(y
n)] (3.113)

= EwY n|Xn
1−m=xn

1−m

[
n∑

k=1

log2 r(yk|yk−1
k−M)

]
(3.114)

=
n∑

k=1

Ew
Y k

k−M
|Xk

k−(M+m)
=xk

k−(M+m)

[
log2 r(yk|yk−1

k−M)
]

(3.115)
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We introduce now the state s̃k−1 = xk−1
k−(M+m) and express (3.107) with the help of (3.112) with

(3.115) through the following definitions

f(xk
k−M+m) , f̃(s̃k−1, xk) (3.116)

, −H(Z1) − Ew
Y k

k−M
|Xk

k−(M+m)
=xk

k−(M+m)

[
log2 r(·|yk−1

k−M)
]
. (3.117)

If the noise is not discrete (as we assume here) the summation in (3.107) is replaced by an

integration and the entropy term H(Z1) in (3.112) and (3.117) by the differential entropy term

h(Z1).

Up to now, we used r(·) without specifying how it is expressed in terms of the channel

output distribution. To do so, we define

r(yk|yk−1
k−M ) , r̃(yk

k−M)∑
yk
r̃(yk

k−M)
(3.118)

such that

f̃(s̃k−1, xk) = −H(Z1) − Ew
Y k

k−M
|Xk

k−(M+m)
=xk

k−(M+m)

[
log2 r̃(y

k
k−M)

]
+ Ew

Y k
k−M

|Xk
k−(M+m)

=xk
k−(M+m)

[
log2 r̃(y

k−1
k−M)

]
. (3.119)

For r̃(·), we can choose any multi-dimensional distribution, but the idea is of course to use

(for sake of simplicity) the output distribution of the original joint source/channel model with

memory m for which we aim at computing the upper bound. As there are 2M+1 different

branches (we assume binary inputs) of length M + 1 starting in any of the 2m different states

of the joint/source channel model, we have 2m · 2M+1 different values r̃(yk
k−M) to compute.

The computation of these values can be done by starting in a specific state, collecting an

output sequence of length M + 1, and performing the sum-product forward recursion. Since

the branch length M + 1 can not be too big — otherwise the number of different branches of

length M + 1 is formidable —, several such computations are performed to approximate the

expectations in (3.119) by stochastic averaging (law of large numbers).

From (2.80), we know that the closer r̃(·) is to r∗(·), the tighter the upper bound becomes.

This can be achieved simply by inceasing M . Moreover, we can tighten the upper bound

for a given M by using r̃(yk
k−M)s that orginate from a tight lower bound. Thus, we first

maximize the FSM information rate to obtain a tight lower bound and the corresponding

SNR dependent STPs. Afterwards, r̃(yk
k−M) is computed with these optimized STPs. Hence,

an extended input process leads to tighter lower bounds as well as tighter upper bounds.

If the channel is time-independent (as we assume), we have f(xk
k−M) = f(xM+1

1 ) =

f̃(s̃k−1, xk) = f̃(s̃M , xM+1) for all M + 1 ≤ k ≤ n (trellis initializing phase is excluded),

independently of the current value of k. There are 2m+M+1 different f̃(s̃k−1, xk) which can
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Figure 3.1: Three trellis sections of the DICODE channel (left part) with m = 1 and one

trellis section of new trellis (right part) with M = 2.

be arranged in a new trellis with 2M · 2m different states. In this new trellis, there are two

branches leaving from each state as the input of the original trellis is binary. The state

s̃k−1 = xk−1
k−M = bk−1

k−M at time k − 1 is connected to a state s̃k = xk
k−(M−1) = bkk−(M−1) at time

k with a branch to which the metric f̃(s̃k−1, xk) is assigned.

Example 3.5 (DICODE Channel)

This procedure is visualized in Fig. 3.1. The left part shows three trellis sections of the DICODE

channel (m = 1). The branches of the first two trellis sections are labelled, as we assume in

this example M = 2. Because the channel is time-invariant, the branches in these two trellis

sections (transition from Sk−1 to Sk and from Sk to Sk+1) carry the same label (provided that

the initialization phase is over). There are 2M = 4 possible sequences of length M = 2 from

state Sk−1 = 1 to a time-(k + 1) state. The same holds for Sk−1 = 2. We can form eight

different states, S̃k−1, in the new trellis by the branches of the old trellis, i.e.

S̃k−1 =
(
b(i), b(j)

)
,

as eight out of 16 combinations are feasible. The input is binary and consequently there are

16 branches in the new trellis.

The trellis sections in the new trellis become identical after m time steps the latest where

m is the memory of the joint source/channel model. For a specific xn
1−m, D

(
w(·|xn

1−m)||r(·))
equals the cumulative metric along the corresponding path in the new trellis. We neglect the
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initial m trellis sections in the new trellis, as they are not relevant for the calculation of the

upper bound. In the remaining part of the trellis, all sections are identical and independent of

the length n. Finding the “worst-case” sequence xn
1−m for n→ ∞ is now equivalent to finding

the semi-infinite path x∞ starting at time zero in this new trellis with the largest metric or

equivalently with the largest metric f̃(s̃k−1, xk) per trellis section.

If the worst case sequence is unique it must be periodic with a period length not larger

than 2m+M . This is because in the new trellis all sections and all branch metrics are equal

(after the first m trellis sections). Hence, being in a specific state at any time, one always takes

the same branch from this state to travel to a state in the next time step. As there are 2m+M

states, we must arrive after at most 2m+M time steps in the same state again. To determine

this largest metric per trellis section we can use a modified Viterbi (max-sum) algorithm. If

there are several paths having the same largest metric, there is also a periodic one among

them. As we are only interested in the metric per trellis section and not the path itself, we

can simply search for this periodic “worst-case” sequence.

3.5 Information Rates of General Channels

The methods presented in the first section of this chapter can be extended to compute upper

and lower bounds on the information rate of very general (non-finite-state) channels. For the

sake of clarity, we begin by stating the bounds for the discrete memoryless case. Let X be

the input and O be the observed output of a discrete memoryless channel, termed original

channel, with joint pmf p(x, o) (see Fig. 3.2). Let the channel law of the original channel be

w(o|x). We define the information rate of the original channel in the usual way, i.e.

I(X;O) ,
∑
x,o

p(x, o) log2

p(x, o)

q(x)r(o)
. (3.120)

Let wa(y|x) be the law of an arbitrary auxiliary-channel with the same input and output

alphabets as the original channel. The auxiliary-channel is connected to the same source X

(see Fig. 3.2); its output Y is then distributed according to

ra(y) ,
∑

x

q(x)wa(y|x). (3.121)

3.5.1 Upper and Lower Bounds

We start by defining an upper bound on the information rate I(X;O).
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Source

Original

Auxiliary
channel

channel

O

X

Y

Figure 3.2: System overview.

Definition 3.7 (Upper Bound)

Ia(X;O) ,
∑
x,o

p(x, o) log2

w(o|x)
ra(o)

(3.122)

= EpX,O

[
log2w(O|X) − log2 ra(O)

]
. (3.123)

Theorem 3.7 (Auxiliary-Channel Upper Bound)

Ia(X;O) ≥ I(X;O). (3.124)

Proof: This bound appears to have been observed first by Topsøe [73] (see also Section 2.3).

The proof is equivalent to (2.80) and is given here for the sake of completeness.

Ia(X;O) − I(X;O) =
∑
x,o

p(x, o)

[
log2

w(o|x)
ra(o)

− log2

w(o|x)
r(o)

]

=
∑
x,o

p(x, o) log2

r(o)

ra(o)
(3.125)

=
∑

o

r(o) log2

r(o)

ra(o)
(3.126)

= D
(
r(·)||ra(·)

)
(3.127)

≥ 0. (3.128)

�

The lower bound is implicit in the classical papers by Arimoto [1] and Blahut [18].
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Definition 3.8 (Lower Bound)

Ia(X;O) ,
∑
x,o

p(x, o) log2

wa(o|x)
ra(o)

(3.129)

= EpX,O

[
log2 wa(O|X) − log2 ra(O)

]
. (3.130)

Theorem 3.8 (Auxiliary-Channel Lower Bound)

I(X;O) ≥ Ia(X;O). (3.131)

Proof: Let

va(x|o) , q(x)wa(o|x)
ra(o)

(3.132)

be the backward channel law of the auxiliary-channel. Then

I(X;O) − Ia(X;O) =
∑
x,o

p(x, o)

[
log2

p(x, o)

q(x)r(o)
− log2

wa(o|x)
ra(o)

]

=
∑
x,o

p(x, o) log2

p(x, o)

r(o)q(x)wa(o|x)/ra(o) (3.133)

=
∑
x,o

p(x, o) log2

p(x, o)

r(o)va(x|o) (3.134)

= D
(
p(·, ·)||r(·)va(·|·)

)
(3.135)

≥ 0. (3.136)

�

This lower bound may be obtained as a special case of a bound due to Fischer [31] on mis-

matched decoding, which in turn is a special case of the general result by Ganti at al. [35, Equa-

tion (12) for s = 1]. It then follows from the results in [31] and [35] that the lower bound is

achievable by a maximum-likelihood decoder for the auxiliary-channel.

From the proofs follows that both the upper bound (3.124) and the lower bound (3.131)

are tight if and only if q(x)wa(o|x) = p(x, o) for all x and o. The difference between the upper
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and the lower bound can be expressed as follows:

Ia(X;O) − Ia(X;O) =
∑
x,o

p(x, o)

[
log2

w(o|x)
ra(o)

− log2

wa(o|x)
ra(o)

]

=
∑
x,o

p(x, o)

[
log2

w(o|x)
wa(o|x)

]
(3.137)

=
∑

x

q(x)
∑

o

w(o|x) log2

w(o|x)
wa(o|x) (3.138)

=
∑

x

q(x)D
(
w(·|x)||wa(·|x)

)
(3.139)

≥ 0. (3.140)

If the auxiliary-channel is a parameterized model, the difference between the upper and lower

bound can be decreased by adjusting its model parameters such that the divergence terms in

(3.139) becomes small. This training of the auxiliary-channel is visualized with dotted lines

in Fig. 3.2.

3.5.2 Generalization to Channels with Memory

The generalization of these bounds to the information rate of an indecomposable finite-state

channel as original channel and an irreducible and aperiodic FSM as auxiliary channel is

straightforward. The upper bound becomes

Ia(X ;O) , lim
n→∞

1

n
EpXn,On

[
log2w(On|Xn

1−M) − log2 ra(O
n)
]

(3.141)

where M ≥ 1 is the memory of the original channel. The lower bound becomes

Ia(X ;O) , lim
n→∞

1

n
EpXn,On

[− log2 ra(O
n) + log2wa(O

n|Xn
1−m)

]
(3.142)

with m ≥ 1 as the memory of the auxiliary channel. Now assume that w(·|·) is some “difficult”

(non-finite-state) ergodic channel. Its information rate is defined as follows

I(X ;O) , lim
n→∞

1

n
EpXn,On

[− log2 r(O
n) + log2 w(On|Xn

1−M)
]
. (3.143)

We can then compute estimates of upper and lower bounds on the information rate of the

general (non-finite-state) channel by the following algorithm:
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Algorithm 3.8 Bounds on the Information Rate by Means of an FSM

Step 0: Choose a finite-state source Q and an auxiliary finite-state channel wa(·|·) so that

their concatenation is an FSM.

Step 1: Concatenate the source to the original channel w(·|·) and generate two long sequences

xn and on.

Step 2: Compute log2 ra(o
n) and log2 wa(o

n|xn
1−m) by the method described in the first section

of this chapter.

Step 3: Conclude with the estimates

Îa(X ;O) = −1

n
log2 ra(o

n) − h(O|X ) (3.144)

and

Îa(X ;O) = −1

n
log2 ra(o

n) +
1

n
log2 wa(o

n|xn
1−m). (3.145)

Note that the term h(O|X ) in the upper bound of (3.144) refers to the original channel

and cannot be computed by means of the auxiliary-channel.

As the upper bound hinges on upper bounding h(O). It can be tightened by maximizing the

probability that the observed sequence (of the original channel) is generated by the auxiliary

FSM, i.e.

max
�(L)

ra
(
on; θ(L)

)
. (3.146)

This maximization or (unsupervised) learning of the auxiliary FSM is accomplished by the

Baum-Welch training algorithm [62]. If the input sequence xn is available, we can maximize

the conditional probability, i.e.

max
�(L)

ra
(
on|xn; θ(L)

)
, (3.147)

and the reestimation formulas of the Baum-Welch algorithm amount to estimating the model

parameters (supervised learning).

3.5.3 Reduced-State Version

Reduced-State Upper Bound

As the upper bound Ia(X ;O) assumes that h(O|X ) is known, a reduced-state upper bound

on I(X ;O) is obtained by upper bounding h(Y) as outlined in Theorem 3.2.
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Reduced-State Lower Bound

If h(O|X ) is known, a reduced-state lower bound on I(X ;O) is obtained simply by lower

bounding h(Y) as outlined in Theorem 3.3.

We can also obtain a reduced-state lower bound on I(X ;O), if h(O|X ) is unknown. First,

we note that the law of the auxiliary-channel wa(·|·) in (3.142) can be any (possibly time-

varying) FSM. Important is only that, the estimates of h(O) and h(O|X ) are both computed

on the same FSM. If the FSM is time-varying, it may be not possible to invoke ergodic

arguments. In this case, we simply obtain an estimate of (3.142) by stochastic averaging.



Chapter 4

Information Rates of Magnetic

Recording Channel Models

The algorithms presented in the previous chapter will now be applied to various FSMs for

the magnetic recording channel. Numerical results are provided along with interpretations.

Unless otherwise stated, the “forward-only method” and a trellis length of n = 106 was used

to compute estimates of the information rates.

4.1 Channel Models without Medium Noise

Partial-response class-4 (PR4) polynomials with AWGN at the output are widely used as

model for the magnetic recording channel in today’s hard-disk drives. PR4 target polynomials

are of the form

g(D) = c · (1 −D2) · (1 +D)ε, (4.1)

where ε ∈ {0, 1, 2, . . .} is the extension degree. The constant c normalizes the channel transfer

function to 1.

Example 4.1 (Partial-Response Polynomials)

For ε = 0 we obtain the PR4 polynomial, for ε = 1 the expended PR4 (EPR4) polynomial,

for ε = 2 the E 2PR4 polynomial, and so on. For ε ∈ {0, 1, 2} the normalized polynomials are

listed in Table 4.1. Hence, PR4 polynomials are FIR filters with a (1 −D2) factor.

83
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4.1.1 FIR Channel Models

i.u.d. Information Rates

First, we look at the information rate under the assumption that the bipolar input is i.u.d.,

i.e. Pr(Xk = −1) = Pr(Xk = +1) = 0.5. The input process is therefore a 0.5-Bernoulli

process, and the resulting information rate is termed i.u.d. information rate, I0(X ;Y). The

polynomials of selected channel models are listed in Table 4.1. The channel tap coefficients

g0, g1, . . . , gm are normalized such that
∑m

k=0 g
2
k = 1. The channel CH6 in Tab. 4.1 was taken

from Hirt’s thesis [41] (where it is actually called “channel 4”).

Channel name Normalized impulse response

DICODE g(D) = (1 −D)/
√

2

EPR4 g(D) = (1 +D −D2 −D3)/2

E2PR4 g(D) = (1 + 2D − 2D3 −D4)/
√

10

CH6 g(D) = 0.19 + 0.35D + 0.46D2 + 0.5D3+

0.46D4 + 0.35D5 + 0.19D6

Table 4.1: Impulse responses of selected FIR channel models.

Fig. 4.1 shows the i.u.d. information rate of the FIR channel models from Tab. 4.1. The

channel input energy is always ES = 1, and the noise is AWGN with variance N0/2. Note that,

for the memoryless channel (g(D) = 1), whose i.u.d. information rate is also shown in Fig. 4.1,

the i.u.d. information rate coincides with the BPSK channel capacity given by (2.110). The

following observations can be made:

• For a given SNR=ES/N0, the i.u.d. information rate decreases with increasing memory,

especially at high SNR where the low noise floor reveals the different channel models.

• At a rate of 0.9 bits/symbol, the i.u.d. information rate of the DICODE channel is 0.8

dB away from the capacity of the memoryless channel (BPSK capacity). The i.u.d.

information rate of the E2PR4 channel is another dB off.

Convergence Behavior

The estimates of the i.u.d. information rates in Fig. 4.1 were all computed by the “forward-

only” method presented in the previous chapter. The convergence behavior of this method is

illustrated in Fig. 4.2. Estimates of the i.u.d. information rate of the DICODE channel at 0 dB
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Figure 4.1: Estimated i.u.d. information rates of selected FIR channel models.

were computed 10 times, 100 times, and 1000 times; each time with a different random seed.

The random seeds were selected in a nested way, such that the collection of the 100 estimates

contains also the collection of the 10 estimates. Likewise, the collection of the 1000 estimates

contains the collection of the 100 estimates as well as the collection of the 10 estimates. For

various trellis lengths n, Fig. 4.2 shows the minimum and maximum estimate (denoted as

“LB” and “UB”) of the i.u.d. information rate among the collection with 10 estimates, the

collection with 100 estimates, and the collection with 1000 estimates. We observe that the

envelope from above/below decays/increases with O(n− 1
2 ) as predicted by theory.

Lower Bounds on the FSC Capacity

We now go beyond i.u.d. input. We compute the FSM capacity of the DICODE channel for

the first extension of the Bernoulli input process, CFSM
1 , a Markov process with two states,

and for the second extension, CFSM
2 , a Markov process with four states. We assume here

that the iterative information rate maximization method presented in Chapter 3 converges to

the FSM capacity after a sufficiently large number of iterations (see also the next subsection

on this topic). Unless otherwise stated, we use the unconditioned version of the a-posteriori

state-transition weights for the maximization procedure.
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trellis length

Figure 4.2: Convergence behavior of the forward-only method for the DICODE channel at

0 dB.

The results are shown in Fig. 4.3. It is easy to see that the i.u.d. input process is optimal

for SNR → ∞. At low SNR, however, non-uniform corrolated input processes produce more

output symbols with high energy.

Also shown in Fig. 4.3 are the capacities of both the memoryless AWGN channel and the

DICODE channel for nonbinary power-limited (Gaussian) input (denoted by “Gauss max”).

The plot shows that, the optimized Markov processes achieve noticeably higher rates than

the i.u.d. process does. These rates exceed even the capacity of the memoryless Gaussian

channel in the low SNR regime. This is due to the fact that the channel impulse response is

normalized to one. The normalization is quite arbitrary, but it guarantees that the channel

is energy-preserving, i.e. the output energy equals the input energy for i.u.d. input. Some

frequencies of the channel amplify, others attenuate the input spectrum compared with a flat

(white) spectrum. By transmitting in the frequencies where the input is amplified, a noticeably

higher SNR at the channel output is achieved. Note that this does not mean that the channel

is an active element.

The eight state-transition probabilities associated with the memory-two input process are

shown in Fig. 4.4 after 30 maximization steps of the iterative maximization method from

Chapter 3 vs. ES/N0. We note that at high SNR uniformly distributed STPs are optimal
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max
i.u.d.
max with m=1
max with m=2

Figure 4.3: DICODE channel: Estimated information rates for various input processes.

whereas at low SNR some STPs are clearly preferred to others. The output symbols associated

with the preferred STPs lead to a higher SNR at the channel output. Moreover, we note that

at very low SNR some STPs converge nearly to one. The numbers along the STP axis in

Fig. 4.4 correspond to the following state-transitions

1 : Q(1, 1) 5 : Q(3, 4) (4.2)

2 : Q(1, 2) 6 : Q(3, 3) (4.3)

3 : Q(2, 4) 7 : Q(4, 1) (4.4)

4 : Q(2, 3) 8 : Q(4, 2). (4.5)

These state-transitions are depicted in Fig. 4.5 with their associated input/output pair. The

most probable state-transitions are depicted with solid lines, less probable ones with dashed,

the even less ones with dot-dashed lines, and the least probable ones with dotted lines.

Similar results were obtained for the EPR4 and CH6 channels by systematically optimizing

the state-transition probabilities. They are shown in Fig. 4.6 and Fig. 4.7 respectively. At

rate one half, a memory-six input process improves the lower bound on the capacity of the

CH6 channel by 2 dB (see Fig. 4.7).
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Figure 4.6: EPR4 channel: Estimated information rates for various input processes.
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Figure 4.7: CH6 channel: Estimated information rates for various input processes.
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Upper Bounds on the FSC Capacity

Upper bounds were computed for the DICODE channel and for a channel with impulse re-

sponse gobs(D) = (1 −D/2)/
√

5/4. This channel is termed observable because, given a finite

output sequence, the input can be inferred in the absence of noise without ambiguities. This

is not the case for the DICODE channel, because its trellis is quasi-catastrophic. Hence, the

input of the DICODE channel can only be inferred from the entire output sequence including

the starting state.

Upper bounds on the capacity of the DICODE and the observable channel with an eight-

state input process, η = 3, and M = 6 are shown in Fig. 4.9 and Fig. 4.8, respectively. The

“water-filling” upper bound, denoted in the figure as “Gauss max”, is plotted as well. The

lower bounds, CFSM
3 , were computed with the iterative information rate maximzation method.

The upper bound implies estimating the state sequence based on a output sequence of

finite length. The tightness of the upper bound depends therefore on how well this estimation

can be done. For high SNR, the upper bound is not tight for the DICODE channel. The

overshoot is proportional to 1/(M + 1).

In his thesis [59], Pfister conjectured a tight upper bound using a slightly different approach.

Numerical results for the DICODE channel are excellent [59].
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Figure 4.8: Estimated upper and lower bound on CFSC of the DICODE channel.
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Figure 4.9: Estimated upper and lower bound on CFSC of the observable channel.
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4.1.2 Maximization of the FSM Information Rate

“Memory Increases Capacity”

This famous quote is attributed to Wolfowitz [77] and can be verified for power-limited input

signals by means of the “water-filling” technique. Numerical results are given for instance

in [41]. Therein, it is shown that at low SNR an increase in memory leads to a substantial

increase in capacity. At high SNR, it is the opposite, i.e. an increase in memory leads to a

substantial decrease in capacity. Thus, the capacity of a channel with memory lies at low

SNR above the capacity of a memoryless channel, approaches it from above with increasing

SNR, crosses it at some SNR point, and from thereon lies strictely below the capacity of

the memoryless channel (see also ”Gauss-max”-curves in Figs. 4.3, 4.6, and 4.7). This is a

consequence of the normalization of the channel transfer function.

We investigate mainly the behavior of the iterative information rate maximization method

from Kavčić. Fig. 4.10 shows the increase in information rate for the DICODE channel with

a memory-one (DIM1) and a memory-two (DIM2) Markov input process at –10 dB versus the

number of iterations. For a given set of STPs, the information rate was computed with two

different methods: using the forward-only sum-product algorithm (SPA) and evaluating the

largest eigenvalue (EW) of the noisy adjacency matrix according to (3.95). Note that the EW

method is only a valid information rate at stationary points of the iterative information rate

maximization method.

We make the following observations:

• For both input processes, the iterative procedure reaches a saturation point and remains

there.

• The memory-two Markov input process leads to a noticeably higher information rate

than the memory-one Markov input process.

• At the beginning (iterations 1 to 6), the information rate evaluated with the EW method

is higher than the one evaluated with the SPA. It lies roughly halfway to the information

rate of the next iteration evaluated with the SPA. Moreover, it saturates at the same

level as the information rate evaluated with the SPA.

Iterative Behavior

In Fig. 4.11, the differences between various information rate computation methods are plotted

versus the number of iterations of the interative information rate maximization method for
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Figure 4.10: Estimated information rates vs. number of iterations of the DICODE channel at

–10 dB. At iteration “1”, the i.u.d. information rates are plotted. At iteration

“31”, information rates are plotted that were obtained after applying 30 steps

of the iterative information rate maximization method.

the DICODE channel with a memory-two Markov input process at −10 dB. The reference

method is in all cases the forward-only sum-product algorithm (SPA). The other methods are:

• “EW”: the information rate is computed via the largest eigenvalue of the noisy adjacency

matrix according to (3.95).

• “F EW 1”: the information rate is computed using (3.82).

• “F EW 2”: the information rate is computed via (3.82), but with “new” (updated) state

probabilities and “old” (not updated) STPs. The state probabilities are obtained via

new (updated) STPs given by (3.96).

• “F EW 3”: the information rate is computed using (3.82), but with “new” (updated)

state and STPs. This method is mathematically equivalent to the “EW” method.

The methods “EW”, “F EW 2”, and “F EW 3” deliver only a meaningful information rate

if a local maximum (stationary point) is achieved; otherwise, the a-posteriori state-transition

weights are generated from a different source.
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Figure 4.11: Differences in bits/symbol for various information rate computation methods

vs. number of iterations for the DICODE channel with a memory-two Markov

input process at −10 dB. Iteration “1” means i.u.d. input. Iteration “2” means

one update of the state-transition probabilities with the iterative information

rate maximization method.
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We observe the following:

• The differences are quite small.

• With increasing number of iterations, all differences become the same and their magni-

tudes decrease. Thus, all methods reach the same saturation point.

• The difference between the “EW” and the “SPA” method diminishes during the max-

imization process. This strongly suggests that the iterative information maximization

method indeed finds a local maximum.

• Method “EW” and “F EW3” lead to the same numerical results (as it should be).

• The difference between “SPA” and “F EW 1” originates from the fact that the A(i, j)s in

(3.82) are computed with a forward and a backward run of the sum-product algorithm.

• The difference between “SPA” and “F EW 1” on the one hand and “SPA” and “F EW

2” on the other hand is almost the same. For the “F EW 2” method, new (updated)

state probabilities are used that result from the maximized state-transition probabilities

of the noisy adjacency matrix. Hence, the state probabilities fit the noisy adjacency

matrix, but the improvement is negligible (at least for the DICODE channel with a

memory-two Markov input process). The real improvement comes from utilizing the

maximized STPs.

A (0, 2)-RLL Source Observed through AWGN

We consider a (0, 2)-RLL source given by the adjacency matrix

A =




1 1 0

1 0 1

1 0 0


 , (4.6)

observed through AWGN. The trellis of the (0, 2)-RLL is asymmetric, i.e. A 6= AT . The hope

is that if the iterative information rate maximization method (denoted by IIRMM in Fig. 4.12

and Fig. 4.13) works on this trellis, it will work on any other trellis as well. The STPs of the

(0, 2)-RLL source were optimized with the IIRMM method and the gradient-based method

outlined in Chapter 3 for an SNR of +10 dB.
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Figure 4.12: Estimated information rates of a (0, 2)-RLL source observed through AWGN:

IIRMM and gradient-based method.
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Figure 4.13: STPs of a (0, 2)-RLL source observed through AWGN: IIRMM and gradient-

based method.
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The estimated information rates are plotted vs. the number of iterations in Fig. 4.12. The

corresponding STPs are depicted in Fig. 4.13. We make the following observations:

• Because of the noise, both methods lead to information rates below the capacity of the

noiseless (0, 2)-RLL source, which is 0.8791 bits/symbol.

• Both iterative methods converge to exactly the same information rate. The numerical

values of the gradient-based method fluctuate strongly at the beginning of the maxi-

mization procedure, whereas the iterative maximization method delivers reliable results

right from the beginning. The trellis length was kept constant for the iterative method

at n = 106 and the trellis length of the gradient-based method was steadily increased

from n = 104 to n = 109.

• The STPs of the gradient-based method converge slowly (compared to the information

rate in Fig. 4.12) to the ones obtained with the iterative information rate maximization

method. This indicates that the information rate is not terribly sensitive to varying

STPs.

• The STPs of the gradient-based method do not converge exactly to the ones obtained

from the iterative method, because of the finite resolution ∆(2, 1) and ∆(1, 1) respec-

tively.

4.1.3 Information Rates of General Channels

We provide some examples for the method presented in the last section of Chapter 3. The

observed data are collected from channel simulations performed on a computer assuming an

i.u.d. input process.

EPR4 Model as Original Channel

Let the original channel be a linear EPR4 model with AWGN at the output. Estimates of

Ia(X ;O) and Ia(X ;O) are easily computed; they are shown in Fig. 4.14 vs. the memory m of

the auxiliary FSM for two different SNR values. We note that from m = 3 on, Îa(X ;O) and

Îa(X ;O) coincide — the original channel has memory three — and equal the i.u.d. information

rate for the EPR4 channel at these SNRs (see Fig. 4.6).
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Figure 4.14: Estimates of Ia(X ;O) and Ia(X ;O) (denoted by UB and LB, respectively) for

the EPR4 channel vs. m.

Linear Lorentzian Channel as Original Channel

Next, we assume that the original channel is a linear infinite-impulse response channel with

AWGN at the output. The impulse response is the “Lorentzian” pulse, which is characterized

by the parameter PW50. The ratio PW50/T , where T is the nominal duration of a data

symbol, is a measure of the normalized linear density in a hard-disk system. For this example,

we chose PW50/T = 2.0 and 3.2. We also normalized the channel transfer function to one.

In Fig. 4.15, estimates of Ia(X ;O) and Ia(X ;O) are plotted vs. the SNR for m = 10. At

low SNR, the bounds are very tight, but at high SNR they become loose due to the model

mismatch between the original channel and the FSM. This model mismatch is elucidated in

Fig. 4.16, where estimates of these bounds are plotted vs. the memory m of the FSM. The

asymptotic gap for m → ∞ between Ia(X|O) and Ia(X|O) depends on the suitability of

the class of FSMs chosen; if the original channel is such an FSM, as is the case of the EPR4

channel, the gap vanishes. We note that less memory is required at low SNRs, where the model

mismatch between the original channel and the FSM is concealed by the noise. Moreover, for

a given SNR less memory is required to obtain tight bounds for the narrower Lorentzian pulse

with PW50/T = 2.0.
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Figure 4.15: Estimates of Ia(X ;O) and Ia(X ;O) (denoted by UB and LB, respectively) for

the normalized linear Lorentzian channel. The memory of the auxiliary FSM

is m = 10. Also shown is the capacity of BPSK.

1st Order Autoregressive Channel as Original Channel

Now, we consider linear intersymbol interference channels of the type

Yk =
M∑
i=0

giXk−i + Zk (4.7)

with large memory M ∈ Z∪ {∞}, with fixed real channels coefficients, i.e. g0, g1, . . . , gM ∈ R,

and where Z = (Z1, Z2, . . .) is a white Gaussian noise process with variance σ2. The channel

input process X = (X1, X2, . . .) will be a sequence of i.u.d. random variables taking on values

in {+1,−1}. The channel state at time k is the vector (Xk−1, Xk−2, . . . , Xk−M) of the past M

channel inputs. Each such state is thus a binaryM -tuple. We will denote suchM -tuples/states

by sk = (xk−1, xk−2, . . . , xk−M) with x` ∈ {+1,−1} for 1 ≤ ` ≤M .

As an example of such a channel, we will use a first order autoregressive channel with

impulse response

g(D) =
1

(1 − αD)
= 1 + αD + α2D2 + . . . (4.8)
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Figure 4.16: Estimated upper and lower bounds on the i.u.d. information rate for the nor-

malized linear Lorentzian channel vs. the memory m. The upper four curves

experience the same amount of AWGN. The same holds for the lower four

curves. Due to channel normalization the SNR values for PW50/T = 2.0 and

PW50/T = 3.2 differ (see also Fig. 4.15).

with 0 ≤ α < 1 as illustrated in Fig. 4.17. A natural finite-state approximation is obtained

by truncating the impulse response. We call this approximation “linear shift register” (LSR).

Another finite-state approximation is obtained by inserting a quantizer in the feedback loop

as shown in Fig. 4.18. We call this approximation “quantizer” (Q). Note that the channel in

Fig. 4.18 is nonlinear.

Some numerical results for this example are shown in Fig. 4.19 for α = 0.8 and σ2 = 1.

The figure shows estimates of Ia(X ;O) and Ia(X ;O), both for the truncated-impulse response

model and for the quantized-feedback model. The horizontal axis shows the memory m of the

FSM. The quantizer in Fig. 4.18 was chosen to be a uniform quantizer optimized to give as

good bounds as possible, i.e. the uniform distance between the quantizer levels was optimized.

The noise samples Z̃k of the FSM in Fig. 4.18 were obtained by training the FSM. As Fig. 4.19

shows, the quantized-feedback model yields better bounds with less states than the truncated-

impulse response model.

In Fig. 4.20, estimates of Ia(X ;O) and Ia(X ;O) are shown vs. the SNR. The bounds are
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Figure 4.18: A quantized version of the

channel in Figure 4.17.

indistinguishable! Fig. 4.20 also demonstrates that it is “easier” to find tight upper and lower

bounds for the exponentially decaying infinite-impulse response of the 1st order autoregressive

model than for the infinite-impulse response of the Lorentzian model that decays like a rational

function. The gap caused by the model mismatch at high SNR disappers for the 1st order

autoregressive model completely (compare also with Fig. 4.15).

A Reduced-State Upper Bound on the Information Rate of the Original Channel

The noiseless time-k output of the 1st order autoregressive channel is

− 1

1 − α
≤ yk ≤ 1

1 − α
. (4.9)

For α → 1, the uniform quantizer in the feedback loop (see Fig. 4.18) must consists of many

quantization levels to cope with the large output range (otherwise the quantization loss is big).

On the other hand, the output range changes moderately from time step to time step. Con-

sequently, many states of the uniform quantizer have a state metric near zero and contribute

only marginally to the entropy computation of h(Y) (see Fig. 4.21). Thus, recalling Theorem

3.2, we obtain a reduced-state upper bound on h(Y) and thus on I(X ;O) simply by omitting

states with small metric.

Assume now that, at time zero, the 1st order autoregressive channel is in some fixed initial

state. At time one, there will be two states; at time two, there will be four states, etc.. We

track all these states with the forward sum-product algorithm until there are too many of them.

From then on, we keep only a predetermined fixed number of the states with the largest metric

(i.e. the “best” ones) and continue to expand and collect these states with largest metric. By

expanding the most likely states, the quantizer levels are adjusted at each time step. Thus,

the output range of the quantizer varies from time step to time step while sailing along states

with the largest metric (see Fig. 4.21). This upper bound is termed “adaptive reduced-state

upper bound”, or ARSUB for short. Numerical results in Fig. 4.19 and Fig. 4.20 show that it

is very efficient.
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A Reduced-State Lower Bound on the Information Rate of the Original Channel

Recalling Theorem 3.3, we obtain a lower bound on I(X ;O) by merging states. As an example,

we will consider merged states of the form

sk−1 = (xk−1, . . . , xk−m)

,
⋃

x
k−(m+1)
k−M

{(xk−1, . . . , xk−m, xk−(m+1), . . . , xk−M)} (4.10)

for some positive interger m < M . In the trellis, the successors of some merged state

sk−1 = (xk−1, . . . , xk−m) are the two merged states sk = (+1, xk−1, . . . , xk−(m−1)) and s′k =

(−1, xk−1, . . . , xk−(m−1)).

We begin by assuming that the channel is in some known state at time zero. At time one,

there will be two states; at time two, there will be four states, etc.. We first track all of these

states, until there are too many of them. From that moment on, we merge states into the

form given by (4.10) and we keep expanding and merging merged states.
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Figure 4.19: Estimated upper and lower bounds on the information rate of the 1st order

autoregressive channel model vs. m.

 15  10  5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

E
S
/N

0

bi
ts

/s
ym

bo
l

BPSK
ARSUB, m=2
Upper bound Q, m=9
Lower bound Q, m=9

Figure 4.20: Estimates of Ia(X ;O) and Ia(X ;O) for the 1st order autoregressive channel

model vs. the SNR. The channel transfer function is normalized, i.e. g(D) =
1

1−α2 · 1
1−αD

.



104 Chapter 4. Information Rates

The following merging strategy was used. First, a state metric is assigned to all states

at time-k. Secondly, two states are called a candidate pair if they fulfill (4.10), i.e. if for

both states xk−(m+1), . . . , xk−M are identical. Thirdly, a candidate pair of states is merged

according to (4.10) provided that the sum of their state metrics is the smallest among all

possible candidate pairs. The set of states at time k is now reduced by one and a new list of

candidate pairs is created. We continue merging until a desired number of remaining states at

time k is achieved. The set of (unmerged) states at time k+ 1 is then given by the successors

of the set of the remaining states at time k.

Assuming AWGN, we have for a non-merged state sk−1

w(yk|xk, Sk−1 = sk−1) =
1√
2πσ

e−(yk−τ)2/(2σ2) (4.11)

with τ

τ , g0xk +
M∑
`=1

g`x`. (4.12)

For some merged state sk−1 = (xk−1, . . . , xk−m), we replace τ by the interval [τL, τU] with

τU , g0xk +
m∑

`=1

g`x` +
M∑

`=m+1

|g`| (4.13)

and

τL , g0xk +
m∑

`=1

g`x` −
M∑

`=m+1

|g`|. (4.14)

Eq. (4.11) is upper bounded by maximizing it over τ = [τL, τU]. The maximizer τ̂ is then to

τ̂ =



τL if yk < τL

τU if yk > τU

yk else

. (4.15)

Thus, (4.11) is maximized in particular if the channel symbols fall in the interval [τL, τU].

For our 1st order autoregressive channel, the range of this interval amounts to 2 · αm+1−αM+1

1−α

with M = ∞. In contrary to the adaptive reduced-state upper bound, this interval does not

change from time step to time step. Thus, we need a large quantizer to make this interval

small and consequently to tighten the lower bound (for α → 1). This lower bound is termed

“adaptive reduced-state lower bound”, or ARSLB for short. Some numerical results are shown

in Fig. 4.19.
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autoregressive channel using a 64-state quantizer.



106 Chapter 4. Information Rates

4.2 Channel Models for Medium Noise

In this section, we investigate the effect of medium noise on the information rate. French and

Wolf modeled medium noise as stationary correlated Gaussian noise [33] that is independent

of the input data. Under these assumptions, they found that medium noise is preferable if it

is shaped like the transmitted signal (Jensen-inequality).

However, medium noise is data-dependent, non-stationary, and not Gaussian distributed.

Our approach is to train an FSM (representing a parameterized Gaussian mixture density with

ξ = 8) with synthetically generated waveforms (of a microtrack model [20]) and then compute

estimates of the lower bound Ia(X ;O), by means of the forward sum-product algorithm.

In [48, 49], an autoregressive-noise model was used to model medium noise. The autore-

gressive-noise model turns out to be a special case of our FSM. This can be seen from the

following considerations. First, remember that the state at time-k of our FSM with memory

m is build from the last m inputs, i.e. sk = (xk−1, . . . , xk−m). Let now Yk = Xk + Z ′
k with

channel input Xk ∈ {+1,−1} and with Z ′
k = Zk −∑M

i=1 giZ
′
k−1, where Z = (Z1, Z2, . . .) is

white Gaussian noise and gi are real fixed coefficients. In other words, Z ′ = (Z ′
1, Z

′
2, . . .) is

colored noise obtained by filtering the white noise process Z by an autoregressive filter with

transfer function 1/g(D) with g(D) = 1 + g1D + . . .+ gMD
M .

Let us assume that both g(D) and 1/g(D) are stable. In this case, we realize from Fig. 4.22 that

the original channel (left part) is equivalent to the channel in the right part of Fig. 4.22 and

that the filter 1/g(D) in the latter channel can be dropped without affecting the information

rate I(X ;Y) (data processing lemma).

Moreover, the joint FSM (denoted as FSM’ in Fig. 4.22 right part) consisting for the original

FSM and g(D) is again an FSM. This can be seen from the fact that g(D) is an FIR filter.

Thus, the output V ′
k is a function (via Vk) of the input Xk (right part in Fig. 4.22) like Vk is a

function of the input Xk (left part in Fig. 4.22). Our FSM can therefore also model correlated

Zk

YkXk

Xk

FSM'

Vk

V 0

k

Zk

Vk

Yk
Z 0

k

1=g(D)g(D)FSM

1=g(D)

FSM

Figure 4.22: Autoregressive-noise channel (left) and equivalent channel (right).
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Gaussian mixture noise.

After this discussion on the FSM, we detail a bit on the computer model (microtrack

model) that was used to emulate waveforms from magnetic hard-disk drives.

4.2.1 The Microtrack Model

The microtrack model introduced by Caroselli [20] is a widely accepted model for emulat-

ing medium noise in magnetic recording systems. The term “medium noise” refers to the

combination of all disturbances that are caused by the magnetic medium during the non-

ideal write/read process. We refer to medium noise as the combination of transition noise

(consisting of position jitter and read-back pulse widening), partial signal erasure (PSE), and

non-linear transitions shifts (NLTS). These disturbances (and others as well) can be modeled

by the microtrack model.

Transition Noise

Now, we assume that the transition-width parameter a is greater than zero (see also Sec-

tion 2.2) and that the average magnetization profile m0(ζ) exhibits a tanh-like shape. The

actual magnetization profile will vary from transition to transition such that each read-back

pulse will differ from the average read-back pulse. The difference is referred to as transition

noise. It consists of position jitter and pulse widening. Position jitter refers to a shift in the

position of the read-back pulse. Pulse widening refers to redistribution of the energy of the

pulse towards the sides and away from the center [20].

The cumulative probability distribution for a change in the magnetization along a track is

obtained by scaling and shifting the average magnetization profile (2.52), i.e.

Pr(ζ ′ ≤ ζ) =
1

2

(
1 + tanh

2ζ

aπ

)
. (4.16)

Through differentiation, we obtain the probability density of a change in magnetization as

pJ(ζ) =
Mr

πa
sech2

(
2ζ

πa

)
. (4.17)

We call pJ(·) the jitter distribution. For sake of simplicity, we approximate1 the squared

sech-pdf of the jitter by a Gaussian pdf as in [20] with variance

σ2
J =

π

2
· a2. (4.18)

1This approximation is widely accepted [20].
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A Gaussian jitter pdf corresponds to an average magnetization profile with a shape like an

error-function.

Channel Model

Medium noise is data-dependent and results from the random microstructure of the grains

in thin-film recording media. The microtrack model imitates the random zig-zag transition

effects. It is specified by the number of microtracks N , the transition-width parameter a, and

the threshold Lth, below which two transitions erase each other2. The random zig-zag form of

a transition is captured by dividing the recording track into N equally-sized microtracks. In

Fig. 4.23 the microtrack model is shown as described in [36] with four microtracks. An ideal

transition exhibits an average magnetization profile with a shape of a step function. Such

ideal transitions are written on each microtrack at a position shifted randomly from the ideal

location of the overall transition. The noiseless output of the magnetic recording channel to a

Ideal center
of a transition

pdf pdf

ji,4

T

Lth

Figure 4.23: The microtrack model.

single positive transition is then given by

v(t) =
1

N

N∑
i=1

g(t− Ji), (4.19)

2If desired, the microtrack model can be refined to incorporate overwrite effects, MR head read-back

nonlinearities, write precompensation, etc. [20].
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where g(·) is the Lorentzian pulse. Note that v(t) is a random variable. The jitter process

{ji} is modeled as i.i.d. process distributed according to pJ(·).

The noiseless output v(t) is therefore given by

v(t) =
1

N

+∞∑
k=−∞

vk

N∑
i=1

g(t− kT − Ji,k), (4.20)

where vk = (xk − xk−1)/2, with initial condition x−1 = −1. The xk’s are bipolar and i.u.d..

Hence, vk ∈ {−1, 0,+1}, and the transition process {vk} is a correlated process. Moreover,

Ji,k is the jitter random variable of the i-th microtrack at the k-th time step. Note that (4.20)

is a time-varying convolution. The noisy output y(t) is given by the noiseless output v(t)

that is corrupted by AWGN, n(t). The AWGN is determined by its one-sided power spectral

density N0 and represents electronics noise.

In summary, the behavior of our model for the magnetic recording channel is specified by

the five parameters PW50/T, a,N, Lth, and N0/2 (see Fig. 4.24). The low-pass filter models

the finite bandwidth in the receiver.

...

Channel Receiver

δ(t − J1,k)

n(t)

v(t)
h(t)

PW50/T N, a, Lth

LP
yk

T

...

1
N

y(t)xk

N0

δ(t − JN,k)

δ(t − J2,k)

Figure 4.24: A model with five parameters for the magnetic recording channel. Note: h(t) =
1
2
· (g(t) − g(t− T )

)
.

Medium Noise: Ideal, Smooth, and Real Transitions

The microtrack model promises to analyze write-head and transition noise separately [20]. This

separation is a consequence of the definition of transition noise. We will adopt the definition of

transition noise given by Caroselli in his thesis [20]: For a given jitter distribution, transition

noise is the difference between a finite and an infinite number of microtracks.
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For infinitely many microtracks, the noiseless output to a single transition at the input

becomes

v|N=∞(t) = (pJ ∗ g) (t), (4.21)

where ∗ denotes the convolution operator. Using Taylor expansion, we obtain

v|N=∞(t) =
∞∑

k=0

(−1)k

k!
EpJ

[Jk]
∂k

∂tk
g(t). (4.22)

On the other hand, applying Taylor expansion to (4.19), we obtain, for a finite number of

microtracks,

v(t) = g(t) −
N∑

i=1

Ji

N
g′(t) +

N∑
i=1

J2
i

2N
g

′′
(t) ± . . . . (4.23)

The difference between a finite and infinite number of microtracks therefore equals a weighted

sum of the derivatives of the Lorentzian. These weights are the differences between the en-

semble moments and the estimated moments (by N samples) of the jitter pdf. For a single

transition, this amounts to

nt(t) = v(t) − v|N=∞(t) (4.24)

= −
[

N∑
i=1

ji
N

− E[j]

]
g

′
(t) +

1

2

[
N∑

i=1

j2
i

N
− E[j2]

]
g

′′
(t) ± . . . (4.25)

where nt(t) stands for transition noise. Medium noise is obtained if there are several transi-

tions interacting with each other. Through these interactions, the realizations ji are further

disturbed by PSE and NLTS.

With increasingN , the estimated moments in (4.25) become more accurate, and the differences

start vanishing. For today’s products, realistic numbers for N range from 10 to 50.

With this notion of transition noise in mind, we can distinguish three different medium

magnetization profiles (2.52) and consequently three different transitions (see Fig. 4.25):

1. Ideal transition: An ideal transition has width zero, i.e. a = 0. The jitter variance (4.18)

is zero. There is no jitter, and all magnetic particles change their polarization at the

same location. There is no transition noise and no medium noise provided that Lth < T

and there are no NLTSs.

2. Smooth transition: A smooth transition has an infinite number of microtracks, N = ∞,

but a finite transition-width parameter a. It exhibits a smooth average magnetization

profile that in our case is shaped like an error-function. The slope at the origin is

determined by the inverse of the a-parameter. The steepness of the slope is a measure

of the quality of the write head. A large a signifies a wide transition.
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3. Real transition: A real transition has a finite number of microtracks N and a finite

transition-width parameter a. Owing to the granularity of the medium, it exhibits a

bumpy, error-function-like magnetization profile. The thinner the granularity of the

medium, the smoother the transition and the more microtracks are needed to model this

transition.

aπ
2

+Mr

−Mr

+Mr

−Mr

+Mr

−Mr

T

Figure 4.25: Average magnetization profiles: ideal transition (top), smooth transition (mid-

dle), and real transition (bottom). The positive and negative remanent state

of the medium magnetization are indicated by +Mr and −Mr respectively.

4.2.2 Information Rates from FSMs

Implementing the Microtrack Model

The Gaussian jitter distribution was truncated at the adjacent transition locations; i.e. |ji,k| ≤
T . This truncation allows to check for partial signal erasure with the help of a four-state trellis

similarly to the trellis of the binary jitter channel (see next subsection).

An FSM with memory ten was chosen. From the previous subsection, we know that this is

sufficient to accurately bound the linear Lorentizan channel (see also Fig. 4.16). The param-

eters of the microtrack model are listed in Table 4.2 together with the PSE and NLTS. The

percentage of PSE is in good agreement with the theoretical results for an isolated dibit [20].

This is due to truncating the Gaussian distribution to the adjacent transition locations, such

that most partial signal erasures originate from isolated dibits. NLTSs were implemented as
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described by Caroselli [20] with transition interaction length of three. The percentage of NLTS

was restricted to be not more than ten percent of the bit spacing T parameter as NLTS can in

practice be mitigated by pre-write compensation. Note that these percentages depend neither

on PW50/T nor on N , but on a and Lth.

Parameter Numerical value

PW50/T 2.0, 3.2

a 0.3 T

Lth a

N 1, 2, 4, 8, 16, 32

Measured quantities Numerical value

Percentage of PSE 9.51%

Percentage of NLTS 1.93%

Table 4.2: Parameters of the microtrack model.

Definitions of Medium Noise Power, Medium Noise Factor, and SNR

We would like to compare different noise blends, while keeping the total noise power constant.

This approach is a bit questionable as medium noise is not Gaussian distributed. Thus, the

second moment may not be a good measure for the medium noise distribution. On the other

hand, in the today’s receiver only the second moment is used for detection.

In order to compare different noise blends, we need to quantify the power of the noise

caused by the medium. The medium noise power (MNP) is computed from two independent

channel measurements. First, the channel is simulated with the Lorentzian waveform, a fixed

a, one microtrack, and without AWGN. The total power of the received signal comprises

therefore the signal and the medium noise originating from a single microtrack. This power

is denoted by TRP(1). Secondly, the same procedure is executed with an infinite number of

microtracks. For practical reasons, this is accomplished using a waveform that was obtained

by convoluting the Lorentzian waveform with the jitter distribution. The total power of the

received signal (without the AWGN) is denoted by TRP(∞). Note that for both measurements

the source and thus the number of transitions is the same.

The medium noise power is then the difference between these two received powers, i.e.

MNP , 2.0 · (TRP(1) − TRP(∞)
)

(4.26)

where the factor 2.0 comes from the fact that our source is by assumption an i.u.d. source

and, thus, only half of the bits cause a transition (experience medium noise). As the amount
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of medium noise depends on the number of transitions, the MNP is always a function of the

source.

Next, we define the medium noise factor (MF) as

MF , MNP/N

MNP/N +N0/2
, (4.27)

and note that it depends on the number of microtracks N . MF = 0.1 means 10% medium

noise and 90% AWGN for a given number of microtracks.

In practice, we are given a certain operating point, i.e. a particular PW50/T , N , a, Lth,

and N0. For our computation, we can artificially generate operating points in the following

way. For a given a and a given PW50/T , we first compute the MNP as described above.

After having fixed the number of microtracks, N , and the medium noise factor, MF, we solve

(4.27) for N0/2 = σ2. Different SNR points are then obtained by varying N . In a computer-

simulation environment, N must be a positive integer number.

The channel is normalized to “1” under the assumption that transition noise is absent.

Thus, we obtain the following SNR definition

SNR , TRP(∞)

N0/2 + 0.5 · MNP/N
(4.28)

with the constraints that (4.27) is fulfilled and that N is a positive integer number. The factor

0.5 in the denumerator is needed to compensate for the factor 2.0 in (4.26).

Numerical Results

Fig. 4.26 shows the Lorentzian step response of the trained FSM in the absence of (MF=0.0)

and in the presence of medium noise (MF=0.96). For illustrative purposes, the latter two

curves are shifted by one tap to the right. In both noise scenarios, we recognise the Lorentzian

pulse. It is symmetric in the absence of medium noise and a bit skewed in the presence

of medium noise. The impulse response of the FSM, i.e. the response to two consecutive

transitions, is shown in Fig. 4.27. We observe that a broader Lorentzian pulse, i.e. PW50/T =

3.2, leads to a smaller but wider impulse response. In the medium noise scenario, the impulse

responses become a bit skewed. In Fig. 4.27, they are shifted one tap to the right for illustrative

purposes.

Fig. 4.28 shows a histogram of received samples associated with the transition from state

sk−1 = (−1,−1,−1,−1,+1,−1,−1,−1,−1,−1) at time k − 1 to the time-k state sk =

(−1,−1,−1,−1,−1,+1,−1,−1,−1,−1) in our FSM. A Lorentzian pulse with PW50/T = 2.0
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Figure 4.26: Step response of the FSM.
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Figure 4.27: Impulse response of the FSM.
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Figure 4.28: Histogram of a transition.
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Figure 4.29: Influence of N on Ia(X ;O).
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Figure 4.30: Estimated information rates

for PW50/T = 2.0.
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Figure 4.31: Estimated information rates

for PW50/T = 3.2.
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was selected. Differentiating sk−1 gives us (0, 0, 0, 0,+1,−1, 0, 0, 0, 0), the ideal read-back wave-

form, i.e. no medium noise and a Lorentzian pulse with PW50/T = 0.0 (=Dirac function) as

step response. On the branch connecting state sk−1 to state sk, we can thus collect samples

that originate from two overlapping Lorentzian pulses; one centered around tap “5” and one

centered around tap “6”. This operating point is indicated in Fig. 4.27 with an arrow. The

mean of the histogram in Fig. 4.28 corresponds very well to that point.

We clearly see that the histogram does not exhibit the shape of a Gaussian distribution. The

effect of PSE is responsible for the elevation around 0, i.e. some transitions are erased. From

Fig. 4.28, we infer by inspection that the histogram is well approximated by a Gaussian mix-

ture consisting of ξ = 8 single Gaussian distributions. As the FSM consists of L = 1024 states,

there are in total 2 · 1024 · (8 + 8 + 7) parameters to be trained with observations generated

by the microtrack model.

In Fig. 4.29, estimates of the lower bound Ia(X ;O) are shown vs. SNR = 1/σ2, the variance

of the AWGN. Here, a Lorentzian pulse with PW50/T = 3.2 was chosen. For N = 1, the

curve saturates around 0.7 bits/symbol. This comes from the fact that by incresaing the SNR,

we reduce that amount of AWGN, but the amount of medium noise remains unchanged. By

increasing N , the amount of medium noise is decreased and all curves approach the one for

N = ∞. As outlined above, the information rate for N = ∞ was obtained by first convoluting

the jitter distribution with the Lorentizan pulse and then computing the information rate

for this new waveform. Due to the convolution with the jitter distribution, the resulting

waveform is broader and leads to an information rate that lies slightly to the right of the

“pure” Lorentzian pulse (indicated by N = 0 in Fig. 4.29)

Fig. 4.30 shows two pairs of curves: Estimates of the lower bound Ia(X ;O) (solid lines)

and estimates of the FSM information rate which is denoted by IFSM(X ;Y) (dotted lines).

The discrete operating points correspond to N = 1, 2, 4, 8, 16, 32. To compute IFSM(X ;Y), we

first generate a long output sequence yn of the trained FSM and then execute the forward-only

method on the trellis induced by the FSM (see also Fig. 3.2). Note that IFSM(X ;Y) is not

a lower bound on I(X ;O). If the FSM is a perfect replica of the channel law of the original

channel, then IFSM(X ;Y) = Ia(X ;O) = I(X ;Y). Thus, we may conjecture that IFSM(X ;Y)

is a lower bound on I(X ;O), but we cannot prove it.

Referring to Fig. 4.30, we note that for both pairs of curves different noise blends were used;

namely MF= 0.48 and MF= 0.96 with PW50/T = 2.0. The upper bound of (3.141) simply

neglects the amount of medium noise in the total noise (as we have no knowledge of its dis-

tribution). It is thus quite lose and, hence, was not plotted.

We observe that the gap between the FSM information rate IFSM(X ;Y) and the lower bound

Ia(X ;O) increases with increasing amount of medium noise. The FSM information rate sug-
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gests that medium noise is perferable to AWGN whereas the lower bound seems to favor

AWGN. The same can also be seen for PW50/T=3.2 in Fig. 4.31. The difference of these

two bounds manifestates the mismatch between the FSM and the channel law of the original

channel. Thus, the only (unfortunately) conclusion we can draw is that our FSM is a bad fit

to the observed data. A better model is needed to answer the question whether medium noise

is preferable to AWGN or not.

4.2.3 The Binary Jitter Channel

The binary jitter channel (BJC) [4] is motivated by the expectation that in future high-density

magnetic recording devices the noise of the magnetic medium will dominate other noise sources.

This “medium noise” is signal dependent and comes in two quite different forms: first isolated

transitions (i.e. changes of magnetic polarization) are affected by jitter: the transition is read

at a different position than where it was written. Secondly, very short polarization regions

tend to be unstable: the transitions move towards and cancel each other. Thus, the BJC is a

simplistic version of the microtrack model.

The BJC is related to the so-called bit-shift or peak-shift magnetic recording channel

because they both model the jitter effect. Upper and lower bounds on the capacity of the

bit-shift channel were presented by Shamai et al. in [69] and by Baggen in [7]. These authors

use a combinatorial approach. The BJC differs however from the bit-shift channel in that

it additionally incorporates the erasure effect. It does therefore affect the number of ones

(representing transitions) upon transmission, i.e. the number of ones in the output sequence

Y n may be less than in the input sequence Xn.

Description of the BJC

Let Xk ∈ {0, 1} and Yk ∈ {0, 1} be the time-k input and output, respectively, of the BJC,

where 1 stands for a transition and 0 stands for no transition. Hence, Xk = 1 (Yk = 1) means a

transition was written in (read from) the time-k slot. The BJC Xk → Yk is decomposed into a

memoryless probabilistic channel Xk → Jk and a deterministic channel Jk → Yk with memory.

The auxiliary random variable Jk takes values in the set {0} ∪ {Di : i = −m,−m+ 1, . . . ,m}
for some positive integer m; Jk = Di means that a transition written into the time-k slot and

was moved into slot k + i (in contrast to the jitter variable Ji,k in the microtrack model, Jk

is a discrete random variable). We consider here the simplest case with m = 1 such that the
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probabilistic channel without memory Xk → Jk is given by

pJ |X(jk|0) =


1 if jk = 0

0 else
(4.29)

and

pJ |X(jk|1) =




0 if jk = 0

1 − 2p if jk = 1

p if jk = D or jk = D−1

. (4.30)

The deterministic channel with memory Jk → Yk is responsible for the “sorting”. This “sort-

ing” is determined by the underlying physical phenomena and is given for a magnetic recording

channel by the trellis structure in Fig. 4.32. The states are labeled with their zero-input re-

sponse, and the branches are labeled with pairs of an input D · Jk+1 and an output Yk. The

use of future inputs Jk+1 makes the trellis causal. An example for the input, state, jitter, and

output sequence is given in Tab. 4.3.

1/0

D/1

D2/1

0/0

D/0

0/0

Sk Sk+1

1

D

D · Jk+1/Yk

1 + D

0

D

1

0

1 + D

1/1

1/0

D2/1

D/1
1/1

0/1D2/0

D/0
D2/0

0/1

Figure 4.32: Trellis of the BJC. The dashed lines do not exist if a (1,∞)-RLL constraint is

imposed on the input.

Information Rates of the BJC

We consider now the case where a (1,∞)-RLL source is connected to a BJC with m = 1. A

(1,∞)-RLL source requires that each 1 is followed by at least one 0 and can be realized with

two (minimal state-space realization) or more states.
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Time −1 0 1 2 3 4 5 6 7 8 9 . . .

Input Xk 0 1 1 1 0 1 0 1 0 1 . . .

Jitter Jk 0 D D2 1 0 D 0 1 0 D2 . . .

State Sk 0 0 1 D 0 0 1 0 0 0 D . . .

Output Yk 0 0 1 0 0 0 1 1 0 0 . . .

Table 4.3: An example for the BJC with input, state, jitter, and output sequence. An erasure

occurred between X2 and X3.

An estimate of the output entropy rate h(Y) is computed with the forward sum-product

algorithm operating on the joint source/channel trellis, i.e. the (1,∞)-RLL source together

with BJC. This joint trellis is shown in Fig. 4.33, where the state Sk is obtained by concate-

nating a state of the (1,∞)-RLL source, SRLL
k , with a state of the BJC, SBJC

k , in the following

way:

Sk = (SRLL
k , SBJC

k ), (4.31)

with SRLL
k ∈ {1, 2} and SBJC

k ∈ {0, 1, D, 1 +D}. In Fig. 4.33, the states associated with state

0=0=0

1=1=1

0=0=1

(2; D)

(2; 0)

(1; 0)

(1; 1)

(1; 0)

(1; 1)

(2; 0)

1=D2=0

(2; D)

0=0=0

0=0=1

0=0=0

1=D2=1

Xk=D � Jk+1=YkSk Sk+1

1=1=0

1=D=0

1=D=1(2; 1) (2; 1)

Figure 4.33: Joint trellis of the (1,∞)-RLL source together with the BJC.

“1” of the (1,∞)-RLL source are depicted with double circles; the other states belong to state

“2”of the (1,∞)-RLL source.

An estimate of h(Y|X ) is computed on a reduced trellis induced by the input sequence xn

as described in Chapter 3.
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Lower Bounds on Capacity

The optimization of the state-transition probabilities is performed only on the STPs of the

(1,∞)-RLL source, as the state-transition probabilities of the BJC are given by the jitter

probability and cannot be changed. This means that the noisy adjacency matrix, as defined

in (3.70) is a two-by-two matrix.

Referring to Fig. 4.33, the state-transition probabilities leaving state Sk = (1, 0) are given

by

Q
(
(1, 0), (1, 0)

)
= QRLL(1, 1) (4.32)

Q
(
(1, 0), (2, 0)

)
= QRLL(1, 2) · pJ (4.33)

Q
(
(1, 0), (2, 1)

)
= QRLL(1, 2) · (1 − 2pJ) (4.34)

Q
(
(1, 0), (2, D)

)
= QRLL(1, 2) · pJ (4.35)

and the ones leaving state Sk = (1, 1) by

Q
(
(1, 1), (1, 0)

)
= QRLL(1, 1) (4.36)

Q
(
(1, 1), (2, 0)

)
= QRLL(1, 2) · pJ (4.37)

Q
(
(1, 1), (2, 1)

)
= QRLL(1, 2) · (1 − 2pJ) (4.38)

Q
(
(1, 1), (2, D)

)
= QRLL(1, 2) · pJ. (4.39)

The state-transition probabilities of the other three states equal 1, or to be precise

Q
(
(2, 0), (1, 0)

)
= QRLL(2, 1) (4.40)

Q
(
(2, 1), (1, 0)

)
= QRLL(2, 1) (4.41)

Q
(
(2, D), (1, 1)

)
= QRLL(2, 1). (4.42)

Similarly as in Chapter 3, we introduce the following shorthand notations

vRLL
k (i, j|Y n) , Pr(SRLL

k−1 = i, SRLL
k = j|Y n) (4.43)

vRLL
k−1 (i|Y n) , Pr(SRLL

k−1 = i|Y n) (4.44)

vRLL
k (i, `, j|Y n) , Pr(SRLL

k−1 = i, Bk = `, SRLL
k = j|Y n) (4.45)

vRLL
k−1 (i, `|Y n) , Pr(SRLL

k−1 = i, Bk = `|Y n) (4.46)

with

|Bk| =




2 if
(
SRLL

k−1 = 1
) ∩ (

SRLL
k = 1

)
6 if

(
SRLL

k−1 = 1
) ∩ (

SRLL
k = 2

)
3 if

(
SRLL

k−1 = 2
) ∩ (

SRLL
k = 1

) . (4.47)

This grouping of the branches is also visualized in Fig. 4.33: the solid, the dashed, and the

dotted lines are assigned to the (1, 1), (1, 2), and (2, 1) transition in the (1,∞)-RLL source.
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The a-posteriori state-transition weights of the (1,∞)-RLL source are now expressed as

follows

TRLL(i, j) = lim
n→∞

1

n

n∑
k=1

Ep
Y n|SRLL

k
=j,SRLL

k−1
=i

[
log2

vRLL
k (i, j|Y n)

vRLL
k−1 (i|Y n)

]
(4.48)

= lim
n→∞

1

n

n∑
k=1

EP
` p

Y n,Bk=`|SRLL
k

=j,SRLL
k−1

=i

[
log2

vRLL
k (i, j|Y n)

vRLL
k−1 (i|Y n)

]

= lim
n→∞

1

n

n∑
k=1

[∑
`

Pr(Bk = `|SRLL
k = j, SRLL

k−1 = i)

Ep
Y n|SRLL

k
=j,SRLL

k−1
=i,Bk=`

[
log2

vRLL
k (i, `, j|Y n)

vRLL
k−1 (i, `|Y n)

]]
(4.49)

as the last line follows from conditioning the expectation on a particular state-transition.

Thus the expectation term in (4.49) equals the a-posteriori state-transition weight of the joint

source/channel trellis, i.e.

T(i, `, j) = lim
n→∞

1

n

n∑
k=1

Ep
Y n|SRLL

k
=j,SRLL

k−1
=i,Bk=`

[
log2

vRLL
k (i, `, j|Y n)

vRLL
k−1 (i, `|Y n)

]
. (4.50)

This allows us to obtain the a-posteriori state-transition weight of the RLL-source in the

following form

TRLL(i, j) =
∑

`

Pr(B1 = `|SRLL
1 = j, SRLL

0 = i)T(i, `, j) (4.51)

where the probability term is independent of time.

For finite n, we obtain the empirical counterpart of the a-posteriori state-transition weights

of (4.50) as follows

T̂(i, `, j) =
1

n(i, `, j)

n∑
k=1

(Sk−1=i,Bk=`,Sk=j)∈xn

log2

vRLL
k (i, `, j|Y n)

vRLL
k−1 (i, `|Y n)

(4.52)

where n(i, `, j) is the number of state-transitions from state i to state j over branch `. The

conditioned version of the a-posteriori state-transition weights is advantageous here, as the

probability of observing a channel output is either one or zero given a received symbol. Thus

the empirical counterpart to (4.51) becomes to

T̂RLL(i, j) =
1∑

`′ n(i, `′, j)

∑
`

n(i, `, j)T̂(i, `, j). (4.53)

The optimized state-transition probabilities QRLL(i, j) of the (1,∞)-RLL trellis are obtained

now by the update formula in Theorem 3.5.
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Numerical Results

In Fig. 4.34, estimates of the information rates of the BJC driven by a (1,∞)-RLL source (two

state realization) are plotted against a varying jitter probability pJ(·) and varying QRLL(1, 1),

the STP of the (1,∞)-RLL source. Estimates of H(X|Y) are shown in Fig. 4.35. We see that

for each jitter probability, both the information rate as well H(X|Y) are concave functions of

the STP. Thus, the iterative information rate maximization method from Chapter 3 will find

the globally optimal Q∗(1, 1). This can be verified in Fig. 4.36 where Q∗(1, 1) was computed

by brute-force computation and by the iterative information rate maximization method.
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Figure 4.34: Estimated information rates.
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Figure 4.35: Estimated H(X|Y).
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Figure 4.37: Estimated information rates

for various input processes.

In Fig. 4.37, estimated information rates are shown for i.u.d. input as well as optimized

Markov inputs fulfilling the (1,∞)-RLL constraint. The number L = 2 means that a two state

realization was used for the (1,∞)-RLL trellis (minimal state-space realization). Non-minimal

state-space realization of the (1,∞)-RLL constraint were obtained by considering realizations

with L = 5 states and L = 12 states. In absence of noise, the capacity of (1,∞)-RLL

constrained sequences is achieved by the minimal state-space realization. Enlarged state-

space realizations provide more state-transition probabilities to be optimized. In the presence
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of noise, this leads to higher information rates.



Chapter 5

Summary and Concluding Remarks

The results obtained in this dissertation can be summarized as follows.

Chapter 2:

• The capacity of an irreducible and aperiodic FSM was formulated. We noted that it is

simpler to compute the capacity of an irreducible and aperiodic FSM than the capacity

of an indecomposable FSC, as the number of constraints imposed on the input process

is finite. The capacity of the FSM is a lower bound on the capacity of the corresponding

FSC.

Chapter 3:

• We presented a practical sampling-based computation method for computing estimates

of entropy rates and consequently information rates of FSMs. Reduced-state versions

were also provided. The pivotal observation behind this method is that estimates of the

entropy rate of hidden Markov processes can exactly be computed by standard forward

sum-product trellis processing of simulated or (in principle) measured channel output

data. The method can be described as a stochastic version of the power-method that is

routinely used to compute estimates of the largest eigenvalue of non-negative primitive

matrices.

• A gradient-based method and Kavčić’s method have been examined for maximizing the

information rate for a given Markov source model. We showed that by progressively

extending the Markov input process over its minimal state-space realization a set of

tight lower bounds on capacity is obtained.

• An upper bound on the capacity of FSMs was proposed using the dual expression of

the channel capacity. It was shown that this upper bound resides on hidden Markov
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entropy rates as well. Thus, the sampling-based method for computing lower bounds on

capacity can also be used to compute an upper bound. Moreover, it was noticed that if

the lower bound is tight, the upper bound is tight as well.

• Provable upper and lower bounds on the information rate of the discrete memoryless

channel were extended to very general ergodic (not necessary finite-state) channels. Es-

timates of these bounds were computed in Chapter 4 for various channel models using

a trained FSM as a computation vehicle. The tightness of the bounds depends on how

close the channel law of the auxiliary FSM is to the channel law of the original channel.

Chapter 4:

• For a given trellis length, we computed estimates of information rates for selected channel

models assuming bipolar i.u.d. input signals. We observed that the information rate

decreases with increasing memory of the channel model; especially at high SNR, where

a low noise floor reveals the differences of the channel models.

• Tight lower bounds on capacity of various FSMs were computed. It was found empirically

that the iterative information maximization method proposed by Kavčić increases the

information rate leading to tight lower bounds. A proof is missing as it could not be

shown that the FSM information rate is a concave function over the convex set of state-

transition probabilities.

Owing to the normalization of the channel transfer function, information rates were

obtained by this method that exceed in the low SNR regime even the capacity of the

memoryless Gaussian channel.

• The effect of medium noise on the information rate was investigated. To this end, FSMs

were trained by synthetically generated waveforms (microtrack model). For a fixed noise

power, the information rate of the trained FSM was considerably higher for an i.u.d. input

process in the medium noise dominated noise scenario than in the AWGN dominated

noise scenario. However, these information rates are not provable lower bounds on the

information rate of the original microtrack channel. Quite on the contrary, the provable

lower bounds suggest that medium noise is detrimental. The discrepancy between these

two bounds suggests that a parameterized Gaussian model is a bad model for medium

noise (partial erasure).

• A new model for medium noise was developed: the binary jitter channel. It is a nontrivial

channel model as it is a nonlinear FSM and the discrete medium noise process contains

memory. It models transition shifts and partial signal erasure. Numerical results of tight

lower bounds on the capacity are presented for various input processes.
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We regret if — after having worked for quite a while on this topic — we have to leave the

reader with more questions remaining than there were originally. The good thing though is

that the following future research projects seem promising:

• Investigate the iterative information rate maximization method of Kavčić and its real-

ization to the Arimoto-Blahut algorithm in more detail with the objective to proof that

it finds a local maximum.

• Devise tight upper bounds in the presence of medium noise. This involves a better

understanding of the noise process and a more accurate noise model.

• Find an efficient and practical reduced-state lower bound similar to the reduced-state

upper bound.

• Apply the sampling-based computation method to other areas such as multi-input-multi-

output channels in wireless communications, Markov random fields and 2-dimensional

constraint systems. The information content in expert systems and data-mining algo-

rithms may also be bounded by this method.





Appendix A

A Numerical Example: (0, 2)-RLL

Source

There are various definitions of run-length-limited (RLL) sequences. We follow the definition

of Proakis [61] and define an RLL source in the following way.

Definition A.1 ((d, k)-RLL Source [61]) A (d, k)-RLL source emits a sequence of 1s and

0s. The parameters d and k are non-negative integers with k always larger than d. The

parameter d indicates the minimum number of 0s between two 1s and the parameter k indicates

the maximum number of 0s between two 1s.

In [45], Immink defines RLL sequence via binary (d, k)-sequences. These binary (d, k)-sequences

are actually the RLL-sequences of Proakis. For Immink, an RLL-sequence is a bipolar sequence

that is obtained after precoding a binary (d, k)-sequence. The precoding step1 maps logical

ones (representing the positions of the transitions) of the (d, k)-sequence to transitions, i.e.

+1 → −1 or −1 → +1. The sequence after the precoding operation is termed RLL-sequence

in [45]. It can be verified that such an RLL sequence has the virtue that at least d + 1 or at

most k + 1 consecutive like symbols occur. In [46], Immink, Siegel, and Wolf follow Proakis’

definition of RLL sequences such that we feel confident with our definition of a (d, k)-RLL

source.

A (d = 0, k = 2)-RLL source premits therefore at most two consecutive 0s. The state-

transition diagram and the corresponding trellis section of a minimal state-space realization

are shown in Fig. A.1.

1The term “precoding” is confusing, as it is in fact a postcoding process (see [45]).
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Figure A.1: State-transition diagram and (forward) trellis section of a minimal state-space

realization of the (0, 2)-RLL source.

A.1 Forward Trellis

The forward adjacency matrix of the minimal state-space realization shown in Fig. A.1 (right

part) is

Af =




1 1 0

1 0 1

1 0 0


 . (A.1)

The largest (in terms of magnitude) eigenvalue of A is ρ(Af) = 1.8393. The capacity is

C = log2 1.8393 = 0.8791 bits/symbol. The right and left eigenvectors corresponding to the

largest eigenvalue are

rT
f =

(
0.4196 0.3522 0.2282

)T

(A.2)

and

lf =
(

0.5437 0.2956 0.1607
)

(A.3)

where we normalized rT and l such that
∑

i r
T (i) = 1 and

∑
i l(i) = 1 respectively. The entries

of the state-distribution vector are given by πf(i) = c · rf(i)lf(i) where c is a normalization

constant such that
∑

i πf(i) = 1. The state-distribution vector becomes then

πf =
(

0.6184 0.2822 0.0994
)
. (A.4)

According to Shannon [70], the optimal forward state-transition probabilities are given as

follows

Q∗
f (i, j) =




rf (j)
rf(i)

1
ρ(Af )

∀(i, j) : Af(i, j) = 1

0 otherwise
(A.5)



A.2. Backward Trellis 129

and are collected in the forward state-transition probability matrix Q∗, i.e.

Q∗
f =




0.5437 0.4563 0

0.6478 0 0.3522

1 0 0


 . (A.6)

As Qf is a stochastic matrix (the row entries sum up to 1), the largest eigenvalue is one and

the corresponding right eigenvector, řT
f , uniform. The corresponding left eigenvector, ľf , is

not uniform but equals the state-distribution vector πf . Thus,

řf =
1

3
·
(

1 1 1
)

(A.7)

and

ľf =
(

0.6184 0.2822 0.0994
)

= πf . (A.8)

A.2 Backward Trellis

The backward adjacency matrix is obtained by transposing the forward adjacency matrix, i.e.

Ab = AT
f =




1 1 1

1 0 0

0 1 0


 (A.9)

and thus ρ (Ab) = ρ (Af). The right and left eigenvectors corresponding to the largest eigen-

value of Ab can therefore be expressed as follows

rT
b = lTf and lb = rf . (A.10)

The state-distribution vector is of course the same as in the forward trellis, i.e.

πb = πf . (A.11)

The optimal (backward) state-transition probabilities are obtained as follows

Q∗
b(i, j) =




rb(j)
rb(i)

1
ρ(Ab)

= lf (j)
lf (i)

1
ρ(Af )

∀(i, j) : Ab(i, j) = 1

0 otherwise
(A.12)

and are collected in the (backward) state-transition probability matrix Q∗
b, i.e.

Q∗
b =




0.5437 0.2956 0.1607

1 0 0

0 1 0


 . (A.13)
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As Qb is a stochastic matrix, its largest eigenvalue equals one. Both state-transition prob-

ability matrices, the forward and the backward, exhibit the same row constraint. The right

and left eigenvectors corrsponding to the largest eigenvalue of the forward and the backward

state-transition probability matrix are therefore identical, i.e.

řT
b = řT

f and ľb = ľf . (A.14)

Note that in general, it does not hold that

Qb = QT
f (A.15)

even if

Ab = AT
f . (A.16)

Example: (1,∞)-RLL source.

A.3 Parallel Branches

Now, we show that the extension of the results in previous sections to Markov sources with

parallel branches is straightforward. We extend the notion of STPs to branch-transition

probabilities (BTPs), i.e.

Q||(i, `, j) , Pr(Sk = j, Bk = `|Sk−1 = i) (A.17)

with the constraint∑
j∈S

∑
`∈B(

lst(`)=i

)
∩
(

rst(`)=j

) Q||(i, `, j) =
∑
j∈S

Q(i, j) = 1 ∀i ∈ S. (A.18)

The optimal BTPs are given as shown in [70] by

Q∗
||(i, `, j) =




r(j)
r(i)

A||(i,`,j)
ρ(A)

∀(i, j) : A(i, j) = 1

0 otherwise
(A.19)

where rT is the right eigenvector belonging to the largest eigenvalue of A with A(i, j) =∑
` A||(i, `, j). Consequently, we can write the entropy rate of the Markov process as

H(X ) =
∑
i∈S

π(i)
∑
j∈S

∑
`∈B(

lst(`)=i

)
∩
(

rst(`)=j

) Q(i, `, j) log2

A||(i, `, j)
Q(i, `, j)

. (A.20)
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Example A.1 ((0, 2)-RLL Source with Parallel Branches)

Take two consecutive trellis sections of the (0, 2)-RLL source and shrink them to one single

trellis section, i.e. we take the 2nd power of the adjaceny matrix A. This gives

A2
f =


 2 1 1

2 1 0

1 1 0




with ρ(A2
f ) = 3.3830. The optimal STPs are

Q∗
f =


 0.4196 0.3522 0.2282

0.5437 0.4563 0

0.5437 0.4563 0


 .

The BTPs are Q||(1, 1, 1) = Q||(1, 2, 1) = 0.4196/2.0 and Q||(2, 1, 1) = Q||(2, 2, 1) = 0.5437/2.0

as A||(1, 1, 1) = A||(1, 2, 1) and A||(2, 1, 1) = A||(2, 2, 1) respectively. The state-distribution

vector remains of course unchanged and is given by (A.4). Plugging these number into (A.20)

delivers 1.7583 and equals the logarithm to the base two of ρ(A2
f ). The entropy rate in

bits/symbol is obtained by deviding by two, i.e. C = 0.8792 bits/symbol.

Thus, the results from Chapter 2 and 3 can be extended to parallel branches simply by

replacing the STPs with BTPs. The a-posteriori state-transition weight matrix T generalizes

in a staightforward manner to the a-posteriori branch-transition weight matrix.

Definition A.2 (A-posteriori Branch-Transition Weight) For all branches (i, `, j) :

A||(i, `, j) = 1, we define the a-posteriori branch-transition matrix T|| with a-posteriori branch-

transition weights as entries in the following way:

T||(i, `, j) , lim
n→∞

1

n

n∑
k=1

EpY n|Sk−1=i,Bk=`,Sk=j

[
log2

vk(i, `, j|Y n)

vk−1(i|Y n)

]
(A.21)

= lim
n→∞

1

n

n∑
k=1

ErY n


log2

vk(i, `, j|Y n)
vk(i,`,j|Y n)

�(i)Q(i,`,j)

vk−1(i|Y n)
vk−1(i|Y n)

�(i)


 (A.22)

where we used the definitions

vk(i, `, j|Y n) , Pr(Sk−1 = i, Bk = `, Sk = j|Y n) (A.23)

vk−1(i|Y n) , Pr(Sk−1 = i|Y n). (A.24)

If A||(i, `, j) = 0, we define T||(i, `, j) , −∞.

The noisy adjaceny matrix becomes then to

Ã(i, j) =

{ ∑
` 2T||(i,`,j) ∀(i, `, j) : A||(i, `, j) = 1

0 otherwise
(A.25)

and the updated branch-transition probabilities are now given by

Q||(i, `, j) =
r̃(j)

r̃(i)
· 2T||(i,`,j)

ρ(Ã)
, (A.26)

where r̃T is the right Perron-vector of Ã.





Appendix B

The Perron-Eigenvalue: Theory and

Practice

Definition B.1 (Non-negative Matrix) A matrix A of size L × L is called non-negative

if all its entries A(i, j) are non-negative, i.e. if A(i, j) ≥ 0 for i, j = {1, 2, . . . , L}.

Definition B.2 (Positive Matrix) A matrix A of size L × L is called positive if all its

entries A(i, j) are positive, i.e. if A(i, j) > 0 i, j = {1, 2, . . . , L}.

Similar definitions hold for vectors. The entries of a positive row vector v of size 1 × L are

therefore all positive, i.e v(i) > 0 for i = {1, 2, . . . , L}.

Definition B.3 (Spectral Radius) The eigenvalue with the largest absolute value of the

matrix A is termed spectral radius of A and denoted by ρ(A).

B.1 Perron-Frobenius Theorem

For positive matrices the Perron theorem holds [43]. The name Frobenius is associated with

generalizations of Perron’s results about positive matrices to non-negative matrices.

Theorem B.1 (Perron-Frobenius Theorem [43]) Let A be an irreducible and non-negative

matrix. Then

a.) ρ(A) > 0.

b.) ρ(A) is an eigenvalue of A.

c.) There are positive right and left eigenvectors, rT and l, such that ArT = ρ(A)rT and

lA = ρ(A)l, respectively.
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d.) ρ(A) is an algebraically (and hence geometrically) simple eigenvalue of A.

For a proof see [43]. This so-called Perron-Frobenius theorem guarantees that the eigenspace

of an irreducible and non-negative matrix associated with the Perron-root (eigenvalue with

largest absolute value) is one-dimensional (unique). The unique positive left/right eigenvector

associated with the Perron-root whose components sum up to 1 is called the left/right Perron-

vector.

Corollary B.2 Suppose A is irreducible and non-negative and suppose the set Λ = {λ1 =

ρ(A), λ2, . . . , λ1+(k−1)} of eigenvalues of maximum modulus (absolute value) has exactly k dis-

tinct elements. Then each eigenvalue λi ∈ Λ has algebraic multiplicity 1, i.e. is unique, and

Λ = {e2πi`/kρ(A) : ` = 0, 1, . . . , k − 1} (B.1)

that is, these maximum modulus eigenvalues are precisely the k-th roots of unity times ρ(A).

Moreover, if λ is any eigenvalue of A, then e2πi`/kλ is an eigenvalue for all ` = 0, 1, . . . , k−1.

Non-negative matrices may therefore have several eigenvalues with the same modulus (absolute

value). For positive matrices, this is different. There is only one eigenvalue with maximum

modulus [43]. For the power method (see next subsection), we need exactly this property.

Definition B.4 (Primitive Matrix) A non-negative matrix A is said to be primitive if it

is irreducible and has only one eigenvalue of maximum modulus.

We restrict ourselves therefore to non-negative matrices that are primitive. Moreover, the

following theorem holds for non-negative matrices [43].

Theorem B.3 (Mixing Property) If A is non-negative, then A is primitive if and only if

An > 0 for some n ≥ 1.

We recognize that this theorem is equivalent to the mixing property for irreducible and aperi-

odic FSM (see Chapter 2). Thus, the n-th power of a non-negative primitive matrix becomes

a positive matrix and then the Perron theorem applies which guarantees that there is only

one eigenvalue of maximum modulus.

B.2 Power-Method

The power-method [63] is a very practical method for computing in a straightforward way one

eigenvalue λ (usually the largest in magnitude) and corresponding left eigenvector l of a non-

negative primitive matrix A. It is an iterative method, in which we start with an initial guess

l̂
0

of l and generate a sequence of approximations l̂
k

that converges under certain conditions

to l as k → ∞.
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Algorithm B.1 Power-Method

Init: Choose an initial guess l̂
(0)

, fix an accuracy goal δ, and set g0 = 1.

Loop: Step 0: Compute γ(k+1) = l̂
(k)

A.

Step 1: Select the largest (in absolute value) element of γ(k+1),

i.e. gk+1 = maxi(|γ(k+1)(i)|).
Step 2: Scale l̂

(k+1)
= γ(k+1)/gk+1.

Step 3: IF |gk+1 − gk| < δ STOP.

ELSE increment k by one and GOTO Step 0.

B.2.1 Convergence Criteria

Suppose that the L × L matrix A has a complete set of left eigenvectors l1, . . . , lL with cor-

responding eigenvalues λ1, . . . , λL. Without loss of generality, we can arrange the eigenvalues

in decreasing order, that is

|λ1| ≥ |λ2| ≥ . . . ≥ |λL|. (B.2)

Moreover, we scale the eigenvectors li such that the absolute largest element of each is equal

to 1 and write the initial guess l̂
(0)

as a linear combination of the eigenvectors of A, i.e.

l̂
(0)

=
L∑

i=1

cili. (B.3)

Applying a single step of the power-method to this vector yields

γ(1) = l̂
(0) · A =

L∑
i=1

λicili (B.4)

and we obtain after the first iteration

l̂
(1)

=
γ(1)

g1

=
1

g1

L∑
i=1

λicili. (B.5)

After k iterations, we have

l̂
(k)

=
1

g1g2 · · · gk

n∑
i=1

λk
i cili (B.6)

=
c1λ

k
1

g1g2 · · · gk

[
l1 +

L∑
i=2

(
λi

λ1

)k
ci
c1

li

]
. (B.7)
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Now the idea is that since λ1 is the largest (in absolute value) eigenvalue, all the terms apart

from the first in the expression inside the braces tend to zero as k → ∞. Thus, the eigenvector

l1 dominates the behavior of l̂
(k)

for large k. This will fail if there is another eigenvalue of the

same absolute value as λ1. Therefore, we assume that λ1 is bigger than any other eigenvalue

of A, i.e.

|λ1| > |λi| ∀ i = 2, 3, . . . , L. (B.8)

This assumption is fulfilled if the matrix A is primitive (see previous subsection). Note, we

use here absolute values as the matrix A may have complex entries. With property B.8, we

can assert that (
λi

λ1

)k

→ 0 as k → ∞, (B.9)

for all i > 1 and thus

l̂
(k) → c1λ

k
1

g1g2 · · · gk

l1 as k → ∞. (B.10)

We know that l̂
(k)

has the property that the largest (in absolute value) element is always equal

to one, as does l1. Therefore the constant of proportionality between l̂
(k)

and l1 must approach

unity for large k, that is

l̂
(k) → l1 as k → ∞, (B.11)

and

c1λ
k
1

g1g2 · · · gk

→ 1 as k → ∞. (B.12)

This can only occur if

gk → λ1 as k → ∞. (B.13)

Hence, the scaling factor gk will converge to λ1, the largest eigenvalue of A, for k large. In

practice, one would continue iterating up to a prescribed accuracy goal, i.e. till |gk+1−gk| < δ.

B.2.2 Remarks

The convergence rate depends mainly on the mixing property of A. It can be expressed as

the ratio of the largest to the second largest eigenvalue, i.e.

|λ2|
|λ1| , (B.14)
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which is termed spectral gap.

Instead of using the largest entry of γ(k+1) as scaling factor, it is also possible to use other

scaling factors; e.g. gk+1 can be a normalizing factor such that the sum of the entries of l̂
(k+1)

always equals one, i.e.

gk+1 =
L∑

i=1

γ(k+1)(i) (B.15)

(assuming that all entries are reals).

B.2.3 Connection to the Sum-Product Algorithm

Any vector-matrix multiplication, requires products and sums of the vector and matrix entries.

For the computation of the left Perron-vector one iteration of the power-method described

above involves the computation of the vector-matrix multiplication with the estimate l̂
(k)

and

A. For a two-by-two matrix A, this multiplication step yields

γ(k+1) = l̂
(k) · A (B.16)

=
(
l(k)(1) l(k)(2)

)
·
(

A(1, 1) A(1, 2)

A(2, 1) A(2, 2)

)
(B.17)

=

(
l(k)(1)A(1, 1) + l(k)(2)A(2, 1)

l(k)(1)A(1, 2) + l(k)(2)A(2, 2)

)T

. (B.18)

One such iteration step of the power-method can be illustrated by a single trellis section of the

DICODE channel (see Fig. 2.2, right part). It equals one step of the forward (left-to-right)

computation of the sum-product algorithm with A containing the branch metrics and l̂
(k)

the old (left) state metrics and γ(k+1) the new (right) state metrics that are not scaled. The

purpose of the scaling factor gk+1 is the same as of ϕk+1 in the forward recursion of the sum-

product algorithm: i.e. to prevent that the entries of γ(k+1) become unbounded. Of course,

the reverse operation, backward or right-to-left recursion of the sum-product algorithm, is also

possible and delivers by the same reasoning the right Perron-vector.

Hence, the computation of the left (right) Perron-vector and the largest eigenvalue of A is

performed by a forward or left-to-right (backward or right-to-left) recursion of the sum-product

algorithm operating on the trellis induced by A.





Appendix C

Derivation of Capacity-Achieving

State-Transition Probabilities

The optimal (maxentropic) state-transition probabilities Q∗(i, j) of a Markov source result

from maximizing the entropy rate

H(X ) = −
∑
i∈S

π(i)
∑
j∈S

Q(i, j)
[
log2 Q(i, j) − T(i, j)

]
(C.1)

under the following constraints for all transitions (i, j) : A = 1

Q(i, j) ≥ 0 (C.2)∑
j∈S

Q(i, j) = 1 ∀ i ∈ S (C.3)

∑
i∈S

π(i)Q(i, j) = π(j) ∀ j ∈ S (C.4)

∑
i∈S

π(i) = 1 (C.5)

where T(i, j), for the time being, can be any real number associated with the transition from

state i to state j. For all transitions (i, j) : A = 0, it holds that Q(i, j) = 0.

We set up now the Lagrangian for this constraint optimization problem without the first

constraint, i.e. the constraint that the state-transition probabilities must be non-negative.
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Later, we will show that indeed this constraint is met. The Lagrangian is given as follows

L = −
∑
i∈S

π(i)
∑
j∈S

Q(i, j)
[
log2 Q(i, j) − T(i, j)

]

+
∑
i∈S

λi

∑
j∈S

Q(i, j) +
∑
j∈S

λ′j

(∑
i∈S

π(i)Q(i, j) − π(j)

)

+ λ
′′∑

i∈S

π(i). (C.6)

We have to solve the equations

∂L
∂π(k)

!
= 0 ∀k ∈ S (C.7)

∂L
∂Q(k, `)

!
= 0 ∀k, ` ∈ S (C.8)

where L is a concave function in Q defined on a convex domain (for a proof refer to the last

subsection in this appendix).

Taking the derivative of L with respect to π(k) and Q(k, `) gives

∂L
∂π(k)

= −
∑
j∈S

Q(k, j)
[
log2 Q(k, j) − T(k, j)

]
+
∑
j∈S

λ
′
jQ(k, j) − λ

′
k + λ

′′ !
= 0 (C.9)

∂L
∂Q(k, `)

= −π(k)

[
log2 Q(k, `) +

Q(k, `)

Q(k, `)

]
+ π(k)T(k, `) + λk + λ

′
`π(k)

!
= 0. (C.10)

Multiplying the second equation by Q(k, `) and summing over ` ∈ S, we obtain by means of

the second constraint (C.3)

−π(k)
∑
`∈S

Q(k, `)
[
log2 Q(k, `) − T(k, `)

]− π(k) + λk + π(k)
∑
`∈S

λ
′
`Q(k, `) = 0. (C.11)

We can bring the first equation to a similar form by replacing the summations over j by

summations over ` and multiplying by π(k). This yields

−π(k)

[∑
`∈S

Q(k, `)
[
log2 Q(k, `) − T(k, `)

]−∑
`∈S

λ
′
`Q(k, `) + λ

′
k − λ

′′
]

= 0 (C.12)

Subtracting (C.12) from (C.11) delivers

−π(k) + λk + π(k)λ
′
k − π(k)λ

′′
= 0 (C.13)

and finally

λk = (1 − λ
′
k + λ

′′
) · π(k). (C.14)

Replacing this λk in (C.10) yields

π(k) ·
(
− log2 Q(k, `) + T(k, `) − λ

′
k + λ

′′
+ λ

′
`

)
= 0. (C.15)
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Because the underlying finite-state Markov model is irreducible, π(k) > 0 for all k ∈ S. Thus

it must hold that

Q(k, `) = exp
(
λ

′
` − λ

′
k + λ

′′
+ T(k, `)

)
∀k, ` ∈ S (C.16)

and we note that the first constraint (C.2) is indeed fulfilled. Assume that the matrix A

consists of the entries A(k, `) = eT(k,`) if the state-transition exists. Moreover, let the vector

r be the vector with entries r(k) = eλ
′
k and ρ = e−λ

′′
. Inserting these results into (C.16), we

get

Q(k, `) =
r(`)

r(k)
· A(k, `)

ρ
. (C.17)

From the global balance condition (C.4)1 we obtain

∑
k∈S

π(k)
r(`)

r(k)
· A(k, `)

ρ
= π(`) ∀` ∈ S (C.18)

and by letting the vector l have entries l(k) = π(k)/ (c · r(k)) we can rewrite (C.18) as follows

l · A = ρ · l, (C.19)

i.e. l is a left eigenvector of A with eigenvalue ρ, whose entries must be non-negative. Conse-

quently, to fulfill the third constraint in (C.5), we must have

π(i) = c · l(i) · r(i) ∀i ∈ S with c =
1∑

i∈S l(i)r(i)
. (C.20)

The maximal value of H(X ) becomes now to

H(X ) = −
∑
i∈S

c · l(i) · r(i)
∑
j∈S

(
r(j)

r(i)
· A(i, j)

ρ
·
[
log2

(
r(j)

r(i)
· A(i, j)

ρ

)
− T(i, j)

])
. (C.21)

Noting that A(i, j) = eT(i,j), we obtain

H(X ) = − c
ρ

∑
i∈S

l(i)
∑
j∈S

r(j) · A(i, j) log2 r(j)

︸ ︷︷ ︸
c
P

j �(j) log2 r(j)

+
c

ρ

∑
i∈S

l(i)
∑
j∈S

r(j) · A(i, j) log2 r(i)

︸ ︷︷ ︸
c
P

i �(i) log2 r(i)

+
c

ρ

∑
i∈S

l(i)
∑
j∈S

r(j) · A(i, j) log2 ρ︸ ︷︷ ︸
log2 ρ

= log2 ρ. (C.22)

1Alternatively we could also continue with (C.3).
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Thus the entropy rate is maximized for ρ being the largest eigenvalue of A, i.e. ρ = ρ(A).

This maximization is only possible if the conditions that the right eigenvector corresponding

to the eigenvalue ρ(A) has positive entries and the left eigenvector has non-negative entries.

For an irreducible and non-negative matrix A, one can indeed show that these conditions can

be met [43]. The Perron-Forbenius theorem guarantees this. Hence, the maxentropic Q∗(i, j)

are given by (C.17) with ρ being the eigenvalue with maximum modulus (absolute value) of

A. The maximal entropy rate equals the logarithm of ρ(A).

Finally, the 2nd derivative must be negative such that the optimized solution is indeed a

maximum. From (C.9) and (C.10) it follows that this is indeed the case. Thus, the maximal

entropy rate is given by (C.22) and the optimal STPs are given by (C.17).

Concavity of the Entropy Rate of Markov Sources

We provide a proof that the entropy rate of a Markov process is a concave function over the

manifold Q.

Assume that Q1 and Q2 are two valid sets of joint state-transitions probabilities, i.e. the

Markov properties hold for all entries of Q1 and Q2. Thus, for all transitions (i, j) : A(i, j) = 1

it must hold that

Q1(i, j) ≥ 0 and Q2(i, j) ≥ 0 (C.23)∑
i∈S

∑
j∈S

Q1(i, j) = 1 and
∑
i∈S

∑
j∈S

Q2(i, j) = 1 (C.24)

∑
i∈S

Q1(i, j) =
∑
k∈S

Q1(j, k) and
∑
i∈S

Q2(i, j) =
∑
k∈S

Q2(j, k). (C.25)

The corresponding state-probabilities are

π1(i) =
∑
j∈S

Q1(i, j) and π2(i) =
∑
j∈S

Q2(i, j). (C.26)

We form new joint state-transition probabilities in the following way

Q3(i, j) = α · Q1(i, j) + (1 − α) · Q2(i, j) (C.27)

for 0 ≤ α ≤ 1. As Q1 and Q2 fulfill the Markov constraints, Q3 does fulfill them as well. The

new state-probabilities are then given by

π3(i) =
∑
j∈S

Q3(i, j) (C.28)

= α
∑
j∈S

Q1(i, j) + (1 − α)
∑
j∈S

Q2(i, j) (C.29)

= απ1(i) + (1 − α)π2(i). (C.30)
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With these prerequisites and assuming that M(i, j) is an entry of a matrix M that does

not depend on Q1 nor on Q2, we obtain the following concavity relation for the entropy rate

H(X ; Q3) of a Markov process X parameterized by the manifold Q3:

H(X ; Q3) =
∑

(i,j):A(i,j)=1

Q3(i, j) log2

π3(i)M(i, j)

Q3(i, j)
(C.31)

=
∑

(i,j):A(i,j)=1

[[
α · Q1(i, j) + (1 − α) · Q2(i, j)

]

log2

(
απ1(i) + (1 − α)π2(i)

)
M(i, j)

α · Q1(i, j) + (1 − α) · Q2(i, j)

]
(C.32)

≥
∑

(i,j):A(i,j)=1

[
αQ1(i, j) log2

απ1(i)M(i, j)

αQ1(i, j)
+

(1 − α)Q2(i, j) log2

(1 − α)π2(i)M(i, j)

(1 − α)Q2(i, j)

]
= αH(X ; Q1) + (1 − α)H(X ; Q2) (C.33)

where the inequality follows from the log-sum inequality [24].





Abbreviations

Signal Processing

AWGN additive white Gaussian noise

BTP branch-transition probability

dB decibel

DC frequency zero (digital current)

FIR finite impulse response

FSM finite-state model

HMM hidden Markov model

HMP hidden Markov process

ISI intersymbol interference

SNR signal-to-noise ratio

STP state-transition probability

Information Theory

AEP asymptotic equipartition property

BSC binary symmetric channel

BPSK binary phase-shift keying

CSLLB conjectured Shamai-Laroia lower bound

DMC discrete memoryless channel

FSC finite-state channel

i.i.d. independent and identically distributed

i.u.d. independent and uniformly distributed

pdf probability density function

pmf probability mass function

w. p. 1 with probability 1
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146 Abbreviations

Magnetic Recording

EPR4 extended PR4

E2PR4 extended EPR4

GMR giant magnetoresistance

MF medium noise factor

MNP medium noise power

MR magnetoresistance

MS Markov source

NLTS nonlinear transition shift

NPRML noise predictive PRML

PR4 partial-response class-4 polynomial

PRML partial-response maximum-likelihood

PSE partial signal erasure

RLL run-length limited

TRP total receiver power (signal and medium noise)



List of Symbols

General

X random variable

x realization of X

X alphabet of x

Xn sequence of random variables, i.e. Xn = (X1, X2, . . . , Xn)

X process

ŝ estimate of a scalar s

Pr(·) probability

v row vector

M matrix

λi eigenvalue of the L× L matrix A with 1 ≤ i ≤ L;

the eigenvalues are ordered, i.e. |λ1| ≥ |λ2| ≥ . . . ≥ |λL|.
ρ(A) spectral radius of A; largest (in absolute value)

eigenvalue of A, i.e. ρ(A) = maxi |λi| = |λ1|.

Finite-State Models

Sk time-k state

Bk time-k branch

Vk noiseless time-k output

Yk received time-k signal (noisy version of Vk)

Υ dimension of the output space

Ok observed time-k signal

L number of states

θ parameter vector

m memory of the FSM
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148 List of Symbols

M memory of the new trellis used for the upper bound or

the original channel

A (forward) adjacency matrix

rT right Perron-vector of A

l left Perron-vector of A

Q (forward) state-transition probability matrix

π state-distribution vector

Ã noisy adjacency matrix

r̃T right Perron-vector of Ã

l̃ left Perron-vector of Ã

T matrix consisting of a-posteriori state-transition weights

t matrix consisting of skewed a-posteriori state-transition weights

η extension degree of the Markov source

Magentic Recording

ζ position along the track

m0(ζ) average magentization profile along ζ

ν rotation speed of the disk

δ medium thickness

d head-to-surface distance

Hc coercivity

Hm magnetization strength

Mr remanent state

a transition width parameter

T bit spacing parameter

N number of microtracks

Lth erasure threshold

PW50 pulse width of the Lorentzian pulse at 50% amplitude

N0 one-sided power spectral density

D discrete-time delay element

g(t) Lorentizan pulse, step response

h(t) dipulse, impulse response, h(t) = 1
2

(
g(t) − g(t− T )

)
J jitter random variable
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Information Theory

H(X) entropy

h(X) differential entropy

I(X;Y ) mutual information between X and Y

H(X ) entropy rate

I(X ;Y) information rate

D
(
p(·)||q(·)) divergence between pX(·) and qX(·)

C capacity

CFSC FSC capacity

Iη(Q) FSM information rate for the η extension of the

Markov source determined by Q

CFSM
η FSM capacity for the η extension of the

Markov source

n trellis length

q(·) distribution of the input X

w
( · | · ) forward channel law of the original channel

r(·) distribution of the channel output O of the original

channel

v
( · | · ) backward channel law of the original channel

wa

( · | · ) forward channel law of the auxiliary channel

ra(·) distribution of the output Y of the auxiliary-channel

va

( · | · ) backward channel law

of the auxiliary-channel

τ threshold for the adaptive reduced-state lower bound

µf(x) metric of x in forward direction

µr(x) metric of x in backward (reverse) direction

ϕk time-k forward scaling factor

βk time-k backward scaling factor

Constants

ε, ε, ψ constants

c multi-purpose constant
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(d, k)-RLL source, 127
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A

a-posteriori branch-transition weight, 131

a-posteriori state metric, 24

a-posteriori state-transition metric, 25

adjacency matrix, 10

backward, 12, 129

forward, 12, 128

noisy, see noisy adjacency matrix

aperiodic, see FSM

Arimoto-Blahut algorithm, 34

Markov-constraint, 70

asymptotic equipartition property, 37

auxiliary-channel, 77

lower bound, 79

upper bound, 78

average magnetization profile, 27, 107

B

backward channel law, 33

backward recursion, see sum-product algorithm

Baum-Welch algorithm, 21, 81

BCJR algorithm, 23

Bernoulli process, 67

binary jitter channel, 116

bipolar, 11

bit, 32

branch-transition probabilities, 130

BSPK, 41

C

capacity, 34

dual expression, 35

input distribution, 34

primal expression, 35

channel

discrete memoryless, 32

Gilbert-Elliot, 41

indecomposable, 41

with freeely evolving state, 41

coercivity, 26

conjectured Shamai-Laroia lower bound, 4

convergence behavior, 65, 84

D

dibit, 29

DICODE channel, 11, 84, 85, 90, 93

upper bound on the capacity, 76

dipulse, 29

divergence, 33

E

entropy, 32

conditional, 32

entropy rate, 36

conditional hidden Markov, 53

conditional Markov, 56

hidden Markov, 49

158



INDEX 159

Markov, 51

Markov chain, 37

reduced-state

lower bound, 63

upper bound, 63

EPR4 channel, 84, 87, 97

ergodic channels, 40

F

factor graph, 22

Forney-style, 22

finite-state channel, 41

finite-state model, see FSM

forward channel law, 33

forward recursion, see sum-product algorithm

FSM

aperiodic, 14

branches, 10

capacity, 68

general capacity formula, 46

impulse response, 114

information rate, 67

irreducible, 14

order, 10

state-transitions, 10

states, 10

step response, 114

G

global balance condition, 17, 18

gradient-based search, 69, 95

grains, 26

H

hard magentic materials, 26

hidden Markov model, 9

hidden Markov process, 10

hysteresis effect, 25

I

i.u.d., 3

impulse response, 29, 114

information rate, 39

computing

forward-backward method, 64

forward-only method, 63

lower bounds on capacity, 66

general channel, 77

i.u.d., 84

lower bound, 79, 102

reduced-state, 82

upper bound, 78, 101

reduced-state, 81

irreducible, see FSM

iterative information rate maximization method,

71

J

jitter distribution, 107

K

Karush-Kuhn-Tucker conditions, 34

Kavčić conjecture, 72

L

learning

supervised, 81

unsupervised, 81

Lorentzian

linear channel model, 29

pulse, 30, 98

M

magnetization strength, 25

magnetoresistance, 30

manifold, 18

Markov chain, 14

aperiodic, 14

entropy rate

concavity, 142

ergodic, 14

ergodicity, 17
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irreducible, 14

persistent, 14

representation, 18

stationary process, 15

Markov process, 13

capacity, 43

homogenous, 14

Markov property, 13

matrix

mixing property, 15, 134, 136

non-negative, 133

positive, 133

primitive, 134

spectral radius, 133

stochastic, 13, 129

medium magnetization, 26

medium noise, 107

medium noise factor, 113

medium noise power, 112

memory, 41

microtrack model, 107

mixing property, 16

mixture degree, 20

mutual information, 32

N

noisy adjacency matrix, 64

normalized linear density, 30

NPML, 31

P

partial-response polynomials, 83

Perron-Frobenius theorem, 133

Perron-root, 134

Perron-vector, 134

left, 134

right, 134

position jitter, 107

power-method, 52, 134

stochastic, 52

precoding, 127

PRML, 31

process

ergodic, 21

geometrically, 16

stochastic, 21

pulse widening, 107

R

remanent state, 26

S

saturation recording, 25

sequence

nontypical, 37

typical, 37

Shannon-McMillan-Breiman theorem, 38

skewed a-posteriori state-transition weight, 70

SNR, 84, 113

including medium noise, 113

spectral gap, 137

state transition probability

update equation, 72

state-distribution vector, 15

initial, 15

steady-state, 16

state-space, 10

minimal realization, 12

state-transition

a-posteriori weight, 60

conditioned version, 60

range, 61

skewed, 70

unconditioned version, 60

state-transition diagram, 10

state-transition probability, 13

backward, 14, 129

forward, 13, 128

joint, 18
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matrix

backward, 14, 129

forward, 13, 129

set of, 18

set of joint, 18

stationarity, 21

step response, 28, 114

structure, 9

sum-product algorithm, 22

backward recursion, 24

forward recursion, 23

reduced-state version, 53

T

training, 21, 80

transition noise, 107

transition-width parameter, 27, 107

trellis, 10

trellis section, 10

typical sequences, 38

U

upper bound

on capacity, 73
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