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Abstract The shear modulus of pulp fibers is difficult to1

measure and only very little literature is available on the2

topic. In this work we are introducing a method to measure3

this highly relevant fiber property utilizing a custom built4

instrument. From the geometry of the fiber, the fiber twisting5

angle and the applied torque, the shear modulus is derived6

by de Saint Venant’s theory of torsion. The deformation of7

the fiber is applied by a moving coil mechanism. The support8

of the rotating part consists of taut bands, making it nearly9

frictionless, which allows easy control of the torque to twist10

the fiber. A permanent magnet moving coil meter was fitted11

with a sample holder for fibers and torque references. Mea-12

surements on fine metal bands were performed to validate13

the instrument. The irregular shape of the fibers was recon-14

structed from several microtome cuts and an apparent torsion15

constant was computed by applying de Saint Venant’s torsion16

theory. Fibers from two types of industrial pulp were mea-17

sured: thermomechanical pulp (TMP) and Kraft pulp. The18

average shear modulus was determined as (2.13 ± 0.36) GPa19

for TMP and (2.51 ± 0.50) GPa for kraft fibers, respectively.20

The TMP fibers showed a smaller shear modulus but, due to21

their less collapsed state, a higher torsional rigidity than the22

kraft fibers.23
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1 Introduction26

To understand and predict the mechanical properties of pa-27

per sheets, large scale simulations of fiber networks are per-28

formed. In such models, the fiber is the principal constituent,29

the fibrilar structure of the fiber is not considered, as mul-30

tiscale models would only allow the simulation of a small31

patch of the sheet. To each fiber in the simulated network,32

properties are ascribed such as the geometry of the fiber,33

its spatial orientation, the connection to other fibers in the34

network and its mechanical properties. The fibers can be35

modeled consisting of a transverse isotropic material. Some36

parameters, like the longitudinal modulus of elasticity, are37

subject of many studies, e. g. [1–3]. Other parameters, like38

the longitudinal shear modulus, are not well-established. In39

network simulations, such unknown parameters are fitted40

by adapting the models to show the behavior of real paper41

sheets. The parameters found in this way are then checked42

against estimates of these parameters, if available, or against43

theoretical predictions.44

Very little work has been devoted to direct measurement45

of the shear modulus on pulp fibers [4]. This is partly due46

to the apparent difficulties of this measurement. Also, until47

recent years, the shear modulus was of little practical use,48

only with the advent of comprehensive fiber network simula-49

tions [5,6] the need to determine the fiber shear modulus has50

increased. Particularly for modeling fiber networks exposed51

to a high shear load, e.g. creasing and folding of paper and52

board, the fiber shear modulus becomes a relevant material53

parameter.54

In this work we will determine the longitudinal shear55

modulus of the pulp fiber wall from torsion experiments on56
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Fig. 1 Shear deformation of an element in an idealized fiber under

torsion.

fibers. Figure 1 gives a sketch of an idealized fiber under tor-57

sional load with the torsional shear stress g drawn in the fiber58

cross section. This torsional shear is deforming elements of59

the fiber wall, inducing a shear deformation indicted by the60

angle W in Figure 1. In terms of mechanics the shear mod-61

ulus determining this deformation is called the longitudinal62

shear modulus. In this work we will stick to this terminology,63

thus we are measuring the longitudinal shear modulus of the64

fibers.65

Related Work: Torsional experiments were conducted by66

Kolseth [4] to determine the longitudinal shear modulus of67

kraft pulp fibers. His instrument featured a rotary table as68

actuator and a rotating coil suspended in a uniform magnetic69

field to compensate the torque of the twisted fiber. Great care70

was taken to align the fiber with the axis of rotation. Kolseth71

twisted the fibers until they ruptured after about three turns72

of the rotary table and simultaneously recorded the torque73

applied to the fiber. The loading curve clearly showed a non-74

linear twist-torque relationship. Despite that, Kolseth used75

the breaking load to calculate the shear modulus. He used76

a simple approximation of the torsion constant. For each of77

the tested fibers, a single cross section was acquired. All78

of the fibers had an uncollapsed lumen, therefore the cross79

sections had a hole. Kolseth transformed the fiber cross sec-80

tions into an annulus of the same cross-sectional area with81

an inner ring of the same area as the hole in the cross sec-82

tion. The torsion constant of the annulus was then used to83

calculate the shear modulus. As circular cross sections have84

the largest torsion constant for a given cross-sectional area,85

this approximation over-estimates the torsion constant of the86

fiber cross section [7]. The application of the torsion theory87

for thin-walled tubes would have approximated the torsion88

constant of these fibers much better [8,9]. While the prin-89

cipal design of this setup (i.e. measuring the torque while90

twisting the fiber) is elegant, we believe that two points need91

considerable improvement. First, the measured shear mod-92

ulus highly depends on the shape of the fiber cross section.93

Measuring several cross sections of the same fiber reduces94

the noise considerably, also the true cross sectional shape of95

the fiber should be used instead of the apparent shape [10]96

or an approximated shape. Second the fiber shear modulus97

should be measured in the linear deformation regime and98

not from the torque at rupture. Finally, more fibers should be99

measured to obtain statistically meaningful results.100

To determine the torsional properties of fibers torsion101

pendulums were also used. Naito et al. [11] determined only102

torsional rigidity of kraft pulp fibers. They determined for103

red pine early wood kraft pulp fibers FT ≈ 30 pNm2 and104

for late wood FT ≈ 43 pNm2. Neither microtome cuts nor105

fiber compaction was performed. Without cross-sectional106

data available, the shear modulus could not be obtained. For107

fibers of uniform diameter, the longitudinal shear modulus108

was successfully determined by Tsai and Daniel [12]. For109

textile fibers, extensive measurements of the elastic proper-110

ties were performed. An example of a comprehensive early111

study is Meredith [13]. He used analytical solutions of the112

torsion problem for fiber cross sections that were well ap-113

proximated by simple geometrical shapes and a soap-film114

analogy for irregular cross sections [8].115

In his thesis Kolseth [14] also used a torsional pendu-116

lum to determine the shear modulus for kraft pulp fibers.117

His instrument possessed a climate chamber with control of118

temperature and humidity. He used this instrument mainly119

to study the dependency of torsional rigidity on temperature120

[15]. For a small set of kraft wood pulp fibers, the shear121

modulus was also determined. For this experiment Kolseth122

applied the theory of thin-walled tubes. But still only one123

cross section per fiber was evaluated. With this setup, he124

obtained a shear modulus of � = (3.6 ± 1.3) GPa.125

A mechanism with a rotating coil in a radial uniform126

magnetic field was used by Dai et al. [16] to determine the127

shear modulus of metallic glass fibers. In addition to the128

rotating coil mechanism used as actuator and sensor, an ad-129

ditional angular transducer allowed the torque measurement130

for arbitrary angles. The instrument had slide bearings for the131

spindle of the rotating coil. This allows for tight mechanical132

coupling of the axis of the instrument with the sample but133

introduces friction into the torque balance. The instrument134

measures torques in the range of 1 mN m with a resolution135

of 30 nN m. Huan et al. [17] used the same instrument to136

measure thin copper wires. Instead of an angular transducer,137

a laser displacement sensor was used to measure the rotation138

angle. This limits the angular range but allows a better angu-139

lar resolution. The glass fibers and the copper wires both had140

a circular cross section. The measurement of the diameter141

at three different positions was sufficient to determine the142

torsion constant.143

Lui et al. [18] used a torsion-balance to measure the144

torsional properties of single micron-diameter wires. The in-145

strument used a rotary table as actuator. The sample and a146
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Fig. 2 Fiber sample d. mounted in the instrument. The sample holder consists of a static rotation constraint a. and a rotating cross beam b. attached

to the pointer c. of the permanent magnet moving coil meter.

torsion wire were glued together with a cross beam marking147

the joint. The prepared sample was mounted above the ro-148

tary table. The torque was introduced into the sample by a149

twisting head on the table. While the sample was twisted, the150

displacement of the cross beam was measured with a laser151

displacement sensor. The torsion wires were calibrated by a152

torsion pendulum. This design of the sample assembly looks153

promising for the application to natural fibers.154

In conclusion, while there are some methods available to155

measure torsional rigidity of thin wires or fibers, no reliable156

data or method on the shear modulus of pulp fibers could157

be found in the literature. In order to obtain these data it is158

necessary to combine a measurement of fiber torsional rigid-159

ity with a reliable measurement of the fiber cross sectional160

shape, and to apply adequate mechanical modeling of the161

fiber twisting to evaluate the shear modulus.162

2 Materials and Methods163

2.1 Design of the Instrument164

We adapted a permanent magnet moving coil instrument165

(PMMC) [19–21] as actuator and sensor. PMMCs were used166

for sensitive and precise electrical measuring instruments167

until the technology was superseded by modern electronic168

instruments in the 1980s. In a PMMC, a coil rotates in a169

small circular gap between two pole pieces of a permanent170

magnet and a soft iron cylinder. The magnetic field in the gap171

is radial uniform and always perpendicular to the direction172

of movement of the coil. The torque induced is thus only173

dependent on the current through the coil but not on the174

angle of deflection. The strength of the magnetic field is175

determined by the geometry of the gap and the strength of176

the permanent magnet, neither change during the test. We177

only have to control and measure the electric current through178

the coil.179

In a PMMC, the torque of the moving coil acts against180

a restoring spring. The restoring torque of the spring is pro-181

portional to the deflection of the coil, the deflection is thus182

proportional to the current in the coil. The deflection of183

the coil is indicated by a pointer on a scale. For the most184

sensitive of these instruments, the friction of pivot bearings185

is no longer acceptable. In these instruments the coils are186

supported by taut bands [22,23] that act as bearings and as187

restoring springs. Taut bands are thin wires rolled down to a188

rectangular cross section. A rectangular cross section has a189

lower torsional rigidity than the circular cross section of the190

same area [23,7], which allows taut bands to carry heavier191

moving systems without sacrificing sensitivity.192

We adapted the PMMC of an analog handheld multime-193

ter, Metrawatt Unigor 4p, that features a moving system with194

taut band suspension and a low 10 µA current range. As a195

handheld instrument, the readings of the instrument are inde-196

pendent of the orientation of the instrument. The moving coil197

assembly together with the scale plate Dwere removed from198

the multimeter and placed on a separate mount. A beam was199

attached to the pointer that allowed for the sample to hang200

down from the beam centered over the axis of rotation of201
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Fig. 3 Schematic representation of a torque reference i. and a fiber

sample ii. mounted in the instrument. Both fit between the actuator a.

and the rotation constraint b. of the instrument. The reference torque

is provided by a fine metal band c. loaded with a brass washer d. The

fiber e. is attached to a board strip f.

the PMMC. The design is shown in Fig. 2. The tension of202

the taut band was sufficient to keep the axis of rotation ver-203

tical, despite the torque introduced by the additional weight204

on the pointer. A fork shaped rotation constraint attached to205

the static part of the instrument prevented the rotation of the206

sample but allowed free movement otherwise. The neces-207

sary clearance between the restraint and the sample holder208

of 0.1 mm introduced a small slack, less than 2°, between209

the deflection of the pointer and the twisting deformation of210

the sample. The adjustment of the beam, so that the center of211

rotation was centered over the taut bands of the instrument,212

was performed using a telecentric lens.213

A sample holder was designed to allow the easy insertion214

and removal of the samples from the instrument. The sample215

holder features a small piece of board to bring the sample in216

a vertical position centered over the axis of rotation of the217

PMMC. Also the board provides a small axial load on the218

samples to avoid buckling. See Fig. 3ii.219

The current to the PMMC was provided by a lab power220

supply, Agilent E3643A, which was manually controlled.221

The current was measured with a bench multimeter, Agilent222

34450A, in the 100 µA range. Ideally this instrument has a223

resolution of 1 nA. We observed a short term zero drift of224

the ampere meter of ±2 nA. With this current resolution, we225

obtained a torque resolution of 0.2 nN m.226

2.2 Procedure227

Torque Measurement: The measurement of the torque ap-228

plied on a fiber is a two-step process. In the first step, the229

pointer is deflected from its zero position to the defined an-230

gle i0 without a fiber mounted in the instrument. From the231

recorded current �0, the restoring torque )S of the taut bands232

of the PMMC is calculated. This measurement is only done233

once for each batch of samples. See Fig. 4i.234

M

A

Angle φ
0

Torque TS

FTorque T

a.

b.

d.

l e.

c.

I1

ii.

T  = T  + TS1 FTorque
M

A

Torque TS

i.

Angle φ
0

T  = TS0
Torque

d.

c.

I0

a.

b.

Fig. 4 Measurement of the torque applied to the fiber. First the restor-

ing torque of the taut band )S of the PMMC is determined i., then the

combined torque of the taut band and the fiber )S + )F ii. The torque

generated by the moving coil c. is determined by measuring the current

through the coil with a precision ampere meter a. The current is con-

trolled by an adjustable power supply b. The taut band of the PMMC

not only acts as a support of the moving coil, but also as restoring spring

d.

For the second step the fiber is mounted in the instrument.

The pointer is now again deflected to the defined angle i0,

but this time the current required �1 is larger than in the first

step as the torque of the coil )1 acts now against the restoring

torque )S of the taut bands and the torque of the fiber )F. The

additional torque contributed by the fiber )F is calculated as

)F = )1 − )0 = :) (�1 − �0) (1)

See Fig. 4ii. The currents �0 and �1 are found by manually235

adjusting the power supply until the pointer is exactly over236

the mark of the scale corresponding to i0. It takes about237

10 s for the pointer to come to rest. The subtle effects of238

the viscoelasticity of the fibers are annihilated by the small239

movements required to manually adjust the pointer to its final240

position.241

Measuring the Rate of Twist: The angle of the twist was de-242

fined before the torque measurements. For the measurements243

presented in this paper, the maximum possible angle, i. e. the244

full deflection of the instrument, was used i0 = 75°. From245

the twist torque curve published by Kolseth [4], we know246

that this angle is still in the linear region of the deformation.247

The free length of the fiber between the glued joints was de-248

termined with an optical 3D measurement system, Alicona249

InfiniteFocus.250

Reconstruction of the Fiber Geometry: After the measure-251

ment, the metal hook was removed from the fiber and the252
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remaining fiber together with the small board strip was em-253

bedded in resin. The embedded fibers were microtome cut254

such that there were at least five equidistant cross sections255

for each fiber taken [24,10]. Dependent on the free length,256

the distance between the microtome cuts was either 50 µm257

for short fibers or 100 µm for longer fibers. The microscopic258

images from the microtome were manually binarized. The259

microscopy images suffer from a very low contrast that pre-260

vents reliable automated edge detection. Fig. 5 shows the261

microscopic images and the binarized cross sections of a262

TMP fiber and a kraft fiber side by side. From these bina-263

rized images, a torsion constant for the fiber was determined.264

See Section 2.6.265

10 µm

10 µm

a. b.

Fig. 5 Cross sections of a partially collapsed TMP fiber with a small

residual lumen a. and a fully collapsed kraft fiber b. The torsion con-

stants derived from the binary images are �T = 4190.73 µm4 and

�T = 2702.97 µm4 respectively. Microscopic images are contrast en-

hanced.

2.3 Calibration266

Preliminary Calibration: The calibration makes use of the267

fact that the pointer of the PMMC is counter balanced. The268

PMMC was positioned with the axis of rotation in horizon-269

tal position. Small weights were placed on the pointer at a270

distinguished position. The weights were trimmed until the271

pointer was horizonal and at the end of the scale. A set of five272

weights was appropriately trimmed and weighed on a Sar-273

torius BP 210 S lab balance. The average weight was , =274

2.985 mg. The distance from the axis to the distinguished po-275

sition was measured with a sliding caliper as 3 = 16.2 mm.276

The maximum restoring torque of the taut bands of the in-277

strument was)max = 474.2 nN m. Then, with the axis back in278

vertical position a current of �max = 9.19 µA was required to279

deflect the pointer to the end of the scale. The torque constant280

of the PMMC was :) =
)max

�max
= 51.55 mN m A−1.281

Final Calibration: The initial calibration was cross-checked

by measuring the torque of torque standards, see Fig. 3i.

For the standards, fine bands of platinum nickel PtNi10 al-

loy were used. These are available from the manufacturer

Carl Haas Spiralfederfabrik with a specified torsional rigid-

ity [25]. The bands used for validation had a torsional rigid-

ity of FT = 224.7 pNm2 and a rectangular cross section of

F = 55.0 µm by ℎ = 5.5 µm. The torque of the standard was

calculated from the specified torsional rigidity of the band

and the dimensions by Eq. 2 [23,22,26]. With the rate of

twist i′
=

i

;
, the torque is

)R = FTi
′ +

,W (F2 + ℎ2)

12
i′ +

�F5ℎ

360
i′3 (2)

A M1 brass washer with a mass of <W = 13.5 mg was used282

to align the band to the axis of rotation. ,W is the weight of283

the washer, � is the Young’s modulus of the band. The last284

two terms in Eq. 2, representing the effects of normal stresses285

[27], account only for 0.5o/oo of the torque and are negligible.286

The free length of the bands was measured with an optical287

3D measurement system, alicona InfiniteFocus. The torque288

references were inspected for kinks in the band and spilled289

glue before measurement. All standards were measured only290

once, as many of the standards were damaged when removed291

from the instrument. Repeatability tests could therefore not292

be performed. 13 standards were successfully measured.293

The calibration curve is seen in Fig. 6. The error �rms =294

5.15 nN m is mainly due to the slight misalignment of the295

axes and due to the small buckling of the band under torsional296

deformation. The instrument overestimated the torque by297

11.8%. The torque constant of the PMMC was corrected298

accordingly to :) = 46.11 mN m A−1.299
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Fig. 6 Calibration of the instrument. 13 torque standards were mea-

sured after preliminary calibration. The instrument overestimated the

torque of the standards by 11.8%.
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2.4 Validation300

To demonstrate that the measurement procedure yields valid

results, the data acquired from the 13 torque standards was

used to obtain the shear modulus of the PtNi10 alloy from it.

From the measured torque ) , twisting angle i, and the free

length ;, we obtain the torsional rigidity FT =
) ;
i

= ��T,

which is the product of the shear modulus � and the torsion

constant �T. To determine the torsion constant �T, we applied

de Saint Venant’s torsion theory [8,28,29,27]. The exact

solution for the torsion constant of a solid bar of rectangular

cross section is

�T =
Fℎ3

3
−

64

c5
ℎ4

∞
∑

==0

1

(2= + 1)5
tanh

(

(2= + 1)c

2

F

ℎ

)

≈
Fℎ3

3
−

64

c5
ℎ4 tanh

( c

2

F

ℎ

)

(3)

Only the first term of the series is required to calculate the301

torsion constant with an accuracy of better than 0.5%.302

2.5 Sample Preparation303

Material: Samples of two industrial pulps were subjected to304

the torsion experiments: softwood thermomechanical pulp305

(TMP) and softwood Kraft pulp. The Kraft pulp was an in-306

dustrial, once dried, unbeaten, unbleached kraft pulp (mix-307

ture of spruce and pine, ^-number < 45). The TMP pulp is a308

once dried softwood thermomechanical pulp from industrial309

production. The cross sectional morphology of the fibers dif-310

fered significantly depending on the pulping process. During311

the preparation, all of the kraft fibers collapsed, but some312

of the TMP fibers collapsed only partially with a residual313

lumen. Fig. 5a depicts a partially collapsed fiber typical for314

TMP pulp. In total 37 fibers have been analyzed. The first set315

consisted of 20 fibers from TMP pulp, the second set was 17316

fibers softwood Kraft pulp.317

Preparation of the Fibers: The preparation started with dried318

fibers from which a fiber suspension was formed by dilution319

with distilled water. A drop of the suspension was placed on320

a silicon pad and then covered by a second pad. This stack321

was placed between two carrier boards in the drying unit of322

a Rapid-Koethen sheet former and dried.323

Fiber Selection: From the dried fibers, suitable fibers were324

selected. To be selected, the fibers had to have a small straight325

section of about 500 µm. The selected fibers were stored in326

defined climate conditions, 50% relative humidity at 23 °C,327

until use. The fibers for sample preparation were chosen328

randomly from the pre selected fibers.329

Mounting of the Fibers: For the fibers to fit into the sam-330

ple holder of the instrument, they were glued between a331

metal hook and a small piece of board with a grammage332

of 200 g/m2 and a thickness of 280 µm. Fig. 3i shows the333

arrangement. The fiber remained on the board during micro-334

tomy. A fast setting nail polish was used as glue. It was left335

to dry for at least 24 h to cure completely before testing.336

2.6 Determining the Torsion Constant of the Fiber337

Pulp fibers consist of a primary wall %, and three secondary338

walls (1, (2, (3. All layers are reinforced with microfibrils.339

In contrast to the other layers, the (2 has a distinctive heli-340

cal tilting, which is characterized by the micro fibril angle341

(MFA). Since the (2 layer takes up the biggest volume frac-342

tion, pulp fibers are commonly modeled by taking only the343

structure of the (2 layer into account. As in the (2 layer344

the microfibrils are oriented roughly in the direction of the345

fiber axis, i. e. the MFA is small, the fiber is modeled as a346

transverse isotropic material with the plane of isotropy per-347

pendicular to the longitudinal fiber axis [30]. The material348

model is incompressible, which is a simplification, as very349

recent work is suggesting a compressible plasticity model to350

account for the fiber wall nanoporosity[31].351

The fiber is twisted around the longitudinal axis. Hence,352

the longitudinal shear modulus �L is the relevant material353

parameter. In shear tests, stress g and the shearing of the354

edges W are perpendicular (g = �LW) to each other. This355

orientation is indicated in Fig. 1. We assume that warping356

torsion of the irregular fiber cross section is of negligible357

magnitude [32] and apply the torsion theory of de Saint358

Venant.359

The de Saint Venant torsion angle of twist i for a beam

with uniform cross section is

i =
);

�L�T
(4)

where) is the torque and �T the torsion constant. The torsion360

constant �T is a cross-sectional geometrical parameter. The361

cross section of a natural fiber varies considerably over the362

length of the fiber. In a pilot survey, we microtomized two363

fibers, one from each of the two pulps, respectively. For each364

fiber at least 90 cross sections, 20 µm apart, were acquired365

and the torsion constants determined. The variation of the366

torsion constant along the fiber axis was large for both fibers,367

the min-max ratio was at least 1 : 10. For the TMP fiber the368

distribution of the values was nearly uniform, thus values369

close to the extremes occurred quite frequently. To avoid the370

effect of slicing the fiber sample at an unsuitable position,371

where the torsion constant is extreme, we developed a simple372

model for the deformation of the fiber under torsion based373

on several cross sections, the apparent torsion constant. We374

model the fiber as a series of segments with uniform cross375
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sections as shown in Fig. 7. We approximate the apparent tor-376

sion constant �T of the fiber by the discrete torsion constants377

� 8
T

of the segments.378

l1

φ
1

I
T

1 I
T

2

l2 l3 li

φ
2

φ
3

φ
i

I
T

3
I
T

i
T

l

φ
φ

n

ln

I
T

n

Fig. 7 To compute the apparent torsion constant �T of the fiber, it

is partitioned into = segments. Segment 8 is described by its torsion

constant � 8
T
, its length ;8 and its twisting angle i8 .

The torque ) is the same for all segments and the fiber

is of an homogeneous material. We apply de Saint Venant

torsion to all segments

i8 =
);8

�L�
8
T

(5)

and take into account that the twisting angles of the segments

i8 accumulate along the fiber

i =

=
∑

8=1

i8 . (6)

With Eq. 5 and 6 the shear modulus can be computed from

the length increments ;8 and the torsion constants � 8
T

of the

fiber segments as

�L =
)

i

=
∑

8=1

;8

� 8
T

. (7)

The apparent torsion constant �T, that describes the defor-

mation of the fiber as a beam with uniform cross section, is

defined as

�T =
;

∑=
8=1

;8
� 8
T

. (8)

The torsion constant � 8
T

for each of the = segment cross

sections �8 is computed by introducing the Prandtl stress

function k. First we solve the Poisson’s equation stated in

Eq. 9, cf. [8, Eq. 35.7], for the given boundary value problem

with an in-house FEA code.

m2k

mH2
+
m2k

mI2
= −2 with k = 2 9 on mΩ 9 for 9 = 1, . . . , < (9)

When the fiber shows a lumen, i. e. the cross section has379

holes, the cross section is defined by< boundary curves. The380

stress function k can assume different but constant values 2 9381
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Fig. 8 Shear modulus for TMP and kraft fibers. The distribution for

kraft fibers is noticeably right skewed. Two outliers due to deficient

fiber morphology were removed from the data set.

on each boundary curve mΩ 9 . The Dirichlet boundary values382

2 9 are calculated with the technique given in [28].383

Then, with the solution of the stress function k, the tor-

sion constant is computed by evaluating the integral in Eq. 10,

cf. [8, Eq. 35.9] and [33, Eq. 20], respectively.

� 8T = −

∫

�8

(

mk

mI
I +

mk

mH
H

)

3�8 . (10)

3 Results384

Validation: To validate the instrument and the procedure385

the shear modulus of the bands used as torque standards386

was determined. The torsion constant for the rectangular387

cross section is �T = 2858.8 µm4. The shear modulus of388

the band material, PtNi10, is given by the manufacturer as389

�PtNi = 73.06 GPa ± 5% [25]. The measured shear modulus390

is �M = (77.99 ± 7.09) GPa. The measured value deviates391

6.75% from the shear modulus given in the material data392

sheet. The measurement method has hence been validated393

successfully.394

Shear modulus of wood pulp fibers: The average values of395

the measured quantities for length ;, torque ) , and torsion396

constant �T and the resulting shear modulus � of the fibers397

are summarized in Table 1, error margins are 95% confi-398

dence limits. Two TMP outliers with very high shear moduli399

were removed from the data set. Closer inspection of the400

microscopy images showed that these samples were actually401

a bundle of not fully disintegrated fibers. All other samples402

were individual fibers. The distribution of the shear modulus403

is right skewed. The asymmetry of the distribution demon-404

strated by the box plot in Fig. 8.405
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Table 1 Summary of the measurements on fibers. The error margins are 95% confidence limits.

Pulp TMP Kraft

Number of samples 20 17

Length ; in µm 889.3 ± 72.6 519.9 ± 49.6

Torque ) in nN m 11.81 ± 1.65 14.25 ± 5.22

Torsional rigidity FT in pNm2 7.81 ± 0.90 5.63 ± 2.10

Torsion constant �T in µm4 4134.6 ± 844.0 2637.4 ± 992.1

Shear modulus � in GPa 2.13 ± 0.36 2.51 ± 0.50

4 Discussion and Conclusions406

Discussion: The fiber wall shear moduli for Kraft and TMP407

fibers are summarized in the box plot, Fig. 9. The mate-408

rial of the TMP fibers, with a longitudinal shear modulus409

of � = 2.13 GPa, turned out to be weaker than the kraft410

fibers, with a shear modulus of � = 2.51 GPa. A similar be-411

havior has already been observed for the fiber E-modulus in412

longitudinal direction where TMP fibers were weaker than413

Kraft pulp fibers [34]. It has been reasoned that the harsh414

production process of the TMP fibers is damaging the fibers415

more than the removal of the lignin in the Kraft cooking pro-416

cess [34]. Also nanoscale FEM models for pulp fibers reveal417

a higher longitudinal stiffness for Kraft fibers compared to418

TMP fibers [35]. The considerably lower stiffness of lignin419

compared to crystalline cellulose leads in these models to a420

higher E-modulus for the Kraft fibers because much of the421

lignin is removed from the fiber wall in the cooking process.422

When we focus on the torsional rigidity of the indi-423

vidual fibers we, however, find that the TMP fibers are424

stronger than the Kraft fibers. We obtain a torsional rigid-425

ity of FT = (7.81 ± 2.06) pNm2 for TMP fibers and FT =426

(5.63 ± 4.44) pNm2 for kraft fibers. This difference is due to427

the larger cross sections, and the less collapsed state of the428

TMP fibers which leads to an increase in the torsion con-429

stant �T. The cross sectional shape of the TMP fibers thus430

overcompensating the smaller shear stiffness of the material.431

The variation of the shear modulus was smaller than we432

expected for a biological material and a mix of fibers from433

different wood species. This supports the idea that the shear434

modulus of wood pulp fibers is indeed a material property.435

In Fig. 10 we see that the apparent torsion constant varies436

considerably. However, assuming that the shear modulus �437

is a material constant, the torsional rigidity also should show438

more variability.439

We validated our instrument by measuring the shear mod-440

ulus of a homogeneous elastic material with well defined441

properties. We applied de Saint Venant’s theory of torsion442

to calculate the torsion constant �T. The design of an instru-443

ment with less variation is desirable, but the constructive444

effort for better alignment of the sample, which we see as445

main contributor to the variation, is high and would make446

the instrument rather difficult to use.447
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Fig. 9 Torsional rigidity FT for TMP and kraft fibers. The distribution

for kraft fibers is noticeably right skewed.
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Fig. 10 Torsion constant �T for TMP and kraft fibers. The values for

the torsion constant vary more than an order of magnitude.

Future Work: To complete the characterisation of the wood448

pulp fibers, the static shear modulus must be complemented449

with viscoelastic properties. The setup described in this work450

could be upgraded with a Laser displacement sensor for451

a dynamic measurement of the fiber twisting angle and a452

suitable force control system to perform creep- and relaxation453

tests.454
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Fig. 11 Dependence of the normalized torque on the microfibril angle.

The torque on the fiber is related to the a perfectly aligned fiber, i. e.

MFA = 0. The range of MFAs found in the (2 layer of wood pulp fibers

is highlighted.

5 Supplement: Error Analysis of the Homogeneous455

Mechanical Model456

To validate the calculation of the apparent torsion constant

from a simplified fiber geometry we compared it to the simu-

lation of a more realistic fiber geometry that takes the fibrilar

structure of the fiber into account. A cross section of one of

the TMP fibers was used as base of a uniform prismatic beam.

For this cross section a torsion constant �T = 11 575.05 µm4

was calculated with the numerical method described in Sec-

tion 2.6. For the application of de Saint Venant’s theory to

the beam a longitudinal shear modulus of � = 2.5 GPa, a

length of ; = 1000 µm, and an angle of twist of i = 9°,

was assumed. The prediction for the torque "T required to

deform the fiber is

"T = ��T
i

;
= 4.545 nN m (11)

The simulation of the same geometry yields a torque of "S =457

4.789 nN m. Considering the simulation as the ground truth458

the relative error is small, �R = −5.095%, and to some extent459

caused by the boundary conditions of the FEA simulation,460

as the error decreases with the fiber length.461

In a refined model, anisotropy was introduced to account462

for microfibril reinforcement and the dependency of the463

torque on the microfibril angle was established. For this sim-464

ulation a transverse isotropic material was assumed. The pa-465

rameters were �L = 10.0 GPa, �T = 3.0 GPa,�T = 1.0 GPa,466

�L = 2.5 GPa, and aLT = 0.23. The simulation showed that467

the torque required to twist the fiber decreases with increas-468

ing MFA.469

For Fig. 11 we relate the torque of a fiber modeled with a470

non-zero MFA to the torque on a perfectly aligned fiber. The471

estimation error of the torque, as well as the shear modulus,472

induced by non-zero MFA, is within 5% if the microfibril473

angle MFA is below 14.5°. Since the MFA of the (2 layer474

is often in the range 0° to 10° [36,37] the error is less than475

2.5% and therefore neglectable compared to other error im-476

plications.477

We conclude that the errors induced by assuming a ho-478

mogenous material and applying the analytical de Saint479

Venant torsion theory with a numerical computed torsion480

constant are within acceptable bounds.481
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Figures

Figure 1

Shear deformation of an element in an idealized �ber under torsion.



Figure 2

Fiber sample d. mounted in the instrument. The sample holder consists of a static rotation constraint a.
and a rotating cross beam b. attached to the pointer c. of the permanent magnet moving coil meter.



Figure 3

Schematic representation of a torque reference i. and a �ber sample ii. mounted in the instrument. Both �t
between the actuator a. and the rotation constraint b. of the instrument. The reference torque is provided
by a �ne metal band c. loaded with a brass washer d. The �ber e. is attached to a board strip f.



Figure 4

Measurement of the torque applied to the �ber. First the restoring torque of the taut band )S of the PMMC
is determined i., then the combined torque of the taut band and the �ber )S ¸ )F ii. The torque generated by
the moving coil c. is determined by measuring the current through the coil with a precision ampere meter
a. The current is controlled by an adjustable power supply b. The taut band of the PMMC not only acts as
a support of the moving coil, but also as restoring spring d.



Figure 5

please see the manuscript �le for the full caption



Figure 6

Calibration of the instrument. 13 torque standards were measured after preliminary calibration. The
instrument overestimated the torque of the standards by 11.8%.



Figure 7

please see the manuscript �le for the full caption



Figure 8

Shear modulus for TMP and kraft �bers. The distribution for kraft �bers is noticeably right skewed. Two
outliers due to de�cient �ber morphology were removed from the data set.

Figure 9

Torsional rigidity FT for TMP and kraft �bers. The distribution for kraft �bers is noticeably right skewed.



Figure 10

please see the manuscript �le for the full caption



Figure 11

Dependence of the normalized torque on the micro�bril angle. The torque on the �ber is related to the a
perfectly aligned �ber, i. e. MFA = 0. The range of MFAs found in the S2 layer of wood pulp �bers is
highlighted.


