Reserves & Production Conventional Fuels

Agenda/Reading Assignments

Summary

US fossil primary fuel supply, demand, use New technologies

Next: Science & Technology of Energy Conversion

• Review your knowledge: Ideal gas laws, thermodynamics

Reading weeks Oct 4- 11: Lecture Notes 3.2 Read Andrews & Jelley: Chapters 2.1-2.4, 3.6-3.12

Summary: US Primary Energy Reserves & Uses

Reserves are needed for expected moderate increase in consumption

- New oil and gas production technologies make accessible new, energy reserves.
- New hydro-electrical resources are limited, related to water demand and droughts,
- Nuclear U & Th resources are abundant.
- Potent reserves for application of renewable energy technologies
- Future developments extrapolated from historical trends (~decades)
- Use of coal for energy will decrease (export continues)
- Development of oil and gas resources continues to increase, but has large uncertainties, will depend on price and geo-political environment
- Development of nuclear power is region-specific, overall slow
- Development of renewable wind and solar technologies is regionspecific, overall slow, small (<1%) share in overall electricity production.
- New transportation fuels are under R&D development

 \odot

U.S. Coal Resources

Conv	ontion				
supp	ly: 100	ears	Powder River Basin (Wyoming and	Lignite (Texas and	
	Northern Appalachia	Central Appalachia	Illinois Basin	Montana)	North Dakota)
Rank	High Volatile A Bituminous	High Volatile B Bituminous	High Volatile C Bituminous	Subbituminous C	Lignite A
Moisture (wt%) as received (AR)	7.0	7.5	12.5	29.8	32.0
Ash (wt%), AR	7.6	8.5	11.0	4.8	10
HHV ^a (Btu/lb),	13,100	12,650	11,300	8,500	7,200
AR Sulfur (wt%), dry	2.5	1.0	2.7	0.5	1
Chlorine, wt%, dry	0.1	0.1	0.2	0.01	0.01

2018:US daily consumption: 1.6 Mst @ 958 PPt

World Estimated Recoverable Coal (Million Short Tons)

Region/Country	Anthracite	Lignite	Total
	Bituminous	Subbituminous	
United States	123,834	143,478	267,312
North America	128,608	147,491	276,100
Central & South America	8,489	13,439	21,928
Western Europe	1,571	34,918	36,489
Europe	19,558	46,203	65,762
Eurasia	104,183	146,322	250,505
Middle East	462	0	462
Africa	55,294	192	55,486
Asia & Oceania	212,265	114,999	327,264
World Total	528,860	468,646	997,506

Underground Surface Total **Mine Production Range Recoverable Coal Recoverable Coal Recoverable Coal** (thousand short tons) Reserves Reserves Reserves 13,577 Over 1,000 4,504 9,073 Over 500 to 1,000 288 120 409 Over 200 to 500 215 1,176 1,391 Over 100 to 200 130 390 520 Over 50 to 100 45 67 112 Over 10 to 50 37 56 94 10 or Under 5 . 5,219 10,882 U.S. Total 16,101

Reserves @ now producing U.S. mines (2017)

 $\mathbf{4}$

U.S. Oil/NG Reserves

2012	2013	2014	2015	(1 2016	,000 bbl) 2017	Show Data By:
30,529	33,371	36,385	32,318	32,773	39,160	Proved Reserves as of 12/31
						Changes in Reserves During Year
109	-620	516	1,155	262	822	Adjustments (+,-)
4,319	4,030	5,315	4,192	5,224	5,504	Revision Increases (+)
3,384	3,512	4,994	9,092	5,207	2,887	Revision Decreases (-)
734	1,327	2,157	885	1,125	1,135	Sales (-)
1,150	1,787	2,420	798	1,460	2,135	Acquisitions (+)
				2,794	5,105	Extensions and Discoveries (+)
4,462	4,395	4,430	2,811			Extensions (+)
53	188	151	20			New Field Discoveries (+)
122	319	207	38			New Reservoir Discoveries in Old Fields (+)
2,112	2,418	2,874	3,104	2,953	3,157	Estimated Production (-)

natural gas proved reserves trillion cubic feet 2017 change: 500 +123.2 Tcf 450 (+36.1%)2016:\$2.47/MMBtu 400 2017:\$2.99/MMBtu 350 300 250 200 150 100 Yearly US 50 consumption 📥 0 1965 1975 1985 1995 2005 2015

Conventional oil and gas are in limited supply but new technologies redefine "conventional."

Large rate of discoveries! Discoveries in oil and gas are running away from domestic consumption !

Ω

U.S. Crude Oil Reserves by State

Crude oil and lease condensate proved reserves by state/area, 2017

Source: U.S. Energy Information Administration. Form FIA-231. Annual Report of Domestic Of and Gas Reserves.

2017: Crude reserves increased +19.5% (6.4 bbbl) \rightarrow 39.2 billion barrels

nG condensate from oil wells = Lease condensate increased +16% (0.4 bbbl) to 2.8 billion barrels

 \mathbf{v}

Gas Reserves, Production & Consumption

	Million Cubic Ft (MMcf)
Gas Reserves	368,704,000
Gas Production	32,914,647
Gas Consumption	27,243,858
Yearly Surplus	+ 5,670,789
Gas Imports	2,718,094
Gas Exports	1,783,512
Net Imports	934,582

(Data shown is for 2015, the latest year with complete data in

W. Udo Juni Vuli, LULL

 \sim

World Primary Energy Resources

Modified after IEA World Outlook 2014, in light lettering: use reprocessing + U-238 breeding, Th 232 fertile fuel,

unconventional gas (fracking) + clathrates in frozen environments. Neglect losses in reprocessing and breeding. Assumed present rate of consumption in future.

Shale Gas & Oil Resources

Source: U.S. Energy Information Administration based on data from various published studies. Canada and Mexico plays from ARI. Updated: May 9, 2011

Methane Hydrates (Clathrates)

W. Ud (2 Th + Clash hydroles actuar latter sufficient restarce is produced by regards, mallet Hegradulton to the lase Recentlation is the semistic data by the pressuit conditions conditions actual production of the conference regards. The semistic the water, the larger the water depthy multiplic there in the term help:

Coal Mining Technologies

Underground mining down 33% \rightarrow massive surface/open pit mining \rightarrow fewer fatalities, but mountain top removal \rightarrow lakes with toxic sludge.

12

Society

Energy: Science Technology &

Mountain Top Removal in Surface Coal Mining

Surface Coal Mining

Surface mining \rightarrow major changes in environment:

Deforestation, destruction of habitat, demolition of villages, resettlements

Bitumen mining, Hambach/D

Surface Mining

30,000 Feet Under the Sea (The Drilling Fields)

Chevron's deepsea drilling in the Gulf of Mexico > 6 miles drill

Cost several B\$/platform Several years to bring on line 5-7 Gbblo ~1 year U.S. demand)

W. Udo Schröder, 20

Bitumen Production From Oil Sands

17

W. Udo Schröder, 2022

Steam Assisted Gravity Drainage

Essentially all oil sands are mineable with SAGD technology.

Alberta Chamber of Resources (Canada), January 2004. Canadian Association of Petroleum Producers (CAPP).

Installation: 1 month. Pair of horizontal wells drilled into formation (5 m spacing). Inject low-pressure steam into the upper wellbore → form "Steam Chamber" → heat oil, lower viscosity → hot oil drains via gravity into the lower (producer) wellbore → pump out → → Toxic/oily "tailing lakes" remain (endangered wildlife)

Nat gas produced in the SAGD process is typically flared \rightarrow CO₂.

U.S. Crude Oil Production

Future development depends strongly on price, which is a function of many variables: resources, geo-political environment

A New Oil/Gas Glut (?)

U.S. 2011 use of oil: 6.87 Billion barrels/a (18.83 Million barrels/day). Possible hurdles: insufficient transportation infrastructure (pipe lines, RR, roads,...), public attitudes. U.S. with Canada almost oil self sufficient, \rightarrow export oil/gas.

Leonardo Maugeri, Harvard Kennedy School,

http://belfercenter.ksg.harvard.edu/files/Presentation%20on%20Oil-%20The%20Next%20Revolution.pdf

New Technology: Hydrofracking

Vertical drill down for several 1,000' then turn horizontal, create fissures in shale rock by injecting high-pressure water/chemical fluids. Oil and gas migrates to well opening, distributed via local gathering pipeline.

Well is protected by several layers of steel and concrete casing.

Complaints: leakage of gas into aquifers, small earthquakes. → EPA files

Total US Energy Production: History and Projections

W. Udo Schröder, 2021

2020 US Energy Consumption by Sector

2020 US Energy Production and Consumption

Source: U.S. Energy Information Administration, Annual Energy Outlook 2021 (AEO2021)

US Nuclear Electricity Generation 1957-2020

2020: nuclear share < 9% of total U.S. electricity generating capacity. Nuclear share = 20% of total utility-scale electricity generation.

For cost and technical reasons, nuclear power plants are generally used intensively, round the clock.

US Economy: Energy Intensity/Efficiency

Summary: US Primary Energy Reserves & Uses

Reserves are needed for expected moderate increase in consumption

- New oil and gas production technologies make accessible new, energy reserves.
- New hydro-electrical resources are limited, related to water demand and droughts,
- Nuclear U & Th resources are abundant (pres. U reprocessing).
- Potent reserves for application of renewable energy technologies
- Future developments extrapolated from historical trends (~decades)
- Use of coal for energy will decrease (export continues)
- Development of oil and gas resources continues to increase, but has large uncertainties, will depend on price and geo-political environment
- Development of nuclear power is region-specific, overall slow
- Development of renewable wind and solar technologies is regionspecific, overall slow, small (<1%) share in overall electricity production.
- New transportation fuels are under R&D development

Oil Production From Oil Sand: CO₂ (equ.) Emission

http://www.ogfj.com/articles/print/volume-9/issue-07/features/some-oil-sands-producers.html

This CO₂ emission is the additional amount from production technique. "In situ:" production only. "Integrated:" production and upgrade quality. 2010:Canadian total oil sands production increased (+13%) to >1.4mmbbl/d, integrated + in situ. 41% in situ production, 59% integrated production.

Refining: Crude Oil Distillation

Anacortes Refinery (Marathon) on the north end of March Point southeast of Anacortes Washington, United States

Crude Oil Distillation

Thermal (Coal) Power Plant

Fuel → Combustion Heat → Steam → Expansion Work → Electromagnetic Work → Electrical Power

U.S. now: 600 *large* coal-fueled electrical power plants (0.5-1GW), many (~10³) smaller units. Predictions (STEP) by 2030: -150 (?) (\approx 100 GW). But 12 new under construction. Newer units: combined cycle (IGCC), power/heat co-generation. \rightarrow Trend: convert to nG

Dirty coal for combustion. Refined coal for industrial use (e.g. steel).

US CO₂ Emission Trends

Where the fuel ash ends up

33

Fin FF Resources, Use

W. Udo Schröder, 2022