Bedienungs- und Installationsanleitung Ecosine active sync

www.myecosine.com

Deutsche Version (Übersetzung von Originalanleitung)

Schaffner Group | Nordstrasse 11e | 4542 Luterbach | Schweiz T +41 32 681 66 26 | info@schaffner.com | www.schaffner.com

Shaping electrical power

Ausgabe: 1.8 (Übersetzung October 2020, Originalanleitung English Dezember 2019)

Die jeweils aktuellste Ausgabe dieser Anleitung (PDF-Format) erhalten Sie von Ihrem Schaffner-Ansprechpartner oder im Internet unter myecosine.com.

Weitere technische Unterlagen zu unseren Produkten finden Sie ebenfalls im Download-Bereich unserer Website <u>www.schaffner.com</u>

Dokumentname:

Bedienungs- und Installationsanleitung ecosine active sync Rev1.8 (Übersetzung).pdf

Dieses Dokument gilt für Version des Firmware-Pakets: **V01.01.01 oder höher** Inhalt des Firmware-Pakets: Power Modul-Firmware: **V03.02.06 oder höher** Sync Modul-Firmware: **V04.01.05 oder höher** (Firmware-Version siehe Parameter P010)

Bedeutung der Firmware-Kennzeichnung:

V XX.xx.xx – Hardwarestand, nicht abwärtskompatibel

- V xx.XX.xx Stand des Funktionsumfangs
- V xx.xx.XX kleinere kompatible Anpassungen

Copyright ©2020 Schaffner EMV AG. Alle Rechte vorbehalten. Alle Rechte an dieser Bedienungs- und Installationsanleitung ("Anleitung") einschließlich der aber nicht begrenzt auf die Inhalte, Informationen und Abbildungen sind vollständiges Eigentum der Schaffner EMV AG ("Schaffner"). Die Anleitung kann nur auf den Betrieb oder die Verwendung des ecosine active sync Oberschwingungsfilters angewendet werden. Jede Verwertung, Vervielfältigung, Verbreitung, Reproduktion, Modifikation, Übersetzung, auch in Auszügen, und die Verwendung dieser Anleitung vollständig oder auszugsweise ist ohne die vorherige schriftliche Genehmigung von Schaffner untersagt. Im Zuge kontinuierlicher Verbesserung und Weiterentwicklung des Produkts durch Schaffner können sich die Informationen in dieser Anleitung jederzeit ändern, ohne dass eine Verpflichtung zur Benachrichtigung jeglicher Personen über solche Revisionen oder Änderungen besteht. Schaffner wird alle angemessenen Anstrengungen unternehmen, um die Richtigkeit und Vollständigkeit dieser Anleitung zu gewährleisten. Schaffner schließt in Bezug auf die Anleitung jegliche Art einer ausdrücklichen oder implizierten Garantie, Gewährleistung oder Verpflichtungen aus, einschließlich aber nicht begrenzt auf die Vollständigkeit, Fehlerfreiheit, Richtigkeit, Nichtverletzung von Urheberrechten, Marktgängigkeit oder Eignung für einen bestimmten Zweck.

Inhaltsverzeichnis

1	Änd	erungen zu vorherigen Ausgaben9
2	Einle	eitung11
2.1	Zw	reck11
2.2	Zu	sätzliche Ressourcen11
2.3	Na	menskonvention11
3	Allge	emeine Sicherheits- und Installationshinweise (Vorsichts- und Warnhinweise)12
4	Umg	ebungsbedingungen/Ausschluss der Gewährleistung13
5	Übe	rsicht Produktreihe Ecosine Active Sync17
5.1	Fu	nktionsprinzip17
5.2	Sy	stemkonfiguration ecosine active sync18
5	.2.1	Ecosine active sync Power Modul FN3530 und FN353119
5	.2.2	Ecosine active sync Power Modul FN3540 und FN3541 20
5	.2.3	Ecosine active sync Double Power Pack (DPP) FN3532 und FN3542 21
5	.2.4	Ecosine active sync Schrankversion (Schrank + Power Module)
5.3	Ту	penschlüssel ecosine active sync Schrankversion24
5.4	Те	chnische Daten ecosine active sync Power Modul-Versionen
5.5	Те	chnische Daten ecosine active sync Schrankversionen30
5.6	Те	mperatur-Derating des ecosine active sync Power Moduls31
5.7	Те	mperatur-Derating der Schrankversion des ecosine active sync
5.8	Sy	nc Modul SYNC300A33
5	.8.1	Technische Daten des Sync Moduls SYNC300A 34
5	.8.2	Mechanische Abmessungen von SYNC300A 35
5.9	Sy	nc Modul SYNC300X35
5.1	D	Ecosine active sync Displaymodul36
5	.10.1	RS485-Kommunikation
5	.10.2	AHF-Parameter und INI-Datei
mye	cosine.	com 3/211

5.	10.3	Eventlog und LOG-Datei
5.	10.4	AHF-Parametersatz laden und speichern
6	Mec	hanische Einbaurichtlinien39
6.1	Ric	htlinien für Einbauvorbereitungen39
6.	1.1	Erhalt des ecosine active sync
6.	1.2	Transport und Auspacken von Power Modulen 39
6.	1.3	Heben 40
6.	1.4	Wichtiger Hinweis für den Einbau 40
6.2	Me	chanische Installation von ecosine active sync Power Modulen41
6.	2.1	Abmessungen eines ecosine active sync Power Moduls 41
6.	2.2	Montageoptionen ecosine active sync Power Modul 44
6.3	Me	chanische Installation von ecosine active sync DPP45
6.	3.1	Abmessungen von ecosine active sync DPP45
6.	3.2	Montageoptionen für ecosine active sync DPP 45
6.4	Me	chanische Installation im Kundenschrank47
6.	4.1	Anforderungen Kundenschrank 47
6.	4.2	Kühlungsanforderungen Kundenschrank 48
6.5	Me	chanische Daten der Schrankversion des ecosine active sync
6.	5.1	Abmessungen der Schrankversion des ecosine active sync
6.	5.2	Kühlungsanforderungen für ecosine active sync Schrankversionen
7	Richt	linien elektrischer Anschluss53
7.1	Ab	sicherung (Sicherungen, Leistungsschalter)53
7.2	Ins	tallation mit Leistungsfaktorkorrektursystemen (PFC)53
7.3	Ele	ktrischer Anschluss Power Modul54
7.	3.1	Lage der elektrischen Anschlussklemmen 54
7.	3.2	Anschluss des Drehstromnetzes
7.4	Ele	ktrischer Anschluss Sync Modul63
7.	4.1	Klemmenbezeichnungen
7.	4.2	Verbindung zwischen Sync Modul und Power Modulen65
7.5	Ecc	osine active sync Schrankversion – elektrische Anschlüsse66

7.	5.1	Lage der elektrischen Anschlussklemmen 6	6	
7.	5.2	Anschluss des Drehstromnetzes	8	
7.6	Ans	chluss von Stromwandlern7	0	
7.6	5.1	Anschluss von 3-Phasen-/3-Leiter-Geräten an sekundären 5-A-Stromwandlerausgang 7	1	
7.0	5.2	Anschluss von 3-Phasen-/3-Leiter-Geräten an sekundären 1-A-Stromwandlerausgang 7	2	
7.6	5.3	Anschluss von 3-Phasen-/4-Leiter-Geräten an sekundären 5-A-Stromwandlerausgang 7	3	
7.6	5.4	Anschluss von 3-Phasen-/4-Leiter-Geräten an sekundären 1-A-Stromwandlerausgang 7-	4	
7.7	Stro	omwandlerspezifikation und Kabelauswahl7	5	
7.8	Wa	ndlerspezifikation für UL Konformität7	9	
7.9	Ans	chluss von Stromwandlern8	0	
7.9	Э.1	Wandleranschluss beim Betrieb von einem ecosine active sync Power Modul	0	
7.9	Э.2	Wandleranschluss für den Betrieb eines Double Power Packs (DPP) ecosine active sync. 8	4	
7.9 Po	9.3 wer-N	Wandleranschluss beim Betrieb des Sync Moduls und mehreren ecosine active sync Aodulen	8	
7.9 oh	9.4 ine Sy	Wandleranschluss beim Parallelbetrieb von mehreren ecosine active sync Power Moduler nc Modul	า 2	
7.9	9.5	Erdung der Stromwandler	6	
7.9	9.6	Drehfeld der Stromwandler prüfen9	7	
7.9) .7	Phasenzuordnung der Stromwandler prüfen9	8	
7.10	н	S-Bus-Anschluss (Master-Slave-Konfiguration)10	0	
8	Inbet	riebnahme und Programmierung10	4	
8.1	Fun	ktionen Displaymodul10	4	
8.3	1.1	Boot-Fenster	5	
8.2	1.2	Home-Fenster	5	
8.2	1.3	Hauptmenü 10	5	
8.2	Mö	glichkeiten der Inbetriebnahme mittels Software11	0	
8.2	2.1	Inbetriebnahme über Ethernet 11	0	
8.2	2.2	Inbetriebnahme über Displaymodul 11	0	
8.3	Vor	gehen bei Inbetriebnahme11	0	
8.3	3.1	Allgemeine Schritte für alle Konfigurationen 11	0	
8.3	3.2	Ein Power Modul oder asynchroner Betrieb11	2	
8.3	3.3	Betrieb des Double Power Packs (DPP) 11	3	
myec	ecosine.com 5/211			

	8.3.4	Betrieb des Sync Moduls (mit installiertem SYNC300A)	115
8.	4 St	tatusmeldung	119
8.	5 Fo	ehlermeldung	122
_	_		
9	Par	ameterliste	124
9.	1 Pa	arameterliste des Sync Moduls	125
	9.1.1 Lesezu	Power Modul Parametergruppe POXX, P1XX: Messwerte und Informationen (nur ugriff)	125
	9.1.2	Power Modul Parametergruppe P2XX, P3XX: Inbetriebnahmeparameter	130
	9.1.3	Power Modul Parametergruppe P4XX: Kompensationseinstellungen	136
	9.1.4	Power Modul Parametergruppe P6XX: Fehlermeldung	142
	9.1.5	Power Modul Parametergruppe P8XX: FFT-Messwerte	145
9.	2 P	arameterliste des Sync Moduls	147
	9.2.1 Lesezu	Sync -Modul Parametergruppe POXX, P1XX: Messwerte und Informationen (nur ugriff)	147
	9.2.2	Sync -Modul Parametergruppe P2XX und P3XX: Inbetriebnahmeparameter	153
	9.2.3	Sync Modul Parametergruppe P4XX: Kompensationseinstellungen	168
	9.2.4	Sync -Modul Parametergruppe P6XX, P7XX: Fehlermeldung	174
	9.2.5	Sync Modul Parametergruppe P8XX: FFT-Messwerte	176
	9.2.6	Sync Module Parametergruppe P9XX: Schrankbezogene Werte	178
1() S	oftware AHF Viewer	181
10).1	Anforderungen und Einrichtung	181
10).2	Anschlüsse	182
	10.2.1	Verbindung über RS485	182
	10.2.2	Verbindung über Ethernet	184
11	LA	HF Firmware-Update-Tool	186
11	l .1	Verwendung	186
11	L .2	Seriellen Port auswählen	186
11	L .3	Geräte suchen	187
11	L.4	Kommunikationskonfiguration	190
11	L.5	Firmware-Paket laden	191

11.6	F	Firmware hochladen	192
12	Wa	artung	194
13	Ab	kürzungen	195
14	Ab	bildungsverzeichnis	196
15	Tal	bellenverzeichnis	200
16	An	hang A: Referenzen	202
17	An	hang B	203
17.1	I	nbetriebnahme nach längerer Lagerung	203
17.2	T	Typenschild des ecosine active sync	205
18	An	hang C: Berechnungsbeispiel	206
18.1	ŀ	Kommutierungseinbrüche	206
18.	1.1	Berechnung der Kommutierungseinbrüche – Beispiel 1	208
18.	1.2	Berechnung der Kommutierungseinbrüche – Beispiel 2	209
18.	1.3	Berechnung der Kommutierungseinbrüche – Beispiel 2	210

1 Änderungen zu vorherigen Ausgaben

Ausgabe	Datum	Beschreibung
1.0	Februar 2018	Erstfassung
1.1	März 2018	Abbildungs- und Tabellenverzeichnis hinzugefügt
		Reihenfolge und Inhalt der Kapitel optimiert
		Tabelle mit LED-Anzeigen und Parametern aktualisiert
1.2	Mai 2018	Abbildung 7 Abmessungen der Bohrschablone für Wandmontage hinzugefügt
		Gruppe P4XX überarbeitet
1.3	Juni 2018	Anhang 17.2 (Typenschild ecosine active sync) hinzugefügt.
		Reaktionszeit der Steuerung von 300 μs (AHF Gen I) auf 100 μs korrigiert.
		Schrankhöhe in Kapitel 5.5 auf 2328 mm korrigiert (einschließlich oberer Lüfter und Sockel).
		RIn Kapitel 8.4 P203 (nicht genutzt) durch P559 8.4 ersetzt.
1.4a	September 2018	Beschreibung von X11-Stecker korrigiert (gültig für FW V03.01.02 oder hö- her)
1.5	März 2019	Sync Modul hinzugefügt (SYNC300A)
		- Technische Spezifikation
		- Elektrischer Anschluss
		Firmware-Informationen auf V03.01.07 oder höher aktualisiert
1.6	Juli 2019	- Typenschild und technische Spezifikation der Power Module aktualisiert (UL).
		- Aktualisierte Parametertabelle der Power Module für V03.02.03.
		- Aktualisierte Vorgehensweise bei der Inbetriebnahme mit Sync Modul.
		- Geänderte Beschreibung der Einstellungen P320 in Kapitel 8.2 (mit neuer Firmware V03.02.03 und höher, P320: Gesamtstrom parallel = 120 A für

Master- und Slave-Module)

1.7	Oktober 2019	Präsentation der neuen Firmware-Update-Tool-Software, die den Bootloader ersetzt, in Kapitel 11
		Zusätzliche Informationen zur Verwendung des Sync Moduls
		Aktualisierte Beschreibung von Klemme X11 in Tabelle 15
		Aktualisierte Parameterlisten für das Power Modul
		Hinzugefügte Parameterlisten für das Sync Modul
		Zusätzliche Informationen zum Vorgehen bei der Inbetriebnahme
		Zusätzlicher Anhang mit Berechnungsbeispielen
		Verschiedene kleinere Korrekturen im gesamten Dokument
1.8		Kapitel 5.4 und 5.5: erweiterter Netzspannungsbereich bis zu 200 VAC
		Kapitel 5.9: Beschreibung von SYNC300X hinzugefügt
		Kapitel 7.7: weitere Informationen zum sekundären Stromwandleranschluss
		Kapitel 8.1.3: hinzugefügte Screenshots der Displaymodulschnittstelle
		Kapitel 9: aktualisierte Parameterlisten des Power Moduls und des Sync Moduls
		Kapitel 11: Anweisung für das AHF Firmware-Update-Tool V2.1.0.3 aktuali- siert - Präsentation des neuen Firmware-Pakets
		Kleinere Korrekturen und Erklärungen im Dokument

2 Einleitung

2.1 Zweck

Die Bedienungs- und Installationsanleitung des ecosine active sync stellt Informationen bezüglich des Auspackens, der Installation und der Inbetriebnahme des aktiven Oberschwingungsfilters zur Verfügung und beschreibt die mechanische und elektrische Installation des Power Moduls und der Schrankversion des Filters. Sie enthält grundlegende Informationen zu Parametern und zur Kommunikation sowie zur Fehlerehebung.

Die Anweisungen sind zur Verwendung durch qualifiziertes Personal bestimmt. Diese Anweisungen müssen gelesen und befolgt werden. Besondere Aufmerksamkeit muss auf die allgemeinen Sicherheitshinweise und Installationsrichtlinien (Vorsichts- und Warnhinweise) gelegt werden! Diese Anweisungen müssen jederzeit am/an den Filter(n) verfügbar sein.

Die Installation des ecosine active sync Filters sowie die Überprüfung des fehlerfreien Betriebs und gewisse Maßnahmen zur Fehlerbehebung dürfen nur von qualifiziertem Fachpersonal vorgenommen werden. Alle übrigen Maßnahmen können von Personen vorgenommen werden, die das vorliegende Handbuch gelesen haben.

2.2 Zusätzliche Ressourcen

Die Schaffner-Gruppe stellt unter <u>schaffner.com</u> diverse zusätzliche Ressourcen bezüglich Power Quality im Allgemeinen und dem Produkt im Speziellen zur Verfügung.

Die Wartungsanweisungen für den ecosine active sync stellen Informationen bezüglich Wartung und Prüfung für Servicetechniker zur Verfügung und enthalten außerdem Anweisungen für die Demontage und den Austausch von Verschleißteilen.

2.3 Namenskonvention

Die Abkürzung AHF steht in diesem Dokument für aktives Oberschwingungsfilter (Active Harmonic Filter) und wird im Text verwendet, um ihn leichter lesbar zu machen. Es bezieht sich auf das Power Modul, das DPP (Double Power Pack) oder die Schrankversion des ecosine active sync.

I III SCHAFFNER shaping electrical power

3 Allgemeine Sicherheits- und Installationshinweise (Vorsichts- und Warnhinweise)

1. Wichtige Informationen

Diese allgemeinen Sicherheitshinweise gelten für alle Power-Quality-Filter (PO-Filter), einschließlich aktiver und passiver Oberschwingungsfilter (AHF, PHF), AC-Netzdrosseln und Ausgangsfilter. Installieren, betreiben, warten oder prüfen Sie Power-Quality-Filter erst, wenn Sie diese Sicherheits- und Installationshinweise sowie das Installationshandbuch und die Produktspezifikationen gelesen haben. Verwenden Sie Schaffner-Produkte immer erst, wenn Sie über ausreichende Produktkenntnisse sowie nötige Sicherheits- und Installationshinweise verfügen. Dies gilt auch für alle an den Filtern angebrachten Warnhinweise. Stellen Sie sicher, dass diese nicht entfernt werden und die Lesbarkeit der Hinweise nicht beeinträchtigt wird.

Folgende Symbole, Begriffe und Kennzeichnungen werden in diesen Sicherheits- und Installationshinweisen verwendet:

Symbol	Beschreibung
	Befolgen Sie diese Hinweise zur Vermeidung von gefährlichen Situationen, die zu leichten bis mit- telschweren Verletzungen oder Sachschaden füh- ren können.
	Befolgen Sie diese Hinweise zur Vermeidung von gefährlichen Situationen, die zum Tod oder zu schweren Verletzungen führen können.
NOTICE	Weist auf wichtige Informationen für den Anwen- der hin.

2. Wichtige Installationshinweise

- Lesen und befolgen Sie die unten genannten Sicherheits- und Anwendungshinweise.
- I Prüfen Sie vor Installation des Produktes die Versandverpackung und das Produkt sorgfältig. Sichtbare Schäden sind dem Frachtführer sofort zu melden. In solchen Fällen dürfen die Filter nicht installiert werden
- I Die Filter können schwer sein. Die in ihrem Unternehmen geltenden Vorschriften zum Heben schwerer Lasten sind einzuhalten.
- I Verwenden Sie für die Montagelöcher/-schlitze am Filterflansch ausreichend dimensionierte Gewindebolzen. Die Festigkeitsklasse der Schrauben ist in Abhängigkeit des Filtergewichts und des Materials der Montageoberfläche vom Installateur zu bestimmen.
- I Verbinden Sie den Filter mit dem/den Schutzleiter(n).
- I Trennen Sie die netzseitige Stromversorgung, bevor Sie die Phasenklemme(n) und die Nullleiterklemme (falls vorhanden) des Filters anschließen. Auf dem Filter können die Netzseite («LINE», Netz) und Lastseite («LOAD», Last) gekennzeichnet sein.
- I Für den elektrischen Anschluss der Filterklemmen gelten die auf dem Typenschild und/oder in den Filterdatenblättern angegebenen empfohlenen Drehmomente.
- I Leiter- oder Stromschienenquerschnitte sind so auszuwählen, dass sie den nationalen und internationalen elektrischen Vorschriften, Normen und Standards sowie den geltenden Produktnormen für die zu verwendenden Betriebsmitteln und Anlagen, in denen die Quality-Power-Filter eingebaut werden, entsprechen
- Es gibt Filter mit zusätzlichen Anschlussklemmen, z. B. für die Übertemperaturüberwachung. Solche Zusatzfunktionen müssen funktionstüchtig sein, bevor die Filter unter Spannung gesetzt werden. Bei Unklarheiten und Fragen wenden Sie sich an Ihren zuständigen Schaffner-Vertreter.
- Aktive Oberschwingungsfilter (AHF) arbeiten mit Stromwandlern (CTs) von Zulieferern, die in elektrische Anlagen mit lebensgefährlichen Spannungen eingebaut werden. Installieren Sie Stromwandler (CTs) erst, wenn Sie die Sicherheits- und Installationshinweise des Stromwandler-Herstellers gelesen haben. Der Stromwandler ist Bestandteil des angeschlossenen Stromkreises. Berühren Sie deshalb keine Leiter und Klemmen oder andere Teile des Stromwandlers, die noch nicht geerdet sind.
- I Weitere Informationen zur optimalen Verwendung Ihrer Power-Quality-Filter finden Sie in zusätzlichen Bedienungsanleitungen, Installationsanleitungen, Whitepaper und anderen Dokumenten im Downloadbereich der Schaffner-Homepage www.schaffner.com. Diese Dokumente beinhalten zusätzliche gerätespezifische und technische Informationen.

3. Sicherheitshinweise und -vorschriften				
1. Symbol auf dem Gerät 2. Sicherheitskategorie	Sicherheitsvorschriften			
	Der Einbau, die Inbetriebnahme, der Betrieb und die Wartung (falls erforderlich) der Geräte müssen von einem geschulten und zertifizier- ten Elektriker oder Techniker durchgeführt werden, der mit den Sicherheitsvorschriften in elektrischen Anlagen vertraut ist. Die Verwen- dung, der Einbau, der Betrieb oder die Wartung von PQ-Filtern ist für nicht qualifiziertes Per- sonal verboten!			
	Beim Betrieb dieser Power-Quality-Produkte treten hohe Spannungspotentiale auf. Trennen Sie das Filter immer vom Netz, bevor Sie an stromführenden Teilen des Filters arbeiten und lassen Sie ausreichend Zeit vergehen, damit sich die Kondensatoren auf ein sicheres Niveau (<42 V) entladen können. Restspannungen müssen zwischen den Phasen und zwischen Phasen gegen Erde gemessen werden.			
	Es ist dafür Sorge zu tragen, dass gemäß den örtlichen und nationalen Vorschriften eine ord- nungsgemäße Schutzerdung des Gerätes er- folgt und der Benutzer gegen Versorgungs- spannung geschützt wird. Befolgen Sie die in Ihrem Unternehmen und den geltenden nati- onalen Elektriknormen festgelegten Sicher- heitsmaßnahmen für die Handhabung, die Installation, den Betrieb oder die Wartung von elektrischen Hilfs- und Betriebsmitteln.			
	Einige Produkte verfügen über EMV-Filter, die Ableitstrom gegen Erde führen. Schließen Sie das Filter immer zuerst an den Schutzleiter an und fahren Sie dann mit der Verdrahtung der Phasen-/Nullleiterklemmen fort. Bei der Deinstallation des Filters den Schutzleiter erst zum Schluss entfernen.			
	Die direkt-Aus-Einstellung des AHF trennt das Gerät nicht vom Netz und darf deshalb nicht als Sicherheitsfunktion verwendet werden.			
	Die allgemeinen Installations- und Umwelt- schutzhinweise sind strikt zu beachten. Stellen Sie sicher, dass Kühlschlitze frei gehalten wer- den, sodass eine ausreichende Luftzirkulation sichergestellt ist. Betreiben Sie die Filter nur innerhalb ihrer elektrischen, mechanischen, thermischen und umgebungsbezogenen Spezifikationen.			
	Power-Quality-Filter sind verlustbehaftete elektrische Komponenten. Teile/Geräteober- flächen können im Betrieb heiß werden.			
NOTICE	Ab einer Aufstellhöhe von 2000 m über dem Meeresspiegel setzen Sie sich vor der Installa- tion mit Schaffner in Verbindung.			
NOTICE	Die Eignung des Filters für eine gegebene An- wendung muss vom Anwender (von der Per- son, die den Filter in Betrieb nimmt) von Fall zu Fall festgestellt werden. Schaffner über- nimmt keine Haftung für Folgeschäden oder Stillstände bei Nutzung oder Verwendung der Filter unter Missachtung der Spezifikationen.			
	Bei Unklarheiten und Fragen wenden Sie sich an Ihren zuständigen Schaffner-Vertreter (De- tails nach Regionen finden Sie auf der Home- page www.schaffner.com).			

4 Umgebungsbedingungen/Ausschluss der Gewährleistung

Dieses Dokument klassifiziert Gruppen von Umweltparametern und Umwelteinflussgrößen, denen ecosine active sync Oberschwingungsfilter ausgesetzt sind, wenn sie für den ortsfesten Einsatz an wettergeschützten Orten, inklusive für die Zeit von Montagearbeiten, Stillstand, Wartung und Reparatur, installiert sind. Die Lebensdauer elektronischer Geräte ist von den Umgebungsbedingungen abhängig, welchen sie ausgesetzt sind. Insbesondere in rauen Umgebungen kann die Lebensdauer aufgrund der Korrosivität des Raumklimas reduziert sein. Generell ist das Auftreten von Korrosion in Mikro- oder Leistungselektronik abhängig von verschiedensten Parametern, wie Gehäusetyp, Materialien, Montageverfahren, Feuchtigkeit, anorganischen und organischen Verunreinigungen, Luftschadstoffen, Temperatur, thermischer Spannung und elektrischer Vorspannung. Um eine lange Lebensdauer zu gewährleisten, sind alle Schaffner ecosine active sync Filter geeignet in Umgebungen mit Verschmutzungsgrad 2 (PD2) zu arbeiten und sind mit beschichteten Platinen gemäß IEC61721-3-3 ausgestattet. Der Schaffner-Standard für Platinen entspricht der Klasse 3C2. Bitte lesen Sie die zur Verfügung gestellten Informationen und überprüfen Sie, ob Ihre Applikation die geforderten Spezifikationen erfüllt. Schaffner weist ausdrücklich darauf hin, dass die Gewährleistung des Herstellers mit sofortiger Wirkung erlischt, wenn ecosine active sync Oberschwingungsfilter außerhalb ihrer veröffentlichten Spezifikationen transportiert, gelagert, installiert und/oder betrieben werden.

Wichtig	Nachfolgend aufgeführte ecosine active sync Oberschwingungs- filter (AHF) sind Geräte der Schutzklasse IP20 oder IP54 und müs- sen in einer Umgebung installiert werden, die den in diesem Do- kument genannten Anforderungen entspricht.
	Alle aktiven Oberschwingungsfilter (AHF) müssen an sauberen, trockenen Orten installiert werden, wie z. B. in ausreichend be- lüfteten oder klimatisierten Schaltschränken oder geschlossenen Elektroräumen. Verunreinigungen wie Öle, Flüssigkeiten, korrosi- ve Dämpfe, abrasive Ablagerungen, Staub und aggressive Gase dürfen nicht ins Filtergehäuse gelangen.
	WARNUNG: Leitfähiger Staub kann den ecosine active sync Oberschwingungsfilter beschädigen. Es ist sicherzustellen, dass am Aufstellungsort des ecosine active sync kein leitfähiger Staub auftritt.
Produkte	FN3530/31 Serie, 3-Leiterfilter, 200-480 VAC, Modelle 60 A
	FN3540/41 Serie, 4-Leiterfilter, 200-415 VAC, Modelle 60 A
	FN3532 Serie, 3-Leiterfilter, 200-480 VAC, Modelle 120 A
	FN3532 Serie, 3-Leiterfilter, 200-480 VAC, Modelle 120 A FN3542 Serie, 4-Leiterfilter, 200-415 VAC, Modelle 120 A
	FN3532 Serie, 3-Leiterfilter, 200-480 VAC, Modelle 120 A FN3542 Serie, 4-Leiterfilter, 200-415 VAC, Modelle 120 A FN3545 Serie, 3/4-Leiterfilter, Modelle 60300 A
	FN3532 Serie, 3-Leiterfilter, 200-480 VAC, Modelle 120 A FN3542 Serie, 4-Leiterfilter, 200-415 VAC, Modelle 120 A FN3545 Serie, 3/4-Leiterfilter, Modelle 60300 A SYNC300A, optionales Sync Modul für ecosine active sync

Überspannungskategorie	Ecosine active sync Oberschwingungsfilter entsprechen der Über-
(EN50178)	spannungskategorie III nach EN 50178

Umgebungsbedingungen La- Klimatische Bedingungen Lagerung Klasse 1K3:				
gerung • Temperaturbereich: -25 °C bis +55 °C	• Temperaturbereich: -25 °C bis +55 °C			
(IEC 60721-3-1, EN50178)	Belative Luftfeuchte: < 95 % Betauung nicht zulässig			
Luftdruck: 70 KPa bis 106 KPa	0			
Umgebungsbedingungen Klimatische Bedingungen Transport Klasse 2K3:				
• Temperaturbereich: -25 °C bis +70°C				
(IEC 60/21-3-2, EN501/8) • Relative Luftfeuchte: < 95 %, Betauung nicht zuläss	sig			
Luftdruck: 70 KPa bis 106 KPa				
 Schwingungen (nach IEC 60068-2-6) 				
 Schocks (nach IEC 60068-2-27) 				
Umgebungsbedingungen Be- Klimatische Bedingungen im Betrieb Klasse 3K3:				
trieb • Temperaturbereich:				
(IEC 60721-3-3, EN50178) Power Modul: 0°C bis +50°C				
Schrank: 0°C bis +40°C	s +40°C			
Relative Luftfeuchte: < 95 %. Betauung nicht zuläss	 Relative Luftfeuchte: < 95 %, Betauung nicht zulässig 			
Luftdruck: 70 KPa bis 106 KPa				
Verschmutzungsgrad Verschmutzungsbedingungen im Betrieb Klasse PD2				
(IEC 61010 EN50178)				
	<u> </u>			
Grenzwerte für korrosive Stof- feGrenzwerte korrosiver Stoffe für Lagerung, Transport und Klasse 3C2 ⁽³⁾ :	Betrieb			
(IEC 60721-3-3) • Gilt für Umgebungen mit einem normalen Maß an minationen, wie sie in Gebieten mit industriellen A ten zu erwarten sind	 Gilt f ür Umgebungen mit einem normalen Ma ß an Konta- minationen, wie sie in Gebieten mit industriellen Aktivit ä- ten zu erwarten sind 			
Grenzwerte:				
Umgebungsparameter Einheit ⁽¹⁾ Klasse 3C2 ⁽²⁾				
Mittelwert M	aximal			
Meersalz Salznebel				
Schwefeldioxid ppm 0.3	1.0			
cm ³ /m ³ 0.11	0.37			
Schwefelwasserstoff ppm 0.1	0.5			
Chlor npm 0.1	0.30			
cm ³ /m ³ 0.034	0.1			
Chlorwasserstoff ppm 0.1				
	0.5			
cm³/m³ 0.066	0.5 0.33			
cm³/m³0.066Fluorwasserstoffppm0.01	0.5 0.33 0.03			
cm³/m³ 0.066 Fluorwasserstoff ppm 0.01 cm³/m³ 0.012 0	0.5 0.33 0.03 0.036			
cm³/m³ 0.066 Fluorwasserstoff ppm 0.01 cm³/m³ 0.012 0 Ammoniak ppm 1.0	0.5 0.33 0.03 0.036 3.0			
Fluorwasserstoff ppm 0.066 Fluorwasserstoff ppm 0.01 cm³/m³ 0.012 0 Ammoniak ppm 1.0 cm³/m³ 1.4 0	0.5 0.33 0.03 0.036 3.0 4.2			
Fluorwasserstoff ppm 0.066 Fluorwasserstoff ppm 0.01 cm³/m³ 0.012 0 Ammoniak ppm 1.0 cm³/m³ 1.4 0 Ozon ppm 0.05	0.5 0.33 0.03 0.036 3.0 4.2 0.1			
Fluorwasserstoff ppm 0.066 Fluorwasserstoff ppm 0.01 cm³/m³ 0.012 0 Ammoniak ppm 1.0 cm³/m³ 1.4 0 Ozon ppm 0.05 cm³/m³ 0.025 0	0.5 0.33 0.03 0.036 3.0 4.2 0.1 0.05			

 ⁽¹⁾Die Werte gegeben in cm3/m3 wurden aus den Werten in mg/m3 berechnet und beziehen sich auf eine Temperatur von 20 °C und einen Luftdruck von 101,3 kPa. In der Tabelle sind gerundete Daten dargestellt. ⁽²⁾Mittelwerte stellen zu erwartende Langzeitwerte dar. Maximalwerte sind Grenz- oder Spitzenwerte, auftretend über einen Zeitraum von nicht mehr als 30 Minuten pro Tag.
⁽³⁾ IEC 60721-3-3 gilt nur für beschichtete Platinen und nicht für das gesamte Gerät. Unge- schützte Bereiche wie zum Beispiel Anschlüsse, Terminierungen und exponierte magneti- sche Bauteile könnten durch eine solche Exposition früher beschädigt werden oder ausfal- len.

5 Übersicht Produktreihe Ecosine Active Sync

5.1 Funktionsprinzip

Ecosine active sync Filter werden zur Kompensation von Oberschwingungsströmen, zur Blindstromkompensation (sowohl induktiv als auch kapazitiv) sowie zur Korrektur und Optimierung von Phasensymmetrien eingesetzt. Die Filtereinheiten können als zentral installierte Filtereinheit in Systeme und Anwendungen integriert werden, um anwendungsbedingte Oberschwingungen zu dämpfen oder in Kombination mit Frequenzumrichtern und Motorantrieben Lösungen mit geringen Oberschwingungen auf Basis von Standard-Frequenzumrichtern und -Motorantrieben zu bilden.

Ecosine active sync Filter sind parallel zur Last geschaltet und überwachen kontinuierlich alle Ströme in 3-Phasen-Leitungen (vereinfachtes Schema in Abbildung 1). Oberschwingungsströme und Blindleistungsanteile werden zuverlässig ermittelt und in einer extrem schnellen digitalen Regelungsstruktur verarbeitet. Durch Erzeugung und aktiver Beaufschlagung mit Strömen mit dem umgekehrten Phasenversatz werden unerwünschte Oberschwingungen und Blindströme zuverlässig bedämpft. Durch die Verwendung der neuesten 3-stufigen IGBT-Technologie ist eine extrem schnelle Einspeisung (in Echtzeit) möglich, wobei weniger Verluste auftreten als bei der älteren Generation aktiver Oberschwingungsfilter. Integrierte LCL-Filtertechnologie stellt sicher, dass weder die Schaltfrequenz (16 kHz) noch Gleichstromanteile ins Netz eingespeist werden. Der Betrieb ist ohne Abhängigkeit von der Quelle möglich, sodass der Filter auch in Versorgungsanwendungen mit Generatoren oder Transformatoren eingesetzt werden kann. Verbundene Lasten können verschiedener Art sein, z. B. individuelle nichtlineare Lasten oder Gruppen nichtlinearer Lasten.

Abbildung 1 Funktionsprinzip des ecosine active sync Oberschwingungsfilters

5.2 Systemkonfiguration ecosine active sync

Mit den unten aufgeführten Power Modul-Varianten, optionalen Kits und Schrankvarianten ist es möglich, mit ecosine active sync individuell angepasste Filter und Systeme zusammenzustellen. Schaffner liefert sowohl einzelne Power Module, optionale Kits und Schränke sowie einsatzbereite und in Schränken integrierte Filtersysteme.

Nachfolgend sind die Bezeichnungen von ecosine active sync Systemen und Optionen aufgeführt.

Tabelle 1 Versionen von ecosine active sync Power Modulen und Optionen

Bezeichnung	Beschreibung
FN3530	Power Modul 200-480 VAC 3-Leiter
FN3531	Power Modul 200-480 VAC 3-Leiter mit Stromwandlermodul
FN3540	Power Modul 200-415 VAC 4-Leiter
FN3541	Power Modul 200-415 VAC 4-Leiter mit Stromwandlermodul
FN3532	DPP Double Power Pack 120A 200-480 VAC 3-Leiter
FN3542	DPP Double Power Pack 120A 200-415 VAC 4-Leiter
СТМ	Stromwandlermodul (Current Transformer Module)
Display	Displaymodul
Patchkabelsatz	Patchkabelsatz Sync Modul
KITIP21	Ecosine active sync IP21 Abdeckungssatz
SYNC300A	Sync Modul für ecosine active sync mit Stromwandlermodul
SYNC300X	Sync Modul für ecosine active sync ohne Stromwandlermodul

5.2.1 Ecosine active sync Power Modul FN3530 und FN3531

Bei den ecosine active sync Power Modulen FN3530 und FN3531 handelt es sich um 3-phasige 3-Leiter-Power Module mit 60 A Kompensationsstrom. FN3530 und FN3531 werden in 3-phasigen Netzwerken ohne Neutralleiter eingesetzt. Bei FN3530-Power Modulen ist das Stromwandlermodul nicht im Lieferumfang enthalten, während es bei FN3531 Power Modulen enthalten ist.

FN3530/31

Anzahl der Phasen (Systemein- gang)	3-phasig/3-Leiter
Netzfrequenz	50/60 Hz ± 3 Hz
Netzspannung	200 VAC bis 480 VAC ± 10 %
Wechselrichtertopologie	3-stufige NPC-Topologie, IGBT
Schaltfrequenz	16 kHz
Reaktionszeit	< 100 µs
Kompensationsleistung Ober- schwingungen	Bis zur 50. Harmonischen
Oberschwingungsgehalt Strom THDi	< 5 %
Korrektur des Leistungsfaktors	cosφ = -0,7 1 0,7
	(induktive und kapazitive Kompen- sation)
Kompensationsnennstrom	60 Arms
Abmessungen einer einzelnen Einheit	440 mm × 420 mm × 222 mm (B × T × H)

5.2.2 Ecosine active sync Power Modul FN3540 und FN3541

Bei den ecosine active sync Power Modulen FN3540 und FN3541 handelt es sich um 3-phasige 4-Leiter-Power Module mit 60 A Kompensationsstrom. FN3540 und FN3541 werden in 3-phasigen Netzwerken mit Neutralleiter eingesetzt. Bei FN3540-Power Modulen ist das Stromwandlermodul nicht im Lieferumfang enthalten, während es bei FN3541 Power Modulen enthalten ist.

FN3540/41

Anzahl der Phasen (Systemein- gang)	3-phasig/4-Leiter
Netzfrequenz	50/60 Hz ± 3 Hz
Netzspannung	200 VAC bis 415 VAC ± 10 %
Wechselrichtertopologie	3-stufige NPC-Topologie, IGBT
Schaltfrequenz	16 kHz
Reaktionszeit	< 100 µs
Kompensationsleistung Ober- schwingungen	Bis zur 50. Harmonischen
Oberschwingungsgehalt Strom THDi	< 5 %
Korrektur des Leistungsfaktors	cosφ = -0,7 1 0,7
	(induktive und kapazitive Kompen- sation)
Nennstrom Phasenkompensation	60 Arms
Nennstrom Neutralleiterkompen- sation	180 Apk
Abmessungen einer einzelnen Einheit	440 mm × 420 mm × 222 mm (B × T × H)

5.2.3 Ecosine active sync Double Power Pack (DPP) FN3532 und FN3542

FN3532 und FN3542 sind sogenannte Double Power Packs, die aus zwei ecosine active sync Power Modulen bestehen. FN3532 wird in 3-phasigen 3-Leiter-Netzwerken ohne Neutralleiter eingesetzt. FN3542 wird in 3-phasigen 4-Leiter-Netzwerken mit Neutralleiter eingesetzt. Beide DPP-Pakete enthalten stets zwei Power Module (3- oder 4-Leiter) für den Einsatz in einer Master-Slave-Architektur. Darum werden nur ein Stromwandlermodul und ein Displaymodul benötigt, die im Paket enthalten sind. Die Kommunikation zwischen den Modulen ist über einen Hochgeschwindigkeitsbus implementiert.

FN3532		
	Anzahl der Phasen (Systemein- gang)	3-phasig/3-Leiter
	Netzfrequenz	50/60 Hz ± 3 Hz
	Netzspannung	200 VAC bis 480 VAC ± 10 %
High speed bus	Wechselrichtertopologie	3-stufige NPC-Topologie, IGBT
High speed bus	Schaltfrequenz	2 x 16 kHz Interleaved (32 kHz effektiv)
	Reaktionszeit	< 100 μs
	Kompensationsleistung Ober- schwingungen	Bis zur 50. Harmonischen
	Oberschwingungsgehalt Strom THDi	< 5 %
	Korrektur des Leistungsfaktors	cosφ = -0,7 1 0,7
		(induktive und kapazitive Kom- pensation)
	Nennstrom Phasenkompensati- on	60 Arms
	Abmessungen einer einzelnen Einheit	440 mm × 420 mm × 222 mm (B × T × H)

Schaffner Group Bedienungs- und Installationsanleitung Ecosine active sync

FN3542

Anzahl der Phasen (Systemein- gang)	3-phasig/4-Leiter
Netzfrequenz	50/60 Hz ± 3 Hz
Netzspannung	200 VAC bis 415 VAC ± 10 %
Wechselrichtertopologie	3-stufige NPC-Topologie, IGBT
Schaltfrequenz	2 x 16 kHz Interleaved (32 kHz effektiv)
Reaktionszeit	100 μs
Kompensationsleistung Ober- schwingungen	Bis zur 50. Harmonischen
Oberschwingungsgehalt Strom THDi	< 5 %
Korrektur des Leistungsfaktors	cosφ = -0,7 1 0,7 (induktive und kapazitive Kom- pensation)
Kompensationsnennstrom	120 A
Nennstrom Neutralleiterkom- pensation	180 Apk
Abmessungen einer einzelnen Einheit	440 mm × 420 mm × 222 mm (B × T × H)

I

5.2.4 Ecosine active sync Schrankversion (Schrank + Power Module)

Die ecosine active sync Power Module können in einen Schrank integriert und als System ausgeliefert werden. Die Schrankversion kann je nach Konfiguration und im Typencode definierten Optionen aus bis zu 5 Modulen bestehen (siehe Kapitel 5.3). Die Schrankversion wird als FN3545 + Typencode bezeichnet, welcher nachfolgend in Tabelle 2 aufgeführt ist. Die wesentlichen Eigenschaften sind nachfolgend zusammengefasst:

Anzahl der Phasen (Systemeingang)	3-phasig/3-Leiter oder 3-phasig/4- Leiter
Netzfrequenz	50/60 Hz ± 3 Hz
Netzspannung 3-Leiter	200 VAC $^{\rm i}$ bis 480 VAC \pm 10 %
Netzspannung 4-Leiter	200 VAC $^{\rm ii}$ bis 415 VAC \pm 10 %
Wechselrichtertopologie	3-stufige NPC-Topologie, IGBT
Schaltfrequenz	Anzahl der Module x 16 kHz Inter- leaved (bis zu 5 x 16 kHz effektiv)
Reaktionszeit	< 100 µs
Kompensationsleistung Ober- schwingungen	Bis zur 50. Harmonischen
Oberschwingungsgehalt Strom THDi	< 5 %
Korrektur des Leistungsfaktors	cosφ = -0,7 1 0,7 (induktive und kapazitive Kompensati- on)
Kompensationsnennstrom	60 A, 120 A, 180 A, 240 A, 300 A
Abmessungen	600 mm × 600 mm × 2265mm (B × T × H)

ⁱ Schrank für 200 VAC Netzspannung auf Anfrage ⁱⁱ Schrank für 200 VAC Netzspannung auf Anfrage myecosine.com

5.3 Typenschlüssel ecosine active sync Schrankversion

Die Schaffner ecosine active sync Serie bietet eine modulare Lösung, die Anwendern die Zusammenstellung von Systemen ermöglicht, die individuell auf die jeweiligen Anwendungs- und Installationsanforderungen angepasst sind. Ecosine active sync Power Module und Optionen sind in Tabelle 1 aufgelistet, während die Schrankversionen in Tabelle 2 und Tabelle 3 aufgelistet sind.

Der Typencode ist eine Kombination aus FN3545 (zur Anzeige einer Schrankversion) und einer Erweiterung mit Informationen über die Konfiguration und Optionen.

Abbildung 2 Beschreibung des Typencodes einer ecosine active sync Schrankversion

	SCHAFFNer
	shaping electrical power

Bezeichnung	Spannung ⁱ	Sync Mo- dul	Kompensa- tions- strom	3-Leiter/4- Leiter- Installation	Power Mo- dul	Displaymo- dul	Absicherung (Hauptschal- ter)
FN3545-X0603WXXP	200-480 VAC	Nein	60A	3-Leiter	1 x FN3531	Nein	Ja
FN3545-X0603WLXP	200-480 VAC	Nein	60A	3-Leiter	1 x FN3531	Ja	Ja
FN3545-X0604WXXP	200-415 VAC	Nein	60A	4-Leiter	1 x FN3541	Nein	Ja
FN3545-X0604WLXP	200-415 VAC	Nein	60A	4-Leiter	1 x FN3541	Ja	Ja
FN3545-X1203WXXP	200-480 VAC	Nein	120 A	3-Leiter	2x FN3530	Nein	Ja
FN3545-X1203WLXP	200-480 VAC	Nein	120 A	3-Leiter	2x FN3530	Ja	Ja
FN3545-X1204WXXP	200-415 VAC	Nein	120 A	4-Leiter	2x FN3541	Nein	Ja
FN3545-X1204WLXP	200-415 VAC	Nein	120 A	4-Leiter	2x FN3541	Ja	Ja
FN3545-X1803WXXP	200-480 VAC	Nein	180A	3-Leiter	3x FN3530	Nein	Ja
FN3545-X1803WLXP	200-480 VAC	Nein	180A	3-Leiter	3x FN3530	Ja	Ja
FN3545-X1804WXXP	200-415 VAC	Nein	180A	4-Leiter	3x FN3541	Nein	Ja
FN3545-X1804WLXP	200-415 VAC	Nein	180A	4-Leiter	3x FN3541	Ja	Ja
FN3545-X2403WXXP	200-480 VAC	Nein	240A	3-Leiter	4x FN3530	Nein	Ja
FN3545-X2403WLXP	200-480 VAC	Nein	240A	3-Leiter	4x FN3530	Ja	Ja
FN3545-X2404WXXP	200-415 VAC	Nein	240A	4-Leiter	4x FN3541	Nein	Ja
FN3545-X2404WLXP	200-415 VAC	Nein	240A	4-Leiter	4x FN3541	Ja	Ja
FN3545-X3003WXXP	200-480 VAC	Nein	300A	3-Leiter	5x FN3530	Nein	Ja
FN3545-X3003WLXP	200-480 VAC	Nein	300A	3-Leiter	5x FN3530	Ja	Ja
FN3545-X3004WXXP	200-415 VAC	Nein	300A	4-Leiter	5x FN3541	Nein	Ja
FN3545-X3004WLXP	200-415 VAC	Nein	300A	4-Leiter	5x FN3541	Ja	Ja

Tabelle 2 Ecosine active sync Schrankversionen ohne Sync Modul

ⁱ Schrank für 200 VAC Netzspannung auf Anfrage myecosine.com

Tabelle 3 Ecosine active sync Schrankversionen mit Sync Modul

Bezeichnung	Spannung ⁱ	Sync Mo- dul	Kompensa- tions- strom	3-Leiter/4- Leiter- Installation	Power Mo- dul	Displaymo- dul	Absicherung (Hauptschal- ter)
FN3545-S0603WXXP	200-480 VAC	Ja	60A	3-Leiter	1 x FN3530	Nein	Ja
FN3545-S0603WLXP	200-480 VAC	Ja	60A	3-Leiter	1 x FN3530	Ja	Ja
FN3545-S0604WXXP	200-415 VAC	Ja	60A	4-Leiter	1 x FN3540	Nein	Ja
FN3545-S0604WLXP	200-415 VAC	Ja	60A	4-Leiter	1 x FN3540	Ja	Ja
FN3545-S1203WXXP	200-480 VAC	Ja	120 A	3-Leiter	2x FN3530	Nein	Ja
FN3545-S1203WLXP	200-480 VAC	Ja	120 A	3-Leiter	2x FN3530	Ja	Ja
FN3545-S1204WXXP	200-415 VAC	Ja	120 A	4-Leiter	2x FN3540	Nein	Ja
FN3545-S1204WLXP	200-415 VAC	Ja	120 A	4-Leiter	2x FN3540	Ja	Ja
FN3545-S1803WXXP	200-480 VAC	Ja	180A	3-Leiter	3x FN3530	Nein	Ja
FN3545-S1803WLXP	200-480 VAC	Ja	180A	3-Leiter	3x FN3530	Ja	Ja
FN3545-S1804WXXP	200-415 VAC	Ja	180A	4-Leiter	3x FN3540	Nein	Ja
FN3545-S1804WLXP	200-415 VAC	Ja	180A	4-Leiter	3x FN3540	Ja	Ja
FN3545-S2403WXXP	200-480 VAC	Ja	240A	3-Leiter	4x FN3530	Nein	Ja
FN3545-S2403WLXP	200-480 VAC	Ja	240A	3-Leiter	4x FN3530	Ja	Ja
FN3545-S2404WXXP	200-415 VAC	Ja	240A	4-Leiter	4x FN3540	Nein	Ja
FN3545-S2404WLXP	200-415 VAC	Ja	240A	4-Leiter	4x FN3540	Ja	Ja
FN3545-S3003WXXP	200-480 VAC	Ja	300A	3-Leiter	5x FN3530	Nein	Ja
FN3545-S3003WLXP	200-480 VAC	Ja	300A	3-Leiter	5x FN3530	Ja	Ja
FN3545-S3004WXXP	200-415 VAC	Ja	300A	4-Leiter	5x FN3540	Nein	Ja
FN3545-S3004WLXP	200-415 VAC	Ja	300A	4-Leiter	5x FN3540	Ja	Ja

ⁱ Schrank für 200 VAC Netzspannung auf Anfrage myecosine.com

Tabelle 4 Ecosine active sync Nur-Schrank-Versionen und Schrankzubehör

Bezeichnung	Beschreibung
Schrank 380-480 V IP54 3 W	IP54-Schrank 600 x 600 x 2328 3-Leiter (ohne Module) 480 V
Schrank 380-415V IP54 4W	IP54-Schrank 600 x 600 x 2328 4-Leiter (ohne Module) 415V
Sockel 100	Schranksockel 100 mm
Sockel 200	Schranksockel 200mm

5.4 Technische Daten ecosine active sync Power Modul-Versionen

Anzahl der Phasen (Systemeingang)	3-phasig/3-Leiter oder 3-phasig/4-Leiter
Netzfrequenz	50/60Hz ± 3 Hz
Netzspannung	3-Leiter: 200 VAC – 480 VAC ± 10 %
	4-Leiter: 200 VAC – 415 VAC ± 10 %
Wechselrichtertopologie	3-stufige NPC-Topologie, IGBT
Schaltfrequenz	16 kHz
Reaktionszeit	< 100 µs
Kompensationsleistung Oberschwingungen	Bis zur 50. Harmonischen
Oberschwingungsgehalt Strom THDi	< 5 %
Korrektur des Leistungsfaktors	<i>cos</i> φ = -0.7 1 0.7
	(induktive und kapazitive Kompensation)
Abmessungen einer einzelnen Einheit	440 mm × 420 mm × 222 mm (B × T × H)
Nennstrom Phasenkompensation	60 Arms
Nennstrom Neutralleiterkompensation	180 Apk
Überlastbarkeit (A für 10 ms)	150A
Stromwandlerplatzierung	Netz- oder Lastseitig
Stromwandlerverhältnis	5050000:5 A oder 5050000:1 A
Montage	Wandmontage (abstehend oder anliegend)
Gewicht einer einzelnen Einheit	44 kg
Kühlart	Luftkühlung
Kommunikationsschnittstelle	Ethernet TCP/IP, Modbus RTU RS485
Digital I/O	2 DIO + 2 DO
Umgebungstemperatur von Power Modulen	050 °C bei voller Leistung, bis zu 55 °C mit Derating von 3 % je Kelvin ⁱ
Verlustleistung	< 1100 W bei voller Kompensationsleistung (< 2,6 %)
	< 970 W im Regelbetrieb (< 2,3 %)
Schutzklasse	IP 20/IP 21
Geräuschpegel	< 56 bis 63 dB A (je nach Lastsituation)
Selbstschutz	Ja
Überhitzungsschutz	Ja
Über- und Unterspannungsschutz	Ja
Empfohlene Absicherung	100 A, Type gL oder gG
Erdungssystem	TT, TN-C, TN-S, TN-C-S, IT, unsymmetrisch geerdete Dreiecks- schaltung
Höhe ü. d. M.	< 1000 m ohne Derating; bis zu 4000 m mit Derating 1 %/100 m
Umgebungsbedingungen	Verschmutzungsgrad 2
	Relative Luftfeuchte < 95 % nicht kondensierend, 3K3
	Temperatur: Lagerung 55 °C, 1K3, 1K4, Transport -25 °C bis 75 °C, 2K3
Zulassung	CE, RoHS, UL

Konstruktionsstandards

IEC 61000-4-2, 4-4, 4-5, 4-6 EN 61000-3-11, 3-12 EN 61000-6-2 EN 55011 EN 62477-1 EN 61800-3

5.5 Technische Daten ecosine active sync Schrankversionen

Anzahl der Phasen (Systemeingang)	3-phasig/3-Leiter oder 3-phasig/4-Leiter					
Netzfrequenz	50/60Hz ± 3 Hz					
Netzspannung ⁱ	3-Leiter: 200 VAC – 480 VAC ± 10 %					
	4-Leiter: 200 VAC – 415 VAC ± 10 %					
Wechselrichtertopologie	3-stufige NPC-Topologie, IGBT					
Schaltfrequenz	16 kHz					
Reaktionszeit	< 100 µs					
Kompensationsleistung Oberschwingungen	Bis zur 50. Harmonischen					
Oberschwingungsgehalt Strom THDi	< 5 %					
Korrektur des Leistungsfaktors	cosφ = -0,7 1 0,7					
	(induktive und kapazitive Kompensation)					
Abmessungen Schrank	600 mm × 600	600 mm × 600 mm × 2328mm (B × T × H)				
Anzahl Module	0 "	1	2	3	4	5
Nennstrom Phasenkompensation	0 A	60A	120 A	180A	240A	300A
Nennstrom Neutralleiterkompensation	0 A	180A	360A	540A	720A	900A
Überlastbarkeit (für 10 ms)	0 A	150A	300A	450A	600A	750A
Gewicht	180kg	224kg	268kg	312kg	356kg	400kg
Verlustleistung bei voller Kompensationsleistung	200 W	< 1300 W	< 2400 W	< 3500W	< 4600W	< 5700W
Verlustleistung im Regelbetrieb	200 W	< 1170W	< 2100W	< 3100W	< 4000W	< 5000W
Stromwandlerplatzierung	Netz- oder Lastseitig					
Stromwandlerverhältnis	5050000:5 A oder 5050000:1 A					
Montage	Bodenmontage					
Kühlart	Luftkühlung					
Kommunikationsschnittstelle	Ethernet TCP/IP, Modbus RTU RS485					
Digital I/O	2 DIO + 2 DO					
Umgebungstemperatur	040°C bei voller Leistung, bis zu 50°C mit Derating von 3 % je Kelvin ⁱⁱⁱ					
Schutzklasse	IP 54					
Geräuschpegel	< 75 dB A (je nach Lastsituation)					
Selbstschutz	Ja					
Überhitzungsschutz	Ja					
Über- und Unterspannungsschutz	Ja					
Erdungssystem	TT, TN-C, TN-S, TN-C-S, IT, unsymmetrisch geerdete Dreiecksschaltung					
Höhe ü. d. M.	< 1000 m ohne Derating; bis zu 4000 m mit Derating 1 %/100 m					
Umgebungsbedingungen	Verschmutzungsgrad 2					
	Relative Luftfeuchte < 95 % nicht kondensierend, 3K3					
	Temperatur: Lagerung 55 °C, 1K3, 1K4, Transport -25 °C bis 75 °C, 2K3					
Zulassung	CE, RoHS, cUL ^{iv}					
Konstruktionsstandards	IEC 61000-4-2, 4-4, 4-5, 4-6					
	EN 61000-3-11, 3-12					
	EN 61000-6-2					

ⁱ Schrank für 200 VAC Netzspannung auf Anfrage

ⁱⁱ Parameter der Nur-Schrank-Konfiguration

iiiSiehe Kapitel 5.7

^{iv} Schrankversion nach UL auf Anfrage

myecosine.com

EN 55011
EN 62477-1
EN 61800-3

5.6 Temperatur-Derating des ecosine active sync Power Moduls

Der Nennstrom des ecosine active sync Power Moduls beträgt 60 A bei einer Umgebungstemperatur zwischen 0 °C und 50 °C. Ein reduzierter Betrieb ist erforderlich, wenn die Umgebungstemperatur über 50 °C steigt. In diesem Fall reduziert sich der Nennstrom um 3 % je Kelvin und die maximale Umgebungstemperatur für den reduzierten Betrieb beträgt 55 °C. Die Derating-Kurve des ecosine active sync Power Moduls wird unten in Abbildung 3 aufgeführt.

Abbildung 3 Temperatur-Derating-Kurve des ecosine active sync Power Moduls

5.7 Temperatur-Derating der Schrankversion des ecosine active sync

Der Nennstrom der ecosine active sync Schrankversion beträgt n*60 A (wobei n = Anzahl der installierten Power Module in Betrieb sind) bei einer Umgebungstemperatur zwischen 0 °C und 40 °C. Ein reduzierter Betrieb ist erforderlich, wenn die Umgebungstemperatur über 40 °C steigt. In diesem Fall reduziert sich der Nennstrom um 3 % je Kelvin und die maximale um Umgebungstemperatur für den reduzierten Betrieb beträgt 50 °C. Die Derating-Kurve der ecosine active sync Schrankversionen ist unten in Abbildung 4 gezeigt.

Abbildung 4 Temperatur-Derating-Kurve der ecosine active sync Schrankversion in Bezug auf den Nennstrom eines Moduls

5.8 Sync Modul SYNC300A

Das Sync Modul SYNC300A ist das Master-Kommunikationsmodul mit den folgenden Funktionen und Vorteilen:

- intelligentes Last- und Energie-Management
- Redundanzmanagement
- flexible Installation mit Stromwandlern auf der Netz- oder Lastseite; ein einfacher Stromwandleranschlusspunkt für alle Module
- für mehr als zwei Power Module im Parallelbetrieb empfohlen
- einfache und modulare Installation (Wand- oder Rackmontage)
- als Bestandteil des ecosine active sync Schranks FN 3545 oder als Option für späteres Aufrüsten in Konfigurationen mit Wandmontage oder kundenspezifischem Schrank verfügbar
- einfache Filterskalierbarkeit und Erhöhung des Kompensationsstroms auf über 300 A;
 ein Sync Modul kann bis zu 5 Power-Module (5 x 60 A) parallel verbinden und koordinieren;
 Verschaltung von bis zu 4 Sync Modulen für einen Kompensationsstrom von insgesamt bis zu 1200 A

5.8.1 Technische Daten des Sync Moduls SYNC300A

Eingangsspannung	22,0 27,0 VDC
Stromaufnahme	<1A
Abmessungen	440 mm × 200 mm × 87 mm (B × T × H)
Gewicht	3,0 kg
Schutzklasse	IP20 (optional IP21)
Digital I/O	3 DI, 2 DO, 4 DI/O (programmierbar) 2 Relais Schließer/Öffner - 2 Relais Schließer mit gemeinsamen COM (250 VAC/3A) 24VDC GND
Umgebungsbedingungen	Verschmutzungsgrad 2 Relative Luftfeuchte < 95 % nicht kondensierend, 3K3 Temperatur: Lagerung 55 °C, 1K3, 1K4, Transport -25 °C bis 75 °C, 2K3
Zulassung	CE, RoHS

Das Sync Modul enthält keine stromführenden Teile. Es besteht keine Stromschlag- und Brandgefahr. Aufgrund der Niederspannung mit einer Nennspannung von 24 Volt und einer Auslegung als Last (was die begrenzten Stromaufnahme betrifft), ist für das Sync Modul keine UL-Zulassung erforderlich.

Es kann für Industriesteuerungen eingesetzt werden (d. h. für die aufgeführten Bauteile der Kategorie NMTR oder NITW).

Schaffner Group Bedienungs- und Installationsanleitung Ecosine active sync

IIISCHAFFNer shaping electrical power

5.8.2 Mechanische Abmessungen von SYNC300A

Tabelle 5 Sync Modul Abmessungen

	[mm]	[in]
Α	440	17.32
В	200	7.88
С	87	3.43

5.9 Sync Modul SYNC300X

Das Sync Modul SYNC300X ist mit dem Gerät SYNC300A identisch, abgesehen vom Stromwandlermoduls. Es ist für einen zusätzlichen Schrank des ecosine active sync bestimmt und ist in den Slave-Modus zu setzen. Es ist nicht erforderlich, das Modul mit Stromwandlern zu verbinden, da es die Informationen zu den Strömen vom Sync Modul SYNC300A erhält, das im System als Master eingestellt ist.

5.10 Ecosine active sync Displaymodul

Ecosine active sync Oberschwingungsfilter können mit dem Displaymodul in Betrieb genommen werden. Weiterhin kann es verwendet werden, um alle Filterparameter und Messwerte des Drei-Phasen-Netzes zu ändern und zu überwachen. Ein Displaymodul funktioniert mit allen Power Modulen und kann in allen Systeminstallationen verwendet werden: ob einzelnes Power Modul, Double Power Pack oder Schrankversion.

Funktion	Displaymodul und Tastenfeld	Montagearten
Das Displaymodul wird ver- wendet, um die Messwerte des Drei-Phasen-Netzes zu überwa- chen und um die Filterparame- ter zu ändern. Weitere Details befinden sich in Kapitel 8.	Imschaffner Imschaffner	

Für die DPP-Konfiguration wird ein Displaymodul verwendet, das am Master-Power Modul wie in Abschnitt 5.2.3 gezeigt montiert wird.

Bei der Schrankversion wird das Displaymodul auf der vorderen Schranktür montiert, wie im Titelbild gezeigt.

5.10.1 RS485-Kommunikation

Das Displaymodul ist über einen RS485-Bus mit dem AHF verbunden und verwendet Modbus als Kommunikationsprotokoll. Zusätzlich agiert das Displaymodul wie ein Master und das AHF agiert als Slave.

Das Displaymodul kann nur ein Slave-Gerät an einem RS485-Multi-Slave-Bus adressieren und das Slave-Zielgerät ist durch die Modbus-Adresse definiert.

Bei normalen Betriebsbedingungen fragt das Displaymodule kontinuierlich das AHF-Slave-Gerät ab, um die erforderlichen Informationen zu erhalten. Wenn die Kommunikation nicht stattfindet, wird oben rechts im Fenster ein Ausrufezeichen angezeigt, um den Bediener auf die Situation aufmerksam zu machen.

5.10.2 AHF-Parameter und INI-Datei

Das Displaymodul kann auf alle AHF-Parameter zugreifen und kann, um sie dynamisch zu unterstützen, auch die INI-Datei verwalten. Genau wie beim AHF Viewer ist die INI-Datei das verwendete Dateiformat, um alle Daten bezüglich Parameter und der Ordnerstruktur vom AHF abzufragen.

Da das Herunterladen und Analysieren der INI-Datei ein zeitaufwändiges Verfahren ist, speichert das Displaymodul die Datei im seriellen Flash-Speicher, damit diese Operation nicht bei jedem Start durchgeführt werden muss.

Zu Beginn vergleicht das Displaymodul die Softwareversion des aktuellen AHF mit der Softwareversion der gespeicherten INI-Datei. Bei Übereinstimmung lädt das Displaymodul die INI-Datei aus dem seriellen Flash-Speicher und ist dann nach einigen Sekunden bereit, die Anwendung zu starten. Ohne Übereinstimmung muss das Displaymodul die INI-Datei zunächst vom AHF herunterladen, sie analysieren und die alte Datei im seriellen Flash-Speicher überschreiben.

Dieser Prozess kann mehr als eine Minute lang dauern, was von der Baudrate der RS485-Kommunikation und der Anzahl von Parametern abhängt.

5.10.3 Eventlog und LOG-Datei

Mit dem Displaymodul ist es möglich, wie im AHF Viewer die neuesten aufgezeichneten Ereignisse aus dem Eventlog einzusehen. Die Anzahl angezeigter Ereignisse ist nicht festgelegt, sondern hängt davon ab, wie lang die Beschreibungs-Strings der einzelnen Ereignisse sind. Eine Annahme von 250 bis 350 Ereignisse ist realistisch.

5.10.4 AHF-Parametersatz laden und speichern

Das Displaymodul kann bis zu 10 verschiedene Parametersätze im seriellen Flash-Speicher ablegen. Jeder Satz besteht aus allen "Lese-/Schreibparametern" des AHF, die "Nur lesen-"Parameter werden nicht berücksichtigt. Zusätzlich kann das Displaymodul auch einen vollständigen Parametersatz in das AHF laden.

Um die Kompatibilität zwischen den Parametersätzen und AHF-Geräten sicherzustellen, müssen die Software-Version des AHF und die Software-Version des zu ladenden Parametersatzes gleich sein.

6 Mechanische Einbaurichtlinien

6.1 Richtlinien für Einbauvorbereitungen

6.1.1 Erhalt des ecosine active sync

Jedes einzelne ecosine active sync Power Modul ist in einer Holzkiste verpackt. Ihm liegen zwei Sätze Montagewinkel (Wand- und Rackmontage), ein Schraubensatz sowie die Bedienungs- und Installationsanleitung bei.

Die vormontierten Montagewinkel werden benötigt, um das ecosine active sync Grundmodul mit einem Kran oder einer anderen geeigneten Hebevorrichtung von der Palette zu heben. Nach dem Heben können die Montagewinkel je nach Installationsart der Module von den Power Modulen entfernt werden.

Jede ecosine active sync Schrankversion wird in einer Holzkiste verpackt.

Bitte prüfen Sie die Transportverpackung und das Produkt vor der Installation gründlich auf Transportschäden. Sollte ein sichtbarer Schaden aufgetreten sein, installieren Sie das Filter nicht und melden Sie den Schaden sofort beim betreffenden Spediteur.

6.1.2 Transport und Auspacken von Power Modulen

Bitte beachten Sie, dass der Transport von ecosine active sync Power Modulen immer in der Originalverpackung erfolgen muss. Jeglicher andere Transport kann Beschädigungen verursachen und führt zum Erlöschen der Garantie.

Bitte befolgen Sie nach dem Erhalt von ecosine active sync Power Modulen sorgfältig die Anweisungen zum Auspacken. Bitte lesen Sie das Dokument "Unpacking Instruction ecosine active sync filters (module or cabinet)", das an der Transportverpackung angebracht ist.

6.1.3 Heben

Abbildung 5 Anweisungen zum Heben von Power Modulen

6.1.4 Wichtiger Hinweis für den Einbau

Alle Einbaupositionen, die nicht in den nachfolgenden Kapiteln dieses Handbuchs beschrieben werden, sind untersagt und können zu einer ungenügenden Luftkühlung oder einem unsicheren Betrieb führen.

Bei wandmontierten Modulen trägt der Kunde oder Installateur darüber hinaus die volle Verantwortung für die sachgemäße Montage an einer geeigneten Wand mit geeigneten und kompatiblen Befestigungswerkzeugen.

Schaffner haftet nicht für Schäden am ecosine active sync Gerät oder anderen Geräten aufgrund unsachgemäßer Verwendung. Die Nichteinhaltung der Anforderung führt zum Ausschluss jeglicher Gewährleistung.

Schaffner Group Bedienungs- und Installationsanleitung Ecosine active sync

6.2 Mechanische Installation von ecosine active sync Power Modulen

6.2.1 Abmessungen eines ecosine active sync Power Moduls

Abbildung 6 Technische Zeichnung eines ecosine active sync Power Moduls (siehe Abmessungen in Tabelle 6 und Tabelle 7 unten)

Abbildung 7 Abmessungen [mm] der Bohrschablone für Wandmontage (abstehende oder anliegende Montage)

Abmessungen des ecosine active sync Power Moduls und der erforderliche Mindestabstand sind in den folgenden Tabellen aufgeführt.

	[mm]	[in]
Α	440	17.32
В	420	16.54
C	219.5 ⁱ	8.64
D	463.5	18.25
E	56	2.20
F	112	4.41
G	23.5	0.93
Н	60	2.36
J	3	0.12
К	80	3.15

Tabelle 6 Abmessungen ecosine active sync Power Modul

	[mm]	[in]
а	90	3.54
b	12	0.47
c	11.5	0.45
d	20	0.79
e	95	3.74
f	105	4.13
g	65	2.56
h	82.5	3.25
j	49	1.93

Tabelle 7 Ecosine active sync Power Modul (Innenmaße)

Tabelle 8 Abstände ecosine active sync Power Modul

Seite	Erforderlicher Min- destabstand [mm]	[in]
Vorderseite (Luftein- tritt)	200	7.85
Rückseite (Luftaus- tritt)	200	7.85
Seitlich	50	1.97

6.2.2 Montageoptionen ecosine active sync Power Modul

Das ecosine active sync Power Modul ist für die Wandmontage ausgelegt, wobei es abstehend oder flach anliegend montiert werden kann. Die Montagewinkel werden für die abstehende bzw. anliegende Montage unterschiedlich am Power Modul befestigt. Die Details sind nachfolgend aufgeführt.

6.2.2.1 Anliegende Montage

Für die anliegende Montage montieren Sie die Montagewinkel bitte wie in Abbildung 8 gezeigt.

Abbildung 8 Anweisungen zur anliegenden Montage von Power Modulen

6.2.2.2 Abstehende Montage

Für die abstehende Montage montieren Sie die vier Montagewinkel bitte wie in Abbildung 9

Abbildung 9 Anweisungen zur abstehenden Montage von Power Modulen

Um einen ausreichenden Luftdurchsatz sicherzustellen, halten Sie einen Abstand zu Wänden und anderen Bauteilen von mindestens 200 mm über und unter dem Filter ein.

6.3 Mechanische Installation von ecosine active sync DPP

6.3.1 Abmessungen von ecosine active sync DPP

Ein Double Power Pack (DPP) besteht aus zwei einzelnen ecosine active sync Power Modulen. Die Abmessungen in 6.2.1 gelten entsprechend.

6.3.2 Montageoptionen für ecosine active sync DPP

Für die Montage von Double Power Packs installieren Sie die Module bitte horizontal nebeneinander und halten Sie die oben aufgeführten Abstände über und unter dem Filter ein. Dieses Prinzip ist auch bei mehr als zwei an der Wand installierten Power Modulen anwendbar.

Abbildung 10 Installationsvarianten für Double Power Packs

Es wird davon abgeraten, Power Module nahe übereinander zu installieren, wie in Abbildung 11 gezeigt, da die warme Abluft des unteren Moduls das obere Modul erwärmt und somit die Luftkühlung für das obere Modul eine unzureichende Kühlwirkung erzielen kann.

Abbildung 11 Falsche DPP-Installationen

6.4 Mechanische Installation im Kundenschrank

6.4.1 Anforderungen Kundenschrank

Insgesamt können bis zu fünf ecosine active sync Power Module in einem Schrank des Kunden installiert werden. Um einen normalen Betrieb des ecosine active sync Moduls sicherzustellen, muss der Schrank die Anforderungen an die Kühlung gemäß den Kapiteln 6.4.2 und 6.5.2 erfüllen. Die Power Module müssen gemäß den Elektroinstallationsrichtlinien des Power Moduls, wie in Kapitel 7 beschrieben, verbunden sein.

Tabelle 9 Technische Daten für ein ecosine active sync Power Modul

Parameter	Wert	Bemerkungen
Empfohlene Absicherung	100A	z. B. gL oder gG
Querschnitt der Leistungskabel (Kabel vom Verteiler zum Power Modul)	 3 Phasen und PE: 1 x 25 mm² Neutral: 2 x 25 mm² 	
Systemeingang (Anzahl der Phasen)	50/60Hz ± 3Hz 3-Leiter oder 4-Leiter	
Eingangsspannung	 Für 3-Leiter-Modul: 200 VAC ± 15 % 480 VAC ± 10 % Für 4-Leiter-Modul: 200 VAC ± 15 % 415 VAC ± 10 % 	
Nennstrom	Phase: 60 A Neutral: 180A	
Leiterquerschnitt Stromwand- Ierkabel	2,5 mm²	Wenn das Eingangssignal 1 A hat, kann der Leiterquer- schnitt auf 1,5 mm ² reduziert werden.

6.4.2 Kühlungsanforderungen Kundenschrank

Wenn empfohlene Bauteile verwendet werden, ist es wichtig, den Luftkanal so gut wie möglich abzudichten. Die folgenden Punkte sollten besonders sorgfältig überprüft werden, um normale Betriebsbedingungen für ecosine active sync Module sicherzustellen.

- 1. Der minimal erforderliche Kanalquerschnitt und die minimale Länge des Luftkanals müssen eingehalten werden.
- 2. Luftkanäle zwischen Modulen und dem Luftauslass müssen verschlossen sein (Bleche müssen überlappen; Schaum oder Dichtungen sollten eingesetzt werden).
- 3. Eine ausreichender Luftdurchsatz muss vorhanden sein. Es sollte besonders auf die Löcher im Schrankrahmen geachtet werden.

Parameter	Wert	Bemerkungen
Verlustleistung je Power Modul	Typischer Wert 1200 W Max. 1450 W	Bei maximalem Laststrom von 60 Arms
Luftdurchsatz je Modul	270 m³/h	Kann je nach Position und Druck abweichen
Max. Luftdurchsatz je Schrank	Max. 1400 m³/h	Inklusive Kühlung des Sicherungsbereiches
Fläche – Lufteinlass je Modul	Min. 450 cm ²	Positionierung vor dem Lüfter des jeweili- gen Power Moduls
Max. Länge des Luftfüh- rungskanals hinter dem Power Modul	Max. 1200 mm	
Min. Abstand im Luftfüh- rungskanal hinter den Mo- dulen	Min. 70 mm	Draufsicht eines Schranks.
Fläche – Luftführungskanal im Dach	Min. 900 cm ²	Vorderansicht eines Schranks
Max. Länge des Luftfüh- rungskanals im Dach	Max. 800 mm	
Abstand Lufteinlassfilter zur Vorderseite des Power Mo- duls	Min. 45 mm	Positionierung vor dem Lüfter des jeweili- gen Power Moduls (ohne Beeinträchtigung durch Kabel)

Hinweis: Die oben aufgeführten Bedingungen gelten nur, wenn der Kanal vollständig abgedichtet ist. Schon eine kleine Öffnung kann zu einem unzureichenden Luftdurchsatz führen. Dadurch ergibt sich eine ungleichmäßige Erwärmung der Module, die dann in den Derating-Betrieb wechseln können. Schaffner Group Bedienungs- und Installationsanleitung Ecosine active sync

6.5 Mechanische Daten der Schrankversion des ecosine active sync

6.5.1 Abmessungen der Schrankversion des ecosine active sync

Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten)

Der ecosine active sync Schrank hat Schutzklasse IP54. Die Standardfarbe des Schranks ist RAL 7035. Die Abmessungen des Schranks sind in Tabelle 10 aufgeführt.

	[mm]	[in]
A	2057	81
В	100	3.94
С	171.2	6.74
D	458.3	18.04
E	606.7	23.9
F	608	23.9
G	642.5	25.3
н	653.7	25.7

Tabelle 10 Abmessungen ecosine active sync Schrank

Tabelle 11 Abstände ecosine active sync Schrank

Seite	Erforderlicher Min- destabstand [mm]	[in]
Vorderseite (Luftein- tritt)	900 mm (zum Öffnen der Tür)	35.43
Rückseite	-	-
Seitlich	-	-

Hinsichtlich des Abstands zu Rückwand und Seiten bestehen bei der Installation der ecosine active sync Schrankversion keine Anforderungen.

6.5.2 Kühlungsanforderungen für ecosine active sync Schrankversionen

Der Kühllufteintritt befindet sich auf der vorderen Schranktür und der Austritt auf der oberen Vorderseite der Schrankabdeckung.

Tabelle 12 Anforderungen an die Luftkühlung der ecosine active sync Schrankversion

Parameter	Wert	e Seitenansicht des Schranks und der Luftführung
Schutzklasse	IP54	
Standardfarbe	RAL 7035	
Erforderlicher Luftdurchsatz je Modul	270 m³/h	AHF module 5
Maximaler Luftdurchsatz je Schrank	1400 m³/h	AHF module 4
Luftdurchsatz im Sicherungsbe- reich	100 m³/h	AHF module 2
Fläche – Lufteinlass je Modul	Min. 450 cm ²	AHF module 1 磁
Fläche – Luftkanal hinter den Power Modulen	Min. 370 cm ²	
Max. Länge des Luftkanal hinter den Power Modulen	Max. 1200 mm	
Min. Abstand im Luftkanal hinter den Modulen	Min. 70mm	
Fläche – Luftkanal im Dach	Min. 900cm ²	
Max. Länge des Luftkanals im Dach	Max. 800mm	
Abstand zwischen Lufteinlassfilter und Vorderseite des Power Mo- duls	Min. 45mm	

7 Richtlinien elektrischer Anschluss

7.1 Absicherung (Sicherungen, Leistungsschalter)

Ecosine active sync Filter müssen netzseitig grundsätzlich durch geeignete Sicherungen oder Leitungsschutzschalter abgesichert werden. Je nach Betriebsart und Änderungen im Last- und Oberwellenspektrum des am ecosine active sync anliegenden Ausgangsstroms werden die Sicherungen unterschiedlich belastet. Der empfohlene Sicherungstyp kann der technischen Spezifikation in Abschnitt 5.4 entnommen werden.

Jedes Power Modul muss eine eigene Sicherung mit 100 A haben, z. B. Typ gL oder gG.

7.2 Installation mit Leistungsfaktorkorrektursystemen (PFC)

Bei einer Installation des ecosine active sync zusammen mit einem System zur Leistungsfaktorkorrektur, müssen folgende Anforderungen obligatorisch erfüllt werden.

- Die Verwendung eines rein kapazitiven Leistungsfaktorkorrektursystems ist nicht erlaubt. Es muss eine Drossel installiert sein.
- Das Leistungsfaktorkorrektursystem muss vorverdrosselt werden, um eine Überlastung der Kondensatoren zu vermeiden

Abstimmung Ordnungszahl	Relative Impe- danz [%]	Abstimmfrequenz [Hz] @50Hz	Abstimmfrequenz [Hz] @60Hz
2.7	14	135	162
3.8	7	190	228

Tabelle 13: Beispiel einer typischen Verstimmung-Ordnungszahl für 50Hz und 60Hz-Netze

7.3 Elektrischer Anschluss Power Modul

7.3.1 Lage der elektrischen Anschlussklemmen

- X1: Eingang Netzversorgung
- X2: Eingang Messwandler
- S1: Schalter ein/aus
- LEDs: Anzeige-LEDs
- X11: Kunden-IOs: Digitale Ein- und Ausgänge
- X12: HS-Busport
- X13: Serviceport RS485
- X14: Ethernet/Modbus TCP
- X15: ModBus Daisy Chain RS485
- X16: Displaymodul Port

X-PE: PE Anschluss

Klemme X1 - Eingang Netzversorgung Anschluss für Phasen- und Neutralleiter. Details zum Anschluss des ecosine active sync ans Netz siehe Abschnitt 7.5.2.	
--	--

Schalter S1 – Schalter ein/aus

Zum Ein- und Ausschalten des ecosine active sync Moduls, wenn der Parameter P202 auf "Schalter S1" gesetzt ist.

LEDs – Anzeige-LEDs

Um den Status des ecosine active sync Moduls abzulesen, muss jede LED betrachtet werden. Die Anzeigen der LEDs sind aufgelistet in Tabelle 14.

Tabelle 14 LED-Anzeige

Farbe	LED-Nr./Name	Bedeutung
•	LED1	Blinkt = Fehler
-	Error	EIN = Fataler Fehler/Neustart blockiert
•	LED2	Blinkt = betriebsbereit
	Betrieb	EIN= in Betrieb
•	LED3	EIN = Warnung (HSB-Link nicht OK)
	Alarm/Warnung	
•	LED4	Blinkt 0.5s = Überlastzustand
	Status/Hinweis	Blinkt 1s = Standby

Pin-Nr.	Signal	Beschreibung	
1	GND (potenzialfrei)	Erde 0 V (Referenz für digitale Ausgän- ge)	
2	IN1/OUT4	Digitaler Eingang/Ausgang (24 V, 20 mA)	
		P262 als "Eingang" für die Ver- wendung von X11.2 als digitalen Eingang oder als "Ausgang" für die Verwendung von X11.2 als digitalen Ausgang einstellen.	
		P261 einstellen, um die Polarität von Eingang/Ausgang X11.2, "low active" oder "high active" auszuwählen.	
		Funktion von X11.2 in der Liste der Funktionen in P260 auswäh- len	
3	IN2/OUT3	Digitaler Eingang/Ausgang (24 V, 20 mA)	
		P265 als "Eingang" für die Ver- wendung von X11.3 als digitalen Eingang oder als "Ausgang" für die Verwendung von X11.3 als digitalen Ausgang einstellen.	
		P264 einstellen, um die Polarität von Eingang/Ausgang X11.3, "low active" oder "high active" auszuwählen.	
		Funktion von X11.3 in der Liste der Funktionen in P263 auswäh-	

Tabelle 15 Klemme 11 - Digitale Kunden-IOs (siehe Kapitel 9.1.2 für weitere Informationen)

4	OUT1	Relaisausgang (230 V, 3 A)	
		Funktion von Relaisausgang X11.4 in der Liste in P266 aus- wählen	
		P267 einstellen, um zu wählen ob der Relaisausgang X11.4 als "Schließer" oder als "Öffner" konfiguriert wird.	
5	OUT2	Relaisausgang (230 V, 3 A)	
		Funktion von Relaisausgang X11.5 in der Liste in P268 aus- wählen	
		P269 einstellen, um zu wählen ob der Relaisausgang X11.5 als "Schließer" oder als "Öffner" konfiguriert wird.	
6	СОМ	Relaiseingang (gemeinsam) für beide Relaisausgänge	

Abbildung 13: Logikschema des digitalen Ein- & Ausgangs.

Abbildung 14: Prinzipschaltbild des digitalen Ein- & Ausgangs.

<u>Klemme X12 - HS-Busport</u>	HSB wird zum Datenaustausch und zur Synchronisierung miteinander verbundener Sync Module und Power Mo- dule verwendet, weitere Details siehe Abschnitt 7.10.
<u>Klemme X13 – Serviceport RS485</u>	Dieser Port wird hauptsächlich für Firmware-Updates verwendet. Weitere Informationen siehe Wartungsan- leitung des ecosine active sync, das unter <u>www.schaffner.com</u> verfügbar ist.
<u>Klemme X14 – Ethernet / Modbus TCP</u>	HSB wird zum Datenaustausch und zur Synchronisierung miteinander verbundener Sync Module und Power Mo- dule verwendet, weitere Details siehe Abschnitt 7.10. Diese Schnittstelle kann alternativ zum Verbinden des AHF mit einem Gerät im LAN-Netzwerk, d. h. einem PC mit der AHF Viewer Software verwendet werden.
<u> Klemme X15 – ModBus Daisy Chain RS485</u>	Für die DPP-Version und das Sync Modul wird zur Anzei- ge der Informationen von mehreren Modulen nur ein Displaymodul verwendet, indem die Klemmen X15 der Power Module und des Sync Moduls verbunden werden.

<u> Klemme X16 – Displaymodul Port</u>	Der Displaymodul Port stellt einen Modbus-Anschluss inklusive 24-V-Stromversorgung für das Displaymodul zur Verfügung.		
	Warnung: Die 24-V-Stromversorgung muss abgeschal- tet sein, bevor jegliche Module außer dem original Schaffner Displaymodul angeschlossen werden (P255=AUS). Ansonsten besteht die Gefahr, dass Adap- ter für externe Schnittstellen beschädigt werden.		
<u> Klemme X-PE – Anschluss Schutzerde</u>	Das ecosine active sync Power Modul muss durch den Anschluss der Schutzerde an der Klemme X-PE geerdet werden.		

7.3.2 Anschluss des Drehstromnetzes

Das Gerät muss geerdet werden (Schutzerde an Klemme X-PE des Power Moduls anschließen). Die Anschlussquerschnitte für das Drehstromnetz und die Anzugsdrehmomente sind in Tabelle Tabelle 16 aufgeführt:

Tabelle 16 Anschlussquerschnitte und Drehmoment Netzanschluss

Gerät	Min. Anschlussquer- schnitt	Max. Anschlussquer- schnitt	Klemmenschraube und Anzugsdrehmoment	
Einzelnes 60A Power Modul ecosine active sync	1 x 25 mm ² pro Phase und PE 2 x 25 mm ² (N)	1 x 25 mm ² pro Phase und PE 2 x 25 mm ² (N)	Klemme L1, L2, L3, N 4,2 Nm (0,47 lbf in) PE-Schraube:	
			M8 9,5 Nm (1,07 lbf in)	

Bei der Wahl des Kabelquerschnittes müssen immer der korrekte Kabeltyp und die korrekte Verlegeart verwendet werden. Zur Sicherstellung der UL-Konformität müssen UL-gelistete Anschlusskabel (90 °C, AWG4 oder größer) sowie zum Kabel passende, UL-gelistete Kabelschuhe verwendet werden.

Korrekte Erdung sicherstellen

Eine unzureichende Erdung des ecosine active sync Filters kann zur Fehlfunktion des Gerätes und zu seiner Zerstörung führen.

GEFAHR

Jedes Power Modul muss eine eigene Sicherung mit 100 A haben, z. B. Typ gL oder gG (siehe Abschnitt 7.1).

7.4 Elektrischer Anschluss Sync Modul

7.4.1 Klemmenbezeichnungen

- X101: Kunden-IOs: Digitale Ein- und Ausgänge
- X102: Kundenschnittstelle: Relais 250 VAC
- X103, X104, X105: HS-Bus für zusätzliches Sync Modul (bis zu 3)
- X106: Rückkopplungssignale Lüfter
- X107: Netzversorgung von Sync Modul, 24 VDC
- X110: Eingang Messwandler
- S1: Schalter ein/aus
- LEDs: Anzeige-LEDs
- X111: Kunden-IOs: Digitale Ein- und Ausgänge
- X112: HS-Bus Port Nr. 1 für Power Modul
- X113: Serviceport RS485 Schnittstelle zu Ethernet Port
- X114: HS-Bus Port Nr. 2 für Power Modul
- X115: ModBus Daisy Chain RS485
- X116: Displaymodul Port
- X-PE: PE Anschluss

<u>Klemme X110 – Eingang Stromwandler</u> (Stromwandlermodul)

Wenn das Sync Modul installiert ist, werden die Stromwandleranschlüsse nur am Stromwandlermodul von SYNC300A verwendet.

Anschlüsse über die Power Module sind nicht erforderlich.

Beim SYNC300A erfolgt der Anschluss des Stromwandlers an die CTM-Schnittstelle X110 des Sync Moduls an einem einzigen Punkt.

Das Sync Modul überträgt die Strommessungen über den HSB an die installierten Power Module.

Schalter S1 – Schalter ein/aus

Um das Sync Modul ein- oder auszuschalten, wenn der Parameter P202 auf "Switch S1" (Schalter S1) gesetzt ist.

LEDs – Anzeige-LEDs

Um den Status des ecosine active sync Power Moduls und/oder Sync Moduls abzulesen, muss jede LED betrachtet werden. Die Anzeigen der LEDs sind aufgelistet in Tabelle 14.

51

7.4.2 Verbindung zwischen Sync Modul und Power Modulen

Die Verbindung zwischen dem Sync Modul (als SM bezeichnet) und den Power Modulen (als PM bezeichnet) erfolgt über die HSB-Anbindung an Klemme X112 und X114 des Sync Moduls und Klemme X12 und X14 der Power Module mit RJ45-Kabeln.

Der Anschluss des Sync Moduls muss genau wie in Abbildung 15 gezeigt vorgenommen werden. Andernfalls kann das Sync Modul die Power Module nicht korrekt lesen. Im ecosine active sync Schrank von Schaffner werden die Power-Module 1 bis 5 von unten nach oben installiert.

Abbildung 15 HSB-Anbindung zwischen Sync Modul und Power Modulen

7.5 Ecosine active sync Schrankversion – elektrische Anschlüsse

7.5.1 Lage der elektrischen Anschlussklemmen

Siehe detaillierte Zeichnung des unteren Schrankbereiches auf den folgenden Seiten.

Klemme	Beschreibung
XC1	Anschluss der Netzkabel
XC2	Anschluss von Stromwandlern
XC-N	Anschluss von Neutralleitern
XC-PE	Anschluss von Schutzerdeleitern

Klemme XC1 – Anschluss des 3-Phasen-Netzversorgungskabels mit L1, L2 und L3 (Phase A, Phase B und Phase C)

Klemme XC2 – Anschlüsse für externe Stromwandler (CT)

Hinweis:

Der Schrank wird in Standardausführung für sekundären 5 A CT-Ausgangsstrom konfiguriert.

Für CTs mit 1 A sekundärem Ausgangsstrom müssen die Terminierungen bei der Elektroninstallation neu verdrahtet werden (wie in Abbildung 21 21 dargestellt).

7.5.2 Anschluss des Drehstromnetzes

Das Gerät muss geerdet werden (Schutzerde an Klemme XC-PE unten links im Schrank anschließen). Die Anschlussquerschnitte für das Drehstromnetz und die Anzugsdrehmomente sind in Tabelle Tabelle 17 aufgeführt:

Tabelle 17 Anschlussquerschnitte und Drehmoment Netzanschluss

Gerät	Min. Anschlussquer-	Max. Anschlussquer-	Klemmenschraube und	
	schnitt	schnitt	Anzugsdrehmoment	
Ecosine active sync Schrankver- sion max. 300 A	1 x 185 mm ² pro Phase und PE 2 x 240 mm ² (N)	2 x 120 mm ² oder 1 x 240 mm ² pro Phase und PE 2 x 240 mm ² (N)		M10 19Nm (168,0 lbf in)

Bei der Wahl des Kabelquerschnittes müssen immer der korrekte Kabeltyp und die korrekte Verlegeart verwendet werden. Zur Sicherstellung der UL-Konformität müssen UL-gelistete Anschlusskabel (90 °C, AWG4 oder größer) sowie zum Kabel passende, UL-gelistete Kabelschuhe verwendet werden.

Korrekte Erdung sicherstellen

Eine unzureichende Erdung des ecosine active sync Filters kann zur Fehlfunktion des Gerätes und zu seiner Zerstörung führen.

Jedes Power Modul muss eine eigene Sicherung mit 100 A haben, z. B. Typ gL oder gG (siehe Abschnitt 7.1). Der Kunde hat sicherzustellen, dass die Sicherungen in Übereinstimmung mit den örtlichen Bestimmungen installiert sind.

7.6 Anschluss von Stromwandlern

GEFAHR DURCH STROMSCHLAG, EXPLOSION ODER LICHTBOGENÜBERSCHLAG

Den aktiven Oberschwingungsfilter vor dieser Arbeit spannungslos schalten.

Nichtbeachtung dieser Anweisungen führt zum Tod oder schweren Verletzungen.

GEFAHR DURCH FALSCHE MONTAGE

Reihenfolge der Phasen und Polarität der Stromsensoren einhalten und prüfen.

Nichtbeachtung dieser Anweisungen kann zu Verletzungen oder Sachschäden führen.

Gefährliche Spannung Lebensgefahr durch Kurzschlüsse und Stromschlag bei falschem Anschluss von Stromwandlern

VOR der Installation der Stromwandler, müssen sie auf der Sekundärseite mit Kurzschlussklemmen (nicht im Lieferumfang enthalten) kurzgeschlossen werden

Die Stromwandler kurzgeschlossen halten, bis

- die ecosine active sync Geräte mit den Anschlussklemmen verbunden sind
- die korrekte Verdrahtung des Sekundärkreises bestätigt wurde (5 A bzw. 1 A)

VOR dem Trennen von Stromwandlern von ecosine active sync Geräten müssen diese immer mit Kurzschlusssteckern kurzgeschlossen werden.

7.6.1 Anschluss von 3-Phasen-/3-Leiter-Geräten an sekundären 5-A-Stromwandlerausgang

Abbildung 16 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang

7.6.2 Anschluss von 3-Phasen-/3-Leiter-Geräten an sekundären 1-A-Stromwandlerausgang

Abbildung 17 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 1-A-Stromwandlerausgang

L1

L2

L3

N

Mains

L3 C

N

N

ecosine[®]

L1 A

L2 B

I III SCHAFFNER

shaping electrical power

7.6.3 Anschluss von 3-Phasen-/4-Leiter-Geräten an sekundären 5-A-Stromwandlerausgang

Abbildung 18 Anschluss 3-Phasen-/4-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang

K, S1

Phase L2, B

K, S1 I, 5A I, 1A K, S1 I, 5A I, 1A

Phase L1, A

I, 1A

I, 5A

Phase L3, C

L1

L2

L3

N

Mains

L1 A

L2 B

L3 C

N

N

ecosine[®]

I III SCHAFFNER

shaping electrical power

7.6.4 Anschluss von 3-Phasen-/4-Leiter-Geräten an sekundären 1-A-Stromwandlerausgang

Abbildung 19 Anschluss von 3-Phasen-/4-Leiter-Geräten an sekundären 1-A-Stromwandlerausgang

K, S1

Phase L2, B

K, S1 I, 5A I, 1A K, S1 I, 5A I, 1A

Phase L1, A

I, 1A

I, 5A

Phase L3, C

7.7 Stromwandlerspezifikation und Kabelauswahl

Für den korrekten Betrieb von ecosine active sync ist der Anschluss von **drei** externen Stromwandlern erforderlich. Dies ist unabhängig davon, ob ecosine active sync als 3-Phasen-/3-Leiter- oder 3-Phasen-/4-Leiter-Filter verwendet wird

Bitte beachten Sie folgende Hinweise bei der Installation der externen Stromwandler:

- Für den Betrieb eines ecosine active sync Moduls FN3531 oder FN3541 können Stromwandler auf der Netz- oder Lastseite des Filters installiert werden.
- Für die Double Power Packs FN3532 und FN3542 können Stromwandler entweder auf der Netz- oder auf der Lastseite installiert werden.
- Bei mehr als zwei parallel geschalteten Power Modulen bietet das Sync Modul SYNC300A die optimale und flexiblere Lösung. Bei dieser Konfiguration können die Stromwandler entweder auf der Netz- oder auf der Lastseite installiert werden. Darüber hinaus sind die PWM-Schaltmuster aller Power-Module synchronisiert, was zum niedrigsten Gehalt an Schaltfrequenzharmonischen führt.
- Bei mehr als zwei parallel geschalteten Power Modulen ohne Sync Modul, dürfen die Stromwandler nur an der Lastseite installiert werden. Bei Installationen mit Stromwandlern an der Netzseite sind spezielle Summenstromwandler erforderlich (weitere Informationen finden Sie im Dokument "Knowledge Base Information Nr. 002").
- I Für den korrekten Betrieb von ecosine active sync ist es zwingend erforderlich, separate Wandlerkreise zu verwenden. Es müssen eigene Stromwandler verwendet werden. Es ist nicht zulässig, Wandler zu verwenden, deren Signal gleichzeitig noch in andere, fremde Geräte eingeschleift wird (z. B. darf das Stromwandlerkabel nicht durch die Stromwandlerschleife oder andere Lasten geführt werden, die sich auf das Signal auswirken können).
- I Zwischen den externen Stromwandlern und der Anschlussklemme der Stromwandlermodulschnittstelle des ecosine active sync muss unbedingt ein Stromwandlerklemmenblock mit trennbaren Kurzschlussklemmen installiert werden (Klemmleiste X2 für Stromwandlermodul, X110 für Sync Modul). Diese sind notwendig, um im Servicefall die Stromwandler kurzzuschließen, bevor die Klemmleiste vom CT-Modul am ecosine active sync gelöst wird.
- I Die Verlustleistung der Stromwandlerverdrahtung muss bei der Auswahl der Stromwandlerleistung berücksichtigt werden. Siehe Tabelle 18 und Tabelle 19.
- Die Erdung eines sekundären Stromwandlerkreises ist zu vermeiden.
- I Die Stromwandleranschlusskabel müssen von den Leistungskabeln des ecosine active sync-Filters und anderer Lasten getrennt sein, damit das Sekundärsignal des Stromwandlers nicht gestört wird.
- Schaffner empfiehlt dringend, für die Sekundärsignale des Stromwandlers Kabel mit verdrillten Adernpaaren zu verwenden, damit das Stromwandlersignal nicht verzerrt wird. Bei großen Störungen in der Umgebung sind Kabel mit verdrillten Adernpaaren obligatorisch für den ordnungsgemäßen Betrieb der ecosine active sync-Filter.

Merkmal	Wert		
Ausgangsnennstrom	1 A oder 5 A		
Primärstrom	Für Stromsignale mit hohem Scheitelfak- tor muss der Primärstrom entsprechend dem Spitzenwert des Stromsignals aus- gewählt werden.		
	Nennstrom Stromwandler > I_{Spitze} / $\sqrt{2}$		
Genauigkeitsklasse	1.0 (oder besser)		
	Die resultierende Genauigkeit aus Wand- ler-Primärstrom und Wandlerklasse soll- te 10 % des AHF-Nennstroms nicht über- schreiten.		
	Beispiel 1:		
	CT 1000:5 A (Klasse 1.0), AHF 120 A		
	Genauigkeit 10 A (1 % von 1000 A) ≤ 12 A (10 % von 120 A) ⇔ ok		
	Beispiel 2:		
	CT 2000:5 A (Klasse 1.0), AHF 60A		
	Genauigkeit 20 A (1 % von 2000 A) ≥ 6 A (10 % von 60 A) ⇔ <mark>nicht ok</mark>		
	Beispiel 3: CT 2000:5 A (Klasse 0.5), AHF 120 A Genauigkeit 10 A (0,5 % von 2000 A) ≤ 12 A (10 % von 120 A) ⇔ ok		
Ausgangsleistung ¹	mind. 1,5 VA (1 ecosine active sync)		
	mind. 3,0 VA (2 ecosine active sync in Parallelbetrieb)		
	mind. 4,5 VA (3 ecosine active sync in Parallelbetrieb)		
	mind. 6,0 VA (4 ecosine active sync in Parallelbetrieb)		
	mind. 7,5 VA (5 ecosine active sync in Parallelbetrieb)		

¹Die Ausgangsleistung ist für den Stromwandler mit einem sekundärem Ausgangsstrom von 5 A definiert. Für Stromwandler mit einem sekundärem Ausgangsstrom von 1 A sollte die Ausgangsleistung des Stromwandlers geringer sein (d. h. ca. 0,25 VA pro Power Modul).

Tabelle 18 Leistungsbedarf bei Stromwandlerleitungen aus Kupfer und Stromwandler mit sekundärem Ausgang von 5A

Querschnitt	AWG	Abstand zwischen Stromwandler und ecosine active sync vs.					
		Sekundärlast an Stromwandler mit 5 A in VA (Litzenpaar)					
		(Hin und Rückleitung beachten!)					
		1 m	2 m	4 m	6m	8 m	10m
1,0 mm²	18	-	-	-	-	-	-
1,5 mm²	16	0.58	1.15	2.31	3.46	4.62	5.77
2,5 mm ²	14	0.36	0.71	1.43	2.14	2.86	3.57
4,0 mm ²	12	0.22	0.45	0.89	1.34	1.79	2.24
6,0 mm²	10	0.15	0.30	0.60	0.89	1.19	1.49
10,0 mm ²	8	0.09	0.18	0.36	0.54	0.71	0.89

Beispiel: Bei einer Entfernung zwischen Stromwandler und ecosine active sync von 4 Metern beträgt die Leitungslänge im Wandlerkreis 8 m. Bei Verwendung eines Leitungsquerschnitts von 2,5 mm² muss die Ausgangsleistung mindestens 2,86 VA betragen.

Tabelle 19 Leistungsbedarf bei Stromwandlerleitungen aus Kupfer und Stromwandler mit sekundärem Ausgang von 1A

Querschnitt	AWG	Abstand zwischen Stromwandler und ecosine active sync vs.					
		Sekundärlast an Stromwandler mit 1A in VA (Litzenpaar)					
		(Hin und Rückleitung beachten!)					
		10 m	20 m	40 m	60m	80 m	100m
1,0 mm²	18	0.35	0.71	1.43	2.14	2.85	3.57
1,5 mm²	16	0.23	0.46	0.92	1.39	1.85	2.31
2,5 mm ²	14	0.14	0.29	0.57	0.86	1.14	1.43
4,0 mm ²	12	0.09	0.18	0.36	0.54	0.71	0.89
6,0 mm²	10	0.06	0.12	0.24	0.36	0.48	0.60
10,0 mm ²	8	0.04	0.07	0.14	0.21	0.29	0.36

Beispiel: Bei einer Entfernung zwischen Stromwandler und ecosine active sync von 20 Metern beträgt die Leitungslänge im Wandlerkreis 40 m. Bei Verwendung eines Leitungsquerschnitts von 1,5 mm² muss die Ausgangsleistung mindestens 0,92 VA betragen.

7.8 Wandlerspezifikation für UL Konformität

Zur Sicherstellung der UL Konformität ist der Einsatz von UL-konformen, externen Stromwandlern vorgeschrieben.

Tabelle 20 Beispiel eines UL-konformen Stromwandlers

Hersteller	Stromwandlertyp
Flex Core	FCL-Serie

7.9 Anschluss von Stromwandlern

7.9.1 Wandleranschluss beim Betrieb von einem ecosine active sync Power Modul

Die Stromerfassung kann nur dann korrekt erfolgen, wenn die vorgegebene Richtung des Stromflusses von den Wandlern eingehalten wird und die Phasenzuordnung richtig ist. Die Wandlerverdrahtung beim Betrieb von einem Power Modul ist nachfolgend in Abbildung 20 für sekundärer Ausgangsstrom 5 A bzw. in Abbildung 21 für sekundärer Ausgangsstrom 1 A dargestellt.

Abbildung 20 Wandlerverdrahtung (5 A) bei einem Power Modul

Abbildung 21 Wandlerverdrahtung (1A) bei einem Power Modul

Abbildung 22 Stromwandlerinstallation auf der Lastseite für den Betrieb eines Power Moduls

Abbildung 23 Stromwandlerinstallation auf der Netzseite für den Betrieb eines Power Moduls

7.9.2 Wandleranschluss für den Betrieb eines Double Power Packs (DPP) ecosine active sync

Für die Konfiguration mit einem Double Power Pack (DPP) müssen die Stromwandler nur an ein Power Modul angeschlossen werden. Für DDP können die Stromwandler auf der Netz- oder Lastseite wie für den Betrieb mit einem einzigen Power Modul installiert werden.

Die Stromerfassung kann nur dann korrekt erfolgen, wenn die vorgegebene Richtung des Stromflusses von den Wandlern eingehalten wird und die Phasenzuordnung richtig ist. Die Wandlerverdrahtung beim Betrieb von einem Power Modul ist nachfolgend in Abbildung 20 für sekundärer Ausgangsstrom 5 A bzw. in Abbildung 21 für sekundärer Ausgangsstrom 1 A dargestellt.

Abbildung 24 Wandlerverdrahtung (5 A) für ein DDP, Stromwandler sind nur an einem Modul angeschlossen

Abbildung 25 Wandlerverdrahtung (1A) für ein DDP, Stromwandler sind nur an einem Modul angeschlossen

Abbildung 26 Stromwandlerinstallation auf der Lastseite für den Betrieb des DPP

Figure 27 Stromwandlerinstallation auf der Netzseite für den Betrieb des DPP

7.9.3 Wandleranschluss beim Betrieb des Sync Moduls und mehreren ecosine active sync Power-Modulen

Für die Konfiguration mit dem Sync Modul muss der Stromwandler nur an das Sync Modul angeschlossen werden.

Die Stromerfassung kann nur dann korrekt erfolgen, wenn die vorgegebene Richtung des Stromflusses von den Wandlern eingehalten wird und die Phasenzuordnung richtig ist. Die Wandlerverdrahtung beim Betrieb von einem Power Modul ist nachfolgend in Abbildung 20 für sekundärer Ausgangsstrom 5 A bzw. in Abbildung 21 für sekundärer Ausgangsstrom 1 A dargestellt.

Abbildung 28 Wandlerverdrahtung (5 A) für das Sync Modul

Abbildung 29 Wandlerverdrahtung (1A) für das Sync Modul

Abbildung 30 Stromwandlerinstallation auf der Lastseite für den Betrieb eines Sync Moduls und mehrerer Power Module

Abbildung 31 Stromwandlerinstallation auf der Netzseite für den Betrieb eines Sync Moduls und mehrerer Power Module

7.9.4 Wandleranschluss beim Parallelbetrieb von mehreren ecosine active sync Power Modulen ohne Sync Modul

Durch Parallelschaltung mehrerer ecosine active sync Geräte kann der verfügbare Kompensationsstrom erhöht werden. Dabei wird das Stromsignal der externen Wandler durch alle ecosine active sync Geräte gemäß nachfolgendem Schema durchgeschleift.

Bei mehr als 2 parallel geschalteten ecosine active sync Power-Modulen müssen die Stromwandler auf der Lastseite installiert werden. Für die Installation an der Netzseite muss obligatorisch das Sync Modul verwendet werden.

Abbildung 32 Wandlerverdrahtung (5 A) für parallelen Betrieb von bis zu fünf Power Modulen, kein Sync Modul

Abbildung 33 Wandlerverdrahtung (1 A) für parallelen Betrieb von bis zu fünf ecosine active sync Power Modulen

Abbildung 34 Stromwandlerinstallation auf der Lastseite für Parallelbetrieb mehrerer (> 2) ecosine active sync Module (FN3531 oder FN3541) ohne Sync Modul

Hinweis

Bedingt durch die maximale Leistung der externen Stromwandler dürfen maximal fünf ecosine active sync Geräte an einem Satz Stromwandler betrieben werden. Sollen mehr als fünf Geräte parallelgeschaltet werden, sind das Sync Modul oder weitere Stromwandler zu installieren.

Für den Parallelbetrieb mehrerer ecosine active sync ohne Sync Modul (außer bei DPP) müssen die Stromwandler auf der **Lastseite** des Filters installiert werden. Beim Betrieb mit Sync Modul können die Stromwandler entweder an der Last- oder an der Netzseite installiert werden.

Die Summe der Nennkompensationsströme aller Geräte im Parallelbetrieb ist bei Inbetriebnahme in **P320** einzugeben (siehe Abschnitt 9.1.2).

Hinweis

Für weitere Stromwandlerschaltungen sowie weitere Informationen zur Auslegung und dem Anschluss von Stromwandlern stehen in der Knowledge Base zwei Artikel zur Verfügung:

Knowledge base information No. 002 – Current transformer special applications Knowledge base information No. 011 – Current transformer installation

7.9.5 Erdung der Stromwandler

Eine einseitige Erdung der Stromwandler ist nach DIN VDE 0100 erst ab einer Betriebsspannung von 3 kV vorgeschrieben, um im Falle eines Isolationsfehlers das Betriebspersonal nicht zu gefährden. Bei Spannungen unter 3 kV ist eine Erdung der Stromwandler nicht erforderlich, sofern dies nicht für eine korrekte Messung notwendig ist. Wenn eine Erdung der Stromwandler erforderlich ist, sollte die Erdung folgendermaßen ausgeführt werden:

Hinweis

Die Erdung darf je Stromwandlerkreis nur einmal erfolgen!

Abbildung 35 Erdung der Stromwandler (optional)

7.9.6 Drehfeld der Stromwandler prüfen

Mit dem AHF-Viewer eine Einzelmessung starten und folgende Parameter anzeigen lassen:

Spannungen

- Momentanwert der Spannung in Phase 1 (P113)
- Momentanwert der Spannung in Phase 2 (P114)
- Momentanwert der Spannung in Phase 3 (P115)

Ströme je nach Installation der Stromwandler

1

Stromwandler auf der Lastseite:

- Laststrom Phase 1 (P133)
- Laststrom Phase 2 (P134)
- Laststrom Phase 3 (P135)

Stromwandler auf der Netzseite:

- Netzstrom Phase 1 (P123)
- Netzstrom Phase 2 (P124)
- Netzstrom Phase 3 (P125)

Wenn die Stromwandler korrekt angeschlossen sind, so ist das Drehfeld der Spannung und des Stromes gleich. Ist das Drehfeld entgegengesetzt, so sind zwei Stromwandler in den Phasen vertauscht.

Abbildung 36 Drehfeld von Strom und Spannung überprüfen

7.9.7 Phasenzuordnung der Stromwandler prüfen

Wenn das Drehfeld stimmt, kann mit den gleichen Messwerten die Phasenlage von Strom und Spannung überprüft werden.

Beispiel 1:

Phasenlage von Strom und Spannung stimmen überein.

Abbildung 37 Phase von Strom und Spannung richtig

Beispiel 2:

Phasenlage von Strom und Spannung ist um 180° verschoben. Hier sind die beiden Anschlüsse (S1 und S2) des Stromwandlers vertauscht oder der Stromwandler ist falsch eingebaut. Dies ist auf 2 verschiedene Arten ersichtlich. Zum einen zeigt es sich wie in Abbildung Abbildung 38 als entgegengesetzter Strom in Bezug auf die Spannungskurve der gleichen Phase. Ebenso wie in Abbildung Abbildung 39 ersichtlich, beim Einblenden aller 3 Ströme, durch einen lückenhaften Stromverlauf in dem nicht zu jeder positiven eine negative Stromkurve vorhanden ist.

Abbildung 38 Phase von Strom und Spannung um 180° verschoben

Abbildung 39 Stromwandler 1 um 180° phasenverschoben.

Beispiel 3:

Stromwandler der einzelnen Phasen sind vertauscht, dies macht sich bereits bei der Drehfeldprüfung bemerkbar. Im Vergleich von Strom und Spannung ist es ersichtlich, dass der Phasenversatz von Strom und Spannung mehr als 90° beträgt. Siehe Abbildung 40.

Abbildung 40 Stromwandler der Phase 1 und 3 sind vertauscht

7.10 HS-Bus-Anschluss (Master-Slave-Konfiguration)

Ein Double Power Pack besteht aus zwei über HS-Bus parallel geschalteten ecosine active sync Power Modulen. HS-Bus ermöglicht die Kommunikation zwischen den Modulen und die Arbeitslast wird gleichmäßig zwischen den beiden Modulen aufgeteilt.

Die HSB-Kommunikationsanbindung implementiert ein MASTER-SLAVE Punkt-zu-Punkt-Protokoll. Das MASTER-Gerät misst den externen Strom (Netz- oder Lastseite), der von den Stromreglern benötigt wird, und erzeugt die von den MASTER- und SLAVE-Geräten verwendete PWM-Modulation.

Konfigurationsschritte HS-Bus

Schritt 1: Master-Slave-Gerätezuordnung

Abbildung 41 Master-Slave-Gerätezuordnung

Schritt 2: Module parallel zum Netz anschließen

Schritt 3: Module über Klemme X12 verbinden

HSB zwischen dem Master- und dem Slave-Modul durch Verbinden von Klemme X12 beider Module mit einem Ethernet-CAT5-Kabel mit verdrillten Adernpaaren und RJ45-Verbindern und einer Länge unter 10 m einrichten.

Stromwandler können auf der Netz- oder Lastseite der Filter installiert werden, siehe Figure 27 und Abbildung 26.

Abbildung 42 Position von Klemme X12 am ecosine active sync Power Modul

Einrichtung Software:

Die Softwareeinstellungen müssen individuell konfiguriert werden, d. h. zwei separate Sessions in AHF Viewer werden benötigt, um sowohl MASTER- als auch SLAVE-Geräte einzurichten.

Schritt 4: Firmware-Version prüfen

Um die Firmware-Version des ecosine active sync Filtermoduls auszulesen, verbinden Sie das Zielgerät mit AHF Viewer; unter *Geräteparameter* / *0 Gerätedaten* zeigt der Parameter P010 die aktuelle Firmware-Version an.

Abbildung 43 Ecosine active sync Geräte-Firmware-Version in AHF Viewer.

Schritt 5: Master-Slave-Konfiguration

In AHF Viewer *Geräteparameter* | 2..5 *Inbetriebnahme* | *Grundeinstellungen* auf Parameter P205 (Betriebsart) doppelklicken.

Abbildung 44 Ecosine active sync DPP-Betrieb in Master/Slave-Konfiguration.

Wert	Beschreibung			
Asynchron	Einzelbetrieb oder asynchrone Betriebsart.			
Synch. Master	HSB Master-Konfiguration. In dieser Konfiguration muss das Power Modul über ein angeschlossenes Stromwandlermodul verfügen. In dieser Betriebsart (DDP) kompensieren beide Power Module 50 % der Oberschwingungen.			
Synch. Slave	 HSB Slave-Konfiguration. Das Power Modul agiert als SLAVE und benötigt kein Stromwandlermo- dul. Die Laststromwerte, die PWM-Modulation und die Grundregelfre- quenz folgen dem MASTER-Gerät. Bei der DPP-Konfiguration kompensiert das Power Modul nur 50 % des Netz-Klirrfaktors. 			
	Mit dem Sync Modul als MASTER wird jedes Power Modul automatisch vom Sync Modul eingestellt, um 1/n (wobei n die Gesamtanzahl der in- stallierten Power Module in Betrieb entspricht) des gesamten Kompen- sationsstroms zu kompensieren.			

Tabelle 21 Betriebsart, Parameter P205

8 Inbetriebnahme und Programmierung

Ecosine active sync Oberschwingungsfilter können mit dem Displaymodul und dem Tastenfeld in Betrieb genommen werden.

8.1 Funktionen Displaymodul

Abbildung 45 Displaymodul und Tastenfeld Die Tasten haben folgende Funktionen:

Taste		Funktion
•	I.	Zur tieferen Menüebene
•	l I	Zurück zur höheren Ebene, Menü verlassen
	I	Blättern innerhalb Infofenster
	l I	Eine Zeile aufwärts
	I	Wechsel zwischen Infofenstern
▼	l I	Eine Zeile abwärts
	I	Wechsel zwischen Infofenstern
ОК	- I	Parameter ändern
		Wert übernehmen
		Zur tieferen Menüebene
ESC		Auswahl verwerfen oder neuer Wert
	I	Zurück zum Home-Fenster

8.1.1 Boot-Fenster

Das Boot-Fenster erscheint bei jedem Start automatisch für einige Sekunden und zeigt das "Schaffner"-Logo.

8.1.2 Home-Fenster

Das Home-Fenster zeigt grundlegende Informationen zum AHF an.

Dies sind die Beschreibungen des Felder:

- Produktcode: eine Zeichenkette, die den Gerätetyp definiert
- AHF-Status: zeigt den aktuellen Status des AHF, entspricht dem Parameter P020
- Netzspannung: der Effektivwert der Netzspannung U12, entspricht dem Parameter P110
- Netzstrom: dies ist der Netzstrom, entspricht dem Parameter P120
- Geräteauslastung %: dies ist der prozentuale Wert des Ausgangsstroms des AHF, entspricht dem Parameter P104

8.1.3 Hauptmenü

I

Im Hauptmenü können Benutzer die verfügbaren Funktionen auswählen. Es besteht aus den folgenden fünf Punkten:

- AHF-Parameter
- Ereignisspeicher
- Parametersatz speichern
- Parametersatz laden
- Einstellungen

Abbildung 46Displaymodulanzeige, Hauptmenü

Abbildung 47 Displaymodulanzeige, Parameter

8.1.3.1 Parameter des ecosine active sync (AHF)

Im folgenden Abschnitt, wie auch im gesamten Dokument, wird die Bezeichnung AHF für das ecosine active sync Filter verwendet.

Tabelle 22 AHF-Parametermenü im Displaymodul

Ebene 1	Ebene 1 Ebene 2		Ebene 3			
AHF-vameter0Gerätedaten1Messwerte25Inbetriebnah-me6Alarme	0 002 003 1 100 102	Gerätedaten Nennstrom Überlaststrom Messwerte Netzfrequenz Cos phi				
	 2 5 3 4 gen 5	5 Inbetriebnahme Grundeinstellungen Messwandlereinstellungen Kompensationseinstellun- Experteneinstellungen	2 200 202 3 300 310	Grundeinstellungen Sprache Einschaltart Messwandlereinstellungen Stromwandlerplatzierung Primärwert Stromwandler		
	6	Alarme	4 gen 400 401 	Kompensationseinstellun - Blindleistung Unterer Grenzwert cos φ		
	600 615 	Phase L3 IGBT4 Überstrom L1				

8.1.3.2 Ereignisspeicher

Beim Öffnen des Ereignisspeichers lädt das Displaymodul die aktuellen Aufzeichnungen aus dem AHF herunter.

Durch Betätigen der Pfeile nach oben und unten kann durch die Ereignisliste gescrollt werden. Bei jedem Ereignis werden folgende Informationen aufgezeichnet:

- Status Datum
- Zeit

L

- Beschreibung
- Betriebsstunden

Abbildung 48 Displaymodulanzeige, Ereignisbeispiele

8.1.3.3 Parametersatz speichern

In diesem Menü haben Bediener Zugriff auf 10 Speicherplätze für Parametersätze. Wenn ein Speicherplatz bereits belegt ist, wird die entsprechende SW-Version des Parametersatzes neben der Datensatznummer angezeigt. Wenn der Speicherplatz leer ist, wird neben der Datensatznummer nichts angezeigt.

Durch Betätigen der rechten Pfeiltaste oder der OK-Taste können Bediener einen Parametersatz im ausgewählten Speicherplatz ablegen.

8.1.3.4 Parametersatz laden

In diesem Menü können Bediener alle verfügbaren Parametersätze einsehen, die zuvor gespeichert wurden. Wie zuvor wird auch hier die entsprechende SW-Version des Parametersatzes angezeigt.

Durch Betätigen der rechten Pfeiltaste oder der OK-Taste können Bediener einen ausgewählten Parametersatz in den AHF laden. Die SW-Version des AHF und die SW-Version des Parametersatzes müssen übereinstimmen. Andernfalls wird der Parametersatz nicht geladen und es wird eine Mitteilung angezeigt.

8.1.3.5 Einstellungen

In diesem Untermenü sind alle Einstellungen in Bezug auf das Displaymodul selbst aufgeführt. Es besteht aus den folgenden Einträgen:

Modbus

I

T

T

- Passwort
- Bildschirmschoner
- Information
- FW-Update
 - INI-Datei neu laden
 - Neustart

Abbildung 49Displaymodulanzeige, Einstellungen

Eintrag	Beschreibung
Modbus	Hier können Bediener die Modbus-Funktionen (Adresse, Baudrate und Frame Type) des Displaymoduls selbst konfigurieren. Die Modbus- Konfiguration des AHF muss separat über die entsprechenden Parame- ter und nicht in diesem Untermenü vorgenommen werden.
	Es ist zu beachten, dass die Modbus-Konfiguration des Displaymoduls und des AHF übereinstimmen müssen. Andernfalls funktioniert die Kommunikation zwischen den beiden Geräten nicht.
Passwort	Menü um das Passwort für den Zugriff auf Expertenparameter zu än- dern. Das Passwort ist nur für den Zugriff auf die Expertenparameter erforderlich und darf nur vom Schaffner Service-Team oder ausgewähl- ten Partnern verwendet werden. Zunächst muss das alte Passwort ein- gegeben und anschließend das neue Passwort zweimal eingegeben werden. Nach Betätigung der OK-Taste gibt das Displaymodul an, ob der Vorgang erfolgreich war oder nicht.
Bildschirmschoner	Menü um die Wartezeit des Bildschirmschoners zu ändern. Durch Betä- tigen der rechten Pfeiltaste oder der OK-Taste kann der numerische Wert der Wartezeit, um den Bildschirmschoner anzuzeigen verändert werden.
Information	Informationen zur Firmware. Seite 1 ist die Firmware des derzeit ange- zeigten Sync Moduls oder des Power Moduls. Seite 2 (Betätigen der nach unten Pfeiltaste für den Zugriff) zeigt die Firmwareinformationen des Displaymoduls an.
FW-Update	Zugriff für die Aktualisierung der Firmware des Displaymoduls.
	Hinweis: Die Firmware des Sync Moduls oder Power Moduls kann nicht durch dieses Display aktualisiert werden. Weitere Informationen finden Sie im Kapitel 11.
INI-Datei neu laden	Zugriff, um ggf. das Laden der INI-Datei zu erzwingen.
Neustart	Wählen, um das Displaymodul neuzustarten.

8.2 Möglichkeiten der Inbetriebnahme mittels Software

8.2.1 Inbetriebnahme über Ethernet

Die Inbetriebnahme über eine Ethernet-Schnittstelle oder RS485 kann durch Verbinden eines PCs mit dem Bedienprogramm AHF Viewer durchgeführt werden (siehe Abschnitt 10.2.2).

8.2.2 Inbetriebnahme über Displaymodul

Für die Inbetriebnahme des ecosine active sync über ein Displaymodul siehe Abschnitt 8.1 und Tabelle 22.

8.3 Vorgehen bei Inbetriebnahme

Hinweis zur Inbetriebnahme mit AHF-Viewer (PC Inbetriebnahmesoftware)

Wir empfehlen immer die neuste Version der PC-Inbetriebnahmesoftware AHF-Viewer zu verwenden. Die Software kann auf unserer Website <u>www.schaffner.com</u> unter Downloads/Software heruntergeladen werden.

8.3.1 Allgemeine Schritte für alle Konfigurationen

- 1. Umgebungsbedingungen prüfen
 - Umgebungstemperatur < 40 °C (Schrank) bzw. 50 °C (Power Modul), bei höheren Temperaturen bis maximal 55 °C wird das Gerät in den Derating-Modus wechseln.
 - Aufstellhöhe < 1000 m, bei größeren Aufstellhöhen muss die Ausgangsleistung in Parameter P510 per Derating begrenzt werden.

$$P510 = 100 - \frac{(Altitude - 1000m)}{100}$$

- Belüftung des Raumes bzw. Schaltschrankes überprüfen, ob ausreichend Kühlluft vorhanden ist.
- Sicherstellen, dass die Umgebungsbedingungen aus Abschnitt 4 (Umgebungsbedingungen) eingehalten werden und kein leitfähiger Staub in das ecosine active sync gelangen kann.
- Die Effektivwert der Netzspannung muss innerhalb von 480 V ± 10 % liegen, was einer maximalen Spannungsspitze von 746 Vpk entspricht
- Sofern vorhanden, müssen die Kommutierungseinbrüche nach den Berechnungen gemäß IEEE 519 akzeptierbar sein (weitere Informationen und Beispiele sind im Anhang 18.1 zu finden).
- 2. Sicherstellen, dass der elektrische Anschluss korrekt ausgeführt wurde. Folgende Voraussetzungen müssen erfüllt sein.
 - Externe Absicherung ist installiert, siehe Abschnitt 7.1.
 - Sicherstellen, dass die Erdung korrekt ausgeführt wurde, Leitungsquerschnitt überprüfen.

- Netzphasen L1, L2 und L3 sind korrekt angeschlossen (siehe Abschnitt 7.5.2).
- Leitungsquerschnitt der Phasenleiter überprüfen
- Leitungsquerschnitt des Neutralleiters überprüfen (bei 4-Leiter-Geräten)
- Anzugsmomente der Leiter prüfen
- 3. Stromwandler überprüfen
 - Externe Stromwandler für alle drei Netzphasen sind korrekt angeschlossen, Einbauort, Stromflussrichtung und Phasenzuordnung sind in Ordnung (siehe Abschnitt 7.6).
 - Prüfen, ob die Leistung der Stromwandler für die Anwendung geeignet ist, siehe Abschnitt 7.7.
 - Prüfen, ob die Stromwandler korrekt an die Eingangsklemmen des Geräts angeschlossen sind (5A- oder 1A-Eingang). ACHTUNG! Fehlerhafter Anschluss der Stromwandler kann zu Schäden im Stromwandlermodul führen!
- 4. Montageabstände und Bedingungen überprüfen (Power Modul und Schrank)
 - Minimaler Montageabstand bei Wandmontage siehe Abschnitt 6.1.4.
 - Minimaler Montageabstand für Schaffner Schrankversion siehe Abschnitt 6.5.
 - Minimaler Montageabstand für kundenspezifische Schränke.
- 5. Vor dem ersten Einschalten
 - Prüfen, ob die Zwischenkreiskondensatoren formiert werden müssen, wenn das Produktionsdatum mehr als ein Jahr zurückliegt. (siehe Abschnitt 17.1)
 - Kurzschlussklemmen der externen Stromwandler entfernen
 - Steuerung des ecosine active sync abschalten: Klemme X11.2 = offen (weder 0 V noch +24 V dürfen an X11.2 anliegen)
- 6. Netzspannung einschalten und warten, bis die grüne LED2 blinkt (siehe Tabelle 14) und der ecosine active sync den Status AUS anzeigt.
 - Alle Modbus-Adressen der miteinander verbundenen Module auf verschiedene Werte stellen
 - Wir empfehlen, dieselbe Adresse für den Service (P230) und den Display-Modbus (P250) zu verwenden
 - Wir empfehlen die Nummer zu verwenden, die der Modulnummer entspricht
 - Sicherstellen, dass alle RS-485-Anschlüsse zwischen den ecosine active sync Power Modulen und den Sync Modulen (sofern installiert) richtig verbunden sind
 - Jetzt sind ein normaler Betrieb und Parametereinstellungen möglich

In den folgenden Absätzen hängt die Vorgehensweise bei der Inbetriebnahme von der Konfiguration Ihres aktiven Oberschwingungsfilters ab.

Die Anwendungsparameter P300, P310 und P312 müssen in jedem Power Modul (Einzelmodule oder Double Power Pack) unabhängig von der Filterkonfiguration mit den korrekten Anwendungswerten eingestellt werden. Wenn das Sync Modul im AHF-System installiert wird, dürfen die Parameter nur auf dem Sync Modul eingestellt werden.

8.3.2 Ein Power Modul oder asynchroner Betrieb

- 1. Prüfen, ob der Zwischenkreis korrekt vorgeladen wird sowie Netzspannung und Frequenz korrekt ermittelt werden. (Hinweis: Es fließt ein kurzzeitiger Ladestrom in den Zwischenkreis.)
 - P100 = 50 Hz (60 Hz) Netzfrequenz
 - P110, P111, P112 = 342... 528 V Netzspannungen
 - P109: Sicherstellen, dass das Drehfeld bei allen Power Modulen identisch ist
- 2. Werkseinstellung setzen
 - P210 = Laden Standardwerte
 - P220 = Datum und Uhrzeit setzen
- 3. Ecosine active sync Parameter der Anwendung entsprechend einstellen (genaue Bedeutung der Parameter siehe Abschnitt 9):
 - P300: Positionierung der externen Stromwandler (Netzseite, Lastseite)
 - P310: Wert des Primärstroms der externen Stromwandler
 - P312: Wert des Sekundärstroms der externen Stromwandler

P300, P310 und P312 müssen in jedem Power Modul unabhängig von der Filterkonfiguration mit den korrekten Anwendungswerten eingestellt werden.

Die folgenden Parameter müssen wie unten aufgeführt eingestellt werden:

- P205: Parallelbetrieb = Asynchron
- P320: Summe der Nenn-Kompensationsströme der insgesamt an einem Stromwandlersatz angeschlossenen ecosine active sync Power Module (maximal 5 Geräte).
 Sollen mehr als 5 Geräte gleichzeitig betrieben werden, muss die Leistung der Stromwandler erhöht werden, oder es müssen weitere Stromwandler installiert werden.
- 4. Prüfen, ob die angezeigten Werte plausibel sind. Für die Motorlast müssen die Werte positiv und etwa gleich groß sein:
 - P102 = cosφ hat einen plausiblen Wert
 - Aktiven Leistungswert je Phase prüfen:
 - P105 = + ... kW? Leistung L1
 - P106 = + ... kW? Leistung L2
 - P107 = + ... kW? Leistung L3
 - P105 ≈ P106 ≈ P107? Sind alle Werte positiv?

- Die Phasenspannungen und -ströme durch eine Messung mit der Oszilloskopfunktion des AHF-Viewer daraufhin überprüfen, ob diese Phasen gleich sind (siehe Abschnitte 7.9.6 und 7.9.7).
- Anderenfalls ist eine Prüfung der Verdrahtung und Parametrierung des Stromwandlers erforderlich, außer es handelt sich um eine Generatorlast.
- 5. Prüfen auf deaktivierte Kompensation (Diese Parameter werden standardmäßig auf AUS eingestellt, wenn die Werkseinstellung (Punkt 2. oben) geladen werden):
 - P403: Blindleistungsregelung = AUS
 - P405: Lastsymmetrierung = AUS
 - P410: Oberschwingungskompensation = AUS
- 6. Steuerung ecosine active sync einschalten:
 - P202 = Klemmleiste
 - Klemme X11.2 = 0 V oder offen => Befehl AUS
 - Klemme X11.2 = +24 V => Befehl EIN (z. B. von externer SPS)
 - P202 = Schalter S1, Steuerschalter S1 auf der Frontplatte des Gerätes verwenden
 - P202 = Direkt EIN (Filter ist immer eingeschaltet)
- 7. Die gewünschte Kompensationsart aktivieren:
 - P400: Grad der Blindleistungskompensation = 0 ... 100%
 - P401: min. cos phi = -0,7 ... +0,7
 - P402: max. cos phi = -0,7 ... +0,7
 - P403: Blindleistungsregelung
 - P405: Lastsymmetrierung

- P407: Priorität an der Lastgrenze
- P410: Oberschwingungskompensation
- 8. Kompensationsgrade P421 und Pxyz (xyz = 421+(3*n), mit n = 1, 2, ..., 23), einstellen
- 9. Bei Bedarf Standbyschwelle (P406) anpassen
- 10. Mit einem geeigneten Messgerät prüfen, ob das Ergebnis der Kompensation auf der Netzseite korrekt ist

8.3.3 Betrieb des Double Power Packs (DPP)

1. Bei beiden Power Modulen prüfen, ob der Zwischenkreis korrekt vorgeladen wird sowie Netzspannung und Frequenz korrekt ermittelt werden. (Hinweis: Es fließt ein kurzzeitiger Ladestrom in den Zwischenkreis.)

 P100
 = 50 Hz (60 Hz) Netzfrequenz

 P110, P111, P112
 = 342... 528 V Netzspannungen

- P109: Sicherstellen, dass das Drehfeld bei beiden Power Modulen identisch ist
- P010 "FPGA Firmware Version" muss bei allen Power Modulen identisch sein

P026 "Netzanschluss" muss bei allen Power Modulen identisch sein

P230 "Service - MB-Adresse" muss bei allen Power Modulen und dem Sync Modul unterschiedlich sein

I III SCHAFFNER

shaping electrical power

- P250 "Display MB-Adresse" muss bei allen Power Modulen und dem Sync Modul unterschiedlich sein
- 2. Werkseinstellung bei beiden Power Modulen setzen
 - P210 = Laden Standardwerte
 - P220 = Datum und Uhrzeit setzen
- 3. Ecosine active sync Parameter bei beiden Power Modulen der Anwendung entsprechend einstellen (genaue Bedeutung der Parameter siehe Abschnitt 9):
 - P300: Positionierung der externen Stromwandler (Netzseite, Lastseite)
 - P310: Wert des Primärstroms der externen Stromwandler
 - P312: Wert des Sekundärstroms der externen Stromwandler
 P300, P310 und P312 müssen in jedem Power Modul unabhängig von der Filterkonfiguration mit den korrekten Anwendungswerten eingestellt werden.

Die folgenden Parameter müssen wie unten aufgeführt eingestellt werden:

- a. Master Power Modul (FN3531/FN3541 mit Stromwandlermodul):
 - P205: Parallelbetrieb = Synch. Master
 - P320: Gesamtstrom parallel = 120A
- b. Slave Power Modul (FN3530/FN3540):
 - P205: Parallelbetrieb = Synch. Slave
 - P320: Gesamtstrom parallel = 120A
- 4. Prüfen, ob die angezeigten Werte plausibel sind. Für die Motorlast müssen die Werte positiv und etwa gleich groß sein.
 - P102 = cosφ hat einen plausiblen Wert
 - Aktiven Leistungswert je Phase prüfen:
 - o P105 = + ... kW? Leistung L1
 - P106 = + ... kW? Leistung L2
 - o P107 = + ... kW? Leistung L3
 - P105 ≈ P106 ≈ P107? Sind alle Werte positiv?
 - Die Phasenspannungen und -ströme durch eine Messung mit der Oszilloskopfunktion des AHF-Viewer daraufhin überprüfen, ob diese Phasen gleich sind (siehe Abschnitte 7.9.6 und 7.9.7).
 - Anderenfalls ist eine Prüfung der Verdrahtung und Parametrierung des Stromwandlers erforderlich, außer es handelt sich um eine Generatorlast.
- 5. Prüfen auf deaktivierte Kompensation (Diese Parameter werden standardmäßig auf AUS eingestellt, wenn die Werkseinstellung (Punkt 2. oben) geladen werden):
 - P403: Blindleistungsregelung = AUS
 - P405: Lastsymmetrierung = AUS
 - P410: Oberschwingungskompensation = AUS
- 6. Steuerung ecosine active sync bei beiden Modulen einschalten:
 - P202 = Klemmleiste

Т

L

- Klemme X11.2 = 0 V oder offen => Befehl AUS
- Klemme X11.2 = +24 V => Befehl EIN (z. B. von externer SPS)
- P202 = Schalter S1, Steuerschalter S1 auf der Frontplatte des Gerätes verwenden
- P202 = Direkt EIN (Filter ist immer eingeschaltet)

7. Die gewünschte Kompensationsart aktivieren:

- P400: Grad der Blindleistungskompensation = 0 ... 100%
- P401: min. cos phi = -0,7 ... +0,7
- P402: max. cos phi = -0,7 ... +0,7
- P403: Blindleistungsregelung
- P405: Lastsymmetrierung
- P407: Priorität an der Lastgrenze
- P410: Oberschwingungskompensation
- 8. Kompensationsgrade P421 und Pxyz (xyz = 421 + (3*n), mit n = 1, 2, ..., 23), einstellen
- 9. Bei Bedarf Standbyschwelle (P406) anpassen
- 10. Mit einem geeigneten Messgerät prüfen, ob das Ergebnis der Kompensation auf der Netzseite korrekt ist

8.3.4 Betrieb des Sync Moduls (mit installiertem SYNC300A)

Hinweis! Das Sync Modul (SM) hat eine andere Firmware als das Power Modul (PM).

1. Bei jedem Power Modul prüfen, ob der Zwischenkreis korrekt vorgeladen wird sowie Netzspannung und Frequenz korrekt ermittelt werden. (Hinweis: Es fließt ein kurzzeitiger Ladestrom in den Zwischenkreis.)

 P100
 = 50 Hz (60 Hz) Netzfrequenz

 P110, P111, P112
 = 342... 528 V Netzspannungen

- P109: Sicherstellen, dass das Drehfeld bei allen Power Modulen identisch ist
- P010 "FPGA Firmware Version" muss bei allen Power Modulen identisch sein
- P026 "Netzanschluss" muss bei allen Power Modulen identisch sein
- P230 "Service MB-Adresse" muss bei allen Power Modulen und dem Sync Modul unterschiedlich sein
- P250 "Display MB-Adresse" muss bei allen Power Modulen und dem Sync Modul unterschiedlich sein
- 2. P220 "Datum und Uhrzeit" bei jedem Power Modul einstellen

Folgende Einstellungen müssen nur beim Sync Modul vorgenommen werden:

- 3. Die Werkseinstellungen beim Sync Modul vornehmen
 - P210 = Com.-Werte beibehalten
 - P220 = Datum und Uhrzeit setzen
- Das Sync Modul auf die richtige Firmware überprüfen. Die Sync Modul (SM) Firmware beginnt mit V04.01.xx und ist mit der Power Modul (PM) Firmware V03.02.xx kompatibel
- 5. Am Sync Modul überprüfen, ob die Netzspannung und die Frequenz korrekt bestimmt wurden

 P100
 = 50 Hz (60 Hz) Netzfrequenz

 P110, P111, P112
 = 342... 528 V Netzspannungen

- 6. Am Sync Modul überprüfen, ob alle Power Module korrekt erkannt werden:
 - P032 "Anz. installierter PM": Die Anzahl installierter Power Module muss der Gesamtanzahl der installierten Power Module entsprechen
 - P033 "Anz. erkannter PM": Die Anzahl erkannter Power Module muss der Gesamtanzahl der installierten Power Module entsprechen
 - P034 "Anz. funktionaler PM": Die Anzahl funktionaler Power Module muss der Gesamtanzahl der installierten Power Module entsprechen
 - P040 "SM1 Betriebszustand" = entladen
- 7. Den Status des Power Moduls überprüfen, der auf dem Sync Modul gemeldet wird
 P041 bis P045 "PM1-x Betriebszustand" = "entladen" für installierte Module
 P041 bis P045 "PM1-x Betriebszustand" = "inaktiv" für nicht installierte Module
- 8. WENN Schritte 6-7 nicht korrekt sind, wie folgt vorgehen:
 - Die HSB-Verdrahtung überprüfen, in Übereinstimmung mit Abbildung 15
 - Starten einer neuen Erkennung des HSB mit P203 "HSB Konfig. aktiv" = HSB Konfig. aktiv
- 9. Die ecosine active sync Parameter auf dem Sync Modul für die Anwendung entsprechend einstellen:
 - P300: Positionierung der externen Stromwandler (Netzseite, Lastseite)
 - P310: Wert des Primärstroms der externen Stromwandler
 - P312: Wert des Sekundärstroms der externen Stromwandler
 - P320: Summe der Nenn-Kompensationsströme der insgesamt an einem Stromwandlersatz angeschlossenen ecosine active sync Power Module (maximal 5 Geräte).
 Sollen mehr als 5 Geräte gleichzeitig betrieben werden, muss die Leistung der Stromwandler erhöht werden, oder es müssen weitere Stromwandler installiert werden.
- 10. Prüfen, ob die angezeigten Werte plausibel sind. Für die Motorlast müssen die Werte positiv und etwa gleich groß sein:

I

Т

T

T

- P102 = cosφ hat einen plausiblen Wert
- Aktiven Leistungswert je Phase prüfen:
 - P105 = + ... kW? Leistung L1
 - P106 = + ... kW? Leistung L2
 - P107 = + ... kW? Leistung L3
- P105 ≈ P106 ≈ P107? Sind alle Werte positiv?
- Die Phasenspannungen und -ströme durch eine Messung mit der Oszilloskopfunktion des AHF-Viewer daraufhin überprüfen, ob diese Phasen gleich sind (siehe Abschnitte 7.9.6 und 7.9.7).
- Anderenfalls ist eine Prüfung der Verdrahtung und Parametrierung des Stromwandlers erforderlich, außer es handelt sich um eine Generatorlast.
- 11. Prüfen auf deaktivierte Kompensation (wird beim Setzen der Standardwerte in Punkt 7 (Werkseinstellung setzen) automatisch eingestellt):
 - P403: Blindleistungsregelung = AUS
 - P405: Lastsymmetrierung = AUS
 - P410: Oberschwingungskompensation = AUS
- 12. Blindstrom Sync Modul einstellen
 - P593 "Test Blind-Kur" = 30
 - Wenn P593 eingestellt ist, muss der Filter mit P202 eingeschaltet werden
- 13. Eine Trace-Einzelmessung mit folgenden Signalen starten und überprüfen, ob alle Ströme identisch sind und keine Phasenverschiebung zur Spannung oder untereinander besteht. Andernfalls die Netzanschlüsse zu den Modulen überprüfen:

```
P153 "Netzspannung U1"
P705 "PM1-1 Strom L1"
P710 "PM1-2 Strom L1"
P715 "PM1-3 Strom L1"
P720 "PM1-4 Strom L1"
P725 "PM1-5 Strom L1"
```

P593 "Test Blindstrom" = 0 zurücksetzen – Kein Blindstrom durch das Sync Modul erzeugt
Filter mit P202 ausschalten, bevor P593 zurückgesetzt wird
P593 "Test Blind-Kur" = 0

- 15. Sync Modul-Steuerung einschalten:
 - P202 = Klemmleiste
 - Klemme X11.2 = 0 V oder offen => Befehl AUS
 - Klemme X11.2 = +24 V => Befehl EIN (z. B. von externer SPS)

P202 = Schalter S1, Steuerschalter S1 auf der Frontplatte des Gerätes verwenden

- P202 = Direkt EIN (Filter ist immer eingeschaltet)
- 16. Die gewünschte Kompensationsart aktivieren:
 - P400: Grad der Blindleistungskompensation = 0 ... 100%
 - P401: min. cos phi = -0,7 ... +0,7
 - P402: max. cos phi = -0,7 ... +0,7

L

- P403: Blindleistungsregelung
- P405: Lastsymmetrierung
- P407: Priorität an der Lastgrenze
 - P410: Oberschwingungskompensation
- 17. Kompensationsgrade P421 und Pxyz (xyz = 421 + (3*n), mit n = 1, 2, ..., 23), einstellen
- 18. Bei Bedarf Standbyschwelle (P413) anpassen
- 19. Mit einem geeigneten Messgerät prüfen, ob das Ergebnis der Kompensation auf der Netzseite korrekt ist

8.4 Statusmeldung

Displaymeldung	Bedeutung	Hinweis
Initialize	Anfangsstatus direkt nach dem Einschalten	Initialisierung von Steuerung und Schutzvorrich- tungen; Systemprüfung; Prüfung der externen Spannungen und Ströme
Discharged	AUS-Status nach ABSCHALTEN und nach INIT	Kein Fehler; ecosine active sync bereit für Start; P559 = 0 (Status entladen, siehe Abbildung 50).
Precharge	Passives Laden des Zwi- schenkreises	Startet passives Laden durch Schließen der Hilfs- schütze: Zwischenkreis wird über Netzspannung geladen; Einschaltstrom wird durch Ladewider- stände begrenzt
Close main	Schließen des Netzschüt- zes	Überbrückt Ladewiderstände und wartet 3 Sekun- den
aus	Status AUS nach Vorla- den	Vorladen ist abgeschlossen; ecosine active sync betriebsbereit; P559 = 1 (Status AUS).
Standby	Standby-Status bei ge- ringer Last	Der ecosine active sync geht in den Standby-Status über, wenn der ecosine active sync eingeschaltet wird und der Laststrom kleiner als die Standby- Schwelle ist (P406 = 0100 % vom Nennstrom)
Charge	Aktives Laden des Zwi- schenkreises	Der Zwischenkreis wird auf die Zwischenkreis- Zielspannung aufgeladen. Oberschwingungskom- pensation ist deaktiviert, d. h. der ecosine active sync generiert nur Ladestrom.
		P559=1: Filter wartet im Status AUS, bis der Benut- zer AHF durch Senden des Befehls EIN oder über Schalter S1 einschaltet. Dann wechselt der Filter- status auf Standby, dann auf Laden und IGBTs schalten; P559 = 0: Filter beginnt, IGBTs nach Erhalt des Befehls EIN vom Benutzer automatisch zu schalten (bei P559 = 0); AHF ist im entladenen Zustand; bei Erhalt des Befehls EIN ändert sich der Status des Filters zu Precharge (Vorladung), Close Main (Netz- schütz schließen), Off (Aus), Standby und letztlich zu Charge (Laden).

Operation	Normalbetrieb	Kompensation von Lastströmen gemäß Bediener- einstellungen
Error	Fehlerzustand	Fehlerprotokollierung; Fehlerrücksetzung; automatischer Neustart nach Fehlerbehebung
Restart blocked	Neustart nach Fehler blockiert	Fehlerzustand nach mehreren wiederholt auftre- tenden Fehlern. Neustart des ecosine active sync über AUS/EIN.
Fatal error	Neustart nach Fehler nicht möglich	Fehlerzustand nach schwerem Fehler. Ecosine active sync vom Netz trennen. Schaffner Service kontaktieren.

Tabelle 23 AHF-Status

Aktivität	AHF-Status
AHF ans Netz anschließen	Init \rightarrow Entlade \rightarrow Vorladen \rightarrow Netzschütz schließen \rightarrow Laden \rightarrow Betrieb
AHF ist ausgeschaltet	Laden (AHF-Hilfsgeräte werden über den Zwi- schenkreis gespeist; Steuerung in Betrieb; Zwi- schenkreis ist geladen!!) Dieser Status ist "Leerlauf", wenn AHF vom Be- nutzer ausgeschaltet wird.
AHF einschalten	$AUS \rightarrow Laden \rightarrow Betrieb$
AHF ausschalten	$Betrieb \to AUS$

Abbildung 50 Ecosine active sync Status und Zwischenkreis-Spannungspegel beim Starten und im Normalbetrieb

8.5 Fehlermeldung

Der ecosine active sync Filter wird nach dem Auftreten eines Fehlers immer abgeschaltet. Nach der Fehlerbehebung wird der ecosine active sync nach 3 s neu gestartet.

Wenn mehrere Fehler in einem kurzen Zeitraum auftreten, wird der Neustart des ecosine active sync blockiert. Ein Neustart des ecosine active sync kann durch den Bediener über AUS/EIN angestoßen werden. Vor dem Neustart wird eine Untersuchung des Fehlers dringend empfohlen. Schaffner Service kontaktieren, wenn die Grundursache des Fehlers nicht ermittelt werden kann.

Wenn ein schwerer Fehler (z. B. interner HW-Fehler) erkannt wird, wird der Neustart dauerhaft blockiert. Ecosine active sync vom Netz trennen und Schaffner Service kontaktieren.

Abbildung 51 Fehlerbehandlung

Fehler werden in Parameter P6XX angezeigt (siehe Abschnitt 9.1.4) und dauerhaft im Fehlerprotokoll gespeichert. Der Bediener kann in Parameter P6XX nur unbehandelte Fehler sehen. Behobene Fehler werden im Fehlerprotokoll erfasst.

Wenn Fehlermeldungen angezeigt werden, sollten diese (vor der Fehlerbehebung) mit folgendem Verfahren dokumentiert werden:

- Abzug aller Parameter mit dem AHF Viewer des ecosine active sync während der Fehler noch aktiv ist, um gegebenenfalls Fehlercodes nicht durch einen Reset zu verlieren.
- Abzug des Eventlog mit dem AHF Viewer des ecosine active sync, um vorhergehende Fehler analysieren zu können.
- Speichern dieser beiden Dateien für spätere Fehleranalyse.

Т

Eventuell weitere Informationen notieren.

9 Parameterliste

Nachfolgend sind die Parameter des AHF aufgelistet und detailliert beschrieben. Die Parameter sind in zwei Kategorien aufgeteilt:

- Parameter mit Lesezugriff: Informationen, Messwerte oder Fehlermeldungen; sie können nicht geändert werden.
- Parameter: z. B. Parameter für die Inbetriebnahmen, Wartung und Einstellung; diese sind standardmäßig auf Werkseinstellungen gesetzt und können bei Bedarf während der Inbetriebnahme geändert werden.

Parametergruppe	Bedeutung	Bemerkungen
POXX	Gerätespezifikation	Nur lesender Zugriff
		Anzeige der Gerätedaten (Nennstrom, Überlast- strom,)
P1XX	Messwerte	Nur lesender Zugriff
		Anzeige der Messwerte (Netzspannung, Netz- strom, Laststrom, Filterstrom, Zwischenkreis- spannung,)
P2XX	Grundeinstellungen	Inbetriebnahmeparameter
		(Einstellungen von Sprache, Datum etc.)
РЗХХ	Messwandlereinstellungen	Inbetriebnahmeparameter
		(Einstellungen von Messwandlerplatzierung, Übersetzungsverhältnis, Parallelschaltung von ecosine active sync,)
P4XX	Kompensationseinstellungen	Inbetriebnahmeparameter
		(Aktivierung von Blindleistungskompensation, Optionen für Oberschwingungskompensation,)
P6XX	Fehlermeldung	Nur lesender Zugriff
		Anzeige von Fehlermeldungen

9.1 Parameterliste des Sync Moduls

9.1.1 Power Modul Parametergruppe POXX, P1XX: Messwerte und Informationen (nur Lesezugriff)

Nr.	Parameter	Einheit	Beschreibung
002	Nennstrom	А	Nennstrom Gerät
003	Überlaststrom	А	Max. Überlaststrom – Scheitelwert
004	Nennspannung	V	Nennspannung des aktiven Filters
			480 Vac für FN3530/31
			400 Vac für FN3540/41
005	Überstromgrenze	А	Maximale Stromspitze
008	MAC-Adresse		MAC-Adresse
010	FPGA-Firmware Ver.		Firmware-Version der FPGA-Steuerung
011	MCF51-Firmware Rev.		MCF51-Firmware-Revision
014	Softwarekompatibilität		Prüfung Softwarekompatibilität, (0=kompatibel, sonstige=inkompatibel)
015	Serialnummer		Serialnummer des Geräts
016	SN Steuertafel		Serialnummer der Steuertafel
020	Betriebszustand		Betriebszustand
021	Fehler-Grundursache		Anzeige Fehlernummer (P6xy => Error- Num 6xy) von unbehandelten Fehlern
022	Warnung		Warnung
023	Erw. Betriebszustand		Erweiterter Betriebszustand
024	Kalibrierstatus Strom- wandler		Kalibrierstatus Stromwandlermodul
025	Gerätename		Gerätename
026	Netzanbindung		Auswahl Art der Netzanbindung
027	ID Gerätetyp		Identifikationsnummer Gerätetyp
028	Variation Gerätetyp		Variation Gerätetyp
029	HW ID Steuertafel		HW ID Steuertafel

Nr.	Parameter	Einheit	Beschreibung
030	Betriebsstunden	h	Anzahl der Betriebsstunden
031	Verbunden mit Versor- gung	h	Dieser Zähler erfasst die Zeit, in der der PM mit dem Netz verbunden ist
040	Status HSB-Link		Status des HSB-Link
100	Netzfrequenz	Hz	Netzfrequenz
102	Cos phi		Verschiebungsfaktor
103	Zwischenkreisspannung	V	Zwischenkreisspannung des Geräts.
104	Geräteauslastung	%	Geräteauslastung, bezogen auf Nennstrom.
105	Wirkleistung L1	kW	Wirkleistung der Phase L1
106	Wirkleistung L2	kW	Wirkleistung der Phase L2
107	Wirkleistung L3	kW	Wirkleistung der Phase L3
109	Drehfeld		Richtung des Drehfeldes
110	Netzspannung effektiv U12	V	Effektivwert der Netzspannung U12
111	Netzspannung effektiv U23	V	Effektivwert der Netzspannung U23
112	Netzspannung effektiv U31	V	Effektivwert der Netzspannung U31
113	Netzspannung U12	V	Momentanwert Netzspannung U12
114	Netzspannung U23	V	Momentanwert Netzspannung U23
115	Netzspannung U31	V	Momentanwert Netzspannung U31
120	Netzstrom effektiv L1	А	Effektivwert Netzstrom, Phase L1
121	Netzstrom effektiv L2	А	Effektivwert Netzstrom, Phase L2
122	Netzstrom effektiv L3	А	Effektivwert Netzstrom, Phase L3
123	Netzstrom L1	А	Momentanwert Netzstrom L1
124	Netzstrom L2	А	Momentanwert Netzstrom L2

Nr.	Parameter	Einheit	Beschreibung
125	Netzstrom L3	А	Momentanwert Netzstrom L3
126	Netzstrom effektiv N	А	Netzstrom effektiv, Neutralleiter
127	Netzstrom N	А	Momentanwert Netzstrom, Neutralleiter
130	Effektivwert Laststrom L1	А	Effektivwert Laststrom, Phase L1
131	Effektivwert Laststrom L2	А	Effektivwert Laststrom, Phase L2
132	Effektivwert Laststrom L3	А	Effektivwert Laststrom, Phase L3
133	Laststrom L1	А	Momentanwert des Laststroms, Phase L1
134	Laststrom L2	А	Momentanwert des Laststroms, Phase L2
135	Laststrom L3	А	Momentanwert des Laststroms, Phase L3
136	Effektivwert Laststrom N	А	Effektivwert Laststrom Neutralleiter
137	Laststrom N	А	Momentanwert Laststrom Neutralleiter
138	Max. Ausgangsstrom	А	Momentanwert des maximalen Aus- gangsstroms aller Phasen
139	Effektivwert Laststrom Neutralleiter	А	Effektivwert max. Ausgangsstrom 3 Pha- sen
140	Effektivwert Ausgangs- strom L1	А	Effektivwert Gerätestrom L1
141	Effektivwert Ausgangs- strom L2	А	Effektivwert Gerätestrom L2
142	Effektivwert Ausgangs- strom L3	А	Effektivwert Gerätestrom L3
143	Ausgangsstrom L1	А	Momentanwert Ausgangsstrom L1
144	Ausgangsstrom L2	А	Momentanwert Ausgangsstrom L2
145	Ausgangsstrom L3	А	Momentanwert Ausgangsstrom L3
146	Effektivwert Ausgangs- strom N	А	Effektivwert Gerätestrom Neutralleiter

Nr.	Parameter	Einheit	Beschreibung
147	Ausgangsstrom N	А	Momentanwert Gerätestrom Neutrallei- ter
148	Effektivwert max. Aus- gangsstrom	А	Effektivwert max. Ausgangsstrom aller Phasen
149	Effektivwert Blindstrom	А	Effektivwert Grundblindstrom
150	Netzspannung effektiv U1	V	Netzspannung effektiv L1 bis N
151	Netzspannung effektiv U2	V	Netzspannung effektiv L2 bis N
152	Netzspannung effektiv U3	V	Netzspannung effektiv L3 bis N
153	Netzspannung U1	V	Momentanwert Netzspannung L1 bis N
154	Netzspannung U2	V	Momentanwert Netzspannung. L2 bis N
155	Netzspannung U3	V	Momentanwert Netzspannung L3 bis N
160	THDu Netzspannung U12	%	Oberschwingungsgehalt Netzspannung U12
161	THDu Netzspannung U23	%	Oberschwingungsgehalt Netzspannung U23
162	THDu Netzspannung U31	%	Oberschwingungsgehalt Netzspannung U31
166	THDu UNetz	%	Verzerrungsfaktor des Momentanwerts der Netzspannung
170	THDi-Strom L1	%	Oberschwingungsgehalt Netzspannung L1
171	THDi-Strom L2	%	Oberschwingungsgehalt Netzspannung L2
172	THDi-Strom L3	%	Oberschwingungsgehalt Netzspannung L3
175	THDu-Referenz	%	THDu-Referenz in % im Standby, mindes- tens 5 %

		L	
Nr.	Parameter	Einheit	Beschreibung
176	Unterer Grenzwert THDu	%	Erkennung Spannungsresonanz, unterer Grenzwert
177	Oberer Grenzwert THDu	%	Erkennung Spannungsresonanz, oberer Grenzwert
178	Ergebnis CT-Prüfung		Ergebnis der Stromwandlerprüfung
180	IGBT-Modultemperatur	°C	Modultemperatur in Grad Celsius
181	Gerätetemperatur	°C	Gerätetemperatur in Grad Celsius
182	Übertemperaturschwelle	°C	Schwelle für Abschalten bei Übertempe- ratur
183	Deaktivierte Oberschw.		Deaktivierte Oberschwingungsregler, codiert nach Reihenfolge
184	Spitzenw. Ausgang OberschwRegler	V	Spitzenwert Oberschwingungsregler
190	Drehzahl Lüfter 1	100*min-1	Drehzahl Lüfter1
191	Drehzahl Lüfter 2	100*min-1	Drehzahl Lüfter2
192	Drehzahl Lüfter 3	100*min-1	Drehzahl Lüfter3
195	CPU-Auslastung		nur für Experten
196	Befehl EIN		Status Einschaltbefehl
197	Externer Trigger		Trace-Trigger von externen Geräten von HSB erhalten
198	Signal "EIN"		Signal zum Triggern des Schalters (Flanke 0 -> 1)
			Flag = 1, wenn IGBTs schalten
199	Signal "Globaler Fehler"		Signal zum Triggern des Schalters (Flanke 0 -> 1)
			Flag = 1 bei Fehler

Nr.	Parameter	Werkseinstellung	Beschreibung
200	Sprache	Englisch	Im externen Displaymodul angezeigte Spra- che: Deutsch Englisch Chinesisch Französisch
202	Einschaltart	Klemmleiste	Definition der Einschaltart: Klemmleiste Direkt EIN Direkt AUS Schalter S1 SyncModul HSB
205	Parallelbetr. Sync.	Asynchron	Sychronisationsart von parallel betriebenen Geräten Asynchron Synch. Master Synch. Slave Wenn 202 = SyncModul HSB, P205 = Syn- chron Slave
210	Standardwerte	Keine Aktion	Satz von Standardwerten: Keine Aktion Alle Werte laden Kommunikationswerte beibehalten
220	Datum und Uhrzeit		Systemdatum und -zeit
230	Service – MB-Adresse	1	Modbus Slave ID für Service-Schnittstelle X13

9.1.2 Power Modul Parametergruppe P2XX, P3XX: Inbetriebnahmeparameter

Nr.	Parameter	Werkseinstellung	Beschreibung
231	Service – MB-Baudrate	38400	Modbus-Baudrate (8N1) für Service- Schnittstelle X13
			9600
			19200
			38400
			57600
			115200
234	Bootloader-Port	Service	Portauswahl Bootloader (Service X13, Dis- play X15)
			Service
			Display
240	IP-Adresse	192.168.1.2	IP-Adresse
241	DHCP	AUS	Zuweisung der IP-Adresse durch DHCP- Server
			AUS
			EIN
242	Subnetzmaske	255.255.255.0	Subnetzmaske
243	Standardgateway	192.168.1.50	Standardgateway
250	Display – MB-Adresse	1	Modbus Slave ID für Display-Schnittstelle X15, X16
251	Display - MB-Baudrate	38400	Modbus-Baudrate (8N1) für Display- Schnittstelle X15, X16 9600 19200 38400 57600 115200

Nr.	Parameter	Werkseinstellung	Beschreibung
254	Display-Modbus aktivie- ren	EIN	MODBUS auf seriellem Display-Port X15/X16 aktivieren AUS EIN
255	24-V-Display aktivieren	EIN	Speisung 24V-Display in X16 aktivieren AUS EIN
256	24-V-Display zurücksetzen	Kein Rücksetzen	Speisung 24V-Display in X16 zurücksetzen Kein Rücksetzen Rücksetzen

Konfiguration der E/A-Schnittstelle des Kunden auf Klemme X11:

260	Funktion X11.2	Feste logische 0	Eingang: High = Ein, Offen/Low = Aus
			Ausgang: High = ausgewahlte Funktion
			Ausgangsfunktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating Betrieb
			Derating Temperatur
			Status globaler Fehler
			Eingangsfunktion
			Befehl Ein Aus
			Befehl Beenden
261	Polarität X11.2	low active	Polarität des Digitalausgangs X11.2 (1=high active/0=low active)
			low active
			high active

Nr.	Parameter	Werkseinstellung	Beschreibung
262	Konfiguration X11.2	Eingang	Konfiguration für digitalen Port X11.2 ein- stellen (0=Eingang, 1=Ausgang) Eingang Ausgang
263	Funktion X11.3	Derating Betrieb	Eingang: High = Ein, Offen/Low = Aus Ausgang: High = ausgewählte Funktion Feste logische 0 Feste logische 1 Status Betrieb Status Standby Volllastbetrieb Derating Betrieb Derating Temperatur Status globaler Fehler Befehl Ein Aus Befehl Beenden
264	Polarität X11.3	high active	Polarität des Digitalausgangs X11.3 (1=high active/0=low active) low active high active
265	Konfiguration X11.3	Ausgang	Konfiguration für digitalen Port X11.3 ein- stellen (0=Eingang, 1=Ausgang) Eingang Ausgang

Nr.	Parameter	Werkseinstellung	Beschreibung
266	Funktion X11.4	Status Standby	Relaisausgang 1, geschlossen = ausgewählte FunktionFeste logische 0Feste logische 1Status BetriebStatus StandbyVolllastbetriebDerating BetriebDerating TemperaturStatus globaler FehlerBefehl Ein AusBefehl Beenden
267	Polarität X11.4	Schließer	Polarität Relaisausgang X11.4 (1 = Öffner, 0 = Schließer) Schließer Öffner
268	Funktion X11.5	Status globaler Fehler	Relaisausgang 2, geschlossen = ausgewählte FunktionFeste logische 0Feste logische 1Status BetriebStatus StandbyVolllastbetriebDerating BetriebDerating TemperaturStatus globaler FehlerBefehl Ein AusBefehl Beenden

Nr.	Parameter	Werkseinstellung	Beschreibung
269	Polarität X11.5	Öffner	Polarität Relaisausgang X11.5 (1 = Öffner, 0 = Schließer)
			Schließer
			Öffner
Strom	wandlerkonfiguration:		
300	Stromwandlerplatzierung	AUS	Platzierung der externen Stromwandler Netzseite
			Lastseite AUS
310	Primärwert Stromwandler	1000A	Skalenendwert des Primärstroms des exter- nen Stromwandlers.
312	Sekundärwert Strom- wandler	: 5A	Skalenendwert des Sekundärstroms des externen Stromwandlers.
			: 1A : 5A
313	CT-Prüfung	EIN	Aktivieren/Deaktivieren der Stromwandler- prüfung
			AUS EIN
320	Gesamtstrom parallel	60A	Gesamtstrom aller parallelen Geräte:
			60A, wenn nur ein Power Modul installiert ist.
			Einzugebender Wert in diesem Parameter = 60A x Anzahl der angeschlossenen Power Module

Nr.	Parameter	Werkseinstellung	Beschreibung
400	Blindleistung	100%	Grad der Blindleistungskompen- sation 0 100 %
401	Unterer Grenzwert $\cos \varphi$	1.0	Vorgabe der Untergrenze des netzseitigen cos-φ-Sollbereichs

9.1.3 Power Modul Parametergruppe P4XX: Kompensationseinstellungen

Es kann immer nur einer der beiden cos-φ-Regelungen in Parameter 403 aktiviert werden:

- P400 direkte Blindleistungskompensation in Prozent. Die Blindstromkompensation hängt von P400 ab (0 % bis 100 %). Schnelle IQ-Regelung kompensiert den vorgegebenen prozentualen Wert der aktuell gemessenen Blindleistung.
- cos-phi-Steuerung. Die cos-phi-Steuerung hängt von den vorgegebenen prozentualen Werten in Parameter P401 (unterer Grenzwert) und P402 (oberer Grenzwert) ab und hält

402	max. cos phi	1.0	Vorgabe der Obergrenze des netzseitigen cos-φ-Sollbereichs
403	Blindleistungsregelung	AUS	Aktivierung der Blindleistungs- regelung (schnelle IQ-Regelung oder cos-phi-Regelung) AUS Blindstromsteuerung cos-phi-Regelung

Nr.	Parameter	Werkseinstellung	Beschreibung
405	Lastsymmetrierung	AUS	Aktivierung oder Deaktivierung der Lastsymmetrierung zwischen den Phasen AUS EIN
406	Standbyschwelle	0%	Standbyschwelle für gemessene Oberschwingung (Effektivwert)
407	Priorisierung an Lastgren- ze	Oberschwingungen	Priorisierung der Kompensation bei Erreichen der Lastgrenze Keine Blindstrom Oberschwingungen
410	Oberschwingungen	AUS	Aktivierung der Betriebsart Oberschwingungskompensation. AUS EIN
420	Ordnungszahl A	3	Ordnungszahl Regler A (übli- cherweise gilt A = 3)
421	Kompensation A	0 % für FN3530/31 80% für FN3540/41	Einstellbarer Kompensations- grad Oberschwingung A (übli- cherweise gilt A = 3)
423	Ordnungszahl B	5	Ordnungszahl Regler B (übli- cherweise gilt B = 5)
424	Kompensation B	80%	Einstellbarer Kompensations- grad Oberschwingung B (übli- cherweise gilt B = 5)
426	Ordnungszahl C	7	Ordnungszahl Regler C (übli- cherweise gilt C = 7)

Nr.	Parameter	Werkseinstellung	Beschreibung
427	Kompensation C	80%	Einstellbarer Kompensations- grad Oberschwingung C (übli- cherweise gilt C = 7)
429	Ordnungszahl D	9	Ordnungszahl Regler D (übli- cherweise gilt D = 9)
430	Kompensation D	0 % für FN3530/31 50% für FN3540/41	Einstellbarer Kompensations- grad Oberschwingung D (übli- cherweise gilt D = 9)
432	Ordnungszahl E	11	Ordnungszahl Regler E (übli- cherweise gilt E = 11)
433	Kompensation E	50%	Einstellbarer Kompensations- grad Oberschwingung E (übli- cherweise gilt E = 11)
435	Ordnungszahl F	13	Ordnungszahl Regler F (übli- cherweise gilt F = 13)
436	Kompensation F	40%	Einstellbarer Kompensations- grad Oberschwingung F (übli- cherweise gilt F = 13)
438	Ordnungszahl G	15	Ordnungszahl Regler G (übli- cherweise gilt G = 15)
439	Kompensation G	0%	Einstellbarer Kompensations- grad Oberschwingung G (übli- cherweise gilt G = 15)
441	Ordnungszahl H	17	Ordnungszahl Regler H (übli- cherweise gilt H = 17)
442	Kompensation H	30%	Einstellbarer Kompensations- grad Oberschwingung H (übli- cherweise gilt H = 17)
444	Ordnungszahl I	19	Ordnungszahl Regler I (übli- cherweise gilt I = 19)
445	Kompensation I	20%	Einstellbarer Kompensations- grad Oberschwingung I (übli- cherweise gilt I = 19)

Nr.	Parameter	Werkseinstellung	Beschreibung
447	Ordnungszahl J	21	Ordnungszahl Regler J (übli- cherweise gilt J = 21)
448	Kompensation J	100% für FN3530/31 0 % für FN3540/41	Einstellbarer Kompensations- grad Oberschwingung J (übli- cherweise gilt J = 21)
450	Ordnungszahl K	23	Ordnungszahl Regler K (übli- cherweise gilt K = 23)
451	Kompensation K	15%	Einstellbarer Kompensations- grad Oberschwingung K (übli- cherweise gilt K = 23)
453	Ordnungszahl L	25	Ordnungszahl Regler L (übli- cherweise gilt L = 25)
454	Kompensation L	15%	Einstellbarer Kompensations- grad Oberschwingung L (übli- cherweise gilt L = 25)
456	Ordnungszahl M	27	Ordnungszahl Regler M (übli- cherweise gilt M = 27)
457	Kompensation M	0%	Einstellbarer Kompensations- grad Oberschwingung M (übli- cherweise gilt M = 27)
459	Ordnungszahl N	29	Ordnungszahl Regler N (übli- cherweise gilt N = 29)
460	Kompensation N	10%	Einstellbarer Kompensations- grad Oberschwingung N (übli- cherweise gilt N = 29)
462	Ordnungszahl O	31	Ordnungszahl Regler O (übli- cherweise gilt O = 31)
463	Kompensation O	10%	Einstellbarer Kompensations- grad Oberschwingung O (übli- cherweise gilt O = 31)
465	Ordnungszahl P	33	Ordnungszahl Regler P (übli- cherweise gilt P = 33)

Nr.	Parameter	Werkseinstellung	Beschreibung
466	Kompensation P	0%	Einstellbarer Kompensations- grad Oberschwingung P (übli- cherweise gilt P = 33)
468	Ordnungszahl Q	35	Ordnungszahl Regler Q (übli- cherweise gilt Q = 35)
469	Kompensation Q	0%	Einstellbarer Kompensations- grad Oberschwingung Q (übli- cherweise gilt Q = 35)
471	Ordnungszahl R	37	Ordnungszahl Regler R (übli- cherweise gilt R = 37)
472	Kompensation R	0%	Einstellbarer Kompensations- grad Oberschwingung R (übli- cherweise gilt R = 37)
474	Ordnungszahl S	39	Ordnungszahl Regler S (übli- cherweise gilt S = 39)
475	Kompensation S	0%	Einstellbarer Kompensations- grad Oberschwingung S (übli- cherweise gilt S = 39)
477	Ordnungszahl T	41	Ordnungszahl Regler T (übli- cherweise gilt T = 41)
478	Kompensation T	0%	Einstellbarer Kompensations- grad Oberschwingung T (übli- cherweise gilt T = 41)
480	Ordnungszahl U	43	Ordnungszahl Regler U (übli- cherweise gilt U = 43)
481	Kompensation U	0%	Einstellbarer Kompensations- grad Oberschwingung U (übli- cherweise gilt U = 43)
483	Ordnungszahl V	45	Ordnungszahl Regler V (übli- cherweise gilt V = 45)
484	Kompensation V	0%	Einstellbarer Kompensations- grad Oberschwingung V (übli- cherweise gilt V = 45)

Nr.	Parameter	Werkseinstellung	Beschreibung
486	Ordnungszahl W	47	Ordnungszahl Regler W (übli- cherweise gilt W = 47)
487	Kompensation W	0%	Einstellbarer Kompensations- grad Oberschwingung W (übli- cherweise gilt W = 47)
489	Ordnungszahl X	49	Ordnungszahl Regler X (übli- cherweise gilt X = 49)
490	Kompensation X	0%	Einstellbarer Kompensations- grad Oberschwingung X (übli- cherweise gilt X = 49)

9.1.4 Power Modul Parametergruppe P6XX: Fehlermeldung

Nr.	Parameter	Beschreibung
600	Phase L3 IGBT4	Phase L3 IGBT4 HW-Fehler
601	Phase L3 IGBT3	Phase L3 IGBT3 HW-Fehler
602	Phase L3 IGBT2	Phase L3 IGBT2 HW-Fehler
603	Phase L3 IGBT1	Phase L3 IGBT1 HW-Fehler
604	Phase L2 IGBT4	Phase L2 IGBT4 HW-Fehler
605	Phase L2 IGBT3	Phase L2 IGBT3 HW-Fehler
606	Phase L2 IGBT2	Phase L2 IGBT2 HW-Fehler
607	Phase L2 IGBT1	Phase L2 IGBT1 HW-Fehler
608	Phase L1 IGBT4	Phase L1 IGBT4 HW-Fehler
609	Phase L1 IGBT3	Phase L1 IGBT3 HW-Fehler
610	Phase L1 IGBT2	Phase L1 IGBT2 HW-Fehler
611	Phase L1 IGBT1	Phase L1 IGBT1 HW-Fehler
615	Überstrom L1	Überstrom in Phase L1 (Spitzenwert)
616	Überstrom L2	Überstrom in Phase L2 (Spitzenwert)
617	Überstrom L3	Überstrom in Phase L3 (Spitzenwert)
618	Überstrom RMS	RMS-Strom ist höher als maximal zulässiger RMS-Strom
620	Zwischenkreisspannung nicht erreicht	Zwischenkreisspannung am Ende des passi- ven Ladens NICHT erreicht
621	Zwischenkreisspannung nicht erhöht	Zwischenkreisspannung während des passi- ven Ladens NICHT erhöht
622	Zwischenkreisspannung zu gering	Zwischenkreisspannung während des passi- ven Ladens ist zu gering
623	Zwischenkreisspannung zu hoch	Zwischenkreis-Überspannung; SW- Erkennung

Nr.	Parameter	Beschreibung
624	Max. Zwischenkreisspannung zu hoch	Zwischenkreis-Überspannung; HW- Erkennung
625	Zwischenkreisspannung asymmetrisch	Zwischenkreisspannung asymmetrisch
626	Zwischenkreisspannung instabil	Zwischenkreisspannung am Ende des passi- ven Ladens NICHT stabil
627	Timeout Vorladen	Timeout während des passiven Ladens
630	Übertemperatur IGBT	Übertemperatur an IGBT
635	Lüfterfehler	Sammelfehler: Einer der drei Lüfter befindet sich im Fehlerzustand.
636	Lüfterdrehzahl falsch	Sammelfehler: Einer der drei Lüfter hat eine zu geringe Drehzahl.
640	Keine Netzsynchronisierung	Fehler Netzsynchronisierung
641	Fehler Drehfeld Netz	Kein Drehfeld oder Drehung gegen den Uhr- zeigersinn erkannt
642	Fehler Netzanschluss	4-Leiter-/3-Leiter-Verbindung NICHT korrekt
643	RMS-Netzspannung zu hoch	RMS-Netzspannung ist zu hoch
644	RMS-Netzspannung zu gering	RMS-Netzspannung ist zu gering
646	Netzspannung zu hoch	Momentanwert der Netzspannung ist zu hoch
647	Interner Spannungsfehler	Sammelfehler: Eine der internen Span- nungsversorgungen liefert falsche Span- nung.
650	Grenzwert OberschwRegler erreicht	Gerät aufgrund der Erkennung von Netz- stromresonanz ausgeschaltet
651	Resonanz THDu	Gerät aufgrund der Erkennung von Netz- spannungsresonanz ausgeschaltet
655	SW nicht kompatibel	Software ist nicht mit der Hardware- Revision kompatibel
656	Überlauf Steuerungsaufgaben	Überlauf der Steuerungs-Interrupts
657	Fehler Hochgeschwindigkeitsbus	Verbindung zu Hochgeschwindigkeitsbus unterbrochen
658	Relaisfehler Vorladung	Relaisfehler in der Vorladung oder Strom- fühler defekt

Nr.	Parameter	Beschreibung
660	HW-Sammelfehler	HW-Sammelfehler
680	HW-Fehler aktiv	Aktivierte Fehler-Flags in uFault- Lines_Enable.
681	ErrorWord aktiv	Bitmaske aktiver schneller Fehler-Flags. 1 = aktiviert 0 = deaktiviert
682	ErrorWordSlow aktiv	Bitmaske aktiver langsamer Fehler-Flags. 1 = aktiviert 0 = deaktiviert
691	Statuswort Gerät	Statuswort des Geräts bzgl. Resonanzerken- nung, Lastgrenzensituation, Derating
694	Fehler-Flags Hardware	Fehler-Flags für erkannte HW-Ereignisse (32 Fehler-Flags)

9.1.5	Power Modul	Parametergruppe	P8XX:	FFT-Messwerte
-------	-------------	-----------------	-------	----------------------

Nr.	Parameter	Beschreibung
800	FFT-Auswahl	FFT-Auswahl
801	FFT-Spitze H1	FFT-Spitze H1
802	FFT-Spitze H2	FFT-Spitze H2
803	FFT-Spitze H3	FFT-Spitze H3
804	FFT-Spitze H4	FFT-Spitze H4
805	FFT-Spitze H5	FFT-Spitze H5
806	FFT-Spitze H6	FFT-Spitze H6
807	FFT-Spitze H7	FFT-Spitze H7
808	FFT-Spitze H8	FFT-Spitze H8
809	FFT-Spitze H9	FFT-Spitze H9
810	FFT-Spitze H10	FFT-Spitze H10
811	FFT-Spitze H11	FFT-Spitze H11
812	FFT-Spitze H12	FFT-Spitze H12
813	FFT-Spitze H13	FFT-Spitze H13
814	FFT-Spitze H14	FFT-Spitze H14
815	FFT-Spitze H15	FFT-Spitze H15
816	FFT-Spitze H16	FFT-Spitze H16
817	FFT-Spitze H17	FFT-Spitze H17
818	FFT-Spitze H18	FFT-Spitze H18
819	FFT-Spitze H19	FFT-Spitze H19
820	FFT-Spitze H20	FFT-Spitze H20
821	FFT-Spitze H21	FFT-Spitze H21
822	FFT-Spitze H22	FFT-Spitze H22
823	FFT-Spitze H23	FFT-Spitze H23
824	FFT-Spitze H24	FFT-Spitze H24
825	FFT-Spitze H25	FFT-Spitze H25
826	FFT-Spitze H26	FFT-Spitze H26
827	FFT-Spitze H27	FFT-Spitze H27

Nr.	Parameter	Beschreibung
828	FFT-Spitze H28	FFT-Spitze H28
829	FFT-Spitze H29	FFT-Spitze H29
830	FFT-Spitze H30	FFT-Spitze H30
831	FFT-Spitze H31	FFT-Spitze H31
832	FFT-Spitze H32	FFT-Spitze H32
833	FFT-Spitze H33	FFT-Spitze H33
834	FFT-Spitze H34	FFT-Spitze H34
835	FFT-Spitze H35	FFT-Spitze H35
836	FFT-Spitze H36	FFT-Spitze H36
837	FFT-Spitze H37	FFT-Spitze H37
838	FFT-Spitze H38	FFT-Spitze H38
839	FFT-Spitze H39	FFT-Spitze H39
840	FFT-Spitze H40	FFT-Spitze H40
841	FFT-Spitze H41	FFT-Spitze H41
842	FFT-Spitze H42	FFT-Spitze H42
843	FFT-Spitze H43	FFT-Spitze H43
844	FFT-Spitze H44	FFT-Spitze H44
845	FFT-Spitze H45	FFT-Spitze H45
846	FFT-Spitze H46	FFT-Spitze H46
847	FFT-Spitze H47	FFT-Spitze H47
848	FFT-Spitze H48	FFT-Spitze H48
849	FFT-Spitze H49	FFT-Spitze H49

9.2 Parameterliste des Sync Moduls

9.2.1 Sync -Modul Parametergruppe POXX, P1XX: Messwerte und Informationen (nur Lesezugriff)

Nr.	Parameter	Einheit	Beschreibung
002	Nennstrom	А	Nennstrom Gerät
003	Überlaststrom	A	Max. Überlaststrom – Scheitel- wert
004	Nennspannung	V	Nennspannung des aktiven Oberschwingungsfilters 480 Vac für 3-Leiter 400 Vac für 4-Leiter
005	Überstromgrenze	А	Maximale Stromspitze
008	MAC-Adresse		MAC-Adresse
010	FPGA-Firmware Ver.		Firmware-Version der FPGA- Steuerung
011	MCF51-Firmware Rev.		MCF51-Firmware-Revision
014	Softwarekompatibilität		Prüfung Softwarekompatibilität
			(0=kompatibel, sonsti- ge=inkompatibel)
015	Serialnummer		Serialnummer des Geräts
016	SN Steuertafel		Serialnummer der Steuertafel
020	Betriebszustand		Betriebszustand
021	Fehler-Grundursache		Anzeige Fehlernummer (P6xy => ErrorNum 6xy) von unbe- handelten Fehlern
022	Warnung		Warnung
023	Erw. Betriebszustand		Erweiterter Betriebszustand
024	Kalibrierstatus Stromwandler		Kalibrierstatus Stromwandler- modul
025	Gerätename		Gerätename
026	Netzanbindung		Auswahl Art der Netzanbindung
029	HW ID Steuertafel		HW ID Steuertafel

Nr.	Parameter	Einheit	Beschreibung
030	Betriebsstunden	h	Betriebsstunden aktive Kom- pensation
031	Verbunden mit Versorgung	h	Stunden insgesamt, die das Gerät an das Netz angeschlos- sen ist
032	Anz. installierter PM		Anzahl installierter Power Mo- dule
033	Anz. erkannter PM		Anzahl erkannter Power Modu- le
034	Anz. funktionaler PM		Anzahl funktionaler Power Mo- dule
035	Anz. aktiver PM		Anzahl aktiver Power Module
040	SM1 Betriebszustand		Betriebszustand des Systems SM1 mit bis zu 5 PM
041	PM1-1 Betriebszustand		Betriebszustand PM1 von SM1
042	PM1-2 Betriebszustand		Betriebszustand PM2 von SM1
043	PM1-3 Betriebszustand		Betriebszustand PM3 von SM1
044	PM1-4 Betriebszustand		Betriebszustand PM4 von SM1
045	PM1-5 Betriebszustand		Betriebszustand PM5 von SM1
046	SM2 Betriebszustand		Betriebszustand des Systems SM2 mit bis zu 5 PM
052	SM3 Betriebszustand		Betriebszustand des Systems SM3 mit bis zu 5 PM
058	SM4 Betriebszustand		Betriebszustand des Systems SM4 mit bis zu 5 PM
100	Netzfrequenz	Hz	Netzfrequenz
102	Cos phi		Verschiebungsfaktor
103	Zwischenkreisspannung	V	Zwischenkreisspannung des Geräts.
104	Geräteauslastung	%	Geräteauslastung, bezogen auf Nennstrom.
105	Wirkleistung L1	kW	Effektive Wirkleistung, Phase L1
106	Wirkleistung L2	kW	Effektive Wirkleistung, Phase L2

Nr.	Parameter	Einheit	Beschreibung
107	Wirkleistung L3	kW	Effektive Wirkleistung, Phase L3
108	Zwischenkreisspannung roh	V	Zwischenkreisspannung roh
109	Drehfeld		Richtung des Drehfeldes
110	Netzspannung effektiv U12	V	Effektivwert der Netzspannung U12
111	Netzspannung effektiv U23	V	Effektivwert der Netzspannung U23
112	Netzspannung effektiv U31	V	Effektivwert der Netzspannung U31
113	Netzspannung U12	V	Momentanwert Netzspannung U12 zwischen den Leitungen
114	Netzspannung U23	V	Momentanwert Netzspannung U23 zwischen den Leitungen
115	Netzspannung U31	V	Momentanwert Netzspannung U31 zwischen den Leitungen
120	Netzstrom effektiv L1	A	Effektivwert Netzstrom, Phase L1
121	Netzstrom effektiv L2	A	Effektivwert Netzstrom, Phase L2
122	Netzstrom effektiv L3	А	Effektivwert Netzstrom, Phase L3
123	Netzstrom L1	A	Momentanwert des Netz- stroms, Phase L1
124	Netzstrom L2	A	Momentanwert des Netz- stroms, Phase L2
125	Netzstrom L3	A	Momentanwert des Netz- stroms, Phase L3
126	Netzstrom effektiv N	A	Netzstrom effektiv, Neutrallei- ter
127	Netzstrom N	A	Momentanwert Netzstrom, Neutralleiter
130	Effektivwert Laststrom L1	A	Effektivwert Laststrom, Phase L1

Nr.	Parameter	Einheit	Beschreibung
131	Effektivwert Laststrom L2	А	Effektivwert Laststrom, Phase L2
132	Effektivwert Laststrom L3	A	Effektivwert Laststrom, Phase L3
133	Laststrom L1	A	Momentanwert des Laststroms, Phase L1
134	Laststrom L2	A	Momentanwert des Laststroms, Phase L2
135	Laststrom L3	A	Momentanwert des Laststroms, Phase L3
136	Effektivwert Laststrom N	A	Effektivwert Laststrom Neutral- leiter
137	Laststrom N	A	Momentanwert Laststrom Neutralleiter
139	Effektivwert Laststrom Neutral- leiter	A	Effektivwert max. Ausgangs- strom 3 Phasen
140	Effektivwert Ausgangsstrom L1	А	Effektivwert Gerätestrom L1
141	Effektivwert Ausgangsstrom L2	А	Effektivwert Gerätestrom L2
142	Effektivwert Ausgangsstrom L3	А	Effektivwert Gerätestrom L3
143	Ausgangsstrom L1	A	Momentanwert Ausgangsstrom L1
144	Ausgangsstrom L2	A	Momentanwert Ausgangsstrom L2
145	Ausgangsstrom L3	A	Momentanwert Ausgangsstrom L3
146	Effektivwert Ausgangsstrom N	A	Effektivwert Gerätestrom Neutralleiter
147	Ausgangsstrom N	A	Momentanwert Gerätestrom Neutralleiter
148	Effektivwert max. Ausgangs- strom	A	Effektivwert max. Ausgangs- strom aller Phasen
149	Effektivwert Blindstrom	А	Effektivwert Grundblindstrom
150	Netzspannung effektiv U1	V	Netzspannung effektiv L1 bis N
151	Netzspannung effektiv U2	V	Netzspannung effektiv L2 bis N

Nr.	Parameter	Einheit	Beschreibung
152	Netzspannung effektiv U3	V	Netzspannung effektiv L3 bis N
153	Netzspannung U1	V	Momentanwert Netzspannung L1 bis N
154	Netzspannung U2	V	Momentanwert Netzspannung. L2 bis N
155	Netzspannung U3	V	Momentanwert Netzspannung L3 bis N
160	THDu Netzspannung U12	%	Oberschwingungsgehalt Netz- spannung U12
161	THDu Netzspannung U23	%	Oberschwingungsgehalt Netz- spannung U23
162	THDu Netzspannung U31	%	Oberschwingungsgehalt Netz- spannung U31
166	THDu UNetz	%	Verzerrungsfaktor des Momen- tanwerts der Netzspannung
170	THDi-Strom L1	%	Oberschwingungsgehalt Netz- spannung L1
171	THDi-Strom L2	%	Oberschwingungsgehalt Netz- spannung L2
172	THDi-Strom L3	%	Oberschwingungsgehalt Netz- spannung L3
178	Ergebnis CT-Prüfung		Ergebnis der Stromwandlerprü- fung
181	Systemtemperatur	°C	Systemtemperatur in Grad Cel- sius
182	Übertemperaturschwelle	°C	Schwelle für Abschalten bei Übertemperatur
184	Befehl EIN		Befehl Ein
190	Geschwindigkeit Lüfter 1	100*min-1	Geschwindigkeit von Lüfter 1
191	Geschwindigkeit Lüfter 2	100*min-1	Geschwindigkeit von Lüfter 2
192	Geschwindigkeit Lüfter 3	100*min-1	Geschwindigkeit von Lüfter 3
193	Geschwindigkeit Lüfter 4	100*min-1	Geschwindigkeit von Lüfter 4
196	Befehl EIN		Befehl Ein

Nr.	Parameter	Einheit	Beschreibung
197	Cross-Trigger		Trace-Trigger von Nachbargerä- ten über HSB erhalten
198	Signal IGBT EIN		Flag = 1 IGBTs schalten
199	Signal Globaler Fehler		Flag = 1 bei Fehler

Nr.	Parameter	Werkseinstellung	Beschreibung
200	Sprache	Englisch	Im externen Displaymodul ange- zeigte Sprache:
			Deutsch
			Englisch
			Chinesisch
			Französisch
202	Einschaltart	Klemmleiste	Definition der Einschaltart:
			Klemmleiste
			Direkt EIN
			Direkt AUS
			Schalter S1
			SyncModul HSB
203	HSB Konfig. aktiv	HSB Konfig nicht aktiv	HSB-Ringkonfiguration aktivieren
205	Parallelbetr. Sync.	Master 300	Sychronisationsart von parallel betriebenen Geräten.
			Master 300 (nur ein SM)
			Master 600 (parallele Sync Module)
			Master 900
			Master 1200
			Slave (parallele Sync Mo- dule)
			Das Sync Modul, an das die Stromwandler angeschlossen sind, ist der Master P205 = Mas- terXXX. Die anderen Sync Module sind der Slave P205 = Slave
210	Standardwerte	Keine Aktion	Satz von Standardwerten
211	PM-Parameter schreiben	Überschreibung akti- viert	Überschreibung der Parameter im Power Modul aktivieren
220	Datum und Uhrzeit		Systemdatum und -zeit

9.2.2 Sync -Modul Parametergruppe P2XX und P3XX: Inbetriebnahmeparameter

Nr.	Parameter	Werkseinstellung	Beschreibung
230	Service – MB-Adresse	1	Modbus Slave ID für Service- Schnittstelle X113
231	Service – MB-Baudrate	38400	Modbus-Baudrate (8N1) für Ser- vice-Schnittstelle X113
234	Bootloader-Port	Service	Portauswahl (Service X113, Dis- play X115); Der Bediener kann auswählen, ob das Firmware- Update über das Service- oder das Displayterminal erfolgen soll
240	IP-Adresse	192.168.1.2	IP-Adresse
241	DHCP	AUS	Zuweisung der IP-Adresse durch DHCP-Server
242	Subnetzmaske	255.255.255.0	Subnetzmaske
243	Standardgateway	192.168.1.50	Standardgateway
250	Display – MB-Adresse	1	Modbus Slave ID für Display- Schnittstelle X115, X116
251	Display - MB-Baudrate	38400	Modbus-Baudrate (8N1) für Dis- play-Schnittstelle X115, X116
254	Display-Modbus aktivieren	EIN	MODBUS auf seriellem Display- Port X115/X116 aktivieren
255	24-V-Display aktivieren	EIN	Speisung 24V-Display in X116 aktivieren
256	24-V-Display zurücksetzen	Kein Rücksetzen	Speisung 24V-Display in X116 zurücksetzen.

Nr.	Parameter	Werkseinstellung	Beschreibung
260	Funktion X111.2	Befehl Ein Aus	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
261	Polarität X111.2	High active	Polarität des digitalen Ausgangs X111.2
			1 = high active
			0 = low active
262	Konfiguration X111.2	Eingang	Konfiguration für digitalen Port X111.2 einstellen
			0 = Eingang
			1 = Ausgang

Nr.	Parameter	Werkseinstellung	Beschreibung
263	Funktion X111.3	Befehl Beenden	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
264	Polarität X111.3	1	Polarität des digitalen Ausgangs X111.3
			1 = high active
			0 = low active
265	Konfiguration X111.3	1	Konfiguration für digitalen Port X111.3 einstellen
			0 = Eingang
			1 = Ausgang

Nr.	Parameter	Werkseinstellung	Beschreibung
266	Funktion X111.4	Status Betrieb	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
267	Polarität X111.4	Schließer	Polarität des Relaisausgangs X111.4
			1 = Öffner
			0 = Schließer

Nr.	Parameter	Werkseinstellung	Beschreibung
268	Funktion X111.5	Status globaler Fehler	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
269	Polarität X111.5	Öffner	Polarität des Relaisausgangs X111.5
			1 = Öffner
			0 = Schließer

Nr.	Parameter	Werkseinstellung	Beschreibung
270	Funktion X101.2	Status globaler Fehler	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
271	Polarität X101.2	high active	Polarität des digitalen Ausgangs X101.2
			1 = high active
			0 = low active
272	Konfiguration X101.2	Ausgang	Konfiguration für digitalen Port X101.2 einstellen
			0 = Eingang
			1 = Ausgang

Nr.	Parameter	Werkseinstellung	Beschreibung
273	Funktion X101.3	Status globaler Fehler	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
274	Polarität X101.3	high active	Polarität des Digitalausgangs X101.3 (1=high active / 0=low active)
			high active
			low active
275	Konfiguration X101.3	Ausgang	Konfiguration für digitalen Port X101.3 einstellen (0=Eingang, 1=Ausgang)
			Eingang
			Ausgang

Nr.	Parameter	Werkseinstellung	Beschreibung
276	Funktion X101.6	Status globaler Feh- ler	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
277	Polarität X101.6	Schließer	Polarität des digitalen Ausgangs X101.6
			1 = high active
			0 = low active

Nr.	Parameter	Werkseinstellung	Beschreibung
278	Funktion X101.7	Status globaler Fehler	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
279	Polarität X101.7	Öffner	Polarität des digitalen Ausgangs X101.7
			1 = high active
			0 = low active

Nr.	Parameter	Werkseinstellung	Beschreibung
280	Funktion X102.13	Status globaler Fehler	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
281	Polarität X102.13	Öffner	Polarität des Relaisausgangs X102.13
			1 = Öffner
			0 = Schließer

Nr.	Parameter	Werkseinstellung	Beschreibung
282	Funktion X102.46	Status globaler Fehler	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
283	Polarität X102.46	Öffner	Polarität des Relaisausgangs X102.46
			1 = Öffner
			0 = Schließer

Nr.	Parameter	Werkseinstellung	Beschreibung
284	Funktion X101.4	Temperatursensor	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
285	Polarität X101.4	low active	Polarität des digitalen Ausgangs X101.4
			1 = high active
			0 = low active

Nr.	Parameter	Werkseinstellung	Beschreibung
286	Funktion X101.5	Trip-Line	Eingang: High/Low = Ein, Offen = Aus,
			Ausgang: High = ausgewählte Funktion
			Feste logische 0
			Feste logische 1
			Status Betrieb
			Status Standby
			Volllastbetrieb
			Derating globaler Betrieb
			Derating Betriebstempe- ratur
			Status globaler Fehler
			Befehl Ein Aus
			Befehl Beenden
			Temperatursensor
			Trip-Line
287	Polarität X101.5	high active	Polarität des digitalen Ausgangs X101.5
			1 = high active
			0 = low active
300	Stromwandlerplatzierung	AUS	Platzierung der externen Strom- wandler:
			Netzseite
			Lastseite
			AUS
310	Primärwert Stromwandler	1000	Skalenendwert des Primärstroms des externen Stromwandlers.

Nr.	Parameter	Werkseinstellung	Beschreibung
312	Sekundärwert Stromwandler	: 5A	Skalenendwert des Sekundär- stroms des externen Stromwand- lers. :5 A
			:1A
313	CT-Prüfung	EIN	Aktivieren/Deaktivieren der Stromwandlerprüfung
320	Gesamtstrom parallel	60A	Gesamtstrom aller parallelen Ge- räte, für Asynchronmodus mit zusätzlichem Schrank.

Nr.	Parameter	Werkseinstellung	Beschreibung
400	Blindleistung	100%	Grad der Blindleistungskompensa- tion 0 100 %
401	Unterer Grenzwert $\cos \phi$	1.0	Vorgabe der Untergrenze des netzseitigen cos-φ-Sollbereichs

9.2.3 Sync Modul Parametergruppe P4XX: Kompensationseinstellungen

Es kann immer nur einer der beiden cos- ϕ -Regelungen in Parameter 403 aktiviert werden:

- P400 direkte Blindleistungskompensation in Prozent. Die Blindstromkompensation hängt von P400 ab (0 % bis 100 %). Schnelle IQ-Regelung kompensiert den vorgegebenen prozentualen Wert der aktuell gemessenen Blindleistung.
- cos-phi-Steuerung. Die cos-phi-Steuerung hängt von den vorgegebenen prozentualen Werten in Parameter P401 (unterer Grenzwert) und P402 (oberer Grenzwert) ab und hält

402	max. cos phi	1.0	Vorgabe der Obergrenze des netz- seitigen cos-φ-Sollbereichs
403	Blindleistungsregelung	AUS	Aktivierung der Blindleistungsre- gelung (schnelle IQ-Regelung oder cos-phi-Regelung)
405	Lastsymmetrierung	AUS	Aktivierung oder Deaktivierung der Lastsymmetrierung zwischen den Phasen
407	Priorisierung an Lastgrenze	Keine	Priorisierung der Kompensation bei Erreichen der Lastgrenze
410	Oberschwingungen	AUS	Aktivierung der Betriebsart Ober- schwingungskompensation.

Nr.	Parameter	Werkseinstellung	Beschreibung
411	Minutenzähler	min	Minutenzähler
412	Standby-Modus	Standby von SM gesteuert	Auswahl von Standby-Modus: Keine Standby-Steuerung Standby von PM gesteuert Standby von SM gesteuert
413	Standbyschwelle	0,0 A	Minimale Stromreserve (effektiv) für Standby des nächsten PM ist P413 + 60A
414	Standby-Hysterese	0,0 A	Minimale Stromreserve (effektiv) für Reaktivierung eines Standby- PM ist P413- P414
415	Anzahl der PM im heißen Bereitschaftszustand	0	Anzahl von Standby-Geräten, die im heißen Bereitschaftszustand bleiben. Überschüssige Standby- Geräte wechseln in kalten Bereit- schaftszustand. Werte [0 5]
416	Nulllast Standby	0,0 A	Minimale Laststromschwelle (ef- fektiv), unter der alle Power Mo- dule in den Standby-Modus ge- setzt werden
417	Timeout heißen Bereit- schaftszustand aktivieren	Deaktiviert	Automatischen Wechsel des Power Moduls von heißem in kal- ten Bereitschaftszustand aktivie- ren
418	Timeout heißer Bereit- schaftszustand	0 min	Zeitspanne, in der die Geräte au- tomatisch vom heißen in den kal- ten Bereitschaftszustand wech- seln
419	Glättung	0 %	Intern angewandte Abfallrate der Verwendung (in %/min) bei abfal- lender Last
420	Ordnungszahl A	3	Ordnungszahl Regler A (üblicherweise gilt A = 3)
421	Kompensation A	0 % für FN3530/31 80% für FN3540/41	Einstellbarer Kompensationsgrad Oberschwingung A (üblicherweise gilt A = 3)

Nr.	Parameter	Werkseinstellung	Beschreibung
423	Ordnungszahl B	5	Ordnungszahl Regler B (üblicher- weise gilt B = 5)
424	Kompensation B	80%	Einstellbarer Kompensationsgrad Oberschwingung B (üblicherweise gilt B = 5)
426	Ordnungszahl C	7	Ordnungszahl Regler C (üblicher- weise gilt C = 7)
427	Kompensation C	80%	Einstellbarer Kompensationsgrad Oberschwingung C (üblicherweise gilt C = 7)
429	Ordnungszahl D	9	Ordnungszahl Regler D (üblicher- weise gilt D = 9)
430	Kompensation D	0 % für FN3530/31 50% für FN3540/41	Einstellbarer Kompensationsgrad Oberschwingung D (üblicherweise gilt D = 9)
432	Ordnungszahl E	11	Ordnungszahl Regler E (üblicher- weise gilt E = 11)
433	Kompensation E	50%	Einstellbarer Kompensationsgrad Oberschwingung E (üblicherweise gilt E = 11)
435	Ordnungszahl F	13	Ordnungszahl Regler F (üblicher- weise gilt F = 13)
436	Kompensation F	40%	Einstellbarer Kompensationsgrad Oberschwingung F (üblicherweise gilt F = 13)
438	Ordnungszahl G	15	Ordnungszahl Regler G (üblicher- weise gilt G = 15)
439	Kompensation G	0%	Einstellbarer Kompensationsgrad Oberschwingung G (üblicherweise gilt G = 15)
441	Ordnungszahl H	17	Ordnungszahl Regler H (üblicher- weise gilt H = 17)
442	Kompensation H	30%	Einstellbarer Kompensationsgrad Oberschwingung H (üblicherweise gilt H = 17)

Nr.	Parameter	Werkseinstellung	Beschreibung
444	Ordnungszahl I	19	Ordnungszahl Regler I (üblicher- weise gilt I = 19)
445	Kompensation I	20%	Einstellbarer Kompensationsgrad Oberschwingung I (üblicherweise gilt I = 19)
447	Ordnungszahl J	21	Ordnungszahl Regler J (üblicher- weise gilt J = 21)
448	Kompensation J	100% für FN3530/31 0 % für FN3540/41	Einstellbarer Kompensationsgrad Oberschwingung J (üblicherweise gilt J = 21)
450	Ordnungszahl K	23	Ordnungszahl Regler K (üblicher- weise gilt K = 23)
451	Kompensation K	15%	Einstellbarer Kompensationsgrad Oberschwingung K (üblicherweise gilt K = 23)
453	Ordnungszahl L	25	Ordnungszahl Regler L (üblicher- weise gilt L = 25)
454	Kompensation L	15%	Einstellbarer Kompensationsgrad Oberschwingung L (üblicherweise gilt L = 25)
456	Ordnungszahl M	27	Ordnungszahl Regler M (üblicher- weise gilt M = 27)
457	Kompensation M	0%	Einstellbarer Kompensationsgrad Oberschwingung M (üblicherweise gilt M = 27)
459	Ordnungszahl N	29	Ordnungszahl Regler N (üblicher- weise gilt N = 29)
460	Kompensation N	10%	Einstellbarer Kompensationsgrad Oberschwingung N (üblicherweise gilt N = 29)
462	Ordnungszahl O	31	Ordnungszahl Regler O (üblicher- weise gilt O = 31)
463	Kompensation O	10%	Einstellbarer Kompensationsgrad Oberschwingung O (üblicherweise gilt O = 31)

Nr.	Parameter	Werkseinstellung	Beschreibung
465	Ordnungszahl P	33	Ordnungszahl Regler P (üblicher- weise gilt P = 33)
466	Kompensation P	0%	Einstellbarer Kompensationsgrad Oberschwingung P (üblicherweise gilt P = 33)
468	Ordnungszahl Q	35	Ordnungszahl Regler Q (üblicher- weise gilt Q = 35)
469	Kompensation Q	0%	Einstellbarer Kompensationsgrad Oberschwingung Q (üblicherweise gilt Q = 35)
471	Ordnungszahl R	37	Ordnungszahl Regler R (üblicher- weise gilt R = 37)
472	Kompensation R	0%	Einstellbarer Kompensationsgrad Oberschwingung R (üblicherweise gilt R = 37)
474	Ordnungszahl S	39	Ordnungszahl Regler S (üblicher- weise gilt S = 39)
475	Kompensation S	0%	Einstellbarer Kompensationsgrad Oberschwingung S (üblicherweise gilt S = 39)
477	Ordnungszahl T	41	Ordnungszahl Regler T (üblicher- weise gilt T = 41)
478	Kompensation T	0%	Einstellbarer Kompensationsgrad Oberschwingung T (üblicherweise gilt T = 41)
480	Ordnungszahl U	43	Ordnungszahl Regler U (üblicher- weise gilt U = 43)
481	Kompensation U	0%	Einstellbarer Kompensationsgrad Oberschwingung U (üblicherweise gilt U = 43)
483	Ordnungszahl V	45	Ordnungszahl Regler V (üblicher- weise gilt V = 45)
484	Kompensation V	0%	Einstellbarer Kompensationsgrad Oberschwingung V (üblicherweise gilt V = 45)
486	Ordnungszahl W	47	Ordnungszahl Regler W (üblicher- weise gilt W = 47)

Nr.	Parameter	Werkseinstellung	Beschreibung
487	Kompensation W	0%	Einstellbarer Kompensationsgrad Oberschwingung W (üblicher- weise gilt W = 47)
489	Ordnungszahl X	49	Ordnungszahl Regler X (üblicher- weise gilt X = 49)
490	Kompensation X	0%	Einstellbarer Kompensationsgrad Oberschwingung X (üblicherweise gilt X = 49)

Nr.	Parameter	Beschreibung
609	Software nicht kompatibel	Software ist nicht mit der Hardware- Revision kompatibel
610	Systemfehlercode	Systemfehlercode
611	SM1 Fehlercode	Fehlercode für Sync Modul Nr. 1
612	SM2 Fehlercode	Fehlercode für Sync Modul Nr. 2
613	SM3 Fehlercode	Fehlercode für Sync Modul Nr. 3
614	SM4 Fehlercode	Fehlercode für Sync Modul Nr. 4
615	PM1-1 Fehlercode	Fehlercode für Power Modul Nr. 1, das an dieses Sync Modul angeschlossen ist
616	PM1-2 Fehlercode	Fehlercode für Power Modul Nr. 2, das an dieses Sync Modul angeschlossen ist
617	PM1-3 Fehlercode	Fehlercode für Power Modul Nr. 3, das an dieses Sync Modul angeschlossen ist
618	PM1-4 Fehlercode	Fehlercode für Power Modul Nr. 4, das an dieses Sync Modul angeschlossen ist
619	PM1-5 Fehlercode	Fehlercode für Power Modul Nr. 5, das an dieses Sync Modul angeschlossen ist
620	Systemwarnung	Systemwarnung
621	SM1 Warnung	Warnung für Sync Modul Nr. 1
622	SM2 Warnung	Warnung für Sync Modul Nr. 2
623	SM3 Warnung	Warnung für Sync Modul Nr. 3
624	SM4 Warnung	Warnung für Sync Modul Nr. 4
625	PM1-1 Warnung	Warnung von Power Modul Nr. 1, das an dieses Sync Modul angeschlossen ist

9.2.4 Sync -Modul Parametergruppe P6XX, P7XX: Fehlermeldung

Nr.	Parameter	Beschreibung
626	PM1-2 Warnung	Warnung von Power Modul Nr. 2, das an dieses Sync Modul angeschlossen ist
627	PM1-3 Warnung	Warnung von Power Modul Nr. 3, das an dieses Sync Modul angeschlossen ist
628	PM1-4 Warnung	Warnung von Power Modul Nr. 4, das an dieses Sync Modul angeschlossen ist
629	PM1-5 Warnung	Warnung von Power Modul Nr. 5, das an dieses Sync Modul angeschlossen ist
630	Status Lüfter 1	Status von Lüfter 1
631	Status Lüfter 2	Status von Lüfter 2
632	Status Lüfter 3	Status von Lüfter 3
633	Status Lüfter 4	Status von Lüfter 4
634	DI X111.2 Fehlersignal	DI X111.2 Fehlersignal
635	DI X111.3 Fehlersignal	DI X111.3 Fehlersignal
636	DI X101.2 Fehlersignal	DI X101.2 Fehlersignal
637	DI X101.3 Fehlersignal	DI X101.3 Fehlersignal
638	DI X101.4 Fehlersignal	DI X101.4 Fehlersignal
639	DI X101.5 Fehlersignal	DI X101.5 Fehlersignal
640	Übertemperatur SM1	Übertemperatur von Sync Modul er- kannt
641	Fehler Hochgeschwindigkeitsbus	Verbindung zu Hochgeschwindigkeits- bus unterbrochen
642	Schrank1 Verbindungsfehler	HSB-Fehler bei Verbindung zum ers- tem zusätzlichen Sync Modul
643	Schrank2 Verbindungsfehler	HSB-Verbindungsfehler zum zweiten zusätzlichen Sync Modul
644	Schrank3 Verbindungsfehler	HSB-Verbindungsfehler zum dritten zusätzlichen Sync Modul

Nr.	Parameter	Beschreibung
645	Temp. Schalter Schrank	Temperaturfehler bei Schalter, der den unteren Teil des Schranks (an X102 angeschlossen) überwacht
646	Überlauf Steuerungsaufgaben	Überlauf Steuerungsaufgaben. Schaff- ner Service kontaktieren.
647	Interner Spannungsfehler	Sammelfehler: Eine der internen Spannungsversorgungen liefert falsche Spannung.
648	PM Firmware inkompatibel	Firmwareversion von PM nicht kompa- tibel
649	HSB-Aktivitätsfehler	Keine HSB-Schnittstellenaktivität er- kannt
650	PM-Netzanschluss inkompatibel	Netzanschluss von PM nicht kompati- bel
688	Digitale Eingänge	Sammelfehler: Fehler bei digitalen Eingängen.
691	Statuswort Gerät	Statuswort des Geräts u. a. bzgl. Feh- lerflags, Lastgrenzensituation, Derating usw.
693	ErrorWord	Fehler-Flags in ErrorWord
694	ErrorWord2	Fehler-Flags in ErrorWord2
696	Anz. von SPI CRC-Fehlern	Anzahl von SPI CRC-Fehlern
697	Anz. richtiger SPI CRCs	Anzahl richtiger SPI CRCs
791	Hilfsversorg. 24 V	Gemessene Hilfsversorgung 24 V
792	Hilfsversorg. 2,5V	Gemessene Hilfsversorgung 2,5V
793	Hilfsversorg. 5V	Gemessene Hilfsversorgung 5V
794	Hilfsversorg15V	Gemessene Hilfsversorgung -15V
795	Hilfsversorg. +15V	Gemessene Hilfsversorgung +15V

9.2.5 Sync Modul Parametergruppe P8XX: FFT-Messwerte

Nr.	Parameter	Beschreibung
800	FFT-Auswahl	FFT-Auswahl
801	FFT-Spitze H1	FFT-Spitze H1

Nr.	Parameter	Beschreibung
802	FFT-Spitze H2	FFT-Spitze H2
803	FFT-Spitze H3	FFT-Spitze H3
804	FFT-Spitze H4	FFT-Spitze H4
805	FFT-Spitze H5	FFT-Spitze H5
806	FFT-Spitze H6	FFT-Spitze H6
807	FFT-Spitze H7	FFT-Spitze H7
808	FFT-Spitze H8	FFT-Spitze H8
809	FFT-Spitze H9	FFT-Spitze H9
810	FFT-Spitze H10	FFT-Spitze H10
811	FFT-Spitze H11	FFT-Spitze H11
812	FFT-Spitze H12	FFT-Spitze H12
813	FFT-Spitze H13	FFT-Spitze H13
814	FFT-Spitze H14	FFT-Spitze H14
815	FFT-Spitze H15	FFT-Spitze H15
816	FFT-Spitze H16	FFT-Spitze H16
817	FFT-Spitze H17	FFT-Spitze H17
818	FFT-Spitze H18	FFT-Spitze H18
819	FFT-Spitze H19	FFT-Spitze H19
820	FFT-Spitze H20	FFT-Spitze H20
821	FFT-Spitze H21	FFT-Spitze H21
822	FFT-Spitze H22	FFT-Spitze H22
823	FFT-Spitze H23	FFT-Spitze H23
824	FFT-Spitze H24	FFT-Spitze H24
825	FFT-Spitze H25	FFT-Spitze H25
826	FFT-Spitze H26	FFT-Spitze H26
827	FFT-Spitze H27	FFT-Spitze H27
828	FFT-Spitze H28	FFT-Spitze H28
829	FFT-Spitze H29	FFT-Spitze H29
830	FFT-Spitze H30	FFT-Spitze H30

Nr.	Parameter	Beschreibung
831	FFT-Spitze H31	FFT-Spitze H31
832	FFT-Spitze H32	FFT-Spitze H32
833	FFT-Spitze H33	FFT-Spitze H33
834	FFT-Spitze H34	FFT-Spitze H34
835	FFT-Spitze H35	FFT-Spitze H35
836	FFT-Spitze H36	FFT-Spitze H36
837	FFT-Spitze H37	FFT-Spitze H37
838	FFT-Spitze H38	FFT-Spitze H38
839	FFT-Spitze H39	FFT-Spitze H39
840	FFT-Spitze H40	FFT-Spitze H40
841	FFT-Spitze H41	FFT-Spitze H41
842	FFT-Spitze H42	FFT-Spitze H42
843	FFT-Spitze H43	FFT-Spitze H43
844	FFT-Spitze H44	FFT-Spitze H44
845	FFT-Spitze H45	FFT-Spitze H45
846	FFT-Spitze H46	FFT-Spitze H46
847	FFT-Spitze H47	FFT-Spitze H47
848	FFT-Spitze H48	FFT-Spitze H48
849	FFT-Spitze H49	FFT-Spitze H49

9.2.6 Sync Module Parametergruppe P9XX: Schrankbezogene Werte

Nr.	Parameter	Beschreibung
900	PhiSn	PhiSn
901	PloSn	PloSn
902	Pmac	Pmac
903	PcbSn	PcbSn
904	Poph	Poph
905	Pevl	Pevl
906	Ppwh	Ppwh

Nr.	Parameter	Beschreibung
907	PCLFCTFu	PCLFCTFu
908	PCLFCTVa	PCLFCTVa
909	POther	POther
920	PM1-1 Trägerverschiebung	PM1-1 Trägerverschiebung
921	PM1-2 Trägerverschiebung	PM1-2 Trägerverschiebung
922	PM1-3 Trägerverschiebung	PM1-3 Trägerverschiebung
923	PM1-4 Trägerverschiebung	PM1-4 Trägerverschiebung
924	PM1-5 Trägerverschiebung	PM1-5 Trägerverschiebung
930	PM1-1 Betriebsstunden	PM1-1 Betriebsstunden
931	PM1-1 mit Versorgung verbinden	PM1-1 Stunden insgesamt, die das Gerät an das Netz angeschlossen ist
932	PM1-2 Betriebsstunden	PM1-2 Betriebsstunden
933	PM1-2 mit Versorgung verbinden	PM1-2 Stunden insgesamt, die das Gerät an das Netz angeschlossen ist
934	PM1-3 Betriebsstunden	PM1-3 Betriebsstunden
935	PM1-3 mit Versorgung verbinden	PM1-3 Stunden insgesamt, die das Gerät an das Netz angeschlossen ist
936	PM1-4 Betriebsstunden	PM1-4 Betriebsstunden
937	PM1-4 mit Versorgung verbinden	PM1-4 Stunden insgesamt, die das Gerät an das Netz angeschlossen ist
938	PM1-5 Betriebsstunden	PM1-5 Betriebsstunden
939	PM1-5 mit Versorgung verbinden	PM1-5 Stunden insgesamt, die das Gerät an das Netz angeschlossen ist
979		
980	PM1-1 FW Version	PM1-1 FW Version
981	PM1-2 FW Version	PM1-2 FW Version
982	PM1-3 FW Version	PM1-3 FW Version
983	PM1-4 FW Version	PM1-4 FW Version
984	PM1-5 FW Version	PM1-5 FW Version
985	PM1-1 Netzanschluss	PM1-1 Netzanschluss
986	PM1-2 Netzanschluss	PM1-2 Netzanschluss

Nr.	Parameter	Beschreibung
987	PM1-3 Netzanschluss	PM1-3 Netzanschluss
988	PM1-4 Netzanschluss	PM1-4 Netzanschluss
989	PM1-5 Netzanschluss	PM1-5 Netzanschluss

10 Software AHF Viewer

Das PC Bedienprogramm AHF Viewer unterstützt die Inbetriebnahme von ecosine active sync und ermöglicht die weitergehende Diagnose.

Overview - AHF Viewer	-	and the local		
File Connection Parameter Oscilloscope Event	tlog Language Help			
Mains sid	e			
Mains frequency 50,0 Hz Rotating field clockwise Mains voltage 230,6 V 230,3 V 230,9 V Mains current 10,8 A 11,1 A 10,6 A	Filter current 9,8 A 10,3 A 10	Active Ham	nonic Filter	State Operation DC link voltage 780 V Output 17,3 % DPF -0.96 Transformer current 100,0 A mainside Harmonic compensation ON Reactive power compensation 100 % Load balancing OFF
Load side	Э			Target DPF range lower limit upper limit 1,00 1,00
Ready	Operation	Connection established	No trigger	No running measurement

Abbildung 52 Grundbild AHF Viewer

10.1 Anforderungen und Einrichtung

Die folgenden Betriebssysteme werden für den Betrieb der Software AHF Viewer empfohlen.

- Windows XP
- Windows Vista (siehe "readme.txt" vor der Installation)
- Windows 7 (ggf. im "Kompatibilitätsmodus" starten)
- Windows 10

10.2 Anschlüsse

Der Anschluss erfolgt über die RS485-Schnittstelle des ecosine active sync (Klemme X13) oder über Ethernet (Klemme X14).

10.2.1 Verbindung über RS485

Zur Anbindung an den PC über RS485 ist der Einsatz eines geeigneten Schnittstellenumsetzers erforderlich. Die Spezifikationen des Schnittstellenumsetzers sind in Tabelle 24 aufgeführt.

Tabelle 24 Spezifikation Schnittstellenumsetzer RS485

Bezeichnung	Status
Potentialtrennung	mit
Abschlusswiderstand	aktiviert (am letzten Busteilnehmer)
Echo Mode	aus

Tabelle 25 Empfohlener	potentialgetrennter Schnittstellenumsetzer U	JSB – RS485
------------------------	--	-------------

Bezeichnung	Hersteller	Bild
USB-485-Mini/OP	CTI GmbH <u>www.cti-lean.com</u> <u>www.cti-shop.com</u>	CTI GmbH Bestell-Nr.: 95030202
AHF-PC-Schnittstelle	CTI GmbH <u>www.cti-lean.com</u> <u>www.cti-shop.com</u>	CTI GmbH Bestell-Nr.: 95030212

Der Anschluss an den ecosine active sync Filter erfolgt durch den Einsatz eines potentialgetrennten Schnittstellenwandlers über eine 2-Draht-Leitung. Beide in Tabelle 25 aufgeführten Artikel werden benötigt.

Klemme	Klemme X13	Bedeutung
Schnittstellenumsetzer		
А	X13.9	Signal A
В	X13.5	Signal B
Gnd_iso	X13.4	Erdung (getrennt, nicht an interne Erdung angeschlos- sen)

Tabelle 26 Pinbelegung Verbindungskabel Schnittstellenumsetzer - ecosine active sync

Der RS485 Bus muss für einen ordnungsgemäßen Betrieb mit einem **Abschlusswiderstand von 120** Ω abgeschlossen werden, insbesondere wenn lange Kabel oder eine Busstruktur mit mehr als einer Einheit verwendet werden. Die Schnittstellen werden mit den folgenden Parametern konfiguriert.

Tabelle 27 Parameter zur Schnittstellenkonfiguration RS485

Parameter Nr.	Parameter	Werkseinstellung	Beschreibung
230	MB Slave ID	1	Modbus Knotenadresse (1 247)
231	MB Baudrate	38400	Modbus Baudrate 9600 19200 38400 57600 115200

10.2.2 Verbindung über Ethernet

Um eine Verbindung zum ecosine active sync über Ethernet herzustellen, müssen sich beide im gleichen Subnetz befinden oder es muss eine Verbindung über Router vorhanden sein. Hierbei kann der ecosine active sync wahlweise eine IP-Adresse, Subnetzmaske und das Standardgateway über einen DHCP Server beziehen oder diese müssen manuell voreingestellt werden.

Um eine direkte Verbindung zwischen PC und ecosine active sync herzustellen, ist ein einfaches Ethernetkabel (kein gekreuztes) notwendig. Hierbei muss DHCP ausgeschalten werden, und am PC die entsprechenden Einstellungen vorgenommen werden. Bei PC und ecosine active sync muss eine unterschiedliche IP Adresse eingestellt werden, am PC z. B. 192.168.1.1. Die Subnetzmaske muss auf 255.255.255.0 eingestellt werden, und der Standardgateway kann leer bleiben.

Hinweis: Für weitere Informationen zu den Ethernet-Einstellungen steht eine Knowledge Base Information zur Verfügung.

Knowledge base information No. 004 - AHF connection via Ethernet cable (TCP/IP)

Tabelle 28 Parar	neter zur Schnitts	stellenkonfiguration
------------------	--------------------	----------------------

Parameter Nr.	Parameter	Werkseinstellung	Beschreibung
240	IP-Adresse	192.168.1.2	IP-Adresse Feste IP-Adresse, wenn P241 DHCP = AUS Automatische Zuteilung einer IP-Adresse durch einen DHCP-Server, wenn P241 = EIN
241	DHCP	EIN	Aktivierung der IP-Adressvergabe durch DHCP- Server AUS Folgende Parameter müssen eingestellt wer- den: P240 IP-Adresse P242 Subnetzmaske P243 Standardgateway EIN folgende Parameter werden automatisch vom DHCP-Server vergeben: P240 IP-Adresse

			P242 SubnetzmaskeP243 Standardgateway
242	Subnetzmaske	255.255.255.0	Subnetzmaske Feste Subnetzmaske, wenn P241 DHCP = AUS Automatische Zuteilung der Subnetz- maske durch einen DHCP-Server, wenn P241 DHCP = EIN
243	Standardgateway	192.168.1.50	 Standardgateway Adresse Feste Adresse des Standardgateways, wenn P241 DHCP = AUS (bei direktem Anschluss leer lassen) Automatische Zuteilung des Standardgateways durch einen DHCP-Server, wenn P241 DHCP = EIN

11 AHF Firmware-Update-Tool

Für ein Update der Firmware des ecosine active sync wird ein externes Programm und ein USB-RS485-Umsetzer benötigt.

Das "AHF FW Update Tool" ist die PC-Software, mit der Bediener die Firmware der ecosine active sync- (AHF Gen2) Produkte aktualisieren können. In diesem Dokument wird erklärt, wie die Software genutzt wird.

Dieses Tool ist für das Firmware-Update der Power Module und der Sync Module geeignet. Das Tool erkennt, ob das ausgewählte Firmware-Paket geeignet ist oder nicht und verhindert ein Update, wenn zum Beispiel versucht wird, ein PM oder ein SM mit dem falschen Firmware-Paket zu aktualisieren.

Die neueste Tool-Version V2.1.0.3 unterstützt V2 der .sfn-Datei mit dem Format FWP_AHF_Gen2_Vxx.xx.xx. Diese neue *.sfn-Datei des Firmware-Pakets (FWP) enthält sowohl die Firmware des Sync Moduls (SM) als auch die Firmware des Power Moduls (PM). Versionen älterer .sfn-Dateien können nicht verwendet werden. Ältere .schaffner Firmware-Dateien sind ab V2.x.y.z des AHF FW Update Tools veraltet. Das Tool meldet einen Fehler, wenn der Bediener versucht, eine ältere und inkompatible Version der .sfn-Datei zu öffnen. Weitere Informationen finden Sie in der Bedienungsanleitung zum AHF FW Update Tool.

11.1 Verwendung

Zur Aktualisierung der Firmware des Geräts sind folgende Schritte durchzuführen:

- 1. COM-Port auswählen und öffnen
- 2. Kommunikationseinstellungen auswählen
- 3. Firmware-Paket laden
- 4. Update starten

In den nachfolgenden Abschnitten wird das Update-Verfahren im Detail erklärt.

Bei Nutzung des AHF Update Tools können verschiedene Fehlermeldungen auftreten. Für die Behebung eines möglichen Problems, siehe Abschnitt über die Fehlerbehebung der vollständigen Bedienungsanleitung des AHF FW Update Tools.

Wenn Sie einen COM-Port erfolgreich geöffnet haben, können Sie auf dem ausgewählten COM-Port verfügbare Geräte suchen. Dieser Schritt ist nicht obligatorisch und nur für Diagnosezwecke durchzuführen.

11.2 Seriellen Port auswählen

Zunächst muss der serielle Port für die Kommunikation mit dem Control Board ausgewählt werden. Die Leiste oben links, die im Bild unten hervorgehoben ist, zeigt alle verfügbaren seriellen Ports auf dem PC und der Bediener kann den ausgewählten seriellen Port öffnen oder schließen. Durch Anklicken der Schaltfläche "refresh list" (Liste aktualisieren) wird die Liste serieller Ports aktualisiert.

HF Firmware	Update Tool V	2.1.0.3		
1. Com ports: COM28 COM29	Open Close Scan Refresh	2. Connection: ModBus address 1 4800 9600 19200 38400	Firmware version Hardware version Connect	Disconnect
3. Firmware p	backage		Version Integrity Compatibility	Load
4. Firmware u	ıpload	Upload baudrate: 115 200 460	200 AU	Start
Status: Not	started			
Step 1: Sele open COM	ect and I port	Step 2: Select MB address, baudrate and connect	Step 3: Load firmware package	Step 4: Start firmware upload

Abbildung 53 Auswahl des COM-Ports

11.3 Geräte suchen

Wenn Sie einen COM-Port erfolgreich geöffnet haben, können Sie in Abbildung 54 auf die Schaltfläche "Scan" (Durchsuchen) klicken, um Geräte zu suchen. Sobald Sie auf die Schaltfläche "Scan" (Durchsuchen) geklickt haben, wird ein Fenster geöffnet, in dem Sie die Suche starten oder 2 Optionen einstellen können:

Scanning for devices
This will scan for devices on the previous openend Com port. You can choose to enable following options:
Scan for all Baudrates V Use small address range
Result (once finished, double click on a subnode to use settings):
Scan Close

Abbildung 54 Geräte suchen

Mit der Option "Scan for all Baudrates" (Alle Baudraten suchen) werden Geräte gesucht, die folgende Baudraten verwenden, anstelle von nur 38400 Baud:

- 9600
- 19200
- 38400
- 57600
- 115200

Wenn per Voreinstellung die Option "Use small address range" (kleinen Adressbereich verwenden) aktiviert ist, sucht das Tool nur Geräte mit einer Adresse von 1 bis 33, andernfalls von 1 bis 247.

Wenn die Standardoptionen geändert werden, dauert die Suche länger. Wenn Sie alle Baudraten und den vollständigen Adressbereich aktivieren, dauert der Vorgang in der Regel 10-20 Minuten, mit den Standardoptionen hingegen weniger als eine Minute!

Nach der Suche können Sie auf einen Subknoten doppelklicken. Im Hauptfenster werden dann die entsprechenden COM-Einstellungen verwendet. Bei einem Doppel- oder Einfach-Klick auf den Eltern-Knoten werden die COM-Einstellungen nicht übertragen (siehe Abbildung 55), da Sie auf den Eltern-Knoten klicken müssen, um eine detaillierte Ansicht zu erhalten.

I III SCHAFFNER

shaping electrical power

Abbildung 55 Suchergebnis

Folgende COM-Einstellungen werden in das Hauptfenster übertragen:

- Baudrate
- Modbus-Adresse

In Abbildung 56 wird das Ergebnis angezeigt, wenn nur ein Gerät gefunden wurde, wobei 1 die Modbus-Adresse und 2 der *DeviceldProductCode* ist. Die Subknoten bieten detailliertere Informationen zu den Geräten:

- DeviceIdProductCode: ist der vom Hersteller definierte Text, der das Gerät identifiziert
- DeviceIdVendorName: ist ein Text, der den Hersteller definiert
- DeviceIdMajorMinorRevision: die Version des Geräts in Textform
- Software Version: die Firmware-Version, die in P10 des Geräts gespeichert ist
- ModbusRtusAddress: die Adresse des Geräts im Modbus
- HostComPort: der COM-Port des PCs, auf dem das Gerät gefunden wurde
- Baudrate: die Baudrate, auf die das Gerät reagiert

I III SCHAFFNER

shaping electrical power

Abbildung 56 Details des Suchergebnisses

11.4 Kommunikationskonfiguration

Wenn der korrekte serielle Port ausgewählt ist, müssen die Modbus-Adresse und die Baudrate konfiguriert werden, um mit dem Control Board kommunizieren zu können, wie in Abbildung Abbildung 57 gezeigt.

AHF Firmware Update Tool V2.1.0.3									
1. Com ports COM28 COM29	Close Scan Refresh	2. Connection: ModBus address 1 ModBus baudrate 9600 19200 88400	Firmware version Hardware version	Disconnect					
3. Firmware File location	package	(Version Integrity Compatibility	Load					
4. Firmware	upload	Upload baudrate: 230 4600	200 100 100	Start					
Status: No	t started								
Step 1: Sel open COM	ect and M port	Step 2: Select MB address, baudrate and connect	Step 3: Load firmware package	Step 4: Start firmware upload					

Abbildung 57 Auswahl der Kommunikationseinstellungen

Durch Anklicken der Schaltfläche "connect" (verbinden) versucht das Tool, eine Verbindung mit dem Gerät herzustellen und Informationen abzufragen, die in den entsprechenden Textfeldern dargestellt werden.

11.5 Firmware-Paket laden

Im nächsten Schritt wird die hochzuladende Datei des Firmware-Pakets ausgewählt: Die erforderliche Datei muss die Erweiterung ".sfn" haben. Wenn der Bediener auf die Schaltfläche "Load" (Laden) klickt, wird ein Dateifenster geöffnet, in dem er die Ordner auf dem PC durchsuchen und die richtige Datei auswählen kann.

Abbildung 58 zeigt das richtige Fenster an.

AHF Firmware Update Tool V2.1.0.3									
1. Com ports: COM28 COM29	Open Close Scan Refresh	2. Connection: ModBus address 1 ModBus baudrate 4800 9600 19200 38400	Firmware version Hardware version	Disconnect					
3. Firmware pa	ackage	C	Version	Load					
4. Firmware up Status: Not s	pload	Upload baudrate: 1152 2304 4608		Start					
Step 1: Selec open COM	ct and port	Step 2: Select MB address, baudrate and connect	Step 3: Load firmware package	Step 4: Start firmware upload					

Abbildung 58 Laden der Datei *.sfn

Wenn die Firmware mit der PC-Software kompatibel und nicht beschädigt ist, erhalten Sie in Abbildung 59 eine Rückmeldung.

Abbildung 59 Prüfung des SW-Pakets

11.6 Firmware hochladen

Klicken Sie wie in Abbildung 60 abgebildet auf die Schaltfläche "Start", um den Update-Prozess zu starten. Im Fenster wird darüber hinaus ein Fortschrittsbalken mit dem Status des Hochladeprozesses angezeigt.

AHF Firmware Update Tool V2.1.0.3								
1. Com ports: COM1 COM28 COM29 COM29 Close Scar Refree	2. Connection: ModBus address 1 Firmware version 4800 ModBus baudrate 9600 9700							
3. Firmware package File location K\Entwicklung\Software \FWP_V01.01.01\FWP_	Version FWP_AHF_Gen2_V01.01.01 Integrity OK Compatibility OK V2 ToxFWpackagePM-SM/Sonstige Stande HF_Gen2_V01.01.01.sfn Load							
4. Firmware upload	Upload baudrate: 115200 239400 460800 T Length of data[Byte]:4958076							
Step 1: Select and open COM port	Step 2: Select MB Step 3: Load Step 4: Start address, baudrate firmware package firmware upload and connect							

Abbildung 60 Hochladen der Firmware

Wenn das Update beendet ist, wird ein Fenster angezeigt, in dem angegeben wird, dass der Prozess abgeschlossen ist (siehe Abbildung 61).

AHF Firmware Upd	ate Tool V2.0.	0.3	- 102	Statement of the second se
1. Com ports:		2. Connection:		
COM1 COM28	Open	MB address 1	Firmware version	V03.02.04ud
COM29 COM17	Close	4800 MB baudrate 9600 1920	Hardware version	461
	Refresh	Connect		
File location C:\projekte\Fo	x_ControlBd	ifo	ate completed successfully!	V03.02.04t K K Load Start
Status: OK			Len	gth of data[Byte]:4929935
Step 1: Selec open COM	et and port	Step 2: Select MB address, baudrate and connect	Step 3: Load firmware packet	Step 4: Start firmware upload

Abbildung 61 Ein Fenster informiert über den beendeten Upload

12 Wartung

Tabelle 29 Wartungsplan Power Modul

Jahr nach Inbetriebnah- me	1	2	3	4	5	6	7	8	9	10	11	12
Betrieb prüfen und Schutzgit- ter der Power Modul-Lüfter reinigen	~	~	~	~	~	~	~	~	~	~	~	~
Power Modul-Lüfter austau- schen			~			~			~			✓
Sicherungen auf PDB-Platine austauschen			~			~			~			√
Sicherungen auf PDC-Platine austauschen			~			~			~			√
Batterie des Control Boards austauschen						~						~

Tabelle 30 Wartungsplan Schrank

Jahr nach Inbetriebnah- me	1	2	3	4	5	6	7	8	9	10	11	12
Betrieb prüfen und Lüftergit- ter des Schranks sowie Filter- einsatz reinigen	~	~	*	~	~	~	~	~	~	~	~	~
Filtereinsätze austauschen		~		✓		~		~		✓		✓
Schranklüfter austauschen Lüfter 4-7			*			~			~			✓
Internen Lüfter austauschen Lüfter 8			✓			*			~			√
Hauptsicherungen austau- schen			~			~			~			✓
Sicherungen der Stromver- sorgung austauschen			~			~			~			~

Details zur Wartung stehen dem Schaffner Service-Team und ausgewählten Partnern in den Wartungsanweisungen des ecosine active sync zur Verfügung.

13 Abkürzungen

- AHF : Aktiver Oberschwingungsfilter (Active Harmonic Filter)
- CT : Stromwandler (Current Transformer/Transducer)
- CTM : Stromwandlermodul (Current Transformer Module)
- DPP : Double Power Pack
- HS : Hochgeschwindigkeit (High Speed)
- HSB : Hochgeschwindigkeitsbus (High Speed Bus)
- LAN : Lokales Netzwerk (Local Area Network)
- PCB : Leiterplatte (Printed Circuit Board)
- PDB : Power Distribution Board PCB
- PDC : Zwischenkreis PCB (Power DC-Link Board)
- PFC : Korrektur des Leistungsfaktors (Power Factor Correction)
- PWM : Pulsweitenmodulation

14 Abbildungsverzeichnis

Abbildung 1 Funktionsprinzip des ecosine active sync Oberschwingungsfilters 17
Abbildung 2 Beschreibung des Typencodes einer ecosine active sync Schrankversion
Abbildung 3 Temperatur-Derating-Kurve des ecosine active sync Power Moduls
Abbildung 4 Temperatur-Derating-Kurve der ecosine active sync Schrankversion in Bezug auf den Nennstrom eines Moduls
Abbildung 5 Anweisungen zum Heben von Power Modulen40
Abbildung 6 Technische Zeichnung eines ecosine active sync Power Moduls (siehe Abmessungen in Tabelle 6 und Tabelle 7 unten)41
Abbildung 7 Abmessungen [mm] der Bohrschablone für Wandmontage (abstehende oder anliegende Montage)
Abbildung 8 Anweisungen zur anliegenden Montage von Power Modulen
Abbildung 9 Anweisungen zur abstehenden Montage von Power Modulen
Abbildung 10 Installationsvarianten für Double Power Packs
Abbildung 11 Falsche DPP-Installationen46
Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten)
 Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten)
 Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten)
 Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten)
 Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten) 50 Abbildung 13: Logikschema des digitalen Ein- & Ausgangs. 60 Abbildung 14: Prinzipschaltbild des digitalen Ein- & Ausgangs. 61 Abbildung 15 HSB-Anbindung zwischen Sync Modul und Power Modulen 65 Abbildung 16 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang 71
 Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten) 50 Abbildung 13: Logikschema des digitalen Ein- & Ausgangs. 60 Abbildung 14: Prinzipschaltbild des digitalen Ein- & Ausgangs. 61 Abbildung 15 HSB-Anbindung zwischen Sync Modul und Power Modulen 65 Abbildung 16 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang 71 Abbildung 17 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 1-A-Stromwandlerausgang 72
 Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten) 50 Abbildung 13: Logikschema des digitalen Ein- & Ausgangs. 60 Abbildung 14: Prinzipschaltbild des digitalen Ein- & Ausgangs. 61 Abbildung 15 HSB-Anbindung zwischen Sync Modul und Power Modulen 65 Abbildung 16 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang 71 Abbildung 17 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 1-A-Stromwandlerausgang 72 Abbildung 18 Anschluss 3-Phasen-/4-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang 73
 Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten) 50 Abbildung 13: Logikschema des digitalen Ein- & Ausgangs. 60 Abbildung 14: Prinzipschaltbild des digitalen Ein- & Ausgangs. 61 Abbildung 15 HSB-Anbindung zwischen Sync Modul und Power Modulen 65 Abbildung 16 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang 71 Abbildung 17 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 1-A-Stromwandlerausgang 72 Abbildung 18 Anschluss 3-Phasen-/4-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang 73 Abbildung 19 Anschluss von 3-Phasen-/4-Leiter-Geräten an sekundären 1-A-Stromwandlerausgang 74
 Abbildung 12 Technische Zeichnung eines ecosine active sync Schranks (siehe Tabelle 10 unten) 50 Abbildung 13: Logikschema des digitalen Ein- & Ausgangs. 60 Abbildung 14: Prinzipschaltbild des digitalen Ein- & Ausgangs. 61 Abbildung 15 HSB-Anbindung zwischen Sync Modul und Power Modulen 65 Abbildung 16 Anschluss 3-Phasen-/3-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang 71 Abbildung 18 Anschluss 3-Phasen-/4-Leiter-Gerät an sekundären 5-A-Stromwandlerausgang 72 Abbildung 19 Anschluss von 3-Phasen-/4-Leiter-Gerät an sekundären 1-A-Stromwandlerausgang 73 Abbildung 20 Wandlerverdrahtung (5 A) bei einem Power Modul

Abbildung 22 Stromwandlerinstallation auf der Lastseite für den Betrieb eines Power Moduls
Abbildung 23 Stromwandlerinstallation auf der Netzseite für den Betrieb eines Power Moduls
Abbildung 24 Wandlerverdrahtung (5 A) für ein DDP, Stromwandler sind nur an einem Modul angeschlossen
Abbildung 25 Wandlerverdrahtung (1A) für ein DDP, Stromwandler sind nur an einem Modul angeschlossen
Abbildung 26 Stromwandlerinstallation auf der Lastseite für den Betrieb des DPP 86
Figure 27 Stromwandlerinstallation auf der Netzseite für den Betrieb des DPP
Abbildung 28 Wandlerverdrahtung (5 A) für das Sync Modul
Abbildung 29 Wandlerverdrahtung (1A) für das Sync Modul
Abbildung 30 Stromwandlerinstallation auf der Lastseite für den Betrieb eines Sync Moduls und mehrerer Power Module
Abbildung 31 Stromwandlerinstallation auf der Netzseite für den Betrieb eines Sync Moduls und mehrerer Power Module91
Abbildung 32 Wandlerverdrahtung (5 A) für parallelen Betrieb von bis zu fünf Power Modulen, kein Sync Modul92
Abbildung 33 Wandlerverdrahtung (1 A) für parallelen Betrieb von bis zu fünf ecosine active sync Power Modulen
Abbildung 34 Stromwandlerinstallation auf der Lastseite für Parallelbetrieb mehrerer (> 2) ecosine active sync Module (FN3531 oder FN3541) ohne Sync Modul
Abbildung 35 Erdung der Stromwandler (optional)96
Abbildung 36 Drehfeld von Strom und Spannung überprüfen
Abbildung 37 Phase von Strom und Spannung richtig98
Abbildung 38 Phase von Strom und Spannung um 180° verschoben
Abbildung 39 Stromwandler 1 um 180° phasenverschoben
Abbildung 40 Stromwandler der Phase 1 und 3 sind vertauscht
Abbildung 41 Master-Slave-Gerätezuordnung 100
Abbildung 42 Position von Klemme X12 am ecosine active sync Power Modul
Abbildung 43 Ecosine active sync Geräte-Firmware-Version in AHF Viewer
Abbildung 44 Ecosine active sync DPP-Betrieb in Master/Slave-Konfiguration

Abbildung 45 Displaymodul und Tastenfeld Die Tasten haben folgende Funktionen: 104
Abbildung 46Displaymodulanzeige, Hauptmenü105
Abbildung 47 Displaymodulanzeige, Parameter
Abbildung 48 Displaymodulanzeige, Ereignisbeispiele
Abbildung 49Displaymodulanzeige, Einstellungen 108
Abbildung 50 Ecosine active sync Status und Zwischenkreis-Spannungspegel beim Starten und im Normalbetrieb
Abbildung 51 Fehlerbehandlung 122
Abbildung 52 Grundbild AHF Viewer
Abbildung 53 Auswahl des COM-Ports 187
Abbildung 54 Geräte suchen
Abbildung 55 Suchergebnis
Abbildung 56 Details des Suchergebnisses 190
Abbildung 57 Auswahl der Kommunikationseinstellungen 191
Abbildung 58 Laden der Datei *.sfn 192
Abbildung 59 Prüfung des SW-Pakets192
Abbildung 60 Hochladen der Firmware 193
Abbildung 61 Ein Fenster informiert über den beendeten Upload 193
Abbildung 62: Berechnung der Kommutierungseinbruchsfläche
Abbildung 63: Filterstrom (blau) durch Kommutierungseinbrüche verursacht
Abbildung 64: Filterstrom (blau) durch Kommutierungseinbrüche während Kompensation verursacht
Abbildung 65 Beispiel 1, verkettete Spannung U23 mit Sample-Rate > 10 kHz 208
Abbildung 66: Beispiel für die Berechnung des Einbruchs, bei dem die Einbruchtiefe OK, aber die Kommutierungsfläche zu gross ist. Diese Einbrüche sind nicht akzeptierbar 208
Abbildung 67: Beispiel 2, verkettete Spannung U23 mit Sample-Rate > 10 kHz 209
Abbildung 68: Beispiel für die Berechnung des Einbruchs, bei dem die Einbruchtiefe zu tief, aber die Kommutierungsfläche OK ist. Diese Einbrüche sind nicht akzeptierbar 209
Abbildung 69 Beispiel 3, verkettete Spannung U23 mit Sample-Rate > 10 kHz 210

Abbildung 70: Beispiel für die Berechnung des Einbruchs, bei dem sowohl die Einbruchtiefe als auch der Kommutierungsbereich OK sind. Diese Einbrüche sind akzeptierbar... 210

15 Tabellenverzeichnis

Tabelle 1 Versionen von ecosine active sync Power Modulen und Optionen
Tabelle 2 Ecosine active sync Schrankversionen ohne Sync Modul
Tabelle 3 Ecosine active sync Schrankversionen mit Sync Modul 26
Tabelle 4 Ecosine active sync Nur-Schrank-Versionen und Schrankzubehör
Tabelle 5 Sync Modul Abmessungen35
Tabelle 6 Abmessungen ecosine active sync Power Modul
Tabelle 7 Ecosine active sync Power Modul (Innenmaße)
Tabelle 8 Abstände ecosine active sync Power Modul 43
Tabelle 9 Technische Daten f in ecosine active sync Power Modul
Tabelle 10 Abmessungen ecosine active sync Schrank
Tabelle 11 Abstände ecosine active sync Schrank 51
Tabelle 12 Anforderungen an die Luftkühlung der ecosine active sync Schrankversion 52
Tabelle 13: Beispiel einer typischen Verstimmung-Ordnungszahl für 50Hz und 60Hz-Netze. 53
Tabelle 14 LED-Anzeige
Tabelle 15 Klemme 11 - Digitale Kunden-IOs (siehe Kapitel 9.1.2 für weitere Informationen)
Tabelle 16 Anschlussquerschnitte und Drehmoment Netzanschluss
Tabelle 17 Anschlussquerschnitte und Drehmoment Netzanschluss 68
Tabelle 18 Leistungsbedarf bei Stromwandlerleitungen aus Kupfer und Stromwandler mitsekundärem Ausgang von 5A77
Tabelle 19 Leistungsbedarf bei Stromwandlerleitungen aus Kupfer und Stromwandler mit sekundärem Ausgang von 1A77
Tabelle 20 Beispiel eines UL-konformen Stromwandlers 79
Tabelle 21 Betriebsart, Parameter P205 103
Tabelle 22 AHF-Parametermenü im Displaymodul106
Tabelle 23 AHF-Status 121
Tabelle 24 Spezifikation Schnittstellenumsetzer RS485
Tabelle 25 Empfohlener potentialgetrennter Schnittstellenumsetzer USB – RS485

Tabelle 26 Pinbelegung Verbindungskabel Schnittstellenumsetzer - ecosine active sync	183
Tabelle 27 Parameter zur Schnittstellenkonfiguration RS485	183
Tabelle 28 Parameter zur Schnittstellenkonfiguration	184
Tabelle 29 Wartungsplan Power Modul	194
Tabelle 30 Wartungsplan Schrank	194
Tabelle 31 Vorgaben für die Formierung der Zwischenkreiskondensatoren	203

16 Anhang A: Referenzen

Die folgende Tabelle listet die in diesem Dokument referenzierten Dokumente auf.

Dokumentname und - version	Beschreibung	Ort
Knowledge base informati- on No. 002	Sonderanwendungen Strom- wandler	https://www.schaffner.com
Knowledge base infor- mation No. 004	AHF-Verbindung über Ether- net-Kabel (TCP/IP)	https://www.schaffner.com
Auspackanweisungen Ecosine active sync	Auspackanweisungen für das ecosine active sync Power Modul/Schrankversion	Dieses Dokument ist an der Transportkiste angebracht
Wartungsanweisungen für ecosine active sync	Anweisungen für Wartung und Fehlersuche ecosine active sync	Verfügbares Dokument für das Schaffner Ser- vice-Team und Service-Partner. Ggf. den Schaffner Service kontaktieren.
Installationsanweisungen Sync Modul	Installationsanweisungen und - Richtlinien für das Sync Modul	Dieses Dokument ist im SYNC300A-Paket ent- halten. Die neueste Version kann online unter <u>https://www.schaffner.com</u> abgerufen werden.
Bedienungsanleitung AHF FW Update Tool	Installation, Bedienung und Fehlerbehebung für das AHF Firmware-Update-Tool	Dieses Dokument ist im Lieferumfang der Software enthalten und steht dem Schaffner Service-Team sowie Service-Partnern zur Ver- fügung. Ggf. den Schaffner Service kontaktie- ren.

17 Anhang B

17.1 Inbetriebnahme nach längerer Lagerung

Die Filter des ecosine active sync enthalten – wie auch Frequenzumrichter – Kondensatoren im Zwischenkreis. Nach längerer Lagerung ohne angelegte Netzspannung müssen diese neu formiert werden.

Bitte beachten Sie dazu folgende Vorgehensweise und kontaktieren Sie erforderlichenfalls den Schaffner Service.

Bitte beachten Sie immer, dass die Lagerungszeit ab dem Zeitpunkt der Herstellung (und nicht dem Lieferzeitpunkt des AHF) berechnet wird. Die Herstellungswoche und das Herstellungsjahr können vom Typenschild abgelesen werden (siehe 17.2).

Um die Formierung bei längerer Lagerung aufrecht zu erhalten, ist folgende Vorgehensweise erforderlich:

Tabelle 31 Vorgaben für die Formierung der Zwischenkreiskondensatoren

Lagerungszeitraum	Vorgehensweise		
< 1 Jahr	keine zusätzlichen Maßnahmen erforderlich		
1 – 2 Jahre	AHF mindestens 1 Stunde vor dem Betrieb mit Spannung versorgen.		
	Anschließend ist das AHF bereit für den Normalbetrieb.		
2 – 3 Jahre	Die Spannung muss mit einer geregelten Spannungsversorgung wie folgt ange- legt werden:		
	30 min. unter 25 % der Kondensator-Nennspannung, dann		
	30 min. unter 50% der Kondensator-Nennspannung, dann		
	30 min. unter 75% der Kondensator-Nennspannung, dann		
	30 min. unter 100 % der Kondensator-Nennspannung		
	Anschließend ist das AHF betriebsbereit.		
> 3 Jahre	Die Spannung muss mit einer geregelten Spannungsversorgung wie folgt ange- legt werden:		
	2 Stunden unter 25 % der Nennspannung, dann		
	2 Stunden unter 50% der Nennspannung, dann		
	2 Stunden unter 75% der Nennspannung, dann		
	2 Stunden unter 100 % der Nennspannung.		
	Anschließend ist das AHF betriebsbereit.		

Allgemeiner Hinweis zum Formierungsverfahren mit einer geregelten Spannungsversorgung:

Die geregelte Spannungsversorgung muss im Hinblick auf die für den ecosine active sync Filter erforderliche Netzspannung ausgewählt werden. Daher muss sichergestellt werden, dass die erforderliche Spannung (z. B. 400 V) verfügbar ist. Der Filter muss über seine Eingangsklemmen an die Spannungsversorgung angeschlossen werden, wobei Filter einphasig gespeist werden (L+ an Klemme L1 und N an Klemme L2 oder L3). Alle Zwischenkreiskondensatoren sind durch die Anwesenheit eines Gleichrichters gleichmäßig geladen. Da bei der Formierung der Zwischenkreiskondensatoren nur ein geringer Strom aufgenommen wird, können Spannungsversorgungen mit einer noch geringeren Nennleistung ausgewählt werden (z. B. 2 A).

17.2 Typenschild des ecosine active sync

Nachfolgend ist ein Beispiel eines Typenschilds von einem 60 A Power Modul FN3540 abgebildet. Das Modul verfügt über zwei Etiketten; das eine ist vereinfacht und auf der Frontseite angebracht, das andere ist detaillierter und befindet sich auf der rechten Seite des Power Moduls:

z. B. WO 3899999 (erste 7 Stellen) S/N 00001 (letzte 5 Stellen)

Shaping electrical power

18 Anhang C: Berechnungsbeispiel

18.1 Kommutierungseinbrüche

Die Kommutierungseinbrüche müssen gemäß IEEE 519 \leq 50 % betragen

- Den tiefsten Einbruch in der verketteten Spannung auswählen
- Die Kommutierungsfläche (AN) berechnen

 - o 400 V Geräte -> 30400 Vμs
 - o 480 V Geräte -> 36480 Vμs

Abbildung 62: Berechnung der Kommutierungseinbruchsfläche

Abbildung 63: Filterstrom (blau) durch Kommutierungseinbrüche verursacht

Abbildung 64: Filterstrom (blau) durch Kommutierungseinbrüche während Kompensation verursacht

	SCHaffner
	shaping electrical power

18.1.1 Berechnung der Kommutierungseinbrüche – Beispiel 1

Abbildung 65 Beispiel 1, verkettete Spannung U23 mit Sample-Rate > 10 kHz

Abbildung 66: Beispiel für die Berechnung des Einbruchs, bei dem die Einbruchtiefe OK, aber die Kommutierungsfläche zu gross ist. Diese Einbrüche sind nicht akzeptierbar.

18.1.2 Berechnung der Kommutierungseinbrüche – Beispiel 2

Abbildung 67: Beispiel 2, verkettete Spannung U23 mit Sample-Rate > 10 kHz

Abbildung 68: Beispiel für die Berechnung des Einbruchs, bei dem die Einbruchtiefe zu tief, aber die Kommutierungsfläche OK ist. Diese Einbrüche sind nicht akzeptierbar.

SCHAFFNE
shaping electrical power

18.1.3 Berechnung der Kommutierungseinbrüche – Beispiel 2

Abbildung 69 Beispiel 3, verkettete Spannung U23 mit Sample-Rate > 10 kHz

Abbildung 70: Beispiel für die Berechnung des Einbruchs, bei dem sowohl die Einbruchtiefe als auch der Kommutierungsbereich OK sind. Diese Einbrüche sind akzeptierbar.

Schaffner GroupNordstrasse 11e4542 LuterbachSchweizT +41 32 681 66 26info@schaffner.comwww.schaffner.com