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ABSTRACT 
There have been vast amount of studies on background modeling to detect moving objects. Two recent reviews[1,2] 
showed that kernel density estimation(KDE) method and Gaussian mixture model(GMM)  perform about equally best 
among possible background models. For KDE, the selection of kernel functions and their bandwidths greatly influence 
the performance. There were few attempts to compare the adequacy of functions for KDE. In this paper, we evaluate the 
performance of various functions for KDE. Functions tested include almost everyone cited in the literature and a new 
function, Laplacian of Gaussian(LoG) is also introduced for comparison. All tests were done on real videos with vary-
ing background dynamics and results were analyzed both qualitatively and quantitatively. Effect of different bandwidths 
was also investigated. 
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1. Introduction 
The detection of moving objects is one of the challenging 
problems in video surveillance system due to changes of 
natural phenomena occurred in a scene. Background sub-
traction is commonly used for detecting moving objects 
especially when background has not much change. The 
most important issue in background subtraction is main-
taining background. Many background modeling tech-
niques were proposed by researchers. Among them are 
running Gaussian average[3], GMM[4], KDE[5], and 
eigenbackground[6]. Excellent reviews of these tech-
niques are presented in [1,2]. In [1,2], GMM and KDE 
were shown  similar performance and outstrip others. 
For KDE, the selection of kernel functions and their 
bandwidths is important in that they determine the un-
derlying probability distribution and thus the quality of 
background modeling. While surveying the literature, we 
found one relevant work on kernel function comparisons. 
Zucchini[7] compared five kernel functions for KDE. He 
argued that Epanechnikov function performed best. The 
performance measure used was mean integrated squared 
error(MISE). He derived the results only in theoretical 
manner and never tested on real video. 
In this paper, we tested nine kernel functions where eight 
of them are frequently cited in the literature. One new 
function, LoG, is introduced for comparison. All tests 
were done on real videos with varying background dy-
namics and results were analyzed both qualitatively and 
quantitatively. Effect of different bandwidths was also 

investigated. For quantitative comparison, we used recall 
and precision as performance measures and ROC curves 
were drawn to show the results.  

The paper is structured as follows. In section 2, we 
describe the related work. Proposed method is introduced 
in section 3. Experimental results and analysis are ex-
plained in section 4. Finally section 5 gives conclusion 
and future work. 

2. Related Works 
Zucchini [7] compared the performance of five kernel 
functions for KDE. They are Epanechnikov, Gaussian, 
uniform, triangular, and bi weight functions. He used 
MISE as a performance measure. We follow the nota-
tions used in [7] to explain his approach below.  Mean 
squared error(MSE) of estimated function is given as 
Equations (1), (2), and (3). 
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Here )(xf  and )(ˆ xf represent original probability den-
sity function and estimated probability density function 
respectively. Bias and variance are two components of 
MSE. The theoretical derivation of bias and variance can 
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be found in [7] and given as, 
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, where n and h represent the number of previous samples 
and bandwidth respectively. Substituting Equations (4) 
and (5) for Equation (3), we get 
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MISE measure is used to quantify the performance of the 
estimator. Optimal bandwidth can be calculated by mi-
nimizing the Equation (8) with respect to h and is given 
as 
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, where ∫= .)( )( 2// dxf xfβ Wand and Jones[8] used 
MISE given in Equation (9) to measure the performance 
of various kernel functions and found  that  Epanech-
nikov kernel is the best. 

Assuming the efficiency of Epanechnikov function is 
100% , the efficiency of other kernels were calculated 
and given as in Table 1. As can be seen, not much dif-
ference is observed among various kernel functions 
though Epanechnikov function achieves the best. 

 
Table  1. Kernel functions and their efficiencies 

Kernel Efficiency 

Epanechnikov 100% 

Bi weight 99.39% 

Triangular 98.59% 

Gaussian 95.12% 

Rectangular 92.95% 

3. The Proposed Method 
We follow the notations used in [5] to explain the pro-
posed method. Let xxx N,...2,1  be previous N samples of 
intensity values for some pixel. Given these samples, 
KDE is used to estimate probability density at any inten-
sity value of the pixel. Let  xt  be an intensity value of 
the pixel at time t. Then we can estimate probability den-
sity for pixel value xt  as in Equation (10). 

1( ) ( )1
Nx x xP Kr t t iiN σ= −∑ =      

(10)
 

where K is a kernel function and σ is bandwidth. For 
more than one dimension, Equation (11) is used. 

 
(11) 

  
, where Kσ  is a kernel function for d dimensional space. 
In our work, we assume d = 1. The pixel is considered to 
be foreground if the above probability estimate is less 
than some threshold value.  

3.1. Kernel Functions  
Kernel function K (t) described in Equation (11) should 
satisfy three conditions . They are :  
1) K (t) >= 0, 
2) K (t) should be symmetric, and 
3) ∫ = 1)( dttK . 

We collected almost all the kernel functions cited in 
the literature that were used for KDE. There were eight 
candidate functions: uniform, triangular, quartic, tri 
weight, tri cube, cosine, Epanechnikov, and Gaussian 
functions. We add one more function,  LoG, for com-
parison. Their names, formula with value range, and 
graphs are given in Table 2. For LoG, since negative 
value violates condition 1) above, we use the range 
where the function value is nonnegative.  

3.2. Selection of Threshold 
Elgammal, Duraiswami, Harwood, and Davis[5] seemed to 
select threshold value empirically for Gaussian kernel to 
differentiate between background and foreground. Thre-
shold selection guideline for all other kernels we consi-
dered in this paper is rarely found in the literature. Inten-
sive empirical study led us to the conclusion that around 
85% of the maximum probability density value that each 
kernel function can provide gave the best results. To re-
duce the computation time that is the major drawback of 
KDE, we built lookup table having pre-calculated func-
tion values for all possible domain values for each ker-
nel. 

3.3. Selection of Bandwidth 
Elgammal, Duraiswami, Harwood, and Davis [5] showed 
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how to select optimal bandwidth for Gaussian kernel. 
However, bandwidth selection guideline for all other 

 
Table 2. Kernel functions, formula, and their graphs 
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kernels we considered is rarely found in the literature. 
Thus we empirically chose several bandwidth values and 
analyze the behavior of each kernel function.  

4. Experimental Results 
In this section, we compare the performance of various 
kernel functions for KDE both qualitatively and quantita-
tively. We use three test video sets that were used for the 
competition of background and foreground separation in 
VSSN2006 Conference[9].  Following are abbreviations 
for each data set. 

STATIC : Background is almost static.(749 frames) 

MILD : Background has mild dynamic behavior.(749 
frames) 
SEVERE : Background has severe dynamic beha-
vior.(819 frames) 

For all three, background is real and foreground is ar-
tificial, i.e., graphically generated objects are inserted 
and animated in real background video. The reason for 
doing this is in the easiness of getting ground truth. The 
size of the image is 320x240 for all test videos. 

4.1. Qualitative Analysis 
Figure. 1 shows the result for STATIC. Figure. 1(a) is  

 

 
(a)                                  (b)                                 

(c) 

 
(d)                                  (e)                                 

(f) 

 
(g)                                  (h)                                 

(i) 

 
(j)                               (k) 

Figure  1. (a) Original frame, (b) Ground Truth, (c) Tri-
angular, (d)Gaussian, (e) Epanechnikov, (f) Quartic, (g) Tri 
weight, (h) Tri cube, (i) Cosine, (j) Uniform, and (k) Lapla-
cian of Gaussian 
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(a)                                  (b)                                 

(c) 

 
(d)                                  (e)                                 

(f) 

 
(g)                                  (h)                                 
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(j)                                    (k)                              

(i) 
Figure  2. (a) Original frame, (b) Ground Truth, (c) Tri-
angular, (d)Gaussian, (e) Epanechnikov, (f) Quartic, (g) Tri 
weight, (h) Tri cube, (i) Cosine, (j) Uniform, and (k) Lapla-
cian of Gaussian 
 
the original frame, 1(b) the ground truth, and 1(c) 
through 1(k) the foreground detection results for nine 
kernel functions respectively. Bandwidths used for all 
kernel functions were set to 20. Since the video contains 
almost no dynamic background activities, all functions 
performed about equally well, though uniform kernel 

found somewhat less true positives. 
Figure. 2 and Figure. 3 depict the results for MILD 

and SEVERE videos respectively. Conventions for each 
image in Figure. 2 and Figure. 3 are the same as the one 
for Figure. 1. LoG seems to be the worst in terms of de 
tecting false positives and uniform kernel performed 
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(j)                                    (k) 

Figure 3. (a) Original frame, (b) Ground Truth, (c) Trian-
gular, (d)Gaussian, (e) Epanechnikov, (f) Quartic, (g) Tri 
weight, (h) Tri cube, (i) Cosine, (j) Uniform, and (k) Lapla-
cian of Gaussian 
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worst in terms of detecting true positives. All the other 
kernels performed equally well except Epanechnikov 
kernel where more false positives are seen. Since it is not 
easy to compare the performance exactly just by visual 
observation, we resort to quantitative comparison in next 
section. 

4.2. Quantitative Analysis 
Figure. 4 shows the ROC curves for nine kernel func-
tions for STATIC. Horizontal axis and vertical axis cor-
respond to recall and precision respectively. Figure. 5 
and Figure. 6 depict the ROC curves for nine kernel 
functions for MILD and SEVERE respectively and axis 
convention is the same as the one in Figure. 4. Uniform 
kernel was the worst and cosine kernel seems to be the 
best for all the videos. Among the others, LoG and Gaus-
sian kernels showed relatively poor performance. As we 
go from STATIC to MILD and from MILD to SEVERE, 
all kernels performance deteriorated due to increasing 
background dynamics. 

4.3. Bandwidth Analysis 
Figure. 7 shows the ROC curves of different bandwidths 
for each kernel function for STATIC. Bandwidths tested 
were 20, 40, and 60. For all kernels bandwidth of 20 
 

 
Figure 4. ROC Curves for STATIC 

 

 
Figure 5. ROC Curves for MILD 

 
Figure  6. ROC Curves for SEVERE 

 

 
(a)                           (b)                              

(c) 

 
(d)                           (e)                              

(f) 

 
(g)                           (j)                              

(i) 
Figure  7. (a) Triangular, (b)Gaussian, (c) Epanechnikov,               
(d) Quartic, (e) Tri weight, (f) Tri cube, (g) Cosine, (j) Uni-
form, and (i) Laplacian of Gaussian 

62



Y. SOH  ET  AL. 

Copyright © 2013 SciRes.                                                                               OJAppS 

  

 
(a)                           (b)                              
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(d)                           (e)                              
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(g)                           (j)                              
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Figure  8, (a) Triangular, (b)Gaussian, (c) Epanechnikov,               
(d) Quartic, (e) Tri weight, (f) Tri cube, (g) Cosine, (j) Uni-

form, and (i) Laplacian of Gaussian 
 

 
(a)                           (b)                              

(c) 

 
(d)                           (e)                              

(f) 

 
(g)                           (j)                              

(i) 
Figure  9, (a) Triangular, (b)Gaussian, (c) Epanechnikov, 
(d) Quartic, (e) Tri weight, (f) Tri cube, (g) Cosine, (j) Uni-
form, and (i) Laplacian of Gaussian 

 
showed best result and as bandwidth increases, the per-
formance gets worse. Figure. 8 and Figure. 9 depict the 
ROC curves of different bandwidths for each kernel 
function for MILD and SEVERE. We can observe the 
same performance characteristic as in STATIC. 

5. Conclusion 
KDE, along with GMM, is known to be the best back-
ground modeling method. The performance of KDE 
greatly depends on kernel functions and their bandwidths. 
In this paper, we analyzed the performance of nine kernel 
functions on real videos having various levels of back-
ground dynamics. Eight out of nine kernel functions were 
collected through literature survey and one more kernel 
function, LoG, was added for comparison. Through 
quantitative analysis, we found that cosine kernel per-
formed best and, LoG and uniform kernels were worst. 
All other kernels were in between. By bandwidth analy-
sis, we found that bandwidth of 20 performed best and as 
bandwidth increases, the performance deteriorates.  

In this work, all the thresholds were selected empiri-
cally. It would give better results if automatic selection 
of thresholds is possible. This is intended for future re-
search. 
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