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SUMMARY
The commonly enunciated reason to decluster catalogs is so that the remaining “main”
events will be consistent with a spatially inhomogeneous, temporally homogeneous
Poisson process (SITHP) model. But are they? Conclusions depend on the decluster-
ing method, the catalog, the magnitude range, and the statistical test. Gardner and
Knopoff’s (1974) conclusion that 1932–1971 southern California events with M ≥ 3.8
are Poissonian after declustering apparently results from their use of a test with low
power. That test ignores space, is insensitive to long-term rate variations, is relatively
insensitive to seismicity rate fluctuations on the scale of weeks, and uses an inaccu-
rate approximation to the null distribution of the test statistic. Better temporal tests
and a novel spatio-temporal test show that SITHP does not fit M ≥ 3.8 1932–1971 or
1932–2010 Southern California Earthquake Center (SCEC) catalogs declustered using
Gardner and Knopoff’s windows in a linked-window or a mainshock-window algorithm.
For M ≥ 4.0, SCEC catalogs declustered using the Gardner-Knopoff windows in a
linked-window method are far closer to SITHP, while catalogs declustered using those
windows in a mainshock-window method are inconsistent with SITHP. Reasenberg’s
(1985) declustering method applied to southern California seismicity produces catalogs
inconsistent with SITHP, even for events with M ≥ 4.0.
If enough events are deleted from a catalog, the remainder always will be consistent
with SITHP. This suggests posing declustering as an optimization problem: Delete the
fewest events such that the remainder pass a particular test or suite of tests for SITHP.
While that optimization problem is combinatorially complex, inexpensive suboptimal
methods are surprisingly effective: Declustered catalogs can be consistent with temporal
tests of SITHP at significance level 0.05 and have 50% to 80% more events than window-
declustered catalogs that are inconsistent with SITHP. But tests that incorporate spatial
information reject the SITHP hypothesis for those declustered catalogs, illustrating the
importance of using spatial information.

Key words: Earthquake interaction, forecasting, and prediction; Probabilistic fore-
casting; Declustering; Statistical seismology

1 INTRODUCTION

We study the most common declustering methods,
mainshock-window and linked-window declustering. There
are also stochastic declustering methods, which use chance
to decide whether to remove a particular event (Zhuang
et al. 2002; Vere-Jones 1970); the “waveform similarity ap-
proach” (Barani et al. 2007); and others. See Davis and
Frohlich (1991) and Zhuang et al. (2002) for taxonomies.

Mainshock-window methods remove the earthquakes
in a space-time window around every “mainshock,” suit-
ably defined. Mainshock-window methods can be thought
of as punching a hole in the catalog after each main-
shock. The hole is the window. Gardner and Knopoff’s win-
dows (Knopoff and Gardner 1972; Gardner and Knopoff
1974) are common in mainshock-window declustering. They
are larger in space and time the larger the shock is.

Linked-window methods calculate a space-time window
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for every event in the catalog, not just mainshocks. In linked-
window methods, an event is in a cluster if and only if it falls
within the window of at least one other event in that clus-
ter. Linked-window declustering replaces each cluster with a
single event—for instance, the first, the largest, or an “equiv-
alent event.” The most widely used linked-window method
was developed by Reasenberg (1985). Reasenberg’s windows
are larger in space but shorter in time the larger the shock
is.

Earthquake catalogs are often declustered using window
methods as a precursor to modeling the remaining events
as a realization of a spatially inhomogeneous, temporally
homogeneous Poisson process (SITHP). Tests of the null
hypothesis that declustered catalogs are realizations of a
SITHP have not rejected the null hypothesis, leading some
studies to conclude that declustered catalogs are Poisson.
For instance, the title of Gardner and Knopoff (1974) is “Is
the sequence of earthquakes in Southern California, with af-
tershocks removed, Poissonian?” The abstract: “Yes.”

Their claim seems to be based on a multinomial chi-
square test described below in section 3.1. The assumptions
of the multinomial chi-square test are false when the SITHP
hypothesis is true. Moreover, not rejecting the null hypoth-
esis does not imply that the null hypothesis is true: Failure
to reject could be a Type II error, especially if the test has
little power against plausible alternatives—which we show
is the case.

No test has good power against every alternative, so
we compare the multinomial chi-square test with several
other tests of the Poisson hypothesis: conditional chi-square,
Brown-Zhao, and Kolmogorov-Smirnov, described in sec-
tions 3.2, 3.3, and 3.4. Among these, the Kolmogorov-
Smirnov test is most sensitive to long-term variations in the
rate of seismicity. The multinomial chi-square (with P -value
estimated by simulation rather than the chi-square approx-
imation) is most sensitive to local departures from Poisson
behavior—but Poisson behavior and constant rate are not
the same thing, nor is “Poisson behavior” necessarily a good
proxy for unpredictability. The conditional chi-square and
Brown-Zhao tests are similar and are more sensitive to vari-
ations in the short-term rate of seismicity. An omnibus test
that combines these four temporal tests using Bonferroni’s
inequality rejects the hypothesis that the 1932–1971 South-
ern California Earthquake Center (SCSC) catalog of events
with magnitude 3.8 and above, declustered with four win-
dow methods, follow a SITHP.

However, a declustering method designed to pass these
tests—deTest—can pass these four temporal tests and re-
tain 50% to 80% more events than methods that do not
pass the tests. Finding the smallest number of events to re-
move from a catalog so that the rest pass a tests of SITHP
is a combinatorially complex problem. Instead, deTest uses
an inexpensive, “greedy” approach that still performs well
compared with window methods.

The multinomial chi-square, conditional chi-square,
Brown-Zhao, and Kolmogorov-Smirnov tests use only the
times of events, not event locations. Section 5 presents a
nonparametric permutation test that uses locations as well
as times to test the hypothesis that event times in declus-
tered catalogs are conditionally exchangeable given event
locations. That hypothesis is implied by the hypothesis that
declustered catalogs are a realization of a SITHP. The test,

based on ideas in Romano (1988, 1989), generally finds small
P -values for this weaker hypothesis. We believe this test is
new to seismology.

2 THE POISSON NULL HYPOTHESIS

Consider a fixed spatial domain S and time interval (0, T ]. In
a spatially inhomogeneous, temporally heterogeneous Pois-
son process (SITHP) on the spatiotemporal domain S ×
(0, T ], the number of events in disjoint subsets of S × (0, T ]
are independent Poisson random variables. Within any sub-
set, the locations of the events are independent of the times
of events. The space-time rate is the product of the in ho-
mogenous marginal spatial rate and the uniform temporal
rate.

Let N denote the (random) number of events in a
SITHP on S×(0, T ]. Denote the random locations and times
of the N events by {(Xi, Yi, Ti)}Ni=1. The times between suc-
cessive events are marginally independent and identically
distributed (iid) exponential random variables. The number
of events in any subset of S in disjoint subsets of (0, T ] are
independent Poisson random variables with means propor-
tional to the durations of the intervals; this is the basis of the
multinomial chi-square test described in section 3.1. Condi-
tional on N = n (that is, given the number of events that
actually occur), the times {Ti}ni=1 are (marginally) iid uni-
form random variables; this is the basis of the Kolmogorov-
Smirnov test described in section 3.4. Since the conditional
distribution of times given N = n is iid uniform, the num-
ber of events in K equal-length disjoint time intervals whose
union is (0, T ] is has a multinomial conditional joint distri-
bution with equal category probabilities. This is the basis of
the conditional chi-square test and the Brown-Zhao test.

In describing the tests below, we assume that we are
given a declustered catalog with n events. The longitude, lat-
itude, and time of the ith event are (xi, yi, ti), i = 1, . . . , n.
Events are not necessarily in chronological order. We do not
consider earthquake depths. We study the null hypothesis
that the points {(xi, yi, ti)}ni=1 are a realization of a SITHP.

3 TEMPORAL TESTS

3.1 The multinomial chi-square test (MC)

We believe that the chi-square test of the hypothesis that
declustered catalogs are realizations of a homogeneous tem-
poral Poisson process used by Gardner and Knopoff (1974)
and Barani et al. (2007) was a multinomial chi-square
test (Brown and Zhao 2002). It works as follows:

(i) Pick K ≥ 1. Partition the study period into K dis-
joint time intervals of length T/K. Count the events in each
interval:

Nk ≡ #{i : ti ∈ ((k − 1)T/K, kT/K]}, k ∈ {1, . . . ,K}.
(1)

(ii) Estimate the theoretical rate of events per interval.
We believe Gardner and Knopoff (1974) and Barani et al.
(2007) used the estimate

λ̂ = n/K. (2)
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(iii) Pick C ≥ 2, the number of “categories,” such that
the expected number of intervals that fall into each category,
assuming that events follow a Poisson process with rate λ̂, is
at least 5. That is, choose the smallest integer C such that

Ec ≥ 5 ∀c ∈ {0, . . . , C − 1}, ? (3)

where

Ec ≡

{
Ke−λ̂ · λ̂

c

c!
, c = 0, 1, . . . , C − 2

K −
∑C−2
j=0 Ej , c = C − 1.

(4)

For k ∈ {1, . . . ,K}, interval k is in category c ∈ {0, . . . , C −
2} if it contains c events; interval k is in category C − 1 if
it contains C − 1 or more events. Let Oc be the number of
intervals observed to be in category c.

(iv) Calculate the chi-square statistic:

χ2
m ≡

C−1∑
c=0

(Oc − Ec)2

Ec
. (5)

Take the nominal P -value to be

P ≡ Pr{X ≥ χ2
m}, (6)

where X is a random variable with a chi-square distribution
with d degrees of freedom. We believe that Gardner and
Knopoff (1974) used d = C − 2.

The nominal and true P -values depend on arbitrary choices:
K, C, d, and the method of estimating λ. Moreover, the true
P -value depends on whether these choices are made before
or after looking at the data.

Let Ik = c if the number of events in the kth interval is
in category c. In the basic chi-square test for goodness of fit,
C is fixed before observing the data, and the null hypothesis
is that (i) {Pr{Ik = c}}C−1

c=0 are known and do not depend
on k, and (ii) {Ik}Kk=1 are independent (Lehmann 2005).
The numbers of intervals in the C categories, {Oc}C−1

c=0 , then
have a multinomial joint distribution. The null distribution
of the chi-square statistic converges to a chi-square distribu-
tion with C−1 degrees of freedom as the number K of data
increases—but the finite-sample distribution is only approx-
imately chi-squared.

In testing whether declustered catalogs are Poisson, C
generally is not fixed ahead of time: It is chosen after looking
at the data to estimate λ, for instance, so that the expected
number of intervals in each category exceeds some minimum,
such as 5. Moreover, neither (i) nor (ii) is true in testing
whether declustered catalogs are Poisson. (i) is false because

? We assume that E0 ≥ 5. If not, categories might be combined
so that the expected number of intervals in each category is at
least 5. See, for instance, Shearer and Stark (2011). The rea-

son to have a lower threshold of 5 is that many textbooks state
that the chi-square approximation to the null distribution of the

chi-square statistic holds when the expected number of counts

in every category is at least 5, so we suspect that seismologists
generally use this rule to select the categories. Note that this

method of selecting the categories for the chi-square test makes

the number of categories and their definitions depend on the ob-
served data through λ̂. This can make the actual P -value differ

from the nominal P -value based on the chi-square distribution.
We compare the nominal P -value with the P -value estimated by

simulation, which takes into account the conditioning and does

not rely on the chi-square approximation.

the hypothesis that declustered seismicity is Poisson does
not completely specify the category probabilities {Pr{Ik =
c}}C−1

c=0 . Instead, those probabilities are estimated from an
estimate λ̂ of the marginal temporal rate λ of the Poisson
process. Estimating {Pr{Ik = c}}C−1

c=0 from the data changes
the distribution of the chi-square statistic; moreover, the
theoretical value of those probabilities conditional on the
observed rate is different from the values used in practice,
which are (estimated) unconditional probabilities.

(ii) is false too: Conditional on the estimated tempo-
ral rate, the random variables {Ik}Kk=1 are not indepen-
dent because they are related through the total number of
earthquakes—an ingredient in estimating the rate. For in-
stance, if n ≥ C − 1 and Ik = 0, k = 1, . . . ,K − 1, we
would know that IK = C − 1. The joint distribution of
{Oc}C−1

c=0 is not multinomial when the Poisson null hypoth-
esis is true, and the chi-squared statistic, as calculated to
test declustered catalogs, may not have even approximately
a chi-square distribution.

Hence, we calibrate the P -value for the multinomial chi-
square test using a simulation that takes into account esti-
mating the rate of events from the data, choosing C on the
basis of that estimate, and calculating the category proba-
bilities in an inconsistent way (using the observed number of
events to estimate the probabilities, but ignoring that con-
ditioning in computing the probabilities). The simulation
conditions on the observed number of events, and takes the
times of the events to be independent, identically distributed
(iid) uniform random variables.

3.2 The conditional chi-square test (CC)

The MC test described in the previous subsection assesses
whether the numbers of intervals with various numbers of
events agree well with the numbers expected for iid uni-
formly distributed event times. MC uses C categories of
possible values of the number of events per interval. An in-
terval with C− 1 events is in the same category as one with
C+ 10 events. For this and other reasons, MC is not as sen-
sitive to overdispersion—apparent fluctuations in the rate of
seismicity—as some other tests.

The conditional chi-square test (or Poisson dispersion
test) uses the fact that, conditional on the total number of
events, the joint distribution of the numbers of events in the
windows is multinomial with equal category probabilities.
The test statistic is

χ2
c ≡

K∑
k=1

(Nk − λ̂)2

λ̂
. (7)

This is proportional to the variance of the counts across win-
dows. If the Poisson hypothesis is true, the distribution of
χ2
c is approximately chi-square with K − 1 degrees of free-

dom. The conditional chi-square test involves choosing the
number of intervals K but not C, and, unlike the multino-
mial chi-square test, it uses the information N = n in a
consistent way. While the multinomial chi-square test tries
to look at the detailed distribution of the number of events
per interval, the conditional chi-square test looks only at the
variability of the observed number of events across intervals.
High variability—overdispersion—is a sign that the process
is not a homogeneous Poisson process.
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3.3 The Brown-Zhao test (BZ)

Brown and Zhao (2002) proposed an alternative test. Let
Yk ≡

√
Nk + 3/8 and Ȳ ≡

∑
Yk/K. The Brown-Zhao (BZ)

test statistic is

χ2
BZ ≡ 4

K∑
k=1

(Yk − Ȳ )2. (8)

Under the Poisson hypothesis, the statistic χ2
BZ has a dis-

tribution that is approximately chi-square with K − 1 de-
grees of freedom. The chi-square approximation to the null
distribution of χ2

BZ tends to be better than the chi-square
approximation to the null distribution of χ2

c or χ2
m (Brown

and Zhao 2002). Like CC, the BZ test requires choosing K
but not C, and uses the information N = n in a consistent
way. Also like CC, the BZ test rejects when there is high
variability of the observed numbers of events in different
intervals—i.e., when the counts are overdispersed.

3.4 The Kolmogorov-Smirnov test (KS)

The Kolmogorov-Smirnov test compares the empirical cu-
mulative distribution function (cdf) F̂n(x) of a random vari-
able to a fixed reference cumulative distribution function
F (x) (Lehmann 2005). The KS test rejects when

Dn ≡ sup
x

∣∣∣F̂n(x)− F (x)
∣∣∣ ≥ C(n, α). (9)

In seismology, the KS test has been used to assess the unifor-
mity of declustered earthquake sequences preceding main-
shocks (Matthews and Reasenberg 1988; Reasenberg and
Matthews 1988).

If declustered earthquakes follow a SITHP, then con-
ditional on N = n, the times {Ti}ni=1 are iid uniform on
(0, T ]. Their common cumulative distribution function is
F (x) = t/T . Hence, conditional on N = n,

Dn = sup
t

∣∣∣∣∣ 1n
n∑
i=1

1ti≤t − t/T

∣∣∣∣∣ . (10)

Unlike the chi-square tests, the KS test has no ad hoc choices
analogous to K, C, and d. The KS test has asymptotic
power 1 against the alternative that the data are iid with
any fixed distribution G 6= F .

3.5 Power

MC, CC, and BZ ignore the order of the K intervals. This
causes them to have low power against some kinds of clus-
tering that violate the Poisson hypothesis, such as long-term
variations in the rate of seismicity.

To see why, consider any particular catalog. Divide the
study period into K disjoint equal-length windows. Now, re-
arrange the windows so that the first has the most events,
the second has the next most events, and so on, to form a
new catalog. This catalog has a monotonically decreasing
rate of seismicity, which would be very unlikely if declus-
tered seismicity followed a homogeneous Poisson process.
However, the test statistics for MC, CC, and BZ would have
the same values for this rearranged catalog as they did for
the original catalog.

In contrast, KS would tend to reject the null hypothesis

for the new data: The empirical cdf would be far above t/T
in the early part of the rearranged catalog. KS is more sen-
sitive to long-term rate variations than the other tests are,
but less sensitive to short-term variations. KS, CC, and BZ
are sensitive to whether the rate varies with time: to cluster-
ing. For instance, if events were equispaced in time, none of
those tests would reject the null hypothesis. MC would re-
ject the Poisson hypothesis if events were equispaced, given
enough data.

None of these tests uses spatial information; in section 5
we propose a test that does. A process can be non-Poisson in
space-time yet have a homogenous Poisson marginal tempo-
ral distribution; see, e.g., Luen (2010, Chapter 3), so using
spatial information can increase power, as we show empiri-
cally.

4 DECLUSTERING METHODS

We consider the following five window-based declustering
algorithms:

GKl (Gardner-Knopoff linked) Remove every event
that is in the window of some other event (Gardner and
Knopoff 1974).

GKlb (Gardner-Knopoff linked, biggest) Divide the
catalog into clusters as follows: An event is in a given cluster
if and only if it is in the window of at least one other event
in the cluster. In every cluster, remove all events except the
largest (Gardner and Knopoff 1974).

GKm (Gardner-Knopoff mainshock) Consider the
events in chronological order. If the ith event is in the win-
dow of a preceding larger shock that has not already been
deleted, delete it. If a larger shock is in the window of the
ith event, delete the ith event. Otherwise, retain the ith
event (Knopoff and Gardner 1972).

Rl (Reasenberg linked) Reasenberg’s method (Reasen-
berg 1985).

dT deTest, described below.

GKl, GKlb, and Rl are linked-window methods. Gardner
and Knopoff (1974) found that GKl and GKlb gave similar
results for 1932–1971 Southern California seismicity. GKm
is a mainshock-window method.

deTest is not a window method. It has no physical basis,
not even a heuristic one. It is offered as a “straw man” to
show two things:

(i) A declustered catalog can have rather more events
than window-based declustering methods leave, and still
pass a test for temporally homogeneous Poisson behavior.

(ii) Using spatial and temporal data by testing for condi-
tional exchangeability of times given the locations (described
below) can be more powerful than testing only for temporal
homogeneity.

We assume that K is given. Declustering a catalog to
make the result pass the MC, CC, or BZ test is constrained
by the number of intervals among the K in the original cata-
log that have no events, since declustering can delete events
but not add them. The number of intervals with no events
gives an implicit estimate of the rate of a Poisson process
that the declustered catalog can be coerced to fit well: If
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seismicity followed a homogenous Poisson process with the-
oretical rate λ events per interval, the chance that an interval
would contain no events is e−λ. So,

λ̂ ≡ − log

(
# intervals with no events

K

)
(11)

is a natural estimate of the rate of events per interval. deTest
tries to construct a catalog with about this rate that passes
all four tests described above (MC, CC, BZ, and KS). If
seismicity followed a homogeneous Poisson distribution with
theoretical rate per interval λ̂, then the expected number of
intervals in the declustered catalog with at least c events
would be

Gc ≡
∞∑
i=c

K × λ̂ie−λ̂

i!
. (12)

deTest constructs a catalog in which [Gc] intervals contain
c or more events, where [x] denotes the integer closest to x.

deTest is defined by the following algorithm, which
starts with an empty catalog and adds events from the orig-
inal catalog until the result has approximately the correct
expected number of intervals with each number of events
(ensuring it will pass the first three tests), then removes
events until the catalog passes the KS test.

(i) Count the events in the raw catalog in each of the K
intervals.

(ii) Define λ̂ by equation 11 and Gc by equation 12.
(iii) Let c = 1. From each interval in the raw catalog that

has at least one event, include one event selected at random
from that interval.

(iv) Let c← c+ 1. If [Gc] = 0, go to step (vi). Otherwise,
go to step (v).

(v) This step adds events to the declustered catalog until
[Gc] intervals have at least c events, while trying to keep
the KS statistic small. Let Nt be the number of events in
the current declustered catalog that have occurred by time
t. Find the element tm of the set t ∈ {T/K, 2T/K, . . . , T}
at which Nt/NT − t/T is minimized. Adding an event before
time tm will tend to reduce the KS statistic. Find the set of
intervals that

a. contain c− 1 events in the current declustered cat-
alog;

b. contain at least c events in the raw catalog.

From this set, select the interval prior to tm but closest to
tm (If no interval is prior to tm, choose the first interval in
the set.) Choose an event at random from the events in the
selected interval that have not yet been added to the declus-
tered catalog, and add that event to the declustered catalog.
Repeat this step until [Gc] intervals contain c events.† Re-
turn to step (iv).

(vi) Find the KS P -value. If it is above the target signif-
icance level, find a time t at which the empirical cdf differs
maximally from the uniform cdf. Either t is infinitesimally
before an event or t is the time of one or more events. If t is

† To ensure that there are at least [Gc] intervals that contain c
events could in principle require modifying the rule for deciding
which intervals to include at each stage, so that things “telescope”

correctly. In practice, we have not found it necessary to complicate
the algorithm in that way.

just before an event, t/T is larger than the empirical cdf. In
that case, delete the event after time t at which the empir-
ical cdf minus the uniform cdf is largest. If t is the time of
an event, the empirical cdf at t is larger than t/T . In that
case, delete an event at time t. Repeat this step until the
KS P -value is below 0.05.

5 SPATIO-TEMPORAL TESTS

5.1 A weaker null hypothesis: conditionally
exchangeable times

The marginal distribution of event times for a SITHP is
Poisson, so if the hypothesis that declustered event times
follow a Poisson distribution is rejected, so is the hypothesis
that event times and locations follow a SITHP. Moreover,
SITHPs can have events arbitrarily close together. But cat-
alogs declustered with window methods have a minimum
spacing between events: If a catalog contains two events
very close in space and time, the later event will fall within
the window of the former, and one or both of them will be
deleted. However, catalogs declustered using window meth-
ods may still have some properties of SITHPs.

To try to salvage part of the SITHP hypothesis, we
develop a test of a weaker condition implied by SITHP: the
hypothesis that times are conditionally exchangeable given
event locations. Let Π be the set of all n! permutations of
{1, . . . , n}. We say a process has conditionally exchangeable
times if, conditional on the locations,

{T1, . . . , Tn}
d
= {Tπ(1), . . . , Tπ(n)} (13)

for all permutations π ∈ Π. (The notation
d
= means “has

the same probability distribution as.”) If event times are
conditionally iid given event locations, they are condition-
ally exchangeable given event locations. Since event times in
SITHPs are conditionally iid uniform given event locations,
SITHPs have conditionally exchangeable times given event
locations.

Under the hypothesis of conditionally exchangeable
times, conditional on the set of locations {(xi, yi)}ni=1 and,
separately, on the set of times {ti}ni=1, all one-to-one assign-
ments of times to locations have the same chance. If events
close in space tend to be close in time—the kind of clus-
tering real seismicity exhibits—times are not conditionally
exchangeable. If events close in space tend to be distant in
time—which can result from deleting events in windows—
times are not conditionally exchangeable.

We test the hypothesis that times are conditionally
exchangeable by adapting abstract methodology of Ro-
mano (1988, 1989). Let P̂n be the empirical distribution of
the times and locations of the n observed events: P̂n as-
signs probability 1/n to each observed (time, location) pair
((xi, yi), ti). For each permutation π of {1, . . . , n}, let P̂πn
be the distribution that assigns probability 1/n to each pair
((xi, yi), tπ(i)).

If the null hypothesis of conditionally exchangeable
times holds, then conditional on the times and (separately)
the locations, the empirical distribution was just as likely to
have been P̂πn as it was to be P̂n. Consider a test statistic φ
that can be computed from the empirical distribution of the
data. Such a statistic is called a functional statistic. If the
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null hypothesis is true, then conditional on the times and
the locations, all values of φ(P̂πn) as π varies over the n!
permutations of {1, . . . , n} were equally likely. We can test
hypotheses (conditional on the times and the locations) by
determining whether φ(P̂n) is surprisingly large compared
to those n! values. If φ(P̂πn) ≥ φ(P̂n) for a fraction P of the
n! permutations, then the P -value of the null hypothesis is
P .

We now define the functional test statistic φ we will
use. It measures the “distance” between the empirical dis-
tribution P̂n and a transformation τP̂n of the empirical dis-
tribution that satisfies the null hypothesis by construction.
In particular, we take τP̂n to be the distribution that as-
sign probability 1/n2 to the n2 pairs ((xi, yi), tj)

n
i,j=1. For

τP̂n, times and locations are independent, and hence times
are conditionally exchangeable. Thus τP̂n satisfies the null
hypothesis.

We now define the measure of “distance” that φ uses. A
set V ⊂ R3 is a lower-left quadrant if, for some (x0, y0, t0),
it is of the form:

V = {(x, y, t) ∈ R3 : x ≤ x0 and y ≤ y0 and t ≤ t0}. (14)

Let V be the set of all lower-left quadrants. The test statistic
φ is the supremum (over all lower-left quadrants V ∈ V) of
the difference between the probability P̂n assigns to V and
the probability that τP̂n assigns to V :

φ(P̂n) ≡ sup
V ∈V

|P̂n(V )− (τP̂n)(V )|. (15)

In principle, one could enumerate all n! distributions
P̂πn, calculate the n! values of φ(P̂πn), and find the fraction
of such values that are greater than or equal to φ(P̂n) to
determine the P -value. But since n! is enormous, it is more
practical to estimate the P -value by comparing φ(P̂n) to
the values of φ(P̂πn) for a large random sample of permu-
tations π. The larger the number of random permutations,
the smaller the variability of the estimated P -value. Alter-
natively, it is still conservative simply to redefine the test
to examine only a smaller, pre-determined subset of permu-
tations, since in any such subset all the permutations are
equally likely, conditional on the times and on the locations.
The P -value for that test is the fraction of that subset of
permutations for which the test statistic is at least as large
as φ(P̂n) in a

We implemented a test for conditionally exchangeable
times in R (http://cran.r-project.org/). Code is avail-
able online at http://statistics.berkeley.edu/~stark/

Code/Quake/permutest.r. Appendix A describes the algo-
rithm.

6 DATA AND RESULTS

We assessed whether four subsets of the SCEC catalog‡

(1932–1971 and 1932–2010, each for M ≥ 3.8 and M ≥ 4.0),
declustered using the five methods in section 4, are con-
sistent with SITHP. The 1923–1971, M ≥ 3.8 subset was
chosen to be as similar as possible to the catalog used by

‡ http://www.data.scec.org/eq-catalogs/date_mag_loc.php

(last accessed 23 September 2011).

Gardner and Knopoff (1974), for comparison with their re-
sults.

Gardner and Knopoff (1974) performed multinomial
chi-square tests on a number of catalogs declustered using
GKl. Among other things, they report results for a catalog of
earthquakes with M ≥ 3.8 occurring in the “Southern Cal-
ifornia Local Area” from 1932–1971. That raw catalog had
1,751 events; the declustered catalog had 503 events. They
divided the forty-year period into ten-day intervals, found
Oc and estimated Ec for some range of c, and found nomi-
nal P -values using the chi-square distribution with 2 degrees
of freedom. They did not state C, how they estimated λ, nor
whether they used d = C − 1 or d = C − 2 in their tests.
They found a P -value of 0.0599, and hence did not reject
the hypothesis that declustered catalogs are Poisson at sig-
nificance level 0.05.

The SCEC catalog contains 1,556 events with magni-
tude at least 3.8 between 1932 and 1971. We declustered
that catalog using GKl, GKlb, and GKm with the Gardner
and Knopoff (1974) windows and using Rl and dT. (We used
Stefan Wiemer’s ZMAP package for MATLAB§ to apply
Reasenberg’s method.) The declustered catalogs contained
437, 424, 544, 985, and 608 events, respectively. Figure 1
maps the events in the original catalog and the events that
remain after declustering using each of the methods. Fig-
ure 2 shows the 1932–2010 SCEC catalog of 3,368 events
of magnitude 3.8 and above, declustered using the same
five methods. Those declustered catalogs contained 913, 892,
1,120, 2,046, and 1,615 events, respectively.

We applied MC (using both the χ2 approximation and
simulation to approximate the null distribution), CC, BZ,
and KS to the declustered catalogs. We combined these four
tests (using the simulation P -value rather than the χ2 ap-
proximation) to obtain a composite level 0.05 temporal test
of the SITHP hypothesis, using Bonferroni’s equality: We re-
jected the SITHP hypothesis if any of these four tests gave
a P -value less than 0.0125. If the null hypothesis is true, the
chance of a Type I error is no greater than 4×0.0125 = 0.05.

Results, reported in Table 1, varied. For 1932–1971,
M ≥ 3.8, the catalog most similar to that studied by Gard-
ner and Knopoff (1974), none of the window-declustered
catalogs appears to be Poisson, contradicting Gardner and
Knopoff (1974). For the four window declustering methods,
the KS test rejects the Poisson hypothesis at level 0.0125; the
KS test does not reject the Poisson hypothesis for deTest.
The other tests reject the Poisson hypothesis at level 0.0125
for GKm and Rl. For 1932–1971 and 1932–2010M ≥ 4.0, the
Poisson hypothesis is rejected for GKm and Rl. For 1932–
2010 M ≥ 3.8, the Poisson hypothesis is rejected for all
methods except deTest.

Table 1 also gives results for the permutation test of the
hypothesis that event times are conditionally exchangeable
given event locations. As discussed above, this hypothesis
is weaker than SITHP; nonetheless, incorporating spatial
information can lead to more power to reject the SITHP
hypothesis when that hypothesis is in fact false. This is ev-
ident in the results for deTest. deTest only tries to pass the
temporal tests, which it succeeds in doing for all four cat-

§ http://www.earthquake.ethz.ch/software/zmap (last ac-
cessed 23 September 2011).
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Figure 1. (a): 1932–1971 SCEC catalog of 1,556 events of magnitude 3.8 or greater in Southern California. (b): The 437 events that

remain after declustering using GKl. (c): The 424 events that remain after declustering using GKlb. (d): The 544 events that remain after

declustering using GKm. (e): The 985 events that remain after declustering using Rl. (f): The 608 events that remain after declustering
using dT.
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Figure 2. (a): 1932–2010 SCEC catalog of 3,368 events of magnitude 3.8 or greater in Southern California. (b): The 913 events that
remain after declustering using GKl. (c): The 892 events that remain after declustering using GKlb. (d): The 1,120 events that remain

after declustering using GKm. (e): The 2,046 events that remain after declustering using Rl. (f): The 1,615 events that remain after

declustering using dT.
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alogs, despite the fact that it retains more events than all
the other methods but Reasenberg’s. Unsurprisingly, it fails
the spatio-temporal test for all four catalogs: The spatio-
temporal behavior of catalogs declustered by deTest is not
consistent with the hypothesis that times are conditionally
exchangeable. Of course, one could devise an analog of de-
Test to produce declustered catalogs that pass the permu-
tation test; we have not tried.

7 DISCUSSION

Conclusions about whether declustered catalogs are consis-
tent with the SITHP hypothesis depend not only on the
declustering method but also on the catalog—and on the sta-
tistical test. The multinomial chi-square test commonly used
to assess whether declustered catalogs have Poisson tempo-
ral behavior relies on ad hoc tuning constants, lacks theoret-
ical justification, can have a significance level larger than its
nominal significance level, and has low power against many
plausible alternatives. Comparing the nominal P -value with
P -values (conditional on the number of events) estimated by
simulation using SCEC data (Table 1) shows that the χ2 ap-
proximation to the P -value can be too low by at least 2.4% in
seismological applications. The multinomial chi-square test
is sensitive to departures from Poisson behavior within in-
tervals, but not to clustering per se. In particular, the multi-
nomial chi-square test discards information about the time
order of the intervals, which reduces its power to detect long-
term rate variations.

Compared with the multinomial chi-square test, the
conditional chi-square test and the Brown-Zhao test have
better theoretical justification and fewer ad hoc tuning con-
stants, but they still require an arbitrary choice of the num-
ber of intervals into which to divide the study period. Both
tests condition on the number of events; they test whether
the conditional distribution of times is iid uniform. Both are
sensitive to variation of the observed rate of events across
intervals—to clustering on the scale of the intervals. Al-
though it might be more powerful against some alternatives,
for the data we studied, the Brown-Zhao test never gave
a smaller P -value than the conditional chi-square test, to
which it is closely related. The primary advantage of the
Brown-Zhao test over the conditional chi-square test in this
application seems to be that the chi-square approximation
to the distribution of the test statistic is more accurate than
it is for the conditional chi-square test. This might not mat-
ter much since the P -values can be estimated by simulation
regardless.

The Kolmogorov-Smirnov test of the Poisson hypothe-
sis also conditions on the number of events and tests whether
times are conditionally iid uniform. In contrast to the other
three temporal tests, it has no ad hoc tuning constants
and—because keeps the entire observation period intact—
has more power against long-term rate variations than the
other three tests, which divide the study period into shorter
intervals and ignore the temporal order of the shorter inter-
vals. This is evident in Table 1: P -values for the Kolmogorov-
Smirnov test are most often the smallest. However, the
tests are to some extent complementary: the chi-square
tests sometimes give small P -values when the Kolmogorov-
Smirnov test does not. The conditional chi-square test seems

preferable to the multinomial chi-square test in that it has
a firmer theoretical foundation and requires fewer ad hoc
choices, although it does not have power against some of
the same alternatives, for instance, periodic or nearly pe-
riodic seismicity. (Given enough data, the multinomial chi-
square test will reject the null hypothesis if events are nearly
equispaced, but the conditional chi-square test, the Brown-
Zhao test, and the Kolmogorov-Smirnov test will not.) Us-
ing the Kolmogorov-Smirnov test in conjunction with the
conditional chi-square test and combining the results using
Bonferroni’s inequality seems like a good compromise. That
is, if one wishes to test at significance level α, reject the null
hypothesis if either test has a P -value less than α/2.

Such a composite test shows that 1932–1971 SCEC seis-
micity with M ≥ 3.8, declustered using standard window
methods, is not consistent with the Poisson hypothesis. The
opposite conclusion by Gardner and Knopoff (1974) seems
to have resulted from their choice of tests: the multinomial
chi-square. It is surprising that the 1932–2010 SCEC data
declustered using Gardner-Knopoff windows is more consis-
tent with the Poisson hypothesis, since the Gardner-Knopoff
method was derived for the earlier data.

Moreover, it is hard to explain why increasing the
threshold magnitude from 3.8 to 4.0 makes as much dif-
ference as it does. It would be expected to increase P -
values somewhat simply because it reduces sample size,
but that does not appear to be all that is at play: The
Kolmogorov-Smirnov test seems to reject the Poisson hy-
pothesis because the rate of small events is too low in the
earlier part of the catalog. This might be explained by cat-
alog incompleteness—that events of magnitude 3.8–4.0 are
more often missing from the earlier catalog—but according
to Hutton et al. (2010) the SCEC catalog has been essen-
tially complete above magnitude 3.25 from its earliest days.
The accuracy of magnitude and location estimates in the
early part of the catalog might contribute to the difference.

All four of these tests—multinomial chi-square, condi-
tional chi-square, Brown-Zhao, and Kolmogorov-Smirnov—
condition on the total number of events. None uses spatial
information, and it is the spatio-temporal distribution of
seismicity that matters. A test that uses spatial information
could be much more powerful against some alternatives. In
a spatially inhomogeneous, temporally homogeneous Pois-
son process (SITHP), two events may occur arbitrarily close
to one another with strictly positive probability. Catalogs
declustered using window methods can never have events
very close in space and time.

But declustered catalogs may still have properties in
common with SITHP. For instance, the times might be con-
ditionally exchangeable given the locations. As a special
case, knowing the location of an event might give no in-
formation about the time of the event. A novel permutation
test can be used to assess whether event times are condi-
tionally exchangeable given event locations. The power of
incorporating spatial information is evident in the fact that
catalogs declustered using deTest pass all the temporal tests,
but fail the spatio-temporal test for exchangeability.

“Ok, so why do you decluster the catalog?” asks the
online FAQ for the Earthquake Probability Mapping Appli-
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Years Mag Meth n MC CC BZ KS Romano Reject?

(events) χ2 Sim P CI Time Space-time

1932–1971

GKl 437 0.087 0.089 0.069 0.096 0.011 0.005 [0.003, 0.007] Yes Yes

GKlb 424 0.636 0.656 0.064 0.108 0.006 0.000 [0.000, 0.001] Yes Yes
3.8 GKm 544 0 0 0 0 0.021 0.069 [0.063, 0.076] Yes No

(1,556) Rl 985 0 0 0 0 0.003 0 [0.000, 0.001] Yes Yes

dT 608 0.351 0.353 0.482 0.618 0.054 0.001 [0.000, 0.006] No Yes
GKl 296 0.809 0.824 0.304 0.344 0.562 0.348 [0.318, 0.378] No No

GKlb 286 0.903 0.927 0.364 0.385 0.470 0.452 [0.421, 0.483] No No

4.0 GKm 369 <0.001 <0.001 0 0 0.540 0.504 [0.473, 0.535] Yes No
(1,047) Rl 659 0 0 0 0 0.001 0 [0.000, 0.004] Yes Yes

dT 417 0.138 0.134 0.248 0.402 0.051 0 [0.000, 0.004] No Yes

1932–2010

GKl 913 0.815 0.817 0.080 0.197 0.011 0.214 [0.189, 0.241] Yes No

GKlb 892 0.855 0.855 0.141 0.204 0.005 0.256 [0.229, 0.284] Yes No

3.8 GKm 1120 0 0 0 0 0.032 0.006 [0.002, 0.013] Yes Yes
(3,368) Rl 2046 0 0 0 0 0 0 [0.000, 0.004] Yes Yes

dT 1615 0.999 1.000 0.463 0.466 0.439 0 [0.000, 0.004] No Yes
GKl 606 0.419 0.421 0.347 0.529 0.138 0.247 [0.221, 0.275] No No

GKlb 592 0.758 0.768 0.442 0.500 0.137 0.251 [0.224, 0.279] No No

4.0 GKm 739 0 0 0 0 0.252 0.023 [0.015, 0.034] Yes Yes
(2,169) Rl 1333 0 0 0 0 0 0 [0.000, 0.004] Yes Yes

dT 1049 0.995 0.999 0.463 0.465 0.340 0.001 [0.000, 0.006] No Yes

Table 1. P -values for tests of the null hypotheses that subsets of the 1932–2010 SCEC catalog of events, declustered using GKl,
GKlb, GKm, Rl, and dT, have a homogeneous Poisson distribution in time or have a temporally homogeneous, spatially heterogeneous

distribution in space and time. Column 1 gives the catalog year range. Column 2 is the magnitude threshold and the number of events

before declustering. Column 3 is the declustering method. The number of events that remain after declustering is n. “χ2” is the nominal
P -value for a multinomial chi-square test using the chi-square approximation to the the null distribution of the test statistic. “Sim”

is the P -value for a multinomial chi-square test estimated by simulation that includes conditioning on the observed number of events

to estimate the rate of the process and to define the categories. “CC” is the P -value for the conditional chi-square test. “BZ” the the
P -value for the method of Brown and Zhao (2002). Values in columns “Sim”, “CC” and “BZ” are estimated using 105 simulated catalogs;

sampling error in those estimated P -values are on the order of 0.16%. “KS” is the P -value for the Kolmogorov-Smirnov test that event

times are iid uniform given the number of events. “Romano” is the permutation test for conditional exchangeability of times of events
given their locations. Romano P is the P -value estimated from 1,000–10,000 simulations. Romano CI are confidence intervals for the

Romano P -values based on the number of simulations performed in each case. “Reject” is “Yes” for “Time” if the simulation P -value for

any of the four temporal tests is less than 0.0125 (using the simulation P -value rather than the χ2 P -value for the MC test). “Reject”
is “Yes” for “Space-time” if the P -value for the Romano test is less than 0.05.

cation of the USGS.¶ The answers: “to get the best possible
estimate for the rate of mainshocks,” and “the methodol-
ogy [of the Earthquake Probability Mapping Application] re-
quires a catalog of independent events (Poisson model), and
declustering helps to achieve independence.” The evidence
presented here suggests that declustered catalogs generally
do not consist solely of “independent events” that follow a
Poisson model.

To estimate the rate of mainshocks presumes an un-
ambiguous definition of “mainshock.” Often, mainshocks
are taken to be the events that remain after a catalog is
declustered—essentially a circular definition.‖ And different
methods will produce different declustered catalogs. Rather
than try to identify mainshocks, it might be better to model
all large events.

The most popular such model is the epidemic-type
aftershock model (ETAS) (Ogata 1988, 1993; Ogata and
Zhuang 2006), which includes mainshocks and aftershocks,
which may themselves have aftershocks. ETAS models

¶ http://earthquake.usgs.gov/learn/faq/?faqID=280, last ac-

cessed 29 September 2011.
‖ For a different approach, see Zaliapin et al. (2008).

estimated from catalog data are often explosively non-
stationary (Helmstetter and Sornette 2002). Some proper-
ties of real catalogs, such as the distribution of inter-event
times, are inconsistent with fitted ETAS models (Luen 2010,
Chapter 4). To our knowledge, ETAS modeling has not led
to improved forecasts. We therefore question the utility of
ETAS for modeling seismic risk, despite its intuitive appeal.

Regardless, the goal of declustering remains unclear to
us. Is it to remove the “predictable” component of catalogs
and leave only the “unpredictable”? Is it to make the resid-
ual catalog appear to be Poisson? Is it simply to thin clus-
ters? Is it to make some algorithm perform better? These are
different goals, none of which seems particularly well tied to
the underlying physics. As the USGS FAQ also notes, large
foreshocks and aftershocks can do just as much damage as
mainshocks. Removing them from the catalog will neither
avert nor repair the damage.
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APPENDIX A: ALGORITHM TO TEST THE
HYPOTHESIS THAT TIMES ARE
CONDITIONALLY EXCHANGEABLE

R code that implements the algorithm to test whether
times are conditionally exchangeable is available
at http://statistics.berkeley/edu/~stark/Code/

Quake/permutest.r. The algorithm has the following steps:

(i) Sort the catalog of longitudes, latitudes, and times
in time order. Label the sorted points {xi, yi, ti} for i ∈
{1, . . . , n}. Find the longitude and latitude ranks of every
event.

(ii) Find the empirical spatial measure of all lower-left
quadrants in R2 with corners

(yi, xj), 1 ≤ i, j ≤ n. (A.1)

In the online R code, this spatial distribution is stored in
the matrix xy.upper. The entry indexed by (i, j) is

1

n

n∑
i=1

1(yi ≤ y, xj ≤ x). (A.2)

This is the number of events in the catalog with latitude
less than the latitude of the ith event in the catalog and
with longitude less than the longitude of the jth event in
the catalog.

(iii) Find the absolute differences between the empirical
measure and the empirical null measure for the n3 lower-left
quadrants with corners

(xj , yi, tk), i, j, k ∈ {1, . . . , n}.

Find the maximum value of all these differences; this is the
test statistic φ. To reduce storage requirements, the code
finds the distances for quadrants with corners (xj , yi, tk) for
every value of k successively; that is, it finds

φ = max
k

[
max
j,i

∣∣∣P̂ (V (j, i, k))− (τP̂ )(V (j, i, k))
∣∣∣] ,

where V (j, i, k) is the lower-left quadrant with corner
(xj , yi, tk).

(iv) Set the iteration counter h to 0.
(v) Increment h. Create a random permutation of
{1, . . . , n}. Apply this permutation to the locations, leav-
ing times fixed. (One could permute the times instead of
the locations, but that would require the re-sorting the cat-
alog into temporal order after each permutation.) The spa-
tial measure has not changed, but its indexing has; apply the
permutation to both the rows and the columns of xy.upper.

(vi) As in step (iii), find the absolute differences between
the empirical measure and the empirical null measure of the
n3 lower-left quadrants. Let φh be the maximum value of all
these distances.

(vii) Determine whether to stop or to return to step (v).
(We might simply stop when h = 10, 000, or we might apply
Wald’s sequential probability ratio test (Wald 1945) to de-
termine whether, on the basis of the random permutations

taken so far, it is possible to conclude whether P ≤ α.) If
the algorithm stops, estimate the P -value as

P̂ =
1

H
#{h : φh ≥ φ},

where H is the total number of iterations.
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