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ABSTRACT  

Following a request by the Canadian Department of National Defence, the Institute for Aerospace Research 
of the National Research Council of Canada has developed a Computational Fluid Dynamics quasi-steady 
approach for store release prediction. Upon completion, this software was transferred to industry 
(Bombardier Aerospace) for use by Store Release Engineers, and, during evaluation, improvements were 
suggested. These included the elimination of user intervention during the computations, which arose due to 
problems with the mesh motion module of the software. To satisfy this requirement, automation of the mesh 
generation was seen as a major requirement. While implementing this automation, a Graphical User Interface 
was also developed, which extended the software’s capability by allowing interactive definition of the different 
aircraft loadings in carriage position. Following the loading description, script procedures call the mesh 
generation software to obtain an initial mesh, eliminating the necessity to use the mesh generation software 
interactively, through its GUI interface. Automated remeshing can then be carried out with the stores at any 
position, either in carriage or at some position throughout the trajectory. In addition to automatic mesh 
generation, further improvements include the automatic computation of the intersection curves between the 
objects loaded on the A/C. 

1.0 INTRODUCTION 

 
The safe separation envelope of a store released from an aircraft is crucial in the store certification process [1]. 
In order to predict store trajectories, accurate predictions of the aerodynamic loads acting on the stores are 
required. For most store release configurations, such predictions are required for the first 0.5 seconds of the 
trajectory, when the store is in the interference flow field generated by the parent aircraft and there remains a 
risk of the aircraft/store collision. Simulating such problems continues to be challenging, as the aircraft 
geometries are becoming more complex and more stores are carried simultaneously, increasing mutual 
interference. The safe separation region must also cover larger areas of the flight envelope of the releasing 
aircraft and higher release velocities.  

 Two traditional approaches to store clearance problems is to carry out wind tunnel and flight tests [2]. The 
requirement to obtain sufficient data, for the certification of a given store/aircraft configuration, results in 
many flight and wind tunnel tests. Due to time constraints, shrinking budgets and rising wind tunnel costs, 
Computational Fluid Dynamics (CFD) has become a complementary tool to help the stores release engineers 
fulfil their certification processes in a reasonable time and within a reasonable budget [3-4]. 

Paper presented at the RTO AVT Symposium on “Functional and Mechanical Integration of Weapons and Land 
and Air Vehicles”, held in Williamsburg, VA, USA, 7-9 June 2004, and published in RTO-MP-AVT-108. 
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Following an initiative prompted, in the main, by the Canadian Department of National Defence (DND), in 
1994, the Institute for Aerospace Research (IAR), at the National Research Council Canada (NRC), undertook 
the initiative to develop a Canadian CFD capability for the numerical simulation of external stores carriage 
and release. As a result, an Euler quasi-steady CFD approach to predict the trajectories of stores released from 
the CF-18 aircraft [5] was developed. This approach consists of coupling, in a quasi-steady mode, a 3D 
unstructured Euler solver, a 6-DOF Store Separation Model and an unstructured mesh motion module. The 
developed CFD approach has been validated through participation in international efforts organized to 
demonstrate the capability of CFD methods as an integral component to the overall store certification process 
[5-6]. 
 

Following evaluation of this procedure by Bombardier Aerospace Store Release Engineers (SRE) for a flight-
tested CF-18/stores configuration, some shortcomings of this technique were highlighted [7]. A suggestion by 
the SRE’s was that the mesh generation process should be simplified and that global remeshing, when 
required, should be performed automatically. It was considered that this would provide a major improvement 
in the efficiency of running the software by reducing requirements for mesh generation process around 
complex configurations, which have always been and remain the bottleneck in any CFD computations. 
Commercial mesh generation software, even with the improvements in the graphical user interface, still 
require a lot of user expertise to be used efficiently. Eliminating the necessity for the SRE’s to become 
proficient in mesh generation would allow them to concentrate fully on the physics of the stores clearance.  

 

A procedure for automated generation of an initial mesh was therefore required. For the specific application of 
store release, the mesh generation process around an aircraft carrying different stores is a repetitive process, 
involving repositioning of various stores at different displacements and attitudes. This is done without the 
need to change store geometry through additional CAD effort. With unstructured mesh discretisation, as used 
in the NRC/IAR quasi-steady approach, the implementation of an automated procedure was relatively easy, as 
no topological constraints (bloc topologies) exist. To help the user, a Graphical User Interface (GUI) software 
was developed, which allows interactive positioning of the various stores at their respective positions and 
orientations. Once the loading is specified, execution of a single script file, calling the mesh generation 
software, automatically generates a mesh for the specified stores positions.  

 

This automation was added to the store trajectory computations. In order to take into account the motion of the 
released store and its surrounding mesh, IAR selected an unstructured moving mesh approach. Due to the 
appearance of negative volume elements as the trajectory progresses, however, this approach sometimes fails 
and requires user intervention to remesh the whole domain. This could take anywhere between four to eight 
hours depending on the user’s experience and know-how. If the mesh failure happened overnight, the 
trajectory calculation would not carry on until the next day. To remedy all these problems, a complete global 
remeshing is carried out automatically, using the same approach described previously to generate an initial 
mesh, without invoking the GUI. The store positions are extracted automatically from the output files 
describing the store trajectory.  
 

This paper describes the aspects of the automated remeshing procedures, as well as some part of the GUI 
developed to specify the loading of a releasing aircraft. An extension of the method to automatically evaluate 
intersection of different objects is also presented. This would be required to handle the cases where stores are 
in direct contact with the releasing aircraft, such as the AIM-7, which is carried in semi-recessed position. 
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2.0 NRC/IAR QUASI-STEADY STEADY CFD APPROACH 
The NRC/IAR quasi-steady CFD approach assumes that the steady state flow fields computed at the various 
positions and orientations of the store can provide a reasonable estimate of the store’s aerodynamic loads. 
There is thus no time history taken into account for the flow field. This is an acceptable approximation, as the 
store release is a low frequency process. The approach consists of three modules, which can be used 
separately. It is summarised in the following steps: 

A) For a given store position, compute the steady inviscid flow field solution with the inviscid flow solver 
(FJ3SOLV). Output the store aerodynamic coefficients in global axes.  

B) Provide as input the store aerodynamic forces and moments to the six-degrees-of freedom Store 
Separation Model code (6-DOF SSM). Transfer the loads in store axes. Compute the new store CG 
position and orientation (Euler angles) for one time step ∆t. 

C) Move the store to its new position with the surrounding mesh, using a spring analogy technique (MESH 
MOTION).  

These three steps are repeated until the store moves sufficiently far from the releasing aircraft or the store hits 
the aircraft. For subsequent store positions (back to step A), the previous numerical solution is used as an 
estimate. Occasionally, however, the mesh cannot distort to the next trajectory point, while maintaining 
positive volume elements throughout the computational domain. This is due to the basic mesh motion 
algorithm, which assumes that the edges connecting the vertices of the mesh are equivalent to a series of 
springs of a given stiffness. The mesh motion is carried out by minimizing the potential energy of the system. 
This does not prevent the overlapping of the edges, which creates negative volume elements. As the steady-
state flow solver FJ3SOLV is unable to run with negative volume elements, global remeshing is then 
required, resulting in the penalties previously discussed.  

 

The details of the quasi-steady approach have already been presented in [5]. Only a review is presented here. 
The unstructured inviscid flow solver, FJ3SOLV, is based on a finite volume formulation. The convective 
fluxes are computed using Jameson’s cell-centered formulation with the standard explicit addition of second 
and fourth order artificial viscosity [8]. The steady-state solution is obtained using an explicit 4-stage scheme.  
Standard acceleration techniques, such as local time stepping, implicit residual smoothing and enthalpy 
damping, are used to speed up the convergence of the scheme. 

 

The 6-DOF SSM store separation model is a simplified version of a code developed by Bombardier [9]. The 
trajectory of the store is computed using the standard equations of motion, while the releasing aircraft is 
considered to be a single rigid point, without elastic deformation of any part of its structure. The ejector forces 
are imparted to the store, by assuming that there is a single point of application and continued contact between 
the ejector pistons and the surface of the store. As the approach used is quasi-steady, the effects of the 
aerodynamic damping coefficients (Clp, Cmq and Cnr) are added to the total store aerodynamic moments 
using estimated theoretical values. A time step of 0.02 sec. was found to be adequate [6] to provide a good 
engineering accuracy for the trajectory predictions. 
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3.0 GLOBAL REMESHING AUTOMATION 

 

The global remeshing automation consists to automatically remesh a set of different objects after positioning 
them at different positions and orientations. No change in the CAD representation of the individual objects is 
necessary. In other words, the initial spatial representation of the various objects are brought to another final 
position and orientation, with use of the basic transformation matrices of translation and rotation. By bounding 
the domain with an outer shell representing the far field extent, a 3D computational domain can therefore be 
meshed. 

 

The transformations can be applied either on the surface meshes representing the various objects, or on their 
surface CAD representations. The first option would imply that the mesh vertices on the surfaces would be 
exactly recovered, during the volume mesh generation process. The mesh generation software will usually 
move the surface vertices in order to obtain a better quality mesh. If the CAD representation is not available, 
some of the characteristics of the surfaces may be lost.  

 

The CAD representations of objects in ICEM CFD, a mesh generation software used at IAR, are output in 
files called TETIN (TETra INput). They supplement the CAD representations through NURBS (Non-Uniform 
Rational Bi-Splines) and the mesh settings, which define the resolution of the surface meshes of the objects. 
These TETIN files can be obtained from either the DDN (Design Drafting and Numerics) meshing interface 
facility (DDN-TETIN) or from an appropriate ICEM-CAD interface for geometries generated with CAD 
software other than DDN. 

 

To automate the remeshing, independent TETIN files were concatenated into a single TETIN file, 
representing specific aircraft loadings (whole configuration). This final resulting TETIN file can be meshed 
with ICEM CFD. This was originally accomplished through the GUI interface of ICEM CFD. However, in the 
automated version, these are performed using script files run by ICEM CFD in batch mode. These script files 
can call all the functions of ICEM CFD that would be otherwise executed interactively. Other commands can 
be added in these script files using TCL (Tool Command Language), which improve the capabilities and the 
portability of these files. Parts of this technique have been published in reference [10]. The whole 
configuration is saved back to a database and can be reused as a starting point for a new loading of the A/C. 

 

ICEM CFD uses an octree technique to progressively refine the mesh by taking into account the mesh settings 
defined for the various surface meshes of the objects. As the effects of these settings depend on the relative 
positions of the adjacent objects, ICEM CFD will vary the refinement for different object positions. The 
surface meshes on the independent objects will thus be slightly different depending on the relative positions of 
the objects. However, the vertices projected on the surface will always be exactly projected on the surfaces 
due to the presence of the CAD representation of the objects. 

 

The positioning of the various objects is initially specified in ASCII file format. Once defined, the script file 
would then generate a mesh for the store in carriage position.  The store trajectory computation could then be 
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started. However, failure of the MESH MOTION module still remained, resulting in a stopping of the 
process. As the position of all the moving objects are known in some reference axis system, the remeshing 
script file can then be reused by reading this information to regenerate a new 3D computational mesh. Once 
done, the quasi-steady approach continues the computations. The integration of a global remeshing procedure, 
within the trajectory calculation modules, eliminated the user intervention. This is only required at the 
beginning (carriage position definition) and end of the computations, in order to post-process and analyze the 
data.  

 

3.1 Global remeshing application 
 
The global remeshing procedure was applied to the generic wing/pylon/finned store configuration [11]. This 
test case consists of a clipped delta wing with a 45○ leading edge sweep angle carrying a generic finned-store 
with an ogive-cylinder-ogive body shape with four fins. The free stream conditions are given in Table 1 while 
Figure 1 represents the geometry with the store in carriage position showing iso-Mach contours. Figure 2 
shows the computed store orientations (Euler angles) and positions compared with experimental values (EXP) 
while Figure 3 presents a comparison of the computed aerodynamic coefficients acting on the store, in stores 
axis, with the experimental values (EXP). The computations were carried out for 13 time steps on a SGI 
ORIGIN 2000. Four appearances of negative volume elements, resulting from MESH MOTION, were fixed 
automatically with the automated remeshing approach. A reasonably good agreement was obtained without 
any user intervention during the trajectory computation process 
 

 

 W-P/FS 

Mach 0.95 
AOA (deg) 0.0 
Dive angle(deg) 0.0 
Pressure altitude(ft) 26000.0 

Figure 1: Wing/pylon/finned store 
with iso-Mach contours Table 1. Freestream release conditions 
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Figure 2: Store CG attitudes 

              
Figure 3: Store aerodynamic loads 

 
4.0  GUI DESCRIPTION 
 
The object positioning process has been simplified for efficient use of the quasi-steady approach as an 
engineering tool. The initial procedure, which consisted of input global object positions in ASCII files, was 
too cumbersome and error prone. These files are currently created through the GUI interface. This interface 
allows interactive positioning of the objects and, at the same time, provides a 3D visual representation of the 
resulting configuration. The 3D display provides a visual check of objects positioning. The various objects 
(stores, pylons and fuel tanks) that can be carried by the releasing aircraft are accessible through a dynamic 
database and allow interactive building of all the possible loadings on a given aircraft. Positioning of the 
objects is carried out through a sequence of mouse and keyboard operations with visual references. The final 
loading file is then included in a script file, which runs ICEM CFD to get an initial mesh with the stores in 
carriage position.  
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The environment chosen for the GUI is Linux. The platform chosen is a high-end PC, which offers a very cost 
effective alternative to the SGI systems. In order to ease the coupling of the GUI with the CFD codes, Fortran 
90, with dynamic memory allocation, was selected. The tool chosen for the creation of windows, dialogs and 
menus, is Winteracter [http://www.winteracter.com/]. The creation of these basic graphic functions is done in 
a simple way, through the use of a series of calls to a set of basic functions. For successful interactivity of the 
interface, it was also necessary to enable the user to select, using the mouse, objects on the screen. To enable 
this, Winteracter provides the API OpenGL, which has become a standard in the graphics industry.  In the 
following paragraphs and for simplicity, the keywords, dialog names, as well as the options available used by 
the GUI, will be highlighted in Bold.  

 

Once started, the GUI consists of three different windows that are always present during the various 
operations (Figure 4). The top (Menu Window) and the bottom (Info) windows are for selection and generic 
information, while the middle window (OpenGL Graphics Window) provides a graphic display. Menu 
Window provides a list of the various basic menus available. OpenGL Graphics Window displays, using 
OpenGL, the 3D views of the various objects representing the aircraft loading. The objects can be 
interactively selected, using the mouse inside this window, minimizing the need to use the keyboard. Different 
options are available to help remove ambiguity or confusion during the selection process. These include 
various camera positions as well as colouring of the objects. The last window (Info) displays messages 
describing the actions expected by the user as well as the actual process being carried out (object selection, 
translation, rotation, etc). 
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               Figure 5: Reference points and axes systems [1]  

     Figure 4: Windows of the GUI 
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The main reason for the GUI development was to help in the object positioning process. If the object’s final 
position and orientation are known in a global axis system, the confusion is minimized. However, the objects 
position are often defined relative to an already existing point or set of axes. This is the case, for example, of 
stores carried on Vertical Ejection Rack (VER) (Figure 5). In this case, the store reference point (SRP) is 
defined relative to the Weapon Store Release Point (WSRP), in an axis system that is fixed to the VER 
(Xr,Zr). This set of axes is pitched down 3 degrees relative to the global axis system of the aircraft. Evaluation 
of the final attitude in the global coordinates is therefore a possible source of error. The visual aids provided 
help to reduce the uncertainty in the selection of the attitudes.  

 

The GUI facilitates the object manipulation by using three basic entity types. These are the Vertex, Axis and 
Object type. The Axis type contains the Vertex type, while the Object type contains both the Vertex type 
and the Axis type. The entities Vertex and Axis are used to provide some reference point in space and/or on 
the geometries, which helps in the positioning of the Objects. All these entity types have options to help 
minimize confusion in the selection process. 

 

A Vertex is defined only by its position. Its position can be either in a global axis system (Free vertex) or 
relative to an Axis system or Object. An Axis type is defined by its position and its orientation that can be 
either global (Free Axis) or local when defined relative to an Object. An Object type is defined by its 
position and orientation in global coordinates. A main Axis is used to visually represent the position of the 
Object. A set of local Axes can be connected to the Object to allow relative positioning. The position and 
orientation of these local Axes are given, relative to the main Axis of the Object. The different local Axes 
could correspond to the various Weapon Store Release Points (WSRP) of the various stations, as shown on 
Figure 5, axis system Xr,Zr.  

 

Manipulation of the various entity types is carried out by first selecting what is the entity to be moved and 
then the entity to move from.  Object positioning is then carried out in the Axis system of the entity to move 
from. Two dialogs are used to implement either pure translation (Translate dialog), or pure rotation (Rotate 
dialog). 

 

Translate dialog (Figure 6) applies pure translations from an entity type (1) that is the Entity to be 
translated, relative to another entity type (2) that is the Entity to translate from. The translation can be 
either global in the Axis system of entity 2, or in relative displacement with respect to entity 2 from entity 1, 
or from entity 2 (IRELA). When a local Axis of an Object is being moved, the Object action option 
specifies if the Object will follow the translation or whether the Object will stay fixed in space. In this case, 
the relative attitude of this local Axis is recomputed from the main Axis of the Object. 

 

 
           

 

4.1  Entities manipulation 
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  Figure 6: Translate dialog                       Figure 7: Rotate dialog  a) Rotation around arm of an axis,    
                                                                                                 b) Rotation to a specified orientation. 

Figures 7a and 7b represent the Rotate dialog. The rotations are defined for an Axis or an Object. Figure 7a 
is the dialog for a rotation around the arm of an Axis of the second entity while Figure 7b allows positioning 
by specifying the Euler angles around the global Axis system, or relative to the local Axis system of the 
second entity. A last possibility  (not presented) involves taking the orientation of the second entity. As in the 
Translate dialog, when the first entity is the local Axis of an Object, the user needs to decide whether the 
Object rotates or stays fixed, using the Object action. 

 

Access to a specific entity type (Vertex, Axis or Object) is allowed to change their characteristics. It is 
possible to modify their positions (Translate or Rotate), find their Relative positioning, Highlight them to 
easily locate them on the screen, as well as to Add or Delete sub-type entities. For example, when in the Axis 
menu, it is possible to Add or Delete vertices. As soon as a modification is done inside the dialog, the 
resulting effects are updated inside the OpenGL Graphics Window. This combination of analog and digital 
representations of the effects of the actions is crucial for friendly interaction.  

Figure 8 represents the Object info dialog. At this level, the basic information, such as position and 
orientation, are available and can be changed. The list of the sub type entity connected to the basic entity, 
Axis, is then provided. If a modification on one of the local Axes is desired, the Axis Info Dialog is then 
displayed (Figure 9). The basic information on the Axis is then provided, as well as a list of its sub-type entity 
(Vertex).  
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        Figure 8: Object info dialog                                                                       Figure 9: Axis info dialog 

 

4.2 Aircraft loading dialogs 

 
A specific aircraft loading is started by invoking the Aircraft environment from the Geometry menu on 
Menu Window. Two dialogs are available to assist the user. One of them, List of objects dialog (Figure 10), 
gives access to the database of the various Objects that can be used as building blocks for the definition of a 
new aircraft loading. The database consists basically of the various loads, stores, pylons and fuel tanks that 
can be carried by the releasing aircraft. A Description box briefly describes the highlighted selection entity of 
the database.  

 

The database is dynamic, i.e. it can be increased when needed through the option Create. The creation of a 
new object opens the Store characteristics dialog (Figure 11). Here, the Object characteristics required for 
integration in the 6-DOF SSM of a rigid body (characteristic length Diameter, reference area Sref, Mass, 
Inertia matrix and damping derivative coefficients Clp, Cmq and Cnr) are provided. It is also possible to set 
the object to a Moving or a Fixed Object. A View option opens another window in Winteracter format, 
which allows viewing the object in 3D. This 3D view, which uses Winteracter tool, is more limited than 
OpenGL. When an object of a given type appears more than once, it is possible to give it a different name 
(Store name), in order to separate it from the other objects. The generic name of the object (Reference) must, 
however, be kept. This renaming is required, for example, when defining a CF-18 with a load of four MK-82 
stores. The flow solver must know what are the respective surface meshes of the released objects in order to 
compute the local loads acting on one specific store. During the concatenation of the various TETIN files, the 
family names of the objects appearing more than once will also be modified. 
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 Figure 10: List of objects dialog                                   Figure 11: Store characteristics dialog 

 

The second dialog is called Aircraft loading dialog (Figure 12). At the beginning, no loading is defined. 
Unless an existing loading is provided (Specified Loading), the loading must be specified. The Aircraft 
Type can be selected, as well as the Configuration of the aircraft (full aircraft, port or starboard side). Using 
the mouse, the user can sequentially select the Object to be Added to the various stations of the aircraft from 
the List of Objects dialog. As soon as an Object is added, a faceted representation of the object is 
immediately drawn in the OpenGL Graphics Window. An Object can be displayed either in Solid or in 
Wire frame mode. A push-button allows the user to select whether the added Object is a fixed or a moving 
Object. As the Object is selected from the generic database, its characteristics for the 6DOF SSM, as well as 
its Position, can be modified. The resulting loading can be Saved for later work. It is also possible to Delete 
some loads from a previously defined loading and then Add the new components. 

 

 

 

 

 

 

 

 

                        

 
                        Figure 13: Release dialog 

      Figure 12: Aircraft loading dialog 

After loading definition, the release Sequence and Time release of the dropped stores can be specified by 
calling the Release dialog (Figure 13), using the Release button of the Aircraft loading dialog. This 
information will be used in the 6-DOF SSM code. 
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4.3 Loading example 

 
Some loadings, specified on the CF-18 aircraft are presented in Figure 14. The various objects used are the 
CF-18 with pylons, a 330 EFT (External Fuel Tank) and a MK-83 general-purpose bomb. In all cases, the 
various positioning were straightforward. 

 

   

           
      Figure 14a): CF-18 configuration,         Figure 14b): CF-18 + 330 EFT,      Figure 14c) :CF18 + 330 EFT + 2 MK-83 

 

5.0 INTERSECTION PROCESS 
 

The capabilities of the global remeshing process have been extended to handle the cases where different 
objects come into direct contact. This would be the case for stores carried in semi-recessed position under the 
belly of the fuselage, for example the AIM-7 missile and FLIR pods. It would be possible to augment a clean 
CF-18 with objects like the wing pylons, the VER, MK-82, MK-83 and the MK-84 stores. When required, 
these positioned objects would have their intersections computed automatically. This approach could also be 
used in conceptual aircraft design, for optimisation of the basic shapes. 

 

The extension has been added in the script file. The intersection sequence is made of a series of basic steps. 
The first step compares the various families in the TETIN files to check for the existence of intersections. The 
families correspond to the symbolic names representing the surfaces in the TETIN files. The comparison must 
be made between the families of one basic TETIN file with the families of all the other TETIN files.  

 

For each family’s pair, ICEM CFD creates an intersection curve. If the two families are too far apart, so that 
no intersection exists, ICEM CFD generates an error message. If this process fails, another family’s pair is 
selected for evaluation. If there is no error message, an intersection is found and a new intersection curve is 
created. In order to adequately represent the new intersection curve in the meshing process, the element sizes 
of both families are compared and the smallest value is assigned to the curve.  
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is due to the fact that, if the intersection curve deviates by large angles, the absence of points will result in a 
poor mesh representation at the interface. Therefore, an ICEM CFD procedure was called to add extra points 
in order to improve the mesh quality and better capture the angles. 

 

Figures 15 to 20 represent a simplified generic geometry demonstrating the concept. The geometry is made of 
eight components: a cone for the nose, a seat, a lower and upper canopy, a rear fuselage, a left and right wing 
as well as a vertical fin. Figure 15a shows the various objects as an exploded view with Figure 15b giving the 
full assembly. Intersections of the wings and the fin with the fuselage were found automatically without 
difficulty. As the upper canopy, the lower canopy, the nose and the rear fuselage are in direct contact, the 
space bounded by these components was not meshed. This included the seat, which is hidden. The mesh can 
be seen on Figure 16a, which represents the surface mesh on the nose and the lower canopy. Note that the 
base of the cone as well as the upper plane of the lower canopy is not meshed. Figure 16b gives the full cone 
canopy assembly and clearly shows a bounded empty volume. 

 

Figures 17 and 18 demonstrate the ease of building more complex geometries from basic shapes. On figure 
17, two vertical fins were added at 135 degrees to the left and right of the vertical fin. Figure 18 is the same 
geometry than figure 17, but with the addition of another left and right wing at 90 degrees. 

 

Figure 19 represents the fully assembled geometry, but with the seat positioned at different locations. For 
clarity, the upper canopy was not added. This demonstrates that it would be very easy to simulate, in a quasi-
steady mode, the ejection of a pilot. Figure 20 represents the fully assembled geometry with a single ejection 
seat and the upper canopy positioned at different locations. The upper canopy collides with the vertical fin. 
The intersection, after collision, was still automatically computed.  

 

6.0 CONCLUSIONS 
 

The quasi-steady approach has been fully automated. User intervention is only required in the definition of the 
test-case (loading and release conditions). The problem definition is carried out through a GUI approach, 
which gives a visual confirmation of correct positioning of objects. This approach is valid for an inviscid 
tetrahedral mesh. For meshes suitable for Navier-Stokes computations, the technology (the mesh generation 
software) is still not mature enough to make this process fully automatic. In the near future, however, it is 
conceivable that this approach could be extended to viscous simulations. 

 

Although the remeshing was carried out using TETIN files in a format specific to ICEM CFD for the present 
study, the technique can be extended to other format representations. The only requirements would be for the 
mesh generation software’s capability to receive, as input, the resulting file containing all the concatenated 
objects and be able to run in batch mode. 
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During the procedure’s test phase, it was found that adding points on the intersection curve was required. This 



 

     
   Figure 15a:  Breakdown of aircraft 8 components                 Figure 15b: Initial position with canopy closed 

                        
Figure 16a: Surface mesh on nose and lower canopy                       Figure 16b: Figure 16a + upper canopy 

                             
   Figure 17: Basic geometry (Figure 15b)  + 2 fins                    Figure 18: Geometry (Figure 17) + 2 wings 

                     
Figure 19: Basic geometry with multiple seats      Figure 20: Basic geometry with seat and upper canopy moved 
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Work is in progress, which aims to extend the approach by defining a new entity type, called Super-object. A 
Super-object will consist of a series of simple objects, which are defined relative to a master object. The 
positioning would be carried out with the master. An example of a Super Object would be a VER with two 
MK-83 stores.  
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