	Maßanalyse
Titrimetrie, volu	metrische oder titrimetrische Analyse
Ermittelt wird di	e Masse des zu bestimmenden Stoffes (=Titrand, Probe)
durch eine Volur	nenmessung.
Man misst die Lö	ösungsmenge einer Lösung mit bekanntem Gehalt (=Maßlösung, Titrator)
bis zu vollständig	gen Gleichgewichtseinstellung. Diese Einstellung wird meist durch
einen Indikator a	ngezeigt.
Der Vorgang hei	ßt TITRATION
Die Operation -	TITRIEREN

4 Grundlagen der Maßanalyse
Bei der Maßanalyse (Titrimetrie, volumetrische oder titrimetrische Analyse) ermittelt man die Masse des zu bestimmenden Stoffes (= Titrand, Probe) durch eine Volumenmessung. Man mißt nämlich die Lösungsmenge eines geeigneten Reaktionspartners (= Titrator, Titrant), die bis zur vollständigen Gleichge- wichtseinstellung einer eindeutig ablaufenden Reaktion verbraucht wird.
Der Vorgang heißt Titration, die Operation Titrieren.
Das Ende der Titration ist am sog. Äquivalenzpunkt erreicht.
Definition: Äquivalenzpunkt ("stöchiometrischer Punkt", theoretischer End- punkt) heißt derjenige Punkt bei einer Titration, an dem sich äquivalente Men- gen von Titrant und Probe miteinander umgesetzt haben.
Der Äquivalenzpunkt muß entweder direkt sichtbar sein oder auf irgendeine Weise eindeutig angezeigt (indiziert) werden können.
Oft gibt man anstelle des Äquivalenzpunktes den sog. <i>Endpunkt</i> der Titration an. Der Endpunkt soll dabei möglichst mit dem Äquivalenzpunkt zusammenfallen.
Definition: Endpunkt einer Titration heißt derjenige Punkt, bei dem sich eine bestimmte ausgewählte Eigenschaft der Lösung (z.B. Farbe, pH-Wert usw.) deutlich ändert.
Beachte: Für maßanalytische Bestimmungen eignen sich nur Reaktionen, die sehr schnell, praktisch vollständig und ohne Nebenreaktionen ablaufen.
L .

MASSANALYSE: Die Menge d Zugabe eine bestimmt.	er zu besti r äquivaler	mmenden Komponente wird durch tten Menge eines anderen Stoffes	
Name	Symbol	Definition	
Titrand, Probe	×	Bestimmungskomponente	
Titrator	т	Zugesetzter Stoff	
Titration		Zugabe von T zu X	
Masslösung		Lösung, die T enthält	
Titer	c(T)	Gehalt der Masslösung an T	
Titerstellung		Gehaltsbestimmung	
Titrationsgrad	τ	$\tau = \frac{n(T)}{n(X)} = \frac{c(T)}{c(X)}$ Titrationsstadium	
Äquivalenzpunk	t	$n(T) = n(X)$ $c(T) = c(X)$ $\tau = 1$	
Endpunkt		scheinbarer Äquivalenzpunkt	
Titrationsfehler	f _{abs}	$f_{abs} = n(T) - n(X) = c(T) - c(X)$	
Titrationsfehler	f _{rel}	$f_{rel} = \frac{n(T) - n(X)}{n(X)} = \frac{c(T) - c(X)}{c(X)} = \tau - 1$	
water + OC			

ALLGEMEINE METHODEN DER MASSANALYSE	
$X + T \rightarrow XT$	
1. Direkte Titration: Titrator wird zu Titrand bis zum Aquivalenzpunkt zugesetzt	
n(X) = c(T) . V(T)	
1a. Inverse Titration:	
2. Rücktitration: Titrator 1 wird im abgemessenen Überschuss zugesetzt mit Titrator 2 wird bis zum Aquivalenzpunkt "zurücktitriet"	
n(X) = n(T1) - n(T2)	
3. Substitutionstitration:	
X wird mit YT versetzt Y wird von X aus Mycrotangt Y wird nit T titter T	
$\begin{array}{c} X + YT \rightarrow Y + \langle \underline{c} \rangle \\ n(Y) = n(X) \\ Y + \underline{I} \rightarrow YT \\ T_{1}T_{X}} \end{array} \xrightarrow{n(X)} \begin{array}{c} n(X) \\ \hline \\ \hline \\ T_{1}T_{X}} \end{array} \xrightarrow{n(Y) = n(X)} \end{array}$	-j
$n(Y) = n(X) = c(T) \cdot V(T)$	

· · · · · · · · · · · · · · · · · · ·	
HERSTELLUNG UND GEHALTS	BESTIMMUNG
DER MASSLÖSUNG	EN
Urtitersubstanzen.	
genau bekannte Zusammensetz	ung
nicht hunnelen incht	
nicht hygroskopisch nicht luftemefindlich (0, -00)	
• Hight interriptinglich (O ₂ , CO ₂)	
Herstellung von Masslö	sungen
1.Lösen des Titrators in Lösungsmit	ttel (Wasser)
 gewünschtes Volumen festicgen: 	V(G) =
gewünschte Konzentration festlegen:	c(T) = c(T) - c(T) - b(C)
• enordemene wange intrator berechner	$m(T) = c(T) \cdot V(G)$ $m(T) = n(T) \cdot M(T)$
2 Vordünnen einer konzentrierten L	launa das
Titrators	
 gewür schtes Volumen festlegen: 	V(G) =
• gewuns mite Konzentration teategen: • erford vilche Menge Titrator berochive	c(T, n) = c(T), v(-3)
Masse oder Volumen der konzentrier i	n Lösung berechnan:
$m(G) = \frac{m(T)}{m(T)}$	
••(1)	
$V_1 = \frac{C_2 \cdot V}{C_1} \cdot \dots \cdot V_2$	∀(G) c, c(T)
let der Titrator keine Urtitereubeigen gehölten	an munikakat alaa
Lösung ungefährer Konzentration – Die Bestim Gehalts cr* tor tann durch Titerstellung	an zunachst eine mung des genauen
	,

	Säure – Base Gleichgewichte
Säure- Base	Theorien
G	ieschichte: Alte Definition 17./18. Jhdt.
	≻Säuren enthalten Sauerstoff (Lavoisier)
	≻Säuren enthalten Wasserstoff (Davy)
	≻Säuren enthalten Wasserstoff, der durch Metalle ersetzbar ist (Liebig)
v	'or ca. 100 Jahren Arrhenius und Ostwald

Theorie		Sauren	Basen	Autoren
1. Klass. Theorie Arrhenius/Os	e von tweld	geben in Wasser Protonen (H*) ab	geben in Wasser Hy- droxidionen (OH ⁻) ab	Arrhenius/Ostwald 1884
2. Bronsted-The	orie	geben Protonen ab	nehmen Protonen auf	Brönsted/Lowry, 1923
3. Lewis-Theorie		besitzen Elektronenlücke, die ein Elektronenpaar unter Bildung einer koor- dinativen Bindung auf- nehmen kann	besitzen ein freies Elektronenpear, das zur Bildung einer koordinativen Bin- dung dienen kann	Lewis, 1923
 Theorie von B (Spez. Formula) 	Bjerrum ulierung)	Antibasen (= Sauren) nehmen in Schmelzen Oxidionen (O ²⁺) auf	geben in Schmelzen Oxidionen ab	Bjerrum, 1951
5. Solvens-Theo	rie	erhöhen die Konz, der Lösungsmittel-Kationen (Lyoniumionen) oder ver- ringern die Konz, der Anionen (Lyationen)	erhöhen die Konz. der Lyationen oder verringern die Konz. der Lyoniumionen	Cady/Elsey, 1928 Ebert/Konopik, 1949
6. Ussanowitsch Theorie		spelten Kationen bzw. Protonen ab oder nehmen Anionen bzw. Elektronen auf (Redoxvorgänge ein-	spalten Anionen bzw. Elektronen ab oder nehmen Kationen bzw. Protonen auf	Ussanowitsch, 1939
^a Bereits <i>R. Boyl</i> schaften, die si Säure Ba	le (17. Jhd. ch bei der 1 15e-Theorie	geschlossen) .) vermutete die Existenz von z Wechselwirkung (<i>"Neutralisatio</i> m von Arrhenius und Brönsted	wei Stoffklassen mit komp 17°) aufheben. 17]	ementären Eigen-
^a Bereits <i>R. Boyl</i> schaften, die si Säure Ba	le (17. Jhd. ch bei der ' ise-Theorie Arrh	geschlassen) .) vermutete die Existenz von z Wechselwirkunz (" <i>Neutralisatia</i> In von Arrhenius und Bröntted Ianius-Theorie	wei Stoffklassen mit komp m ²) aufheben, [7] Brönsted-Theorie	olementären Eigen-
^a Bereits <i>R. Boyl</i> schaften, die si Säure Be Alig. Konzept	le (17. Jhd. ch bei der 1 ise-Theorie Arrh	geschlossen) .) vermutete die Existenz von z Wechselwirkunz (<i>"Neutralisatic</i> in von Arrhenius und Brönsted wnius-Theorie r nach stofflichen Kriterien	wei Stoffklassen mit komp m [*]) aufheben, [7] Brönsted-Theorie nach funktionellen Kritt	olementären Eigen-
^a Bereits <i>R. Boyl</i> schaften, die si Säure Be Alig. Konzept Solvens	le (17. Jhd. ch bei der ' ise-Theorie Arrh mehr	eschlossen) .) vermulete die Existenz von z Wechselwirkung (" <i>Neutrolisetic</i> In von Arrhenius und Brönsted wnius-Theorie In nach stofflichen Kriterien Wasser	wei Stoffklassen mit komp m ^{*/)} aufheben, [7] Brönstad-Theorie nach funktionellen Kritt alle prototropen System	olementären Eigen-
^a Bereits <i>R. Boyd</i> schaften, die si Säure Ba Allg. Konzept Solvens Säure	le (17. Jhd. ch bei der 1 ise-Theorie Arrh nur 1 dissc z.B.	geschlossen)) vermulete die Existenz von z Werselwirkung (<i>"Neutralisatio</i> un nun Arrhenius und Brönsted) unlut Tharie r nach stofflichen Kriterien Wasser HCI, HNO3, H3SO4, HCOOH	wei Stoffklassen mit komp n ⁻¹ suffichen, [7] Brönsted-Theorie nach funktionellan Kritt alle protoroen sbytem gibt Protonen ab, z.B. HCL, HNO ₂ , H 500, (MOH ₃), ²¹ : SKSG, ¹	viementären Eigen- vrien 1; H30°, NH4 4503, H2PD4
^a Bereits <i>R. Boyt</i> schaften, die si Säure Ba Alig. Konzept Solvens Säure Base	le (17. Jhd ch bei der Arrh meh nur) dissc z.B. dissc z.B. (NH	gerchiosen)) vermutet die Ekisten von z Wechteinkung ("Neurolissie en von Arthenins und Brönstell en und Efflichen Kriterien Nasser Distert unser H ⁻ -Abgabe, HCI, HNO3, H ₃ DO4, HCOH Distert Unser H ⁻ -Abgabe, NADH, KOH, CalOH ₃ , j, PFI, AS ¹¹	vei Stof Riassen mit komp m ²) aufhöben. [7] Brönstad-Theorie nach funktionellen Kritt alle protoropen System gibt Protoren Ab. 28. HCI, HNO3, H ₃ SO. [MIOH3]a] ² : HSO4, immt Protonen auf. 28. NH3, PH3, R Ni[] 047, NH3, CT, SO47.	Nementaren Eigen- rrien 1.: H3O [*] , NH [*] 1.: H3O [*] , NH [*] 1: H3O
^a Bereits <i>R. Boys</i> schaften, die si Säure 8a Alig. Konzept Solvens Saure Base Saiz – neutral ^D – basich ^D	ie (17. Jhd. ch bei der ¹ Arrh meh nur ¹ disse z.B. disse z.B. (NH NaC NaC	gerehisten)) semutet die Existen von Z wender kinnen ("Verantitatie wender Theorie n von Arthenius und Brönsted wender Theorie n ach tatflichen Kriterien Waser Waser Waser Noti, NNO, 1550, 1500, 1600 Noti, NNO, 1500, 1500, 1500, 1600 Nich, NNO, 1500, 1500, 1500, 1600 Nich, NNO, 1500, 1500, 1500, 1600 Nich, NNO, 1500, 1500, 1500 Nich, 250, 1500, 1500, 1500, 1500 Nich, 2500, 150	vel Stof Rilassen mit komp m ⁻¹ Juffichen, 17 Brönsted-Theorie nach funktionellen Kritt alle prototopen System gibt Protonen ab, 28. HCL, HDL, HDL, HDL, 19. HDL, HDL, 19. HDL, HDL, 19. HDL, HDL, 19. HDL, HDL, 19. HDL, HDL, 19. HDL,	vienenturen Eigen- vien * * * * * * * * * * * * *
^a Bereits R. Boyt schaften, die si Säure Ba Alig, Konzept Solvens Saure Base Salz - neutralb - sauerb - basisch ^b Neutralisation	le (17. Jhd. ch bei der ¹ Arrh meh nur ¹ disse z.B. (NH NaC Nah MCC Sau	grechisten)) vermutet die Ekistens von z Wechkeinkrauer ("Vermellande minus/Thorie annus/Thorie z nich tofftlichen Kristen Wasser Loch tofftlichen Kristen Wasser Loch tofftlichen Kristen Wasser Nethon Kollen Soller unter Mr. Abgabe, hol, HNG, Hy, Sol, HCOOH Dister unter Ott. "Abgabe, Nethol, Soll, Goldha, Soll, Soll, Goldha, Soll, Soll, Goldha, Soll, Kall, Goldha, Soll, Kall, Goldha, Soll, Kall, Goldha, Soll, Kall, Goldha, Soll, Kall, Goldha, Soll, Kall, Goldha, Soll, Soll, Goldha, Soll, Kall, Goldha, Soll, Kall, Goldha, Soll, Kall, Goldha, Soll, Kall, Soll, Soll, Soll, Soll, Soll, Kall, Soll, Soll, Soll, Soll, Soll, Soll, Soll, Kall, Soll, Soll, Soll, Kall, Soll, Soll, Soll, Kall, Sol	vet Stoffkässen mit komp ") auflichen. 7] Brönsted Theorie Anch funktionellen Kritt alle protorogen System (Michyla)" - Stoff 28. N15, 974, 615, 91 OH - N167, 67, 503, - aufman Fotoane auf. (jete anogene Vettind such N-6 OH, Stoff - N14, - N15, - N14, - N15, - N14, - N15, - N14, - N15, -	vien ,; H3O [*] , NH4 ,; H3O [*]
³ Bereits R. Boyl schaften, die Si Säure da Alig. Konzept Solvens Säure Base Saiz – neutral Base Saiz – neutral Dasich Neutralisation Hydrolyse	le (17. Jhd, ch bei der ¹ ise-Theorie Arrh meh nur 1 dissc z.B. (NH NaC Na M(C Säu	gerehleisen)) sermutet die Existen von 2 werdweit kang (<i>Neurofilatio</i> werdweit hang (<i>Neurofilatio</i> werdweithen von 2 werdweithen von 2 we	wei StofAlansen mit komp m ² Jaufhöhen, 71 Brönsted-Theorie nach funktionellen Kritt alle pototopen System göt Procesen ab, 15 HCL, HV, Procesen ab, 15 HCL, HV, Procesen ab, 15 HCL, HV, Procesen ab, 16 HCL, HV, Procesen ab, 17 HCL, HV, Procesen ab, 16 HCL, HV, Procesen ab, 17 HCL, HV, HV, HV, HV, HV, HV, HV, HV, HV, HV	vienentsven Eigen- vien • • • • • • • • • • • • •
^a Bereits R. Boyl schuften, die si Skure Be Alig. Konzept Solvens Saure Base Saiz – neutralb – sauer ⁰ – basisch ⁰ Neutralisation Hydrolyse	ie (17. Jhd ch bei der ¹ ase-Theorie Arrh meh mur 1 diss z.B. z.B. z.B. (NH NaC NaH MIC Säu	J vermitisten) J vermitiste die Ekistena von z Wechteinskander ("Viennellaufe windur Theorie annuur theori	vel Stoffklassen mit komp ***) auflichten. [7] Brönstad Theorie nich funktionelline Kritt alle prosonsen att. r.8. HOL, HNOS, HSOS, Million HS, J.** (Million HS, J.** (Million HS, J.** (auflicht, J.** (auflicht, J.** (auflicht, J.** (auflicht, J.** (auflicht, J.** (auflicht, J.** (auflicht, J.** (auflicht, J.** NHZ, ** HNS) (Spaltung von homolope	vien vien
* Berein R. Boyl schuften, die si Saure Ba Alig, Konzept Solvens Saure Base Saure - neutraji - saurei - banisch Neutralisation Mydrolyse Amphoterie	ie (17. Jhd ch bei der ¹ ase-Theorie Arrh meh mur 1 diss z.B. Z.B. (NH NaC NaH MIC Sau	grechisten)) vermutet die Ekistens von z Wechseinskauer ("Vermellande umbur Thorie andus Thorie andus tefftlichen Kriterien Waar Waar M	wei Stoffkässen mit komp ") Juffichen. ?] Brönsted Theorie ach funktionnillen Kritt alle protorogen System 201 Protones adt. 201 Protones adt. 201 Protones adt. 201 Nr. 197, 61, 75, 100 201 Nr. 197, 61, 75, 100 201 Antonio Status 201 Antonio Status 201 Antonio Status 201 Status Status x Nn, 5 + 100	vien i: H3O ² , NH ⁴ i: H3O ² , NH ⁴ i: SO ² , H2O ² i: SO
* Berrit & Boy schiften, Be si Savre Ba Alig, Konzek Sovers Savre Base Safa - neutral Base Safa - neutral Safa - neutral Safa - neutral Neutralisation Hydrolyse Amphoterie * is "NH4OHT	le (17. Jhd, ch bei der ¹ ise-Theorie Arch meh nur ¹ disse z.B. disse z.B. (NH NaC NaC NaC NaC	J vermulste die Existen von J vermulste die Existen von werdwei kraung (<i>Neurofilatio</i> werdwei Theorie er auch stafflichen Kristein Wasser Diater unter H1 - Abgabe, HCI, HNO, H, Sou, HCOH golager unter OHT - Abgabe, HCI, HNO, HS, Sou, HCOH golager unter OHT - Abgabe, HOM, KOH, COLONG, GUIDH), 1, 248, 250, 4190, 434 HOM, KOH, COLONG, 2000 HJ, Z. B. CuCOS (ColOH), 194, Z. B. CuCOS (ColOH), 194, Z. B. CuCOS (ColOH), 194, Z. B. SucOS (ColOH), 194, Z. SucOS (ColOH), 194, Z. SucOS (ColOH), 194, Z. SucOS (ColOH), 1	wei Stoffkässen mit komp m ⁻¹ Jaufhöhen. 71 Brönsted Theorie nach funktionellen Kritt ander funktionellen Kritt ander funktionellen Kritt ander funktionellen Kritt ander Funktionellen Kritt kompten Kritten Kritten Kritten Kritten Norder Kritten Net en Kritten Net en Kritten Net en Kritten Net en Kritten Net en Kritten Net en Kritten	Itementiven Eigen- Irien .: H10 ¹ , NH2 .: H20 ¹ , NH2 .: H20 ¹ , NH2 .: H20 ² , H20 ² .:
* Berrit K. Boyl schuften, die si Siure Ba Alig, Konsept Solven Save Base Save Save Save Save Save Save Save Sav	le (17. Jhd, ch bei der ¹ ise-Theorie Arrh meh nur ¹ dissc z.B. (NH NaC Nac Nac Nac Nac Nac Nac Nac Nac Nac Nac	J vermitisten) J vermitisten J vermitiste die Ekistens von z Wechteinskander ("Vermitister annur-Thorife zu	wei Stoffklassen mit komp ") auflichen. [7] Brönstad Theorie nich funktionelline Kritt alle prosongen steme r.8. HG, HNO, H, HSO, HKOH3, Ja ¹¹ , HKOH HKOH3, Ja ¹¹ , HKOH HKOH3, HKOH, HKOH HKOH3, HKOH, HKOH HKOH3, HKOHA, HKOHA HKOHA, HKOHA HK	International Eligen- International International Interna

$$c = \frac{\rho_{25^{\circ}C} (H_2O).1000}{M(H_2O)}$$

$$\rho_{25^{\circ}}(H_2O) = 0.997043g/ml$$

$$M(H_2O) = 18,0152g /mol$$

Umrechnungsfaktor:1000ml/l

$$c(H_2O) = 55,34 \text{mol}/l$$

Autoprotolyse des Wassers
$2 H_2 O \longrightarrow H_3 O^* + OH^*$ Hydronium Hydroxidionen (Oxoniumionen)
spez. Elektr. Leitfähigkeit $\kappa=4,3$. 10 ⁻⁶ S $.m^{-1}$ bei 18°C
$\frac{\mathbf{a}[\mathbf{H}_{\mathbf{y}}\mathbf{O}^{+}]\cdot\mathbf{a}[\mathbf{OH}^{+}]}{\mathbf{a}^{2}[\mathbf{H}_{\mathbf{y}}\mathbf{O}]} = K$
α Diss. grad klein \rightarrow a [H ₂ O]=1
a [H ₂ O [*]]. a [OH ⁻] = K _w = 10 ^{.14} /log / -1 Ionenprodu kt bei 25 °C in mol ² /l ²
рН + р _{он} =14 pH =- log [H ₃ O*]
bei 100 °C : $K_w = 10^{-12}$ (Leitfähig keitsmessung)

Säure	Ampholyt	Base
H_3O^+	H_2O	OH-
NH_4^+	NH_3	NH ₂ -
H_2SO_4	HSO4-	SO4 ²⁻
H ₃ PO ₄	H ₂ PO ₄ -	HPO4 ²⁻
H ₂ PO ₄ ⁻	HPO42-	PO4 ³⁻

	,					
		. Merkmal	e einiger Si	iuren-Base	n-Indikator	ren -
Indikator	pH- Bereich des Um- schlags- intervalls	pH des Um- schlags- punktes	Farb sauren Geb	e im alkali- schen biet	Farbe beim Um- schlags- punkt	Konzentration der Indikatorlösung
Methylorange	3,1- 4,4	4,0	rot	orange- gelb	orange	0,1%ig in Wasse
Methylrot	4,2- 6,3	5,8	rot	gelb	orange	0,2%ig in 60%- igem Alkohol
Bromthymol- blau	6,0- 7,6	7,1	gelb	blau	grün	0,1%ig in 20%- igem Alkohol
Lackmus	5,0- 8,0	(6,8)	rot	blau	blaurot	0,5% in 90%- igem Alkohol
Phenol- phthalein	8,2-10,0	8,4	farblos	rot	schwach rosa	0,1%ig in 70%- igem Alkohol
Thymol- phthalein	9,3–10,6	10,0	farblos	blau	schwach bläulich	0,1%ig in 90%- igem Alkohol
Tashiro	4,2- 6,3	5,8	violett- rot	grün	grau	60 mg Methylro in 200 ml Äthand + 30 mg Methy- lenblau in 30 ml Wasser
				-		
				s		•

Redoxti	itratio	n			
Tab. 13 gibt eine I gleichungen der Ti großen Buchstaber Tab. 13 Redoxtitrat	Übersicht übe itranten sind i n bezeichnet. ionen	r die wic m nachf	htigsten an: olgenden To	alytischen Redox ext angeführt un	verfahren. Die Reakt d werden fortlaufend
Verfahren	Titrant	(Äd	quivalente)	Indikator	zur Bestimmung von
Oxidimetrische Besti	mmungen				
Manganometrie	KMnO₄	sauer neutral	(z = 5) (z = 3)	-	Fe, Ca $(C_2O_4^{2-})$, H ₂ O ₂ , NO ₂ ⁻ , U Mn (<i>Volhard-Wolff</i>)
Dichromatometrie	K2Cr2O7		(z = 6)	Diphenylamin	Fe (technisch)
Brom(at)ometrie	KBrO ₃		(z = 6)	Methylorange	As, Sb, Sn, Cu (Bi), T NH₄ ⁺ ; Metalloxinate
lodometrie	I ₂ (KIO ₃ + oxidimetris	K1) sch		lod/Stärke	As, Sb, Sn, Hg, H ₂ O; S ²⁻ , SO ₃ ²⁻
	KI (Na ₂ S ₂) reduktome	O ₃) trisch	(z = 1)		Cu, Cr, Co, V, MnO ₂ , PbO ₂ , SeO ₄ ²⁻ , H ₂ O ₂ , CIO ₃ , BrO ₃ , IO ₃ , CN ⁻ , SCN ⁻ ; CO
Cerimetrie	Ce(SO ₄) ₂ ^a		(z = 1)	Ferroin	As, Fe, Sn, H ₂ O ₂
Reduktometrische Be	stimmungen				
Ferrometrie	FeSO ₄		(z = 1)	Diphenylamin	Cr, V (H ₂ O) ^b

REDOX
1. OxidAtion und REDULTION
Oxidation: Aufnahme von O
Reduktion: Algabe von O; Aufnahme von H
Oxidation: FIFKTRONENABGABE
Reduktion: ELEKTRONENAUFNAMME
Jubstant die e- abgeben kann
Elektronendonator - Keduktions- mikel
Na -> Na + +e-
Substanz die e aufnehmen kann
$(l_2 + 2e^- \rightarrow 2le^-)$
Elektronenakzepter - Oxidations- mittel

Vorgang	Reduktion	Oxidation
1. Oxidationsstufe	(+7) (+2) ++-0 ⁻ + Mo ²⁺	$ \begin{array}{ccc} (+3) & (+5) \\ A *^{3+} & \longrightarrow & A * O^{3-} \end{array} $
2. Elektronenauscleich	$MnQ_4^- \rightarrow Mn^{2+}$	$As^{3+} \longrightarrow AsO_4^{3-} + 2e^{-}$
3. Ladungsbilanz	-6 +2	+35
	a. (+8) b. (-8) .	b. (-8) a. (+8)
4. Ladungsausgleich und	$a. MnO_4^- + 5e^- + 8 H^+ \longrightarrow Mn^{2+} + 4 H_2O$	$A_{3}^{3+} + 4 H_{2}O \longrightarrow A_{3}O_{4}^{-} + 2e^{-} + 8 H^{+8}$
Stoffbilanz	b. $(MnO_4^- + 5e^- + 4H_2O \longrightarrow Mn^{-1} + 8OH^{-})^{\circ}$	$As^{3+} + 8OH^{-} \longrightarrow AsO_{4} + 2e + 4H_{2}O$
5. Gesamtgleichung für a.	$ \begin{array}{c} MnO_4^- + 5 e^- + 8 \mathrm{H}^+ \longrightarrow Mn^{2^+} + 4 \mathrm{H_2O} \\ As^{3^+} + 4 \mathrm{H_2O} \longrightarrow AsO_4^{3^-} + 2 e^- + 8 \mathrm{H}^+ \end{array} $	• 2 • 5
lonengleichung	$2 MnQ\bar{4} + 5 As^{3+} + 12 H_2 O \longrightarrow 2 Mn^{2+} + 5 Ac^{3+} + 15 Cl^{-}$	sO₄ ^{3−} + 24 H ⁺
Stoffgleichung	$2 \text{ KMnO}_4 + 5 \text{ AsCI}_3 + 12 \text{ H}_2 \text{O} \longrightarrow 2 \text{ MnCI}_2 + 5 \text{ H}_2 \text{O}$	3AsO4 + 9 HCI + 2 KCI
^b Rein theoretische Formulien	ung, de MnO _e im alkalischen Medium zu MnO ₂ reduziert wird.	

ELEKTROCHEMISCHE
SPANNUNGSREIHE
Die Tendenz cines Redoxpaares zur
Elektronenabgabe - POTENTIAL
DES REDOXPAARES
2.10 2.0
$ked_1 0x_1 \longrightarrow ked_2 0x_2$
höheres Potential niedrigeres Potential
Vereinbarunesgemäß gibt man dem Redoxpaar,
des e abeibt, ein POTENTIAL, das Weiter
im needtivem Bereich Liest.
POTENTIAL DIFFERENZ
= Spannung oder
elektromotorische Kraft (EMK)
15

24	
$Z_n \rightarrow Z_n r + 2e^-$	
Cu ²⁺ +2e-> Cu + 2e-	
Um den Elektronen fluß von En zum Gu	
zu ermöglichen - Verbindung über Spannungs-	
meßgerät und die Lösungen mit dem Strom-	
schlüssel	
jedes Redoxpaar bildet eine Halbælle.	
Die Kombination Zweier solcher Halbzellen	
heißt galvanisches Element.	
Vereinigt man unterschiedliche	
Redox paare -> Sobann man	
die Potential different messen	
und den Ablauf vieler Redox reaktionen	
vorher sagen.	
Nullpunkt	
Die gemessenen Potential differenzen gegen die Normal wasserstoffelektrode	
hennt man NORMALSPANNUNGEN oder NORMALPOTENTIALE	
	En + 2n ²⁺ +2e ⁻ u ²⁺ téc=> (u +2e ⁻) Um den Elektronen fluß von En Zum Ge zu ermöglichen - Verbindung über Spannungs- meßgerät und die Lösungen mit dem Strom- schlüssel. Jedes Redox paar Bildet eine Halbælle. Die Kom Bination Zweier solcher Halbælle. Vereinigt man unterschiedliche Redox paare -> So bann man die Potential differenze messen und den Ablaut vieler Redox reaktionen Vorhersagen. Null punkt Die gemessenen Potential differenzen gegen die Normal wasserstoffelektrode Nennt man NORMALSPANNUNGEN oder NORMAL POTENTIALE

Redoxpaare, die an die Normal Hasserstoff-elektrode ELEKTRONEN abgeben 😑 Ð Spannungsreihe oder Redoxreihe Oben in der Spannungsreihe stehen die Redoxpaare mit der größten Tendent e-abzugeben. Sn/Sn²⁺ reduziert Ag/Ag⁺ 504 2- / 5208 2- Oxidiert J2/J-

L		positives Metallion	al [V] bei 25 °C	Nichtmetall		n-fach ne Nichtme	egatives etallion	Normalpotential [V] bei 25 °C
	.i	Li*	-3,01	S (fest)	S 2-			-0,51
P	(K⁺	-2,92	1/0 · 1/0 · 0				
c	Ca	Ca ²⁺	-2,84	¹ / ₂ O ₂ + HO + 2e	201	н.		+0,40
N	Na	Na⁺	-2,71	J _{2 (fest)}	2 J			+0,54
Ν	Иg	Mg ²⁺	-2,38	C1	• •			14.20
Å	4	Al ³⁺	-2,34	CI _{2 (gas)}	20	F.		+1,36
N	/In	Mn ²⁺	-1,05	F _{2 (gas)}	2 F			+2,85
z	In	Zn ²⁺	-0,76					
F	e	Fe ²⁺	-0,44	Sekundärzellen:				
c	Cd	Cd ²⁺	-0,40				Normal	potential [V] bei 25 °C
c	Co	Co ²⁺	-0,28	Elektrodenreaktic	on			
N	Ni	Ni ²⁺	-0,23	PbO ₂ + SO ₄ ²⁻ + 4H ⁺ + 2e	e ≒ P	bSO₄	+1,69	
s	Sn	Sn ²⁺	-0,14	+ 2H ₂ O				
F	Pb	Pb ²⁺	-0,13	$Pb + SO_4^2 \rightarrow PbSO_4$	+ 2e		-0,36	
ŀ	H ₂	2H⁺	0,000	NiOOH + H₂O + e <> I	Ni(Ol	H), +	+0,45	
c	Cu	Cu ²⁺	+0,34	OH-	-			
4	٩g	Ag⁺	+0,80	Cd + 2OH ⁻ <> Cd(OH)	2 + 2	е	-0,81	
H	łg	Hg ²⁺	+0,80	2 Aq.0 + H.0 + e <>	2Aa ·	+	+0.35	
4	Au	Au ²⁺	+1,36	20H ²	J			
F	Pt	Pt ²⁺	+1,60	Zn + 2OH ⁻ <> Zn(OH)	₂ + 26	e	-1,25	

,	Die eigentlichen <i>Redoxindikatoren</i> stellen reversible Redoxsysteme dar, deren reduzierte und oxidierte Form verschiedenfarbig sind.
	$I_{0x} + ze^{-} \implies I_{red}$ ohne Protonenaustausch
	$I_{0X} + m H^+ + ze^- \implies I_{red}$ mit Protonenaustausch
	9.1 Zweifarbige Indikatoren
	$E = E_1^0 + \frac{0.059}{z} \log \frac{a_{\rm iox} \cdot a_{\rm H^+}^m}{a_{\rm ired}} =$
	$= E_i^o + \frac{0.059}{z} \left(\log \frac{c_{iox}}{c_{ired}} + \log \frac{f_{iox}}{f_{ired}} - m \text{ pH} \right) $ (211)
	Unter den üblichen Bedingungen (s. Säure-Base-Indikatoren, S. 68) erhält man ein theoreti- sches <i>Umschlagspotential</i> von
	$E_{\rm u} = E_{\rm i}^{o} - \frac{0.059 \cdot m}{z} {\rm pH} c_{\rm iox} = c_{\rm ired}$ (212)
	Beispiel: Ferroin = Tris(ophenanthrolin)eisen(II)
	$\left(\sum_{N=1}^{n} \sum_{N \geq 0} \right)^{n}$ o - Prenantivolin (pten)
0	$[Fe(phen)_1]^* + c^- \longrightarrow [Fe(phen)_1]^* \dots E_1^c = 1, 14 \vee E_1^$
	Bei einer Oxidationstittation lingt E ₂₄ um 0,06 V höher als E ₃ weil infolge der schwachen Eigenfarhe des Eisen(III)-Komplexes etwa 90% in der oxidierten Form vorliegen missen, damit der Umschlag zu erken- nen ist.
	9.2 Einfarbige Indikatoren
	Wenn I_{red} farblos und I_{ox} farbig ist, ergibt sich das Umschlagspotential (vgl. S. 69) aus (211)
	$E_{u} = E_{1}^{o} + \frac{0.059}{2} (\log \frac{c_{0x}}{c_{0} - c_{0x}} + \log \frac{f_{iox}}{f_{ired}} - m \text{pH}) $ (213)
))	C_0 = Totalkonzentration des Indikators c'_{0X} = Grenzkonzentration an I _{0X}
	Beispiel: Diphenylamin
	$I_{0X} + 4 H^{+} + 4 e^{-} \Longrightarrow 2 I_{red} \dots E_{1}^{\phi} = 0.76 V (pH 7)$ violett farblos
))	
	l _{ea} I _{rae} N _i N' - Diphenyl - diphenochinon - diimin Diphenylamin
	Diphenylamini ist eigentlich kein reversiblet nähkator, da die Oxidation über mehrere Zwischenstufen ver- liuft und ein Schlit inversenzibel ist (Benzidiumhagerung des primär gehölteten Tetraphenylhydrazins) 11. Die Reduktioni des Cliniong gelingt daher mat bis zum N. // Orbjenytenzidini, fukralmaniv ora zowi Elektronen), An Stelle des Diphenylamins wird häufig das bester Rodiche Methyldiphenylamin-p-sulfonat verwendet 11.

TITRATIONSKURVEN
Konstruktion indem man für jeden Punkt
der Titration das Potential aus der Vorliegenden
Konzentration berechnet und Egegen den
Titrant cuffragt.
REDOXINDIKATOREN:
Bei MnOy - kein Indikator nötig ?
zweifarbige Indikatoren:
FERROIN (Tris (o-phenanthrolin) eisen (II)
0 - Phenanthrobin Coler
$[Fe (phen)_3]^{3+} + e^- \Rightarrow [Fe (phen)_3]^{2+}$
Ferrin Ferroin Er=1,140
Jch wach blau tief rot
Einfättrige Indikatoren:
Diphenylamin (D-NH-(D)
E0 = 0,761

MANGANOMETRIE	
Grundgleichungen	
• Jaures Medium	
Mn04 - + 8H+ + 52 - Mn 2+ + 4#20	
E° = 1,524	
Noutral - schuach albalisches	
Madin	
Mealum	
Mnoy + 4# + 3e -> MnO2 + 2H20	
Mn04 + 2H20 +3e -> Mn02 + 40H - 468V	
· Stark alkalisches Medium	
Map = 1 = Map 4-	
$E = 0.3 \Psi V$	
KMn04 Lösungen sind lacht zersetz lich !	
Scholt the mile "	
1/4 - 0x alat	
14104 - + 8HT + Se -> Mn + + 4H20 / 2	
$(20q^{2} \rightarrow 2co_{2} + 2e^{-})/5$	

Titrand	Reaktionsgleichung	Anmerkung
Sn(II)	Sn ²⁺ → Sn ⁴⁺ + 2e ⁻	Vorreduktion mit Zn JONES-Reduktor ¹⁾
H ₂ O ₂	$H_2O_2 \rightarrow O_2(g) + 2 H^+ + 2 e^-$	
Fe(II)	$Fe^{2*} \rightarrow Fe^{3*} + e^{-1}$	Vorreduktion mit JONES-Reduktor
Fe(II)	$Fe^{2*} \rightarrow Fe^{3*} + e^{-}$	Vorreduktion mit SnCl ₂ ² (Reinhardt-Zimmermann
H ₂ C ₂ O ₄ , Oxalate	C_2O_4 $\rightarrow 2 CO_2 + 2 e^-$	Indirekte Bestimmung von Ca, Zn, Co, Pb
HNO ₂ , Nitrite	$\begin{array}{c} NO_2^{-} + H_2O \rightarrow \\ NO_3^{-} + 2 H^{+} + 2 e^{-} \end{array}$	Inverse Titration
v	$VO^{++} + 3 H_2O \rightarrow VO_2^+ + 2 H_3O^+ + e^-$	Vorreduktion mit SO2
Mn ²⁺	$\begin{array}{l} Mn^{2*} + 2 \ H_2O \rightarrow \\ MnO_2(s) + 4 \ H^{*} \end{array}$	"Volhard-Wolff" ³⁾
1) Zn-Amalga 2) Reduktion der Sie Entferner Sn ²⁺ 2 I 3) Neutrale L	am! Amalgamiertes Zn in Säule! mit SnCl₂ in stark salzsaurer Lö dehitze d es überschüssigen SnCl₂ mit qCl₂→ Sn ^{4*} + Hg ₂ Cl₂(s) + 2 Cl [°] ösung! Puffern mit ZnO(s) oder	isung bis zur Entfärbung in HgCl ₂ : HOAc/NaOAc

Maßanalyse Redox-Titrationen

Titerbestimmung: Iodometrie - Bestimmung von Arsen

Arsenoxid wird alkalisch zu Arsenit umgesetzt:

 $As_2O_3(s) + 6OH^- \rightarrow 2AsO_3^{3-}(I) + 3H_2O$

Zugabe von NaHCO₃ (im leicht basischem wird Arsenit zu Arsensäure aufoxidiert Titration von Arsenit AsO_3^{3} mit Iod zu Arsenat AsO_4^{3} :

 $\begin{array}{ll} \mathsf{I_2} + \mathsf{AsO_3^{3^-}} + 2\mathsf{HCO_3^-} \rightleftharpoons & 2 \ \mathsf{I^-} + \mathsf{AsO_4^{3^-}} + 2\mathsf{CO_2} + \mathsf{H_2O} \\ & \text{Arsenige Saure} & \text{Arsensaure} \end{array}$

1. Zugabe von 1 bis 2 mL Stärkelösung als Indikator

2. Titration mit Iodlösung (½ I2) von farblos nach BLAU

	ON ON Amylose (a-LL-Glucossdbindung)
	Abb. 42 Iod Starke Einschlußverbindung laus (6). S. 1401
	a. Hg(1): Hg ₂ Cl ₂ wird mit überschüssiger Iodlösung umgesetzt und die nicht verbrauchte Iodmenger mit Thisoulfat zurücktitriert. Die Bestimmung beruht auf der Bildung des schr sabien [FIsk_1] ^{+, K} somplexes.
	$\begin{array}{rcl} Hg_2 Cl_2 &+ l_2 + & 6 \ l^- & \longrightarrow & 2 \left[Hgl_4 \right]^{2-} &+ & 2 \ Cl^- \\ \pi^{eq} \left(Hg \right) = \pi \left(Hg \right) \end{array}$
b c	b. Hg(II): Salze werden zunächst in [HgI ₄] ² übergeführt, mit Formaldehyd reduzier and das ausgeschiedene Quecksilber mit Iod oxidiert.
	$[HgI_4]^2 + 2e^{-\frac{HCHO}{I_2}}Hg^0 + 41^{-\frac{1}{2}}$
	HCHO + 3 OH ⁻ \longrightarrow HCOO ⁻ + 2 e ⁻ + H ₂ O $n^{eq}(Hg) = n (1/2 Hg)$

CRIDIMETRISCHE BESTIMM UNGERS
+ J2 Lösung (bzv. KJO3/KJ Gemisch)
Lann man bestimmen: $As(\overline{u}): sb(\overline{u}) \cdot b_{u}(\overline{u}) \cdot (2^{2}/2s)$
$5_{2}O_{3}^{2-}(-5_{4}V_{0}^{2-}); SO_{3}^{2-}(-5_{4}SO_{4}^{2-});$ Hg und Hz O
Wasserbestimmung:
$JO_2 + J_2 + H_{20} \longrightarrow 4H^+ + 2J^- + SO_4^{2-}$
J2 in methanolischer Lösung
502 in Pyridin (basisch - Neutralisation der entstehenden Säure)
LÖJUNG aus Gemisch der beiden Bestand- teile … Karl Fischer Lösung
-> WASSERBESTIMMUNG NACH K.F.
Endpunkt: braune Farbe des Jods
(Verstärkung mit Methylenblau)
tatsachlich request auch Chyon

Indikator oxidierte Form reduzierte Form Umschla gs- potential Medium 5-Nitro-1,10-Phenanthrolin Fe(II)-Komplex schwach blau rot-violett +1,25 V H2SO4 I-molar 2,3'-Diphenylamin-dicarbon- säure blau-violett farblos +1,12 V H2SO4 I-molar 1,10-Phenanthrolin-Fe(II)- Komplex schwach blau rot +1,11 V H2SO4 Form Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla i blau farblos +0,53 V Säure I-molar	Indikatoroxidierte Formreduzierte FormUmschla gs- potentialMedium5-Nitro-1,10-Phenanthrolin Fe(II)-Komplexschwach blaurot-violett+1,25 VH2SO4 1-molar2,3'-Diphenylamin-dicarbon- säureblau-violettfarblos+1,12 VH2SO4 7 - 10-molar1,10-Phenanthrolin-Fe(II)- Komplexschwach blaurot+1,11 VH2SO4 7 - 10-molarDiphenylamin-sulfonsäurerot-violettfarblos+0,85 Vverd.SäureDiphenylaminviolettfarblos+0,76 Vverd.SäureMethylenbla 1blaufarblos+0,53 VSäure 1-molar	Ausgev	vählte Redox	farbindikato	oren	
5-Nitro-1,10-Phenanthrolin Fe(II)-Komplex schwach blau rot-violett +1,25 V H2SO4 1-molar 2,3'-Diphenylamin-dicarbon- säure blau-violett farblos +1,12 V H2SO4 7 - 10-molar 1,10-Phenanthrolin-Fe(II)- Komplex schwach blau rot +1,11 V H2SO4 7 - 10-molar Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla 1 blau farblos +0,53 V Säure 1-molar	5-Nitro-1,10-Phenanthrolin schwach rot-violett +1,25 V H2SO4 Fe(II)-Komplex blau rot-violett +1,12 V H2SO4 2,3'-Diphenylamin-dicarbon-säure blau-violett farblos +1,12 V H2SO4 1,10-Phenanthrolin-Fe(II)-Komplex schwach rot +1,11 V H2SO4 1,10-Phenanthrolin-Fe(II)-Komplex schwach rot +1,11 V H2SO4 Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla 1 blau farblos +0,53 V Säure	Indikator	oxidierte Form	reduzierte Form	Umschla gs- potential	Medium
2,3'-Diphenylamin-dicarbon- säure blau-violett farblos +1,12 V H2SO4 7 - 10-mole 1,10-Phenanthrolin-Fe(II)- Komplex schwach blau rot +1,11 V H2SO4 Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla i blau farblos +0,53 V Säure I-molar	2,3'-Diphenylamin-dicarbon- säure blau-violett farblos +1,12 V H2SO4 7 - 10-mola 1,10-Phenanthrolin-Fe(II)- Komplex schwach blau rot +1,11 V H2SO4 7 - 10-mola Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla 1 blau farblos +0,53 V Säure 1-molar	5-Nitro-1,10-Phenanthrolin Fe(II)-Komplex	schwach blau	rot-violett	+1,25 V	H2SO4 1-molar
1,10-Phenanthrolin-Fe(II)- Komplex schwach blau rot +1,11 V H_SO4 Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla 1 blau farblos +0,53 V Säure 1-molar	1,10-Phenanthrolin-Fe(II)- Komplex schwach blau rot +1,11 V H, SO4 Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla i blau farblos +0,53 V Säure	2,3'-Diphenylamin-dicarbon säure	- blau-violett	farblos	+1,12 V	H2SO4 7 - 10-mola
Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla i blau farblos +0,53 V Säure	Diphenylamin-sulfonsäure rot-violett farblos +0,85 V verd.Säure Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla 1 blau farblos +0,53 V Säure	1,10-Phenanthrolin-Fe(II)- Komplex	schwach blau	rot	+1,11 V	H SO4
Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla i - <	Diphenylamin violett farblos +0,76 V verd.Säure Methylenbla 1 - blau farblos +0,53 V Säure 1-molar	Diphenylamin-sulfonsäure	rot-violett	farblos	+0,85 V	verd.Säu ·e
Methylenbla i blau farblos +0,53 V Säure 1-molar	Methylenblaı blau farblos +0,53 V Säure 1-molar	Diphenylamin	violett	farblos	+0,76 V	verd.Säure
		Methylenbla 1	Ыаи	farblos	+0,53 V	Säure 1-molar

FALLUNGSANALYSE FALLUNGSTITRATION
• LÖSLICHKEIT - LÖSLICHKEITSPRODUKT
Lösegleichgewicht
Fållung – GLEICHGEKNICHT Zwischen Niederschlaß und FLüssigker- ist gesätligte Lölung 1 enthålt den ausge fållten stoff in den hödsten möglichen Konzentration Såttigeungs konzenfradien
LÖSLICHKEITSPROJUNT KL

Fällungstithation
Titration von le mittigt
Beginn der Titration
[a -] >> [Ag+]
Reagentüberschuß [Ag+] >> [le-]
Apuivalenzbereich [Ag+] = [12-] - F Ind.

SULFIDEALLUNG

$$\begin{bmatrix} H_{L}S \end{bmatrix}_{q} = \begin{bmatrix} H_{L}S \end{bmatrix}_{ag}$$

$$\begin{bmatrix} H_{L}S \end{bmatrix}_{ag} + H_{LO} \rightleftharpoons H_{S}O^{+} + HS^{-}$$

$$HS^{-} + H_{LO} \rightleftharpoons H_{S}O^{+} + S^{2-}$$

$$M^{2+} + S^{2-} \rightleftharpoons \begin{bmatrix} MS \end{bmatrix}_{f}$$

$$M^{2+} + \begin{bmatrix} H_{L}S \end{bmatrix}_{f} + 2H_{LO} \rightleftharpoons \begin{bmatrix} MS \end{bmatrix}_{f} H_{L}H_{S}O^{+}$$

$$M^{2+} + \begin{bmatrix} H_{L}S \end{bmatrix}_{f} + 2H_{LO} \And \begin{bmatrix} MS \end{bmatrix}_{f} H_{L}H_{S}O^{+}$$

$$M^{2+} + \begin{bmatrix} H_{L}S \end{bmatrix}_{f} + 2H_{LO} \clubsuit \begin{bmatrix} MS \end{bmatrix}_{f} H_{L}H_{S}O^{+}$$

$$M^{2+} + \begin{bmatrix} H_{L}S \end{bmatrix}_{f} + 2H_{LO} \clubsuit \begin{bmatrix} MS \end{bmatrix}_{f} H_{L}H_{S}O^{+}$$

$$M^{2+} + \begin{bmatrix} H_{L}S \end{bmatrix}_{f} + 2H_{LO} \clubsuit \begin{bmatrix} MS \end{bmatrix}_{f} H_{L}H_{S}O^{+}$$

$$HYDROXIDFALLUNGF$$

$$\begin{bmatrix} M(OH)_{S} \end{bmatrix}_{f} \rightleftharpoons M^{3+} + 3OH^{-}$$

$$K_{L} = \begin{bmatrix} M^{2+} \end{bmatrix} = \frac{K_{L} \cdot \begin{bmatrix} H_{L}O \end{bmatrix}_{f}^{2}}{K_{M}^{2}}$$

$$L = \begin{bmatrix} M^{2+} \end{bmatrix} = \frac{K_{L} \cdot \begin{bmatrix} H_{L}O \end{bmatrix}_{f}^{4}}{K_{M}^{5}}$$

FALLUNGSINDIKATION TITRATION OHNE INDIKATOR Cyanid nach Liebig 2 cn + Agt -> [Ag (cn)2] - +Agt gelöst brüb 2[Agcn]ft fest ssold Spontanes Ausflocken beim Apuivalenzpunkt

INDIKATION DURCH FARBIGEN NIEDERSCHLAG Chlorid nach Mohr Indikator: Chromatlosung $(l) + (Ag^{+}) = [Ag(l)]_{1} + (k_{1} - 1)^{-10} + (r_{2}O_{7}^{2-} + 3H_{2}O) = 2CrO_{4}^{2-} + 2H_{3}O^{+} + (r_{2}O_{7}^{2-} + 2Ag^{+}) = [Ag_{2}CrO_{4}]_{1} + (k_{1} - 4)^{-12} + (h_{2}^{-12} + 2Ag^{+}) = [Ag_{2}CrO_{4}]_{1} + (h_{2}^{-12} + 2Ag^{+}) = [Ag_{2}CrO_$

INDIKATION DURCH FARBIGE LÖSUNG Silber nach VOLHARD Indikator: NH4 FET (SO4)2 Ag⁺ + SCN⁻ -> [Ag SCN]₊ Rhodamid FARBLOS We'A Fe³⁺ + 3SCN⁻ -> [Fe(SON)₃] TIEFROT LÖSLICH

INDIKATION DURCH ANFARBEN DES FALLUNGSPRODUKTES Indikatoren: Eosin (Br; J; ScN-) FLUORESCEIN (U-) (Adsorptionsindikatoren) TAJANS Schwerlösliche / kolloidale Stoffe wie Ag-halogenide besitzen die Eigen-schaft überschüssige Ionen aus der Losung zu adsorbieren.

Hal + Ag + -> Niederschlag (neg.) be: stöchiom. Menge Ag + worden die Oberflächenladungen neutral Niederschlag flockt aus + Ag⁺ werden adsorbiert + farbiges organisches Anion Anlagerung an das positiv geladene Silbe halogenid -o Färbung

In Formel anionia	n von Komplexen zuerst ZENTRALATOM dann die Liganden in der Reihenfolge
 anionia neutral 	sche
 neutral 	
	le la
 kation 	ische Liganden.
Im Namer	1 von Komplexen ist die Reihenfolge
a.	Anzahl der Liganden
b.	Art der Liganden (alphabetisch) – o
c.	Zentralatom
d.	Oxidationszahl des ZA in Klammern
[Ag(NH ₃)	₂] ⁺ Cl ⁻ Diamminsilber (I) chlorid
[CoCl ₂ (N	$H_{3}_{4}^{+}$ Cl ⁻ Tetraammindichloro-cobalt (III) chlorid
	5/44 X /
H ₂ Oa	aua .
NH3a	mmin
COca	irbonyl

Die Stabilität lich. Die Bildungskon Stabilität des Kompler Schema:	von Komplexen mit EDTA is astante (oft Stabilitätskonstar xes. Ein Metallion reagiert r	st je nach Metallion untersch nte genannt) ist ein Maß für nit EDTA nach dem folger	hied- ir die nden
$M^{2+} + Y^{4-} \rightleftharpoons$	≜ MY ²⁻		
Läßt man die Ladunge	n weg, so vereinfacht sich die	e Gleichung zu	
$M + Y \rightleftharpoons M$	Υ.		
Der Ausdruck für die I	Bildungskonstante ist dann		
$K = \frac{[MY]}{[M][Y]}.$		(12-	-1)
Man beachte, d wiedergegeben) und nic Die Bildungskonstanter	laß beim Schreiben der Bildu ht H ₂ Y ^{2–} als die reaktive Spe n für einige Metall-EDTA-K	ngskonstante Y ^{4–} (einfach al zies des EDTA betrachtet wi complexe sind in Tabelle 12	ls Y rird. 2–3
Man beachte, d wiedergegeben) und nie Die Bildungskonstanter angegeben. Titrationskurve finigen Fällen kann man Tabelle 12–3 Bildung: Metallion log Kgy	laß beim Schreiben der Bildu ht H ₂ Y ²⁻ als die reaktive Spe n für einige Metall-EDTA-K en tragen zum Verständnis d 1 sie experimentell bestimmen skonstanten einiger EDTA-N Metallion log K _{MT}	ngskonstante Y ^{4–} (einfach al zies des EDTA betrachtet wi complexe sind in Tabelle 12 er Titration mit EDTA bei, , indem man das Potential ein Metall-Komplexe Metallion log K _{ar}	ls Y irid. 2–3 . In iner
Man beachte, d wiedergegeben) und nie Die Bildungskonstanter ängegeben. Titrationskurve einigen Fällen kann man Tabelle 12–3 Bildung: Metallion log K _{ikv} Fe ²⁺ 25.1	laß beim Schreiben der Bildu ht H ₂ Y ²⁻ als die reaktive Spe- n für einige Metall-EDTA-K en tragen zum Verständnis d sie experimentell bestimmen skonstanten einiger EDTA-N Metallion log K _{MY} Ni ²⁺ 18.6	ngskonstante Y ⁴⁻ (einfach al zies des EDTA betrachtet wi complexe sind in Tabelle 12 er Titration mit EDTA bei. , indem man das Potential ein Metall-Komplexe <u>Metallion log<i>K</i>hr</u>	ls Y ird. 2–3 . In iner
Man beachte, d wiedergegeben) und nie Die Bildungskonstanter ängegeben. Titrationskurve finigen Fällen kann man Tabelle 12–3 Bildung: Metallion log K _{ikv} Fe ²⁴ 25,1 Tb ⁴⁴ 23,2	laß beim Schreiben der Bildu ht H ₂ Y ²⁻ als die reaktive Spe- n für einige Metall-EDTA-K en tragen zum Verständnis di sie experimentell bestimmen skonstanten einiger EDTA-N Metallion lög K _{MY} N ²⁺ 18,6 PL ²⁺ 18,0	ngskonstante Y ⁴⁻ (einfach al zies des EDTA betrachtet wi complexe sind in Tabelle 12 er Titration mit EDTA bei. , indem man das Potential ein Metall-Komplexe	ls Y ird. 2–3 . In iner
Man beachte, d wiedergegeben) und nic Die Bildungskonstanter angegeben. Titrationskurve finigen Fällen kann man Tabelle 12–3 Bildung: Metallion log K_{MY} Fe ¹⁺ 25,1 Th ⁴⁺ 25,2 Fe ²⁺ 25,1 Th ⁴⁺ 23,2 B ²⁺ 22,8	laß beim Schreiben der Bildu ht H ₂ Y ²⁻ als die reaktive Spe- n für einige Metall-EDTA-K en tragen zum Verständnis di sie experimentell bestimmen skonstanten einiger EDTA-N Metallion log K _{SY} Ni ²⁺ 18,6 Pb ²⁺ 18,0 Cd ²⁺ 16,5 Zn ²⁺ 16,5	ngskonstante Y ⁴⁻ (einfach al zies des EDTA betrachtet wi complexe sind in Tabelle 12 er Titration mit EDTA bei, , indem man das Potential ein Metall-Komplexe Metallin log K _{MY} Ce ³⁺ 16,0 La ³⁺ 15,4 Ma ²⁺ 10,7	ls Y ird. 2–3 . In iner
Man beachte, d wiedergegeben) und nic Die Bildungskonstanter angegeben. Titrationskurve einigen Fällen kann man Tabelle 12–3 Bildung: Metallion log K_{kr} Fe ¹⁺ 25,1 Th ⁴⁺ 23,2 Cr ³⁺ 23 B ²⁺ 22,8 VO ³⁺ 18,8 Cu ³⁺ 18,8	laß beim Schreiben der Bildu ht H_2Y^{2-} als die reaktive Spe- n für einige Metall-EDTA-K en tragen zum Verständnis di sie experimentell bestimmen skonstanten einiger EDTA-N Metallion log K_{SY} Ni ²⁺ 18,6 Pb ²⁺ 18,0 Cd ²⁺ 16,5 Zn ²⁺ 16,5 Co ²⁺ 16,3 Al ³⁺ 16,1	ngskonstante Y ⁴⁻ (einfach al zies des EDTA betrachtet wi complexe sind in Tabelle 12 er Titration mit EDTA bei, , indem man das Potential ein Metall-Komplexe Metalli-Komplexe Ce ³⁺ 16,0 La ³⁺ 15,4 Ma ³⁺ 15,4 Ma ³⁺ 15,4 Ma ³⁺ 10,7 Ca ²⁺ 10,7 Mg ³⁺ 8,7 Se ⁵⁺ 8,6	ls Y ird. 2–3 . In iner

PHOTOMETRIE
Prinzip: Wechselwirkung elektromagnetischer Strahlung
mit Materie.
Strahlung:
Freier, gerichteter Energietransport durch den Raum.
Elektromagnetische Strahlung:
Teilchenmodell (Patrikeltheorie)
Wellenmodell:
zeitlich periodisch sich änderndes elektrischen Feld E
und ein damit gekoppeltes magnetisches Feld H
H
Wellentheorie: Streuung, Brechung, Beugung, Interferenz
Partikelthorie: Absorption und Emission von Strahlung

Be	zeichnungen in der Spek	tralphotometrie	
Symbol	deutscher Name	englischer/amerikanischer Name	Strahlungsquellen im ultravioletten und sichtbaren Bereich
I ₀	einfallende	incident intensity	Quelle Wellenlängenbereich Latensitäs
	Lichtintensitat		Wolframbandlampe 320–2500 nm schwach unterhalb 400 nm, stark oberhalb 750 nm
1	Intensität des austretenden Lichts	transmitted intensity	Wolfram-Halogen-Lampe 250-2500 nm hohe Intensität zwischen 220 und 2500 nm
	_		Wasserstofflampe 180-375 nm schwach im gesamten Bereich am besten verwendbar zwisch
$I = \overline{I_0}$	Transparenz, Transmissionsgrad,	transmission (engl.) transmittance (amerik.)	Deuteriumlampe 180-400 nm unterschiedlich
	Durchlässigkeit	transmittancy (bezeichnet den um die Absorption im Lösungsmittel korri- gierten Wert]	
			Detektoren für ultraviolette und sichtbare Stral
$% T = 100 \cdot \frac{1}{I_0}$	prozentuale Durchlässigkeit, % Durchlässigkeit	% transmission	Denkron of a state of a
			menschliches Auge 380-750 nm
$I = \overline{I_0}$	Absorption	absorption optical density (engl.)	Vakuumphotodioden:
		absorbancy [bezeichnet den um die Absorp- tion im Lösungsmittel korrigierten Wert]	rot-empfindliche Photozelle 600-975 nm
			Halbleiterphotodioden:
$100 \cdot \left(1 - \frac{I}{L}\right)$	prozentuale Absorption	% absorption -	Photoelement 350-1170 nm UV-empfindliches Photoelement 200-1170 nm
(-6/			Sekundärelektronenvervielfacher z.B. 300-700 nm
$\log \frac{I}{I_0}$	Extinktion	extinction, absorbance	
I	Zelldurchmesser, Länge des Lichtweges in der Probenlösung	internal cell length	
$\epsilon = \frac{1}{c \cdot l} \log \frac{l}{l_0}$	molarer dekadischer Extinktions- koeffizient	molar extinction coefficient specific absorbance { (amerik.) absorbance } (amerik.)	

UV/VIS-Spektroskopie Bilographie Barrow, Gr. (1952). Introduction to Molecular Spectroscopy. McGraw-Hill, New York. Dyer, J.R. (1956). Applications of Absorption Spectroscopy of Ore- ganic Compounds, Pretaice-Hall. Englewood Chifs. Ewing, G.W. (1956). Applications of Absorption of Organic Co- loriant. Springer Verlag. Berlin. Porent, W. (1966). Opticate Anregung organischer Systeme. Verlag Chemie. Weinheim. Graphitz. G. (1983). Pravia der UV/VIS-Spektroskopie, Attempto Verlag. Tablega. Gillinn, A. E., Bern, E. S. (1957). Electronic Absorption Spectro- scopy. Arnold, London.	Griffiths J. (1976). Colour and Constitution of Organic Molecules, Academic Press, New York, London. Hampel, B. (1982). Absorptionsspektroskopie multravioletiem and sichtrares Rolettaberecki, Diverse Verlag, Braunchweig, Jaffe, H. H., Orchin, M. (1982). Theory and Applications of Ultra- viol Statistical Control (1998). In Advancement on the Monthe- mass. D. H. (1973). An Introduction to Ultraviol Stgetroscopy with Problems, in An Introduction to Spectroscopy and Kichennam, F., Her- mang, D. (1973). The Jamon Tress, New York, Margin Deither, J. (1973). Montheim Olsen, E.D. (1973). Modern Optical Methods of Analysis, McGraw-Hill, Book Comp., New York.
 Parker, C.A. (1988), Photoluminescence of Solutions, Elsevier, Amsteedam, Perkampus, HH. (1980), UV-VIS-Spektroskopic and hare An- Perkampus, HH. (1980), UV-VIS-Spektroskopic and hare An- mark C.N. R. (1986), Elsevoita Spektra and Quantum Chemistry, Printie-Hall, Englewood Chiffs. Smatoffs, C. (1964), Elsevoita Spektra and Quantum Chemistry, Printie-Hall, Englewood Chiffs. Smatoffs, C. (1964), Elsevoita Spektra and Quantum Chemistry, Printie-Hall, Englewood Chiffs. Smatoffs, C. (1973). Elsithtronen-Spektroskopic, in Methodicum Chemistry, Brong F. Jaka, Jaka Spektroskopic, and Methodicum Chemistry, Brong F. Jaka, Jaka Spektroskopic, and Methodicum Chemistry, Brong F. (1974). Unstrained in theoretische organische Che- risoppe, Willard Graat Press, Boston. Datessammlungen/Spektrenkataloge Hernhenon, H. M., Ultraviolet and Visible Absorption Spectra- nic Spectral Data, Wiler, New York. Pohling, J. P., Forer, H., Tyogarajan, B. S. (Lua), Organic Electro- ic Spectral Data, Wiler, New York. Pohling, J. P., Forer, H., Tyogarajan, B. S. (Lua), Organic Electro- Machaene Press, New York. Pohling, J. P., Forer, H., Tyogarajan, B. S. (Lua), Organic Electro- nic Spectral Data, Wiler, New York. Pohling, J. P., Forer, H., Tyogarajan, B. S. (Lua), Organic Electro- Machaene Press, New York. Pohling, J. A., Korpiton Spectra in the Ultraviolet Lipht Absorption Spectra- Academic Press, New York. Lang, L., Absorption Spectra in the Ultraviolet and Yuible Region, Academic Press, New York. Lang, L., Absorption Spectra in the Ultraviolet and Yuible Region, Academic Press, New York. Vertig Chemistry, Weinheim, Staffer Standard Spectra (Ultraviolet), Heyden, London. 	Monographien Djerasti, C. (1964). Optical Rotary Dispersion, McGraw-Hull, Book Comp., New York, Molta, L., Legran, M., Groviena, M. (1963). Optical Circular Di- Holta, L., Legran, M., Groviena, M. (1963). Optical Circular Di- chroism in Organic Chemistry, Heyden, Canada. Crabbe, R. (1971). An Introduction to the Chiropatial Methods of Patholic Chemistry, Heyden, Canada. Crabbe, R. (1971). Song Back COP. Crabbe, R. (1971). Song Back COP. Crabbe, R. (1971). Moderan Optical Methods of Analysis, McGraw Hill Book Centry, New York, London. Obertonis of Patana Organic Molecules, Lecture Nots in Chemistry 14, Springer Verlag, Berlin McGraw, S. F. (1982). Moderan Optical Activity and the Chiral Dis- hortonistry 14, Springer Verlag, Berlin Chemistry 14, Springer Verlag, Berlin McGraw, S. K. (1982). Cambridge Hurada N., Nskanithi, K. (1985). Cambridge Hurada N., Nskanithi, K. (1985). Spectroscopy with Polarized Light, V.CH, Wenheim.

		Table I	(1512 - 1903)				
Year	Name	Living in	Method Ca	rrier	Detecti	on	
1512	BRUNSWICK pharmacist	Strassburg	Preparative frontalana-	no	no	/1/	
1822	RUNGE chemist	Berlin	Displacement chr.of dyes	mostly no	yes	/2/	
1859	RUNGE	Oranienburg	on paper	_"_	VOS	121	
1861	SCHOENBEIN und GOPPELSROEDE	Basel R	"Capillarana- lysis" Separation of dyes and org. compounds	yes	yes Yes	/4/	
1000	GOPPELSROEDE	R	_ "_	yes	yes	/5/	
1898	David T.DAY	Lakewood/Ohio	Preparative Displacement chromatoor	no	no	/6/	
1903	TSWETT Russian botanist	Italy Switzerland Russia	"Tswettography" Separation of Components of Chlorophyll	yes	yes	/7/	

3. Techniken der Chromatographie
3.1. Klassische Säulenchromatographie
Säulendurchmesser: s1cm Säulenrohr: meist aus Glas Teälchendurchmesser: 100 - 200 μm Druck: bis 5 bar Anwendungen: präparative Trennungen, Probenvorbereitung (geringe Trennstufenzahlen)
3.2. Hochleistungsflüssigkeitschromatographie (HPLC)
Säulendurchmesser: 100 μm bis 7.8 mm Säulenrohr: Edelstahl, Titan Teilchendurchmesser: 2 - 50 μm Oruck: bis 400 bar
3.2.1. Die HHCC-Apparatur
grondsatzuhler Adulad 1 1 1 1 1 1 1 1 1 1 1 1 1

Ion Exchar	nge Chr	omato	graphy
			Operating
(+)	Type of Exchanger	Functional group	Туре
	Strong anion	-N ⁺ -CH ₃	Quaternary Amine
	Weak anion	-NH ₂	Primary amine
		—_NH	Secondary amine
* €		N	Tertiary amine
	Strong cation	—S03 ⁻	Sulfonic acid
	Weak cation	—C00-	Carboxylic acid
		·	

Size Exclusion Chromatography

- Solute molecules are separated by their size
- Stationary phase has pores of well defined size
- Retention is a function of solute penetration into the pores that is proportional to the hydrodynamic volume of the solute
- No selective interaction with the stationary phase
- Particularly useful for buffer exchange

- Solute molecules are separated on the basis of specific reversible binding to an affinity ligand attached to the stationary phase.
- Utilizes very specific stationary phases such as antibodies, lectins, etc.
- Desorption is performed by adding a competitive ligand to the elution buffer system, or changing ionic strength, pH or polarity.
- The availability of the affinity ligand defines its applicability.
- · Very specific for the solute molecule.

Affinity ligands and applications

LIGAND

- Avidin
- Aprotinin
- Biotin
- Concanavalin A
- Gelatin
- Glutathione
- Heparin
- Iminoacetic acid
- Lysine
- Protein A
- Phophorylethanolamine
- Protein G
- Protamine

Curtesy of Dr. R. Bishoff

APPLICATIONS

- Biotin derivatives
- Serine proteases
- Avidin
- Glycoproteins, Oligosaccharides
- · Fibornectine enzymes
- Enzymes related to glutathione
- Blood coagulation factors
- Interferon, serum proteins
- Plasminogen, polysaccharides
- Human IgG
- C-reactive protein
- IgG immune complex
- IgM

Grundlagen der chromatographischen Trennung

Beschreibung der Trennleistung einer Säule

Ermittlung von *N* und *H* aus einem Chromatogramm:

H...theoretische Bodenhöhe

$$\Rightarrow H = \frac{L}{N}$$

Umformung für die Trennstufenzahl:

$$\Rightarrow N = 16 \left(\frac{t_{\rm R}}{w}\right)^2$$

oder, ausgedrückt durch die Halbwertsbreite des Peaks:

$$\Rightarrow N = 5.54 \left(\frac{t_{\rm R}}{b_{1/2}}\right)^2$$

58

Column Sizes						
Description	Dimensions	Approx. Flow rate (velocity 1–10 mm/s)				
Open tubular liq chromotgraphy	< 25 µm i.d.	< 25 nL/min25 nL/mir				
Nanobore column HPLC	25 μm < i.d. < 100 μm	25–4000 nL/min				
Capillary column HPLC	100 µm < i.d. < 1 mm	0.4–200 μL/min				
Microbore column HPLC	1 mm < i.d. < 2.1 mm	50–1000 μL/min				
Narrow(small)-bore column HPLC	2.1 mm < i.d. < 4 mm	0.3–3.0 mL/min				
Normal-bore column HPLC	4 mm < i.d. < 5 mm	1.0–10.0 mL/min				
Semipreparative column HPLC	5 mm < i.d. < 10 mm	5.0–40 mL/min				

Overview Characterisation by chemistry							
Silica-based (oxid	Silica-based (oxides)		Organic polymer-based			others e.g. carbon	
	Cha	racter	isatio	n <mark>by</mark> s	ize		
	1960s	1970s	1980s	1990s	Now		
				•	•		
	>10 µm irregular	10 μm spherical	5 μm spherical	3–4 μm spherical	<3 μm spherical		
	Low pressure	1000 psi	3000 psi	6000 psi	9000– 15,000 psi		

Silica Stationary Phases Changed in Surface Modification

First Ion Exchange Chromatography Papers: 1966

Horvath, C.G.; Lipsky, S. R. Use of liquid ion exchange chromatography for the separation of organic compounds. Nature (London, United Kingdom) (1966), 211(5050), 748-9. CODEN: NATUAS ISSN:0028-0836. CAN 65:75208 AN 1966:475208 CAPLUS

First RP HPLC Papers: 1976

Chan, Henry W. S.; Levett, Gordon. High performance liquid chromatography of oxygenated derivatives of unsaturated fatty acid esters. Actes Congr. Mond. - Soc. Int. Etude Corps Gras, 13th (1976), Sect. D. 73-9. CODEN: 36NUA6 CAN 87:163602 AN 1977:563602 CAPLUS

McCluer, Robert H.; Jungalwala, Firoze B. High-performance liquid chromatographic analysis of glycosphingolipids and phospholipids. Advances in Experimental Medicine and Biology (1976), 68(Curr. Trends Sphingolipidoses Allied Disord.), 533-54. CODEN: AEMBAP ISSN:0065-2598. CAN 86:135752 AN 1977:135752 CAPLUS

Koshy, K. T.; Vanderslik, A. L. High-pressure liquid chromatographic method for the determination of 25-hydroxycholecalciferol in cow plasma. Analytical Biochemistry (1976), 74(2), 282-91. CODEN: ANBCA2 ISSN:0003-2697. CAN 85:74432 AN 1976:474432 CAPLUS

Riedmann, M. Elution strength and selectivity of the mobile phase in reverse phase high performance liquid chromatography (HPLC). Fresenius'Zeitschrift fuer Analytische Chemie (1976), 279(2), 154-5. CODEN: ZACFAU ISSN:0016-1152. CAN 64:147086 AN 1976:147086 CAPLUS

96

		В	EH Particle				HSS Particle	
	C ₁₈	C ₉	Shield RP18	Phenyl	HILIC	С ₁₈	C ₁₈ SB	T3
Chemistry		05j	<u></u>	Quego	۲	03		
Ligand Type	Trifunctional C ₁₈	Trifunctional C ₁₀	Monofunctional Embedded Polar Group	Trifunctional C ₆ Phenyl	-	Trifunctional C ₁₈	Trifunctional C ₁₈	Trifunctional C ₁₁
Ligand Density*	3.1 µmol/m²	3.2 µmoVm²	3.3 µmol/m²	3.0 µmoVm²	-	3.2 µmol/m²	1.6 µmol/m²	1.6 µmol/m²
Carbon Load*	18%	13%	17%	15%	-	15%	8%	11%
Endcap Style	Proprietary	Proprietary	TMS	Proprietary	-	Proprietary	None	Proprietary
pH Range	1-12	1-12	2-11	1-12	1-8	1-8	2-8	2-8

107

Historical Abstract 1950s, Robert Synge was the first to postulate polymer structures, which were similar to what is defined as monolith today 1967, Kubin et al., polymerization in a glas column, poly(2-hydroxy-ethyl methacrylate-co-ethylene dimethacrylate) \rightarrow low permeability and poor efficiency 1970, foam filled columns for GC and HPLC (open pore polyurethane) \rightarrow insufficient mechanical stability, strong swelling 1980, Hjerten et al., introduced the concept of compressed gels (continuous beds) - copolymerisation of acrylic acid and N,N'-methylene bisacrylamide (efficient separation of proteins) "stationary phases with reduced discontinuity" (for single piece polymer) mid-1980, Tennikova et al., short monolithic separation beds (copolymerisation of glycidyl methacrylate as monomer and high amounts of ethylene dimethacrylate as crosslinker) - arranged in a pile or sliced into disks

Compressed Gels – Continuous Beds

- Hjérten introduced the concept of compressed gels in the late 1980s, which have also been referred to as continuous beds
- made significant contributions to a variety of areas in separation science such as electrophoresis, LC, and CEC.

• Co-polymerisation of acrylic acid and N,N'-methylene bisacrylamide resulted in highly swollen gels. Despite the high degree of compression, the gels exhibited good permeability and enabled efficient separation of proteins.

128

Ion Exchange Monolithic Columns from Dionex for Biomolecule Analysis								
Column dimension	4.6x50 mm	1x50 mm	4.6x50 mm	1x50 mm	4.6x50 mm	1x50 mm	4.6x50 mm	
Base Matrix Material	Polymethacrylate							
Surface chemistry	Tertiary amine		Carboxylic acid		Quaternary amine		Sulfonic acid	
Protein binding capacity per mL of polymer	18 mg/mL BSA	18 mg/mL BSA	23 mg/mL Lysozyme	23 mg/mL Lysozyme	18 mg/mL BSA	18 mg/mL BSA	30 mg/mL Lysozyme	
Protein binding capacity per column	13 mg BSA	0.7 mg BSA	16 mg Lysozyme	0.9 mg Lysozyme	13 mg BSA	0.7 mg BSA	21 mg Lysozyme	
Bed Height	44 mm	50 mm	42 mm	50 mm	45 mm	50 mm	42 mm	
Bed volume	0.73 mL	0.039 mL	0.70 mL	0.039 mL	0.75 mL	0.039 mL	0.70 mL	
pH Range	2 - 12							
Recommended Flow rate	0.5 – 1.5 mL/min	0.05 - 0.25 mL/min	0.5 - 1.5 mL/min	0.05 - 0.20 mL/min	0.5 – 1.5 mL/min	0.05 - 0.25 mL/min	0.5 – 1.5 mL/min	
Maximum Flow rate	2 mL/min	0.30 mL/min	2 mL/min	0.25 mL/min	2 mL/min	0.3 mL/min	2 mL/min	
Operating pressure	< 500 psi 3.4 MPa	< 1500 psi 10.4 MPa	< 500 psi 3.4 MPa	< 1000 psi 6.9 Mpa	< 500 psi 3.4 MPa	< 1500 psi 10.4 MPa	< 500 psi 3.4 MPa	
Maximum Pressure	1000 psi 6.9 MPa	2000 psi 13.8 MPa	1000 psi 6.9 Mpa	2000 psi 13.8 Mpa	1000 psi 6.9 MPa	2000 psi 13.8 MPa	1000 psi 6.9 Mpa	
Temperature	60 °C				70 °C		60 °C	
Solvent Compatibility	Most common organic solvents							

141

. τ	M. Fischnaller, O. Lutz Umkehrphasen-HPLC von Phenolen
Aut	fgaben und Arbeitsvorschrift
Me	ssung bzw. Berechnung der Retentionszeiten t _p der Retentionsfaktoren
(Ka	pazitätsfaktoren) k ⁴ , der Halbwertsbreiten b _{1/2} und der Zahl der theoretischen
Bö	den N der einzelnen Substanzen aus dem Chromatogramm (isokratisch!). Die
Säu	lentotzeit wird durch Injektion von Thioharnstoff bei einer
Lau	fmittelzusammensetzung von 90% B bei einem Fluss von 1 mL/min gemessen (drei
Inje	ektionen (Detektion bei 250 nm). In drei Versuchen wird eine
Lau	ıfmittelzusammensetzung ermittelt, sodass die fünf Standardsubstanzen mit k-Werten
zwi	schen 1 und 5 eluieren. 2 μ l des Standardgemisches werden injiziert. Die
Ret	entionszeiten bzw. Retentionsfaktoren werden in einer Tabelle zusammengefasst. Bei
opt	imierter Laufmittelzusammensetzung wird das Gemisch dreimal unter gleichen
Bec	lingungen getrennt und analysiert.
Zu	e qualitativen Analyse werden die Einzelsubstanzen analysiert und deren
Kap	pazitätsfaktoren berechnet. In gleicher Weise wird die zu analysierende Probe
unt	ersucht und die enthaltenen Phenole anhand ihrer Retentionsfaktoren (k) identifiziert.
Zu	quantitativen Analyse werden aus den Stammlösungen Kalibrierlösungen
her	gestellt, die alle fünf Phenole enthalten (mit Eluent auffüllen). Die Kalibriergerade
wire	d aus jeweils drei Injektionen ermittelt und es wird eine Regressionsgerade berechnet.
Aus	s drei Injektionen der Probelösung wird die Konzentration der Phenole ermittelt

Motivation:

- •geringer apparativer Aufwand (billig)
- geringer Zeitaufwand
- hohe Trennleistung
- •niedrige Nachweisgrenzen
- •hohe Selektivität des Nachweises

Charakteristische Merkmale:

Trennstrecke besteht aus dünner Schicht stationärer Phase, die sich auf einer geeigneten inerten Unterlage (Glas, Alu-, Plastikfolie) befindet. Die Trennung erfolgt näherungsweise in zweiter Dimension.

Dünnschichtchromatographie (DC) Thin-Layer Chromatography (TLC) Vorteile der DC gegenüber klassischen Methoden zur Stofftrennung (Fällen, Kristallisieren, Destillieren, Sublimieren, Extrahieren): •höhere Trennschärfe •größere Empfindlichkeit •geringerer Zeitaufwand •manchmal einfachere Durchführbarkeit Verhalten von Substanzen in einem gegebenen chromatographischen System → spezifische Substanzeigenschaft (Wechselwirkung Analytstationäre- und mobile Phase); geeignet zur Charakterisierung und Identifizierung von Substanzen (bzw. Identitätsprüfung)

Dünnschichtchromatographie (DC) Thin-Layer Chromatography (TLC) Sorbentien in der Dünnschichtchromatographie Adsorptionskraft des Sorbensmaterials → Aktivität hängt ab von: • Teilchengröße (kleine Teilchen → große spezifische Oberfläche (z.B. Kieselgel 60: 500 m²/g); in DC ca. 0.5-25 µm • Zahl und Durchmesser der Kanäle (Poren), die bei der Herstellung entstehen • Wassergehalt des Sorbens • Herstellung der Schichten: heute prakt. nur mehr industriell

Dünnschichtchromatographie (DC) Thin-Layer Chromatography (TLC)

Mobile Phase (Fließmittel oder Laufmittel)

Fließmittel-Auswahl

Lösungsmittel mit definierter Reinheit und definiertem Wassergehalt verwenden (p.A.-Qualität)

Methodenentwicklung

- Struktur der Probenmoleküle bekannt → Abschätzung der Polarität
 → Abschätzung der erforderlichen Elutionskraft
- Reihung der Lösungsmittel nach steigender Elutionskraft in Verbindung

mit einem bestimmten Sorbens, \rightarrow elutrope Reihe

 unbekannte Eigenschaften der Analysensubstanz →Auswahl des Fließmittels durch "Versuch und Irrtum"

SPE

Nonequilibrium, exhaustive removal of chemical constituents from a flowing liquid sample via retention on a contained solid sorbent and subsequent recovery of selected constituents by elution from the sorbent

M.J.M. Wells, Essential guides to method development in solid-phase extraction, in I.D. Wilson, E.R. Adlard, M. Cooke, and C.F. Poole, eds., *Encyclopedia of Separation Science*, Vol. 10, Academic Press, London, 2000, pp. 4636-4643.

Loading/Adsorption

- Gentle vacuum, or pump
- At reasonable rate, depend on column dimension, particle size
 - Small particles, more efficient, permit faster flow rate
- The sorbent should not be allow to go dry at any point
 - Air in the column prevent efficient interfacial contact between liquid and solid phase

Washing

- Remove interferences coadsorbed from the SPE column
- The wash solution must not be too strong to partially eluted the analyte of interest
- For RP-SPE, when the eluting solvent is immiscible with water the sorbent must be dried so that the eluting solvent can interact with all area of the sorbent
 - Gentle vacuum for a few minutes
 - Compressed air or N₂
 - Centrifugation

Kapazitätsfaktor

Je länger ein Stoff in der stationären Phase verbleibt, desto größer wird der Kapazitätsfaktor und damit auch die Retentionszeit des Analyten. Der Kapazitätsfaktor gibt an, um wieviel länger sich Moleküle an der stationären Phase im Vergleich zur mobilen aufhalten. Mit Bruttoretentionszeit (tR) und Totzeit (t0) gilt:

$$k = \frac{t_s}{t_m} = \frac{t_R - t_0}{t_0}$$

Ein hoher Kapazitätsfaktor beschreibt ein hohes Retentionsverhalten!

Sorbent	Structure	Analyte type	Dissolving solvents	Elution solvents
		Reversed Phase		
Octadecyl (C ₁₈) Octyl (C ₆) Ethyl (C ₂) Cyclohexyl Phenyl	-(CH ₂) ₁₇ CH ₃ _(CH ₂) ₅ CH ₃ _CH ₂ CH ₃ _CH ₂ CH ₄ -C ₆ H ₁₂ _CH ₂ CH ₂ -C ₆ H ₆	Nonpolar	methanol/water, acetonitrile/water	For nonpolar analytes: hexane, chloroforn For polar analytes: methanol
		Normal Phase (bonded)		
Cyano (CN) Amino (NH ₂) Diol (COHCOH)	-(CH ₂) ₃ CN - (CH ₂) ₃ NH ₂ (CH ₃) ₅ OCH ₂ CHOHCH ₂ OH	Slightly- moderately polar - strongly polar	hexane, chloroform	methanol
		Normal Phase (adsorption)	de la companya de la	1
Kieselguhr (Diatomaceous Earth) Silica gel Florisil Alumina (neutral)	-SiOH - SiOH Mg ₂ SiO ₃ Al ₂ O ₃	Slightly- moderately polar - strongly polar	hexane, chloroform	methanol (dependent on type of analyte
		Ion Exchangers (anion and cation Exc	change)	
Amino (NH ₂) 1°, 2°- Amino (NH/NH ₂) Quaternary Amine (N*)	-(CH ₂) ₃ NH ₂ * -(CH ₂) ₃ NH*CH ₂ CH ₂ NH ₂ -(CH ₂) N*(CH ₂)	Anion exchange - Ionic Acid	Water or buffer (pH=pKa +2)	 Buffer (pH=pKa +2) pH where sorbent or analyte is neutral Solvent with high ionic strength
Carboxylic acid (COOH) Propyl Sulfonic Acid (SO ₂ OH) Aromatic Sulfonic Acid (ArSO ₂ OH)	- (CH ₂) ₂ COO ² -(CH ₂) ₃ SO ₂ O ² -(CH ₂) ₅ SO ₂ O ²	Cation exchange - Ionic Base	Water or buffer (pH=pKa-2)	 Buffer (pH=pKa-2) pH where sorbent or analyte is neutral Solvent with high ionic strength

Table 3. Con C60-Aminosi and Bradykin	nparison of ilica versus nin	f Recovery Va s Sep-Pak and	lues Meas I Oasis for	ured on Insulin
		recovery (%)		
substance name	concn (µ g/ mL) loaded	C60-amino- silica	Sep-Pak C18	Oasis
insulin	10	72.3	79.6	72.6
	30	95.5	87.4	92.8
	50	97.2	91.8	91.7
bradykinin	30	85.0	_	84.0
	50	88.4	_	88.6

ele 1. Sorbents for solid phase extractio	n and separation mechanisms for	r solid phase separations.		
Sorbent	Structure	Analyte type	Dissolving solvents	Elution solvents
		Reversed Phase		
Octadecyl (C ₁₈) Octyl (C ₈) Ethyl (C ₂) Cyclohexyl Phenyl	-(CH ₂) ₁₇ CH ₃ _(CH ₂) ₂ CH ₃ _CH ₂ CH ₃ _CH ₂ CH ₃ _CH ₂ CH ₄ -C ₆ H ₁₂ _CH ₂ CH ₂ -C ₆ H ₆	Nonpolar	methanol/water, acetonitrile/water	For nonpolar analytes: hexane, chlorofor For polar analytes: methanol
		Normal Phase (bonded)		
Cyano (CN) Amino (NH ₂) Diol (COHCOH)	-(CH ₂) ₃ CN – (CH ₂) ₃ NH ₂ (CH ₂) ₅ OCH ₂ CHOHCH ₂ OH	Slightly- moderately polar - strongly polar	hexane, chloroform	methanol
		Normal Phase (adsorption)		-
Kieselguhr (Diatomaceous Earth) Silica gel Florisil Alumina (neutral)	-SiOH - SiOH Mg,SiO ₃ Al ₂ O ₃	Slightly- moderately polar - strongly polar	hexane, chloroform	methanol (dependent on type of analyte
	1	on Exchangers (anion and cation Exc	:hange)	
Amino (NH ₂) 1°, 2°- Amino (NH/NH ₂) Quaternary Amine (N*) Carboxylic acid (COOH)	-(CH ₂) ₃ NH ₂ * -(CH ₂) ₃ NH [*] CH ₂ CH ₂ NH ₂ -(CH ₂) ₃ N*(CH ₂) ₃ -(CH ₂) COO:	Anion exchange - Ionic Acid	Water or buffer (pH=pKa +2)	 Buffer (pH=pKa+2) pH where sorbent or analyte is neutra Solvent with high ionic strength
Current in men (see erry	-(CH) SO O	Ionic Base	Water or buffer (pH=pKa-2)	 Buffer (pH=pKa-2) pH where sorbent or analyte is neutral

	Gepackte Säule	Dünnschicht Kapillarsäule	Dünnfilm Kapillarsäule
Säulenlänge	2m	30m	50m
Innendurchmesser	4mm	0.5mm	0.25mm
Träger	Diatomeenerde, Partikeldurchmesser: 0.1mm	Dünne Schicht Trägermaterial auf Kapillarwand	Kapillarwandung
Flüssige Phase	Belegung von ca. 20 Gew% des Trägers	Belegung mit dünnem Film	Film von ca. 1µm Dicke auf Kapillarwandung
Phasenverhältnis b = VM/VS	Ca. 10	Ca. 20-50	Ca. 100-1000
Belastung mit Probe	Gross (1mg)	Mittel	Klein (<mg)< td=""></mg)<>
Trägergas- geschwindigkeit	60ml/min	5ml/min	1ml/min
Anzahl theoretischer Böden	3000	50'000	150'000
Bodenhöhe	0.7mm	0.6mm	0.3mm

