Beginn der Vorlesung

- <u>740.750 Einführung in die Pharmazeutische Analytik</u> + <u>725.042, Analytische Grundvorlesung I</u>
 - wöchentlich; Di, Mi, Do; 11:30 13:00, L.EG.220
- Teil 1: Einführung und Gravimetrie
- <u>Website</u> (Skripten und Infos)
 <u>http://www.uibk.ac.at/acrc/mitarbeiter/bonn/lehre.html</u>
- Fragen bezgl. Vorlesung
 - Email -> christoph.woelger@uibk.ac.at

Georg Schwedt

WILEY-VCH

Analytische Chemie

Grundlagen, Methoden und Praxis

Zweite, vollständig überarbeitete Auflage

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren - reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, dass diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind.

Printed in the Federal Republic of Germany Gedruckt auf säurefreiem Papier

Satz primustype Robert Hurler GmbH, Notzingen

Druck betz-druck GmbH, Darmstadt Bindung Litges & Dopf GmbH, Heppenheim

ISBN: 978-3-527-31206-1

WILEY-VCH

Georg Schwedt

Taschenatlas der Analytik

117 Farbtafeln von Joachim Schreiber 3., überarbeitete und erweiterte Auflage

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form – durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, dass diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind.

Printed in the Federal Republic of Germany Gedruckt auf säurefreiem Papier.

SatzKühn & Weyh, Satz und Medien, FreiburgDruckBetz-Druck GmbH, DarmstadtBindungLitges & Dopf GmbH, Heppenheim

ISBN 978-3-527-31729-5

Quantitative Analyseverfahren

✤ Gravimetrie

Fällung eines Niederschlages – Wägung und Berechnung

✤ Maßanalyse

Säure-Base Titrationen, Komplexbildungstitrationen, Fällungstitrationen, Redoxtitrationen

Optische Analyseverfahren - Spektroskopie

Lambert-Beersches Gesetz, Photometrie, Fluoreszenzspektroskopie,

UV, IR-Spektroskopie

✤ Trennoperationen

Fällung, Destillation, Verteilung, Ionenaustausch etc.

✤ Chromatographie

Theorie, Papierchromatographie, Dünnschichtschromatographie, Flüssigkeitschromatographie, Gaschromatographie, Apparaturen, Detektionssysteme

✤ Elektrophorese

Grundlagen, Gelelektrophorese, Kapillarelektrophorese

Chemische Analytik ist die Wissenschaft von der Gewinnung und verwertungsbezogenen Interpretation von Informationen über stoffliche Systeme mit Hilfe naturwissenschaftlicher Methoden. (IUPAC 1974)

Jede Analyse besteht aus folgenden Teilschritten (Grundoperationen):

o Probenaufnahme (sampling)

o Probenvorbereitung (Trocknen, Lösen, Trennen)

o Messung (Messwert)

o Berechnung (Analysenwert) und Bewertung

- > Reinheit, Qualitätskontrolle
- Von Reinsubstanzen
- > Von Gemischen in der Pharmazie

Zunehmend von Bedeutung : Phytochemische Präparate

Current Date 13.03.2001

Sample Information

SampleName	Sinupret 00113011	Sample Type	Unknow n	
Vial	2	Date Acquired	21.02.2001 19:34:42	
hjection	1	Acq Method Set	dwell 150 min	
Injection Volume	20,00 ul	Processing Method	Naringenin	
Channel	996	Date Processed	28.02.2001 15:21:10	
Run Time	160,0 Minutes			
Channel Description PDA 190.0 to 400.0 nm at 1.2 nm				

- Pharmakologische Wirkung
 - Wirkstoffanalytik
 - Abbauprodukte, Blut
 - Kinetik der Wirksubstanz
- Blut, Harn
- Genomics, Proteomics, Metabolomics

Umweltanalysen

• Luft, Wasser, Boden

Schadstoffanalytik, z.B. Dioxine

Lebensmittelanalytik

•Inhaltsstoffe in Lebensmitteln

• z.B. Wein – Resveratrol

- Geforderte Information
- Genauigkeit, Präzision
- > Probemenge
- Voraussichtlicher Gehalt der Probe
- Empfindlichkeit
- > Selektivität
- Qualitative Zusammensetzung
- Analytische Operationen
- Ausrüstung
- > Zeit
- Kosten

Probemenge, Probenbereich (sample size) P :
 Menge (meist der Masse) der Analysenprobe

Makrobereich: m > 100 mg Halbmakrobereich: 100 mg > m > 10 mg Mirkobereich: m < 10 mg

✤ Gehalt, Gehaltsbereich (content) G :

Gehalt der Probe an der bestimmten Komponente

Hauptbestandteil : wi > 10% Nebenbestandteil: 10% > wi > 1% Spurenbestandteil: wi < 1% ✤ Arbeitsbereich A:

Menge (Masse) der Komponente i, welche mit der Methode bestimmt werden kann

 $A = G \times P$

✤ Nachweisgrenze, Bestimmungsgrenze:

Untergrenze des Arbeitsbereichs (3s – Regel!)

heutige Bezeichnungen	frühere Bezeichnungen
Masse m	Masse, Gewicht, Menge, Gewichtsmenge,
in kg oder g	in kø oder ø
Stoffmenge n(X), n(eq) in mol	Menge, Molmenge, Molzahl, Anzahl Mole als Grammatom, Grammion, Grammolekül (Mol), Grammäquivalent (Val)
Molare Masse M(X), M(eq) in g/mol	Atomgewicht, Atommasse, Molekulargewicht, Molgewicht, Molmasse, Äquivalentgewicht, Äquivalentmasse, Formelgewicht, Formelmasse
	in g, g/Mol, g/Val, als relative Großen ohne Einheit
Massenkonzentration β	Konzentration, Gehalt in g/l
Stoffmengenkonzentration $c(X)$	Konzentration, Gehalt; molare Konzentration oder
in mol/l	Molarität in Mol/l, Zeichen: M
Äquivalentkonzentration c (eq)	normale Konzentration oder Normalität
Massenanteil w	Gewichtsprozent (Gew%), Massenprozent,
in g/g	Massenbruch
Stoffmengenanteil x in mol/mol	Molprozent (Mol-%), Molenbruch, Molgehalt, Atomprozent

Institute of Analytical Chemistry

~ 40 co-workers

Omics - Overview

Omics - Overview

Omics - Overview

Complexity of Human Serum

22 proteins are approx. 99% of the whole serum proteome

→ Reducing the complexity by pre-analytical approaches!

Analytical Approaches

Enrichment

LC, LC-MS/MS µ-LC, µ-LC-MS/MS CE, CE-MS CEC

MALDI-TOF-MS/MS

Matrixfree-MALDI

MELDI-TOF

MALDI-imaging/mapping

Desalting High-sample througput

Near-infrared Mid-Infrared Imaging/mapping

Why Analytical Innovations?

Highly Efficient Enrichment and Separation of Biomolecules

Highly Efficient Enrichment and Separation of Biomolecules

Preparation of - Hollow Monolith[™]

Enrichment of Phosphopeptides

Enrichment of in vitro phosphorylated ERK1 digest

MALDI MS spectra:

1.) before enrichment (A)

2.) after enrichment with poly(DVB)-TiO₂/ZrO₂ tips (B)

Signals at m/z 2252.25 and m/z 2332.23 correspond to phosphorylated peptides

Collaboration with Prof. Lukas Huber, Biocenter - Innsbruck

Automation of Sample Preparation

- Specific enrichment
- Purification
- Desalting

A collaboration with PhyNexus Inc., San Jose, CA, USA

PhyNexus

3. sample analysis 4. data processing

Proteomics Cover

Monolithic Extraction Tips for Enzymatic Digestion

Monolithic Extraction Tips for Enzymatic Digestion

Microwave-Assisted In-Tip Digestion

Results - Comparison Study

α-casein digested, eluted from enzyme-Tips with Tip-Technology

Schematic view of spin columns containing sorbents

Hussain, Shah, et al. Journal of Pharmaceutical and Biomedical Analysis (2013) in press

Recovery study of standards

Background

- Pyrrolizidine alkaloids (PA) are secondary plant metabolites (for plant protection)
- 400 different PAs in approximately 6000 plant species are known
 - Contamination of plant products during harvest or through animals (for example bees)
 - \rightarrow Examples for contaminated food: herbal teas, honey, salads etc.
- Problem: Hepatotoxic for animals as well as for humans
 - \rightarrow Safety values for the maximum dose for drugs in Germany:
 - Application up to 6 weeks: 1 µg/day oral, 100 µg/day cortically
 - Application for more than 6 weeks: 0.1 µg/day oral, 10 µg/day cortically

General structure:

Nearly all types are in coexistence with their N-oxides

- Requirement(s) for **toxicity**:
 - 1,2-unsaturated necine
 - Esterification of at least one OH-group with a branched acid

Methods for detection

- HPLC-MS (LOD ~ 1 ppb)
- GC-MS (LOD = 3 ppb)
 - → Otonecines and N-oxides (without derivatisation) not detectable
- Double antibody ELISA (LOD = 0.1 1.5 ppb)
 - -> Antibodys only against some specific PAs
- HPLC Evaporative Light Scattering Detection (ELSD) (LOD = 40 ppm)
- Nonaqueous capillary electrophoresis (NACE) MS (LOD < 7.5 ppm)
- Photometric detection with Ehrlich reagent (LOD = 10 ppm)
- General problem for PA analysis: Only about 25 standards are available
 - Validation is limited to a small spectrum of PAs

lsolation of PAs out of plant material with countercurrent chromatography (CCC) to get more

standards (Cooperation with Medical University of Lublin)

Cation exchange

- Detection only possible in the low ppb-range (for GC- and HPLC-MS)
 - for lower concentrations and for separation from other plant substances enrichment is necessary
- Due to the chemical structure ion exchange is the enrichment method of choice
- Automation with PhyNexus MEA 2 possible

PhyTip with Toyopearl SP-650 resin

-yrroliziuine aikalolus

Procedure

Extraction of the plant material

Enrichment of PAs with ion exchange

Detection with UPLC-MS Austrian Drug Screening Institute

Cation exchange – Comparison of commercial products

- In terms of enrichment of pyrrolizidine alkaloids different commercial materials were tested
- Best recoveries (94-99%) were achieved with a polystyrenedivinylbenzene resin functionalized with sulfonate groups
- Further approach
 - Polystyrene DVB resin in PhyNexus tips and automation of the cation exchange with PhyNexus MEA 2
 - Continuing comparison with other resins (in cartridges and tips)
 - Test of anion exchange resins and Immobilized Metal Ion Affinity Chromatography (IMAC)

Enrichment of Phosphoproteins by Precipitation using Trivalent Lanthanides

Highly Selective Precipitation of Phosphoproteins by Lanthanum

Highly Selective Precipitation of Phosphoproteins by Lanthanum

Recovery of intact proteins allows "top down" protein analysis by LC-MS or gel electrophoresis

Highly Selective Precipitation of Phosphoproteins by Lanthanum Analysis of Liquor for the Diagnosis of Alzheimer

- Alzheimer's disease is the most common form of dementia.
- Alzheimer's is a brain disorder destroying brain cells, causing problems with memory, thinking and behavior severe enough to affect work, lifelong hobbies or social life.
- An estimated 26.6 million people worldwide had Alzheimer's in 2006; this number may quadruple by 2050.

Analysis of Liquor for the Diagnosis of Alzheimer

Accession				
number	Protein	Hit	Phosphorylation	Glycosylation
P05067	Amyloid beta A4 protein	(Ray <i>,</i> 2000), (Grimmer, 2009)	+	+
P06396	Gelsolin	(Ray, 2000)	+	-
P01011	Alpha-1- antichymotrypsin	(Eriksson, 1995), (Gollin, 1992)	-	+
P02647	Apolipoprotein A-I	(Yin, 2009)	-	+
P02679	Fibrinogen	(Yin, 2009), (Ojien van, 2005)	-	+
P00738	Haptoglobin	(Yin, 2009)	+	+
P02766	Transthyretin	(Biroccio, 2006)	-	+
P10451	Osteopontin	(Wung, 2007)	-	+
Q14515	SPARC-like protein 1	(Yin, 2009)	+	+
P02649	Apolipoprotein E	(Corder, 1993),	+	+
P10909	Clusterin	(Yin, 2009)	-	+
Q9UBP4	Dickkopf-related protein 3	(Zenzmaier, 2004)	+	+
P36955	epithelium- derived factor	(Yin, 2009)	+	+
P02774	Vitamin D- binding protein	(Yin, 2009)	-	+
P01009	Alpha-1- antitrypsin	(Gollin, 1992)	-	+
P02763	Alpha-1-acid glycoprotein 1	(Merritt, 1988)	-	+
P04004	Vitronectin	(Rogers, 2000)	+	+
P01042	Kininogen-1	(Puchades, 2003)	+	+
P01034	Cystatin-C	(Mi, 2009)	+	-
P10645	Chromogranin A	(Lechner, 2004)	+	+

- CSF was analyzed by lanthanum (III) precipitation
- 53 phosphorylated and/or glycosylated proteins were identified through peptide mass fingerprint
- 20 out of them are potential biomarkers for Alzheimer's disease
- \rightarrow Highly selective analysis
- → 20 biomarkers detected in the same analytical run

After the loading of 7 μ l onto the trapping column with a flow rate of 20 μ l/min for 4 min, the separation was performed under reversed phase conditions with solvent A 4 % acetonitrile (ACN) and 0.1 %(v/v) formic acid (FA) in water and solvent B 0.1 %(v/v) FA in 60 % ACN, at a flow rate of 300 nl/min and 60 °C. A linear gradient (300 min from 0 % B to 60 % B) was used.

Recovery of Phosphopeptides

[M+H] ⁺	Phosphopeptide Sequences ^a	Phosho-	ErCl ₃	HoCl ₃	CeCl ₃	LaCl₃	EuCl ₃	TmCl ₃	TbCl ₃	TiO ₂
Da		groups					-			
1254.52	EVVGSpAEAGVDAA (Ov-(340–352))	Mono	-	-	-	-	-	-	-	-
1331.53	EQLSpTSpEENSK (α-S2-(141–151))	Mono	-	-	-	-	-	-	-	-
1411.50	EQLSpTSpEENSK (α-S2-(141–151))	Di	-	-	-	-	-	-	-	-
1466.61	TVDMESpTEVFTK (α-S2-(153–164))	Mono	+	+	+	+	+	+	+	+
1594.70	TVDMESpTEVFTKK (α-S2-(153–165))	Mono	+	+	+	+	+	+	+	+
1660.79	VPQLEIVPNSpAEER α(-S1-(121–134))	Mono	+	+	+	+	+	+	+	+
1832.83	YLGEYLIVPNSpAEER (α-S1)	Mono	+	+	+	+	+	+	+	+
1847.69	DIGSESpTEDQAMEDIK (α-S1-(58–73))	Mono	-	+	+	-	+	+	-	-
1927.69	DIGSESpTEDQAMEDIK (α-S1-(58–73))	Di	+	+	+	+	+	+	+	+
1951.95	YKVPQLEIVPNSpAEER (α-S1-(119–134))	Mono	+	+	+	+	+	+	+	+
2061.83	FQSpEEQQQTEDELQDK (β-C-(33–48))	Mono	+	+	+	+	+	+	+	+
2088.89	EVVGSpAEAGVDAASVSEEFR (Ov-(340–359))	Mono	+	+	+	+	+	+	+	+
2432.05	IEKFQSpEEQQQTEDELQDK (β-C-(33–48))	Mono	+	+	+	+	+	+	-	-
2511.13	LPGFGDSpIEAQCGTSVNVHSSLR (Ov-(62–84))	Mono	-	-	-	-	-	-	-	-
2556.10	FQSpEEQQQTEDELQDKIHPF (β-C-(48-67))	Mono	+	+	+	+	+	+	-	+
2619.04	NTMEHVSpSpSpEESpIISQETYK (α-S2-(17–36))	Tetra	+	+	+	+	+	-	-	-
2678.01	VNELSpKDIGSpESpTEDQAMEDIK (α-S1-(52–73))	Tri	+	-	-	-	-	-	-	+
2703.50	LRLKKYKVPQLEIVPNSpAEERL(α-S1-(114–135))	Mono	+	+	+	+	+	-	+	+
2720.91	QMEAESpISpSpSpEEIVPNSVEAQK (α-S1-(74–94))	Penta	+	-	-	+	+	-	+	+
2747.10	NTMEHVSpSpSpEESpIISQETYKQ (α-S2-(17–37))	Tetra	+	-	-	-	-	-	-	-
2856.50	EKVNELSpKDIGSpESTEDQAMEDIK (α-S1-(50–73))	Di	+	+	+	-	+	-	-	+
2901.32	FDKLPGFGDSpIEAQCGTSVNVHSSLR (Ov-(59–84))	Mono	+	-	+	+	-	+	-	-
2935.15	EKVNELSpKDIGSpESpTEDQAMEDIK (α-S1-(50–73))	Tri	+	+	-	+	+	-	-	+
2966.16	ELEELNVPGEIVESpLSpSpSpEESITR (β-C-(17–40))	Tetra	-	-	+	-	-	-	-	-
3008.01	NANEEEYSIGSpSpSpEESpAEVATEEVK (α-S2-(61–85))	Tetra	+	+	+	+	+	-	+	+
3042.27	RELEELNVPGEIVESLSpSpSpEESITR (β-C-(16–40))	Tetra	+	+	+	+	+	-	+	-
3087.99	NANEEEYSIGSpSpSpEESpAEVATEEVK (α-S2-(61–85))	Penta	+	+	-	+	+	-	-	+
3122.27	RELEELNVPGEIVESpLSpSpSpEESITR (β-C-(16–40))	Tetra	+	+	+	+	+	-	+	+
3132.20	KNTMEHVSpSpSpEESpIISQETYKQEK (α-S2-(16–39))	Tetra	+	+	+	+	+	-	+	+
			22	20	10	20	21	12	14	18

Highly Efficient Enrichment and Separation of Biomolecules

Boron Nitride, a Novel Material for the Enrichment and Desalting of Protein Digests and the Protein Depletion

Boron Nitride, a Novel Material for the Enrichment and Desalting of Protein Digests and the Protein Depletion

BORON
 NITROGEN

Boron Nitride, a Novel Material for the Enrichment and Desalting

MALDI Spectra:

The identified peptides are labeled with asterisk. Sequence Coverage of desalted BSA > 68 %

Bisphenol derivatives

	MW	рКа	log K _{ow}	R ²	LOD [ng/ml]	LOQ [ng/ml]
BADGE·2H ₂ O	376.44	14.7 ^b	2.05 ^b	0.999	27.0	82.0
BPF	200.23	7.5 ^a	2.91ª	0.999	27.0	82.0
BPA	228.29	9.6ª	3.32ª	0.999	33.0	99.0
BPZ	268.35	9.7 ^b	4.53 ^b	0.999	28.0	85.0
BADGE	340.41	-	4.02 ^a	0.999	30.0	90.0

BPF

BPA

BPZ

BADGE $\cdot 2H_2O$

BADGE

Recovery for the enrichment of 5 Phenols

	Phenol	4-Nitrophenol	2-Chlorphenol	2-Nitrophenol	Dimethylphenol
	[12.5 µg/ml]	[12.5 µg/ml]	[12.5 µg/ml]	[12.5 µg/ml]	[12.5 µg/ml]
	87.51	94.74	108.08	91.29	100.71
	93.97	102.95	114.70	95.20	111.82
	91.36	101.91	113.24	96.88	105.84
Average	90.95	99.87	112.01	94.46	106.13
RSD	2.66	3.65	2.84	2.34	4.54

5 mg of BN was incubated with a phenol mixture and afterward eluted with 80% acetonitrile in water.

Risk associated with bisphenols

- The French Agency for Food, Environmental and Occupational Health & Safety showed that there are 'recognized' effects in animals (effects on reproduction, on the mammary gland, on metabolism, the brain and behaviour) and other 'suspected' effects in humans (on reproduction, metabolism and cardiovascular diseases). These effects could be observed, even at low levels of exposure, during sensitive phases of an individual's development.
- The French Agency for Food, Environmental and Occupational Health & Safety endorses the conclusions of the Expert Committee on Assessment of the risks related to chemical substances relating to the risks associated with BPA for human health, and on toxicological data and data on the use of bisphenols M, S, B, AP, AF, F and BADGE.

• Endokrine Disruptoren

Tolerable Daily Intake (TDI) of 50 μg BPA/kg body weight (b.w.)/day as set by EFSA in 2006.
The migration limit of BPA set by European Union of 600 μg/kg food.
Tolerable Daily Intake (TDI) of 150 μg BADGE and its hydrolytic products/kg body weight (b.w.)/day.
The migration limit of BADGE and its hydrolytic products 9000 μg/kg food.

http://www.efsa.europa.eu/en/topics/topic/bisphenol.htm

Analysis of 5 bisphenol derivatives after enrichment with BN by LC and fluorescence detector

HPLC-FLD chromatogramms of (A) standard solution containing 5 bisphenol derivatives [100 ng/mL] and (B) bisphenol leached from baby bottle after enrichment with h-BN-60.

Chromatographic conditions: Shimadzu LC-10 Acvp, Phenomenex Luna 5u C18 250*4,6 mm, isocratic 3 min 30% B, gradient 30-70% B in 15 min, flow rate 1mL/min, 50°C, inj.: 30 µL,FLD: 230/303 nm

Determination of bisphenol derivatives

	Found ± SD [ng/ml] Recovery rates ± SD [%]					
	BADGE·2H ₂ O	BPF	BPA	BPZ	BADGE	
river water ^a	nd (92.13 ± 2.69)	nd (102.62 ± 3.73)	nd (107.14 ± 6.50)	nd (104.95 ± 1.92)	nd (98.74 ± 2.57)	
drinking water ^a	nd (90.16 ± 2.40)	nd (98.56 ± 3.51)	nd (99.16 ± 1.60)	nd (101.14 ± 2.58)	nd (96.68 ± 3.35)	
cola ^b	$\begin{array}{c} 4.63 \pm 0.14 \\ (103.41 \pm 4.39) \end{array}$	2.23 ± 0.21 (96.98 ± 2.39)	$10.34 \pm 0.41 \\ (96.93 \pm 5.72)$	nd (92.46 ± 6.58)	$\begin{array}{c} 1.49 \pm 0.04 \\ (96.57 \pm 3.84) \end{array}$	
apple juice ^b	$\begin{array}{c} 1.93 \pm 0.15 \\ (96.43 \pm 3.63) \end{array}$	3.11 ± 0.30 (90.77 ± 3.63)	nd (84.22 ± 2.20)	nd (98.74 ± 1.23)	$\begin{array}{c} 1.36 \pm 0.22 \\ (98.22 \pm 2.71) \end{array}$	
lemon soda ^b	$\begin{array}{c} 8.14 \pm 0.09 \\ (82.46 \pm 3.01) \end{array}$	$\begin{array}{c} 1.40 \pm \! 0.07 \\ (84.45 \pm 5.44) \end{array}$	nd (97.60 ± 1.81)	nd (87.61 ± 2.94)	$\begin{array}{c} 5.70 \pm 0.04 \\ (94.00 \pm 2.61) \end{array}$	
citrus soft drink ^b	$5.32 \pm 0.71 \\ (103.90 \pm 2.58)$	nd (97.82 ±5.82)	$\begin{array}{c} 1.04 \pm 0.31 \\ (98.31 \pm 5.67) \end{array}$	nd (98.05 ± 4.04)	$\begin{array}{c} 1.56 \pm 0.042 \\ (99.63 \pm 4.42) \end{array}$	
herbal soda ^b	nd (100.45 ± 5.15)	nd (99.07 ± 5.09)	nd (104.43 ± 6.20)	nd (105.07 ± 7.21)	nd (108.42 ± 4.83)	
energy drink ^b	$\begin{array}{c} 4.46 \pm 0.07 \\ (98.54 \pm 9.21) \end{array}$	1.87 (91.55 ± 4.21)	5.57 ± 0.81 (93.55 ± 5.84)	nd (100.76 ± 2.04)	nd (103.60 ± 1.91)	
canned mushroom liquid ^b	$\begin{array}{c} 20.42 \pm 1.19 \\ (99.06 \pm 6.88) \end{array}$	nd (91.35 ±0.79)	$\begin{array}{c} 8.60 \pm 0.37 \\ (98.47 \pm 8.37) \end{array}$	nd (103.71 ± 6.17)	$\begin{array}{c} 1.81 \pm 0.12 \\ (99.63 \pm 0.62) \end{array}$	
pickled cucumber liquid ^ь	$\begin{array}{c} 1.81 \pm 0.15 \\ (97.53 \pm 1.12) \end{array}$	2.23 ± 0.21 (96.02 ± 2.45)	$\begin{array}{c} 125.00 \pm 2.18 \\ (109.12 \pm 0.77) \end{array}$	nd (103.36 ±3.80)	$\begin{array}{c} 1.44 \pm 0.06 \\ (92.67 \pm 0.71) \end{array}$	
pickled onion liquid ^b	$2.98 \pm 0.08 \\ (105.80 \pm 3.90)$	nd (96.53 ± 8.20)	$\begin{array}{c} 13.45 \pm 0.63 \\ (92.03 \pm 4.70) \end{array}$	nd (97.91 ± 3.12)	$\begin{array}{c} 1.74 \pm 0.00 \\ (95.20 \pm 0.63) \end{array}$	
urine ^b	nd (100.45 ± 3.13)	nd (105.67 ± 0.68)	nd (92.80 ± 2.52)	nd (105.26 ± 4.00)	nd (103.70 ±3.45)	

Leaching of BPA from polycarbonate products

	leached BPA [ng/ml]	± SD (%)
Babybottle 1. treatment	20.79	1.05
Babybottle 2. treatment	19.82	0.72
muffin form	2.26	0.07
Siringe	0.85	0.03

Treatment conditions: boiling water for 1 h

- Development of new biomarker methods as well as new materials for separation and MELDI
- Development of disease related biomarker discovery methods including bioinformatics e.g. liver cancer and prostate cancer

Application studies

• Natural Product Proteomics (Phyto-Proteomics)

FELLOWSHIP PROGRAMS - Exchange on different levels

Academics, Students and Non-academic positions – technicians **Participation** at the International Proteomics Conference, Seefeld Austria **Duration:** 2 weeks, 3 months, up to 3 years (PH.D.) fellowships

EURASIA-PACIFIC

Collaborations

Prof. Günther Bonn

International Agency for Research on Cancer Centre International de Recherche sur le Cancer

WHO – Lyon, France

北京大学医学部 Peking University Health Science Center

Prof. Ke Yang

Prof. Siqi Liu

Age-standardized Incidence and Mortality Rates for Prostate Cancer. Data shown per 100,000.

Liver Cancer

D. Max Parkin, Freddie Bray, J. Ferlay and Paola Pisani *CA Cancer J Clin* 2005;55;74-108

Age-standardized Incidence and Mortality Rates for Liver Cancer. Data shown per 100,000.

Highly Efficient Enrichment and Separation of Biomolecules

Stationary Phases – Formats – Strategies

μ-LC - capillary

Disc - technology

MONOLITHIC MS/BVPE

Monolithic Separation

Impact on the Separation Efficiency of Monolithic MS/BVPE

Biomolecules

Low-molecular-weight compounds

Achievable also with commercial monolithic organic capillary columns
Extended Applicability of the shortly Polymerised Monoliths

 \rightarrow Separation of biopolymers as well as small molecules of various polarity can be separated on the same monolithic capillary column

Transgenomic Wave-System - Mutation Analysis

Transgenomic Wave HPLC-System

Bonn, Gunther; Huber, Christian; Oefner, Peter. **Separation of nucleic acid fragments with alkylated nonporous polymer beads.** PCT Int. Appl. (1994), 30 pp.

Mutation Detection by Denaturing HPLC using Packed Columns and Monolithic Capillaries

Highly Efficient Enrichment and Separation of Biomolecules

Monolithic Porous Polymer Layer For Thin-Layer Chromatography Coupled with MALDI- TOF-MS

SEM micrographs of porous structure of 150 µm thick poly(butyl acrylate-*co*-ethylene dimethacrylate) monolith attached to a glass plate

TLC separation of methylene blue and methyl red on monolithic layer attached to a glass plate using ethyl acetate-ethanol-water mixture (6:4:3) as the mobile phase (A) and MALDI spectrum from the spot of methylene blue obtained "from-plate" without using any matrix (B).

Collaboration with Prof. F. Svec, Lawrence Berkeley National Lab

Monolithic Porous Polymer Layer For Thin-Layer Chromatography Coupled with MALDI- TOF-MS

TLC separation of mixture of peptides labelled with fluorescamine on 150 μ m thick poly(butyl acrylate-*co*-ethylene dimethacrylate) monolithic layer attached to a glass plate using 0.1% TFA in 45% aqueous acetonitrile as the mobile phase (A). Sample volume 0.5 μ L MALDI-TOF MS spectra of fluorescently labelled [Sar1,Ile8]-angiotensin II (B), angiotensin II (C), and neurotensin (D) obtained "from-plate" using HCCA as matrix.

Collaboration with Prof. F. Svec, Lawrence Berkeley National Lab

Monolithic Porous Polymer Layer For Thin-Layer Chromatography Coupled with MALDI- TOF-MS

TLC separation of mixture of proteins labelled with fluorescamine (A). Sample volume 0.5 μ L. Peaks: Insulin (1), cytochrom c (2), lysozyme (3), and myoglobin (4). MALDI-TOF MS spectra of fluorescently labelled insulin (B), and myoglobin (C) obtained "fromplate" using sinapinic acid as matrix.

Structural Elucidation with Hyphenated techniques for Phyto-Metabolomics

Electrospray Ionisation (ESI-MS) – online

→ Increase speed of separation in case of MS instruments with high scan rates

Qualitative Analysis of Flavonoids using µLC- ESI MS and MSⁿ of Heartsease (Viola tricolor L.)

Heartsease has a long history in phytomedicine, it's biological activities are attributed to its secondary plant metabolites, antioxidant flavonoid compounds

It has been utilized to treat:

- various skin disorders
- upper-respiratory problems
- as a diuretic
- prophylaxis and treatment of cardiovascular problems
- complications of diabetes
- Inflammations
- immune disorders
- liver problems

Separations were carried out using *p-methylstyrene* 1,2-bis(*p-vinylbenzylchloride*) monolithic capillary column

Horvath Laboratory of Bioseparation Science Innsbruck, Austria Prof. Andras Guttman

ath Laboratory of Bioseparati

Qualitative Analysis of Flavonoids of Heartsease (Viola tricolor L.)

	MW	R1	R ²	R ³
apigenin	270	\mathbf{H}	OH	Ĥ
luteolin	286	\mathbf{H}	OH	OH
kaempferol	286	OH	OH	\mathbf{H}
chrysoeriol	300	\mathbf{H}	OH	OCH ₃
diosmetin	300	\mathbf{H}	OCH ₃	OH
quercetin	302	OH	OH	OH
isorhamnetin	316	OH	OH	OCH ₃

Core structure of flavonoid aglycones

Fragment nomenclature applied for

- (a) O-glycosides
- (b) C,O-glycosides and C-glycosides

Vukics V; Toth B Hevesi; Ringer T; Ludanyi K; Kery A; Bonn G K; Guttman A, Journal of chromatographic science (2008), 46(2), 97-101.

Qualitative Analysis of Flavonoids of Heartsease (Viola tricolor L.)

Hyphenation of CE with MALDI

CE coupled to MALDI with novel covalently coated capillaries

Characterization of coated capillaries for CE by infrared spectroscopy

Hyphenation of MALDI with CE

Electropherogram for the separation of α casein tryptic digest obtained with latex diol.

Conditions: *capillaries,* (65/57.5 cm eff., 75 μm ID, 360 μm OD); BGE, pH 2.3: 40 mM TEA titrated with phosphoric acid mixed with 20% (v/v) ACN.

2D Plot CE-MALDI –MS data obtained from the analysis of a tryptic digest of five proteins (myoglobin, cytochrom c, BSA, α-casein, ovalbumin).

Hyphenation of MALDI with CE

(A) MALDI-TOF mass spectrum of CE fraction no. 34. (B) The fragment ion spectrum of peptide 1951.92 Da. (C) The identification probability plot from the swiss prot database.

The internal standards are indicated with astericke

Tinstitute of Chemical Methodologies

Collaboration with Prof. Danilo Corradini

New Analytical Approaches in "Phytoanalytics"

Analytical Chemistry in Phytopharmacy Steps for Quality Control

Selective materials for sample pretreatment:

Stationary phases for HPLC and μ -HPLC:

Screening: MALDI targets/MELDI materials:

Hyphenated techniques:

Infrared Spectroscopy:

particles (spherical, irregular) monoliths SPE, columns, disks

particles (different mechanisms) monoliths

matrix free with matrix

μ-HPLC-ESI-MS μ-HPLC-MALDI-TOF MS

non-invasive quality control

Natural Products - Extraction and Purification - Strategies

Extraction Scheme

Cooperation with Bionorica®

In the field of phytoanalytics and antimicrobial activities of plants

TiO₂ coated Targets for matrix-free LDI MS

TiO₂ coated Targets for matrix-free LDI MS Analysis of Artichoke Samples

Cynara scolymus

Apigenin (A), Luteolin (B), Cynaropikrin (C), Chlorogenic acid (D), Cynaroside (E) and Cynarin (F),

Matrix-free LDI MS for the Detection of Low Molecular Weight Compounds

Collaboration with SONY

Laser Desorption/Ionization Mass Spectrometry on Diamond for the Application in Metabolomics

Na⁺ and K⁺ adducts.

Invited Interview in Analytical Chemistry 2008

10.1021/AC801668W © 2008 AMERICAN CHEMICAL SOCIETY Published on Web 08/29/2008

OCTOBER 1, 2008 / ANALYTICAL CHEMISTRY 7183

RESEARCH PROFILE

Femtomolar sensitivity with matrix-free LDI MS

Scientists who want to analyze small molecules with MALDI MS have long been frustrated by unwelcome signals from the matrix. And until now, matrixfree LDI has not reached the femtomo-

lar sensitivity required to, for example, perform clinical blood tests for metabolites. But Günther Bonn and colleagues at Leopold-Franzens University (Austria) report in a new AC paper (DOI 10.1021/ ac801190e) that they have boosted sensitivity into the femtomolar range by replacing their MALDI target with a DVD coated with diamond-like carbon (DLC). "That it worked was really a surprise," says Bonn, who hopes to use the technology to create metab- bon layer for analysis by MS. olomic tests for prostate cancer.

layer, says Matthias Rainer, another group member. "Their electrical, thermal, and optical properties improve the efficiency of laser transfer, leading to high reproducibility."

(a) The matrix-free target is a polycarbonate DVD coated with an interlayer of molybdenum and topped with a layer of DLC. Even after the DVD is coated, it can store data. (b) A laser pulse desorbs and ionizes the sample from the carbon layer for analysis by MS.

The porous silicon most commonly used as a target for matrix-free LDI is easily contaminated and can't be stored for Bonn wanted to use DVDs so he could burn analytical data onto their undersides. This technique is particularly useful, he points out, when hundreds of The researchers also detected peptides that fall into the same mass range as vaporized matrix would and successfully measured the m/z of peptides in a BSA digest, an amino acid, a phospho-

lipid, and an emulsifier found in the small intestine. The masses of these test compounds ranged from 100 to 1500 Da. "The different analytes reported here show the broader application of DLC," Rainer says. "This is important, as many matrix-free systems are reported to be viable for a fixed kind of analyte."

The group is trying to increase sensitivity even further by decreasing the thickness of the DLC layer and chemically modifying its surface. For example, they are applying aromatic

compounds, such as sinapinic acid, to boost UV sensitivity and thereby expand the mass range. Before the technology can be commercialized, they must also

Basics of Near-infrared Spectroscopy (NIRS)

- NIR wavelength range: 780 2500 nm (4000 – 12800 cm⁻¹)
 - interaction between sample and electromagentic radiation
 - Pre condition: change of dipole moment
 - overtone and combination bands appear
 - use of chemometrical and statistical tools

Absorption of NIR radiation by organic molecules \rightarrow mainly O-H, C-H, N-H and C=O groups whose fundamental molecular stretching and bending absorb in the mid – IR region (400 – 4000 cm⁻¹)

These overtone and combination bands are anharmonic \rightarrow very complex and not direct interpretable as in other spectral regions \rightarrow need for chemometric evaluation

Chemical (e.g. functional groups) as well as physical parametes (particle size, pore size, specific surface area) can be detected

Basics of Near-infrared Spectroscopy (NIRS)

NIR Strategy of Analysis

NIR Strategy of Analysis

3',4',5'- Trimethoxyflavone Leading Compound

Charge	Area	Primula	Conc. LC	NIR-MW	Water	EtOH
	(µV*sec)	(g/100g)	(ng/µl)	(ng/µl)	(%)	(%)
91102064 28.10.91	70490	0,493	0,219	0,219	80,38	15,7
91112182 05.11.91	71740	0,500	0,222	0,210	80,83	15,2
91112191 08.11.91	61346	0,442	0,197	0,230	80,25	15,7
91112302 22.11.91	66799	0,472	0,210	0,186	81,33	14,5
91112311 28.11.91	81551	0,555	0,245	0,193	79,69	15,7

NIRS of Naphthodianthrones and Phloroglucines in St. John's Wort

NIR spectra (a) Original spectra, (b) pretreated spectra

Predicted (NIRS) vs. True values (LC) (a) Hypericin, (b) Hyperforin (n=80). (a) R²=0.99; SEP=0.68; (b) R²=0.99; SEP=0.72

Wine Analysis using NIRS

Wine Analysis using NIRS

Michael A. Popp, Guenther Bonn, Christian Huck, Wolfgang Guggenbichler, **Method for classifying wine and coffee.** Patent No. WO 2002097431, Application Number WO 2002-EP4988

Coffee Analysis using NIRS

Quality Control of Coffee via NIRS

C.W. Huck, W. Guggenbichler, G.K. Bonn, Analysis of Caffeine, Theobromine and Theophylline in Coffee by Near Infrared Reflectance Spectroscopy (NIRS) Compared to High Performance Liquid Chromatography (HPLC) Coupled to Mass Spectrometry. Anal. Chim. Acta, 538 (2005) 195
International Collaborations

Austrian Drug Screening Institute (ADSI)

Prof. Lukas A. Huber

Scientific Director – Biological Division

Cell Biology, Biocenter Innsbruck Medical University

Prof. Günther K. Bonn

Scientific Director – Analytical Division Institute of Analytical Chemistry and Radiochemistry University of Innsbruck

Tyrol as a region of cancer and phyto research: stepwise development

Projects of Bionorica SE and Bionorica Research

	Dioporios	,		2008/9
	BIONONCa		2006/7	Launch of the "ONCOTYROL –
		2005		Center for Personalized Cancer Medicine"
	2004	Formation of Biocenter Innsbruck	Proposal for COMET Center ONCOTYROL	4x START grants at
2003		Oncology in the	First "Clinical Trial Cente	the I-MED Biocenter r"
Special Research Program SFB021:	in Oncoscience	scientific focus at the I- MED	in Austria established at the I-MED	Drug Screening Platform Concept
Cell Proliferation and Cell Death in Tumors	Austrian Proteomics Platform (APP)	FP6-Project Growthstop	GEN-AU II	GEN-AU III

Academic Drug Screening Centres - USA

UNIVERSITY	CHEMICAL LIBRARY SIZE	DIRECTOR	WEBSITE
Broad Institute of MIT and Harvard	500,000	Michael Foley	www.broad.mit.edu/node/139
Columbia University	118,000	James Rothman	www.columbia.edu
Emory University	200,000	Ray Dingledine	www.pharm.emory.edu
Harvard Medical School	250,000	Caroline Shamu	iccb.med.harvard.edu
Johns Hopkins University	180,000	Min Li	www.hopkinschemcore.org
Rockerfeller University	46,000	J. Fraser Glickman	www.rockefeller.edu
Stanford University	130,000	David Solow-Cordero	htbc.stanford.edu
University of California	55,000	Scott Lokey	chemistry.ucsc.edu
University of Cincinnati	250,000	William L. Seibel	www.gri.uc.edu
University of Illinois	200,000	Carson Putt	www.scs.uiuc.edu/htsf
University of Kansas	110,000	Rathnam Chagaturu	www.hts.ku.edu
University of Michigan	56,000	Martha Larsen	www.umich.edu
University of Minnesota	5,000	Marc von Keitz	www.bti.umn.edu/htba
University of New Mexico	231,000	Larry Sklar	nmmlsc.health.unm.edu
University of Pennsylvania	218,000	Scott Diamond	www.seas.upenn.edu/~pcmd/hts
University of Pittsburgh	280,000	John Lazo	www.upddi.pitt.edu
University of Rochester	23,000	Alan V. Smrcka	www.urmc.rochester.edu/hts
University of Texas Southwestern Medical Center	200,000	Michael Roth	www.utsouthwestern.edu
University of Wisconsin Madison	105,000	F. Michael Hoffmann	www.hts.wisc.edu
Vanderbilt University	260,000	Charles David Weaver	www.vanderbilt.edu
Washington University	140,000	Jayne Marasa	mic.wustl.edu/Cores/HighThroug hputCore
Yale University	30,000	Paul Fletcher	cgp.yale.edu/chemical/chem_info

Library size

Academic Drug Screening Centers - Europe

51-100.000 Medical Research Council Technology (Mill Hill, UK) Imperial College Drug Discovery Centre (London, UK) 11-50.000 51-100.000 Scottish Hit Discovery Facility (Dundee, UK) Max Planck Institutes Chemical Genomics Centre (Dortmund, Germany) 11-50.000 51-100.000 EMBL/DKFZ Chemical Biology Core Facility (Heidelberg, Germany) USEF (Santiago de Compostela, Spain) <10.000 HTS, Spanish National Cancer Research Centre (Madrid, Spain) 51-100.000 11-50.000 LiMoNe, K.U.Leuven (Leuven, Belgium) **IBITEC-S, CEA Saclay (Paris, France)** 11-50.000 PCBIS, Universite Louis pasteur (Strasbourg, France) 11-50.000 CMBA (Grenoble, France) 11-50.000 Biomolecular Screening Facility, EPFL (Lausanne, Switzerland) 11-50.000 **European Screening Port (Hamburg, Germany)** 151 - 300.000

High-Content Screening prevails at European Academic Screening Centres

Austrian Drug Screening Institute, Tirol

Comparison of early drug discovery approaches at industry and academia

	high throughput screening (industry)	high content screening (academia)
throughput	high to ultra-high	low to medium
content	low	high
format	1536- and 3456-well plates	96- and 384-well plates
assay	simple biochemical assays (cell-free)	complex biological assays (cell-cell interactions)
detection	absorbance, fluorescence, luminiscence	advanced biooptics, mass spectrometry
capacity	> 100.000 compounds/day	< 10.000 compounds/day
screen size	up to 2 millions compounds	< 100.000 compounds
compounds	own synthetic libraries	external libraries (synthetic and natural)
focus	selection of active compounds	understanding of the mode of action
purpose	generation of new drugs for profit	generation of new methods and research tools
IPR strategy	protection of active compounds	protection of methods and research tools
IPR owner	company	project owner
equipment	> 10.000.000 €	< 5.000.000 €

Management

Shareholder University of Innsbruck (100%) CEO: Dr. Laco Kacani

Scientific Directors:

Prof.Mag.DDr.h.c. Günther Bonn – Analytical Division Prof.Dr. Lukas Huber – Biological Division

Scientific Board

Prof.Dr. Peter Boyle Dr. Danilo Corradini

Montelibretti, Italy DDr. Friedrich Lottspeich

Prof.Dr. David Mirelman Mag. Markus Pasterk Austria Prof.Dr. Siqi Liu IPRI , Lyon, France Institute of Chemical Methodologies, Chromatography and Capillary Electrophoresis Unit,

Max Planck Institute of Biochemistry, Martinsried, Germany Weizmann Institute of Science, Rehovot, Israel Biobanking and Biomolecular Research Infrastructure, Graz,

Chinese Academy of Sciences, Bejing Institute of

Examples of Screening Projects

Screening in oncology – partnership with ONCOTYROL: Treatment of prostate cancer, breast cancer, lymphoma & myeloma

Screening of natural compounds – partnership with phytopharmacy: Treatment of inflammatory, immunological & infectious diseases

Screening for external partners – partnership with Austrian academy: External projects – library screening, drug signatures, mode of action

Project Multiple Myeloma

Equípment

ASE 350

Extraction

Rotavapor

Moisture Analyzer

Aquasolv

CertoClav Sterilization

Sample Preparation

Proteineer Fractionation, LC-MALDI coupling

ImagePrep MALDI Imaging

PhyNexus MEA System liquid handling robotic system

Mass Spectrometry

2x Maxis Impact

UPLC 2D, analytical and nano

Autoflex Speed

Stationary Phases for Separation Science

Trojer L. et al. Monolithic poly(p-methylstyrene-co-1,2-bls(p-vinylphenyl) ethane) capillary columns as novel styrene stationary phases for biopolymer separation. Journal of Chromatography, A (2006), 1117(1), 56-66.

Transgenomic Wave-System - Mutation Analysis

Transgenomic Wave HPLC-System

Bonn, Gunther; Huber, Christian; Oefner, Peter. Separation of nucleic acid fragments with alkylated nonporous polymer beads. US Patent (1994)

Bonn, Alexander, Bonn, Guenther, Huck, Christian; Maerk, Bernhard; Sonderegger, Harald; Rainer, Mathias; Gjerde, Douglas T. Pipette tip containing particle-filled polymer monolith. U.S. Pat. Appl. Publ. (2010)

Preparation of hollow monolith[™]

Developement of co- culture testsystems

Guava easycyte 8HT Milipore Cell sorter

PanSys 4000 Fully automated cell culture system

Prof.Dr.Surapote Wongyai

UNIDO Expert in Herbal Medicinal Products Development, Trieste, Italy Thai FDA Expert in ASEAN Harmonization of Traditional Medicine and Health Supplement (TMHS)

Founder Dean and Dean, Faculty of Oriental Medicine, Thailand

Association of Southeast Asian Nations (ASEAN), 10 Countries

Trennung durch Fällung und Gravimetrie

Fällung

Ziel: Bildung einer neuen Phase

Parameter: Löslichkeit (KL, pH, Komplexbildung, Teilchengröße

Mitfällung, Adsorption

Filtration

Ziel: Phasentrennung

Anmerkung: gemeinsam mit Waschen

Waschen

Ziel: Entfernung der "Mutterlauge"

Parameter: Löslichkeit, Komplexbildung, Peptisation

Trocknen, Glühen

Ziel: stöchiometrische Zusammensetzung

Anmerkung: Analysenfunktion

Messung: Wägen

Ziel: Bestimmung des Messwertes

Anmerkung: Wägefehler

Berechnung und Bewertung

Ziel: Analysenwert,

Vertrauensbereich

Parameter: stöchiometrische

Faktoren

- Lösen der Analysensubstanz
- Fällen eines Niederschlages
- > Abtrennen des Niederschlages von der flüssigen Phase durch Filtrieren
- Auswaschen des Niedeschlages
- Trocknen und/oder Glühen bis zur Gewichtskonstanz
- Auswiegen der Wägeform des Niederschlages

Das Löslichkeitsprodukt

Kontakt von schwerlöslichen Verbindungen und H2O

 \rightarrow Gleichgewicht (v_{Auflösung} = v_{Wiederaussscheidung})

→Gleichgewicht d. festen Stoffes und d. gesättigten Lösung des festen Stoffes

$$AgCl_{(s)} \rightleftharpoons Ag^+_{(aq)} + Cl^-_{(aq)}$$

$$K = \frac{[Ag^+] \bullet [Cl^-]}{[AgCl]}$$

Berechnung von
$$K_L$$
: K. [AgCl] = [Ag⁺].[Cl⁻] [] ... c
 $K_L = [Ag^+].[Cl-]$ c ... Ionenkonzentration

 K_L oder L_p

$Ba^{2+}_{aq} + SO_4^{2-}_{aq}$	$ \overset{K_{rea}}{\underset{e}{\leftarrow}} \operatorname{BaSO}_{4} $
$\Delta G_{f}^{\theta} BaSO_{4 aq}$	-722,874842 E _h
$\Delta G_{f}^{\theta} Ba^{2+}{}_{aq}$	-25,166661 E _h
$\Delta G_{f}^{\theta} SO_{4}^{2-}{}_{aq}$	-697,670227 E _h
ΔG _f ^θ BaSO _{4 aq} reac	-0,037954 E _h
$\Delta G_{f}^{\theta} BaSO_{4 aq}$	-23,82
reac	kcal/mol
K _{reac}	2,90 · 10 ¹⁷

Programm:	Gaussian	09	C.01
-----------	----------	----	------

- *Methode:* Møller-Plesset Ströungstheorie (MP/2)
- Basissatz:Karlsruhe double-ζ mit PolarisationsfunktionenSmall Core ECPs für Ag und Ba

Solvatisierung: Polarisierbares Kontinuumsmodell (PCM)

	K _{rea}	
$Ag_{aq}^{+} + Cl_{aq}^{-}$	$\xrightarrow{c} \leftarrow$	AgCl _{aq}

ΔG _f ^θ AgCl _{aq}	-606,030719 E _h
ΔG ^{,θ} Ag ⁺ _{aq}	-146,329850 E _h
ΔG ^{,θ} _f Cl ⁻ _{aq}	-459,659021 E _h
∆G _f [⊕] AgCl _{aq} reac	-0,041848 E _h
ΔG _f ^θ AgCl _{aq} _{reac}	-26,26 kcal/mol
K _{reac}	1,79 · 10 ¹⁹

- *E_h:*627,5095 kcal/mol
- R: 8,3145 J/mol K
- *T:* 298,15 K

Ionenprodukt:

 \blacktriangleright Ionenprodukt < K_L :

Lösung nicht gesättigt

 \rightarrow weitere Substanz kann gelöst werden

 \succ Ionenprodukt = K_L :

Lösung gesättigt

Lösung im Gleichgewicht mit ungelöster Substanz

> Ionenprodukt > K_L :

Lösung übersättigt

 \rightarrow Fällung bis L erreicht ist

Löslich	keitsprodukte ^a	

	pKL			pKL
AgBr	12,4	Cu	CuBr	74
AgCi 🚬 🖛	10,0		CuCl	6.0
AgCN	11,4		Cul	11.3
Ag ₂ CO ₃	11,3		Cu(OH)	19.8
Ag ₂ CrO ₄	11,7		Cu ₂ S	46 7
Agl	16		CuS	37-44
AgOH	7,7		CUSCN	10.8
AgSCN	12			
Ag ₂ S	49	Fe	Fe(OH) ₂	13,5
AI (OH) -	32.7		Fe(OH)3	37,4
	52,7		FeS	18-21
BaCO ₃	8,16	Ha	HasCle	17 5
BaC ₂ O ₄	6,77		Has	52
BaCrO ₄	9,70			52
BaSO4 -	10	к	KCIO4	2,05
CaCO.	7.92		$K_2[PtCl_6]$	5,85
CaCaO	7,92 8,07			
CaFa	10.46			
CaSO	4.32			
	AgBrAgCIAgCNbAg2CO3Ag2CrO4AgIAgOHAgSCNAg2SAI(OH)3BaCO3BaCQ4BaSO4CaCQ4CaCQ4CaCQ4CaSQ4	AgBr 12,4 AgCl 10,0 AgCN ^b 11,4 Ag2CO ₃ 11,3 Ag2CrO ₄ 11,7 AgI 16 AgOH 7,7 Ag2S 49 AI(OH) ₃ 32,7 BaCO ₃ 8,16 BaCQ ₄ 6,77 BaCO ₄ 9,70 BaSO ₄ 10 CaC ₂ O ₄ 8,07 CaF ₂ 10,46 CaSO ₄ 4,32	AgBr 12,4 Cu AgCl 10,0 $AgCl$ 10,0 AgCN ^b 11,4 Ag_2CO_3 11,3 Ag2CrO ₄ 11,7 Agl $AgQH$ 7,7 AgSCN 12 Ag_2S Ag Fe Al(OH) ₃ 32,7 $BaCO_3$ $B,16$ Hg BaCO ₃ $B,16$ Hg K CaCO ₃ 7,92 CaC_2O_4 $B,07$ CaC ₂ O ₄ $B,07$ $CaSO_4$ $4,32$	AgBr 12,4 Cu CuBr AgCI 10,0 CuCl AgCN ^b 11,4 CuI Ag2C03 11,3 Cu(OH)2 Ag2Cr04 11,7 Cu2S AgI 16 CuS Ag2S 49 Fe Al(OH)3 32,7 Fe(OH)2 BaCO3 8,16 Hg BaCO4 10 K CaC2 4,07 K CaC2 8,07 CaSQ CaC2 4,32 4,32

^a aus [1]. Leider fehlt die Temperaturangabe; vermutlich beziehen sich die Werte auf 18–25 °C. ^b 2 [AgCN]_f ≓ Ag⁺ + [Ag(CN)₂]⁻

212 Anhang

Löslichkeitsprodukte (Fortsetzung)

Mg	MgCO ₃ MgC ₂ O ₄ MaE-	3,7 4,1		Pb (OH) ₂ PbSO ₄	15,6 8,0
	Mg(OH) ₂ MgNH ₄ PO ₄	10,9 12,6	Sn	Sn (OH) ₂	28-29 15,3 ⁸
Na	NaHCO3	2,1		SnS	28
РЬ	PbCl ₂	4,8	Zn	ZnCO3	10,2
	PbCO ₃	13,5		Zn (OH) ₂	16,8
	PbCrO ₄	13,8		ZnS	23-25
	PbF ₂	7,5			

^a Originalangabe 25,3 [1], wahrscheinlich Druckfehler (vgl. [2]).

Löslichkeit nennt man die maximale Menge eines Stoffes, die ein Lösungsmittel bei einer bestimmten Temperatur aufnehmen kann.

Angabe der Löslichkeit:

Mol/l (Molarität, molare Löslichkeit) Md/ 1000g Lösemittel (Molalität)

Literatur: Analytische Chemie

.

Latscha, Klein

Springer Verlag

Twhelle 11. Löslichkeit einiger Salze in Abhängigkeit von der Temperatur in g/100 g Lösling

Verbindung	0°C	20°C	30°C	40°C	100°C
NaCl	26,28	26,39	26,51	26.68	28.15
Na ₂ SO ₄	4,5	16,1	28.8	32.5	29.9
Na ₂ CO ₃	6.6	17,8	29.0	33.2	31.1
MgSO.	20.5	26,2	29.0	31.3	40.6
KNO ₃	11.6	24,1	31,5	46.2	71.1
AgNO ₃	53.5	68.3	73,8	77.0	90.1
AgC1		1,5-10-4			2.2.10.
AgHr		1,3.10			3.7.10
Ca(OH)		1.2.10.1			6.0.10.2
Mg(()11)2		8,5.10.4			4.0.10-3
CuSO ₄		2.0.10			6.5 10 2
SrSO4		1.2.10.2			1.8 10 2
BaSO ₄		2,4.10.4			3910-4
PbSO4		4.4.10.3			6 0.10-3

Bezeichnung	Ungetähre Auzahl Volumenteile Losemittel für 1 Masssenteil Substanz						
sehr leicht loslich leicht loslich loslich wenig loslich schwer losheh sehr schwer losheh praktisch unlöslich	weniger als von über über über über mehr als	I Teil I Teil IO Teile 30 Teile IOO Teile I 000 Teile I0 000 Teile	bis bis bis bis	10 30 100 1 000 10 000	Teile Teile Teile Teile Teile		

Abb. 21. Temperaturabhängigkeit der Löslichkeit einiger Salze. L = g/100 g Lösung

Anmerkung: Ca-Citrat ist ausnahmsweise in kaltem Wasser leicht löslich, aber in heißem schwer löslich

22 Gravimetrie

lon	Fällungsform	Wägeform	Störungen
κ+	K [B(C6H5)4] ⁸	K [B(C6H5)4]	NH_4^+ , Rb^+ , Cs^+
Ag ⁺	AgCI	AgCI	Hg ₂ ²⁺
$M = Mg^{2+}, Zn^{2+}$	MNH4PO4 • 6 H2O	$M_2P_2O_7$	alle Metalle außer Na
	$M(oxinat)_2 \cdot 2 H_2O$	M (oxinat) ₂	viele Metalle
Ca ²⁺	$C_{a}C_{2}O_{4} \cdot H_{2}O$	CaCO ₃ (CaO)	alle Metalle außer Na
M = Ba ²⁺ , Pb ²⁺	MSO4, MCrO4	MSO4, MCrO4	Mg (Ca, Sr)
Ni ²⁺	Ni (diaœtyldioximat) ₂	Ni (diacetyldioximat) ₂	
$M = AI^{3+}, Fe^{3+}$	M(OH)3 · aq	M ₂ O ₃	Schwermetalle
Si (IV)	SiO ₂ • aq	SiO ₂	Sn
Sn(IV)	SnO₂ ∙ aq	SnO ₂	Si, Sb
F	PbCIF	PbCIF	SO ₄ ²⁻ , PO ₄ ³⁻
CI-	AgCl	AgCI	Br ⁻ , I ⁻ , CN ⁻ , SCN ⁻
SO4	BaSO ₄	BaSO ₄	NO3, CIO3, PO4
PO4	MgNH ₄ PO ₄ · 6 H ₂ O	Mg ₂ P ₂ O ₇	CO_{3}^{2-}
	$(NH_4)_3 [P(Mo_{12}O_{40})] \cdot aq^b$	$(NH_4)_3 [P(Mo_{12}O_{40})](300^{\circ})$	C)(AsO4)

Tab. 1 Wichtige gravimetrische Verfahren [2, 5]

^a Die Kaliumbestimmung als KCIO₄ ($K_{L} = 10^{-2}$) ist viel zu ungenau und sollte endlich aus den Lehrbi chern verschwinden.

bStatt NH₃ wird auch Oxin als Base empfohlen [19].

<u>}</u>

4

 $A + B \rightleftharpoons C$

Anteil Dissoziationsprodukte gering

Löslichkeit richtet sich nach dem Ion mit der geringeren Konzentration

 $\left[\left. A^{\,+} \right. \right] > \left[\left. B^{\,-} \right. \right]$

 $L_{c} = [B^{-}] = \frac{K_{L}}{[A^{+}]} = \frac{K_{L}}{C^{0}_{A^{+}} + [A^{+}]} \sim \frac{K_{L}}{C^{0}_{A^{+}}}$

C⁰_A+ ... Zugesetzte Menge A⁺

 $[B^{-}] = \frac{K_L}{[A^+]}$

 $K_L = [A^+] \bullet [B^-]$

[A⁺]' ... der durch Dissoziation entstandene Anteil

 $(C^{0}_{A}^{+}) >> [A^{+}]'$

 $L_c < L$; Die Löslichkeit bei gleichionigem Zusatz nimmt ab

Beispiel: AgCl

$$C^0 Ag^+ = 10^{-2} mol / l$$

$$L_{c} = \frac{K_{L}}{C^{0}Ag} = \frac{10^{-10}}{10^{-2}} = 10^{-8} mol / l$$

Aktivitätskoeffizient = f (Ionenstärke)

_

Änderung der Löslichkeit eines Stoffes bei Fremdsalzzusatz

 $K_{L} = a_{A} + . a_{B} = [A^{+}] [B^{-}] . f_{A^{+}} . f_{B^{-}} \qquad a = c.f \qquad a \dots Aktivität$ $f = 1 \qquad c... Konzentration$ $f \dots Aktivitätskoeff.$

Löslichkeit bezieht sich auf stöchiometrische Konzentrationen

$$\rightarrow K_{L} = L_{a^{2}} \bullet f_{A^{+}} \bullet F_{B^{-}}$$

$$L_{a} = \sqrt{\frac{K_{L}}{f_{A^{+}} \bullet f_{B^{-}}}}$$

$$f < 1$$

$$L_{a} > L$$

 \rightarrow Löslichkeit nimmt bei Anwesenheit von Fremdionen zu \rightarrow Alkaliaufschluss

NIEDER SCHLAGSBILDUNG -MECHANISMUS

THERMODYNAMISCH - FALLUNG

PHASENBILDLING

FALLUNG

INDUKTIONSPERIODE (KRISTALLKEIME 109-1012 KEIME pro Mol

(EMPFKRISTALL, VERUNREINIG-GLASWAND)

WIRKUNG : - VERRINGERUNG DER GRENZFLÄCHEN-SPANNUNG - VERGRÖßERUNG DES TEILCHENRADIUS
KOLLOIDBILDUNG

As2 03 + H2 S #> kein Niederschlag

trube, gelbe Losung As2 S3

SUSPENSION >> 10-5

 $10^{-5} - 10^{-7}$ KOLLOID

LÖSUNG \$ 10-7

ABTRENNLING : ZENTRIFUGIEREN DIALYSE (Diffusion durch membranen) NICHT DURCH FILTER.

FALLUNG ODER KOAGULATION DURCH SALZZUSATZ ("AUSSALZEN") Koagulation, Niederschlag Reptisation Niederschlag gel KOLLOID 502.

5B Properties of Precipitates and Precipitating Age

MITFALLUNG

- EIGENTONEN - FREMDIONEN

- ADSORPTION bei Niederschlägen mit aktiver Oberfläche

- OKKLUSION Einschluß von Fremdteilchen im Inneren des Kristalls

- INKLUSION (Mischkristallbildung) Fremdionen werden direkt in das Kristallgitter eingebaut

KOMPLEXBILDUNG

Niederschläge können durch Komplexbildung ganz oder Teilweise Wieder in Lösung gehen

[Ag le] + le -> [Ag le] gel

ALTERUNG - REIFUNG

physikalisch-chemische Keränderung nech Fällung als Niederschlag o REKRISTALLISATION instabile Kristallbezirke gehen in Läsung

O TEMPERUNG (bei höherer Temp.)

= Ordnungsprozeß durch Diffusion innerhalb eines Kristalls => Fehlstellen werden beseitigt

o CHEMische ALTERUNG Modifikationsänderung d. Niederschlags

 $[H_{g}S] \longrightarrow [H_{g}S]$ SCHNARZ

NACHFÄLLLING VORGÄNGE, DIE ZUR ÄNDERUNG DER ZUSAMMENSETZUNG DES NIEDERSCHLAGS FÜHREN

Mg C204 / Ca C204

Bild 28-7 Dekantieren und Überführen eines Niederschlags in ein Filter.

- a) Dekantieren, Hauptmenge des Niederschlags verbleibt im Becherglas.
- b) Entlang eines Glasrührstabs wird die Hauptmenge des Niederschlags abgegossen.
 c) Mit der Spritzflasche wird restlicher Niederschlag in den Trichter gespült (dazu kann auch ein Gummiwischer, oft scherzhaft "Atomwischer" genannt, erforderlich sein).

Bild 28-8 Veraschen eines Filters im Tiegel

Spezifikation von Papierfiltern und Filtertiegeln				
Papierfilter Art	Typenbez.	Anwendung, Eigenschaft	Filtertiegel Glas	Porzellan
weich	Schwarzband	großporig grobkrist. Niederschlag	D 1	A 5
mittel	Weißband		D 3	A 3
hart	Blauband, Rotband	feinporig feinkrist, Niederschlag	D 5	A 1

Gebräuchliche Trockenmittel (nach [18])

Trockenmittel	Partialdruck ^a (mbar)	Anwendbar für	Nicht geeignet für
CaCl ₂ gekörnt	0,20	Neutrale und saure Feststoffe (Gase)	NH ₃ , Br ₂ , HBr, HF; Alkohole, Amine
BaO MgO Al₂O₃ • aq	1,6 · 10 ⁻⁴ 0,11 4,1 · 10 ⁻³	Anorg. und organ. Basen (NH3, Amine), Alkohole	F ₂ , NO, Säuren
NaOH geschmolzen KOH geschmolzen	0,21 2,8 • 10 ⁻³	NH3, Alkohole, organ. Basen	O3, F2, Säuren
H₂SO₄ konz.	$2.8 \cdot 10^{-3}$	Neutrale und saure Ver- bindungen; O_2 , N_2 , CO, CH ₄ , Halogene, HCI, SO ₂	HBr, HI, HF, NH ₃ , H ₂ S, PH ₃ , NO, NO ₂ , C ₂ H ₂
P ₄ O ₁₀	$3,4 \cdot 10^{-5}$	O ₂ , CO, C ₂ H ₂ , CS ₂ , CCI ₄ , Stickoxide	Halogene, HHal, NH ₃ , H ₂ S, Ether
Silicagel	$3,0 \cdot 10^{-2}$	universell	NH ₃ , HF, Halogene

^aWasserdampf-Partialdruck bei 25 °C (Reines Wasser: 31,3 mbar)

FILTER							
ART	KENNUNG	POREN µm	GESCHW.	т	G	VERWENDUNG	BEISPIELE
P	BLAU	2-3	langsam	-	+	feinteilige N.	BaSO TiO aq
Р 1 Е	WEISS	6-7	mittel	-	+	krist., körnige N.	
Ř	SCHWARZ	7-8	rasch	-	+	gelartige N.	Fe(OH) 3, AI(OH)
PO	P1, A1	5-6	langsam	+	+	feinstkörnig	BaSO
R E L L P3 N	P2, A2	7-8	mittel	+	+	universell	AgCI, Mg(NH)PC
	P3, A3	10	rasch	+	+	grobkristallin	PbSO 4
	(G, D) 0	230		+	-	· · · · · · · · · · · · · · · · · · ·	
g	े <u>ज</u> ्म ग	110	rasch	+	-	grobkristallin	
A	2	50		-	-	X	
s	3	15-40	mittel	+	-	feinkristallin	Ni(DAD) ₂ , Mg(Ox
	4	5-15	langsam	+	-	sehr feint.	-
	5	3-4					

•

Waagentyp	Maximalgewicht	Auflösung
Analytische Waagen	150-200g	± 0,1mg
Semimicrowaagen	75-100g	$\pm 0,01$ mg
Microwaagen	10-30g	$\pm 0,001$ mg

≻Empfindlichkeit

Ausschlag bei einer Auflage von 0,1mg. Die Empfindlichkeit sinkt mit zunehmendem

Gewicht. Die Grenze der Auflage ist erreicht, wenn die Waage nur mehr 40 % der Maximalempfindlichkeit hat.

≻Referenz

Urkilogramm in Paris aus Pt/Ir (1887)

≻Bauarten von Waagen

Oberschalige-, Unterschalige-, Elektronische, Digitalwaagen

≻Dämpfung

Luft-, magnetische Dämpfung

Fällungsreaktionen in der analytischen Chemie

Sulfatfällung

 $SO_4^{2-} + Ba^{2+} \longrightarrow [BaSO_4]_f$ (Mitfällung!)

Chloridfällung

 $Cl^{-} + Ag^{+} \rightarrow [AgCl]_{f}$

lichtempfindlich (Ag!) rasch filtrieren, trocknen

Hydroxidfällung

 $M^{3+} + 3OH^{-} \longrightarrow [M(OH)_3]_f ? T \rightarrow M_2O_3$

Phosphatfällung

 $M^{2+} + NH_4^+ + PO_4^3 \rightarrow MNH_4PO_4]_f$

Organische Fällungsreagenzien				
Organische Verbindung	Komplex	Anwendung		
OH N		Mg ² ; Zn ² ; Cu ² ; Cd ² ; Al ³ ; Fe ³ ; Sb ³⁺ u.a.		
8 - Hydroxychinolin (Oxin)	M(II)-oxinat			
$ \begin{bmatrix} H_5C_6 & C_6H_5 \\ H_5C_6 & C_6H_5 \end{bmatrix} Na^{\oplus} $ Natriumtetraphenylborat (Kalignost)		K*(NH [*] , Rb [*] , Cs [*])		
H ₅ C ₆ NOH N N N-Nitrosophenylhydroxylamin (Kupferron)	H₅C ₆ N~0, 0≥N I Cu I N=0 ⁷ 0 ^{-N} C ₆ H ₅	außer Cu noch für zahlreiche andere Metalle verwendbar		
CH=N OH Salicylaldoxim	H O-M/2 H H (II)-Komplex	Cu ² ⁺ , Ni ² ⁺ , Pb ² ⁺ , Bi ³ ⁺ , Fe ³⁺ u.a.		
NO OH x-Nitroso-/3-naphthol	Co (III) - Komplex	spezifisches Reage∩z für Co(III)		
13С N-ОН 13С N-ОН	$H_{3}C$ H	spezifisches Reagenz für Ni(II)		
)iacetyldioxim Dimethylglyoxim)	Ni (II) - Komplex			

Anwendungsbereich - Gravimetrie mg-Bereich

Vorteile:

Geringer app. Aufwand Hohe Präzision *

Nachteil:

Hoher Zeitaufwand Keine Serienanalysen Kaum automatisierbar

$$m(\text{gesuchte Substanz}) = \frac{M(\text{gesuchte Substanz})}{M(\text{Wägeform})} \cdot m(\text{Niederschlag}) .$$
$$= f_{g} \cdot m(\text{Niederschlag})$$

$$Prozentgehalt(gesuchte Substanz) = \frac{m(gesuchte Substanz)}{m(Probe)} \cdot 100$$

Prozentgehalt(gesuchte Substanz) =
$$\frac{100 \cdot f_g \cdot m(\text{Auswaage})}{m(\text{Probe})}$$

64

Tafel 3

3,1. Analytische und stöchiometrische

Gesucht	Gegeben	Faktor	k
к,0	K K(C ₄ H ₄) ₄ B KClO ₄ K ₂ EO ₄ K ₃ EO ₄ BaSO ₄ Pt empirisch Pt empirisch ')	1,2046 0,1314 0,6317 0,3399 0,1931 0,5406 0,4810 0,4809	08 084 11 874 80 056 53 142 28 570 73 285 60 597 68 217 68 203
K ₁ O·AL ₂ O ₃ ·} 6SiO ₃	AL ₄ O ₈ KCI K4O K4SO4	5,460 3.733 5,910 3,194	73 717 57 210 77 153 50 440
K,SO,	K(C.H.).B BaSO. KCI K.O	0,2432 0,7466 1,1687 1,850	38 588 87 311 06 770 26 713
La	La ₂ O3	0,8527	93 079

¹) Bei Gegenwart von Sulfat nach Finkeners Methode

Der Bariumgehalt einer Substanzprobe ergibt sich aus dem Verhältnis des gefundenen Wertes und der Einwage.

Einwaage: 0,8450 g

$$w_{Ba} = \frac{0,2034 \text{ g}}{0.8450 \text{ g}} = 0,241 = 24,1\%$$

b. Auswage an Fe2O3: 0,2345 g. Gesucht: mFe

$$m_{\rm Fe} = \frac{2 M ({\rm Fe})}{M ({\rm Fe}_2 O_3)} \cdot m ({\rm Fe}_2 O_3) = 0.6994 \cdot 0.2345 \, g = 0.1640 \, g$$

In einigen Fällen wird statt des exakten gravimetrischen Faktors ein *empirischer* Faktor verwendet, wenn der Niederschlag signifikant von der stöchiometrischen Zusammensetzung abweicht. Solche empirischen Werte sind allerdings mit gewisser Vorsicht zu betrachten.