

ANALYTISCHE CHEMIE I

Trennmethoden

2. Hochdruckflüssigkeitschromatographie / HPLC

WS 2004/2005

Michael Przybylski

Analytical Chemistry, Department of Chemistry, University of Konstanz

Klassische SC und HPLC

KLASSISCHE SC		HPLC	
I.D.	~ 1 cm	I.D.	2 - 5 mm
d _p	100 - 200 μm	d _p	5 - 10 µm
Druck	1 - 5 bar	Druck	bis 400 bar
H	1 - 10 mm	Н	< 0.1 mm
N	$10^2 - 10^3$	Ν	$10^4 - 10^5$
L	bis 100 cm	L	12.5, 25 cm
Analytisch	$1 \text{ ml} \cdot \text{min}^{-1}$	typische	
Praparativ	$15 - 20 \text{ m} \cdot \text{m} \text{m}^{-1}$	J III LO FI	TODECOCITW.

Adsorption

Absorbens - poröse Beschaffenheit große spezifische Oberfläche

- Das Adsorptionsgleichgewicht ist von
 - (1) der Temperatur (T)
 - (2) der Konzentration des adsorbierten Stoffes in der mobilen Phase (c)
 - (3) Verhältnis adsorbierter Menge/Gesamtmenge an Adsorbens (x/m) abhängig

z.B. Aktivkohle $10^3 \text{ m}^2 \cdot \text{g}^{-1}$ Oberfläche

Stationäre Phasen

Polare Normalphasen

Silikagel Si $O_2 \cdot xH_2O$

CHCl₃ < CH₃CN < CH₃OH < H₂O Eluotrope Reihe Reihe der Fließmittel nach zunehmender Elutionskraft

Aluminiumoxid $Al_2O_3 \cdot xH_2O$

Stationäre Phasen

Gebundene Phasen

polare Phasen R

unpolare Phasen R

$(CH_2)_3NH_2$	Amino	$(CH_2)_3C_6H_5$	Phenyl
$(CH_2)_3CN$	Cyano	$(CH_2)_7 CH_3$	RP8
(CH ₂) ₂ OCH ₂ CH(OH)CH ₂ OH	Diol	(CH ₂) ₁₇ CH ₃	RP18

Umkehrphasen (Reversed-phase) RP8, RP18

$$\begin{array}{cccc} & & & & & & & \\ Si & -O - & Si & & & & \\ & & & & CH_3 \\ & & & & CH_3 \\ & & & & CH_3 \\ Si & -O - & Si & & & CH_3 \\ & & & & & CH_3 \\ & & & & & CH_3 \\ & & & & & CH_3 \end{array} \qquad Eluotrope Reihe$$

RP-HPLC Pore size, shape and distribution

•Pore size defines an ability of the analyte molecules to penetrate inside the particle and interact with its inner surface

The ratio of the outer particle surface to its inner one is about 1:1000

•The surface molecular interaction mainly occurs on the inner particle surface.

Macroporous spherical silica particle. [K.K.Unger, Porous silica, Elsevier, 1979]

RP-HPLC Pore size, shape and distribution

Molecules must enter pores to interact with bonded-phase. Molecules must freely enter and exit pores to maximize efficiency.

RP-HPLC

RP-HPLC separates molecules based on differences in hydrophobicity.

In **RP-HPLC** the polarity of the stationary phase is less than that of the mobile phase.

The bonded phase is an extremely hydrophobic or non-polar surface.

The mobile phase is polar, usually water.

OPTIMIZATION

MOBILE PHASE

TYPE OF MODIFIER (MeOH, ACN) SOLVENT STRENGTH (% modifier) pH TYPE OF BUFFER (phosphate, acetate)

IONIC STRENGTH (Salts, buffer concentration)

ION-PAIRING REAGENTS (TFA, alkyl-amines, -sulfonates)

RP-HPLC Separation of Lincomycin and Clindamycin <u>Isocratic</u> <u>Gradient</u>

min

Column: ZORBAX Rapid Resolution HT SB-C18 Columns: ZORBAX Rapid ResolutionvSB-C18 Mobile Phase: 85% 20 mM Mobile Phase: Gradient: 10 – 40% B in 2 min Na₂HPO₄ pH, 2.8: 15% ACN Flow Rate: 1.0 mL/min A: 20 mM Na₂HPO₄ pH, 2.8 B: ACN Flow Rate: Temperature: Ambient Detection: UV 210 nm Sample: 1. Lincomycin 2. 1.5 mL/min Temperature: Ambient Clindamycin Detection: UV 210 nm Sample: 1. Lincomycin 2. Clindamycin **Rapid Resolution** mAU 200 4.6 x 50 mm, 3.5 µm **Rapid Resolution HT** 156 4. x 30 mm, 1.8 μm 100 mAU 1 50 256 2 2 n 10min 200 mAU 1.45 min 250 **Rapid Resolution HT** 156 206 4. x 30 mm, 1.8 μm 100 150 100 50 50 2 0.5 1.5 ż 2

Detektoren in der Flüssigkeitschromatographie

Detektoren	Nachweisgrenze
UV/Vis- Absorption	100pg – 1ng
Fluoreszenz	1-10 pg
Elektrochemisch	10pg – 1ng
Refraktions-index	100 ng – 1 μ g
Leitfähigkeit	500pg – 1ng
Massenspektrometrie	100pg – 1ng

HPLC Detektoren

UV Detection of AccQ-Tag Amino Acid Derivatives

Response

HPLC Detektoren

Fluoreszenz

LC-MS preconditions

Analyzed substances	ESI compatible, soluble	
Mobile phase ESI	ESI compatible (water, MeOH, Acetonitril)	
Flow rate	ESI compatible (best 2-10 µL/min)	
Mobile phase modifiers	TFA, Formic acid, NH ₄ OH, Et ₃ N, NH ₄ OAc	
Column materials	Stable at the separating conditions	