

Grundlagen der Betriebssysteme [CS2100]

Sommersemester 2014

Heiko Falk

Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm

Kapitel 2

Zahlendarstellungen und Rechnerarithmetik

Inhalte der Vorlesung

- 1. Einführung
- 2. Zahlendarstellungen und Rechnerarithmetik
- 3. Einführung in Betriebssysteme
- 4. Prozesse und Nebenläufigkeit
- 5. Filesysteme
- 6. Speicherverwaltung
- 7. Einführung in MIPS-Assembler
- 8. Rechteverwaltung
- 9. Ein-/Ausgabe und Gerätetreiber

Inhalte des Kapitels

2. Zahlendarstellungen und Rechnerarithmetik

- Natürliche Zahlen
 - Darstellung zur Basis b, Umrechnung
 - Relevante Darstellungen: binär, oktal, dezimal, hexadezimal
- Binäre Arithmetik
 - Boolesche Algebra
 - Addition: Halbaddierer, Volladdierer
 - Subtraktion: Zweierkomplement-Darstellung
 - Multiplikation: Booth-Algorithmus
 - Division: "Schulmethode"
- Reelle Zahlen
 - Festkommazahlen
 - Gleitkommazahlen: Darstellung als Mantisse und Exponent
 - IEEE 754: Gleitkomma-Darstellung, spezielle Werte
- Zeichensätze

Positive Ganze Zahlen (1)

Positionale Zahlendarstellung

- Ziffern
- Position der Ziffern gewichtet ihren Wert

Dezimalsystem

– Beispiel:

$$4711 = (4, 7, 1, 1)_{10} = 4 * 10^{3} + 7 * 10^{2} + 1 * 10^{1} + 1 * 10^{0}$$

Allgemein: n-stellige Dezimalzahl

$$(z_{n-1}, z_{n-2}, ..., z_2, z_1, z_0)_{10} =$$

 $z_{n-1} * 10^{n-1} + z_{n-2} * 10^{n-2} + ... + z_2 * 10^2 + z_1 * 10^1 + z_0 * 10^0$
mit $z_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Positive Ganze Zahlen (2)

Dualsystem, Binärsystem

– Beispiel:

$$1011_2 = (1, 0, 1, 1)_2 = 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 1 * 2^0$$

Allgemein: n-stellige Binärzahl

$$(z_{n-1}, z_{n-2}, ..., z_2, z_1, z_0)_2 =$$

 $z_{n-1} * 2^{n-1} + z_{n-2} * 2^{n-2} + ... + z_2 * 2^2 + z_1 * 2^1 + z_0 * 2^0$
mit $z_i \in \{0, 1\}$

Positive Ganze Zahlen (3)

Allgemein

Darstellung Natürlicher Zahlen durch Zahlensystem zu einer beliebigen
 Basis b≥ 1

$$(z_{n-1}, z_{n-2}, ..., z_2, z_1, z_0)_b =$$

 $z_{n-1} * b^{n-1} + z_{n-2} * b^{n-2} + ... + z_2 * b^2 + z_1 * b^1 + z_0 * b^0$
mit $z_i \in \{0, 1, ..., b-1\}$

Typische Basen für Rechnerarithmetik

- b = 2 Binärsystem
- b = 8 Oktalsystem $z_i \in \{0, 1, 2, 3, 4, 5, 6, 7\}$
- b = 10 Dezimalsystem
- b = 16 Hexadezimalsystem $z_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$

Konvertierung der Darstellung (1)

Umwandlung von einer Zahlendarstellung in die andere

- Basis des Ziel-Zahlensystems als Divisor
- Reste bilden die Ziffern der Darstellung
- Beispiel: $19_{10} \rightarrow x_2$

$$19 \div 2 = 9$$
 Rest 1

least significant digit

$$9 \div 2 = 4$$
 Rest 1

$$4 \div 2 = 2$$
 Rest 0

$$2 \div 2 = 1$$
 Rest 0

$$1 \div 2 = 0$$
 Rest 1

most significant digit

$$x = (1, 0, 0, 1, 1)_2$$

Konvertierung der Darstellung (2)

Alternative

- Finden der Stufenzahlen und deren Vielfachen
- Beispiel: $19_{10} \rightarrow x_8$
 - Stufenzahlen des Oktalsystems: $8^0 = 1$, $8^1 = 8$, $8^2 = 64$, $8^3 = 512$, ...
 - Welche Stufenzahl passt so gerade noch hinein: 8
 - Wie oft passt sie hinein:

$$19 \div 8 = 2$$
 Rest 3

Wiederholung mit Rest und n\u00e4chst kleinerer Stufenzahl:

$$3 \div 1 = 3$$
 Rest 0

- Wiederholung bis Stufenzahl 1 erreicht wurde
- Ergebnisse der Division bilden die Ziffern:

$$x = 23_{8}$$

Roter Faden

Zahlendarstellungen und Rechnerarithmetik

- Natürliche Zahlen
 - Darstellung zur Basis b, Umrechnung
 - Relevante Darstellungen: binär, oktal, dezimal, hexadezimal
- Binäre Arithmetik
- Reelle Zahlen
- Zeichensätze

Zweielementige Boolesche Algebra (1)

Von George Boole 1854 entwickelte Algebra

- Zwei Werte: 0 und 1 (Binäre Zahlenrepräsentation!)
- Drei Operationen: + und * und
- Vier Axiome/Rechengesetze (nach Huntington, 1904):
 - 1. Kommutativität

$$A + B = B + A$$

$$A * B = B * A$$

2. Neutrales Element

$$0 + A = A$$

$$1 * A = A$$

3. Distributivität

$$(A + B) * C = (A * C) + (B * C)$$

 $(A * B) + C = (A + C) * (B + C)$

4. Komplementäres Element

$$A + \overline{A} = 1$$

$$A * \overline{A} = 0$$

Zweielementige Boolesche Algebra (2)

Boolesche Rechenoperationen

+, Disjunktion, ODER, v

V	0	1
0	0	1
1	1	1

*, Konjunktion, UND, ^

٨	0	1
0	0	0
1	0	1

[−], Negation, Invertierung, NOT, _¬

٦	0	1
	1	0

Wichtige Sätze (1)

Aus den Axiomen beweisbare Sätze

- Abgeschlossenheit Boolesche Operationen liefern nur Boolesche Werte als Ergebnis
- Assoziativität

$$A + (B + C) = (A + B) + C$$

$$A * (B * C) = (A * B) * C$$

Idempotenz

$$A + A = A$$

$$A * A = A$$

Absorption

$$A + (A * B) = A$$

$$A * (A + B) = A$$

Wichtige Sätze (2)

Aus den Axiomen beweisbare Sätze

- Doppeltes Komplement $\overline{(\overline{A})} = A$
- Komplementäre Werte

$$\overline{0} = 1$$

$$\overline{1} = 0$$

Satz von De Morgan

$$(\overline{A + B}) = \overline{A} * \overline{B}$$

$$\overline{(A * B)} = \overline{A} + \overline{B}$$

Bedeutung der Booleschen Algebra für die Informatik (1)

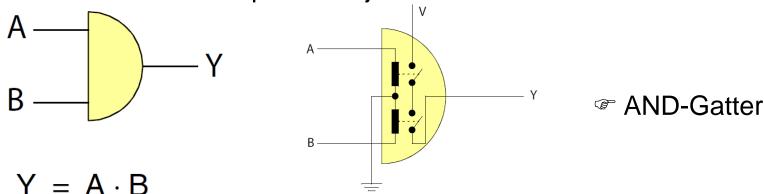
Computer kennen nur zwei Zustände

- Informationsgehalt
 - an, aus
 - Strom fließt, fließt nicht
 - wahr, falsch
 - true, false
 - -1,0
- Computer-Hardware arbeitet (fast) ausschließlich auf dieser digitalen binären Grundlage
 - Informationsverarbeitung lässt sich vollständig auf Rechenoperationen mit Booleschen Operatoren A, V, ¬ zurückführen
 - Informationsspeicherung erfolgt Bit-weise, d.h. in Form einzelner Nullen und Einsen

Bedeutung der Booleschen Algebra für die Informatik (2)

Warum ist das so?

- Speicherung einzelner Bits kann sehr einfach durch Speicherung von elektrischer Ladung realisiert werden, z.B. durch Kondensatoren oder Flip-Flops:
 - elektrische Ladung vorhanden $\rightarrow 1$ elektrische Ladung nicht vorhanden $\rightarrow 0$
- Konjunktion, Disjunktion und Negation k\u00f6nnen leicht mittels Schaltern (Transistoren, Relais) realisiert werden, die Ladung (Information) weiterleiten oder nicht. Beispiel */Konjunktion:



Darstellung positiver Zahlen im Rechner

Zahlenspeicherung in Registern

- Einzelne Flip-Flops speichern eine Ziffer (Bit)
- Mehrere Flip-Flops (Register) speichern eine komplette Zahl

Registerbreite

```
- 8 Bit = 1 Byte
```

- Wort = $16 \operatorname{Bit} / 32 \operatorname{Bit} (Word)$
- Doppelwort = 32 Bit / 64 Bit (Double Word)
- Vierfachwort = 64 Bit / 128 Bit (Quad Word)

Wortbreite hängt von Prozessorarchitektur ab

Binäre Addition

Schriftliche Addition / "Schulmethode"

Verfahren wie beim Dezimalsystem

10011
+ 1001 Kontrolle:
$$\frac{11}{11100}$$
 Übertrag $19 + 9 = 28$

Ubertrag wird auch Carry genannt

Feste Registerbreite und Addition, z.B. vier Bits

1011
+ 1001 Kontrolle:

$$111$$
 Übertrag $11 + 9 = 20 = 16 + 4$

- Letzter Übertrag gehört zum Ergebnis
- Kann aber nicht mehr dargestellt werden
- Überlauf (Overflow)

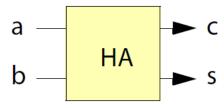
Halbaddierer

Addition in erster (rechter) Spalte

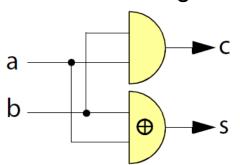
- Zwei Eingänge: erstes Bit von jeder Zahl
- Zwei Ausgänge: erstes Bit des Ergebnisses, Carry-Bit
- Wahrheitstabelle

а	b	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Blockschaltbild



Gatterschaltung



$$c = a * b$$

 $s = \overline{a} * b + a * \overline{b} = a \oplus b$ (XOR)

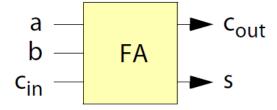
Volladdierer (1)

Addition in anderen Spalte

- Drei Eingänge: je ein Bit der Summanden, und Carry von voriger Stelle
- Zwei Ausgänge: Summen-Bit des Ergebnisses, Carry-Bit
- Wahrheitstabelle

а	b	c _{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

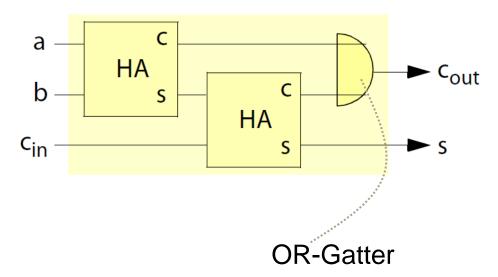
Blockschaltbild



Volladdierer (2)

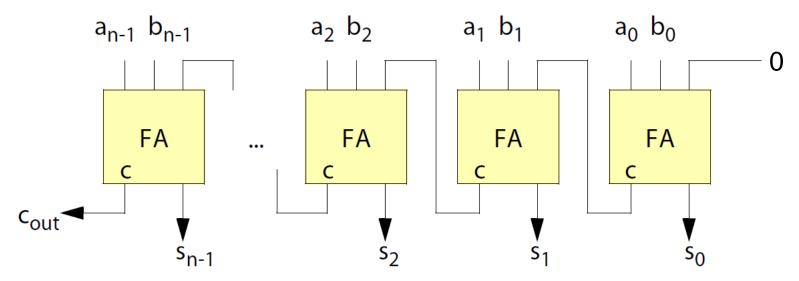
Schaltung

Aufbau mit Halbaddierern



Paralleles Addierwerk

Schaltung zur Addition *n*-Bit langer Summanden



Ripple Carry Adder (RCA)

Binäre Subtraktion

Subtrahierer kann ähnlich wie Addierer entwickelt werden

- Verwendung von Addierern zur Subtraktion
 - Idee: a b = a + (-b)

Darstellung negativer Ganzer Zahlen

Vorzeichen und Betrag

- Ein Bit repräsentiert Vorzeichen
- Andere Bits repräsentieren Betrag der Zahl
- Beispiel:

$$01001_2 = 9$$

$$11001_2 = -9$$

Nachteil

Vorzeichen muss für Berechnungen explizit ausgewertet werden

Einerkomplement-Darstellung (1)

Berechnung des Einerkomplements einer Zahl N bei n Ziffern

- $C = 2^n N 1$ bei *n* Ziffern/Bits
- Komplement C entspricht dem Wert -N

Darstellung positiver ganzer Zahlen

- Höchstwertiges Bit $z_{n-1} = 0$
- Andere Bits unbeschränkt
- Wert: $(z_{n-1}, ..., z_1, z_0)_2 = \sum_i z_i * 2^i$

Darstellung negativer ganzer Zahlen

- Höchstwertiges Bit $z_{n-1} = 1$
- Andere Bits unbeschränkt
- Wert: $(z_{n-1}, ..., z_1, z_0)_2 = -2^n + 1 + \sum_i z_i * 2^i$

Einerkomplement-Darstellung (2)

Beispiel: Darstellungslänge n = 4

$$-1000_2 = -2^4 + 1 + 8 = -7$$
$$= \overline{+7} = \overline{0111}_2 = 1000_2$$

$$-0111_2 = 7$$

$$-11112 = -24 + 1 + 15 = 0$$
$$= \overline{+0} = \overline{0000}2 = 11112$$

$$-0000_2 = 0$$

 \checkmark kleinste negative Zahl (-2ⁿ⁻¹+1)

größte positive Zahl (2ⁿ⁻¹-1)

größte negative Zahl

kleinste positive Zahl

Nachteile

Null hat zwei Darstellungen, explizite Vorzeichenbehandlung

Vorteil

- Einfache Umwandlung von positiver zu negativer Zahl und umgekehrt
 - Jede Ziffer wird invertiert: $z_i' = 2 1 z_i$
 - Beispiel: aus 1000₂ wird 0111₂ (aus -7 wird +7)

© H. Falk | 30.04.2014

2 - Zahlendarstellungen & Rechnerarithmetik

Einerkomplement-Darstellung (3)

Einerkomplement heute kaum mehr im Einsatz

- Doppelte Darstellung der Null
- Kompliziertere Hardware zur Addition/Subtraktion

"Daseinsberechtigung" des Einerkomplements

Zur Motivation und Überleitung zum Zweierkomplement

Zweierkomplement-Darstellung (1)

Berechnung des Zweierkomplements einer Zahl *N* bei *n* Ziffern

- $C = 2^n N$ bei n Ziffern/Bits
- Komplement C entspricht dem Wert -N

Darstellung positiver ganzer Zahlen

- Höchstwertiges Bit $z_{n-1} = 0$
- Andere Bits unbeschränkt

- Wert:
$$(z_{n-1}, ..., z_1, z_0)_2 = \sum_i z_i * 2^i$$

Darstellung negativer ganzer Zahlen

- Höchstwertiges Bit $z_{n-1} = 1$
- Andere Bits unbeschränkt
- Wert: $(z_{n-1}, ..., z_1, z_0)_2 = -2^n + \sum_i z_i * 2^i$

Zweierkomplement-Darstellung (2)

Beispiel: Darstellungslänge n = 4

$$-1000_2 = -2^4 + 8 = -8$$

$$-0111_2 = 7$$

$$-1111_2 = -2^4 + 15 = -1$$

$$-0000_2 = 0$$

- \checkmark kleinste negative Zahl (-2ⁿ⁻¹)
- größte positive Zahl (2ⁿ⁻¹-1)
- größte negative Zahl
- kleinste positive Zahl

Vorteil des Zweierkomplements

- Eindeutige Darstellung der Null (0000₂ bei Länge n = 4)
- Einfache Umwandlung von positiver zu negativer Zahl und umgekehrt
 - Jede Ziffer wird invertiert: $z_i' = 2 1 z_i$
 - Anschließend 1 auf niederwertigste Stelle addieren (Zweierkomplement ist um eins größer als Einerkomplement)
 - Beispiel: aus 1001₂ wird 0110₂ und dann 0111₂ (aus -7 wird +7)

Zweierkomplement-Darstellung (3)

Nachteil des Zweierkomplements

- Für größte positive Zahl ist das Zweierkomplement nicht mehr darstellbar
 - -8 wird zu $1000_2 = -8$
 - 8 bereits außerhalb des Darstellungsbereichs (Überlauf)

Addition

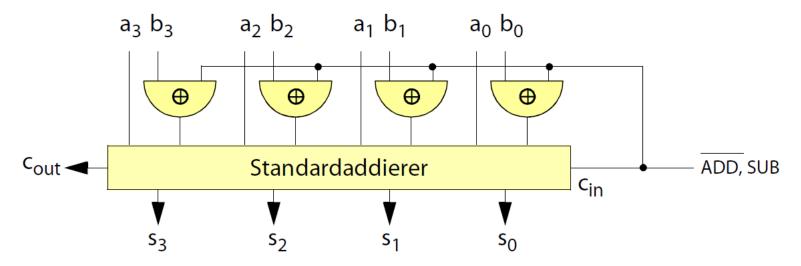
Einsatz von Standardaddierern für Zahlen im Zweierkomplement

Subtraktion

- Vorherige Komplementbildung eines Summanden erfordert
 - Invertierung der Ziffern
 - Addition von 1 kann durch gesetzten Carry-Eingang erzielt werden

Subtraktion im Zweierkomplement

Addier- und Subtrahierwerk

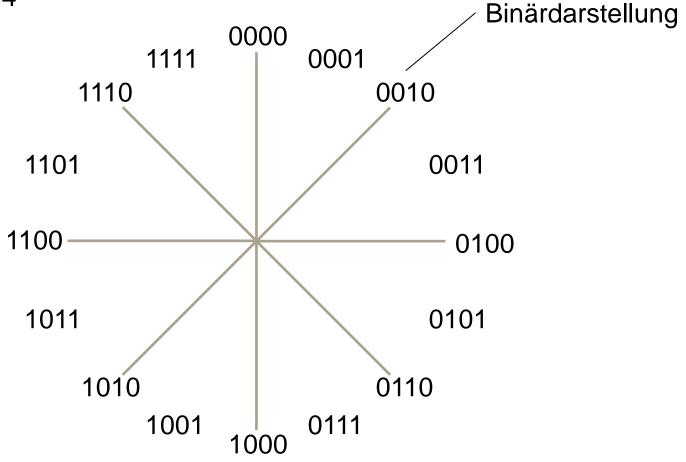


- Beim Subtrahieren
 - Invertieren der b-Eingänge durch XOR-Gatter
 - Addieren von 1 durch gesetztes Carry-in
- Überlauferkennung: c_{out} ≠ c_{in}

Zahlenraum der Zweierkomplement-Darstellung (1)

Zahlenraum für *n*-stellige Register

- Beispiel: n = 4



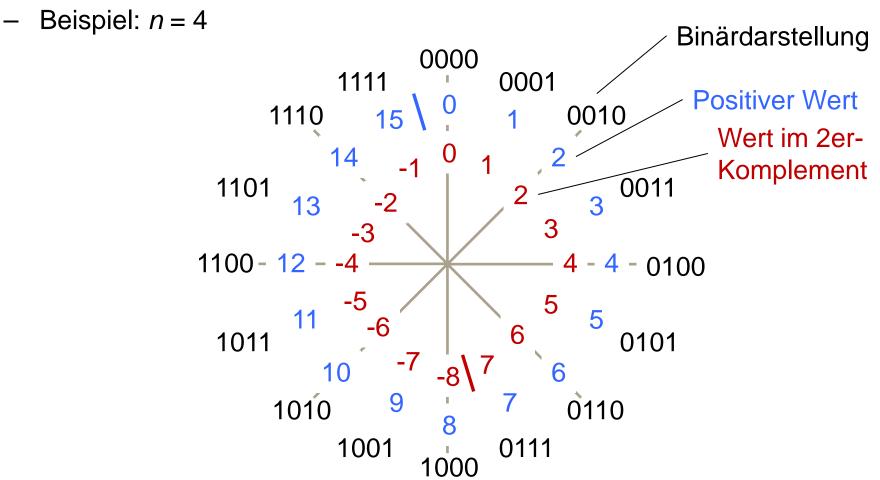
Zahlenraum der Zweierkomplement-Darstellung (2)

Zahlenraum für *n*-stellige Register

Beispiel: n = 4Binärdarstellung **Positiver Wert** 1100 - 12 4 - 0100

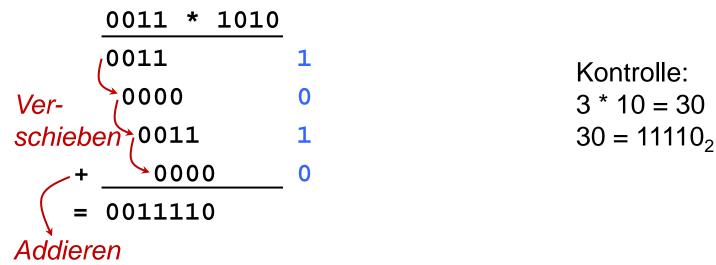
Zahlenraum der Zweierkomplement-Darstellung (3)

Zahlenraum für *n*-stellige Register



Binäre Multiplikation

Schriftliche Multiplikation / "Schulmethode" auf positiven Binärzahlen



Übertragung auf einen Computer

Realisierung der Multiplikation durch Verschiebe-Operationen (Schieberegister) und einen Addierer

Multiplikation im Zweierkomplement (1)

n Bit breites Ergebnis bei Multiplikation n Bit breiter Zahlen auch für Zweierkomplement korrekt

- Beispiel:
$$-2 * 3 = -6$$
 (für $n = 4$)

1110 * 0011

$$1010_2 = -6$$

Problem: Überlauf – Ergebnis passt meist nicht in n Bits

2n Bit breites Ergebnis ist nicht korrekt $00101010_2 = 42$

Multiplikation im Zweierkomplement (2)

Alternative A: Erweiterung der Faktoren auf 2n Bits Breite

- Vorzeichenerweiterung
 - Z.B. aus 1110 wird 111111110, aus 0011 wird 00000011

Nachteil

- 2n Bit breiter Addierer notwendig
- 2n anstatt von n Runden

Multiplikation im Zweierkomplement (3)

Alternative B: Addition eines Korrektursummanden

-
$$a * (-b)$$
 = $a * (2^n - b) = 2^n * a - (a * b)$
- $(-a) * b$ = $(2^n - a) * b = 2^n * b - (a * b)$
- $(-a) * (-b)$ = $(2^n - a) * (2^n - b) = 2^{2n} - 2^n * a - 2^n * b + a * b$
Gleichheit gilt wg. Definition 2er-Komplement ($^{\text{constant}}$ Folie 26)

Ziel: 2*n* Bit breites 2er-Komplement des Produkts a * b: 2^{2n} – (a * b)

- Korrektursummand S ist gleich der Differenz zwischen gewünschter 2n Bit breiter Zahl und dem bisherigen (falschen) Multiplikationsergebnis
- Fall a * (-b): $S = 2^{2n} (a * b) (a * -b)$ $= 2^{2n} - (a * b) - (2^n * a - a * b) = 2^{2n} - 2^n * a = 2^n * (2^n - a)$
- Fall -a * b: $S = 2^{2n} 2^n * b = 2^n * (2^n b)$
- Fall -a * -b: $S = 2^n * a + 2^n * b$

Nachteil: Hoher Zusatzaufwand

Multiplikation im Zweierkomplement (4)

Alternative C: Getrennte Behandlung des Vorzeichens

- Umwandlung der Faktoren in positive Zahlen
- Berechnung des Ergebnisvorzeichens
- Anpassen des Ergebnisses

Nachteil: Hoher Zusatzaufwand

Multiplikation im Zweierkomplement (5)

Alternative D: Verfahren nach Booth

- Idee: a * 0111 = a * 1000 a * 0001
 - Gilt auch für skalierte Bitfolge, z.B. a * 011100 = a * 100000 – a * 000100
 - Komplette Folge von 1-Bits lässt sich durch genau eine Addition (am "linken Rand" der 1-Folge) und *eine* Subtraktion ("rechter Rand") multiplizieren
- **Booth-Algorithmus**
 - Betrachte "Fenster" von 2 Bits (b_i, b_{i-1}) , das über Faktor b von rechts nach links geschoben wird (b_{-1} sei als 0 definiert)
 - Addiere a * 2ⁱ (linker Rand einer 1-Folge) $-(b_i, b_{i-1})_2 = 01_2$
 - $-(b_i, b_{i-1})_2 = 10_2$ Subtrahiere a * 2ⁱ (rechter Rand)
 - $-(b_i, b_{i-1})_2 = 11_2 \text{ oder } 00_2$ Tue nichts

Multiplikation im Zweierkomplement (6)

Alternative D: Verfahren nach Booth

- Subtraktion durch Addition des Zweierkomplements
- Gültige Ergebnisse auch für negative Zahlen (© Zweierkomplement)
- n Bits breiter Addierer ist ausreichend durch geschicktes Schieben
 - Schiebeoperationen mit Vorzeichenpropagierung (Vorzeichen wird verdoppelt)

Multiplikation im Zweierkomplement (7)

Alternative D: Verfahren nach Booth

Beispiel: -2 * 3 = -6 (für n = 4)

a * b:

1110 * 0011

2n+1 Bits breite Hilfsvariable r.

0000 001 1 0

Bits r_4 , ..., r_1 mit b initialisiert, Rest 0

Fenster "10": Subtrahiere a:

-1110

Vorzeichenbehaftetes Schieben:

Fenster "11": nur Schieben:

0001 0001 1

0000 100 0 1

0010 0011 0

Fenster "01": Addiere a: +1110

1110 1000 1

1111 010<mark>0 0</mark> Vorzeichenbehaftetes Schieben:

Fenster "00": nur Schieben: 1111 1010 0

→ Ergebnis: 11111010₂ = -6

Fenster

3.

Multiplikation im Zweierkomplement (8)

Alternative D: Verfahren nach Booth

- Beispiel: 3 * -2 = -6 (für n = 4)

2*n*+1 Bits breite Hilfsvariable *r*.

1. Fenster "00": nur Schieben: 0000 011<mark>1 0</mark>

2. Fenster "10": Subtrahiere a: -0011

Vorzeichenbehaftetes Schieben: 1101 0111 0

Fenster "11": nur Schieben: 1111 010 1 1

4. Fenster "11": nur Schieben: [1111 1010] 1

→ Ergebnis: 11111010₂ = -6

a * b:

0011

0000 1110 0

* 1110

Binäre Division (1)

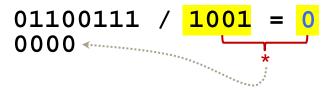
Schriftliche Division / "Schulmethode"

Beispiel: 103 / 9 = ?

Binäre Division (2)

Schriftliche Division / "Schulmethode"

Beispiel: 103 / 9 = ?



Binäre Division (3)

Schriftliche Division / "Schulmethode"

```
Beispiel: 103 / 9 = ?
    01100111 / 1001 = 0
   - 0000
    01100
```

Binäre Division (4)

Schriftliche Division / "Schulmethode"

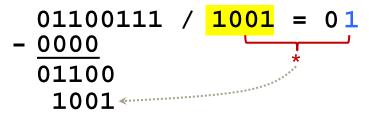
Beispiel: 103 / 9 = ?

```
01100111 / 1001 = 01
- 0000
 01100
```

Binäre Division (5)

Schriftliche Division / "Schulmethode"

Beispiel: 103 / 9 = ?



Binäre Division (6)

Schriftliche Division / "Schulmethode"

```
Beispiel: 103 / 9 = ?
    01100111 / 1001 = 01
   - 0000
    01100
     1001
      00111
```

Binäre Division (7)

Schriftliche Division / "Schulmethode"

Beispiel: 103 / 9 = ?01100111 1001 = 01011- 0000 Quotient 01100 Divisor 1001 00111 Dividend 0000 01111 Kontrolle: 1001 103 / 9 = 11 Rest 401101 1001 0100 Rest

Binäre Division (8)

Mathematisch

- Dividend = Quotient * Divisor + Rest oder Dividend / Divisor = Quotient + Rest / Divisor
- Häufig verlangt: Rest hat gleiches Vorzeichen wie Dividend
- Überlauf möglich, wenn Quotient nicht so breit wie Dividend
- Realisierung über Addierer/Subtrahierer und Schiebeoperationen pro einzelnem Schritt

Roter Faden

Zahlendarstellungen und Rechnerarithmetik

- Natürliche Zahlen
- Binäre Arithmetik
 - Boolesche Algebra
 - Addition: Halbaddierer, Volladdierer
 - Subtraktion: Zweierkomplement-Darstellung
 - Multiplikation: Booth-Algorithmus
 - Division: "Schulmethode"
- Reelle Zahlen
- Zeichensätze

Festkomma-Darstellung

Feste Kommaposition bei der Darstellung von Zahlen

- Beispiel: n = 4, Komma an Position k = 2
 - Registerinhalt 0110 bedeutet 01,10₂ bedeutet 1,5₁₀
- Allgemeine Wertberechnung (für positive Zahlen):

$$(z_{n-k-1}, ..., z_1, z_0, z_{-1}, ..., z_{-k})_2 = \sum_i z_i * 2^i$$

Negative Zahlen analog

Rechenoperationen

- Addition und Subtraktion: unverändert
- Multiplikation: Ergebnis hat 2k Nachkommastellen
 - Skalieren / Abschneiden auf k Nachkommastellen.
- Division: Einfügen des Ergebniskommas, sobald erste Nachkommastelle des Dividenden berührt wird

Gleitkomma-Darstellung (1)

Ziel: Darstellung großer *und kleiner* Zahlen mit gleichem Verfahren

- Datentyp real oder float aus gängigen Programmiersprachen
- Vorsicht: Gleitkommazahlen entsprechen nicht reellen Zahlen im mathematischen Sinne, sondern bloß einer Annäherung!

ldee

- Darstellung einer Anzahl von Ziffern (Mantisse) plus
- Darstellung der Position des Kommas (Gleitkomma)
- Beispiele: -12.345 / k = 2: 123,45
 - -12.345 / k = 5: 0,123.45
 - -12.345 / k = -4: 123.450.000,0
- Beispiel: Wissenschaftliche Notation des Taschenrechners
 - 1,234.5 * 10⁴ entspricht 12.345,0
 - Exponent zur Basis 10 gibt Position des Kommas an

Gleitkomma-Darstellung (2)

Allgemein

- Zahl x wird dargestellt als: $x = m * b^e$ (Mantisse *m* multipliziert mit Exponent *e* zur Basis *b*)
- e wird auch Charakteristik genannt

Normalisierung

- Zahl $x \neq 0$ heißt normalisiert, wenn gilt: $1 \leq m < b$
- Beispiel für b = 10
 - 12.345 wird dargestellt als 1,2345 * 10⁴
 - Wert der Mantisse liegt zwischen 1 und 10
- Beispiel für b = 2
 - 3,625 wird dargestellt als 1,1101₂ * 2¹
 - Wert der Mantisse liegt zwischen 1 und 2

Binäre Darstellung von Gleitkommazahlen

Freiheitsgrade bei der Darstellung

- Gesamtlänge der Darstellung
- Länge der Exponentendarstellung (Länge der Mantissendarstellung)
- Darstellung der Mantisse (Einer- oder Zweierkomplement, oder Vorzeichen und Betrag)
- Darstellung des Exponenten (Einer- oder Zweierkomplement, Vorzeichen und Betrag, oder *Biased* Exponent)

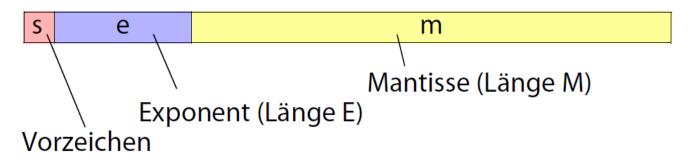
Biased Exponent

- Darstellung des Exponenten ist immer positiv und um eine Konstante (Bias) größer als der tatsächliche Wert
- Beispiel: Bias B = 63, Exponent e = -8Darstellung $e_{Darst} = 55$
- Vorteil: Durchgängig positiver Zahlenraum für die Charakteristik

IEEE 754 Gleitkomma-Darstellung (1)

Standard zur Vereinheitlichung der unterschiedlichen Darstellungen

Aufbau einer IEEE 754 Gleitkommazahl



- Allgemeine Wertberechnung: $x = (-1)^s * 1, m * 2^{e-B}$
- Erste Ziffer (immer 1) wird nicht in Mantisse gespeichert (sog. verdecktes Bit, *hidden bit*)
- Bias B hängt von der Länge der Exponentendarstellung E ab: $B = 2^{E-1} 1$
- Gültige Charakteristiken: 0 < e < 2^E 1 (Werte 0 und $2^{E} - 1$ sind reserviert)

IEEE 754 Gleitkomma-Darstellung (2)

Spezielle Werte

- Null / Zero
 - 0 ist nicht als normalisierte Zahl darstellbar, daher gesonderte Behandlung
 - Vorzeichen s, e = 0, m = 0 (es existiert positive und negative Null)
- Unendlich / Infinity
 - Symbolische Darstellung für unendlich große / kleine Zahl; sinnvoll bspw. bei Überläufen, anstatt der Rückgabe der größten darstellbaren Zahl.
 - Beispiel: $\sqrt{x^2 + y^2}$ mit Überlauf bei x^2 ; Ergebnis ∞ statt normaler Zahl
 - Vorzeichen s, $e = 2^E 1$, m = 0 (positiv und negativ unendlich)

IEEE 754 Gleitkomma-Darstellung (3)

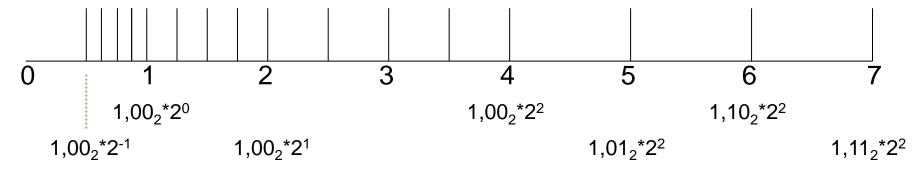
Spezielle Werte

- NaN / Not a number
 - Falls Rechenoperation f
 ür bestimmte Argumente nicht definiert ist, wird NaN zurückgegeben.
 - Beispiel: \sqrt{x} für x < 0 liefert NaN
 - Vorzeichen s, $e = 2^E 1$, $m \neq 0$

IEEE 754 Gleitkomma-Darstellung (4)

Spezielle Werte

- Nicht-normalisierte Zahlen (kleiner als kleinste normalisierte Zahl)
 - Problem: Abstand zwischen darstellbaren normalisierten Zahlen in der Nähe der Null (verhältnismäßig) groß. Beispiel für e ∈ [-1, ..., 2]



- Nicht-normalisierte Zahlen entstehen rund um die Null, indem das hidden bit der Mantisse als 0 anstatt von 1 angenommen wird
- Vorzeichen s, e = 0, $m \neq 0$
- Wertberechnung: $x = (-1)^{s} * \mathbf{0}, m * 2^{1-B}$

IEEE 754 Gleitkomma-Darstellung (5)

Formatdefinitionen

	Single Precision	Double Precision	Quad Precision		
Gesamtlänge (N)	32 Bit	64 Bit	128 Bit		
Vorzeichen	1 Bit	1 Bit	1 Bit		
Mantisse (M)	23 Bit	52 Bit	112 Bit		
Exponent (E)	8 Bit	11 Bit	15 Bit		
Bias (B)	127	1023	16383		
x _{min} (norm.)	2 ⁻¹²⁶ ≈ 10 ⁻³⁸	2 ⁻¹⁰²² ≈ 10 ⁻³⁰⁸	2 ⁻¹⁶³⁸² ≈ 10 ⁻⁴⁹³²		
x _{min} (denorm.)	2 ⁻¹⁴⁹ ≈ 10 ⁻⁴⁵	2 ⁻¹⁰⁷⁴ ≈ 10 ⁻³²⁴	2 ⁻¹⁶⁴⁹² ≈ 10 ⁻⁴⁹⁶⁵		
X _{max}	$(2 - 2^{-23}) * 2^{127} \approx 10^{38}$	$(2 - 2^{-52}) * 2^{1023} \approx 10^{308}$	$(2 - 2^{-112}) * 2^{16383} \approx 10^{4932}$		

 Zusätzliches Format: Extended Precision zwischen Double und Quad (herstellerabhängig definierbar)

Gleitkomma-Rechenoperationen

Beispiel IEEE 754 Darstellung

Addition / Subtraktion

- Denormalisiere Zahl mit kleinerem Exponent
 - D.h. Exponenten auf gleichen Wert bringen
- Addiere oder subtrahiere Mantissen
- Normalisiere Mantisse
- Berechne Vorzeichen des Ergebnisses

Multiplikation / Division

- Multipliziere / dividiere Mantissen
- Addiere / subtrahiere Exponenten
- Normalisiere Mantisse
- Berechne Vorzeichen des Ergebnisses

Roter Faden

Zahlendarstellungen und Rechnerarithmetik

- Natürliche Zahlen
- Binäre Arithmetik
- Reelle Zahlen
- Zeichensätze

Zeichensätze

Repräsentation von Texten

- Naiver Ansatz:
 - Codierung A \rightsquigarrow 0, B \rightsquigarrow 1, ... und dann Binärcodierung
- Probleme:
 - Welche Zeichen sollen codiert werden?
 - Wie kann man Daten/Texte mit anderen austauschen?

Lösung

Standardisierte Zeichensätze

ASCII (1)

American Standard Code for Information Interchange

- Verabschiedet 1963 von der American Standards Organization
- 7-Bit Code
- Für die USA gedacht
- Codiert Zeichen und Steuercodes zur Kontrolle von Geräten; z.B. CR (carriage return) für Wagenrücklauf bei Druckern; BEL für Glocke

Code	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	NUL	SOH	STX	ETX	ЕОТ	ENQ	ACK	BEL	BS	нт	LF	VT	FF	CR	50	SI
1	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	ļ.	п	#	\$	%	&	1	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	Α	В	С	D	Е	F	G	Н	I	J	K	L	M	N	0
5	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	[\]	^	_
6	`	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0
7	р	q	r	s	t	u	v	w	X	у	Z	{		}	~	DEL

[de.wikipedia.org]

ISO-8859-1 (1)

Motivation

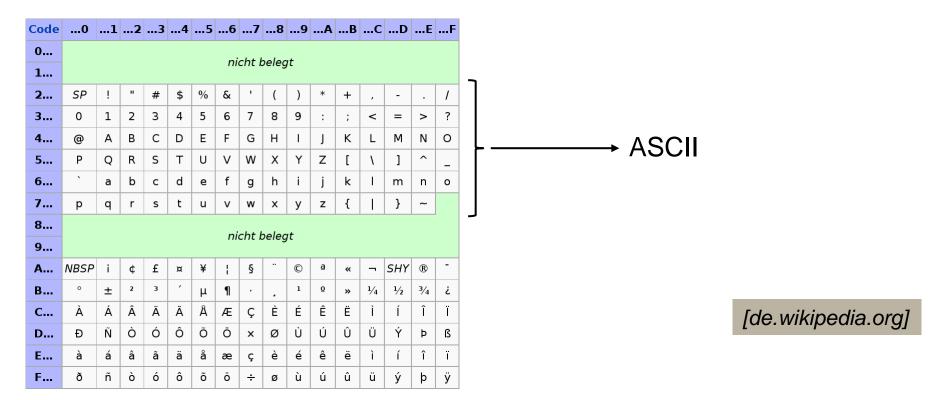
- Problem: Viele wichtige Zeichen fehlen bei ASCII
- Ansatz: "Längere Codierung", Erweiterung des Zeichensatzes

ISO-8859-1 / ISO Latin 1

- ISO = International Organization for Standardization
- 8-Bit Code
- Enthält viele Sonderzeichen für westeuropäische Sprachen (z.B. Umlaute etc.)

ISO-8859-1 (2)

Zeichentabelle



Problem

 Einige wichtige Zeichen (französische Sonderzeichen, €-Symbol) fehlen nach wie vor

Unicode (1)

Fakten

- Verwaltet vom Unicode-Konsortium (http://www.unicode.org)
- Unterstützt verschiedene Codierungsformate (<u>Unicode Transformation</u> *Format*): UTF-8, UTF-16, UTF-32 mit 8, 16, 32 Bits
- Längere Unicode-Formate ergänzen kürzere Formate
- Unicode vereinbart auch weitere Informationen (z.B. Schreibrichtung)
- Ziel: Codierung *aller* in Gebrauch befindlicher Schriftsysteme und Zeichen
- Unicode wird kontinuierlich um neue Zeichen ergänzt

Unicode (2)

Gliederung

- 17 Planes à je 65.536 Zeichen
 6 Planes derzeit genutzt, restliche sind für spätere Nutzung vorgesehen
- Basic Multilingual Plane (BMP, 0): grundlegender mehrsprachiger
 Codebereich, enthält aktuell gebräuchliche Schriftsysteme, Satzzeichen und Symbole
- Supplementary Multilingual Plane (SMP, 1): historische Schriftsysteme, weniger gebräuchliche Zeichen (z.B. Domino- und Mahjonggsteine)
- Supplementary Ideographic Plane (SIP, 2): ergänzender ideographischer
 Bereich für selten benutzte fernöstliche CJK-Schriftzeichen
 (CJK = China, Japan, Korea)

[de.wikipedia.org]

Zusammenfassung (1)

Natürliche Zahlen

- Positionale Darstellung: Ziffern, Position der Ziffern als Gewichtung
- Zahlen darstellbar mit / umrechenbar in jeder beliebigen Basis b
- Wichtig: b = 2 (binär), 8 (oktal), 10 (dezimal), 16 (hexadezimal)

Binäre Arithmetik

- Boolesche Algebra: Grundlage für Computer-Hardware; Werte 0 und 1; Rechnen über Operationen Kunjunktion, Disjunktion und Negation
- Addition: Halbaddierer addiert zwei Bits, produziert Summe und Carry; Volladdierer addiert zwei Bits und Carry; Addierwerk aus Volladdierern
- Subtraktion: 1er-Komplement für ganze Zahlen obsolet; 2er-Komplement
- Multiplikation: Booth-Algorithmus braucht nur 1 Addition und 1 Subtraktion zum Multiplizieren mit einer beliebig langen 1-Folge
- Division: Schulmethode beruht auf Additionen und Schiebeoperationen

Zusammenfassung (2)

Rationale Zahlen

- Festkommazahlen: Komma stets an gleicher Bit-Position; Grundrechenarten verhältnismäßig leicht
- Gleitkommazahlen: Mantisse und Exponent / Charakteristik; normalisierte Mantisse; biased exponent
- IEEE 754: normierte Zahlendarstellung; hidden bit; spezielle Werte: Null, unendlich, NaN, nicht-normalisierte Zahlen; Grundrechenarten: gesonderte Behandlung von Exponent und Mantisse, abschließende Normalisierung

Zeichensätze

ASCII, ISO Latin 1, Unicode