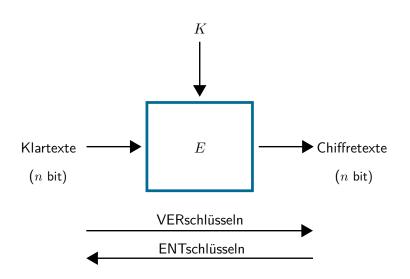
4: Blockchiffren



4: Blockchiffren

4.1: Abstrakte Blockchiffren

lacktriangle Familie von Paaren (E,D) effizient berechenbarer Funktionen

$$E_{\mathbf{K}}, D_{\mathbf{K}} : \{0, 1\}^n \to \{0, 1\}^n.$$

(Es sind E die Ver- und D die Entschlüsselungsoperation und ${\bf K}$ der Schlüssel.)

Für jeden Schlüssel $\mathbf{K} \in \{\mathbf{0}, \mathbf{1}\}^{\mathbf{k}}$ und jeden Klartext $x \in \{0, 1\}^n$ muss gelten:

$$D_{\mathbf{K}}(E_{\mathbf{K}}(x)) = x.$$

Ist das eine Chiffre?

- Klartextmenge = Chiffretextmenge = $\{0,1\}^n$
- Schlüsselmenge = $\{0,1\}^k$
- \blacksquare Verschlüsselungsoperation E
- lacksquare Entschlüsselungsoperation D
- Schlüsselerzeugung typischerweise trivial
- Seien die Werte ("Sicherheitsparameter") n und k gegeben. Wieviele verschiedene abstrakte Blockchiffren gibt es für n und k?

Es gibt $(2^n!)^{2^k}$ verschiedene Blockchiffren.

Sicherheit:

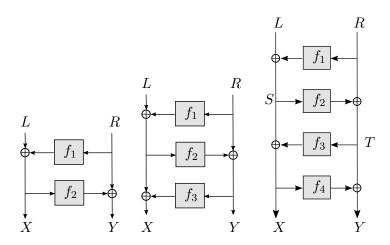
Chosen Plaintext Angr. auf einen PZPG (Pseudozufalls-Permutationsgenerator)

Ein Chosen-Plaintext-Angreifer auf einen PZPG ist ein Algorithmus mit "Orakel-Zugriff" auf eine Permutation $E:\{0,1\}^n \to \{0,1\}^n$. Zwei mögliche Fälle:

- "Fall 0": E ist eine Zufallspermutation
- \blacksquare "Fall 1": E ist eine Pseudozufallspermutation

Ein PZBG ist sicher gegen Chosen-Plaintext-Angreifer, wenn es keinen effizienten Angreifer gibt, der mit signifikantem Vorteil zwischen den Fällen 0 und 1 unterscheiden kann.

Luby-Rackoff/Feistel-Chiffren

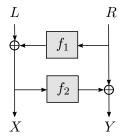


 \blacksquare P_2 , P_3 , P_4

Seien $f_1, f_2: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ Zufallsfunktionen. Wir betrachten:

$P_2(L,R)$:

- 1: $X \leftarrow L \oplus f_1(R)$
- 2: $Y \leftarrow R \oplus f_2(X)$
- 3: return (X,Y)



Beachte:
$$P_i: \{0,1\}^n \to \{0,1\}^n$$
, aber $f_i: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$

Frage 1: Ist P_2 tatsächlich eine Permutation?

Frage 2: Ist P_2 sicher gegen Chosen-Plaintext-Angreifer? (\rightarrow Tafel)

Seien $f_1, f_2, f_3: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ Zufallsfunktionen. Wir betrachten:

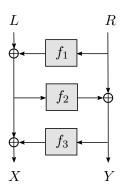
 $P_3(L,R)$:

1: $S \leftarrow L \oplus f_1(R)$

2: $Y \leftarrow R \oplus f_2(S)$

3: $X \leftarrow S \oplus f_3(Y)$

4: return (X,Y)



Satz 13 (Luby und Rackoff)

 P_3 ist eine Permutation und sicher gegen Chosen-Plaintext-Angreifer.

(Ineffizienter) Chosen-Plaintext Angriff:

- **1** Wähle Klartexte (L_i, R_i) mit $R_i \neq R_j$ bis i < j mit $Y_i \oplus Y_j = R_i \oplus R_j$. Statistisch zu erwarten: $q \approx 2^{n/4}$ Klartexte (\rightarrow Tafel). Für den P_3 gilt $S_i = S_i$ oder $(S_i \neq S_i \text{ und } f_3(S_i) = f_3(S_i))$ (\rightarrow Tafel).
- 2 Wähle zwei weitere Klartexte $(L_i \oplus \delta, R_i), (L_i \oplus \delta, R_i).$ Falls P_3 und $S_i = S_i$: (\rightarrow Tafel).

Zweiseitige Angreifer (Chosen Ciphertext)

Ein zweiseitiger Angreifer (oder Chosen Ciphertext Angreifer) auf einen PZPG ist ein Algorithmus mit "Orakel-Zugriff" auf eine Permutation $E:\{0,1\}^n \to \{0,1\}^n$ und ihre Umkehrung E^{-1} .

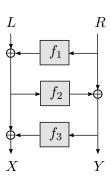
Es liegt einer der beiden folgenden Fälle vor:

- "Fall 0": E ist eine Zufallspermutation
- "Fall 1": E ist eine Pseudozufallspermutation

Ein PZPG ist sicher gegen zweiseitige Angreifer, wenn es keinen effizienten Angreifer gibt, der mit signifikantem Vorteil zwischen den Fällen 0 und 1 unterscheiden kann.

Zweiseitige Sicherheit von P_3

Ist P_3 sicher gegen zweiseitige Angreifer? $(\rightarrow \mathsf{Tafel})$



Seien $f_1, f_2, f_3, f_4: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ Zufallsfunktionen. Wir betrachten:

$P_4(L, R)$:

1: $S \leftarrow L \oplus f_1(R)$

2: $T \leftarrow R \oplus f_2(S)$

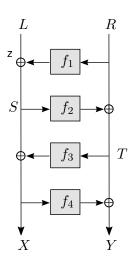
3: $X \leftarrow S \oplus f_3(T)$

4: $Y \leftarrow T \oplus f_4(X)$

5: return (X,Y)

Satz 14 (Luby und Rackoff)

 P_4 ist sicher gegen zweiseitige Angreifer.

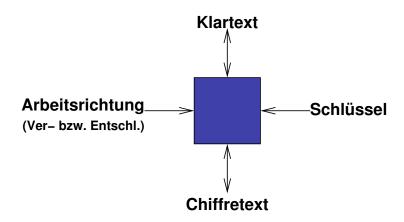


Zwischenbemerkungen

Sie sollten

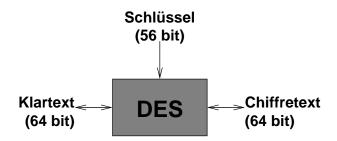
- wissen, was eine Blockchiffre ist,
- wissen, was eine Luby-Rackoff-Chiffre (Feistelchiffre) ist,
- Sicherheitskriterien für Blockchiffren kennen,
- und die Sicherheit bzw. Unsicherheit der Luby-Rackoff-Chiffren P_2 , P_3 , P_4 und verwandter Konstuktionen für abstakte Blockchiffren abschätzen können (mit Begründung).

Von abstrakten zu konkreten Blockchiffren



Wichtige Parameter: Blockgröße n, Schlüssellänge k

4.2: Der Data Encryption Standard (DES)



Geschichte des DES

1973-77 Zwei Ausschreibungen, ein geeigneter Kandidat ("Lucipher") nach Überarbeitung als DES ("Data Encryption Standard") standardisiert:

64-bit Blockchiffre mit 56-bit Schlüsseln.

- **Ab 1977** Kritik an Schlüssellänge.

 Trotzdem große Akzeptanz und riesige Verbreitung.
- Ab 1990 Differentielle und lineare Kryptanalyse.
 - 1997 DES-Challenge (1000e von Rechnern, 4 Mon.).

Struktur des DES (Feistel-Netzwerk)

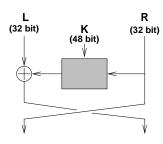
Rundenfunktion:

$$f: \{0,1\}^{48} \times \{0,1\}^{32} \to \{0,1\}^{32}$$

- 16 Runden
- 16 Rundenschlüssel

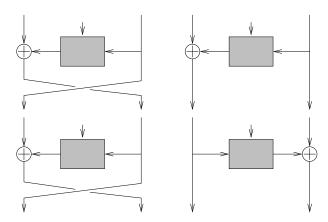
$$\mathbf{K}[1], \dots, \mathbf{K}[16] \in \{\mathbf{0}, \mathbf{1}\}^{48},$$

abgeleitet aus einem 56-bit Chiffrierschlüssel.

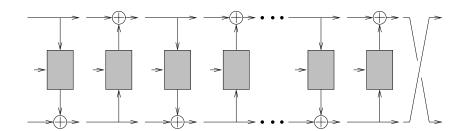


Diese "Feistel-Chiffre" ist die Verallgemeinerung der abstrakten Blockchiffren P_2 , P_3 und P_4 .

Zwei verschiedene Darstellungweisen



DES: Insgesamt 16 Runden



Zusätzlich zur Rundenfunktion

Anwendung einer schlüssel<u>un</u>abhängigen "Initial Permutation" ("wire crossing")

$$\mathsf{IP}: \{1, \dots, 64\} \to \{1, \dots, 64\}$$

am Anfang. Anwendung von IP^{-1} am Ende.

$$DES_{\mathbf{K}}(M) := \mathsf{IP}^{-1}(f_{\mathbf{K}[16]}(\cdots(f_{\mathbf{K}[1]}(\mathsf{IP}(M))))).$$

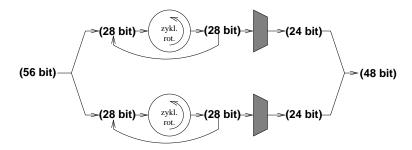
- In Hardware ist das praktisch "kostenlos", in Software typischerweise etliche Rechenschritte bzw. Takte.
- Der Sinn von IP und IP⁻¹ ist unklar. Für die Sicherheit des DES sind beide irrelevant. (Warum?)
- Wir können IP/IP⁻¹ ignorieren.

Wie Entschlüsselt man?

 $(\to \mathsf{Tafel})$

Der DES Key-Schedule

Der Key-Schedule nimmt 56 Schlüsselbits als Eingabe und produziert 16 Rundenschlüssel zu jeweils 48 bit.



Der DES Key-Schedule (2)

- **null**, eins $\in \{0,1\}^{28}$ bezeichnen die Konstanten 0...000 und 1...111.
- Ist eine Hälfte von **K** entweder gleich **null** oder gleich **eins**, dann verändert sie sich im Verlauf des Key-Schedules nicht.
- Sinde beide Hälften gleich **null** oder gleich **eins**, d.h. $\mathbf{K} \in \{(\mathbf{null}, \mathbf{null}), (\mathbf{null}, \mathbf{eins}), (\mathbf{eins}, \mathbf{null}), (\mathbf{eins}, \mathbf{eins})\}$, dann gilt:

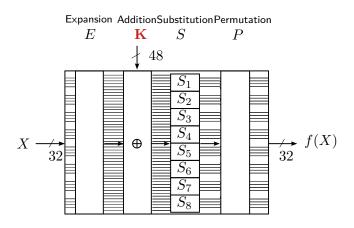
$$\mathbf{K}[1] = \mathbf{K}[2] = \cdots = \mathbf{K}[16].$$

Der DES Key-Schedule (3)

- Für diese vier Schlüssel \mathbf{K} gilt: $E_{\mathbf{K}} = D_{\mathbf{K}}$.
- Derartige Schlüssel bezeichnet man als schwach.
- Man kennt keine weiteren schwachen Schlüssel.
- Außerdem kennt man 6 Paare <u>semi-schwacher</u> Schlüssel. Dies sind Paare (\mathbf{K}, \mathbf{L}) mit $E_{\mathbf{K}} = D_{\mathbf{L}}$.

Die f-Funktion des DES

Die f-Funktion im Detail

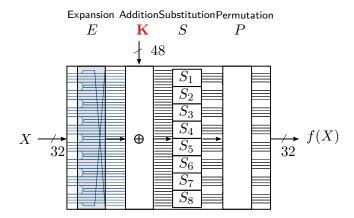


$$f_{\mathbf{K}[i]}(X) := P(S(E(X) \oplus \mathbf{K}[i])).$$

21 4: Blockchiffren 4.2: Der DES Bauhaus-Universität Weimar,

Die Expansionsfunktion (E)

Die Expansionsfunktion $E:\{0,1\}^{32} \rightarrow \{0,1\}^{48}$ expandiert 32 zu 48 Bits.



Die Substitution (S)

Die acht Substitutionsboxen (S-Box S_1, \ldots, S_8) ersetzen jeweils sechs Eingabe- durch vier Ausgabebits:

$$S(X): (\{0,1\}^6)^8 \to (\{0,1\}^4)^8$$

Expansion AdditionSubstitutionPermutation E \mathbf{K} S 48 $\overline{S_2}$ S_3 $\overline{S_4}$ f(X) \oplus $\overline{S_5}$ $\overline{S_6}$ S_7

Die Substitution: S-Box 1 (S_1)

	Mittlere vier Bits der Eingabe															
S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0 0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0 1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
10	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
11	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	3

Beispiele

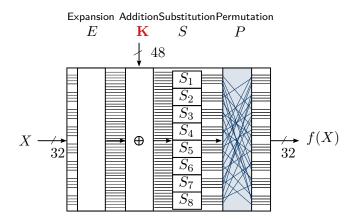
124

$$S_1(1) = S_1(000001) = (0)_{10} = (0000)_2$$

 $S_1(20) = S_1(010100) = (6)_{10} = (0110)_2$
 $S_1(56) = S_1(111000) = (3)_{10} = (0011)_2$
 $S_1(57) = S_1(111001) = (10)_{10} = (1010)_2$

Die Permutation (P)

P-Permutation: $32 \text{ bit } \rightarrow 32 \text{ bit}$



Linearität

Linearität

Wir nennen eine Funktion $F: \mathcal{X} \to \mathcal{Y}$ affin (bzgl. einer Operation \circ) wenn für ein \mathbf{A} und $B \neq 0$ und alle $X \in \mathcal{X}$ gilt

$$F(X) = \mathbf{A} \cdot X + B.$$

Wir nennen F linear wenn

$$F(X) = \mathbf{A} \cdot X.$$

Wir beziehen uns hier auf Linearität bzgl. XOR (Addition in $\mathbb{GF}(2^n)$):

$$F(X) \oplus F(X') = F(X \oplus X').$$

Linearität der DES-Operationen

Bis auf die S-Boxen sind alle Operationen der DES-Rundenfunktion **linear** (bzgl. XOR):

Unäre Operationen (E, P):

$$E(X_1) \oplus E(X_2) = E(X_1 \oplus X_2) \oplus E(0^{32})$$

 $P(X_1) \oplus P(X_2) = P(X_1 \oplus X_2) \oplus P(0^{32})$

Addition des Rundenschlüssels $KA_{\mathbf{K}[i]}(X) = X \oplus \mathbf{K}[i]$:

$$(X_1 \oplus \mathbf{K}[i]) \oplus (X_2 \oplus \mathbf{K}[i]) = X_1 \oplus X_2$$

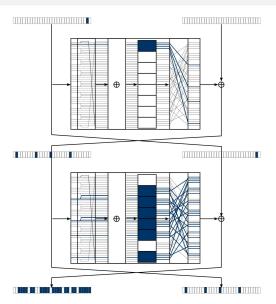
Das heißt, sei $f \in \{E, P, KA\}$:

- Sind X_1 , $f(X_1)$ und die Änderung $X_2 \oplus X_1$ bekannt, so kann man $f(X_2)$ ohne Kenntnis des Schlüssels einfach berechnen.
- \blacksquare \rightarrow eine Chiffre benötigt nicht-lineare Operation(en)!

Lawineneffekt (Diffusion)

- Kleine Änderungen in der Eingabe \rightarrow große Änderung in der Ausgabe.
- lacksquare Flippen eines Eingabebits ightarrow viele Ausgabebits können sich ändern.
- lacksquare Flippen eines Eingabebits ightarrow jedes Ausgabebit kann sich ändern.
- Flippen eines Eingabebits \rightarrow jedes Ausgabebit hat eine 50% Chance, sich zu ändern, unabhängig von den anderen Ausgabebits ("strict avalanche criterion", Webster, Tavers, 1985).

Beispiel Lawineneffekt: 2 Runden DES



- Beim DES verursacht die Kombination aus S-Boxen und der Permutation P den Lawineneffekt.
- Blau = Bits die sich ändern (können)

4: Blockchiffren

Komplementäreigenschaft

Sei \overline{X} das Inverse des Bit-Strings X.

Theorem 15 (Komplementäreigenschaft)

Für alle Schlüssel K und alle Klartexte M gilt

$$\overline{\mathit{DES}_{\overline{\mathbf{K}}}(M)} = \mathit{DES}_{\overline{\overline{\mathbf{K}}}}(\overline{M}).$$

Angriffe auf den DES

Die wichtigten Angriffe auf den DES:

- Differentielle Kryptanalyse (demnächst)
- Lineare Kryptanalyse (werden wir nicht betrachten)
- Angriffe, die die kurze Schlüssellänge ausnutzen

Angriffe über die Schlüssellänge

Da DES-Schlüssel aus nur 56 bit bestehen, sind Brute-Force Angriffe mit der Rechenzeit $N=O(2^{56})$ durchaus praktikabel:

Vollst. Suche known plaintext, known ciphertext Zeit O(N), Platz O(1)

Tabellensuche chosen plaintext, known plaintext

Vorbereitungszeit O(N), Platz O(N), Ausführungszeit O(1)

Time-Memory-Tradeoff (Hellman, 1980)

chosen plaintext, prinzipiell known plaintext

Vorbereitungszeit O(N), Platz: $O(N^{2/3})$,

Ausführungszeit $O(N^{2/3})$

132 4: Blockchiffren 4

Geschichte:

```
1980 Hellman Time-Memory-Tradeoff
           (Spezialrechner + Massenspeicher):
           4 Mio. $, 2 Jahre Vorbereitungszeit, 100 Schlüssel/Tag.
     1993 Wiener (Spezialrechner):
           1 Mio. $, 7 Schlüssel/Tag.
     1997 Erste DES-CHALLENGE
           (Internet und idle time tausender Rechner):
           keine Kosten, 4 Monate/Schlüssel.
     1998 DES-Cracker der EFF (Spezialrechner):
           250 000 $, einige Tage/Schlüssel.
Vergleich: 1 Spionagesatelit 3 000 Mio. $ bis 6 000 Mio. $ (geschätzt).
```

33 4: Blockchiffren 4.2: Der DES Bauhaus-Universität Weimar

Effektive Schlüssellänge

Eine Chiffre hat die **effektive Schlüssellänge** L bit, wenn es keinen Angriff gibt, der im Durchschnitt schneller ist als 2^{L-1} Verschlüsselungsoperationen. (Maßstab: Brute Force.)

Andere Ressourcen, insbesondere Speicherplatz und Klar-/Chiffretextpaare, können ebenfalls im Umfang bis zu 2^{L-1} Einheiten beansprucht werden.

Für praktikable Chiffren kennt man die effektive Schlüssellänge nicht. Man kennt nur obere Schranken (\rightarrow Angriffe).

4: Blockchiffren 4.2: Der DES

134

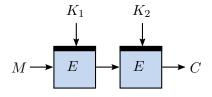
Folgerungen für den DES

- Der beste bekannte analytische Angriff (mittels linearer Kryptanalyse) braucht etwa 2^{43} bekannte Klar-Chiffretext-Paare.
- \Rightarrow Effektive Schlüssellänge \leq 44 bit.
- Alle bekannten analytischen Angriffe sind kaum praktikabel. Brute-Force-Angriffe sind praktikabel.
- ⇒ DES ist bemerkenswert stark gegen analytische Methoden, aber die Schlüssel sind zu klein.

35 4: Blockchiffren 4.2: Der DES

Double-DES

$$C = 2DES_{\mathbf{K}_{1},\mathbf{K}_{2}}(M) = DES_{\mathbf{K}_{2}}(DES_{\mathbf{K}_{1}}(M))$$



Idee: Doppelte Anwendung von DES mit zwei unabhängigen Schlüsseln entspricht einem doppelt so großen Schlüssel, also 112 bit.

Stimmt das? (→ Übung)

136 4: Blockchiffren 4.2: Der DES

Triple-DES

$$3\mathrm{DES}_{\mathbf{K}_{1},\mathbf{K}_{2},\mathbf{K}_{3}}(M) := \mathrm{DES}_{\mathbf{K}_{3}} \left(\mathrm{DES}_{\mathbf{K}_{2}}^{-1} \left(\mathrm{DES}_{\mathbf{K}_{1}} \left(M \right) \right) \right)$$

$$K_{1} \qquad K_{2} \qquad K_{3} \qquad \downarrow$$

$$M \longrightarrow E \qquad D \qquad E \qquad C$$

Üblich: Statt der zweiten DES-Verschlüsselungsoperation eine DES-Entschlüsselungsoperation ("EDE"-Modus).

4: Blockchiffren 4.2: Der DES Bauhaus-Universität Weimar

Angriffe auf Triple-DES

Variante	Angriff	# Paare	Rechenaufwand
Three-Key $(\mathbf{K}_1 = \mathbf{K}_3)$ Three-Key	MITM [1] [2]	$3 \\ 2^{56} \\ 2^{45}$	2^{112} 2^{56} 2^{108}

- [1] Merkle, Hellman (C. ACM, 1981).
- [2] Lucks (FSE 1998).

8 4: Blockchiffren 4.2: Der DES

DES: Zusammenfassung

- 64-bit-Blockchiffre
- 56-bit-Schlüssel
- bekannte und intensiv analysierte Blockchiffre
- massive Kritik an kurzen Schlüsseln Abhilfe: Triple DES
- Triple DES wird noch lange Zeit weiter genutzt werden (trotz des "DES-Nachfolgers" AES)

Sie sollten nun

- wissen, wie der DES funktioniert,
- einige Schwächen des DES kennen (schwache Schlüssel, ...)
- diese Schwächen ggf. auch auf andere (ähnliche) Chiffren verallgemeinern können,
- und die Sicherheit von mehrfacher (doppelter, dreifacher, ...) Verschlüsselung abschätzen können (mit Begründung).

4.3: Der Advanced Encryption Standard (AES)

- Problem: Schlüssellängen des DES nicht mehr ausreichend
- 1997: NIST beschließt öffentliche Ausschreibung um den AES
- Vorgaben:
 - 128-bit Blockchiffre
 - o 3 Varianten: 128-bit, 192-bit und 256-bit Schlüssel
 - Sicher gegen alle bekannten Methoden der Kryptanalyse
 - Leicht in Hard- und Software zu implementieren
 - Schneller in Hard- und in Software als 3DES
 - Sicherer als 3DES
 - Patentfrei

140 4: Blockchiffren 4.3: Der AES Bauhaus-Universität Weimar

Geschichte des AES (1)

1997 Ausschreibung des AES.

1998 1. AES-Konferenz; Präsentation von 15 Kandidaten.

"The Demolition Derby begins."

Feistel-Netzwerk		SPN		Sonstige	
DES-äh	nlich	Erweitert	Allgemein	SQUARE-ähnlich	
DEAL Loki97 Magenta Twofish	DFC E2 RC6	Cast-256 MARS	SAFER+ Serpent	Crypton Rijndael	Frog HPC

4.41 4: Blockchiffren 4.3: Der AES Bauhaus-Universität Weimar

Geschichte des AES (2)

1999 2. AES-Konferenz.

Angriffe DEAL, Frog, HPC, Loki97, Magenta.

Finalisten MARS, RC6, Rijndael, Serpent, Twofish.

Feistel-Netzwerk		SPN		Sonstige	
DES-äh	nlich	Erweitert	Allgemein	SQUARE-ähnlich	
DEAL Loki97 Magenta Twofish	DFC E2 RC6	Cast-256 MARS	SAFER+ Serpent	Crypton Rijndael	Frog HPC

42 4: Blockchiffren 4.3: Der AES Bauhaus-Universität Weimar

Geschichte des AES (3)

Apr 2000 3. AES-Konferenz, Diskussion der Finalisten.

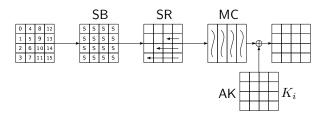
Okt 2000 Rijndael (angepasst) wird vorläufiger Standard.

Nov 2001 NIST-Standard FIPS 197 verabschiedet.

Feistel-Netzwerk		SPN		Sonstige	
DES-äh	nlich	Erweitert	Allgemein	SQUARE-ähnlich	
DEAL Loki97 Magenta Twofish	DFC E2 RC6	Cast-256 MARS	SAFER+ Serpent	Crypton Rijndael	Frog HPC

43 4: Blockchiffren 4.3: Der AES Bauhaus-Universität Weimar

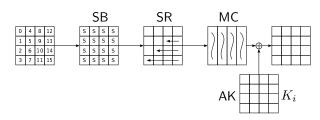
Struktur des AES (von Rijndael)



- Vier Basis-Operationen (Subbytes, ShiftRows, MixColumns, AddRoundKey)
- Eine AES-Runde als Kombination der vier Basis-Operationen
- Der "Key Schedule": Aus einem kurzen Chiffrier-Schlüssel (128 bit, 192 bit, 256 bit) werden 11 bis 15 Rundenschlüssel (jeweils 128 bit).
- 10 (für 128-), 12 (für 192-), 14 (für 256-bit-Schlüssel)
- Anzahl Rundenschlüssel = 1 + Anzahl Runden

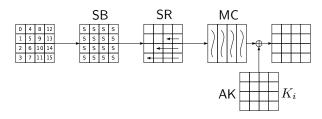
4: Blockchiffren 4.3: Der AES

Die Struktur des AES



- 128-bit-Zustand, 4×4 -Byte-Matrix
- 128-, 192-, 256-Bit-Schlüssel
- Rundenbasiertes Substitution-Permutations-Netzwerk
- 10, 12, 14 Runden mit den Operationen:
- Zu Beginn: ADDROUNDKEY mit initialem Schlüssel K_0 (insgesamt 11/13/15 Rundenschlüssel)

4: Blockchiffren 4.3: Der AES



SUBBYTES Tauscht jedes Byte mit Hilfe einer 8×8 -Bit S-box aus.

SHIFTROWS Rotiert die i-te Zeile um $i \in \{0, 1, 2, 3\}$ Bytes nach links.

MIXCOLUMNS Multipliziert jede Spalte mit einer 4×4 -MDS-Matrix.

 $\operatorname{AddRoundKey}$ XORe Rundenschlüssel K_i auf den Zustand

Die letzte Runde enthält keine MIXCOLUMNS-Operation

146 4: Blockchiffren 4.3: Der AES Bauhaus-Universität Weimar

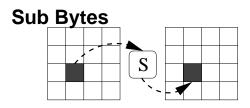
Subbytes

lacksquare Anwendung einer invertierbaren S-Box (Tabelle mit 2^8 Einträgen)

$$S: \{0,1\}^8 \to \{0,1\}^8$$

mit einer sehr einfachen algebraischen Struktur.

Trotz der einfachen algebraischen Struktur ist S eine nichtlineare Funktion.

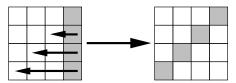


4: Blockchiffren 4.3: Der AES

147

SHIFTROWS

Shift Rows

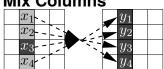


48 4: Blockchiffren 4.3: Der AES

MIXCOLUMNS

- Interpretiert jede Spalte als Vektor $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$
- MIXCOLUMNS ist eine Matrix-Vektor-Multiplikation $\mathbf{y} = \mathbf{A} \cdot \mathbf{x}$ (im Galois-Körper $\mathbb{GF}(2^8)/p(x)$ mit $p(x) = \mathbf{x}^8 + \mathbf{x}^4 + \mathbf{x}^3 + \mathbf{x} + \mathbf{1}$)
- lacksquare Da Matrix **A** invertierbar ist ightarrow MIXCOLUMNS ist invertierbar

Mix Columns



$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

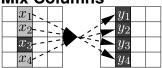
4: Blockchiffren 4.3: Der AES

MIXCOLUMNS: Branch Number

 ${\sf Mindestanzahl} > 0 \ {\sf der} \ {\sf ge\"{a}nderten} \ {\sf S-Box} \ {\sf Eingaben} \ {\sf in} \ {\sf zwei} \ {\sf aufeinanderfolgenden} \ {\sf Runden}$

- \blacksquare MIXCOLUMNS: Branch Number des AES $\mathcal{B}=5$
- Eine Differenz in *genau einem* der Eingabe-Werte x_i führt zu einer Differenz in allen vier Ausgabewerten y_1, y_2, y_3, y_4 !
- Eine Differenz in genau d > 0 der Eingabe-Werte x_i führt zu einer Differenz in mindestens 5 d Ausgabewerten y_1, y_2, y_3, y_4

Mix Columns



$$y_1 = 2x_1 + 3x_2 + x_3 + x_4$$

$$y_2 = x_1 + 2x_2 + 3x_3 + x_4$$

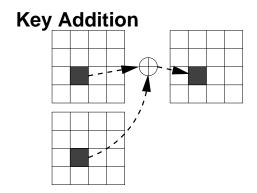
$$y_3 = x_1 + x_2 + 2x_3 + 3x_4$$

$$y_4 = 3x_1 + x_2 + x_3 + 2x_4$$

0 4: Blockchiffren 4.3: Der AES

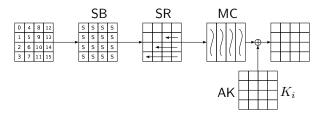
ADDROUNDKEY

- Chiffrierschlüssel: k bit, $k \in \{128, 192, 256\}$
- Rundenschlüssel: n+1 für n Runden, jeweils 128 bit
- Vor der ersten und nach jeder Runde: Addition (bitweise mod 2) eines Rundenschlüssel



4: Blockchiffren 4.3: Der AES

Designentscheidungen



SUBBYTES Nicht-lineare Operation. Ohne sie:

$$AES(x) \oplus AES(y) = AES(x \oplus y) \oplus AES(0)$$

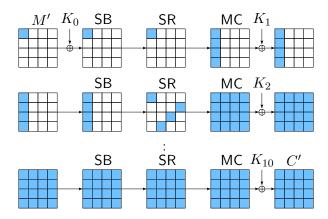
ShiftRows Verteile eine Differenz über mehrere Spalten.

MIXCOLUMNS Verteile eine Differenz über mehrere Zeilen.

ADDROUNDKEY Abhängigkeit vom Rundenschlüssel.

152 4: Blockchiffren 4.3: Der AES

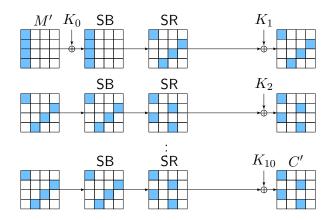
Diffusion im vollen AES



- Angenommen, wir kennen M und $C = AES_K(M)$
- Blau = wir ändern ein Byte in M für M'.

4: Blockchiffren

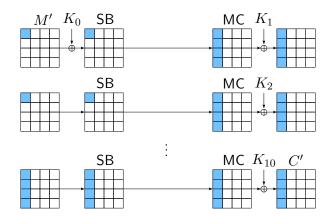
Diffusion ohne MIXCOLUMNS



- Angenommen, die MIXCOLUMNS-Operation würde fehlen
- → Differenz rotiert nur innerhalb der Zeilen

154 4: Blockchiffren 4.3: Der AES

Diffusion ohne ShiftRows



- Angenommen, die ShiftRows-Operation würde fehlen
- → Keine Diffusion über Spaltengrenzen

155 4: Blockchiffren

AES: Zusammenfassung

- 128-bit-Blockchiffre
- 3 verschiedene Schlüssellängen: 128 bit, 192 bit, 256 bit
- "Rijndael" ging als Sieger aus einem mehrjährigen internationalen Wettbewerb hervor
- Aktueller Standard
- Inzwischen ähnlich intensiv analysiert wie der DES

Sie sollten grundlegende Vorstellungen davon haben,

- wie der AES funktioniert.
- und warum die Struktur des AES so ist, wie sie ist (was passiert, z.B., wenn man eine der 4 Grundoperationen weglässt?).

.56 4: Blockchiffren 4.3: Der AES Bauhaus-Universität Weimar