Strahlentherapie Klinische Strahlenbiologie

Prof. Dr. med. Claudia E. Rübe

M. Sc. Dipl. Ing. Yvonne Lorat

Dipl. Biol. Nadine Schuler

Klinik für Strahlentherapie und Radioonkologie Universität des Saarlandes

Entdeckung der Röntgenstrahlung

Die Hand des Anatomen Geheimrat von Kölliker aufgenommen am 23.01.1896 von W.C. Röntgen in Würzburg

Erste therapeutische Anwendung der Röntgenstrahlung

Holthusen-Diagramm

Aximale Tumorkontrolle bei optimierter Schonung des Normalgewebes

Bestrahlungstechnische Möglichkeiten

- Konformationsbestrahlung
- Intensitäts-Modulierte Radiotherapie (IMRT)
- Stereotaktische Bestrahlung

Strahlenbiologische Möglichkeiten

- Strahlenbiologische Grundlagen
- Ermittlung der individuellen Strahlenempfindlichkeit

Konformationsbestrahlung

Ziele:

- \rightarrow Schonung des Normalgewebes
- \rightarrow Optimale Anpassung des Bestrahlungsvolumens an die Tumorausbreitung
- \rightarrow Dosiseskalation im Tumorgewebe

Abschirmung gesunden Gewebes durch individuelle Formung des Strahlenfeld

Blöcke

→ Metalllegierung (52% Wismut, 32% Blei, 16% Zinn), individuell für jeden Patienten angefertigt

Multi-Leaf-Kollimator

→ im Beschleuniger integriertes System elektr. gesteuerter Metall-Lamellen

3D-Bestrahlungsplanung/Konformationsbestrahlung

Planungs-CT / 3D-Bestrahlungsplanung

- Planungs-CT von der zu bestrahlenden Körperregion in Bestrahlungsposition Lagerungshilfen → genaue und reproduzierbare Lagerung des Patienten
- Definition des Zielvolumens und der Risikostrukturen im Planungs-CT
- Auswahl und Festlegung der optimalen Bestrahlungstechnik, der Feldkonfiguration und der Feldparameter
- Berechnung und Optimierung der räumlich-physikalischen Dosisverteilung
- Berechnung von Dosis-Volumen-Histogrammen

3D-Bestrahlungsplanung

3D-Bestrahlungsplanung

Zielvolumen und Dosisverteilung in den verschiedenen Rekonstruktionsebenen

Digital Rekonstruiertes Röntgenbild (DRR): Perspektive des Strahlenfeldes (*Beam* 's *Eye View*)

 \rightarrow optimale Abschirmung mittels Multi-Leaf-Kollimators \rightarrow Schonung von Normalgewebe

3D-Bestrahlungsplanung

Dosis-Volumen-Histogramm (DVH) Plan Dose Volume Histogram Trial 1.0 DVH Calculation 0.9 🔶 Cumulative Differential 0.8 Dose Axis Display 0.7 Normalized Dose 0.6 Absolute Dose 0.5 Norm.Volume Auto-Compute Max 0.4 Specify Max Dose 0.3 0.2 Volume Axis Display Normalized Volume 0.1 0.Q 5000 6000 7000 4000 1000 2000 3000 8000 Add DVH Dose (cGy) Remove Current DVH Current Region of Interest Beam NTCP/TCP Trial Color Dash Color % Outside Grid % > Max ♦ Plan All Beams/Sources 🛏 0.00 % No Dash 0.00 % ---Plan All Beams/Sources 🛏 Lunge li blue No Dash 0.00 % 0.00 % $\hat{\mathbf{v}}$ --Plan All Beams/Sources 💷 No Dash 🗖 0.00 % 0.00 % \diamond skyblue Plan All Beams/Sources 🗆 Lunge gesamt No Dash \diamond slateblue 0.00 % 0.00 % ___ Plan All Beams/Sources 🛏 0.00 % \diamond yellow spectrum 💻 0.00 % Edit NTCP/TCP... Tabular DVH... Dismiss Help

3D-Bestrahlungsplanung

Simulation

- → Simulation der gewählten Bestrahlungsbedingungen
- → Lokalisation und Dokumentation der Bestrahlungsfelder
- → Markierung der Bestrahlungsfelder auf der Haut

Bestrahlung

Vor Beginn der ersten Bestrahlung:

Verifikation der Bestrahlungsfelder

- → Belichtung von Röntgenfilmen durch die Photonen des Linearbeschleunigers
- \rightarrow Kontrolle/Korrektur der Bestrahlungsfelder

Bestrahlungstechnische Möglichkeiten

- Konformationsbestrahlung
- Intensitäts-Modulierte Radiotherapie (IMRT)
- Stereotaktische Bestrahlung

Strahlenbiologische Möglichkeiten

- Strahlenbiologische Grundlagen
- Ermittlung der individuellen Strahlenempfindlichkeit

⇒ Feldgrößen-Änderungen während der Bestrahlung durch die Verwendung von dynamischen Multi-Leaf-Kollimatoren

transversal

sagittal

"beam's eye view"

⇒ Feldgrößen-Änderungen während der Bestrahlung durch die Verwendung von dynamischen Multi-Leaf-Kollimatoren

transversal

sagittal

"beam's eye view"

⇒ Feldgrößen-Änderungen während der Bestrahlung durch die Verwendung von dynamischen Multi-Leaf-Kollimatoren

⇒ Feldgrößen-Änderungen während der Bestrahlung durch die Verwendung von dynamischen Multi-Leaf-Kollimatoren

⇒ Feldgrößen-Änderungen während der Bestrahlung durch die Verwendung von dynamischen Multi-Leaf-Kollimatoren

⇒ IMRT- Bestrahlungsplan:

Exaktere Anpassung des Bestrahlungsvolumens an irreguläre Zielvolumina bei optimierter Schonung des Normalgewebes

Bestrahlungstechnische Möglichkeiten

- Konformationsbestrahlung
- Intensitäts-Modulierte Radiotherapie (IMRT)
- Stereotaktische Bestrahlung

Strahlenbiologische Möglichkeiten

- Ermittlung der individuellen Strahlenempfindlichkeit
- yH2AX als Biomarker für die Radiosensitivität

Stereotaktische Bestrahlung/Radiochirurgie

Stark fokussierte, hochdosierte Bestrahlung (meist von Hirntumoren) nach dreidimensionaler Zielpunktberechnung

Voraussetzungen für die Zielpunktberechnung:

- ➡ Stereotaktischer Rahmen
 - invasiv → Schädelkalotte
 - nicht-invasiv \rightarrow individuelle Masken
- ➡ Planungs-CT
- ➡ Bestrahlungsplanung

Indikationen:

- Hirnmetastasen (max. 3 Herde)
- primäre Hirnneoplasien (als "Boost")
- Akustikusneurinome
- Meningeome

Stereotaktische Bestrahlung: nicht-koplanare Teilrotationsbestrahlung

Bestrahlungstechnische Möglichkeiten

- Konformationsbestrahlung
- Intensitäts-Modulierte Radiotherapie (IMRT)
- Stereotaktische Bestrahlung

Strahlenbiologische Möglichkeiten

- Strahlenbiologische Grundlagen
- Ermittlung der individuellen Strahlenempfindlichkeit

Zielstruktur der biologischen Strahlenwirkung

Molekulare Ebene:

Schäden an Molekülen (DNA, Proteine)

Û

Subzelluläre Ebene:

Schäden an Zellmembranen, Zellkern, Chromosomen, Mitochondrien etc.

Zelluläre Ebene:

Zellzyklusänderungen, Zelltod, Zelltransformation (Krebs)

Û

Gewebe, Organe:

Funktionsstörungen, Zentralnervensystem, Blutbildendes System, Darm

 \hat{U}

Organismus:

Tod, Lebenszeitverkürzung, Mutationen im Erbgut

⇒ Der Zellkern ist die zu treffende Zielstruktur

Architektur des Zellkerns

Architektur des Zellkerns

Verpackungsstufen des Chromatins

Physikalische Grundlagen

α-Strahlung:

 $^{A}_{Z}\mathbf{X} \rightarrow {}^{A-4}_{Z-2}\mathbf{Y} + {}^{4}_{2}\!\mathrm{He} + \Delta E$

→ Teilchenstrahlung: Helium-Atomkerne; bestehend aus 2 Protonen und 2

Neutronen

 \rightarrow Geringe Reichweite

- \rightarrow komplette Abschirmung möglich β -Strahlung:
- \rightarrow Teilchenstrahlung :
 - β : Elektron wird emittiert ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + \overline{\nu}_{e}$
 - \rightarrow Neutron geht in ein Proton über
 - β^+ : Positron wird emittiert ${}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^+ + \nu_e$
 - \rightarrow Proton geht in ein Neutron über
- \rightarrow Begrenzte, d.h. nur geringe Reichweite
- → komplette Abschirmung möglich

γ-Strahlung:

- → Elektromagnetische Strahlung (Photonen)
- \rightarrow Durchdringend, hohe Reichweite
- → Abschwächung möglich, gleichzeitige Streuung

Physikalische Grundlagen

Wechselwirkungen von Photonen mit Materie

- Elektron wird im Feld des Atomkerns abgebremst
- Differenz der kinetischen Energie wird als Photonenstrahlung emittiert

Physikalische Grundlagen

Wechselwirkungen von Photonen mit Materie

Schadensdichte

Linearer-Energie-Transfer LET

Berücksichtigt die räumliche Verteilung der Energiedeposition

LET: Beschreibt die pro Weglängeneinheit in der Teilchenbahn und in der unmittelbaren Umgebung <u>deponierte</u> Energie

Linearer-Energie-Transfer (LET)

Relative biologische Wirksamkeit (RBW)

RBW ist definiert durch das Verhältnis einer Bezugsstrahlendosis D_{ref} (Referenzstrahlung) zu der Dosis einer vergleichenden Strahlung D_{test} die zur Auslösung eines adäquaten Effektes führt.

Das Maß für die Wirkung ist die **Energiedosis** (Energiekonzentration):

$$Energiedosis = \frac{absorbierte\ Energie}{Masse}$$

Die Wirksamkeit unterschiedlicher Strahlenarten wird durch einen dimensionslosen Faktor berücksichtigt:

 \ddot{A} quivalentdosis = Energiedosis · Faktor

Maßeinheit:	Wichtungs-	Strahlungs-
	Taktor	art
	20	α-Strahlung
$1 \text{Sy}(\text{Signart}) - \frac{1 J (JOULe)}{1 - 1 - 1}$	1	β-Strahlung
$1 SV(Sleven) - \frac{1 ka}{1 ka}$	1	γ-Strahlung
Ing	10	n-Strahlung

Energiedosis Einheit: Gray (Gy) Gibt die durch die Strahlung auf das Gewebe übertragene Energie an.

Effektive Dosis

Einheit: Sievert (Sv) Wichtet die Äquivalentdosis anhand der Strahlenempfindlichkeit des Gewebes

Äquivalentdosis

Einheit: Sievert (Sv) Wichtet die Energiedosis anhand der biologischen Wirksamkeit der Strahlenart

Zusammensetzung (Gewichtsprozent) von Säugerzellen:

Wasser	70%
Anorganische Bestandteile	1%
Kleinere Moleküle	3%
Proteine	18%
DNA	0,25%
Lipide	5%
Polysaccharide	2%

Besonders gefährdet wegen ihrer molekularen Masse und der Häufigkeit des Vorkommens

- ⇒ Relativ geringe Gefahr der strahlungsbedingten Denaturierung
- ⇒ Defekte/intakte Proteine werden unterschiedlich schnell durch Abbau und Neusynthese ersetzt (turnover)

Polysaccharide

Strahlungsresistente Verbindungen

Mögliche chemische Veränderungen bleiben überwiegend ohne Folgen für den Stoffwechsel

Lipide

Mögliche Bildung von Peroxiden ⇒ Permeabilitätsstörungen

Der Schaden ist jedoch gering

DNA Schäden nach Bestrahlung

Direkter und indirekter Strahleneffekt

Indirekter Effekt: Spaltung von H_2O durch

Ionisation ⇒ Radiolyse:

 $\begin{array}{l} H_2O \rightarrow H_2O^{\scriptscriptstyle +} + e^{\scriptscriptstyle -} \\ H_2O^{\scriptscriptstyle +} + H_2O \rightarrow H_3O^{\scriptscriptstyle +} + OH^{\scriptscriptstyle \bullet} \end{array}$

• Anregung \Rightarrow Homolyse: H₂O \rightarrow H • + OH• (Spaltung)

> DNA-Schaden durch entstandene Radikale

Direkter Effekt:

DNA-Schaden durch Teilchenwechselwirkun

Strahlenwirkungen auf die DNA bei Bestrahlung mit Röntgenstrahlen:

- 65 % indirekte Strahlenwirkung
- 35 % direkte Strahlenwirkung

Wirkung ionisierender Strahlung

Die Radiolyse von Wasser ist für die meisten Schäden an Biomolekülen verantwortlich.

Durch Radiolyse entstehen:

(1) Ionen: H+, O-, H₂O+, e-

(2) Radikale: H-, OH-

(3) Peroxide: H_2O_2 , HO_2 .

⇒Peroxidbildung wird durch molekularen Sauerstoff begünstigt (Sauerstoffeffekt)

. .

Unterschiedliche DNA Schäden

	Protein-DNA- Verbindung	
Basenveränderungen	2000 – 3000	
Einzelstrangbrüche	500 – 1000	A+T Basenschädigung und
DNA-Protein-Quervernetzungen	150	Basenfreisetzung Doppelstrangbruch
Doppelstrangbrüche	40	Einzelstrangbruch
Veränderungen an Polysacchariden	800 - 1600	A+T Gehäufte Läsion z.B. Einzelstrangbruch + Basenschaden
+ gehäufte Läsionen (multiply damaged sites,		Duberioentudon

bulky-lesions)

⇒ Viele Schäden (außer Bulky-Lesions) können innerhalb von 2 h repariert werden.

 \Rightarrow Reparatur nach 6 - 8 h abgeschlossen.

DNA Doppelstrangbrüche: Auswirkung auf die Zelle

Wie funktioniert das?

Tumorgewebe

- Ausdifferenzierte Zellen
- Stammzellen

Normalgewebe

- früh-reagierende Normalgewebe
 (Ausdifferenzierte Zellen + Stammzellen)
- spät-reagierende Normalgewebe (Ausdifferenzierte Zellen + Stammzellen)

Exponentielle Verdünnungsreihe der Strahlentherapie

↑ Theoretische Anzahl an Stammzellen

1 cm ca. 10⁹ Zellen

≯ ca. 10⁶ Stammzellen

Wochen- tag	Tages- dosis	1. Woche	2. Woche	3. Woche	4. Woche	5. Woche
Montag	2 Gy	1 000 000	32 000	1 000	32	1
Dienstag	2 Gy	500 000	16 000	500	16	0,5
Mittwoch	2 Gy	250 000	8 000	250	8	0,25
Donnerstag	2 Gy	125 000	4 000	125	4	0,125
Freitag	2 Gy	64 000	2 000	64	2	0,064
Summen- dosis		10 Gy	20 Gy	30 Gy	40 Gy	50 Gy

Erworbene Eigenschaften maligner Tumore

Strahlenwirkung auf Tumorgewebe/Zellen

Einflussfaktoren auf die lokale Tumorkontrolle:

- Tumorgröße
 - Proliferationsrate

Strahlensensibilität der Tumorzellen

- Zellzyklus-Status bei Exposition

Gesamtdosis/Fraktionierung

- Gesamtbehandlungszeit
- Zeitintervall zwischen den Fraktionen

Tumor-Oxygenierung

- Sauerstoffeffekt
- Strahlenqualität
 - Linearer-Energie-Transfer (LET)
 - Beschleunigungsspannung
 - Teilchenart

- Reproduktiver/Klonogener Zelltod
- Mutation (= Zelle lebt mit Veränderungen weiter)
- Apoptose/Nekrose
- Zellzyklusverlängerung (v.a. durch G2-Arrest)
- Zelldifferenzierung

- Reproduktiver/Klonogener Zelltod
- Mutation (= Zelle lebt mit Veränderungen weiter)
- Apoptose/Nekrose
- Zellzyklusverlängerung (v.a. durch G2-Arrest)
- Zelldifferenzierung

Strahlenwirkung an der Zelle I

Erholung

- Reproduktiver/Klonogener Zelltod
- Mutation (= Zelle lebt mit Veränderungen weiter)
- Apoptose/Nekrose
- Zellzyklusverlängerung (v.a. durch G2-Arrest)
- Zelldifferenzierung

Strahlenwirkung auf Zellen

Zelltod - Morphologisch

Apoptose

- Programmierter Zelltod
- Aktiver Prozess innerhalb der Zelle
- Enzymatische Spaltung der DNA

- Aufteilung der Zelle in apoptotische Körperchen
- Anschließende phagozytose

Nekrose

- Zellschwellung
- Auflösung von Zellorganellen
- Denaturierung von Proteinen
- Enzymatische Verdauung

Strahlenwirkung auf Zellen

Zelltod – Funktionell:

Strahlenbiologische Bedeutung:

Verlust der unbegrenzten Teilungsfähigkeit durch

Reproduktiven Zelltod

→ <u>Mitosetod</u> (Zelle morphologisch intakt, einzelne Teilungen, dann keine Teilung mehr, Zelltod)

Klonogenen Zelltod

- \rightarrow Interphasetod (nach Schaden, vor Mitose)
- → <u>Differenzierung</u> (klonogene Zellen werden zu terminalen Funktionszellen, die keine Kolonien mehr bilden)

Die Wirkung der Radiotherapie beruht hauptsächlich auf der Reproduktiven Inaktivierung von Stammzellen des Tumors

Zellüberleben in Abhängigkeit von der Bestrahlungsdosis

Intrinsische Strahlenempfindlichkeit von Tumoren

Seminom Leukämie	20-30 Gy	
Nephroblastom Morbus Hodgkin Non-Hodgkin-Lymphom Neuroblastom	30-45 Gy	Tumoren sind
Medulloblastom Ewing-Sarkom <i>Mikroskop. Befall</i> : PEC, Adeno-Ca Mamma-Karzinom	50-60 Gy	unterschiedlich strahlenempfindlich !
Makroskop. Befall: PEC, Adeno-Ca Mammakarzinom Prostatakarzinom Weichteilsarkom (mikrosl	60-70 Gy kop.)	0.1 0.1 0.01 0.01 0.01 0.01
Gliobastom Knochensarkom Weichteilsarkom (makros	> 70 Gy skop.)	0.001 2 3 4 5 6 0 1 2 3 4 5 6 Dosis [Gy]

Tumorgröße

Die zu applizierende Dosis ist abhängig von der Tumorgröße

Die zu applizierende Dosis ist abhängig von der Tumorgröße

Tumor-Oxygenierung

Sauerstoff-Versorgung im Tumorgewebe

HB-Wert anheben

Bestrahlung mit Einzeldosen

Fraktionierung: Schonung des Normalgewebe

- Erholung d.h. unveränderte Zellteilung
- Reproduktiver/Klonogener Zelltod
- Mutation (= Zelle lebt mit Veränderungen weiter)
- Apoptose/Nekrose
- Zellzyklusverlängerung (v.a. durch G2-Arrest)
- Zelldifferenzierung

Strahlenempfindlichkeit - Zellzyklus

Strahlenempfindlichkeit - Zellzyklus

- Die höchste Strahlenempfindlichkeit zeigen Zellen in der G2/M-Phase.
- Weniger strahlenempfindlich sind Zellen in der G0/G1- und S-Phase

DNA Doppelstrangbrüche: Auswirkung auf die Zelle

Strahleninduzierte Chromosomen-Aberrationen

Nachweismethoden

Durchlichtmikroskopie

Giemsa-Färbung

Fluoreszenzmikroskopie

2-Farben-FISH

Reparatur

Erholung (Recovery) von Zellen/Geweben und Reparatur von subletalen Strahlenschäden

Repopulierung

Proliferation klonogener Tumorzellen in Therapiepausen

Reoxygenierung

von Tumoren (Sauerstoffeffekt \rightarrow Anämie behandeln, Rauchen unterlassen)

Redistribution

nach Bestrahlung \rightarrow partielle Synchronisation der Zellzyklusverteilung, mit zunehmender Zeit verteilen sich die Zellen wieder auf alle Phasen des Zellzyklus (Recruitment: Einschleusung ruhender Zellen aus der G0-Phase in den Zellzyklus)

⇒ Effektivität einer fraktionierten Strahlentherapie

Jede Strahlentherapie führt auch zu Schäden im umliegenden gesunden Normalgewebe

Beispiele:

Radiotoxizität: Knochenmark

MRT-Abdomen (12 Mon. nach RT)

Leukozyten- / Thrombozytenzahl nach RT

Umwandlung des Knochenmarks in Faser- und Fettmark ⇒ Knochenmarksdepression: Leuko-/Thrombozytopenie

Pat. mit NSCLC, alleinige RT mit 66 Gy

Bestrahlungsplan mit der Isodosenverteilung

Diagnost. Thorax-CT (3 Mon. nach RT): Radiogene Pneumonitis

Radiotoxizität: Haut

Akute Radiodermatitis am Tracheostoma

Erythem

Chronische Radiodermatits

Hyperpigmentierung Hautatrophie

Radiotoxizität: Mundschleimhaut und Zähne

Akute Mukositis:

Schleimhautrötung (Enanthem), Schleimhautdefekte, weißliche Fibrinbeläge, Mundtrockenheit, Geschmacksverlust

Chronische Mukositis:

Mundtrockenheit, Geschmacksverlust, Mundbodenödem, Parodontose, Karies

Bestrahlungstechnische Möglichkeiten

- Konformationsbestrahlung
- Intensitäts-Modulierte Radiotherapie (IMRT)
- Stereotaktische Bestrahlung

Strahlenbiologische Möglichkeiten

- Strahlenbiologische Grundlagen
- Ermittlung der individuellen Strahlenempfindlichkeit

Trotz konformaler Bestrahlungstechniken ist in der Radioonkologie die Normalgewebstoxizität häufig dosislimitierend !

Interindividuell: sehr unterschiedliche Normalgewebsreaktionen aufgrund der individuellen Strahlenempfindlichkeit

Entwicklung prädiktiver Tests
für die individuelle Strahlenempfindlichkeit !

Reparatur

Familiäre Krebssyndrome mit Mutationen in DNA-Reparaturgenen (Beispiele)

<u>Erkrankung</u>	<u>defiziente Reparatur</u> (betroffeneDNA-Läsionen)	<u>Mutierte Gene</u>
Ataxia teleangiectasia	DNA-Doppelstrangbrüche	ATM
Nijmegen Breakage Syndrom	DNA-Doppelstrangbrüche	NBS1
Fanconi Anämie	DNA-Crosslinks u. DSB	FANC - A, B, C, D1, D2, E, F, G
Hereditäres Mammakarzinom	DNA-Doppelstrangbrüche	BRCA1, BRCA2 (= FANCB und D1)
Werner Syndrom	DNA-Doppelstrangbrüche	WRN
Bloom Syndrom	DNA-Doppelstrangbrüche	BLM
HNPCC	DNA-Mismatches	hMSH2, hMLH1, hPMS1, hPMS2

- ⇒Tumorzellen haben überwiegend keine eingeschränkte Reparaturkapazität!
- Eine eingeschränkte Reparaturkapazität kann verstärkt zur Tumorbildung führen

ATAXIA TELANGIEKTASIA

- Autosomal rezessiv
- Mutation im ATM (*Ataxia telangiectasia mutated*) Gen; Chr. 11
- Prädisposition für Krebs (Leukämie und Lymphome; 10-20%)
- Progressive Neurodegeneration dadurch Ataxien im frühen Kindesalter (2. LJ Gleichgewichtsstörungen, schlampige Sprache)
- Kleine, spinnenartige Erweiterung von oberflächlichen Blutgefäßen (Telangiectasien)
- Radiosensitivität, RDS
 - Immundefizienz (anfällig für Infektionen)

The ATM protein mediates responses to DNA damage, in particular those that control progression through the cell cycle.

NIJMEGEN BREAKAGE SYNDROME

- Autosomal rezessiv
- Mutation im Nbs1 (=Nibrin/p95) Gen; Chr. 8q21
- Prädisposition für Krebs (Leukämie und Lymphome; 10-20%)
- Microcephalus Kleinwuchs Hautpigmentation
- AT-ähnliche Krankheit
- Radiosensitivität, RDS

Immundefizienz (anfällig für Infektionen)

DSB-Nachweis Methoden

Immunfluoreszenz

Etablierung der yH2AX Immunfluoreszenz bei Blutlymphozyten → hochsensitiver *in-vivo* Nachweis von strahleninduzierten DSB bei Patienten 0.8 · P05 at 157 mGy*cm P12 at 224 mGy*cm P11 at 405 mGy*cm P07 at 406 mGv*cm 0.7 P14 at 493 mGv*cm P10 at 1067 mGy*cm Excess foci / cell at 1000 mGy*cm P06 at 1331 mGy*cm P04 at 1320 mGy*cm 0.6 P03 at 1353 mGy*cm P01 at 1379 mGv*cm P08 at 1451 mGy*cm P02 at 1505 mGy*cm 0.5 P09 at 1514 mGv*cm HOM-85 at 966 mGv*cm Löbrich M, et al. Proc Natl Acad Sci 2005; 102: 8984-9 0.4 0.3 0.2 0.1 0.0 0.5 h 1 h 2.5 h 5 h 24 h -0.1 **Repair time** → DSB-Reparaturkapazität in vivo bei niedrigen Bestrahlungsdosen → HOM-85: DSB-Reparaturdefekt

Tierexperimentelles Modell

Ganzkörperbestrahlung: 0 Gy / 0,1 Gy / 0,5 Gy / 1 Gy / 2 Gy Untersuchungszeitpunkte: 0,5 h / 2,5 h / 5 h / 24 h / 48 h

Blut \rightarrow Lymphozyten

Organe → Dünndarm, Herz, Lunge, Gehirn Niere, Haut, Testis

γ-H2AX Immunhistologie γ-H2AX Immunfluoreszenz

DSB Induktion in Organgeweben

<u>Konfokale</u> <u>Lasermikroskopie:</u> Niere: 10 min nach Bestr. Vergrößerung x1000

DSB-Reparatur der verschiedenen Mausstämme

DSB-Reparatur der verschiedenen Mausstämme

Nachweis der unterschiedlichen DSB-Reparaturdefekte in den peripheren Blutlymphozyten

 γ H2AX: Induktion und Reparatur von DSBs *in-vivo* nach Bestrahlung \leq 2Gy

Ähnliche DSB-Reparaturkinetiken in

den verschiedenen Organgeweben und Blutlymphozyten

Nachweis genetisch bedingter DSB-Reparaturdefekte

in allen Organgeweben und Blutlymphozyten

Prädiktion von Normalgewebstoxizität: Blutanalyse ermöglicht Nachweis von DSB-Reparaturdefekten

DSB-Reparatur in adulten Stammzellen

Nicht nur in differenzierten Zelltypen, sondern auch in Stammzellen

DSB-Reparatur in adulten Stammzellen

Nicht nur in differenzierten Zelltypen, sondern auch in Stammzellen

Spermatogonische Stammzellen (SSCs)

RIF in der Immunfluoreszenz

Gehirn: Co-Lokalisation

Induktion (30 min) 12 -53BP1 foci per nucleus 10 -8 6 4 -2 0 1.5 0.0 0.5 1.0 2.0 dose (Gy) **Reparatur** (1 Gy) 8 **53BP1 foci per nucleus** r 0 0 12 . 18 24 6 repair time (h)

Auflösungsvermögen IFM/TEM

Gold-markiertes 53BP1 im TEM

pKu70 und 53BP1

pKu70 kann mittels TEM visualisiert

pKu70 und p53BP1 kolokalisieren in heterochromatischen Regionen

In euchromatischen Regionen ist nur pKu70, ohne 53BP1, nachweisbar

Rückblick in die Historie: erste Bestrahlungsgeräte

Siemens-Bestrahlungskasten und Lagerungstisch mit heb- und senkbarer Tischplatte (1925)

James Ewing:"All one could really do was to place the patient(1866-1943, Pathol.)under the machine and hope for the best"

Zusammenfassung

Hochpräzise, individualisierte Radiotherapie → Reduktion der Normalgewebstoxizität

Yvonne Lorat

Klinik für Strahlentherapie und Radioonkologie Universität des Saarlandes

Gebäude 6.5 und 51 (2. OG)

e-mail: <u>yvonne.lorat@uks.eu</u> Tel. 06841/16-24862 oder -24808

