flow technology by vögtlin

Electronic pressure controller

Member of **TASI** Flow Experts

Which features does a pressure controller from Vögtlin have?

The electronic pressure controller regulate the front- and back-pressure and simultaneously measures the flow. Basically we combine a thermal mass flow controller with a pressure transmitter.

The pressure transmitter can :

- be mounted directly on the device (when the process is located directly behind the pressure transmitter)
- be installed separately (cable length 5 metre)
- be an already existing pressure sensor (preferably 4-20 mA)

By digital communication the function can be switched between **pressure** control and flow control.

Difference between front and back pressure control

Pressure control (front), Upstream test (Process) is located after the control valve. Dynamic range up to 1:200

Back pressure control, Downstream test (Process) is located **before** the control valve. Dynamic range must be calculated. Decisice is the pressure drop over the control valve at the desired flow.

Set-up of a Vögtlin's pressure controller

The actual value from pressure transmitter (4-20 mA) will be connected to the analog setpoint input from the pressure controller

Therefore the device can be **exclusively digitally** operated (Modbus RTU; Profibus DP oder Lab-View)

How can a pressure controller be operated ?

Option: **Direct setpoint setting** with the display of actual values and flow (surcharge upon request)

Communication

Software Tools			
get red-y	NI LabVIEW		
Software get red-y 5	LabVIEW VIs		
free of charge	LabVIEW VIs (LabVIEW 2010 and higher)		
	LabVIEW VIs (LabVIEW 6 and higher)		
	LabVIEW VIs (LabVIEW 8.6 and higher)		

LabVIEW-driver can be downloaded here :

https://www.voegtlin.com/e n/support/download/?gv_se arch=LAB&filter 6=&filter 2 =&mode=all

Software get red-y

You can directly «drive» the pressure controller with our *free-of-charge* Software **get red-y**. In addition, the *Kp* and *Ki*-value can be optimized for your application.

Software get red-y

Druckregelungseinstellung (Auf eigene Gefahr)					
Druckmessgerät Skalierung Nullpunk	t 0	bar ü	Skallierung Regelparameter K0	0	
Skalierung Endwert	3	bar ü	Regelparameter K1 Regeleinstellung	100	
Einheit	bar ü		Wählen Sie Regelparametersatz aus	Benutzer 1 🔻	
Regelmodus	Druckreg	ler 🔹	Regelparametersatz		
Wirkrichtung-Druck	inverti	eren	Кр	100	
			Кі	5	
Gleitender Mittelwertfilter	15	Filterbreite	Кd	0	
Druckmesswert [025]			Regelparametersätze mittels Graph bestimmen	Graph >>	
Üt	bernehmen]	Analog Eingang kalibrieren	Kalibrieren >>	

High flexibility:

- The pressure transmitter can be replaced (e.g. for a different pressure range)
- The customer can himself switch between the frontand back pressure fonction.

Flow-limitation

Graph Tool CH 1: 161316 stwert Durchflus 110 Q ⊠ F Sollwett Druck 100 twert Druck entilauslastum 90 1.8 25 I÷-80 1.6 70 60 1.2 bar **50** · 40 30 -20 0.4 10 0 14:13:11 14:13:15 14:13:19 14:13:23 14:13:27 14:13:31 14:13:39 14:13:35 Istwert [In/min] Ventilauslastung [%] Istwert Druck [bar ü] Zeit: [sec] Stop Start Pause 0 1.212509 14:13:39 100% = 3 bar ü 90% = 2.7 bar ü 0 2000 10000 Regelparametersatz Sollwert 1 80% = 2.4 bar ü 70% = 2.1 bar ü 0 🚍 barü 🥳 Benutzer 1 Кр 60% = 1.8 bar ü 50% = 1.5 bar ü 20 10000 0 Sollwert 2 Ki 0 🚍 barü 🛛 🖅 25% = 0.75 bar ü 20% = 0.6 bar ü 0 0 10000 😵 Regelsatz übernehmen = 0 bar ü Kd

If needed the pressure regulator can be set, in such a manner that a defined flow cannot be exceeded.

With this function the «slop» of the pressure increases can be defined. This example describes that the setpoint could not be exceeded.

Setting-up pressure measurement cell

Pressure P2 process pressure Basically each measuring cell measures a differential pressure

One side of the diaphragm(P1) is

- is being evacuated of 0 bar abs (Absolute pressure)
- openly against environment (Over pressure)
- There is a x-desired pressure (differential pressure)

Setting-up flow sensor

- Large cross sections and therefore less sensitive to contamination
- Very easy to clean with alcohol
- The Sensor is placed directly in the gas flow and thereby ensures a fast and accurate measurement

What must be taking into consideration during the sizing phase ?

The determining parameters are:

- Which of the two (front- or back-) pressure control are concerned ?
- Which pressure should be regulated (measuring range and unit of pressure measurement)
- How high is the volume to be controlled?
- > How high is the **basic flow rate (Leakage)** and the maximum flow?
- In which time should be regulated a volume at a certain pressure ?
- Is permitted to have an Overshoot in the pressure control ?

What are the possible disturbing influences ?

- > The gas supply is **not stable** (e.g. pulsating pump)
- temperature influences cause a unstable pressure
- There is no drain (Leakage)
- > The pressure controller is configured too large or too small
- > There is no, a too small or a too big **buffer volume**
- The mounting positions by small measuring ranges had not been observed
- The pressure transmitter is too far from the device under test (mismeasurement due to pressure drop over the pipe)
- > The pressure controller responds too quickly or too slowly (swings strongly)

A few application examples

- Permeability measurements of concrete
- Part inspections of inhalers (medical)
- Permeability test of membranes
- Leaktest of sterile walls
- Online-gas mixer
- Calibration equipment of Test-leaks

Permeability measurements of concrete

Permeability measurements of concrete

Part inspections of inhalers

With the aid of a vacum pump air is sucked in by an inhaler. This test will allow to verify that a flap provides acces to the drug substance at a certain flow rate (e.g. Ventolin©).

Permeability test of membranes

A membrane have to be tested at a underpressure of 20 mbar for definite flows

Lecktest of sterile walls

Objective:

Sterile walls must be to the permeability (flow rate) at a pressure of 0-200 Pa (0-2 mbar) reviewed.

Lecktest of sterile walls

Leakage = GSC (15 ln/min) – GCR (7.5 ln/min) = 7.5 ln/min at 1.75 mbar

Leaktest with test gases Online-gas mixer with pressure regulation

Pressure controller-applications Calibration of Test-leaks

Test-leaks consist of a glass capillary, with which a defined flow rate is achieved at a specific pressure Such Test-leaks are used to check leak-test equipment.

As these Test-leaks can cause pollution, they must be regularly checked.

The solution: calibration devide for reviewing test leaks

Pressure controller with simultaneous flow measurement Dakks calibration of pressure and flow. 50 mln/min; 500 mln/min und 2000 mln/min

Calibration device for testing Leak-test

The calibration device could be also operated with the get-red-y-Software

flow technology by vögtlin · www.voegtlin.com