02.03.2013 Views

silo 3 - U.S. Department of Energy

silo 3 - U.S. Department of Energy

silo 3 - U.S. Department of Energy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SILO 3' PROJECT<br />

REMEDIAL DESIGN / REMEDIAL ACTION PACKAGE<br />

40430-RDP-0001<br />

Revision 1<br />

September 2003


* 40430-RP-0001,<br />

. 3<br />

.. j. 1 'i ; *?;<br />

.I 5<br />

Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision 1, September 2003<br />

SILO 3 PROJECT REMEDIAL DESIGN I REMEDIAL ACTION PACKAGE<br />

REVISION 1<br />

SECTION TITLE<br />

1. Introduction<br />

2. Process Description<br />

TABLE OF CONTENTS<br />

3. Access and Retrieval Strategy<br />

4. Process Control Plan<br />

5. Environmental Control Plan<br />

5.1<br />

5.2<br />

5.3<br />

5.4<br />

Silo 3 Project ARARlTBC Requirements Compliance Matrix<br />

Radioactive Particulate and Radon-222 Stack Release Calculations<br />

Timed Estimate <strong>of</strong> Secondary Waste<br />

Silos Project Environmental Monitoring Plan<br />

6. Health and Safety Controls<br />

Drawings<br />

0 Civil Drawings<br />

0 Material Balance Table and Process Flow Diagrams<br />

0 Piping and Instrumentation Diagrams<br />

0 HVAC Drawings<br />

0 General Arrangement Drawings<br />

Appendices<br />

0 Remote Control Excavator Details<br />

0 Vacuum Wand Details<br />

i<br />

5069


~-~~<br />

/, - DRAWINGS<br />

I<br />

. 1'<br />

Civil Drawings<br />

94X-3900-G-01297 Civil Site Plan<br />

94X-3900-G-01298 Grading, Drainage, and Erosion Control Plan<br />

Process Flow Diagrams<br />

94X-3900-F-01428 Material Balance Table<br />

94X-3900-F-01429 Material Retrieval and Feed Systems<br />

94X-3900-F-0143 1 Process Vent and Packaging Systems<br />

94X-3900-F-0 1 430 Additive and Wastewater Systems<br />

94X-3900-F-01432 Plant, Instrument, and Breathing Air Systems<br />

Piping and Instrumentation Diagrams<br />

94X-3900-N-0 1 38 1 Piping, Valves, and Miscellaneous<br />

94X-3900-N-01382 Instrumentation<br />

94X-3900-N-01383 Equipment and Miscellaneous<br />

94X-3900-N-02369 Silo 3 Access<br />

94X-3900-N-01433 Mechanical Retrieval System<br />

94X-3900-N-01434 Pneumatic Retrieval System<br />

94X-3900-N-01435 Feed System<br />

94X-3900-N-01436 Bulk Packaging Line A<br />

94X-3900-N-01437 Bulk Packaging Line B<br />

94X-3900-N-01438 Additive Mixing and Wastewater System<br />

94X-3900-N-01439 Process vent System, Sheet 1 <strong>of</strong> 2<br />

94X-3900-N-01440 Process Vent System, Sheet 2 <strong>of</strong> 2<br />

94X-3900-N-01441 Plant Air System<br />

94X-3900-N-01443 Breathing Air System<br />

94X-3900-N-01444 Plant Air System Connections<br />

94X-3900-N-01446 Instrument Air System Connections<br />

94X-3900-N-01447 Domestic and Process Water Systems<br />

94X-3900-N-02993 Vacuum Wand Enclosure<br />

94X-3900-N-05 147 Additive Charging System<br />

94X-3900-N-05 1 39 Additive Feed System<br />

94X-3900-N-02489 Control System Block Diagram<br />

General Arrangement Drawings<br />

94X-3900-M-0146 1 General Arrangement Plot Plan<br />

94X-3900-M-01463<br />

94X-3900-M-01464<br />

General Arrangement East Elevation<br />

General Arrangement 1 '' Floor Plan<br />

94X-3900-M-01465 General Arrangement Plan at EL 597'-8"<br />

94X-3900-M-0 1 466 General Arrangement Section E<br />

94X-3900-M-01467 General Arrangement Section A<br />

94X-3900-M-01468 General Arrangement Section B<br />

94X-3900-M-01469 General Arrangement Section C<br />

94X-3900-M-01470 General Arrangement Section D<br />

~-<br />

ii<br />

Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision1 , September 2003<br />

000003


DRAWINGS, continued<br />

- ”’ .? I ..;j;;. ,;<br />

9 .&,.<br />

Heating, Ventilation, and Air Conditioning Air Flow Diagrams<br />

94X-3900-H-01302<br />

94X-3900-H-01303<br />

94X-3900-H-0 1 348<br />

94X-3900-H-01304<br />

94X-3900-H-01349<br />

94X-3900-H-0 1 347<br />

94X-3900-H-01423<br />

94X-3900-H-01350<br />

: ! > .. 5069<br />

Silo 3 RDIRA Package, 40430-RDP-0001<br />

.. Revision 1, September 2003<br />

Systems and Equipment Designations<br />

Legend, Symbols, and Abbreviations<br />

Process Building - Packaged Air Conditioning Units<br />

Process Areas<br />

Process Building - Exhaust Filtration Units<br />

Silo 3 Enclosure<br />

Storage and Wastewater Tank Area<br />

Cargo Container Bay<br />

Heating, Ventilation, and Air Conditioning Control Diagrams<br />

94X-3900-H-01722<br />

94X-3900-H-01718<br />

Process Building - Packaged Air Conditioning Units<br />

Process Building - Packaging Area<br />

94X-3900-H-017 1 9 Process Building - Corridors/Airlocks<br />

94X-3900-H-01720 Process Building - Excavator Room<br />

94X-3900-H-01721 Process Building - Exhaust Filtration Units<br />

94X-3900-H-01723 Silo Enclosure<br />

94X-3900-H-01724 Cargo Container Bay<br />

94X- 3 900- H-0 1 7 2 5 Storage and Wastewater Tank Area<br />

94X-3900-H-01726 Controls Sequence <strong>of</strong> Operation<br />

. .<br />

. -< ,.<br />

...<br />

...<br />

111


e<br />

e<br />

1.0 Purpose and Scope<br />

t ?:<br />

5069<br />

Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision 1, September 2003<br />

SILO 3 REMEDIAL DESIGN / REMEDIAL ACTION PACKAGE<br />

INTRODUCTION<br />

A Remedial Design (RD) Package documenting the proposed design for retrieval, chemical<br />

stabilization, and <strong>of</strong>fsite disposal <strong>of</strong> Silo 3 material was submitted to U.S. EPA and OEPA<br />

May 19, 2000, and was approved by U.S. EPA on September 27, 2000. A revised RD<br />

package was submitted to U. S. EPA and OEPA in May 2002 to document the design for<br />

the revised path forward for Silo 3 remediation. In response to the disapproval <strong>of</strong> the<br />

revised package by the U.S. EPA, the DOE, U.S. EPA, and OEPA agreed that a revised RD<br />

package would be resubmitted following approval <strong>of</strong> the Record <strong>of</strong> Decision (ROD)<br />

Amendment incorporating the necessary changes to the Silo 3 remedy. This revised<br />

package has been prepared to replace the previous RD Packages and document the design<br />

for the revised path forward for Silo 3 remediation.<br />

The package provides a compilation <strong>of</strong> the necessary substantive information from more<br />

detailed engineering, design, and operations documentation in order to provide U.S. EPA<br />

and OEPA with an understanding <strong>of</strong> the controls incorporated into the revised design to<br />

ensure compliance with ARARs and protection <strong>of</strong> human health and the environment. The<br />

basis, prerequisites, and major components <strong>of</strong> the revised design approach are detailed in<br />

the remaining sections <strong>of</strong> this introduction.<br />

The package also documents the scope <strong>of</strong> subsequent deliverables and appropriate<br />

milestones for implementation <strong>of</strong> the remedial action portion <strong>of</strong> the Silo 3 remedy, and<br />

thereby satisfies the requirements for a Remedial Action (RA) Work Plan for the Silo 3<br />

Project specified by the approved Silo 3 RD Work Plan.<br />

2.0 Background<br />

The Silo 3 Project is a Comprehensive Environmental Response Compensation and Liability<br />

Act, as amended (CERCLA) environmental remediation (cleanup) project at the Fernald<br />

Closure Project (FCP). The objectives <strong>of</strong> the project are removal <strong>of</strong> waste material stored<br />

in Silo 3, appropriate treatment and packaging <strong>of</strong> the material, and shipment <strong>of</strong> the<br />

packaged material to an <strong>of</strong>f-site disposal facility for disposal in accordance with the<br />

selected remedy for Silo 3.<br />

Silo 3, a component <strong>of</strong> the FCP Operable Unit 4 (OU4), contains an estimated 5,088 yd3 <strong>of</strong><br />

byproduct material from uranium recovery operations at Fernald. The predominant<br />

radionuclide <strong>of</strong> concern identified within the material is Thorium-230, a radionuclide<br />

produced from the natural decay <strong>of</strong> Uranium-238. The material is classified as 1 le.(2) by-<br />

product material under the Atomic <strong>Energy</strong> Act (AEA) <strong>of</strong> 1954, as amended, and is<br />

therefore excluded from regulation as a hazardous waste under RCRA and the associated<br />

State <strong>of</strong> Ohio hazardous waste regulations.<br />

1


_-<br />

: ! ,:i<br />

t, ;' '..; -.<br />

2.1 Silo 3 Description<br />

Silo 3 RD/RA Package, 40430-RDP-0001<br />

. 50 4 9. Revision 1, September 2003<br />

-<br />

Silo 3, built in 1952, is a freestanding, pre-stressed concrete, domed <strong>silo</strong>. It is 80 feet in<br />

diameter and about 33 feet above ground level. The floor system is constructed <strong>of</strong> 17<br />

inches <strong>of</strong> compacted clay, a 2-inch thick layer <strong>of</strong> asphaltic concrete, and an 8-inch layer <strong>of</strong><br />

gravel topped by 4 inches <strong>of</strong> concrete. Silo 3 does not have an underdrain system. The<br />

domed ro<strong>of</strong> tapers from 8 inches thick at the <strong>silo</strong> walls to 4 inches thick at the apex. The<br />

apex is 36 feet high, 33 feet above grade. The walls are 27 feet high from the top <strong>of</strong> the<br />

foundation. Silo 3 contains increased reinforcing around the dome periphery (ring beam).<br />

Silo 3 has wire-wrapped prestressing using 8-gauge wire drawn to 0.141 inches.<br />

Five man ways on the dome <strong>of</strong> Silo 3 have an internal diameter <strong>of</strong> approximately 20<br />

inches. One <strong>of</strong> these man ways, on which a dust collector was installed, is centered on<br />

the <strong>silo</strong> dome. Four man ways, which were used as material inlet ports, are arranged<br />

radially, 90" apart, across the dome <strong>of</strong> Silo 3. Two additional 24-inch internal diameter<br />

man ways are located on the dome, one at the northern edge and the other at the eastern<br />

edge. There are also 24 - 2-inch diameter sounding pipes and one - 6-inch diameter vent<br />

pipe on the dome. Silo 3 has a total <strong>of</strong> 46 decant ports, each with a weir and baffle<br />

system. There are 23 decant ports located on the east sidewall and 23 decant ports<br />

located on the west sidewall.<br />

Silo 3 contains "cold" metal oxide waste generated from the operation <strong>of</strong> the feed<br />

Materials Production Center (the original name <strong>of</strong> the FCP facility). The raffinates from the<br />

solvent extraction process were dewatered using rotary vacuum filters. The filtrate<br />

wastes were then processed through evaporators and the concentrates were further<br />

processed using either a spray calciner or rotary calciner. From plant start-up through the<br />

middle 1950s, a spray calciner processed the concentrates. Approximately 35% <strong>of</strong> the<br />

Silo 3 material is believed to have come from this process. Due to operational difficulties<br />

with the spray calciners, a rotary calciner process was implemented. In this process, the<br />

evaporator concentrates were transferred to a drum dryer and finally a rotary calciner.<br />

The calciner removed residual liquids and converted the metal nitrates to metal oxides.<br />

The resultant fine, powdered metal oxides were transferred to Silo 3, via a pneumatic<br />

pipeline, for storage. Placement <strong>of</strong> these metal oxide wastes into Silo 3 continued until<br />

1957. After that, refinery process wastes were placed in on-site surface impoundments.<br />

About 5,088 cubic yards <strong>of</strong> metal oxide material remains in Silo 3. The predominant<br />

radionuclide <strong>of</strong> concern identified within the material is Thorium-230, a radionuclide<br />

produced from the natural decay <strong>of</strong> Uranium-238. Silo 3 material is classified as 1 le.(2)<br />

byproduct material under the AEA, and contains concentrations <strong>of</strong> several heavy metals<br />

including arsenic, chromium, cadmium and selenium. Silo 3 material is exempt from<br />

regulation under RCRA, due to its classification as 1 1 e.(2) byproduct material. The<br />

Applicable or Relevant and Appropriate Requirements (ARARs) for Operable Unit 4 apply<br />

certain requirements <strong>of</strong> RCRA to management <strong>of</strong> Silo 3 Material (see the ARAR<br />

Compliance Matrix, RD Package Section 5)<br />

2 000006


0 assumed<br />

0<br />

0<br />

- 5069.<br />

, *. , , .-i ' I ' j<br />

, :<br />

Silo 3 RDlRA Package, 40430-RDP-0001<br />

Revision 1, September 2003<br />

In general, based on historical information about the generation <strong>of</strong> the material, the<br />

physical characteristics <strong>of</strong> the Silo 3 material are:<br />

0<br />

0<br />

0<br />

0<br />

0<br />

Two-thirds <strong>of</strong> the Silo 3 material is dry, loose, fine powder; located in the upper portion<br />

<strong>of</strong> the <strong>silo</strong>.<br />

The remaining third <strong>of</strong> the Silo 3 material is compacted powder, located towards the<br />

middle and bottom <strong>of</strong> the <strong>silo</strong>.<br />

Miscellaneous debris (such as simple hand tools, personal protective equipment (PPE),<br />

plastic bags, etc.) may be found within the <strong>silo</strong>.<br />

Estimated volume <strong>of</strong> material in Silo 3 is 5,088 yd3<br />

Estimated dry density <strong>of</strong> the Silo 3 material is 29 - 58 Ib/ft3<br />

Retrieved material is expected to have a typical bulk density <strong>of</strong> about 40 - 50 Ib/ft3 prior<br />

to packaging; however, higher and lower densities may be encountered. The packaging<br />

process is expected to result in an increase in density.<br />

3.0 Basis for Remedial Design<br />

3.1 Silo 3 Remedy<br />

The OU4 Record <strong>of</strong> Decision (ROD) was signed on December 7, 1994, and identified<br />

vitrification as the selected remedy for the Silo 1, 2, and 3 material. The OU4 ROD was<br />

modified for Silo 3 through the CERCLA Explanation <strong>of</strong> Significant Differences (ESD)<br />

process. The ESD for Operable Unit 4 Silo 3 Remedial Action was approved by U.S. EPA<br />

March 27, 1998. The treatment and disposal portion <strong>of</strong> the remedy for Silo 3, identified in<br />

the ESD was:<br />

0<br />

Treatment, using either a Chemical Stabilization/Solidification or a Polymer-based<br />

Encapsulation process to stabilize characteristic metals to meet RCRA Toxicity<br />

Characteristic Leaching Procedure (TCLP) limits and attain disposal facility Waste<br />

Acceptance Criteria (WAC);<br />

Off-site disposal at either the Nevada Test Site (NTS) or an appropriately-permitted<br />

commercial disposal facility; and<br />

Treatment may take place <strong>of</strong>fsite, so long as "onsite pretreatment, in combination with<br />

packaging in accordance with United States <strong>Department</strong> <strong>of</strong> Transportation (USDOT)<br />

regulations reduces the dispersability <strong>of</strong> thorium-bearing particulates to produce<br />

transportation risk less than 1 x IO'."<br />

A Remedial Design Package, based upon the contractor design for implementation <strong>of</strong> the<br />

ESD remedy, was submitted to U.S. EPA and OEPA on May 19, 2000. The RD Package<br />

was approved by U.S. EPA on September 27, 2000.<br />

During the process <strong>of</strong> implementing the remedy defined by the Silo 3 ESD, the path<br />

forward for remediation <strong>of</strong> Silo 3 was reevaluated, with input from U.S. EPA, OEPA, and<br />

stakeholders. In accordance with the National Oil and Hazardous Substances Pollution<br />

3


, .<br />

..I<br />

5 0 6 $I Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision 1, September 2003 (,<br />

0<br />

Contingency Plan (NCP), a Proposed Plan (PPI and subsequent Record <strong>of</strong> Decision (ROD)<br />

Amendment was prepared to modify the Silo 3 remedy. The ROD Amendment for<br />

Operable Unit 4, Silo 3 Remedial Action was approved September 24, 2003 and modified<br />

the treatment portion <strong>of</strong> the Silo 3 remedy to:<br />

Treatment to the extent practical, by addition <strong>of</strong> a chemical stabilization reagent to<br />

reduce metals mobility and a binding reagent to reduce dispersability<br />

If above treatment step is deemed un-implementable, a contingency backup would be<br />

implemented to double package the waste.<br />

The remedy for Silo 3 continues to include the following components, which were not<br />

reevaluated, and remain as documented in the original OU4 ROD, and subsequent ESD for<br />

Silo 3:<br />

Maintain transportation risk less than 1 x l 0-6<br />

Off-site disposal <strong>of</strong> Silo 3 material at the Nevada Test Site or a permitted commercial<br />

facility<br />

Removal <strong>of</strong> Silo 3 structure, remediation facilities, and associated systems and<br />

components; disposal <strong>of</strong> contaminated debris in accordance with the Operable unit 3<br />

ROD.<br />

Cleanup <strong>of</strong> soil in Silo 3 area to meet final remediation levels in Operable Unit 5 ROD<br />

Appropriate treatment and disposal <strong>of</strong> all secondary wastes at the Nevada Test Site or<br />

an appropriately licensed <strong>of</strong>f-site facility.<br />

Collection <strong>of</strong> perched water encountered during remedial activities for treatment at OU5<br />

water treatment facilities.<br />

Continued access controls and maintenance and monitoring <strong>of</strong> the stored waste<br />

inventories.<br />

Institutional controls <strong>of</strong> the OU4 area such as deed and land-use restrictions.<br />

3.2 Technical Basis<br />

The path forward used as a basis for the design reflected in this RD/RA Package is:<br />

Pneumatic (vacuum) retrieval <strong>of</strong> Silo 3 material via <strong>silo</strong> man ways on the <strong>silo</strong> dome;<br />

Cutting an opening in the <strong>silo</strong> sidewall for at-grade access by mechanical equipment;<br />

Mechanical retrieval <strong>of</strong> Silo 3 material using remotely controlled mechanical excavation<br />

equipment (in combination with continued pneumatic retrieval as required);<br />

Application <strong>of</strong> a solution <strong>of</strong> lignosulfonate, water, and ferrous sulfate to the Silo 3<br />

material as it enters the package to reduce leachability and dispersability;<br />

Packaging <strong>of</strong> Silo 3 material for transportation to an <strong>of</strong>f-site disposal facility; and<br />

Transportation to the selected disposal facility(s) in accordance with DOT regulations<br />

and transportation risk criterion specified by the ROD.<br />

The proposed design is depicted in Figure 1.<br />

4<br />

000008


1<br />

5 1<br />

Silo 3 RD/RA Package, 40430-RDP-0001 i<br />

Revision1 , September 2003 1


Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision 1, September 2003<br />

3.3 Supporting Studies 5069<br />

The design documented in this RD/RA Package utilized material characterization,<br />

treatability, operability, and technical data from a wide range <strong>of</strong> studies. The primary<br />

studies supporting the technical basis <strong>of</strong> the design are summarized below.<br />

1990 - 3/22/90 - IT Analytical Services - Analytical Report<br />

1993 - Battelle Pacific Northwest National Laboratories (BPNNL) & FEMP -<br />

OU4 Treatability Study Report for the Vitrification <strong>of</strong> Residues from Silos 1 , 2,<br />

&3<br />

1993 - FEMP - RI Report for OU4<br />

1996 - Argonne National Laboratory - Silo 3 Particle Size Analysis<br />

1997 - Nuclear Fuel Services - Treatability Study Report<br />

1997 - Argonne National Laboratory - Silo 3 Material Compound Analysis<br />

1997 - FEMP - Small-Scale Waste Retrieval (Summary info in RFP F98P132339)<br />

1998 - RMRS - Treatability Testing Report (RFP F98P132339 Proposal)<br />

1998 - IT Corporation - Treatability Report (RFP F98P132339 Proposal)<br />

2000 - Westinghouse Savannah River Co - Characterization <strong>of</strong> Silo 3 Waste<br />

2000 - RMRS - Silo 3 Characterization, Treatability, and Compaction Study<br />

2001 - Westinghouse Savannah River Co - Silo 3 Physical Testing Final Report<br />

2001 /ZOO2 - FEMP - Chemical Stabilization Development Work Plan<br />

2001/2002 - Jenike & Johanson, Inc. - Silo 3 Material Flow Properties Test Results<br />

2002 - Jenike & Johanson, Inc. - Modeling <strong>of</strong> Silo 3 Material Removal Via Vacuum<br />

Retrieval<br />

2002 - Jenike & Johanson, Inc. - Silo 3 Pneumatic Retrieval Wand Loads<br />

2002 - FEMP -Silo 3 Design Data Development Report<br />

2002 - FEMP - Silo 3 Dedusting Report<br />

2002 - Jenike & Johanson, Inc. - Pretreatment <strong>of</strong> Silo 3 Material with Lignosulfonate<br />

Solution<br />

2002 - FEMP - Radon Flux Rate Measurements<br />

2002 - Jenike & Johanson, Inc. - Modeling <strong>of</strong> Silo 3 Material Removal Via Mechanical<br />

Retrieval<br />

2002/2003 - FEMP - Silo 3 Conditioning Report<br />

In 1989, samples <strong>of</strong> Silo 3 material were collected during the Remedial Investigation &<br />

Feasibility Study (RI/FS), using a vibrating core-drilling instrument. Portions <strong>of</strong> the samples<br />

were analyzed by International Technologies (IT) for characterization. Of the 23 inorganic<br />

constituents detected, the predominant metals included aluminum, calcium, iron,<br />

magnesium, potassium, and sodium. Compound analyses performed by Argonne National<br />

Laboratory (ANL) on some <strong>of</strong> the archived RI/FS samples, showed that compounds in the<br />

Silo 3 material are mostly in the form <strong>of</strong> phosphates, sulfates, and oxides with the<br />

existence <strong>of</strong> some nitrates.<br />

As presented in the 1990 IT Analytical Services report, moisture (water) content <strong>of</strong> the<br />

sampled material ranged from 3.7 to 10.2%, by weight. Also, about 90%, by weight, <strong>of</strong><br />

the sampled material passed through a 200-mesh sieve.<br />

6 000010


0 characteristics.<br />

0<br />

5049<br />

Silo 3 RDlRA Package, 40430-RDP-0001<br />

Revision1 , September 2003<br />

The untreated RVFS samples were analyzed for metals Extraction Procedure (EPI-Toxicity.<br />

Four metals leached above Toxicity Characteristics (TC) leaching criteria - arsenic,<br />

cadmium, chromium, and selenium. Some <strong>of</strong> the archived samples were later analyzed by<br />

Nuclear Fuel Services, Inc. (NFS) during treatability testing to establish treatment methods<br />

to stabilize the hazardous constituents <strong>of</strong> the Silo 3 material. The Toxicity Characteristics<br />

Leaching Procedure (TCLP) conducted by NFS showed that only chromium exceeded the<br />

TC leaching criteria.<br />

In 1997, the Silo 3 Small-Scale Waste Retrieval (SSWR) activity collected samples using<br />

an auger inserted through decant ports on the west side <strong>of</strong> Silo 3. Based on data obtained<br />

during the SSWR activity, the Silo 3 material is likely compacted at the perimeter and does<br />

not flow freely up to eleven feet above the bottom <strong>of</strong> the <strong>silo</strong>. The material may be<br />

compacted throughout the bottom <strong>of</strong> Silo 3.<br />

Subsequent treatability testing conducted by Rocky Mountain Remediation Services<br />

(RMRS) on untreated samples collected during SSWR showed that only chromium and<br />

selenium leached above the TC leaching criteria. The maximum allowable concentrations<br />

for arsenic, cadmium, chromium, and selenium are 5.0, 1 .O, 5.0, and 1 .O mg/L,<br />

respectively.<br />

In 2001 and 2002, Fluor Fernald has conducted chemical stabilization development work<br />

to develop preferred chemical formulas for stabilization <strong>of</strong> the RCRA metals and for<br />

solidification <strong>of</strong> the material into a form with minimal dusting and desirable flow<br />

In January 2002, a Flow Properties Test Report was issued by Jenike & Johanson,<br />

Incorporated, which presented the results <strong>of</strong> Silo 3 material characterization studies<br />

performed on available sample material. The results <strong>of</strong> this report are applicable to<br />

detailed design <strong>of</strong> the project material handling equipment and systems.<br />

In 2002, Jenike & Johanson, Inc. modeled the behavior <strong>of</strong> Silo 3 material during removal<br />

by both mechanical and vacuum retrieval. The model used the flow properties <strong>of</strong> the<br />

material and details <strong>of</strong> the planned retrieval systems to recommend approaches to efficient<br />

and safe retrieval operation and to predict the extent <strong>of</strong> retrieval possible with the vacuum<br />

wand.<br />

In 2002, Jenike & Johanson, Inc. issued a report analyzing the stress loads that the<br />

vacuum retrieval wand may see under different scenarios. The analysis was conducted to<br />

demonstrate that the loads that could be transmitted to the <strong>silo</strong> dome during pneumatic<br />

retrieval were within the allowable limits.<br />

In 2002, Fluor Fernald conducted a study to develop a method to control the dispersability<br />

<strong>of</strong> Silo 3 material in order to mitigate the risk <strong>of</strong> contamination spread in the unlikely event<br />

<strong>of</strong> a transportation accident. Incorporating a certain amount <strong>of</strong> a dilute solution <strong>of</strong> sodium<br />

lignosulfonate in Silo 3 material was found to significantly reduce the fines by<br />

agglomeration.<br />

7<br />

000011


t. '<br />

50 69<br />

Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision1 , September 2003<br />

In 2002, Jenike & Johanson, Inc. conducted a pilot plant study to evaluate the best means<br />

and process location for incorporating a dilute sodium lignosulfonate solution into Silo 3<br />

material in order to reduce the material dust generation. The report recommended use <strong>of</strong> a<br />

spray method to be installed in the packaging container fill chute.<br />

In 2003, Fluor Fernald issued a report covering the results <strong>of</strong> a study to develop a<br />

conditioning method for Silo 3 material that would simultaneously reduce the dusting and<br />

reduce the leachability <strong>of</strong> some heavy metals. The report indicated that treating Silo 3<br />

material with a dilute solution <strong>of</strong> sodium lignosulfonate that had been augmented with<br />

ferrous sulfate was efficient in reducing the dusting and reducing the leachability <strong>of</strong><br />

chromium.<br />

4.0 Silo 3 Remedial Action Implementation<br />

The following deliverables will be submitted according to milestones established in the<br />

next section 5 to document implementation <strong>of</strong> the remedial action for Silo 3.<br />

4.1 Transportation and Disposal Plan<br />

The packaging system and other aspects <strong>of</strong> the design documented in this RD/RA Package<br />

will accommodate transportation <strong>of</strong> the Silo 3 material to the NTS and/or a permitted<br />

commercial facility by direct truck, direct rail, or combined truckhail (intermodal)<br />

transportation. The transportation risk evaluation documented in the Proposed Plan for<br />

Silo 3 (40430-RP-0014, Revision 0, April 2003) demonstrated that any <strong>of</strong> these modes <strong>of</strong><br />

transportation could be accomplished with a transportation risk well within the criteria<br />

specified by the ROD Amendment.<br />

The details <strong>of</strong> the transportation and disposal operations, including onsite staging,<br />

logistics, packaging configuration and selected mode(s) <strong>of</strong> transportation to the selected<br />

disposal facility(s) will be documented in the Silo 3 Project Transportation and Disposal<br />

Plan, which will be submitted to the USEPA and OEPA for review and approval in<br />

accordance with the milestone established in Section 5.0.<br />

4.2 Sampling and Analysis Plan<br />

Previous versions <strong>of</strong> the Remedial Design Package for Silo 3 included a Sampling and<br />

Analysis Plan. The purpose <strong>of</strong> this plan was to document the sampling and analysis<br />

program to be used to demonstrate that the treated Silo 3 material met the numerical<br />

performance standards <strong>of</strong> the selected remedy for Silo 3. The ROD Amendment for Silo 3<br />

removed the RCRA TC limits for metals as performance criteria for treatment, and requires<br />

that the material be treated, using a best management approach to meet disposal facility<br />

WAC. The ROD Amendment (Section 4,l) states , "Given the absence <strong>of</strong> any regulatory<br />

requirement , no analytical criteria (e.g., treated waste metals analyses) are necessary as<br />

part <strong>of</strong> the best management approach to demonstrate the degree <strong>of</strong> treatment." A<br />

treated waste Sampling and Analysis Plan is, thetrefore, no longer necessary as part <strong>of</strong> the 0<br />

8<br />

000812<br />

-<br />

0


*<br />

ACTIVITY / DELIVERABLE<br />

Submit Silo 3 Remedial Action Work Plan to<br />

the U.S. EPA for review'<br />

Submit Silo 3 Transportation and Disposal<br />

Plan to the U.S. EPA for review<br />

Initiate Silo 3 Remediation Facility Operations<br />

Submit D&D Implementation Plan for the OU4<br />

Complex to U.S. EPA for review<br />

Silo 3 RD/RA Package, 40430-ROP-0001<br />

Revision1 , September 2003<br />

RD Package. The final waste acceptance process at the selected disposal facility(s) will<br />

confirm the requirements, including any necessary process control or treated waste<br />

sampling and analysis data, for demonstration that the Silo 3 material meets 'the disposal<br />

facility waste acceptance criteria.<br />

4.3 Safe Shutdown / D&D Plan<br />

The OU4 ROD and the ROD Amendment for Silo specify that the Silo 3 structures, and<br />

subsequently the waste retrieval and remediation facilities and equipment, will be<br />

decontaminated, dismantled, and disposed <strong>of</strong> in accordance with the OU3 ROD. The plans<br />

and schedule for decontamination and dismantlement (D&D) <strong>of</strong> the Silo 3 structures, and<br />

the facilities and equipment installed under this RD/RA Package will be documented in the<br />

D&D Implementation Plan for the OU4 Complex. In accordance with the OU3 Integrated<br />

Remedial Design/Remedial Action (RD/RA) Work Plan, as modified by letter DOE-0343-03,<br />

dated April 18, 2003, this D&D Implementation Plan is due to be submitted to the U.S.<br />

EPA for review by May 28, 2004.<br />

MILESTONE<br />

October 6, 2003 - satisfied by this<br />

submittal<br />

May 1, 2004<br />

October 1, 2004<br />

May 28, 2004'<br />

'Existing milestone established by the Revised Silo 3 Remedial Design Deliverables<br />

Schedule, DOE-0724-01, 7/13/01<br />

'Existing milestone established by the OU3 Integrated RD/RA Work Plan (2503-WP-0023,<br />

rev 0), May 1997, as modified by letter DOE-0343-03, 4/18/03<br />

;- .:. -<br />

x<br />

'. . .<br />

., ..<br />

9<br />

5069<br />

000813


-<br />

PROCESS DESCRIPTION<br />

FQR THE SILO 3 PROJECT<br />

SUBMITTED TO:<br />

FLOUR FERNALD, INC.<br />

CONTRACT NO. DE-AC24-01 OH201 15<br />

DOCUMENT NO.: 40430-RP-0003<br />

PREPARED BY: DATE: J?A3<br />

MANAGER<br />

REVIEWED BY: kd DATE:<br />

MANAGER<br />

vlg7@%<br />

APPROVED BY: DATE:<br />

DORIS EDWARDS, FLUOR FEFIPJALD, INC., PROJECT MANAGER<br />

U.S. DEPARTMENT OF ENERGY<br />

FERNALD ENVIRONMENTAL MANAGEMENT PROJECT<br />

PREPARED UNDER CONTRACT NO. DE-AC24-01 OH201 15<br />

JACOBS ENGINEERING PROJECT NO, 35H19605


e<br />

Revision<br />

Date<br />

Prepared By<br />

Checked By<br />

Approved By<br />

.<br />

PROCESS DESCRIPTION<br />

FOR THE SILO 3 PROJECT<br />

Document No. 40430-RP-0003<br />

September 5, 2003<br />

Revision I<br />

0 1<br />

711 1/02 9/5/03<br />

J. Nelson J. Nelson<br />

S. Mitchell G. Schmid<br />

J. Nelson<br />

Prepared Under DOE<br />

Contract No. DE-AC24-01 OH201 15<br />

. .. .. . ., . . .:.:. .<br />

. . ...<br />

. ,<br />

... .. .' ,-<br />

.:!<br />

.. .<br />

5069


I<br />

I'<br />

f<br />

ti'<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

_- 50 6.9<br />

September 5, 2003<br />

__<br />

Revision<br />

0<br />

'. 1<br />

Date<br />

7/11 /02<br />

9/5/03<br />

Revision Sheet<br />

Pages Affectec<br />

ALL<br />

ALL<br />

Reason for Revision<br />

ISSUED FOR DESIGN<br />

REVISED PER DCN-40430-JEG-080<br />

000016<br />

e


.<br />

..... . . '_ Process Description for the Silo 3 Project<br />

Document No . 40430.RP-0003. Rev . 1<br />

Jacobs Project No . 35H19605<br />

September 5. 2003<br />

e' ACRONYMS v111<br />

TABLE OF CONTENTS<br />

......................................................................................................... ...<br />

1.0 INTRODUCTION ........................................................................................ 1-1<br />

2.0 MATERIAL RETRIEVAL AND TRANSFER SYSTEMS ......................................... 2-.1<br />

2.1 PNEUMATIC RETRIEVAL SYSTEM (SYSTEM 10) ................................... 2.1<br />

. . 2.1.1 Vacuum Wand Enclosure ......................................................... 2-2<br />

2.1.2 Pneumatic Retrieval Collector and Cartridge Filter .................... , ... 2-2<br />

2.1.3' HEPA Filters. Pneumatic Retrieval Blower. and Exhaust Stack ....... 2-2<br />

2.1.4 Supply HEPA Filter (FLT-10-5070) ............................................. 2-2<br />

2.1.5 Pneumatic Retrieval Collector Discharge Feeder (FDR-10-5104) ...... 2-3<br />

2.2<br />

2.1.6 Primary and Secondary Rotary Feeders (ROF-10-5108 and-<br />

ROF-10-5 1 10) ....................................................................... 2-3-<br />

2.1.7 .Feed Conveyor (FDR-10-5 102) .................................................. 2-3<br />

2.1.8 Auxiliary Vacuum Blower (BLR-10-5008) ............................. .1 .... 2-3 .<br />

MECHANICAL RETRIEVAL SYSTEM (SYSTEM 11) ................................. 2-3<br />

2.2.1 Excavator (EXC-1 1-5050) ........................................................ 2-4<br />

2.2.2 Retrieval Bin (HBN-1 1-5054) .................................................... 2-4<br />

2.2.3. Retrieval Bin Register (EAR-11-5052) and Excavator Room Register<br />

(EAR-11-5053) ...................................................................... 2-5<br />

2.2.4 Retrieval Bin Discharge Feeder (FDR-1 1-51 06) ............................ 2.5 . .<br />

2.2.5 Inclined Conveyor (DFC-1 1-5056) ............................................. 2-5 . .<br />

2.2.6 Transfer Conveyor (FDR-11-5100) ............................................ 2-5<br />

@ 3.0 CONTAINER MANAGEMENT SYSTEM (SYSTEM. 25) AND SAMPLING SYSTEM.<br />

(SYSTEM 84) ............................................................................................ 3-1<br />

3.1 CONTAINER MANAGEMENT EQUIPMENT AND SUPPLIES ........................ 3-1<br />

3.1.1<br />

3.1.2<br />

3.1.3<br />

.<br />

Container Management and Packaging Systems A&B<br />

(SKD-25-5250A&B) .................................................................<br />

Other Transport Equipment ......................................................<br />

Miscellaneous Equipment ..........................................................<br />

.<br />

3-1<br />

3-2<br />

3-2<br />

4.0<br />

3.2 PRELIMINARY ACTIVITIES .................................................................. 3-3<br />

3.3 . CONTAINER FILLING OPERATIONS .................................................... 3-3<br />

3.4 'CONTAINER SAMPLING OPERATIONS ................................................. 3-4<br />

3.5 CONTAINER CLOSING OPERATIONS ................................................... 3-4<br />

3.6 CONTAINER SURVEYING AND DECONTAMINATION OPERATIONS ......... 3.5<br />

3.7 CONTAINER TRANSPORT OPERATIONS ............................................. 3.5<br />

PROCESS VENT SYSTEM (SYSTEM 19) ........................................................ 4-1<br />

4.1 INTRODUCTION ............................................................................... 4-1<br />

4.1.1 General.Information ................................................................ 4-1<br />

4.1.2 Interaction <strong>of</strong> PVS. PRS. and HVAC Systems ............................. 4-1<br />

4.2 PROCESS VENT SYSTEM EQUIPMENT ................................................. 4-3<br />

. . . . . .<br />

..<br />

. . ' .<br />

' i<br />

iii<br />

. .<br />

800017<br />

I<br />

69


I<br />

. .<br />

? . .<br />

3 : . :<br />

. . .<br />

rrocess UeSCrlptlOn tor tne biio J rrojecr<br />

Document No . 40430.RP-0003. Rev . 1<br />

Jacobs Project No . 35H19605<br />

September 5. 2003<br />

4.3 PROCESS VENT SYSTEM SOURCES ................................................... 4-3<br />

4.3.1 Silo 3 and VWEs (ENC-10-5020A-F) ......................................... 4-3<br />

4.3.2 Excavator Room Register (EAR-1 1-5053) ................................... 4-5<br />

...<br />

4.3.3 Retrieval Bin (HBN-11-5054) and Retrieval Bin Discharge Feeder<br />

(FDR-1 1-5106) 4-5<br />

. . . 5.0<br />

.......................................................................<br />

4.3.4 Inclined Conveyor (DFC-I 1-5056) ............................................. 4-5<br />

4.3.5 Container Management System ................................................ 4-5 .<br />

. . 4.4 PROCESS VENT SYSTEM OPERATION ................................................. 4-6<br />

4.4.1 Process Vent Dust Collectors (DCL-19-5202A&B) ........................ 4-6<br />

4.4.2 Fines Collection Bins A&B (HBN-19-5205 A&B) .......................... 4.6<br />

4.4.3 Process HEPA Filters (FLT-19-5204 A&B) ............................... ~ 4 - 6<br />

4.4.4 Process Exhaust Fans (FAN-I 9-5206 A&B) ................................ 4-6<br />

4.4.5 Exhaust Stack (STK-19-5209) and Continuous Emissions Monitor<br />

(CEM-19-5208) ......................................................................... 4-6<br />

ADDITIVE SYSTEM (SYSTEM 44) ................................................................ 5. I.<br />

5.1<br />

ADDITIVE SYSTEM EQUIPMENT ........................................................ 5-1<br />

5.2 ADDITIVE SYSTEM OPERATION ......................................................... 5-~<br />

5 2.1 Sodium Lignosulfonate Supply .................................................. 5-2<br />

5.2.2 Ferrous Sulfate Supply .............................................................. 5-2<br />

5.2.3 Process Water Supply .............................................................. 5.2<br />

. .<br />

5.2.4 Preparation and Transfer <strong>of</strong> Mixed Additive ................................ 5-2<br />

5.2.5 Charging <strong>of</strong> Mixed Additive ...................................................... 5-3<br />

6.0 SUPPORT SYSTEMS .................................................................................. 6-1<br />

6.1 HEATING. VENTILATION. AND AIR CONDITIONING .............................. 6-1<br />

6.1.1 Rooms and Areas Serviced by HVAC Systems ............................ 6.1<br />

6.1.2 Supply Air System (System 70) ................................................ 6-4<br />

6.1.3 Exhaust Air System (System 71 .............................................. 6-4<br />

6.2 PLANT AND INSTRUMENT AIR SYSTEM (SYSTEM 40) ......................... 6-4<br />

6.2.1 Piant/lnstrument Air Equipment (SKD-40-5300) .......................... 6-4<br />

6.2.2 Plant/lnstrument Air System Operation ...................................... 6.5<br />

6.3 BREATHING AIR SYSTEM (SYSTEM 41) ............................................. 6-5<br />

6.3.1 Breathing Air System Equipment (SKD-41-5350) ......................... 6-6<br />

6.3.2 Breathing Air System Operation ................................................ 6-5<br />

6.4<br />

PROCESS WATER AND DOMESTIC WATER SYSTEMS (SYSTEMS 50 AND<br />

5 1 ) ................................................................................................ 6-5<br />

6.5 WASTEWATER SYSTEM (SYSTEM 62) ............................................... 6-6<br />

6.5.1 Wastewater System Equipment ................................................ 6-6<br />

6.5.2 Wastewater System Operation ................................................. 6-6<br />

7.0 REFERENCES ............................................................................................ 7-1<br />

000018<br />

iv I<br />

I<br />

e


.e .<br />

. . .<br />

b.1 . ..<br />

, 8 , .<br />

". 3 .iL'<br />

LIST OF TABLES<br />

Process uescription lor me aiio J rrojecr<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

Table -1 -1 : Silo 3 System Numbers and Names.; ....................................................... 1-2<br />

. ..........<br />

. Table 6-1 : Silo 3 HVAC Information ............................................... i.......... .'... 6-2<br />

...<br />

LIST OF FIGURES . .<br />

'5069<br />

Figure 1-1 : View <strong>of</strong> Silo 3 (Looking'West) ........................................................ ; ........ 1-3<br />

Figure 1-2:. Flow Diagram for Silo 3 Project ............................. .;.. ............................. 1-4<br />

Figure 4-1 : Airflow Diagram for Phase I .......................................................... i ........ 4-2 . . .<br />

Figure 4-2: Airflow Diagram for Phase 2 ...................................................... ....: ....... 4-4.<br />

V<br />

. .<br />

800019<br />

I


. Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5,2003<br />

REFERENCE DRAWINGS:<br />

Process Flow Diagrams:<br />

94X-3900-F-01428 FOOOl Material Balance Table<br />

94X-3900-F-01429 F0002 Material Retrieval and Feed Systems<br />

94X-3900-F-01431 F0003 Process Vent and Packaging Systems<br />

94X-3900-F-01430 F0004 Additive and Wastewater Systems<br />

94X-3900-F-01432 F0005 Plant, Instrument, and Breathing Air Systems<br />

Piping & Instrument Diagrams:<br />

94X-3900-N-0 1 38 1<br />

94X-3900-N-01382<br />

94X-3900-N-01383<br />

94X-3900-N-02369<br />

94X-3900-N-01433<br />

94X-3900-N-0 1 434<br />

94X-3900-N-01435<br />

94X-3900-N-01436<br />

94X-3900-N-01437<br />

94X-3900-N-01438<br />

94X-3900-N-0 1439<br />

94X-3900-N-01440<br />

94X-3900-N-01441<br />

94X-3900-N-01443<br />

94X-3900-N-01444<br />

94X-3900-N-01445<br />

94X-3900-N-0 1446<br />

94X-3900-N-01447<br />

94X-3900-N-02993<br />

94X-3900-N-05 147<br />

94X-3900-N-05 1 39<br />

NO001<br />

NO002<br />

NO003<br />

NO099<br />

NO100<br />

NO101<br />

NO102<br />

NO 103<br />

NO104<br />

NO105<br />

NO 106<br />

NO107<br />

NO 108<br />

NO1 10<br />

NO1 11<br />

NO112<br />

NO113<br />

NO1 14<br />

NO115<br />

NO1 16<br />

NO1 17<br />

Piping, Valves, and Miscellaneous<br />

Instrumentation<br />

Equipment and Miscellaneous<br />

Silo 3 Access<br />

Mechanical Retrieval System<br />

Pneumatic Retrieval System<br />

Feed System<br />

Bulk Bag Packaging Line A<br />

Bulk Bag Packaging Line 6<br />

Additive Mixing and Wastewater Systems<br />

Process Vent System, Sheet 1 <strong>of</strong> 2<br />

Process Vent System, Sheet 2 <strong>of</strong> 2<br />

Plant Air System<br />

Breathing Air System<br />

Plant Air System Connections<br />

Breathing Air System Connections<br />

Instrument Air System Connections<br />

Domestic and Process Water Systems<br />

Vacuum Wand Enclosure<br />

Additive Charging System<br />

Additive Feed System<br />

General Arrangement Drawings:<br />

94X-3900-M-0 146 1 MOO01 General Arrangement Plot Plan<br />

94X-3900-M-01463 MOO02 General Arrangement East Elevation<br />

94X-3900-M-0 1464 MOO03 General Arrangement 1 a Floor Plan<br />

94X-3900-M-01465 MOO04 General Arrangement Plan at EL 597'-8"<br />

94X-3900-M-01466 MOO06 General Arrangement Section E<br />

94X-3900-M-01467 MOO07 General Arrangement Section A<br />

94X-3900-M-0 1468 MOO08 General Arrangement Section B<br />

94X-3900-M-0 1469 MOO09 General Arrangement Section C<br />

94X-3900-M-01470 MOO1 0 General Arrangement Section D<br />

vi<br />

soooao<br />

5069<br />

..


e .L<br />

0<br />

.;- REFERENCE DRAWINGS (continued):<br />

.L-<br />

Process Description tor the SI10 3 rrojecr<br />

Document No. 4043pRP-0003, Rev. 1 .<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

5069<br />

Heating, Ventilation, and Ail r Conditioning Air Flow Diagrams:<br />

94X-3900-H-01302 HOOOl Systems and Equipment Designators<br />

I<br />

94X-3900-H-01303<br />

94X-3900-H-01348<br />

H0002<br />

H0003<br />

Legend, Symbols & Abbreviations<br />

Process Building - Packaged Air Conditioning Units<br />

94X-3900-H-01304<br />

94X-3900-H-01349<br />

H0004<br />

H0005<br />

Process Areas<br />

Process Building - Exhaust Filtration Units<br />

94X-3900-H-01347 H0006 Silo 3 Enclosure<br />

94X-3900-H-0 1 423 H0007 Storage and Wastewater Tank Area<br />

94X-3900-H-01350 H0008 Cargo Container Bay<br />

Heating, Ventilation, and Air Conditioning Control Diagrams:<br />

94X-3900-H-01722 H0020 Process Building - Packaged Air Conditioning Units<br />

94X-3900-H-01718 H0021 Process Building - Packaging Area<br />

94X-3900-H-01719 H0022 Process Building - Corridors/Airlocks<br />

94X-3900-H-01720 H0023 Process Building - Excavator Room<br />

94X-3900-H-01721 H0024 Process Building - Exhaust Filtration Units<br />

I<br />

94X-3900-H-0 1 723 H0025 Silo Enclosure<br />

94X-3900-H-0 I 724 H0026 Cargo Container Bay<br />

94X-3900-H-01725 H0027 Storage and Wastewater Tank Area<br />

94X-3 900-H-0 1 7 26 H0028 Controls Sequence <strong>of</strong> Operations


1 Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

A&RS<br />

ALARA<br />

AWWT<br />

BAS<br />

BFP<br />

CCN<br />

CEM<br />

DOE<br />

FEMP<br />

HDPE<br />

HEPA<br />

HVAC<br />

IP-2<br />

MRS<br />

P&ID<br />

PFD<br />

PPE<br />

PRS<br />

PVS<br />

RBDF<br />

RF<br />

SAR<br />

ULPA<br />

UNlD<br />

VWE<br />

ACRONYMS<br />

Access and Retrieval Strategy<br />

as low as reasonably achievable<br />

Advanced Wastewater Treatment<br />

Breathing Air Station<br />

backflow preventer<br />

closed-circuit television<br />

Continuous Emissions Monitor<br />

U.S. <strong>Department</strong> <strong>of</strong> <strong>Energy</strong><br />

Fernald Environmental Management Project<br />

high-density polyethylene<br />

high-efficiency particulate air<br />

heating, ventilation, and air conditioning<br />

Industrial Packaging 2<br />

Mechanical Retrieval System<br />

Piping and Instrument Diagram<br />

Process Flow Diagram<br />

personal protective equipment<br />

Pneumatic Retrieval System<br />

Process Vent System<br />

Retrieval Bin Discharge Feeder<br />

radio frequency<br />

supplied-air respirator<br />

ultra low penetrating air<br />

unique identifier<br />

Vacuum Wand Enclosure<br />

5069<br />

000022<br />

viii I<br />

'I


0<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

. Jacobs Project No. 35H19605<br />

September 5, 2003<br />

50 69<br />

This process description addresses the process systems and equipment for the Silo 3 I<br />

Project at the U.S. <strong>Department</strong> <strong>of</strong> <strong>Energy</strong> (DOE) Fernald Environmental Management<br />

Project (FEMP) site. As part <strong>of</strong> the remediation <strong>of</strong> Operable Unit 4 at the FEMP,<br />

approximately 5,100 yd3 <strong>of</strong> byproduct metal oxide materials stored in Silo 3 will be<br />

removed (retrieval), conditioned, packaged, and transported to an <strong>of</strong>f-site facility for I<br />

treatment and/or disposal.<br />

A separate document, Access and Retrieval Strategy for the Silo 3 Project (FEMP 2002a)<br />

(A&RS) describes the strategy used to remove material from Silo 3. I<br />

This process description describes the following activities:<br />

retrieval and transfer <strong>of</strong> Silo 3 material from Pneumatic Retrieval System (PRS) and<br />

Mechanical Retrieval Systems (MRS) to the Process Building,<br />

0 conditioning <strong>of</strong> material,<br />

0<br />

packaging <strong>of</strong> material in containers, and<br />

shipping <strong>of</strong> material <strong>of</strong>f site for treatment and/or disposal.<br />

This document describes the Silo 3 Project processes and equipment. The systems<br />

addressed in this process description are shown in Table 1-1. Figure 1-1 is a photograph <strong>of</strong><br />

the <strong>silo</strong> (looking west), and Figure 1-2 is a simplified flow diagram <strong>of</strong> the entire process.<br />

To meet as low as reasonably achievable (ALARA) guidelines regarding radiation, the<br />

systems and equipment used to handle Silo 3 material include containment and ventilation<br />

features to minimize exposure <strong>of</strong> personnel to both the Silo 3 material and to radon<br />

(FEMP 2003a).<br />

. .<br />

,.'. ...<br />

1-1<br />

008023


.: c<br />

. I<br />

~<br />

. 10<br />

1 .l<br />

19<br />

25<br />

40<br />

41<br />

44<br />

50<br />

51<br />

62<br />

70<br />

71<br />

77<br />

84<br />

rrocess uescrcption ror me aiio 3 rrojecr<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

-<br />

Table 1-1: Silo 3 System Numbers and Names 5069<br />

Pneumatic Retrieval System (PRS)<br />

Mechanical Retrieval System (MRS)<br />

Process Vent System (PVS)<br />

Container Management System<br />

Plant and Instrument Air System<br />

Breathing Air System<br />

Additive System<br />

Process Water System<br />

Domestic Water System<br />

Wastewater System<br />

Supply Air System<br />

Exhaust Air System<br />

Miscellaneous HVAC' Systems<br />

Sampling System<br />

'HVAC = heating, ventilation, and air conditioning<br />

1-2<br />

000024<br />

-.___--<br />

I


P<br />

.<br />

..<br />

m<br />

C<br />

4<br />

0<br />

d<br />

r<br />

0<br />

E<br />

a<br />

.m<br />

ii<br />

00002s


f<br />

U<br />

0<br />

I-<br />

. ..<br />

4-<br />

000026<br />

- 5069


Proces's Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

e<br />

\ '4<br />

I.: I' '.j<br />

2.0 MATERIAL RETRIEVAL AND TRANSFER SYSTEMS 50 69<br />

This section describes the retrieval and transfer <strong>of</strong> material from Silo 3 to the packaging<br />

system in the Process Building.<br />

@<br />

e<br />

Initially, material is retrieved from Silo 3 via manways on the <strong>silo</strong> dome using the Vacuum<br />

Wand Enclosures (VWEs) in the PRS (see Section 2.1). One <strong>of</strong> the main goals <strong>of</strong> the initial<br />

retrieval is the removal <strong>of</strong> material from behind a selected section <strong>of</strong> the <strong>silo</strong> sidewall,<br />

where an opening will be cut for at-grade material retrieval by the mechanical excavator in<br />

the MRS'. Prior to mechanical retrieval, the PRS will be used until it is no longer effective<br />

for material retrieval from the <strong>silo</strong> dome manways. Containment ventilation to support PRS<br />

operations prior to cutting the <strong>silo</strong> sidewall opening is referred to as "Phase 1" and is<br />

described in Section 4.1.2.<br />

After the <strong>silo</strong> sidewall opening is cut, the MRS will retrieve material from Silo 3 via the<br />

opening (see Section 2.2). Containment ventilation to support MRS operations with the<br />

<strong>silo</strong> sidewall opening is referred to as "Phase 2" and is described in Section 4.1.2.<br />

The effect <strong>of</strong> MRS operations on the material is expected to provide suitable conditions for<br />

continued, simultaneous use <strong>of</strong> the PRS for material retrieval, either from the <strong>silo</strong> dome<br />

manways or by using a vacuum wand attachment on the Excavator. Containment<br />

ventilation to support PRS operations with the <strong>silo</strong> sidewall opening is also described in<br />

Section 4.1.2.<br />

2.1<br />

The following Process Flow Diagram (PFD) and Piping and Instrument Diagrams (P&IDs)<br />

illustrate the PRS:<br />

94X-3900-F-01429 F0002 Material Retrieval and Feed Systems<br />

94X-3900-N-02369 NO099 Silo 3 Access<br />

94X-3900-N-01434 NO1 01 Pneumatic Retrieval System<br />

94X-3900-N-01435 NO1 02 Feed System<br />

94X-3900-N-02993 NO1 15 Vacuum Wand Enclosure<br />

The PRS comprises the following equipment:<br />

0<br />

DCL-10-5002: Pneumatic Retrieval Collector<br />

0 FLT-10-5005: Cartridge Filter<br />

0 FLT-10-5004: HEPA3 Filter<br />

0 BLR-10-5006: Pneumatic Retrieval Blower<br />

0<br />

PNEUMATIC RETRIEVAL SYSTEM (SYSTEM 10)<br />

ENC-10-5020A-F: Vacuum Wand Enclosures A through F<br />

BLR-10-5008: Auxiliary Vacuum Blower (see Section 2.1.8)<br />

FLT-10-5070: Supply HEPA Filter<br />

The opening will be on the east side <strong>of</strong> the <strong>silo</strong>, and will be approximately 15 ft wide by 20 ft tall.<br />

HEPA = high-efficiency particulate air<br />

2-1<br />

/<br />

I<br />

I<br />

I<br />

I<br />

,


__<br />

r J<br />

0<br />

0<br />

Process Description tor the Silo Y Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

-~ ~ _------<br />

FDR-10-5 1 02: Feed Conveyor 5069<br />

FDR-I 0-51 04: Pneumatic Retrieval Collector Discharge Feeder<br />

ROF-10-5 108: Primary Rotary Feeder<br />

ROF-10-5 1 10: Secondary Rotary Feeder<br />

In addition to its primary function 0.f removing and transferring Silo 3 material, the PRS<br />

also provides utility vacuum for removal <strong>of</strong> material from Fines Collection Bins A and B<br />

(see Section 4.4.2) and utility service at the Container Management System (see Section<br />

3.3). Hose connections are provided for potential area cleanup and removal <strong>of</strong> material<br />

from the inlet chutes to the Package Loading Stands.<br />

Total flow from the PRS is approximately 1,200 standard cubic ft per minute (scfm). The<br />

following sections provide descriptions <strong>of</strong> each piece <strong>of</strong> equipment in the PRS.<br />

2.1.1 Vacuum Wand Enclosure<br />

Each VWE consists <strong>of</strong> a short open-top enclosure on top <strong>of</strong> the manway riser, with supply<br />

air and PVS suction hoses attached on opposite sides. The top <strong>of</strong> each enclosure has a<br />

flexible boot that expands from the diameter <strong>of</strong> the wand to the diameter <strong>of</strong> the manway<br />

to seal the wand to the manway. The boot has a zippered opening at the end <strong>of</strong> the wand<br />

to allow the wand's hose fitting to be inserted through the boot when adding additional<br />

wand sections. The sections themselves are 4-in. aluminum tubes <strong>of</strong> varying lengths,<br />

equipped with camlock fittings. Wand sections are added as the insertion depth increases,<br />

A clamp-on wheel is used to assist the operator in manipulating the vacuum wand at each<br />

manway.<br />

2.1.2 Pneumatic Retrieval Collector and Cartridge Filter<br />

The dilute-phase conveying air stream from the VWEs travels to the Pneumatic Retrieval<br />

Collector (DCL-10-5002) (a baghouse collector) and then to the Cartridge Filter (FLT-10-<br />

5005). Both the collector and the filter separate out most <strong>of</strong> the solids and drop them into<br />

the Pneumatic Retrieval Collector Discharge Feeder (FDR-10-5104) (Section 2.1.5).<br />

2.1.3 HEPA Filters, Pneumatic Retrieval Blower, and Exhaust Stack<br />

Exhaust air from the Cartridge Filter passes through the HEPA Filter (FLT-10-5004) and the<br />

1<br />

Pneumatic Retrieval Blower (BLR-10-5006) before being discharged to the atmosphere ,<br />

through the Exhaust Stack (STK-19-5209).<br />

2.1.4 Supply HEPA Filter (FLT-10-5070)<br />

Supply ventilation air (Le., makeup for the air displaced by PRS operations) enters the <strong>silo</strong><br />

through the Supply HEPA Filter located outside the Process Building. This filter includes<br />

both roughing filters and a high-efficiency pafliculate air (HEPA) filter, and is a<br />

precautionary measure to prevent backflow <strong>of</strong> contaminated dust into the atmosphere. Air<br />

from the filter is transferred via rigid duct and hosing to the VWE for connection at the <strong>silo</strong><br />

riser manways. The supply header to the VWEs is equipped with a vacuum breaker, PSV-<br />

FLT-70-5070. This device prevents the vacuum within the <strong>silo</strong> from dropping to<br />

unacceptable levels. The filter also supplies sweep air to the Fines Collection Bins (see<br />

Section 4.4.2) and the Container Management System as necessary (see Section 3.3).<br />

2-2<br />

000828 I


- B-2 'fi'<br />

2.1.5 'Pneumatic Retrieval Collector Discharge Feeder (FDR-10-5104)<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project NO. 35H19605<br />

September 5, 2003<br />

5069<br />

The Pneumatic Retrieval Collector Discharge Feeder is a variable-speed screw conveyor<br />

that receives Silo 3 material from both the Pneumatic Retrieval Collector and the Cartridge<br />

Filter. The feeder then transports the material to the Feed Conveyor via the Primary and<br />

Secondary Rotary Feeders (see Section 2.1.6). The feeder uses a variable-pitch, variable-<br />

shaft-diameter screw to ensure uniform material pickup along the entire length <strong>of</strong> the<br />

hopper.<br />

2.1.6 Primary and Secondary Rotary Feeders (ROF-I 0-51 08 and ROF-10-5110)<br />

The Primary and Secondary Rotary Feeders serve as the transfer points between the<br />

Pneumatic Retrieval Collector Discharge Feeder and the Feed Conveyor. They act as<br />

airlocks between the collector's relatively high vacuum and the Feed Conveyor, which is<br />

under a slight negative pressure.<br />

2.1.7 Feed Conveyor (FDR-10-51021<br />

The Feed Conveyor receives Silo 3 material from the PRS via the Secondary Rotary Feeder,<br />

and from the Mechanical Retrieval System via the Inclined Conveyor (see Section 2.2.2)<br />

and Transfer Conveyor (see Section 2.2.3).<br />

The conveyor discharges material to both Package Loading Stands (see Section 3.3).<br />

2.1.8 Auxiliary Vacuum Blower (BLR-10-5008)<br />

On an as-needed basis, the Pneumatic Retrieval Blower provides utility vacuum removal <strong>of</strong><br />

material from the Fines Collection Bins in the Process Vent System (PVS) (see Section<br />

4.4.2) and utility service at the Container Management System (see Section 3.3).<br />

If the PRS is not in operation, both the capacity and draft <strong>of</strong> the Pneumatic Retrieval<br />

Blower make it impractical to operate for the sole use <strong>of</strong> these low-volume, periodic users.<br />

Instead, the Auxiliary Vacuum Blower (BLR-10-5008) is brought on line to supply the<br />

needs <strong>of</strong> these other systems. The Auxiliary Vacuum Blower pulls contaminated air<br />

through the same air-cleaning equipment as does the Pneumatic Retrieval Blower.<br />

2.2<br />

MECHANICAL RETRIEVAL SYSTEM (SYSTEM 11)<br />

The following PFD and P&ID illustrate the MRS:<br />

94X-3900-F-01429 F0002 Material Retrieval and Feed Systems<br />

94X-3900-F-02369 NO099 Silo 3 Access<br />

94X-3900-N-01433 NO 100 Mechanical Retrieval System<br />

94X-3900-N-01435 NO102 Feed System<br />

The MRS comprises the following equipment:<br />

0 EXC-11-5050: Excavator<br />

EAR-11-5052: Retrieval Bin Register<br />

0 EAR-11-5053: Excavator Room Register<br />

0 HBN-11-5054: Retrieval Bin<br />

0 DFC-11-5056: Inclined Conveyor<br />

2-3<br />

. .


co ' FDR-11-5100: Transfer Conveyor<br />

-~<br />

The following sections provide descriptions <strong>of</strong> each piece <strong>of</strong> equipment.<br />

2.2.1 Excavator (EXC-7 1-5050)<br />

rrocess uescrcprcon ror m e aiw 3 rrwjaut<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

5069<br />

The Excavator is an electrically powered, remotely controlled, hydraulically operated<br />

crawler machine with the following features and capabilities:<br />

0<br />

0 Maneuverability;<br />

0<br />

0<br />

FDR-11-5106: Retrieval Bin Discharge Feeder<br />

Rotational, elevation, and telescoping boom;<br />

Load-handling capabilities;<br />

Remote attachment and operation <strong>of</strong> all end effectors;<br />

Cable- and hose-management systems; and<br />

0 Water-misting capabilities.<br />

The end effectors include, but are not limited to: bucket, rake, vacuum attachment, and<br />

grappler. The Excavator travels at a maximum speed <strong>of</strong> 1.8 f t per second, and its boom<br />

has a reach <strong>of</strong> about 30 ft.<br />

The Excavator, which can operate both inside and outside <strong>of</strong> the <strong>silo</strong>, is deployed from the<br />

Excavator Room, which is constructed adjacent to the <strong>silo</strong>. The Excavator is set in a slow,<br />

"precision work mode," and a CCTV System monitors its operation to ensure that it does<br />

not come into contact with the <strong>silo</strong> walls, or the walls and ceiling <strong>of</strong> the Excavator Room.<br />

In addition to the actual transfer <strong>of</strong> material out <strong>of</strong> the <strong>silo</strong>, key functions <strong>of</strong> the Excavator<br />

are as follows:<br />

0 Break up compacted material within Silo 3;<br />

0 Retrieve miscellaneous debris, such as simple hand tools, personal protective<br />

equipment (PPE), and plastic bags from the <strong>silo</strong>; and<br />

0<br />

Carry and manipulate a hose for pneumatic retrieval, as required, to support mechanical<br />

operations.<br />

2.2.2 Retrieval Bin (HBN-11-50541<br />

The Retrieval Bin is a rectangular bin located just east <strong>of</strong> the Silo 3 opening. The bin is<br />

covered by load-bearing grating that includes a ferrous magnet; the magnet assembly is<br />

installed within the bin just below the grating system. The magnetic grating limits the size<br />

<strong>of</strong> debris (especially metallic debris) that would otherwise drop into the Retrieval Bin<br />

Discharge Feeder. Any such debris is manually removed from the grating and deposited in<br />

portable waste bins located in the Excavator Room. The bin is below-grade and has steep<br />

sides that allow it to be used as both a chute and a hopper. The bin is designed to allow<br />

the Excavator to drive over the opening without damage to either the bin or the grate.<br />

. ,<br />

. '(. 000030<br />

2-4<br />

__~ -<br />

e<br />

I<br />

I<br />

e


Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

2.2.3 Retrieval Bin Register (EAR-1 1-5052) and Excavator Room Register (EAR-1 1-5053)<br />

The PVS, via the Retrieval Bin Register, collects and exhausts air from the Excavator Room<br />

by pulling air across the Retrieval Bin. The register is normally operated only during<br />

mechanical retrieval operations.<br />

The Excavator Room Register, which is part <strong>of</strong> the PVS, is located near the top <strong>of</strong> the <strong>silo</strong><br />

wall opening. The register is used to limit contamination transfer during <strong>silo</strong> wall cutting<br />

by capturing both saw cuttings and Silo 3 dust generated during cutting. The register can<br />

be used to transfer most <strong>of</strong> the exhaust air associated with pressure boundary<br />

management in the Excavator Room before opening the <strong>silo</strong> sidewall.<br />

2.2.4 Retrieval Bin Discharge Feeder (FDR-11-5106)<br />

The Retrieval Bin Discharge Feeder (RBDF) is a double screw conveyor located beneath the<br />

Retrieval Bin. It consists <strong>of</strong> two 1 2-in.-diameter, variable-pitch, variable shaft diameter4,<br />

variable-speed screws. The feeder delivers Silo 3 material to the Inclined Conveyor (see<br />

Section 2.2.5).<br />

During MRS operations, the RBDF, a variable-speed conveyor, controls the flow rate <strong>of</strong><br />

material to packaging. All downstream conveyors are single-speed, and are designed to<br />

operate at capacities equal to or greater than the maximum capacity <strong>of</strong> the RBDF.<br />

Accordingly, these conveyors will <strong>of</strong>ten be operated in a "less than fully loaded" condition<br />

due to downturns <strong>of</strong> the RBDF. All conveyors and motors are designed to operate under<br />

these conditions.<br />

2.2.5 Inclined Conveyor (DFC-11-5056)<br />

The Inclined Conveyor is a pocketed, sidewall belt conveyor that receives Silo 3 material<br />

from the RBDF. It then transports material upward at a 70-degree angle from horizontal. I<br />

The conveyor discharges by gravity into a horizontal screw conveyor (Transfer Conveyor,<br />

FDR-11-5100; see Section 2.2.6). The Inclined Conveyor is a heavy-duty, carbon-steel<br />

unit enclosed for dust control. The conveyor uses a flexible corrugated sidewall belt with<br />

cleats to prevent fallback <strong>of</strong> material during transfer.<br />

The Inclined Conveyor is maintained at slight negative pressure via PVS connections.<br />

Likewise, both <strong>of</strong> the downstream conveyors (Le., the Transfer Conveyor and the Feed<br />

Conveyor) are maintained at slight negative pressures via connections to the Inclined<br />

Conveyor. .,<br />

2.2.6 Transfer Conveyor (FDR-11-5100)<br />

The Transfer Conveyor receives Silo 3 material from the Inclined Conveyor (see<br />

Section 2.2.5) and transfers it to the Feed Conveyor (FDR-10-5102; see Section 2.1.7).<br />

Constraints resulting from the east-west locations <strong>of</strong> key pieces <strong>of</strong> equipment create the<br />

need for the Transfer Conveyor.<br />

*The variable-pitch and variable-shaft-diameter features ensure material pickup along the entire<br />

length <strong>of</strong> the Retrieval Bin.<br />

2-5<br />

OQbQ031<br />

I<br />

I


Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

~- _ __~<br />

e<br />

3.0 CONTAINER MANAGEMENT SYSTEM (SYSTEM 25) AND SAMPLING SYSTEM<br />

(SYSTEM 84)<br />

The following PFD and P&IDs illustrate the Container Management and Sampling Systems:<br />

94X-3900-F-0143 1 F0003 Process Vent and Packaging Systems<br />

94X-3900-N-01436 NO1 03 Bulk Bag Packaging Line A<br />

94X-3900-N-01437 NO104 Bulk Bag Packaging Line B<br />

The Container Management System allows personnel in the Process Building to perform<br />

the following functions:<br />

1. Prepare Packaging Frames (ENC-25-5291 A&B) and bulk-bag containers for filling.<br />

2. Dispense Silo 3 material from the Feed Conveyor (FDR-10-5102) into containers.<br />

3. Introduce additive to condition the Silo 3 material (see Section 5.0).<br />

4. Collect samples <strong>of</strong> Silo 3 material during filling5.<br />

5. Perform swipe sampling and labeling <strong>of</strong> containers. I<br />

6. Convey filled containers into the Cargo Container Bay for loading.<br />

7. Load bulk-bag containers into cargo containers (if used).<br />

The following sections describe the equipment and activities necessary to perform these<br />

functions.<br />

3.1 CONTAINER MANAGEMENT EQUIPMENT AND SUPPLIES<br />

The Container Management System comprises the following equipment: ..<br />

3.1 .I Container Management and Packaging Systems A&B (SKD-25-5250A&B)<br />

These vendor-supplied systems contain the following equipment:<br />

0<br />

PKU-25-5270A&B: Package Loading Stands A&B. Each <strong>of</strong> the two Package Loading<br />

Stands is a semi-automated system with a loading spout', loading stand, densification<br />

system (i.e., thumper table), weighing scales, and motorized roller conveyors for<br />

transporting the filled containers to the Packaging Station Conveyor. Included with<br />

each loading stand are:<br />

- Radio frequency (RFI sealers to seal and perforate the necks <strong>of</strong> the inner liners after<br />

filling (see Section 3.1.3);<br />

-<br />

Aeration and deaeration blowers. These are amplifiers that use the Coanda effect to<br />

create air motion in their surroundings. Using a small amount <strong>of</strong> compressed air as<br />

a power source, the blowers pull in large volumes <strong>of</strong> air to produce high-volume,<br />

high-velocity outlet flows to either add or remove air from the inner liners.<br />

'The sampling function falls under System 84 (Sampling System). The need for this system is<br />

pending confirmation <strong>of</strong> both regulatory and disposal-facility requirements.<br />

'The loading spout is equipped with an inflatable double bladder sealing mechanism to seal the<br />

interior <strong>of</strong> the inner liner to the exterior <strong>of</strong> the loading spout.<br />

. a.<br />

. : ..<br />

3-1<br />

000032<br />

I<br />

I<br />

I<br />

I<br />

I


I < :,i,' ;1 'e<br />

1 t . (,, :<br />

.<br />

RCV:25-5278A&B: Package Staging Conveyors A&B<br />

0 RCV-25-5282A&B: Airlock Conveyors A&B<br />

0 RCV-25-5288A&B: Off-Loading Conveyors A&B<br />

3.1.2 Other Transport Equipment<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project NO. 35H19605<br />

September 5, 2003<br />

5069<br />

BRC-25-5280: Bridge Crane; this is a S-ton, top-running, single-girder bridge crane<br />

used for the following functions:<br />

- opening and closing cargo-container lids (if used),<br />

- transferring frames and full containers from the <strong>of</strong>f-loading conveyors to the floor,<br />

- removing full containers from their frames and placing them either in cargo<br />

containers or on pallets, and<br />

-<br />

placing empty frames back on the <strong>of</strong>f-loading conveyors.<br />

Lifting frame: This is a structural-steel frame sized for a 96-CF Lift LinerTM, and<br />

manufactured by Transport Plastics, Inc. (or equivalent); it is used in conjunction with<br />

the Bridge Crane.<br />

Forklift(s), loading crane, and rail cars and/or trucks<br />

3.1.3 Miscellaneous Equipment<br />

SSS-84-5252A&B: Packaging Samplers A&B. The samplers are pneumatically<br />

actuated inline thief samplers that periodically extend into the flow stream and capture<br />

falling material. Material is transferred through the sampling tube using an auger<br />

mechanism. The material is deposited into a sample container attached to the sampling<br />

tube. After sample collection, the tube is retracted from the stream back into the<br />

sampler housing.<br />

0 NOZ-25-5260A&B: Discharge Chute Assembly A&B. The chute assemblies are<br />

conduits for conditioning and transferring material from the Feed Conveyor to the<br />

Package Loading Stands' fill heads. Each assembly consists <strong>of</strong> three sections: a<br />

transition section connected to the conveyor, an intermediate spool section, and a<br />

nozzle section that attaches to the packaging station. An internal inverted cone in the<br />

nozzle section provides flow enhancement to improve wetting by the conditioning<br />

agents. These agents are introduced into the fill system via nozzles located around the<br />

perimeter <strong>of</strong> the nozzle section and under the inverted cone.<br />

0 EAR-25-5290A&B: Packaging Station Exhaust Registers A&B. These are louvered<br />

rectangular type units located near the fill heads. The registers are connected to the<br />

PVS.<br />

RDR-05-5912, -5914, and -5916: Roll-up Doors 007G, -007F, and 007E,<br />

respectively. These are steel, overhead, surface-mounted rolling door units, with<br />

guides at jambs set back a sufficient distance to clear the openings. Curtains are<br />

fabricated, flat, interlocking slat panels that roll up on a barrel supported at the head <strong>of</strong><br />

the opening.<br />

3-2<br />

I<br />

OOQQ33<br />

I


-__ -<br />

~-<br />

rrocess UeSCrlptlOn Tor me 3110 J rrojecr<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

RDR-05-5918 and -5920: Roll-up Doors 007D and 007C, respectively. These are<br />

"Turbo-Seal" Hig h-Speed Roll Door, 3-ply "Rilon" material, heavy-duty, construction<br />

fabric panel door assemblies (or equivalent). The assemblies include frames, jambs,<br />

and protective metal top roll covers.<br />

Cargo containers (if used). These are lidded Sea-LandTM containers (or equivalent) that<br />

will hold several IP-2 bulk-bag containers for shipment to an <strong>of</strong>fsite disposal facility.<br />

Pallets (if used). These are 4 f t x 6 ft disposal pallets constructed in such a way that<br />

they can be handled by a standard industrial forklift.<br />

Bulk-bag containers. These are Industrial Packaging 2 (IP-2) rated, s<strong>of</strong>t-sided, 3-CY<br />

woven polypropylene bags, manufactured by Transport Plastics, Inc. (or equivalent).<br />

Inner liners. These are thin-walled, form-fitted, polyethylene bags that are inserted into<br />

the bulk-bag containers.<br />

ENC-25-5291A&B: Packaging Frames A&B. These are steel frames for 96-CF Lift<br />

Linerm, manufactured by Transport Plastics; Inc. (or equivalent).<br />

3.2 PRELIMINARY ACTIVITIES<br />

In preparation for filling the IP-2 bulk-bag containers, equipment and supplies are placed as<br />

follows:<br />

Packaging Area: miscellaneous supplies for sampling, container closing, and cleaning<br />

Off-Loading Conveyors A&B: IP-2 bulk-bag containers, inner liners, packaging frames, and<br />

labeling supplies<br />

Once these items are available, the following steps are taken before filling:<br />

1. Inspect bags, liners, and Packaging Frames. Use swipe sampling as necessary to verify<br />

that contamination <strong>of</strong> these items is within acceptable levels.<br />

2. Place a Packaging Frame on the Off-Loading Conveyor.<br />

3. Place a bulk-bag container in the Packaging Frame, and insert the inner liner into the<br />

bulk bag.<br />

4. By activating the appropriate conveyors, move the entire assembly (Le., empty<br />

container and frame) to the Package Loading Stand and record the tare weight <strong>of</strong> the<br />

assembly.<br />

5. Lower the loading spout and attach the inner liner to the spout.<br />

6. Inflate the inner liner using the aeration blower. (To improve the stability <strong>of</strong> filled bags,<br />

this blower supplies air to remove wrinkles and folds from the liner before filling.)<br />

3.3 CONTAINER FILLING OPERATIONS<br />

Once the steps in Section 3.2 are completed for a given Package Loading Stand, the<br />

following actions are performed:<br />

1. Open the appropriate discharge valve on the Feed Conveyor.<br />

'. .<br />

3-3<br />

000034<br />

-


i: >! {i.Fk . 4 .... < - . " ,<br />

Process Description tor the SI10 3 k'roject<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

-,<br />

, 5u69<br />

2. Ensure that the Feed Conveyor is operating. Silo 3 material flows by gravity through<br />

the loading spout and into the container. The densification table is used to consolidate<br />

material and assist in evenly filling the container.<br />

3. Introduce liquid additive (for material conditioning) into the Silo 3 material stream<br />

through the Discharge Chute Assembly (see Section 5.2.5).<br />

4. During filling, use the vent line to the PVS to remove displaced air (see Section 4.3.5).<br />

The possibility <strong>of</strong> an overfilled container is minimized by observing the weight gain. In<br />

addition, a camera in the fill head allows the operator to view filling operations on a<br />

monitor, and the operator can observe and feel the inner liner as the container is filled.<br />

In the unlikely event <strong>of</strong> an overfilled bag, the sealed loading spout fills (no material is<br />

be released) and the PRS is used to remove this material (see Section 2.1.8).<br />

5. When the container is nearly full:<br />

a. Shut down upstream feed systems (these will automatically stop), and continue<br />

operating the Feed Conveyor until it is empty.<br />

b. Close the appropriate discharge valve on the Feed Conveyor.<br />

c. Ensure that the Discharge Chute Assembly's nozzles are flushed with process<br />

water, and that the spent flush water is deposited in the container.<br />

d. Activate the deaeration blower to evacuate residual air in the head space <strong>of</strong> the<br />

inner liner.<br />

3.4 CONTAINER SAMPLING OPERATIONS<br />

(Note: The need for material sampling is pending confirmation <strong>of</strong> both regulatory and<br />

disposal-facility requirements.)<br />

Silo 3 material is sampled just above the loading spout. In-line composite sampling <strong>of</strong><br />

selected batches is performed using an automatic thief sampling device (Le., SSS-84-5252<br />

A&B, Packaging Samplers A&B), which is repeatedly inserted into the line as solids are<br />

flowing. The samplers are flange-connected to discharge lines downstream <strong>of</strong> the Feed<br />

Conveyor, and do not allow leakage <strong>of</strong> Silo 3 material to the environment.<br />

Samples are withdrawn and deposited into sample containers. The sampler is deactivated<br />

as soon as the container is full. Samples are analyzed for compliance with the disposal<br />

facility's waste acceptance criteria.<br />

3.5 CONTAINER CLOSING OPERATIONS<br />

After the container is filled and the inner liner is deaerated, the following actions are<br />

performed:<br />

1. Raise the loading spout and move the inner liner from the upper bladder seal to the<br />

lower bladder seal.<br />

2. Using the RF sealer, heat-seal and tear away the inner liner along the perforation<br />

between the upper and lower seals. (Note: the RF sealer provides a double seal with<br />

in-between perforation that enables the operator to tear away the inner liner rather<br />

than cut it.)<br />

3-4<br />

I<br />

..


Process Description tor the SI10 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project NO. 35H19605<br />

September 5, 2003<br />

_. S)+p<br />

3. Detach the inner liner from the loading spout, leaving a sealed portion <strong>of</strong> the inner liner<br />

attached to the loading spout for the material containment. Release the remaining liner<br />

piece from the loading spout and drop it into the next container.<br />

4. Record the gross weight <strong>of</strong> the assembly.<br />

5. By activating the appropriate conveyors, transport the container assembly (i,e.,<br />

container and frame) away from the Package Loading Stand and onto the Package<br />

Staging Conveyor.<br />

3.6<br />

CONTAINER SURVEYING AND DECONTAMINATION OPERATIONS<br />

While the assembly is still on the Package Staging Conveyor, the outer container flaps are<br />

folded over and closed, and swipe sampling is performed. Any surface not passing the<br />

swipe test is manually cleaned in place and resampled until it passes the test.<br />

The "clean" container (still in its Packaging Frame) is then transferred to the Cargo<br />

Container Bay as follows (Line A described; similar for Line B):<br />

1. Verify that Roll-up Door 007G (RDR-05-5912) is closed, and open Roll-up Door 007D<br />

(RDR-05-5918).<br />

2. Activate Package Staging Conveyor A (RCV-25-5278A) and Airlock Conveyor A<br />

(RCV-25-5282A) to move assembly into airlock. Limit switches automatically<br />

deactivate the conveyors once the assembly is in place.<br />

3. Close Roll-up Door 007D (RDR-05-5918) and open Roll-up Door 007G (RDR-05-5912).<br />

4. Activate Airlock Conveyor A (RCV-25-5282A) and Off-Loading Conveyor A (RCV-25-<br />

5288A) to move assembly into Cargo Container Bay. Limit switches automatically<br />

deactivate the conveyors once the assembly is in place.<br />

3.7 CONTAINER TRANSPORT OPERATIONS<br />

Once the container assembly reaches the Cargo Container Bay, a label is prepared with the<br />

following information:<br />

date,<br />

0 time <strong>of</strong> day,<br />

0<br />

container unique identifier (UNID), and<br />

0 weight (net and gross).<br />

Containers are transferred from the Off-Loading Conveyor either into cargo containers or<br />

onto pallets, via the following steps:<br />

1. (Cargo container only) Move cargo container into place using a heavy-duty forklift.<br />

2. (Cargo container only) Use Bridge Crane (BRC-25-5280) and lifting frame to I<br />

remove/open lid <strong>of</strong> cargo container.<br />

3. (Pallet only) Use forklift to place one or more pallets near Off-Loading Conveyor.<br />

4. Use lifting frame to pick up entire container assembly and place it on floor near Off- I<br />

Loading Conveyor.<br />

3-5<br />

000036<br />

a


.i\ . . +<br />

Q :.h- '2. *L<br />

* .f .a ..*<br />

Process Uescriptton tor the Silo 3 rroject<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project NO. 35H19605<br />

September 5, 2003<br />

5. Fasten outer container straps to lifting frame as required to lift container.<br />

C 369<br />

6. Unlatch and loosen Packaging Frame (Note: A chain keeps the sides <strong>of</strong> the frame from<br />

totally unfolding).<br />

7. Use Bridge Crane and lifting frame to pick container up out <strong>of</strong> Packaging Frame and set<br />

on floor.<br />

8. Attach label to container; place either in cargo container or on pallet.<br />

9. Return Packaging Frame to Packaging Area for reuse (see Section 3.2).<br />

1 O.(Cargo container only) Once cargo container is loaded with bags, replaceklose lid using<br />

Bridge Crane. Use heavy-duty forklift to transport cargo container to a staging area,<br />

where either a crane or forklift places cargo containers on either a rail car or a truck.<br />

1 1 .(Pallet only) Use standard-duty forklift to transport pallet to a staging area, where it is<br />

placed on either a rail car or a truck.<br />

12.Transport full containers by either rail or truck to an <strong>of</strong>f-site disposal facility.<br />

3-6<br />

. .<br />

808037<br />

I<br />

,'P


I<br />

process uescnprton Tor Irte attu .Y rtuJac;t<br />

Document No. 40430-UP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

exposure to radon and thorium during material retrieval, conditioning, and packaging<br />

operations.<br />

4.1.2 Interaction <strong>of</strong> PVS, PRS, and HVAC Systems<br />

Initially, material is retrieved from Silo 3 by the PRS (see Section 2.1). Although the<br />

Excavator Building has been constructed adjacent to the <strong>silo</strong>, the <strong>silo</strong> wall has not yet been<br />

breached, and therefore the two areas are isolated from each other. This is called "Phase<br />

1". During this phase, the PVS, the Supply Air System (see Section 6.1.21, and the<br />

Exhaust Air System (see Section 6.1.3) provide ventilation and containment for the<br />

Process Building and Excavator Building. Air for PRS operation is drawn through a HEPA<br />

filter and through the <strong>silo</strong> riser manway into Silo 3. The PRS removes material from behind<br />

the section <strong>of</strong> the <strong>silo</strong> sidewall where entrance will be made. This minimizes the likelihood<br />

<strong>of</strong> an uncontrolled release <strong>of</strong> material into the Excavator Room during intrusive actions.<br />

The PRS operates from a number <strong>of</strong> <strong>silo</strong> riser manways until it is no longer effective for<br />

material recovery. Phase 1 flow information is provfded in the Material Balance Table (94X-<br />

3900-F-01428, Sheet No. FOOO1) and in Figure 4-1.<br />

'Air emissions are addressed in Fernald Silo 3 Environmental Control Plan (FEMP 2002b); disposition<br />

e<br />

<strong>of</strong> spent filters is addressed in Tiined Estimate for Secondary Waste for Silo 3 (FEMP 2002b.)<br />

4-1 000038 I


Process Description tor the Silo 3 Yroject<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project NO. 35H19605<br />

September 5, 2003<br />

When the <strong>silo</strong> wall is first breached (see A&RS, Section 5.2), PRS operation may<br />

continue'. During this intermediate stage, airflow patterns will change due to the<br />

establishment <strong>of</strong> a new air pathway into the <strong>silo</strong>. Supply air provided to the Excavator<br />

Room by the HVAC system will be exhausted by both the PVS and the PRS.<br />

When the PRS is no longer effective in retrieving material, the MRS (see Section 2.2) will<br />

begin to recover material from the <strong>silo</strong>. Mechanical retrieval will be performed using a<br />

remotely controlled excavator deployed from the Excavator Room. This recovery phase,<br />

during which the PRS is not operating, is called "Phase 2". Supply air provided to the<br />

Excavator Room by the HVAC system will be exhausted only by the PVS. Flows<br />

associated with Phase 2 are described in the Material Balance Table and in Figure 4-2.<br />

During startup, balancing activities will be performed to establish appropriate damper<br />

positions for all phases <strong>of</strong> operation.<br />

4.2 PROCESS VENT SYSTEM EQUIPMENT<br />

The PVS comprises the following equipment:<br />

0<br />

DCL-19-5202A&B: Process Vent Dust Collectors A&B<br />

HBN-19-5205A&B: Fines Collection Bins A&B<br />

FLT-19- 5204A&B: Process HEPA Filters A&B<br />

FAN-1 9-5206A&B: Process Exhaust Fans A&B<br />

STK-19-5209: Exhaust Stack<br />

0 CEM-19-5208: Continuous Emissions Monitor<br />

4.3 PROCESS VENT SYSTEM SOURCES<br />

The total design airflow for the PVS is approximately 5,500 scfm. Air from the following<br />

sources is transferred to the PVS:<br />

0<br />

Silo 3 and VWEs A-F (ENC-10-5020A-F)<br />

Excavator Room Register (EAR-1 1-5053)<br />

Retrieval Bin Register (EAR-I 1-5052) (for HBN-11-5054 and FDR-11-5106)<br />

Inclined Conveyor (DFC-11-5056)<br />

Packaging Station Exhaust Registers A&B (EAR-25-5290A&B)<br />

The remainder <strong>of</strong> this section describes each <strong>of</strong> these sources in detail.<br />

4.3.1 Silo 3 and VWEs (ENC-10-5020A-F)<br />

Ventilation air from Silo 3 is exhausted to the PVS during mechanical retrieval (Phase 2);<br />

VWE maintenance, manipulation, and extension activities during Phase 1 ; and I<br />

nonoperational periods (Le., evenings, weekends, and other system downtimes).<br />

*Material recovery by the PRS will be performed either from the <strong>silo</strong> dome using vacuum wands or 1<br />

from within the <strong>silo</strong> using the Excavator equipped with an end effector for pneumatic retrieval.<br />

4-3<br />

5069<br />

I


0<br />

I ACU-70-5700 I 5750CFM<br />

L<br />

1350 CFM<br />

INFILTRATION<br />

1630 CFM<br />

A<br />

4670 CFM<br />

-- .- -. .-.<br />

TWIAflCFM t 4<br />

' 21 10 CFM<br />

610CFM /q<br />

21 50 CFM AlRLOCKlDOFF<br />

ENTRY<br />

CORRIDOR<br />

t.130CFM INFILTRATION 2 4 5 0 ~ ~ ~<br />

1r INFILTRATION<br />

v bh OIIC<br />

8850 CFM<br />

INCLINED I I<br />

ONVEYOR<br />

1000 CF<br />

300 CFM ~<br />

500 CFM<br />

b<br />

EXHAUST AIR<br />

REGISTERS TO AREA<br />

EXCAVATOR<br />

ROOM<br />

EXCAVATOR<br />

SERVICE<br />

600 CFM ROOM<br />

300 CFY<br />

Figure 4-2 Airflow Diagram for Phase 2<br />

4-4<br />

4<br />

$<br />

K<br />

4500 CFM 300 CFM<br />

INFlLTRATlOl<br />

* INFILTRATION<br />

300CFM<br />

1000 CFM<br />

4500 CFM ' 5500 CFM, -<br />

TO PVS BAGHOUSE<br />

VARIABLE FLOW<br />

VACUUM RELIEF<br />

80 CFM<br />

b<br />

TO HVAC HEPAs<br />

Process Doscriptloti lor tlih 811n :I I'tojqi:!<br />

Document No. 40430-UP-0003, Rev. 1<br />

Jacobs Project No. 36H19806<br />

September 6, 2003<br />

5069<br />

000041


;, I't I:<br />

- .<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H 19605<br />

September 5, 2003<br />

During Phase 2 operations, ventilation air for Silo 3 enters the <strong>silo</strong> from the Excavator<br />

Room (see Section 4.3.3) and is exhausted to the PVS. Exhaust ports are located on the<br />

VWEs and are connected to the Silo 3 PVS exhaust duct. Manual dampers control the flow<br />

<strong>of</strong> air from Silo 3.<br />

Each VWE consists <strong>of</strong> a short open-top enclosure on top <strong>of</strong> the manway riser, with supply<br />

air and PVS suction hoses attached on opposite sides. The top <strong>of</strong> each enclosure has a<br />

flexible boot that expands from the diameter <strong>of</strong> the wand to the diameter <strong>of</strong> the manway<br />

to seal the wand to the manway. The boot has a zippered opening at the end <strong>of</strong> the wand<br />

to allow the wand's hose fitting to be inserted through the boot when adding additional<br />

wand sections.<br />

4.3.2 Excavator Room Register (EAR-1 1-5053)<br />

The Excavator Room Register is located near the top <strong>of</strong> the <strong>silo</strong> wall opening and is<br />

connected to the PVS. The register is used to limit contamination transfer by capturing<br />

I<br />

both saw cuttings and Silo 3 dust generated during <strong>silo</strong>-wall cutting (see A&RS, Section<br />

5.2). The register can be used to transfer most <strong>of</strong> the exhaust air associated with pressure<br />

boundary management in the Excavator Room. A manual damper controls air flow from I<br />

the Excavator Room Register.<br />

4.3.3 Retrieval Bin (HBN-11-5054) and Retrieval Bin Discharge Feeder (FDR-11-5106)<br />

Air swept across the Retrieval Bin is captured by the Retrieval Bin Register (EAR-1 1-5052), I<br />

which exhausts the air to the PVS. The register is operated during MRS activities. A<br />

manual damper controls air flow from the Retrieval Bin Register. EAR-1 1-5052 is operated<br />

independently <strong>of</strong> EAR-1 1-5053 (see Section 2.2.3). -. .<br />

4.3.4 Inclined Conveyor (DFC-11-50561<br />

The inclined Conveyor is contained in an enclosure that is exhausted to the PVS through<br />

rigid connections on both the top (head section) and the bottom (tail section) <strong>of</strong> the<br />

enclosure. Air withdrawn from the upper exhaust port serves to maintain a slight negative<br />

pressure on the downstream conveyors. In addition, air withdrawn from the upper and<br />

lower exhaust ports maintains both dust suppression and a pressure boundary within the<br />

Inclined Conveyor enclosure. Manual dampers control air flow from the conveyor.<br />

4.3.5 Container Management System<br />

Sweep air associated with the two Package Loading Stands is captured by Package<br />

Station Exhaust Registers A&B (EAR-25-5290A&B) (see Section 3.3). The locations <strong>of</strong> the<br />

I<br />

registers allow the sweep air across the packaging fill heads to migrate away from<br />

Operations personnel. Air displaced by bag filling and air evacuated during bag deaeration<br />

is exhausted into the individual PVS exhaust piping for the Package Loading Stands. Fail- I<br />

closed automatic dampers are located on the exhaust lines from each Packaging Station<br />

Exhaust Register.<br />

4- 5


* -<br />

L.4.; PROCESS VENT SYSTEM OPERATION<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

Contaminated air is drawn through the PVS by redundant centrifugal fans (FAN-19-<br />

5206A&B). The fans and associated ductwork are designed to maintain appropriate<br />

vacuum levels in the <strong>silo</strong> and processing equipment. Automatic dampers allow changeover<br />

<strong>of</strong> PVS process trains; manual dampers provide system isolation and balancing.<br />

The fans are located downstream <strong>of</strong> the Process HEPA Filters to induce a negative<br />

pressure in the process sources.<br />

4.4.1 Process Vent Dust Collectors (DCL-19-5202A&B)<br />

Ventilation air from each <strong>of</strong> the sources listed in Section 4.3 is combined into a common<br />

duct header, which flows to Process Vent Dust Collector A. The dust collector is a<br />

baghouse that acts as a primary filter, thus reducing roughing filter and HEPA filter<br />

loading. To prevent shutdown <strong>of</strong> the PVS, an additional baghouse dust collector (Process<br />

Vent Dust Collector B) is included as a standby. Each <strong>of</strong> the dust collectors is designed for<br />

approximately 5,500 scfm at a pressure rating <strong>of</strong> approximately 2 psig vacuum. Both dust<br />

collectors are supplied with support legs, access ladders and platforms, pneumatic<br />

cleaning systems, and clean-air plenums. Fines are discharged from the dust collectors I<br />

through normally-open valves, and collect in the Fines Collection Bins.<br />

4.4.2 Fines Collection Bins A&B (HBN-19-5205 A&B)<br />

The Fines Collection Bins are located at the bottom <strong>of</strong> each <strong>of</strong> the Process Vent Dust<br />

Collectors. They provide accumulation capacity for dust-collector fines and the means to<br />

transfer fines to the PRS (see Section 2.1). At a predetermined level <strong>of</strong> fines in a given bin,<br />

both the bin and its associated collector are taken <strong>of</strong>f line. Valving is then aligned to allow<br />

the PRS to empty the bin. The Fines Collection Bins and all associated piping and valves<br />

are rated for the increased vacuum exerted by the PRS.<br />

4.4.3 Process HEPA Filters (FLT-19-5204 A&B)<br />

Air exiting the Process Vent Dust Collectors enters a single duct that is connected to<br />

redundant Process HEPA Filter units. These units include "roughing" filters (35 and<br />

90 percent), HEPA filters, ULPA filters, in-place test sections, and transition pieces. Filter<br />

housings for the HEPA and ULPA filters are stainless steel, side access housings with in-<br />

place test sections. Only one filter unit is operated at a time, allowing filter changeout for<br />

the <strong>of</strong>f-line unit.<br />

4.4.4 Process Exhaust Fans (FAN-1 9-5206 A&B)<br />

After exiting the Process HEPA Filter unit, the filtered air stream enters one <strong>of</strong> two Process<br />

Exhaust Fans for discharge through the Exhaust Stack. The fans are single-stage<br />

centrifugal fans. Each fan is rated at approximately 6,000 scfm at 27 in. water gauge<br />

total static head. Only one fan is operated at a time.<br />

4.4.5 Exhaust Stack (STK-19-5209) and Continuous Emissions Monitor (CEM-19-5208)<br />

The PVS includes a carbon-steel stack. The maximum airflow through the stack is<br />

approximately 13,900 scfm, with 5,500 scfm coming from the PVS. The stack has<br />

4-6<br />

I<br />

I<br />

I<br />

I


*<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

.;., A, ; f :<br />

connectiope"for the PVS process duct, the PRS duct (see Section 2.11, and the Exhaust Air<br />

System duct (see Section 6.1.3).<br />

A Continuous Emissions Monitor (CEM) (CEM-19-5208) samples and analyzes the exhaust<br />

air for particulates and radon. A sampling rake is inserted into the stack and is attached to I<br />

a sampling line. The sample travels through the line down to the CEM, where radon is<br />

continuously measured. The sample air stream is passed through a filter paper where a<br />

beta-sensitive radiation detector continuously measures the beta radiation emitted by the<br />

collected particulates. Periodically, samples <strong>of</strong> the filter paper are subjected to I<br />

confirmatory analyses <strong>of</strong> both radionuclides and heavy metals. Exhaust air from the CEM is<br />

reinjected into the stack.<br />

If an <strong>of</strong>f-normal condition is detected, an alarm is annunciated and appropriate action is I<br />

taken (e.g., switching the HEPA filters or shutting down the PVS entirely).<br />

Ports for velocity-pr<strong>of</strong>ile measurements are provided above the sampling rake ports. These<br />

ports are used when necessary to verify flow conditions for compliance purposes.<br />

4-7<br />

I<br />

I<br />

0-8%00<br />

4 4<br />

I


5.0 ADDITIVE SYSTEM (SYSTEM 44)<br />

The following PFDs and P&IDs illustrate the Additive System:<br />

94X-3900-F-0 1 43 1 F0003 Process Vent and Packaging Systems<br />

94X-3900-F-0 1 430 F0004 Additive and Wastewater Systems<br />

94X-3900-N-01436 NO1 03 Bulk Bag Packaging Line A<br />

94X-3900-N-0 1437 NO1 04 Bulk Bag Packaging Line B<br />

94X-3900-N-01438 NO1 05 Additive Mixing and Wastewater Systems<br />

94X-3900-N-05 147 NO1 16 Additive Charging System<br />

94X-3900-N-05 139 NO1 17 Additive Feed System<br />

5.1 ADDITIVE SYSTEM EQUIPMENT<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

The Additive System comprises the following equipment; brief descriptions are provided in<br />

Section 5.2:<br />

Pumps<br />

PMP-44-5000A: Sodium Lignosulfonate Pump<br />

PMP-44-5000B: Ferrous Sulfate Pump<br />

PMP-44-5002: Additive Pump<br />

0 PMP-44-5004A&B: Additive Charge Pumps A&B<br />

Tanks<br />

TNK-44-5000: Ferrous Sulfate Tank<br />

TNK-44-5002: Additive Mix Tank<br />

0 TNK-44-5004A&B: Additive Charge Tanks A&B<br />

Agitators<br />

MXA-44-5000: Ferrous Sulfate Tank Agitator<br />

MXA-44-5002: Additive Mix Tank Agitator<br />

Containment Dikes<br />

ENC-44-5000: Portable containment Dike<br />

ENC-44-5000A: Sodium Lignosulfonate Portable Containment Dike<br />

5.2 ADDITIVE SYSTEM OPERATION<br />

Silo 3 material is conditioned with a dilute aqueous mixture <strong>of</strong> two additives: ferrous<br />

sulfate, to reduce certain metals (e.g., chromium) to less-toxic and less-leachable valence<br />

states; and sodium lignosulfonate, to reduce the dispersability <strong>of</strong> the material (Jenike and<br />

Johanson, 2002).<br />

5-1<br />

00004S<br />

I<br />

e-<br />

a<br />

0


. .-<br />

a ” 4.0;. .. 5.2.1 Sodium Lignosulfonate Supply<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

50 69<br />

Sodium lignosulfonate is received as a 47% solution in portable, 400-ga1, high-density<br />

polyethylene (HDPE) tote containers. A container is placed on a structural-steel frame in<br />

the 10-in. concrete containment area in the northwest corner <strong>of</strong> the Cargo Container Bay.<br />

The bottom outlet is piped to the suction side <strong>of</strong> the Sodium Lignosulfonate Pump, which<br />

is a low-head, low-flow, helical gear pump designed for high-viscosity liquids. On an as-<br />

needed basis, the pump transfers a predetermined quantity <strong>of</strong> the solution to the Additive<br />

Mix Tank.<br />

A spare sodium lignosulfonate tote is placed in the Sodium Lignosulfonate Portable<br />

Containment Dike, a 400-gal capacity HDPE spill pallet.<br />

5.2.2 Ferrous Sulfate Supply<br />

Ferrous sulfate is received as a 15% solution in tanker trucks. The FeS04 Tanker Portable<br />

Containment Dike is placed north <strong>of</strong> the Cargo Container Building when a shipment is<br />

expected, and the tanker is spotted within the dike for unloading.<br />

A pump located on the tanker truck, transfers solution into the Ferrous Sulfate Tank,<br />

which is located in the 30-in. concrete containment area in the northwest corner <strong>of</strong> the<br />

Cargo Container Bay. The tank is a 4500-gal fiberglass-reinforced plastic (FRP) vessel with<br />

electric heat tracing and insulation. The Ferrous Sulfate Tank Agitator, along with internal<br />

baffles, enhances heat transfer to prevent crystallization <strong>of</strong> the solution.<br />

The tank’s bottom outlet is piped to the suction side <strong>of</strong> the Ferrous Sulfate Pump, which is<br />

a low-head centrifugal pump with polymeric wetted parts (e.g., polypropylene). On an as-<br />

needed basis, the pump transfers a predetermined quantity <strong>of</strong> the solution to the Additive<br />

Mix Tank.<br />

5.2.3 Process Water Supply<br />

Process water is supplied to the Additive Mix Tank from a 2-in. header under line pressure.<br />

A control valve (AOV-50-5002A) and flow-control loop are used to charge a<br />

predetermined quantity <strong>of</strong> water to the tank.<br />

5.2.4 Preparation and Transfer <strong>of</strong> Mixed Additive<br />

Additive solution is prepared by mixing predetermined quantities <strong>of</strong> sodium lignosulfonate,<br />

ferrous sulfate, and process water in the Additive Mix Tank’. This 1400-gal FRP tank is<br />

located in the Wastewater Tank Area. The Additive Mix Tank Agitator, along with internal<br />

baffles, homogenizes the mixture and keeps any solids in suspension. On an as-needed<br />

basis, batches <strong>of</strong> additive solution are prepared as follows:<br />

qhe Additive Mix Tank can also be set up to receive liquids from the Wastewater Tank Area Sump<br />

(i.e., discharge <strong>of</strong> Wastewater Tank Area Sump Pump). Ordinarily, such liquids are transferred to<br />

the Wastewater Tank (see Section 6.5); however, if a spill or leak originates in the Additive Mix<br />

Tank andlor its downstream lines, and the sump is relatively free <strong>of</strong> other contaminants, Operations<br />

may choose the mix-tank route. Both routes are set up by manual-valve alignment.<br />

5-2


iuwss uasuipttuil IUI tIIu mu 3 riuject<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

1. Charge a predetermined quantity <strong>of</strong> process water to the Additive Mix Tank. Make sure<br />

the agitator is operating.<br />

2. Start the Sodium Lignosulfonate Pump and transfer the appropriate quantity <strong>of</strong> solution<br />

to the mix tank.<br />

3. Start the Ferrous Sulfate Pump and transfer the appropriate quantity <strong>of</strong> solution to the<br />

mix tank.<br />

The mix tank's bottom outlet is piped to the suction side <strong>of</strong> the Additive Pump, which is a<br />

low-head centrifugal pump with acid-resistant wetted parts. Once a batch has been<br />

prepared, and there is a demand from the charging system, the Additive Pump transfers<br />

solution to Additive Charge Tanks A and B.<br />

5.2.5 Charging <strong>of</strong> Mixed Additive<br />

The additive charging system consists <strong>of</strong> two 120-gal, HDPE Additive Charge Tanks, each<br />

equipped with a low-flow, high-head, centrifugal Additive Charge Pump. The pumps'<br />

discharge headers, which include pressure control valves to maintain a back pressure <strong>of</strong><br />

approximately 20 psig, supply additive solution to the two Discharge Chute Assemblies<br />

(FEMP 2003b).<br />

As stated in Section 3.3, additive solution is sprayed into the chute during the entire fill<br />

cycle. The feed rate to Discharge Chute Assemblies A&B is maintained at approximately<br />

6 gpm, and the total flows are monitored by flow-control loops. Once the Silo 3 material<br />

container is full, additive charging automatically ends, and process water is introduced to<br />

the Discharge Chute Assembly's nozzles for flushing; the spent water is deposited in the<br />

container.<br />

The Additive Charge Tanks are sized to physically limit the volume <strong>of</strong> additive charged to<br />

each container.<br />

5-3<br />

000047 I


a 6.0 ': SUPPORT SYSTEMS<br />

-<br />

6.1 HEATING, VENTILATION, AND AIR CONDITIONING<br />

rrocess uescription tor tne <strong>silo</strong> 3 rrolecr<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

This section addresses both the Supply Air System (System 70) and the Exhaust Air<br />

System (System 71). It also discusses heating, ventilation, and air conditioning (HVAC)<br />

systems included in Miscellaneous HVAC Systems (System 771, the trailers, the Electrical<br />

Building, and the CEM Building.<br />

The following HVAC air flow and control diagrams illustrate Systems 70, 71 , and 77:<br />

94X-3900-H-0 1 348<br />

94X-3900-H-01304<br />

94X-3900-H-0 1 349<br />

94X-3900-H-0 1 347<br />

94X-3900-H-01423<br />

94X-3900-H-01350<br />

94X-3900-H-0 1722<br />

94X-3900-H-0 171 8<br />

94X-3900-H-017 1 9<br />

94X-3900-H-0 1720<br />

94X-3900-H-0 1 72 1<br />

94X-3900-H-0 1723<br />

94X-3900-H-01724<br />

94X-3900-H-01725<br />

@ 94X-3900-H-01726<br />

H0003<br />

H0004<br />

H0005<br />

H0006<br />

H0007<br />

H0008<br />

H0020<br />

H002 1<br />

H0022<br />

H0023<br />

H0024<br />

H0025<br />

H0026<br />

H0027<br />

H0028<br />

Process Building - Packaged Air Conditioning Units<br />

Process Areas<br />

Process Building - Exhaust Filtration Units<br />

Silo Enclosure<br />

Storage and Wastewater Tank Area<br />

Cargo Container Bay<br />

Process Building - Packaged Air Conditioning Units<br />

Process Building - Packaging Area<br />

Process Building - Corridors/Airlocks<br />

Process Building - Excavator Rooms<br />

Process Building - Exhaust Filtration Units<br />

Silo Enclosure<br />

Cargo Container Bay<br />

Storage and Wastewater Tank Area<br />

Controls Sequence <strong>of</strong> Operation<br />

6.1 .I Rooms and Areas Serviced by HVAC Systems<br />

Silo 3 facility areas with the potential for airborne contamination are served by the<br />

cascade system. Other areas have ventilation only for general worker comfort and safety.<br />

In cascade systems, air is channeled from one room/area to another in a set sequence. For<br />

a radiological facility such as Silo 3 and related buildings, supply air flows from "clean" to<br />

"d i rt y " roo m s/a rea s .<br />

Air supplied to the cascade system is ultimately exhausted by both the HVAC Exhaust Air<br />

System and the PVS. The dual exhaust system minimizes the amount <strong>of</strong> air that will be<br />

exposed to the Silo 3 material; limits the quantity <strong>of</strong> dust collected; and minimizes the<br />

sizes <strong>of</strong> HEPANLPA filters, baghouses, etc. The HVAC Exhaust Air System exhausts air<br />

from areas and rooms where dust generation is negligible (i.e., cleaner areas than those<br />

exhausted by the PVS). The PVS exhausts air from dustier, more contaminated areas like<br />

the Excavator Room and the <strong>silo</strong>. Exhaust registers are used in the Excavator Room, while<br />

the VWEs located atop the <strong>silo</strong> are used for PVS ventilation <strong>of</strong> the <strong>silo</strong>.<br />

Additionally, a local exhaust register at each <strong>of</strong> the Package Loading Stands is connected<br />

to the PVS for control <strong>of</strong> potential contamination. This register captures any stray material<br />

that may become airborne during bag filling/sealing activities.<br />

Table 6-1 provides roodarea names and numbers, their relationships to the cascade I<br />

system, and spot-heater information.<br />

6- 1<br />

. .<br />

I<br />

I<br />

OS0948


.. . .<br />

008<br />

009<br />

01 0<br />

01 1<br />

- -. - - -<br />

Table 6-1 : Silo 3 HVAC Information<br />

Excavator Service Room No No Yes<br />

Excavator Room No No Yes<br />

Silo Enclosure Yes No No<br />

Cargo Container Bay Yes Yes; three No<br />

Process Description tor tne <strong>silo</strong> Y rroject<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

00 I I Entry Corridor I Not regularly I Yes; one I Yes<br />

002 1 Corridor I Yes I Yes; one I Yes<br />

I<br />

003 I Airlock/D<strong>of</strong>f I Not regularly I Yes; one 1 Yes<br />

I<br />

004 I Packaging Area 1 Yes I Yes; four 1 Yes 1<br />

005 1 Storage Area I No I No I<br />

006 1 Wastewater Tank Area I Yes; three I No<br />

I No<br />

1<br />

007 1 Airlock I Not regularly I Yes; two 1 Yes I /I<br />

Process Building<br />

As shown in Table 6-1, most roomdareas in the Process Building have spot electric I<br />

heaters in addition to being heated and cooled via a push-pull cascade ventilation system<br />

(see Section 6.1 .Z). Occupied areas are maintained between 68 and 72OF. Temperatures I<br />

in unoccupied areas are not limited. However, because the cascading flow <strong>of</strong> conditioned<br />

air is exhausted through the Excavator Room, the room's temperature is anticipated to be<br />

below 1 10°F during normal operation. Other unoccupied areas are ventilated with outside<br />

air to maintain their temperatures below 103OF. Minimum temperatures vary with the<br />

room or area.<br />

Silo Enclosure<br />

Silo 3 is completely enclosed by a temporary, fabric-covered structure for weather<br />

protection. The structure has the following features:<br />

0 -Rigid structural frame consisting <strong>of</strong> a series <strong>of</strong> galvanized steel trusses;<br />

0 Framework clad with a high-strength, polyvinyl chloride-coated, polyester membrane<br />

that is attached to the structure's foundation;<br />

~ ~ ~~<br />

lo Rooms/Areas in italics make up the "Process Building."<br />

.. . . . -<br />

6-2<br />

000049<br />

~~ ~<br />

I<br />

e


8 . tic<br />

2,J * ' '<br />

\3 cy!,;<br />

rrocess uescriprion Tor me aiio J rrojecr<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

A9<br />

0 D&;c;\ned for compliance with building code standards for wind, snow, and seismic<br />

loads;<br />

0<br />

0<br />

Compatible with standard door, ventilation, and lighting systems; and<br />

Sufficient height to allow operation <strong>of</strong> the VWEs at all candidate manways.<br />

Air is drawn into the enclosure through six combination louver/backdraft dampers.<br />

Because the VWEs provide localized negative-pressure containment, exhaust air from the<br />

Silo Enclosure is not HEPA-filtered but is exhausted directly to the atmosphere by the Silo<br />

Enclosure Exhaust Fan (FAN-77-5780). There are no provisions for heating the Silo<br />

Enclosure.<br />

Cargo Container Bay<br />

The Cargo Container Bay is ventilated by a dedicated air-handling unit with roughing filters<br />

(AHU-77-5737). Exhaust air is directed to the atmosphere by three ro<strong>of</strong>-mounted exhaust<br />

fans (FAN-77-5790 A, B, and C). Radiant heaters (HTR-77-5740 A, B, and C) are provided<br />

in the Cargo Container Bay's work areas for spot heating in the vicinity <strong>of</strong> the Off-Loading<br />

Conveyors.<br />

Trailer<br />

The combined Operations Support/Change Room Trailer is heated and cooled by two<br />

independent HVAC units, which can be ro<strong>of</strong>-, wall-, or pad-mounted. One unit heats and<br />

cools the Control Room, while the second unit handles the balance <strong>of</strong> the trailer. The<br />

entire trailer is maintained under positive pressure, with the Control Room having the<br />

higher pressure.<br />

Both HVAC units include intake HEPA filtration and are designed to maintain room<br />

temperatures between 68 and 8OOF.<br />

Electrical Building<br />

The Electrical Building is ventilated by drawing air through two combination<br />

louver/backdraft dampers via a wall exhaust fan (FAN-77-5795). Two electric unit heaters<br />

(HTR-77-5796A & 5796B) with unit-mounted thermostats maintain the building at a<br />

minimum <strong>of</strong> 55°F.<br />

CEM Building<br />

Because <strong>of</strong> the sensitivity <strong>of</strong> its instrumentation, the CEM Building is heated and cooled by<br />

an independent HVAC unit. The unit is designed to maintain a constant room temperature<br />

---------OM^l'<br />

i-<br />

L-2-O-E<br />

Wastewater Tank Area and Storage Area<br />

The Wastewater Tank Area (006) and the Storage Area (005) are adjacent and, as shown<br />

in Table 6-1, neither area is occupied or on the cascade system. Air is drawn into both I<br />

areas through two combination louver/backdraft dampers with roughing filters. Exhaust air<br />

from the two areas is directed to the atmosphere by the Storage and Wastewater Tank<br />

Area Exhaust Fan (FAN-77-5792). Three unit heaters (HTR-77-5797Ar B, and C) provide<br />

freeze protection for the area's four tanks, four pumps, and associated piping.<br />

6-3<br />

I


6.1.2 Supply Air System (System 70)<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

The Supply Air System comprises Packaged Air Conditioning Units 1, 2, and 3 (ACU-70-<br />

5700, -5710, and -5720). These units draw in ambient air, heat or cool the air (as dictated<br />

by ambient conditions), and distribute it to various "clean, " normally occupied roomslareas<br />

at the head end <strong>of</strong> the cascade ventilation system. Only two <strong>of</strong> the ACUs operate at a<br />

time, with the third on standby.<br />

6.1.3 Exhaust Air System (System 71)<br />

Air from "clean" roomdareas is drawn into those roomdareas with a higher potential for<br />

contamination. Exhaust air is directed to HEPA filters and discharged to the Exhaust Stack.<br />

The Exhaust Air System comprises: Building Filtration Exhaust Fans A&B (FAN-71 -5760<br />

A&B); and Building ULPA/HEPA Exhaust Modules A&B (FLT-71-5770 A&B).<br />

The building ventilation/exhaust system collects air streams from all rooms and areas on<br />

the cascade system (see Table 6-1) and routes them through a system <strong>of</strong> galvanized steel I<br />

ductwork to the Building ULPA/HEPA Exhaust Modules A&B (FLT-71-5770 A&B). Each <strong>of</strong><br />

the two exhaust modules includes roughing filters, HEPA filters, ULPA filters, in-place test<br />

sections, transition pieces, and isolation dampers. Housings for the exhaust modules are<br />

s t a in I e ss s t ee I , s id e-a cc e ss , "bag - i n/ ba g- o ut " housings' ' .<br />

Each <strong>of</strong> the two exhaust modules is sized for 100 percent airflow (i.e., approximately<br />

7,200 acfm). Air is pulled through the exhaust modules by one <strong>of</strong> two centrifugal exhaust<br />

fans (FAN-71-5760 A&B). Exhaust air is discharged from the fans to the Exhaust Stack<br />

(see Section 4.4.5).<br />

6.2<br />

PLANT AND INSTRUMENT AIR SYSTEM (SYSTEM 40)<br />

The following PFD and P&IDs illustrate the Plant and Instrument Air System:<br />

94X-3900-F-0 1 432 F0005 Plant, Instrument, and Breathing Air Systems<br />

94X-3900-N-01441 NO1 08 Plant Air System<br />

94X-3900-N-01444 NO 1 1 1 Plant Air System Connections<br />

94X-3900-N-0 1446 NO 1 1 3 Instrument Air System Connections<br />

The Plant and Instrument Air System provides both compressed and instrument-quality air<br />

for various end users such as baghouse and cartridge filter pulse jets, air-operated valves,<br />

and miscellaneous instrumentation.<br />

6.2.1 Plant/lnstrument Air Equipment (SKD-40-5300)<br />

-The-P-lantllastrument A ir ComDressor Skid (SKD-40-5300) is a fully self-contained, structural<br />

steel skid unit. All components are purchased piped and wired, and ready for installation upon<br />

receipt. The skid includes, but is not limited to, the following equipment:<br />

8 ACP-40-5320A&B: Air Compressors A&B<br />

8<br />

ART-40-531 0: Instrument Air Receiver Tank<br />

8 ADR-40-53 1 2A&B: Desiccant Vessels A&B<br />

" The "bag-in/bag-out" feature minimizes the potential <strong>of</strong> releases during filter changes.<br />

6-4<br />

000051<br />

I<br />

0


a<br />

a<br />

,<br />

0<br />

Miscellaneous filters, aftercoolers, traps, etc.<br />

6.2.2 Plant/lnstrument Air System Operation<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003,' Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

Air from the Air Compressors flows to the Instrument Air Receiver Tank, which feeds air<br />

through the Desiccant Vessels and then to various plant and instrument air users.<br />

6.3<br />

BREATHING AIR SYSTEM (SYSTEM 41)<br />

The following PFD and P&IDs illustrate the Breathing Air System:<br />

94X-3900-F-0 1 432 F0005 Plant, Instrument, and Breathing Air Systems<br />

94X-3900-N-0 1 443 NO1 10 Breathing Air System<br />

94X-3900-N-01445 NO1 12 Breathing Air System Connections<br />

Because <strong>of</strong> the potentially high levels <strong>of</strong> contamination in some areas <strong>of</strong> the Silo 3 Project I<br />

site, workers may need supplied air on occasion. Configuration <strong>of</strong> the Breathing Air<br />

System is similar to that <strong>of</strong> the Plant and Instrument Air System, with the addition <strong>of</strong><br />

appropriate breathing-air conditioning.<br />

6.3.1 Breathing Air System Equipment (SKD-41-5350)<br />

The Breathing Air System Compressor Skid is a fully self-contained, structural steel skid unit<br />

requiring only one air piping connection. All components are purchased piped and wired, and<br />

ready for installation upon receipt. The skid includes, but is not limited to, the following<br />

equipment:<br />

0 SKD-41-5354: Desiccant Dryer Skid<br />

0 Afterfilter<br />

0 Carbon monoxide monitor<br />

0<br />

ACP-41-5360A&B: Breathing Air Compressors A&B<br />

ART-41 -5352: Breathing Air Receiver Tank<br />

Miscellaneous filters, coolers, traps, etc.<br />

6.3.2 Breathing Air System Operation<br />

Supplied-air respirators (SARs) are available for personnel who are required to enter<br />

supplied-air areas for operational or maintenance purposes. Breathing air is supplied to the<br />

SARs by individual breathing air stations (BASs). The BASs are located either inside or<br />

outside <strong>of</strong> the supplied-air areas.<br />

Personnel entering supplied-air areas are fitted with SARs, air-purifying respirators, and/or<br />

other appropriate personal protective equipment; they also carry the necessary length <strong>of</strong><br />

hose. Personnel remain attached to either the air-purifying respirator or the BAS until they<br />

leave the supplied-air area and enter a d<strong>of</strong>fing area.<br />

6.4 PROCESS WATER AND DOMESTIC WATER SYSTEMS (SYSTEMS 50 AND 51)<br />

a The following PFD and P&IDs illustrate both the Process Water System and the Domestic<br />

Water System:<br />

6-5<br />

I<br />

I<br />

I<br />

I<br />

9<br />

soqosz


Process Uescription for tne bito J rrojecr<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

~-<br />

i .<br />

94X-3900-F-0 1 430 F0004 Additive and Wastewater Systems<br />

94X-3900-N-0 1438 NO1 05 Additive Mixing and Wastewater Systems<br />

94X-3900-N-0 1447 NO1 14 Domestic and Process Water Systems<br />

An existing domestic water main supplies water to the Process Building, Excavator Room,<br />

Excavator Service Room, Cargo Container Bay, and various outdoor utility stations. As<br />

"domestic water" (System 5 1) passes through various backflow preventers (BFPs), it is re-<br />

designated as "process water" (System 50). Domestic water is supplied only to the safety<br />

shower/eyewash stations; all other users are supplied with process water. The process-<br />

water users are:<br />

0<br />

0<br />

0<br />

0<br />

Wastewater Tank (flushing and suspension <strong>of</strong> solids);<br />

Additive Mix Tank (preparation <strong>of</strong> mixed additive);<br />

Suction sides <strong>of</strong> Sodium Lignosulfonate Pump (PMP-44-5000A), Ferrous Sulfate Pump<br />

(PMP-44-5000A), and Additive Charge Pumps A&B (PMP-44-5004A&B) (flushing);<br />

Additive charge headers to Discharge Chute Assemblies A&B (nozzle cleanout); and<br />

0 Type 2 utility stations.<br />

No major process equipment is associated with either System 50 or 51.<br />

0<br />

PMP-62-5604: Wastewater Tank Area Sump Pump<br />

0 TNK-62-5600: Wastewater Tank<br />

0 MXA-62-5602: Wastewater Tank Agitator<br />

0 PMP-62-5606: Wastewater Pump<br />

6.5 WASTEWATER SYSTEM (SYSTEM 62)<br />

The following PFD and P&ID illustrate the Wastewater System:<br />

94X-3900-F-0 1 430 F0004 Additive and Wastewater Systems<br />

94X-3900-N-01438 NO1 05 Additive Mixing and Wastewater Systems<br />

6.5.1 Wastewater System Equipment<br />

The Wastewater System comprises the following equipment:<br />

0<br />

PMP-62-5642: Excavator Room Sump Pump<br />

0 PMP-62-5404: Excavator Service Room Sump Pump<br />

Tfw+65~6e&**##a*-<br />

0 MXA-62-5602: Wastewater Tank Agitator<br />

0 PMP-62-5606: Wastewater Pump<br />

0 PMP-62-5604: Excavator Service Room Sump Pump<br />

6.5.2 Wastewater System Operation<br />

The Wastewater Tank is a 1400-gal FRP tank located in the Wastewater Tank Area. The<br />

Wastewater Tank Agitator, along with internal baffles, minimizes differences in<br />

6-6<br />

000853<br />

I<br />

e<br />

- -.<br />

~ _


a<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

* 2, ,** '-<br />

tempecat9re; ,pH, etc.; and keeps any solids in suspension. The tank's bottom outlet is<br />

piped to the suction side <strong>of</strong> the Wastewater Pump, which is a low-head centrifugal pump<br />

with acid-resistant wetted parts. Wastewater Tank influents are as follows:<br />

0 Excavator Room Sump and Excavator Service Room Sump: These rooms' floors are<br />

sloped to drain into concrete sumps. Infrequently, water may enter the sumps as a<br />

result <strong>of</strong> washdown and/or excessive misting. Air-operated diaphragm sump pumps are<br />

provided in each sump to transfer water to the Wastewater Tank.<br />

0<br />

0<br />

Wastewater Tank Area Sump: This concrete sump picks up leakage and spillage from<br />

the curbed area surrounding the Wastewater Tank, the Additive Mix Tank, and the two<br />

Additive Charge Tanks. In the Packaging Area, floor drains are provided to transfer<br />

wastewater to the Wastewater Tank Area Sump. An air-operated diaphragm sump<br />

pump transfers the sump's contents into the Wastewater Tank.<br />

In addition to the three sumps, the Wastewater Tank can also receive water from the<br />

process water line for dilution and flushing (see Section 6.4).<br />

Once the level in the Wastewater Tank reaches a preset high value, input from all sources<br />

is shut <strong>of</strong>f. The tank's contents are then sampled and analyzed to ensure that they meet<br />

the Advanced Wastewater Treatment (AWWT) facility waste acceptance criteria.<br />

Arrangements are then made with AWWT personnel to transfer the tank's contents to the<br />

AWWT facility. This is accomplished by using the Wastewater Pump to transfer<br />

wastewater to a tanker truck.<br />

6-7<br />

I


7.0 REFERENCES<br />

Process Description for the Silo 3 Project<br />

Document No. 40430-RP-0003, Rev. 1<br />

Jacobs Project No. 35H19605<br />

September 5, 2003<br />

-A ,A<br />

3U bY<br />

1. FEMP, Access and Retrieval Strategy for the Silo 3 Project, Document No. 40430-PL-<br />

0002, Rev. 0, July 2002a.<br />

2. FEMP, Occupational ALARA Plan for Silo 3, Document No. 40430-PL-0007, Rev. 1,<br />

March 2003a.<br />

3. FEMP, Timed Estimate for Secondary Waste for Silo 2, Document No. 40430-RP-0012,<br />

Rev. 0, July 2002b.<br />

4. Jenike & Johanson, Inc., 2002. Pretreatment <strong>of</strong> Silo 3 Material with Lignosulfonate<br />

Solution, 4584-1 , August 2002.<br />

5. FEMP, Specification No. ES-JM-NOZ-25-5260 for Discharge Chute Assembly Units<br />

NOZ-25-5260A/BI Document No. 40430-ES-JM-RCV-25-5260, Rev. 0, April 2003b.<br />

6. FEMP, Fernald Silo 3 Environmental Control Plan, Document No. 40430-PL-0005,<br />

Revision 0, April 2002b.<br />

7-1 000055


R<br />

ni<br />

2


FLUOR<br />

Fluor Fernald, Inc.<br />

P.O. Box 538704<br />

Cincinnati, OH 45253-8704<br />

ACCESS AND RETRIEVAL STRATEGY<br />

FOR THE- SILO 3 PROJECT<br />

Document No. 40430-PL-0002<br />

September 2003<br />

Revision 1<br />

FERNALD CLOSURE PROJECT<br />

'.<br />

Fernald Project Number 40430<br />

APPROVED BY: %- DATE:<br />

Doris Edwards, Silo 3 Project Manager<br />

5069


-_______<br />

,<br />

f<br />

Revision<br />

0<br />

1<br />

Date<br />

711 1 102<br />

9/29/03<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

____<br />

Revision Sheet<br />

Pages Affected<br />

AI I<br />

All<br />

ii<br />

~~<br />

~~ ~<br />

Reason for Revision<br />

Issued for Design<br />

By Jacobs Engineering Group - Oak Ridge<br />

Design Changes<br />

Issued for Remedial Design Package<br />

By Fluor Fernald, Inc.<br />

000057


Access and Retrieval Strategy for the Silo 3 Project<br />

Document No . 40430.PL.0002. Rev . 1<br />

September 2003<br />

..... 5069<br />

...<br />

..... . Table <strong>of</strong> Contents<br />

. ‘ . . .<br />

i- ;‘i ::-.! :& ........<br />

ACRONYMS ......................................................................................................... V<br />

1.0 INTRODUCTION .......................................................................................... 1<br />

2.0<br />

3.0<br />

4.0<br />

5.0<br />

1.1 OVERVIEW OF ACCESS AND RETRIEVAL SYSTEMS .............................. 1<br />

1 . 1 . 1 Preliminary Activities ............................................................... 1<br />

1 . 1 . 2 Pneumatic Retrieval System ...................................................... 1<br />

1.1.3 Mechanical Retrieval System ..................................................... 1<br />

1.2 SILO 3 MATERIAL .............................................................................. 2<br />

1.2.1 History <strong>of</strong> Generation <strong>of</strong> Silo 3 Material ...................................... 2<br />

1.2.2 Quantity and Characteristics <strong>of</strong> Silo 3 Material ............................ 2<br />

1.3 SILO 3 STRUCTURE ........................................................................... 3<br />

1.4 LOAD LIMITATIONS ON SILO 3 ........................................................... 5<br />

1.5 SILO ENCLOSURE .............................................................................. 5<br />

ACCESS AND RETRIEVAL SEQUENCE ............................................................ 7<br />

2.1 INITIAL SILO ACCESS ........................................................................ 7<br />

2.2 PNEUMATIC RETRIEVAL ..................................................................... 7<br />

2.3 SILO WALL ACCESS .......................................................................... 7<br />

2.4 MECHANICAL RETRIEVAL ................................................................... 8<br />

PNEUMATIC RETRIEVAL SYSTEM ................................................................. 9<br />

3.1 PNEUMATIC RETRIEVAL SYSTEM EQUIPMENT ...................................... 9<br />

3.1.1 Vacuum Wand Management System (VWMS) ............................. 9<br />

3.1.2 Other PRS Equipment .............................................................. 10<br />

3.2 PNEUMATIC RETRIEVAL SYSTEM OPERATION ..................................... 1 1<br />

MECHANICAL RETRIEVAL SYSTEM .............................................................. 12<br />

4.1 MECHANICAL RETRIEVAL SYSTEM EQUIPMENT .................................. 12 . .<br />

4.1 . 1 Excavator (EXC-1 1-5050) ........................................................ 12<br />

4.1.2 Retrieval Bin (HBN-1 1-5054) .................................................... 13<br />

4.1.3 OTHER MRS EQUIPMENT ........................................................ 13<br />

4.1.4 Excavator Room and Excavator Service Room ............................ 13<br />

4.2 MECHANICAL RETRIEVAL SYSTEM OPERATION ................................... 14<br />

SILO 3 WALL OPENING ............................................................................... 16<br />

5.1 REINFORCEMENT FRAME CONSTRUCTION .......................................... 16<br />

5.2 FACILITY CONSTRUCTION ................................................................. 16<br />

5.3 WALL CUrrlNG ................................................................................ 16<br />

6.0 VIDEO EQUIPMENT ..................................................................................... 19<br />

7.0 REFERENCES ................................................................................................ 20<br />

iii<br />

..


Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

- -.<br />

5669<br />

FIGURES<br />

Figure 1-1 Plan View <strong>of</strong> Silo ................................................................................... 4<br />

Figure 1-2 Elevation View <strong>of</strong> Silo Opening ................................................................ 5<br />

Figure 5-1 Layout <strong>of</strong> Section Cuts. ......................................................................... 18<br />

Process Flow Diagrams:<br />

REFERENCE DRAWINGS:<br />

94X-3900-F-01428 FOOOl Material Balance Table<br />

94X-3900-F-01429 F0002 Material Retrieval and Feed Systems<br />

94X-3900-F-0143 1 F0003 Process Vent and Packaging Systems<br />

94X-3900-F-01430 F0004 Water and Wastewater Systems<br />

94X-3900-F-01432 F0005 Plant, Instrument, and Breathing Air Systems<br />

General Arrangement Drawings:<br />

94X-3900-M-0 1 46 1<br />

94X-3900-M-01463<br />

94X-3900-M-01464<br />

94X-3900-M-01465<br />

94X-3900-M-01467<br />

94X-3900-M-01468<br />

94X-3900-M-01469<br />

94X-3900-M-01470<br />

MOO01<br />

MOO02<br />

MOO03<br />

MOO04<br />

MOO07<br />

MOO08<br />

MOO09<br />

MOO10<br />

General Arrangement Plot Plan<br />

General Arrangement East Elevation<br />

General Arrangement 1 St Floor Plan<br />

General Arrangement Plan at EL 597'-8"<br />

General Arrangement Section A<br />

General Arrangement Section B<br />

General Arrangement Section C<br />

General Arrangement Section D<br />

iv


A&RS<br />

CCTV<br />

DOE<br />

FCP<br />

FEMP<br />

FMPC<br />

HEPA<br />

HVAC<br />

MRS<br />

nd<br />

PD<br />

PPE<br />

PRS<br />

PVS<br />

RCRA<br />

TSR<br />

U LPA<br />

VWMS<br />

'0 1. :*. .<br />

4l .,<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

ACRONYMS<br />

Access and Retrieval Strategy<br />

Closed-circuit television<br />

U.S. <strong>Department</strong> <strong>of</strong> <strong>Energy</strong><br />

Fernald Closure Project<br />

Fernald Environmental Management Project<br />

Feed Materials Production Center<br />

High efficiency particulate air<br />

Heating, ventilation, and air conditioning<br />

Mechanical Retrieval System<br />

Not dated<br />

Process Description for the Silo 3 Project<br />

Personal protective equipment<br />

Pneumatic Retrieval System<br />

Process Vent System<br />

Resource Conservation and Recovery Act <strong>of</strong> 1976<br />

Technical Safety Requirements<br />

Ultra low penetrating air<br />

Vacuum Wand Management System<br />

V<br />

5069


Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

* _. , ’; :<br />

0 I .o INTRODUCTION 5069<br />

This Access and Retrieval Strategy (A&RS) document describes the strategies, systems,<br />

and equipment for accessing and retrieving material from Silo 3. The <strong>silo</strong> is located at the<br />

U.S. <strong>Department</strong> <strong>of</strong> <strong>Energy</strong> (DOE) Fernald Closure Project (FCP) site in Fernald, Ohio.<br />

Previously, the site has been named the Feed Materials Production Center (FMPC) and the<br />

Fernald Environmental Management Project (FEMP). As part <strong>of</strong> the remediation <strong>of</strong><br />

Operable Unit 4 at the FCP, approximately 5,100 yd3 <strong>of</strong> byproduct metal oxide materials<br />

stored in Silo 3 will be removed, conditionedltreated, packaged, and transported to an <strong>of</strong>fsite<br />

facility for disposal.<br />

0<br />

0<br />

The A&RS is limited to access and retrieval operations only and is not intended to describe<br />

the subsequent handling, conditioning/treatment, packaging, and transport <strong>of</strong> the Silo 3<br />

material. These activities are covered in the Process Description for the Silo 3 Project<br />

(FEMP 2003).<br />

1.1 OVERVIEW OF ACCESS AND RETRIEVAL SYSTEMS<br />

1.1.1 PRELIMINARY ACTIVITIES<br />

Access and retrieval <strong>of</strong> the Silo 3 material will be accomplished by using both pneumatic<br />

and mechanical systems. Before the <strong>silo</strong> is accessed for retrieval operations, the radon<br />

concentration in the <strong>silo</strong> headspace will be reduced to an acceptable level. In preparation<br />

for mechanical retrieval, a reinforced concrete framework has been installed on the east<br />

<strong>silo</strong> wall (during Silo 3 Project construction), and a section <strong>of</strong> the <strong>silo</strong> wall will be removed<br />

(after initial pneumatic retrieval operations).<br />

1.1.2 PNEUMATIC RETRIEVAL SYSTEM<br />

x.<br />

Pneumatic retrieval involves vacuuming material through the existing man ways on the<br />

Silo 3 dome. The system is used to remove flowable material in a controlled manner from<br />

top to bottom and from behind the <strong>silo</strong> wall before creating the wall opening. The<br />

Pneumatic Retrieval System (PRS) transfers the material to the Process Building, where the<br />

material is conditionedhreated and packaged. The PRS will be operated initially since the<br />

material height is into the dome space.<br />

1.1.3 MECHANICAL RETRIEVAL SYSTEM<br />

In addition to pneumatic retrieval, a Mechanical Retrieval System (MRS) is used to access<br />

and remove the compacted material from Silo 3. A mechanical excavator transfers Silo 3<br />

material to a bin located in the Excavator Room. An inclined belt conveyor feeds the<br />

material to the Process Building.<br />

It is also expected that the excavator will be used as necessary to manipulate a vacuum<br />

wand end effector to retrieve material using the PRS. The excavator can also be used<br />

specifically to loosen compacted material, which then could be vacuumed by the PRS<br />

vacuum wands located inside the <strong>silo</strong>.


.. 8 .<br />

t r:<br />

F' (3 :2*-<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

_- _ _ ~<br />

' SILO 3 MATERIAL<br />

~ ~ _<br />

_ ~<br />

5 Q-6-9--<br />

Silo 3 contains metal oxide material generated from the operation <strong>of</strong> the former Feed<br />

Materials Production Center (FMPC), now known as the Fernald Closure Project (FCP).<br />

1.2.1 HISTORY OF GENERATION OF SILO 3 MATERIAL<br />

Raffinate streams from FMPC's solvent extraction process were dewatered using rotary<br />

vacuum filters. The filtrate streams were then processed through evaporators, and the<br />

evaporator concentrates were further processed using either a spray calciner or a rotary<br />

calciner. From plant startup through the mid-1 950s, a spray calciner processed the<br />

concentrates. Approximately 35 percent <strong>of</strong> the Silo 3 material is believed to have come<br />

from this process. Because <strong>of</strong> operational difficulties with the spray calciners, a rotary<br />

calciner process was implemented. In this process, the evaporator concentrates were<br />

transferred to a drum dryer and, finally, to a rotary calciner. The calciner removed residual<br />

liquids and converted the metal nitrates to metal oxides. The resulting fine powdered<br />

metal oxides were pneumatically transferred to Silo 3 for storage. Transfer <strong>of</strong> all materials<br />

into Silo 3 continued until 1957.<br />

1.2.2 QUANTITY AND CHARACTERISTICS OF SILO 3 MATERIAL<br />

Approximately 5,100 yd3 <strong>of</strong> metal oxide material are stored in Silo 3. The predominant<br />

radionuclide <strong>of</strong> concern is thorium-230, which is produced from the natural decay <strong>of</strong><br />

uranium-238. Silo 3 material is classified as 11 (e)(2) byproduct material under the Atomic<br />

<strong>Energy</strong> Act <strong>of</strong> 1954, as amended, and contains several Resource Conservation and<br />

Recovery Act <strong>of</strong> 1976 (RCRA) metals. Silo,3 material is specifically exempt from<br />

regulation as a hazardous waste under RCRA because <strong>of</strong> its classification as 1 1 (e)(2)<br />

byproduct material.<br />

Based on historical information and recent sampling events, the following assumptions are<br />

made regarding the physical characteristics <strong>of</strong> the Silo 3 material:<br />

0 The uppermost two-thirds <strong>of</strong> the material is dry, fine powder, similar to fly ash.<br />

0 Using data obtained during the Silo 3 Small Scale Waste Retrieval (FEMP 19981, and<br />

the Flow Properties Test Report (Jenike & Johanson 20021, the lower third <strong>of</strong> the<br />

material is assumed to be compacted such that it cannot flow freely. Small Scale<br />

Retrieval activities removed material up to 11 feet high and 4 feet into the <strong>silo</strong>.<br />

0<br />

Miscellaneous debris, such as simple hand tools, personal protective equipment (PPE),<br />

and plastic bags, are potentially present in the <strong>silo</strong>.<br />

0 About ninety percent (by weight) <strong>of</strong> the Silo 3 material sample passes through a 200-<br />

mesh sieve. This indicates that the majority <strong>of</strong> the contents are expected to be silt/clay<br />

size or smaller. Much <strong>of</strong> the Silo 3 material sample was easily fluidized, dispersible,<br />

and flowable. Recent particle size analyses (Savannah River Technology Center 2001 1<br />

showed that most <strong>of</strong> the material consists <strong>of</strong> particles greater than 1 micron. However,<br />

these particles are aggregates <strong>of</strong> submicron size particles, that can be easily dispersed<br />

during retrieval operations. It is expected that the retrieved Silo 3 material will have<br />

2<br />

000062


.r t :: I-.<br />

a ,J d+<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

som'e variability in particle size and composition. It is not, however, expected to be a<br />

significantly different material from that found in previous testing (Argonne National<br />

Laboratory 1997). A summary <strong>of</strong> the various particle size analyses performed on Silo 3<br />

material was prepared. This paper examined the issues associated with each <strong>of</strong> the<br />

methods used and attempted to describe how the Silo material physical and chemical<br />

characteristics could affect the particle size analysis. (FCP, 2003). This testing<br />

identified both physical characteristics (e.g., particle-size distribution) and chemical<br />

constituents, and concluded that processing <strong>of</strong> the Silo 3 material requires the use <strong>of</strong><br />

both containment and ventilation.<br />

Characterization studies have found the moisture content <strong>of</strong> Silo 3 material samples to<br />

be approximately 3 - 10 percent by weight.<br />

The chemical constituents <strong>of</strong> the Silo 3 material are mostly inorganic metal oxides.<br />

Most <strong>of</strong> the Silo 3 radioactivity is from thorium-230; the balance is uranium-238 and<br />

other uranium daughters. The radon emanation rate' is approximately 1 O5 pCi/second.<br />

Based on previous measurements, the <strong>silo</strong> headspace's radon concentration is about<br />

300,000 pCi/L.<br />

1.3 SILO 3 STRUCTURE<br />

Silo 3 was built in 1952 and is a freestanding, pre-stressed concrete, domed <strong>silo</strong>. As<br />

shown in Figures 1-1 and 1-2, it is 80 ft in diameter and the top is about 36 ft above<br />

ground level. The floor system is constructed <strong>of</strong> seventeen inches <strong>of</strong> compacted clay, a<br />

2-inch-thick layer <strong>of</strong> asphaltic concrete, and an eight-inch layer <strong>of</strong> gravel topped by 4 in. <strong>of</strong><br />

concrete.<br />

0 Silo 3 does not have an underdrain system.'. The domed ro<strong>of</strong> tapers from 8 in. thick at the<br />

a<br />

<strong>silo</strong> walls to 4 in. thick at the apex. The apex is 36 ft high; and the walls are<br />

approximately 27 ft above the top <strong>of</strong> the foundation, with the earth on the outside<br />

approximately 2 ft above the <strong>silo</strong> floor. Silo 3 contains increased reinforcing around the<br />

dome periphery (ring beam). The man ways on the <strong>silo</strong> dome have various diameters. Four<br />

<strong>of</strong> the man ways, which were used as material inlet ports, are arranged radially, ninety<br />

degrees apart across the dome, and are 20-in diameter. A man way at the center <strong>of</strong> the<br />

dome is also 20-in diameter. There are two additional man ways, 24-in diameter, one at<br />

the northern edge and the other at the eastern edge <strong>of</strong> the <strong>silo</strong> dome. There is a 6-in vent<br />

port near the center man way and 24 2-in "sounding" ports.<br />

'The rate at which radon is transferred from the solid phase to theheadspace.<br />

:: 1. 3<br />

50 69


Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

Figure 1-1 Plan View <strong>of</strong> Silo 3<br />

80'-0"<br />

4<br />

000064


@<br />

1.4<br />

LOAD LIMITATIONS ON SILO 3<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002. Rev. 1<br />

September 2003<br />

Figure 1-2 Elevation View <strong>of</strong> Silo Opening<br />

ELEVATION<br />

LOOWG WEST<br />

The Technical Safety Requirements (TSR) Document for the Operable Unit 4 Silos (FCP<br />

2003) defines the requirements and restrictions for live and dead loads placed on Silo 3.<br />

The engineering design and operation <strong>of</strong> the Vacuum Wand Management System will be<br />

evaluated to ensure compliance with the DOE-approved TSR document.<br />

The FCP Silos Dome Access Procedure delineates administrative controls to ensure <strong>silo</strong><br />

dome loads are evaluated and placed in accordance with the TSR document. In no case<br />

shall loads, other than personnel and personnel-carried portable equipment, be placed on<br />

the <strong>silo</strong> dome unless evaluated and approved in writing by Silos Project Engineering and<br />

within authorization <strong>of</strong> the TSR revision approved by DOE. Silos Project Engineering shall<br />

evaluate any components to be connected to the <strong>silo</strong> for live load and dead load, and<br />

determine when the component is no longer a live load.<br />

Finite element analysis <strong>of</strong> the <strong>silo</strong> has been performed to support the design <strong>of</strong> the<br />

concrete reinforcement at the location <strong>of</strong> the <strong>silo</strong> wall opening.<br />

"Critical lift" plans are to be developed for all lifting performed over the <strong>silo</strong> structure, and<br />

for lifts in which a potential exists to impact the <strong>silo</strong> structure. The definition <strong>of</strong> a "critical<br />

lift," as well as the requirements for critical lift plans, are contained in the FCP Hoist and<br />

Rigging Manual (FCP nd).<br />

1.5 SILO ENCLOSURE<br />

A fabric membrane structure will be cons ructed to completely en<br />

protection. The structure has the following features:<br />

. . *. .?. . ,<br />

< r : - : * I .<br />

5<br />

' \<br />

lose Silo 3 for weather<br />

5068<br />

000865


Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

_ _ ~ ~ _<br />

__<br />

8' "0 Rigid structural frame, consisting <strong>of</strong> a series <strong>of</strong> galvanized steel trusses; 5069<br />

0<br />

0<br />

0<br />

0<br />

0<br />

Main trusses, designed for additional collateral loads (e.g., personnel tie-<strong>of</strong>f, small-bore<br />

pipinglconduit, and vacuum wand hoists and hoses).<br />

Framework, clad with a high-strength, coated polyester membrane and attached to the<br />

structure foundation;<br />

Compliance with building code standards, including wind, snow, and seismic loads;<br />

Compatible with standard door, ventilation, and lighting systems; and<br />

Sufficient height to allow operation <strong>of</strong> the VWMS at all selected man ways.<br />

Air inlet and outlet dampers. Exhaust (outlet) air is directed to the atmosphere by<br />

Exhaust Fan (FAN-77-5780). Exhaust air from the Silo Enclosure is not HEPA-filtered,<br />

since negative-pressure containment is provided at each man way for pneumatic<br />

retrieval.<br />

6<br />

000066<br />

- -


I' .\<br />

I .<br />

I . a .<br />

;<br />

2.0 ACCESS AND RETRIEVAL SEQUENCE<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

Radon and radionuclide emissions to the environment, as well as to project work areas, are<br />

monitored during all access and retrieval operations. Operations are planned and<br />

implemented to maintain emissions and work area conditions within defined, acceptable<br />

ranges. The following sections describe the planned Silo 3 access and retrieval sequence.<br />

2.1 INITIAL SILO ACCESS<br />

Before startup <strong>of</strong> pneumatic retrieval, the radon concentration in the <strong>silo</strong> headspace is<br />

reduced. An exhaust air hose is connected to one or more existing vent/sounding ports on<br />

the <strong>silo</strong> dome and conveys <strong>silo</strong> headspace air to the Process Vent System (PVS) dust<br />

collectors. Makeup air (for air displaced by the PVS) is introduced from a high efficiency<br />

particulate air (HEPA) filter into the <strong>silo</strong> by another hose, connected to other existing<br />

venthounding ports on the <strong>silo</strong> dome. This arrangement provides a slightly negative<br />

pressure in the <strong>silo</strong> and routes the exhaust air through the PVS dust collector and<br />

HEPA/ultra low penetrating air (ULPA) filters. The air is then discharged through the<br />

Exhaust Stack, where radon and particulate emissions are continuously monitored. Air<br />

flow during this initial activity is closely monitored and metered to ensure that stack<br />

emissions, and the resultant fence-line impacts, are acceptable, within established<br />

limitations, and correspond to steady-state emission estimates. These estimates can be<br />

found in the Environmental Control Plan (FEMP 2003~).<br />

Weather conditions will be evaluated before the start <strong>of</strong> this initial radon release, to 'ensure<br />

that atmospheric stability conditions are consistent with as low as reasonably achievable<br />

(ALARA) principles. The <strong>silo</strong> dome connections will be designed, and radiological work<br />

permits planned, to protect workers and control radon releases.<br />

'.<br />

2.2 PNEUMATIC RETRIEVAL<br />

Silo 3 material is initially retrieved pneumatically from six <strong>of</strong> the existing <strong>silo</strong> dome man<br />

ways (retrieval from the northernmost man way is not currently planed. The Vacuum<br />

Wand Management System (VWMS) equipment will be placed on'the <strong>silo</strong> dome during<br />

project construction. Installation <strong>of</strong> VWMS equipment on the man ways will be performed<br />

after construction, following reduction <strong>of</strong> radon in the <strong>silo</strong> headspace, and in accordance<br />

with radiological work permits.<br />

Retrieval operations will be performed from man way to man way, with a limited amount<br />

<strong>of</strong> material removed for each man way retrieval event, in order to achieve a near uniform<br />

removal <strong>of</strong> material from top to bottom. A primary objective <strong>of</strong> the pneumatic retrieval is<br />

the removal <strong>of</strong> sufficient material from behind the eastern wall <strong>of</strong> the <strong>silo</strong> before creating<br />

the wall opening. Pneumatic retrieval will be performed until it is no longer effective in<br />

material removal.<br />

2.3 SILO WALL ACCESS<br />

An opening will be cut in the <strong>silo</strong> wall'to enable mechanical retrieval. This opening will not<br />

be made until operations determines that the pneumatic retrieval system is no longer<br />

7<br />

50 69<br />

000067


- c--<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

__- 54-6-9- -- -~~ ___-<br />

effective in removing loose material due to either limits <strong>of</strong> wand reach or compaction <strong>of</strong><br />

material. The construction <strong>of</strong> a reinforcing frame around the opening has been completed<br />

during the construction phase, as well as the Excavator Building - Excavator Room and<br />

Excavator Service Room. These rooms are constructed to provide material containment.<br />

The wall opening will be enlarged in multiple segments by removing only a limited number<br />

<strong>of</strong> wall sections at a time. This provides some flexibility in loosening compacted material,<br />

using the excavator, from behind the wall through a partially made opening. Pneumatic<br />

retrieval can be used again if material is loosened and flowable. Otherwise, the excavator<br />

will be used to remove material before proceeding with removal <strong>of</strong> additional wall sections.<br />

2.4 MECHANICAL RETRIEVAL<br />

Once the wall opening has been fully developed, the Excavator is used to retrieve material<br />

from the <strong>silo</strong>. The Excavator is also used to fragment compacted material that could not<br />

initially be pneumatically retrieved. Pneumatic retrieval can be used again, from the <strong>silo</strong><br />

dome or from the excavator, if material is loosened and flowable.<br />

Retrieval operations are considered complete when no additional material can be removed<br />

using either the PRS or the MRS.<br />

i<br />

8<br />

OOQ068<br />

e<br />

e


a<br />

3.0' PNEUMATIC RETRIEVAL SYSTEM<br />

3.1 PNEUMATIC RETRIEVAL SYSTEM EQUIPMENT<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document NO. 40430-PL-0002, Rev. 1<br />

September 2003<br />

The Pneumatic Retrieval System comprises the following equipment (additional equipment<br />

information is provided in the Process Description for the Silo 3 Project):<br />

Vacuum Wand Management Systems A - F<br />

DCL- 10-5002: Pneumatic Retrieval Collector<br />

FLT-10-5005: Cartridge Filter<br />

0 FLT-10-5004: HEPA Filter<br />

BLR-10-5006 Pneumatic Retrieval Blower<br />

FDR-10-5104: Pneumatic Retrieval Collector Discharge Feeder<br />

ROF-10-5108: Primary Rotary Feeder<br />

ROF-10-5110: Secondary Rotary Feeder<br />

FDR- 1 0-5 1 02: Feed Conveyor<br />

FLT-10-5070: Supply HEPA Filter<br />

3.1.1 VACUUM WAND MANAGEMENT SYSTEM (VWMS)<br />

A Silo 3 Vacuum Wand Demonstration Test was performed at a local mechanical shop to<br />

evaluate vacuum wand concepts recommended by a DOE Technical Assistance Team and<br />

by a selected commercial pneumatic retrieval company. Based on the demonstration test<br />

results (INEEL 2003), the original VWMS design has been replaced by a new design<br />

(described below). The demonstration was near full-scale; additional demonstration <strong>of</strong> the<br />

full-scale design, with refined features, will be performed to verify the new design and to<br />

identify any additional refinements.<br />

The VWMS design for each <strong>silo</strong> dome man way consists <strong>of</strong> the following:<br />

Ventilation enclosure, fiberglass-coated man way collar/insert, bolted to the man<br />

way, with two hose connections - one for air inlet hose to convey makeup air from<br />

Supply HEPA Filter, FLT-10-5070 and one air outlet hose to convey exhaust air to<br />

the PVS dust collectors. The fiberglass coating provides a smooth surface to<br />

prevent wear and gouging <strong>of</strong> the aluminum vacuum wand as the wand rubs against<br />

the man way opening. The enclosure allows use <strong>of</strong> essentially all <strong>of</strong> the man way<br />

opening for pivoting and maneuvering the vacuum wand:<br />

Rubberized accordion-type flexible boot with zippered opening, attached to the<br />

ventilation enclosure, through which vacuum wand is inserted into <strong>silo</strong> (tape applied<br />

to seal opening and secure wand to flexible boot);<br />

1.<br />

9<br />

000069


. ...<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

----?-15.Q-&--<br />

Vacuum wand - 4" diameter x 5' long aluminum tube sections (including a wand<br />

end effector section), with camlock fittings for addition <strong>of</strong> wand tube sections as<br />

pneumatic retrieval progresses deeper into the <strong>silo</strong>;<br />

Vacuum hose, to convey material from vacuum wand to PRS Collector, DCL-10-<br />

5002. The hose is corrugated (smooth interior surface), with a grounding wire<br />

embedded into the hose. Continuity checks can be conducted on the hose to test<br />

for wear areas caused by friction <strong>of</strong> the material;<br />

Motorized Hoist, secured on Silo 3 Enclosure ro<strong>of</strong> trusses above each man way,<br />

used to assist operator in lifting, lowering, and maneuvering the vacuum wand and<br />

hose;<br />

Hose cradle, with rollers, used in conjunction with hoist to support vacuum hose<br />

(preventing excessive hose bending) and to assist operator in maneuvering the<br />

vacuum wand and hose;<br />

Clamp-on "steering wheel", attached to vacuum wand, and used to assist the<br />

operator in maneuvering the vacuum wand;<br />

"Bullet" camera, taped to vacuum wand end effector, with monitor provided locally<br />

on <strong>silo</strong> dome and onwork platforms for operator viewing <strong>of</strong> vacuum wand retrieval<br />

performance inside the <strong>silo</strong>;<br />

Wooden platforms at five man ways (no platform at the center man way) to provide<br />

operators with a level-working surface.<br />

OTHER PRS EQUIPMENT<br />

\<br />

DCL-10-5002, Pneumatic Retrieval Collector, is a baghouse-type material collector<br />

used to separate the retrieved material from the associated air stream. Material and air<br />

is conveyed from the VWMS vacuum wands, via flexible vacuum hose, to the<br />

Pneumatic Retrieval Collector.<br />

FLT-10-5005, Cartridge Filter, provides additional removal <strong>of</strong> material from the air<br />

stream discharged from the Pneumatic Retrieval Collector.<br />

FLT-10-5004, HEPAAILPA Filter, provides additional removal <strong>of</strong> any material remaining<br />

in the air stream discharged from the Cartridge Filter.<br />

BLR-10-5006, Pneumatic Retrieval Blower, produces the pneumatic air stream and<br />

vacuum for the Pneumatic Retrieval System.<br />

FDR-10-5 1 04, Pneumatic Retrieval Collector Discharge Feeder, is a variable-speed<br />

screw feeder used to transfer material, at an operator-set rate, from the Pneumatic<br />

Retrieval Collector toward the project packaging system.<br />

ROF-10-5108, Primary Rotary Feeder, is used to provide an airlock between the high<br />

vacuum in the upstream Pneumatic Retrieval Collector and the low vacuum in the<br />

downstream Feed Conveyor and packaging system.<br />

ROF-10-5 1 10, Secondary Rotary Feeder, is used in series with the Primary Rotary<br />

Feeder to ensure an adequate airlock between the higher and lower vacuum systems.<br />

10<br />

000070<br />

e


0 o<br />

h i, , :, f , -4<br />

\ 1. t-<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

FDR-10-5102, Feed Conveyor, is a constant-speed screw conveyor, which receives<br />

material from both the Pneumatic and Mechanical Retrieval Systems and transfers the<br />

material to the project packaging system.<br />

3.2 PNEUMATIC RETRIEVAL SYSTEM OPERATION<br />

Initial retrieval efforts are pneumatic. Material is vacuumed out <strong>of</strong> the <strong>silo</strong> through selected<br />

man ways on the dome. Retrieval operations will be performed from man way to man<br />

way, with a limited amount <strong>of</strong> material removed for each man way retrieval event, in order<br />

to achieve a near uniform removal <strong>of</strong> material from top to bottom. Pneumatic retrieval<br />

continues from selected man ways until it is no longer effective or practical due to either<br />

inaccessibility by the pneumatic wand or a reduction in flowability <strong>of</strong> the material. One <strong>of</strong><br />

the retrieval sites is the easternmost man way; material is removed from this point until<br />

the east wall is clear enough to allow for wall-cutting activities.<br />

Two or more operators will operate the VWMS on the <strong>silo</strong> dome. Their operations will be<br />

guided by using the VWMS cameras and by communicating (by radio) with PRS operators<br />

in the Process Building. The Process Building operators will control and monitor the PRS,<br />

exclusive <strong>of</strong> the VWMS. An alarm on the <strong>silo</strong> dome will indicate that the Pneumatic<br />

Retrieval Collector has a high material level and the VWMS operators will maneuver the<br />

vacuum wand as necessary to reduce the rate <strong>of</strong> material retrieval. A high-high material<br />

level will automatically stop the PRS blower. The Process Building PRS operators will<br />

communicate with the packaging system operators, who have the primary control <strong>of</strong> the<br />

material retrieval rate (i.e., material retrieval rate must be consistent with packaging rate<br />

- -<br />

@ capability).<br />

1.1<br />

5069


--- c<br />

4.0 MECHANICAL RETRIEVAL SYSTEM<br />

4.1 MECHANICAL RETRIEVAL SYSTEM EQUIPMENT<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

-1 7 Sk-b-9-<br />

The Mechanical Retrieval System comprises the following equipment (Note: Additional<br />

equipment information is provided in the Process Descrbtiun fur the Silo 3 Project):<br />

0 EXC-11-5050: Excavator<br />

HBN-1 1-5054: Retrieval Bin<br />

0 EAR-1 1-5052: Retrieval Bin Hood<br />

0 EAR-1 1-5053: Excavator Room Hood<br />

0 FDR-11-5 106: Retrieval Bin Discharge Feeder<br />

0 DFC-11-5056: Inclined Conveyor<br />

0 FDR-11-5100: Transfer Conveyor<br />

4.1.1 EXCAVATOR (EXC-11-5050)<br />

The Excavator is an electrically powered, remotely controlled (using CCTV for viewing<br />

operation), hydraulically operated crawler machine with the following features and<br />

capabilities:<br />

0 Rotational, elevation, and telescoping boom capabilities;<br />

Maneuverability in small areas;<br />

'.<br />

Load-handling capability;<br />

Concrete removal and size-reduction capabilities;<br />

0 Remote attachment and operation <strong>of</strong> all end effectors;<br />

Power cable management system;<br />

0 Lights and CCTV cameras; and<br />

0 Water misting capabilities.<br />

The end effectors include hammerkhisel, bucket, rake, vacuum attachment, and grappler.<br />

The Excavator travels at a maximum speed <strong>of</strong> about 1.8 ft per second. The boom <strong>of</strong> the<br />

Excavator has a reach <strong>of</strong> about 30 ft.<br />

The Excavator, which can operate both inside and outside <strong>of</strong> the <strong>silo</strong>, is deployed from the<br />

Excavator Room, which is constructed adjacent to the <strong>silo</strong>. A window on the Excavator<br />

Room wall and the CCTV System allow the operator to monitor its operation to ensure<br />

that it does not adversely contact the Silo 3 and Excavator Building walls or ceilings.<br />

12<br />

OQ0072


0<br />

Break up compacted material within Silo 3;<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

Retrieve miscellaneous debris, such as simple hand tools, PPE, and plastic bags from<br />

the <strong>silo</strong>; and<br />

Carry and manipulate a hose for pneumatic retrieval, as required, to support mechanical<br />

operations.<br />

4.1.2 RETRIEVAL BIN (HBN-11-5054)<br />

The Retrieval Bin is a rectangular bin located just east <strong>of</strong> the Silo 3 opening, and is covered<br />

by load-bearing grating that includes a ferrous magnet. The magnet assembly mounts<br />

within the grating system and limits the size and the amount <strong>of</strong> debris (especially metallic<br />

debris) that would otherwise drop into the Retrieval Bin Discharge Feeder. Debris is<br />

removed from the grating by the Excavator (with appropriate attachments) or manually, if<br />

necessary.<br />

The bin is below-grade and has steep sides that allow it to be used as both a chute and a<br />

hopper. The bin is designed to allow the Excavator to drive over the opening without<br />

damage to either the bin or the grate.<br />

4.1.3 OTHER MRS EQUIPMENT<br />

FDR-11-5106, Retrieval Bin Discharge Feeder, is a variable-speed screw feeder used to<br />

transfer material, at an operator-set rate, from the Retrieval Bin to the Inclined<br />

Conveyor.<br />

DFC-11-5056, Inclined Conveyor, is a pocketed belt conveyor used to transfer material<br />

to the required elevation for packaging.<br />

FDR-11-5 100, Transfer Conveyor, is a constant-speed screw feeder used to transfer<br />

material from the Inclined Conveyor to the Feed Conveyor that feeds material to the<br />

packaging system.<br />

EAR-1 1-5052, Retrieval Bin Hood, and EAR-1 1-5053, Excavator Room Hood, are<br />

exhaust air registers that collect air inside the Excavator Room that is conveyed by<br />

ductwork to the Process Vent System dust collectors.<br />

4.1.4 EXCAVATOR ROOM AND EXCAVATOR SERVICE ROOM<br />

Both the Excavator Room and the Excavator Service Room include the following features:<br />

Provisions for decontamination <strong>of</strong> the Excavator (i.e., plant air, vacuum, and process<br />

water); and<br />

Trenches and sumps to collect both misting and wash water, and sump pumps to<br />

transfer the water to the Wastewater Tanks.<br />

13<br />

000073


'<br />

--<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

5-0<br />

-6-9--<br />

-. *{n addison, the Excavator Room size allows the storage <strong>of</strong> end effectors and containers for<br />

oversized material and debris recovered from the Retrieval Bin grating.<br />

4.2 MECHANICAL RETRIEVAL SYSTEM OPERATION<br />

A reinforced concrete frame has been installed on the east <strong>silo</strong> wall during the project<br />

construction phase. Once sufficient material has been pneumatically removed from behind<br />

the proposed wall opening, the <strong>silo</strong> wall is cut using a wall saw mounted on a track and<br />

wall sections are removed to allow the Excavator to access the Silo 3 contents. The<br />

cutting operation includes adding a system <strong>of</strong> braces to stabilize the wall. This allows<br />

flexibility to remove the wall in sections or to continue until the entire opening has been<br />

cut. The extent <strong>of</strong> wall removal will be determined by the quantity <strong>of</strong> material present<br />

behind the wall.<br />

Through a combination <strong>of</strong> pushing, raking, and lifting, the Excavator (EXC-11-5050)<br />

transfers material to the Retrieval Bin (HBN-11-5054). The excavator can also move/<br />

transfer the material under the <strong>silo</strong> dome man ways, where it is accessible for retrieval<br />

using the vacuum wands. The excavator may also be used to manipulate a vacuum wand<br />

and hose for pneumatic retrieval.<br />

To minimize the likelihood <strong>of</strong> material collapse, the Silo 3 material is routinely graded to<br />

maintain an adequate angle <strong>of</strong> repose.<br />

Once the Excavator is in full operation, the water-misting system (on the excavator) may<br />

be employed for one or both <strong>of</strong> the following functions:<br />

e<br />

e<br />

Dust suppression: During mechanical retrieval, the <strong>silo</strong>'s contents will be disturbed, and<br />

excessive dusting2 in the Excavator Room may result; however, the Excavator is<br />

expected to be operated in a controlled banner to minimize dusting.<br />

Stabilization <strong>of</strong> working face: As piles <strong>of</strong> Silo 3 material are created and "groomed,"<br />

water misting may be used as a safe working practice to help establish a stable face.<br />

Water is supplied to the system from a water tank located on the Excavator. Tests have<br />

shown that the Silo 3 material has a significant capacity to absorb moisture, even to the<br />

point <strong>of</strong> deliquescence. Because the misting system will be used infrequently and the<br />

water introduced is a small fraction <strong>of</strong> the absorbent capacity <strong>of</strong> the material, it is<br />

expected that moisture addition will have no deleterious effect on the material-handling<br />

process if controlled properly. Caution must be used to only facilitate crusting <strong>of</strong> the<br />

material and avoid creating wet areas.<br />

Use <strong>of</strong> this system will be limited since the dust<br />

can also be removed after settling by vacuuming. Use <strong>of</strong> the misting system may be very<br />

localized and specific for operator access to the work area.<br />

One operator will control the excavator from the corridor between the Excavator Room<br />

and the Process Building; a viewing window is provided on the Excavator Room wall. The<br />

excavator operator will be guided by viewing through the Excavator Room window and by<br />

'"Excessive dusting" is defined as that degree <strong>of</strong> atmospheric dusting that interferes with visibility<br />

(both visual and CCTV) in the Excavator Room.<br />

14<br />

000074<br />

a


. I:<br />

r, !*; \.I 5-<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

i;' ,i ' ! ! e<br />

using the' CCTV System (on the excavator and in the Excavator Room) and by<br />

communicating with MRS operators in the Process Building. The Process Building -<br />

operators will control and monitor the MRS, exclusive <strong>of</strong> the excavator. The Process<br />

Building MRS operators will communicate with the packaging system operators, who have<br />

the primary control .<strong>of</strong> the material retrieval rate (i.e., material retrieval rate must be<br />

consistent with packaging rate capability).<br />

'.<br />

1.5<br />

5069.


~ ~-<br />

- -<br />

. 5.0 SILO 3 WALL OPENING<br />

-<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

-<br />

-- 5069<br />

The Silo 3 wall opening will be about 14 ft wide and 20 ft high. This allows the Excavator<br />

ample clearance to enter the <strong>silo</strong> and remove material.<br />

5.1 REINFORCEMENT FRAME CONSTRUCTION<br />

A reinforced concrete frame has been constructed around the proposed opening to the<br />

<strong>silo</strong>. The frame is anchored into the existing concrete core wall to prevent the wall from<br />

moving independently <strong>of</strong> the frame when the opening is cut. The frame was cast-in-place<br />

around the area to be cut. Dowels are set with epoxy into the core wall to provide full<br />

shear transfer and to physically attach the frame to the existing wall.<br />

The frame is extended with a large tapered edge on each vertical side <strong>of</strong> the frame. The<br />

tapered edge provides additional bonding <strong>of</strong> the new concrete frame to the existing wall<br />

through the concrete-to-concrete bond; it will also minimize the intensity <strong>of</strong> the forces<br />

being transferred.<br />

5.2 FACILITY CONSTRUCTION<br />

The following facilities will be constructed/installed and will support the cutting <strong>of</strong> the <strong>silo</strong><br />

wall:<br />

0 Excavator Room and Excavator Service Room, including sumps, sump pumps, HVAC<br />

ductwork, and all related equipment. Temporary liners, berms, and other necessary<br />

drainage features will be used in the Excavator Room to direct saw cooling water to<br />

0<br />

0<br />

the Excavator Room Sump3; '.<br />

Process Vent System, via Retrieval Bin and Excavator Room Hoods, provide dust<br />

removal during cutting operations;<br />

Wastewater Tanks to receive saw cooling water from sump.<br />

5.3 WALL CUTTING<br />

The <strong>silo</strong> wall opening will be created by cutting several wall sections (see Figure 5-1) to<br />

allow removal <strong>of</strong> a limited number <strong>of</strong> sections at a time, working from top to bottom, in<br />

order to provide some flexibility in removing material from behind the wall before making<br />

the entire opening.<br />

A mock-up demonstration <strong>of</strong> wall cutting was performed on the empty Silo 4 (FCP, 2003).<br />

The actual Si1.o 3 wall cutting and wall section bracing design will be based on the Silo 4<br />

demonstration. However, the Silo 3 design will be further evaluated and finalized, based<br />

on the actual quantity <strong>of</strong> material behind the wall after the initial pneumatic retrieval.<br />

3When cutting operations are complete, these drainage features will be removed and disposed.<br />

1.6<br />

000076<br />

e


. I .<br />

4 .<br />

. r hir<br />

1' I<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

The following summarizes the general steps demonstrated at Silo 4 and planned for Silo 3:<br />

1.<br />

2. Remove selected decant ports for clearance during the horizontal cutting operation.<br />

3.<br />

4.<br />

5.<br />

6.<br />

8.<br />

9.<br />

Initially install wall section brackets and braces that do not interfere with the cutting<br />

operation.<br />

Attach a bracing system with vertical steel stiffbacks, if required due to internal loads<br />

caused by material behind the wall. Design <strong>of</strong> the braces will be finalized upon<br />

evaluation <strong>of</strong> material remaining behind the wall after initial pneumatic operations.<br />

Vertical braces were not used in the Silo 4 demonstration due to no material loads<br />

internal to the <strong>silo</strong>.<br />

Install the wall saw track and the saw. Make all the vertical cuts within 1 - 2 inches <strong>of</strong><br />

the inside surface. Make all cuts using multiple passes (reposition the saw for each<br />

pass until the cuts are within 1 - 2 inches <strong>of</strong> the inside surface).<br />

Attach horizontal braces to carry radial loads on the sections. One horizontal brace will<br />

be provided for each row <strong>of</strong> sections. These horizontal braces are attached to the<br />

concrete stiffening columns on each side <strong>of</strong> the opening. The braces will be designed<br />

for removal by the excavator.<br />

Remove the vertical steel stiffbacks, if installed, coordinating removal with horizontal<br />

braces installation.<br />

Remove the existing gunnite and post-tensioned wired layer from the cast-in-place<br />

concrete.<br />

Make all horizontal cuts within 1 - 2 inches <strong>of</strong> the inside surface. All the cuts will be<br />

made in multiple passes.<br />

In sequence with cutting, brackets (or other hardware) will be installed on the concrete<br />

sections to allow the excavator to pull the sections out.<br />

10.Vibrate the section or cut area, <strong>of</strong> the section to be removed, to facilitate cracking <strong>of</strong><br />

the concrete prior to removal. Remove the concrete section and place the section<br />

behind the excavator for subsequent removal (the horizontal braces may be removed<br />

prior to removal <strong>of</strong> each row <strong>of</strong> sections.<br />

11 .Remove material behind the opening, as necessary, to enable removal <strong>of</strong> next row.<br />

17<br />

506 d<br />

000077


Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

Figure 5-1 Layout <strong>of</strong> Section Cuts<br />

1- 44-15FT ,-j<br />

AI<br />

61<br />

c1<br />

D1<br />

A2<br />

82<br />

c2<br />

D2<br />

\<br />

A3<br />

18<br />

E3<br />

c3<br />

D3<br />

19 -20 FT<br />

000078<br />

0


- :, :!,:-<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document NO. 40430-PL-0002, Rev. 1<br />

September 2003<br />

a<br />

6.0 VIDEO EQUIPMENT<br />

.-, ,'<br />

';( ('t<br />

Video cameras will be provided at the following locations to support Silo 3 access and<br />

retrieval (other cameras, not specifically provided for access and retrieval, are provided in<br />

other areas <strong>of</strong> the Silo 3 remediation facility):<br />

0<br />

0<br />

0<br />

0<br />

One <strong>silo</strong> dome overview camera, mounted inside enclosure and above the dome;<br />

One camera and light to view <strong>silo</strong> interior, mounted at center man way;<br />

One camera for Excavator Room overview, mounted on ceiling above the MRS retrieval<br />

bin;<br />

Two cameras (tripod-mounted) in the Excavator Room;<br />

Two cameras on the Excavator (2 cameras);<br />

One infrared "bullet" camera for each VWMS vacuum wand.<br />

Portable monitors for the VWMS "bullet" cameras are provided for local viewing only, by<br />

the VWMS operators, on the <strong>silo</strong> dome and on the man way platforms.<br />

Monitors and controls for operation <strong>of</strong> the other cameras - <strong>silo</strong> dome, <strong>silo</strong> interior,<br />

excavator room, excavator, and other Silo 3 cameras - are located in the Operations<br />

Support Trailer Control Room, on the <strong>silo</strong> dome, and in the Process BuildinglExcavator<br />

Room corridor (at the Excavator Room viewing window). Any <strong>of</strong> these cameras can be<br />

monitored and controlled from any <strong>of</strong> the three monitor/control locations.


:<br />

7 .O<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

REFERENCES<br />

Access and Retrieval Strategy for the Silo 3 Project<br />

Document No. 40430-PL-0002, Rev. 1<br />

September 2003<br />

FEMP, Process Description for the Silo 3 Project, 40430-RP-0003, Revision 1,<br />

September 2003.<br />

FEMP, Silo 3 Small Scale Waste Retrieval Close Out Report, 4041 0-RP-0003,<br />

Revision 0, 1998.<br />

Jenike & Johanson, Flow Properties Test Report for Silo 3 Material, 4435-1 , January<br />

2002.<br />

Savannah River Technology Center, Silo 3 Waste Treatment Phase I, Physical<br />

Testing, Final Report, January 2001.<br />

Argonne National Laboratory, Silo 3 Material Compound Analysis, October 1997.<br />

FCP, Silo 3 Project Technical Safety Requirements, 40000-H&S-O01 , Revision 2,<br />

September 2003.<br />

FEMP, Site Hoist and Rigging Manual, RM-0045, nd.<br />

FEMP, Fernald Silo 3 Environmental Control Plan, 40430-PL-0005, Revision C,<br />

September 2003.<br />

FCP, Silo 3 Particle Size White Paper, M:SP:2003-0020, March 2003.<br />

INEEL, Silo 3 Vacuum Wand Demonstration Test, FINAL REPORT, INEEL/EXT-03-<br />

00773, June 2003<br />

FCP, Silo 4 Mock-up Demonstration, 40430-RP-0028, August 2003.<br />

i.<br />

20<br />

~<br />

OQOO8O


,. .. . . .. .<br />

.. .<br />

_.. ,


a<br />

PROCESS CONTROL PLAN<br />

FOR TH€ SILO 3 PROJECT<br />

SUBMITTED TO:<br />

FLUOR FERNALD, INC.<br />

CONTRACT NO. DE-AC24-01 OH201 15<br />

DOCUMENT NO.: 40430-PL-0003<br />

PREPARED BY: DATE: -T/c/U 7<br />

REVIEWED BY: DATE:<br />

5069<br />

APPROVED BY: DATE: qb7bL.<br />

DORIS EDWARDS, FLUOR FERNALD, INC., PROJECT MANAGER<br />

U.S. DEPARTMENT OF ENERGY<br />

FERNALD ENVIRONMENTAL MANAGEMENT PROJECT<br />

PREPARED UNDER CONTRACT NO. DE-AC24-01 OH201 15<br />

JACOBS ENGINEERING PROJECT NO. 35H19605<br />

. .


I Revision I<br />

BS<br />

PROCESS CONTROL PLAN<br />

FOR THE SILO 3 PROJECT<br />

*- 5069<br />

Revision<br />

I Date<br />

0<br />

I 08/28/02<br />

I 1<br />

I<br />

I 09/05/03 . I<br />

I<br />

I I<br />

J.T. Nelson<br />

Prepared By<br />

Checked By<br />

.. R.L. Pem'cone R.L. Perricone<br />

r<br />

Approved By<br />

Document No. 40430-PL-0003<br />

September 5, 2003<br />

Revision 1<br />

Fernald Project Number 40430<br />

J.T. Nelson G.C. Schmidt<br />

I<br />

I<br />

I


______c__<br />

-7-<br />

L= Revision<br />

I 0<br />

1<br />

Date<br />

08 /2 8 /O 2<br />

0 9/0 5 /O 3<br />

Process Control Plan for the Silo 3 F’roject<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5,2003<br />

~--~-__<br />

50-8-9<br />

Revision Sheet I<br />

Pages Affected Reason for Revision<br />

All Issued for Design .<br />

All Revised per DCN 40430-JEG-080<br />

I<br />

000083<br />

e


l!!EI,.~COSS<br />

r<br />

e<br />

,I t,i<br />

TABLE OF CONTENTS<br />

Process hnnol Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

I YJ tL, rr a'<br />

............................................................................................................................<br />

ACRONYMS viii<br />

1 .O INTRODUCTION ..........................................................................................................<br />

1.1 SYSTEM NAMES AND NUMBERS .<br />

1 -2 NON-SYSTEM NAMES AND NUMBERS .<br />

1-1<br />

1-1<br />

1-1<br />

1.2.1 Equipment Numbering . 1-1<br />

1 -2.2 Line Numbering ............................................................................. 1-4<br />

1 -2.3 Valve Numbering . 1-5<br />

1.2.4 . Instrument Numbering . 1-6<br />

1 -3 OVERVEW OF CONTROL SYSTEM . 1-6<br />

2.0 PNEUMATIC RETRIEVAL SYSTEM (SYSTEM 10) . 2- 1<br />

2.1 PRS EQUIPMENT ............................................................................................ 2-2<br />

2.2 PRS WJSTRUMENTATlON . 2-2<br />

2.3 PRS CONTROL PHILOSOPHY . 2-2<br />

2.4 PRS INTERLOCKS .......................................................................................... 2-6<br />

2.5 PRS SETPOINTS ............................................................................................. 2-7<br />

2.6 PRS DATA ARCHIVING . 2-7<br />

3.0 MECHANICAL RETRIEVAL SYSTEM (SYSTEM 1 1 . 3- 1<br />

3.1 MRS EQUIPMENT .......................................................................................... 3- 1<br />

3.2 MRS ~NSTRUMENTATlON<br />

3- 1<br />

3.3 MRS CONTROL PHILOSOPHY . 3- 1<br />

3.4 MRS Nl-ERLOCKS ......................................................................................... 3-3<br />

3.5 MRS SETPOINTS ........................................................................................... 3-3<br />

3.6 MRS DATA ARCHl.VING .............................................................................. 3-3<br />

4.0 PROCESS VENT SYSrEM (SYSTEM 1 9) . 4-1<br />

4.1 PVS EQUIPMENT ........................................................................................... 4- 1<br />

4.2 pvs WJSTRUMENTATlON ............................................................................ 4- 1<br />

4.3 pvs CONTROL PHILOSOPHY . 4- 1<br />

4.3.' Collection Header . ........ 4-2<br />

4-32! Dust Collection, Filters, and Blowers .......................................... 4-2<br />

4.4 pvs INTERLOCKS. ......................................................................................... 4-2<br />

4.5 PVS SETPOINTS ............................................................................................ 4-2<br />

. .<br />

4.6 PVS DATA ARCHIVING . 4-2<br />

5.0 CONTAINER MANAGEMENT SYSTEM (SYSTEM 25) AND SAMPLING<br />

SYSTEM (SYSTEM 84) ............................................................................................. 5- 1<br />

5.1 CONTAINER MANGEMENT AND SAMPLING SYSTEM EQUIPMENT---5-1<br />

5.1.1 Container Management and Packaging Systems A&B<br />

........__...._._....-.-...----.--.--.----------.------....-.<br />

iii<br />

.<br />

0 0 0 0.8 4


iv<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

. Jacobs Project Number 35H19605<br />

~. ___<br />

000085<br />

September 5,<br />

~ 2003


* c<br />

. .<br />

BHJACOBS<br />

.. f ,'. !) .<br />

- LIST OF TABLES<br />

Process Control Plan for the Silo 3 Project<br />

Document No . 40430-PL.0003. Rev . 1<br />

Jacobs Project Number 35H19605<br />

September 5. 2003<br />

. - A<br />

Table 1-1 Silo 3 System Numbers. Names and Related Sections ................................ 1-2<br />

Table 1-2 Silo 3 Equipment Designators ................................................................... 1-2<br />

Table 1-3 Line Service Codes for Silo 3 ....................................................................................... 1-4<br />

Table 1-4 Material Specifications for Silo 3 ............................................................... 1-5<br />

Table 1-5 Insulation Type Codes for Silo 3 ............................................................... .1 -5<br />

Table 1-6 Valve Codes for Silo 3 ............................................................................. 1-6<br />

Table 2-1 Summary <strong>of</strong> PRS Instrumentation ............................................................ 2-4<br />

Table 2-2 PRS Interlocks ....................................................... ; .............................. 2-6<br />

Table 2-3 PRS Setpoints ...................................................................................... 2-7<br />

. Table 3-1 Summary <strong>of</strong> MRS instrumentation ........................................................... 3-2<br />

Table 3-2 MRS Interlocks ..................................................................................... 3-4<br />

Table 3-3 MRS Setpoints ...................................................................................... 3-4<br />

Table 4-1 Summary <strong>of</strong> PVS Instrumentation ....................................................... .... 4-3<br />

Table 4-2 PVS Interlocks ...................................................................................... 4-5<br />

Table 4-3 PVS Setpoints ....................................................................................... 4-6<br />

Table 5-1 Summary <strong>of</strong> Container Management System Instrumentation ...................... 5-2<br />

Table 5-2 Container Management System Interlocks ............................................. b .. 5-5<br />

Table 5-3 Container Management System Setpoints ................................................. 5-6<br />

Table 8-1 Summary <strong>of</strong> Additive System Instrumentation ........................................... 8-2<br />

Table 8-2 Additive System Interlocks ..................................................................... 8-5<br />

-T=ble.8.5.Additi"e-System.Setpo.in.s. ........ - .. - . - .... ..... - - - . - .. - .... -<br />

..<br />

..................................................................... 8z7-<br />

Table 9-1 Summary <strong>of</strong> Wastewater System Instrumentation ...................................... 9-2<br />

Table 9-2 Wastewater System Interlocks ................................................................ 9-3<br />

Table 9-3 Wastewater System Setpoints ................................................................ 9-3<br />

Table 10-1 A Summary <strong>of</strong> Supply Air System Instrumentation .................................. 10-2<br />

Table 10-1 6 Summary <strong>of</strong> Exhaust Air System Instrumentation ................................. 10-3<br />

Table 10-1 C Summary <strong>of</strong> Miscellaneous HVAC Systems Instrumentation .................. 10-4<br />

Table 10-2A Supply Air System Interlocks ............................................................ 10-6<br />

Table 10-28 Exhaust Air System Interlocks ........................................................... 10-7<br />

Table 10-2C Miscellaneous HVAC Systems interlocks ............................................ 10-8<br />

Table 10-3A Supply Air System Setpoints ............................................................ 10-8<br />

I -t xnaust Air system setpoints ........................................................... 10-9<br />

AlTACHMENT A (I/O UST)<br />

. .<br />

. .<br />

V<br />

...<br />

. . . . .


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003 ~-<br />

~__.___.__~~<br />

REFERENCE DRAWINGS: 506;' @<br />

Process Flow Diagrams:<br />

94X-3900-F-01428 FOOOl<br />

94X-3900-F-01429 F0002<br />

94X-3900-F-01431 F0003<br />

94X-3900-F-01430 F0004<br />

94X-3900-F-01432 F0005<br />

Piping & Instrument Diagrams:<br />

94X-3900-N-01381 NO001<br />

94X-3900-N-01382 NO002<br />

94X-3900-N-07 383 NO003<br />

94X-3900-N-02369 NO099<br />

94X-3900-N-01433 NO1 00<br />

94X-3900-N-01434 NO1 01<br />

94X-3900-N-01435 NO1 02<br />

94X-3900-N-01436 NO1 03<br />

94X-3900-N-01437 NO1 04<br />

94X-3900-N-0 1 438 NO1 05<br />

94X-3900-N-01439 NO1 06<br />

Material Balance Table<br />

Material Retrieval and Feed Systems<br />

Process Vent and Packaging Systems<br />

Additive and Wastewater Systems<br />

Plant, Instrument, and Breathing Air Systems<br />

Piping, Valves, and Miscellaneous<br />

Instrumentation<br />

Equipment and Miscellaneous<br />

Silo 3 Access<br />

Mechanical Retrieval System<br />

Pneumatic Retrieval System<br />

Feed System<br />

Bulk Bag Packaging Line A<br />

Bulk Bag Packaging Line B .<br />

Additive Mixing and Wastewater Systems<br />

Process Vent System, Sheet 1 <strong>of</strong> 2<br />

94~~3900-N-0 14_4_O NO 107- - Prweess -Vent-Sy_sltemJ -S-h~et-Z <strong>of</strong> 2- - - - - . - - - __ - - . - .<br />

94X-3900- \s-01441<br />

94X-3900- u-0 1 442<br />

94X-3900- u-0 1 443<br />

NO108<br />

NO109<br />

NO110<br />

Plant Air System<br />

Instrument Air System Connections<br />

Breathing Air System<br />

I<br />

94X-3900- u-0 1 444 NO1 11 Plant Air System Connections<br />

94X-3900- U-01445 NO112 Breathing Air System Connections<br />

94X-3900- U-0 1 446 NO 1.1 3 Instrument Air System Connections<br />

94X-3900- u-0 1 447 NO1 14 Domestic and Process Water Systems<br />

94X-3900- V-02993 NO1 15 Vacuum Wand Enclosure<br />

94X-3900- V-05 1 47 NO116 Additive Charging System<br />

94X-3900- U-05 1 39 NO117 Additive Feed System<br />

94X-3900-M-0 1461<br />

94X-3900-M-01463<br />

94X-3900-M-01464<br />

94X-3900-M-01465<br />

94X-3900-M-0 1466<br />

94X-3900-M-0 1467<br />

94X-3900-M-0 1468<br />

94X-3900-M-0 1469<br />

94X-3900-M-01470<br />

MOO01<br />

MOO02<br />

MOO03<br />

MOO04<br />

MOO06<br />

MOO07<br />

MOO08<br />

MOO09<br />

MOO10<br />

General Arrangement Plot Plan<br />

General Arrangement East Elevation<br />

General Arrangement 1 a Floor Plan<br />

General Arrangement Plan at EL 597'-8"<br />

General Arrangement Section E<br />

General Arrangement Section A<br />

General Arrangement Section B<br />

General Arrangement Section C<br />

General Arrangement Section D<br />

vi 000087<br />

I<br />

0<br />

-


'e -<br />

B: . I ., e? if <<br />

\ (1 ,!-<br />

REFERENCE DRAWINGS (cont'd.):<br />

Heating, Ventilation, and Air Conditioning Air Flow Diagrams:<br />

94X-3900-H-01302<br />

94X-3900-H-0 1 303<br />

94X-3900-H-01348<br />

94X-3900-H-01304<br />

94X-3900-H-01349<br />

94X-3900-H-01347<br />

94X-3900-H-01423<br />

94X-3900-H-01350<br />

HOOOl<br />

H0002<br />

H0003<br />

H0004<br />

H0005<br />

H0006<br />

H0007<br />

H0008<br />

Process Control Pian for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

Systems and Equipment Designators<br />

Legend, Symbols 81 Abbreviations<br />

Process Building - Packaged Air Conditioning Units<br />

Process Areas<br />

Process Building - Exhaust Filtration Units<br />

Silo Enclosure<br />

Storage and Wastewater Tank Area<br />

Cargo Container Bay<br />

Heating, Ventilation, and Air Conditioning Control Diagrams:<br />

94X-3900-H-01722<br />

94X-3900-H-0 1 7 1 8<br />

94X-3900-H-0 1 7 1 9<br />

94X-3900-H-01720<br />

94X-3900-H-0 1 72 1<br />

94X-3900-H-01723<br />

94X-3900-H-01724<br />

94X-3900-H-01725<br />

-- 94x13900-H-01726<br />

1 - -<br />

Miscellaneous:<br />

H0020<br />

H0021<br />

H0022<br />

H0023<br />

H0024<br />

H0025<br />

H0026<br />

H0027<br />

H0028<br />

I<br />

5069<br />

Process Building - Packaged Air Conditioning Units<br />

Process Building - Packaging Area<br />

Process Building - Corridors/Airlocks<br />

Process Building - Excavator Room<br />

Process .Building - Exhaust Filtration Units<br />

Silo Enclosure<br />

Cargo Container Bay<br />

Storage and Wastewater Tank Area<br />

-Control!? S_e_SU_e?C_e -<strong>of</strong> .Oeeration-s - - - - -* - - - - - - -<br />

94X-3900-N-02489 NO206 Control System Block Diagram<br />

vii


I .<br />

i..<br />

ANSI<br />

A&RS<br />

AWWT<br />

CCTV<br />

CEM<br />

CSI<br />

FEMP<br />

HEPA<br />

HMI<br />

HVAC<br />

I/O<br />

I SA<br />

MRS<br />

P&l D<br />

PC<br />

PCP<br />

PD<br />

PFD<br />

PID<br />

PLC<br />

PRS<br />

PVS<br />

RF<br />

UNlD<br />

W E<br />

ACRONYMS'<br />

American National Standards Institute<br />

Access and Retrieval Strategy<br />

Advanced Wastewater Treatment<br />

closed-circuit television<br />

Continuous Emissions Monitor<br />

Construction Specifications Institute<br />

Fernald Environmental Management Project<br />

high-efficiency particulate air<br />

human-machine interface<br />

heating, ventilation, and air conditioning<br />

inputloutput<br />

Instrument Society <strong>of</strong> America<br />

Mechanical Retrieval System<br />

piping and instrument diagram<br />

personal computer<br />

Process Control Plan<br />

Process Description<br />

process flow diagram<br />

proportional-integral-derivative<br />

programmable logic controller<br />

Pneumatic Retrieval System<br />

Process Vent System<br />

Radio frequency<br />

unique identifier<br />

Vacuum Wand Enclosure<br />

'Additional acronyms are provided in Tables 1-2 through Table 1-6.<br />

viii<br />

Process Control Pian for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

000089<br />

e - 5069 ' 9


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

This Process Control Plan (PCP) addresses the instrumentation and control logic for<br />

equipment used in the Silo 3 Project at the U.S. <strong>Department</strong> <strong>of</strong> <strong>Energy</strong> Fernald<br />

Environmental Management Project (FEMP) site. As part <strong>of</strong> the remediation <strong>of</strong> Operable<br />

Unit 4 at the FEMP, approximately 5,100 yd3 <strong>of</strong> byproduct metal oxide materials stored in<br />

Silo 3 will be removed, conditioned, packaged, and transported to an <strong>of</strong>f-site facility for I<br />

treatment and/or disposal.<br />

Two other documents are frequently referenced in the PCP. These are Process Descrr;Otion<br />

fur the Silo 3 Project (PD) (FEMP 2003a), which discusses the Silo 3 process systems and I<br />

equipment, and Access and Retrieval Strategy for the Silo 3 Project (A&RS)<br />

(FEMP 2002a), which describes the strategies used to remove material from Silo 3. The I<br />

A&RS also describes the history <strong>of</strong> generation <strong>of</strong> Silo 3 material and its quantity and<br />

characteristics (A&RS, Section 1.4).<br />

This PCP provides, on a system-by-system basis, descriptions <strong>of</strong> the following:<br />

0 Control philosophy<br />

Interlocks<br />

0 Setpoints and responses<br />

0 Data archiving<br />

1 .I<br />

SYSTEM NAMES AND NUMBERS<br />

The systems addressed in this PCP and the relevant section numbers are shown in<br />

Table 1-1: The same system names and numbers are also used in the Design Basis and<br />

Requirements Document (FEMP 2002b).<br />

1.2 NON-SYSTEM NAMES AND NUMBERS<br />

Numbering systems for equipment, lines, valves, and instruments are defined in Project<br />

Procedure FF-103-01 (Jacobs Engineering 2002). These systems are described in the<br />

following sections:<br />

1.2. I Equipment Numbering<br />

The equipment numbering system is as follows:<br />

XXXJJ-UZZ<br />

Where:<br />

0 XXX represents the Equipment Designator (see Table 1-2).<br />

0 JJ represents the System Number (see Table 1-1).<br />

0 ZZZZ represents the Equipment Sequence Number. For Silo 3, this is in the range<br />

5000-6999.<br />

All Silo 3 equipment numbers are provided in Silo 3 Project Equipment List (FEMP 2003b).<br />

1-1


: I. ..<br />

I .<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

. Jacobs Project Number 35H19605<br />

September 5, 2003<br />

Table 1-1 Silo 3 System Numbers, Names, and Related Sectiow - 5 0 6 9<br />

70 Supply Air System<br />

71 . Exhaust Air System 10.0<br />

77 Miscellaneous HVAC2 Systems<br />

a4<br />

90<br />

95<br />

Samdina Svstem<br />

I Control System<br />

I CCTV System<br />

I<br />

5.0<br />

11.0<br />

12.0<br />

Air Compressor<br />

Air Conditioning Unit<br />

Air Dryer<br />

Air Handling Unit<br />

Air Flow Measuring Station<br />

Air Receiver Tank<br />

Back Draft Damper<br />

Blower<br />

Breathing Air Station<br />

Bridge Crane<br />

Cable Or Hose Reel<br />

Closed-Circuit Television<br />

Continuous Emissions Monitor<br />

'<br />

Table 1-2 Silo 3 Equipment Designators<br />

~<br />

ACP<br />

ACU<br />

ADR<br />

AHU<br />

AMS<br />

ART<br />

BKD<br />

BLR<br />

SAS<br />

BRC<br />

CBR<br />

CCT<br />

CEM<br />

Controller I CNT<br />

Control Power Panel CPP<br />

centil Processing Unit<br />

CPU<br />

Crane/Hoist<br />

CRH<br />

Damper (Non-Butterfly)<br />

DPR<br />

Door<br />

DOR<br />

Double Check Valve<br />

Double Dump Valve I<br />

DCV<br />

DDV I<br />

'HVAC = heating, ventilation, and air conditioning<br />

1-2<br />

00009~<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

1<br />

I<br />

I<br />

I


e<br />

0<br />

0<br />

.-.<br />

,? . :'<br />

..<br />

_,<br />

Drag Flight Conveyor<br />

Duct Heater<br />

Dust Collector<br />

Enclosure<br />

Table 1-2 Silo 3 Equipment Designators<br />

Process Controt Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

DFC<br />

DHT<br />

DCL<br />

ENC<br />

Excavator I EXC<br />

Exhaust Air Reaister EAR<br />

Expansion Joint<br />

~~~~<br />

EXP<br />

Fan<br />

FAN<br />

Fire Alarm Panel<br />

FAP<br />

Feeder<br />

FDR<br />

Filter<br />

FLT<br />

Flexible Connection<br />

FLX<br />

Fork Lift<br />

FKL<br />

Heat Trace Power Panel<br />

HTP<br />

Heater<br />

HTR<br />

Hopper/Bin<br />

HBN<br />

Lighting Panel<br />

LIP<br />

Motor Control Center<br />

MCC<br />

MixerIAgitator<br />

MXA<br />

Motor<br />

MTR<br />

Nozzle Assembly<br />

NOZ<br />

Package Unit<br />

PKU<br />

Panel (Control)<br />

PNL<br />

Personnel Contamination Monitor<br />

PCM<br />

Programmable Logic Controller<br />

PLC<br />

Pump<br />

PMP<br />

Power Panel<br />

PPN<br />

-<br />

Printer<br />

Roller Conveyor<br />

~~~ ~<br />

PRN<br />

RCV<br />

Roll Up Door RDR<br />

Rotary Feeder ROF<br />

Safety Shower And Eyewash SSE<br />

Sampling System (Solids) SSS<br />

Skid SKD<br />

5068<br />

~~~~~~<br />

Sump SMP<br />

Tank TNK<br />

Trap<br />

I Uninterruptible Power Supply I<br />

TRP<br />

UPS I<br />

1-3<br />

I<br />

I<br />

I<br />

I<br />

1<br />

I<br />

I'<br />

I<br />

1<br />

I I


Process Control Plan for the Silo 3 Project<br />

Document NO. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

--<br />

The' Equipment Sequence Number (ZZZZ) is a four-character sequence number. If the<br />

system identifier changes, the sequence number can be used again. For example, the<br />

equipment identifier TNK-51-5001 is a valid number even if the sequence number is the<br />

same as TNK-13-5001. The different system number provides the necessary uniqueness.<br />

1.2.2 Line Numbering<br />

The line numbering system is as follows:<br />

Il-J JZZZZ-M-NNN-00-TT<br />

Where :<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

e<br />

II represents the Line Service Code (see Table 1-3).<br />

JJ represents the System Number (see Table 1-1).<br />

ZZZZ represents the Line Sequence Number (starting at 5000).<br />

M represents the nominal line size in inches.<br />

NNN represents the Material Specification, which consists <strong>of</strong> the last three digits <strong>of</strong> the<br />

Construction Specifications Institute (CSI) specification for the material (e.g., 105 for<br />

1 5 105) (see Table 1-41.<br />

00 represents the Insulation Type Code (if any) (see Table 1-5). insulation thickness,<br />

etc., shall be called out in the specifications.<br />

TT represents the Heat Trace Type Code (if any); for Silo 3, the only heat trace type is<br />

electric traced, or "ET."<br />

Thus an appropriate line number for a 1 %"; 15105 instrument line, with no insulation or<br />

heat tracing would be:<br />

IA-405001-1 %"-lo5<br />

An appropriate line number for a domestic water line, system 51, 1 %", specification<br />

1 5 103, insulated, and electric heat traced would be:<br />

DW-515011-1 H "-1 03-HC-ET<br />

Table 1-3 Line Service Codes for Silo 3<br />

Compressed Air CA<br />

Chemical Solution cs<br />

Domestic Water DW<br />

Instrument Air IA<br />

Liquid Process Waste LPW<br />

Mechanical Retrieval System MRS<br />

Plant Air PA<br />

Pneumatic Retrieval System PRS<br />

Process Vent System PVS<br />

Breathing Air SA<br />

Process Water<br />

14<br />

000093


1/ . .I<br />

1 , ir. A .<br />

r. /.Sa L<br />

Table 1-4 Material Specifications for Silo 3<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

5u 69<br />

I 151 01 I 101 I cs I<br />

I 1 151 03<br />

15106<br />

151 25<br />

I 103<br />

106<br />

125<br />

I DW<br />

Tw, LPW<br />

PRS<br />

II 1-<br />

I<br />

I<br />

151 26<br />

151 27<br />

126<br />

127<br />

PRS, PVS, MRS<br />

PVS<br />

I<br />

-1<br />

151 28<br />

128 LPW I<br />

151 35<br />

135 'IA, PA I<br />

Anti-Sweat<br />

Cold Service Insulation<br />

Heat Conservation Insulation<br />

Personnel Protection Insulation PP<br />

AS I<br />

* cc I<br />

HC . I<br />

I I<br />

All Silo 3 line numbers are listed in Pbing Line List for the Silo 3 Project (FEMP 2003c)<br />

1.2.3 Valve Numbering<br />

The valve numbering system is as follows:<br />

AAA-JJ-KKKK<br />

Where:<br />

0 AAA designates the Valve Code (see Table 1-6).<br />

0 JJ designates the System Number (see Table 1-1 1.<br />

0 KKKK designates the Valve Sequence Number starting at 5000.<br />

Valves with different valve codes can duplicate the' Valve Sequence Numbers.<br />

example, HOV-13-5003 & AOV-13-5003.<br />

All Silo 3 valves are listed in Piping Valve fist for the Si/o 3 Project (FEMP 2003d).<br />

1-5<br />

I<br />

For


Backflow Preventer<br />

Check Valve<br />

Double Check Valve<br />

Damper (Butterfly)<br />

s -<br />

Process Control Pian for the Silo 3 Project<br />

. Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

-~<br />

, . Table 1-6 Valve Codes for Silo 3 50 69<br />

I Air Operated Valve I AOV I<br />

~~<br />

I Hand Operated Valve I HOV<br />

-1<br />

Motor Operated Valve<br />

Pressure Reducing Valve<br />

PRV<br />

I Solenoid Operated Valve I sov 1<br />

1.2.4 Instrument Numbering<br />

BFP<br />

CKV<br />

DCV<br />

DMP<br />

MOV<br />

Instrument identification and symbology shall be per the following standards:<br />

0 American National Standards Institute (ANSl)/lnstrument Society <strong>of</strong> America ([SA)-<br />

S5.1-1984 (R1992) Instrumentation Symbols and Identification; and<br />

0<br />

ISA-5.3-1983 - Graphic Symbols for Distributed Control/Shared Display<br />

Instrumentation, Logic, and Computer Systems.<br />

As shown on Piping and Instrument Diagram (P&ID) N0002, instrument tags consist <strong>of</strong> the<br />

ISA instrument identification letters followed by the number <strong>of</strong> the valve or piece <strong>of</strong><br />

equipment with which the instrument is associated.<br />

All Silo 3 instrumentation is listed in lnstrument List for the Silo 3 Project (FEMP 2003e).<br />

I .3<br />

OVERVIEW OF CONTROL SYSTEM<br />

The control equipment and instrumentation used for the Silo 3 Project is suitable for use in<br />

a conventional industrial environment. All devices are typical, readily available, "<strong>of</strong>f-the-<br />

shelf" items with a proven history <strong>of</strong> performance.<br />

The control system hardware and the control approach are typical <strong>of</strong> those used in<br />

conventional industrial material handling and packaging operations. The control philosophy<br />

is based on a combination <strong>of</strong> automated functions (where applicable) and actions by local<br />

operators. Many <strong>of</strong> the operations, particularly in the Packaging Area, require continuous<br />

operator actions and control input on a local basis.<br />

The Control Room is the central point for the control system. Redundant personal<br />

computers (PCs) are installed to provide an HMI station and an HMllEngineering station to<br />

support facility monitoring and control, as well as system configuration, testing, and<br />

startup. Communication and CCTV equipment are also provided, enabling Operations<br />

Support personnel to monitor and assist overall process control and facility activities from<br />

this location.<br />

1-6<br />

080095<br />

I<br />

I<br />

I<br />

I<br />

I<br />

1<br />

I<br />

I<br />

I<br />

I<br />

a<br />

a


I!HJACOBS September<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

5,2003<br />

?<br />

@ AnrAll&-Bradley programmable logic controller (PLC)-based control system is configured<br />

to 'monitor and control the facility material handling operations, packaging lines, and<br />

utilities. The main process PLC processor is located in the Electrical Building. Each <strong>of</strong> the<br />

two packaging lines has a dedicated control PLC. All three PLCs, the two HMI stations,<br />

and the Packaging Area local stations communicate via Ethernet local area network.<br />

For an overview <strong>of</strong> the control system's architecture, see the Control System Block<br />

Diagram (94X-3900-N-02489).<br />

. . .<br />

' ' I ,<br />

1-7


- -<br />

3 .<br />

2.0 PNEUMATIC RETRIEVAL SYSTEM (SYSTEM 10)<br />

The following process<br />

illustrate the Pneumatic<br />

94X-3900-F-01429<br />

94X-3900-N-02369<br />

94X-3900-N-01434<br />

94X-3900-N-0 1 435<br />

94X-3900-N-02993 '<br />

Process Controt Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

. Jacobs Project Number 35H19605<br />

September 5, 2003<br />

-<br />

-50.69 I<br />

flow diagram (PFD) and piping and instrument diagrams (P&IDs)<br />

Retrieval System (PRS):<br />

F0002<br />

NO099<br />

NO101<br />

Material Retrieval and Feed Systems<br />

Silo 3 Access<br />

Pneumatic Retrieval System<br />

I<br />

NO1 02 Feed System<br />

NO1 15 Vacuum Wand Enclosure I<br />

Pneumatic retrieval involves vacuuming material through the existing top manways on<br />

Silo 3 and transferring the material to the Process Building.<br />

Although the Excavator Building has been constructed adjacent to the <strong>silo</strong>, the <strong>silo</strong> wall<br />

has not yet been breached, and therefore, the two areas are isolated from each other.<br />

This is called "Phase 1". Both the Process Vent System (PVS) (see Section 4.0) and the<br />

Supply/Exhaust Air Systems (see Section 10.0) are in operation to provide ventilation and<br />

containment for the Process Building and Excavator Building. Air for PRS operation is<br />

drawn through a HEPA filter and through the <strong>silo</strong> riser manway into Silo 3.<br />

The PRS is used to remove material from behind the section <strong>of</strong> the <strong>silo</strong> sidewall where<br />

entrance will be made (see A&RS, Section 5.2). This will minimize the likelihood <strong>of</strong> an<br />

uncontrolled release <strong>of</strong> material into the Excavator Room during intrusive actions. The<br />

PRS operates from a number <strong>of</strong> <strong>silo</strong> riser manways until it is no longer effective for<br />

material recover. Phase 1 flow information is provided in the Material Balance Table (94X-<br />

3900-F-01428, Sheet No. FOOO1).<br />

When the <strong>silo</strong> wall is first breached, PRS operation may continue3. During this I<br />

intermediate stage, airflow patterns will change due to the establishment <strong>of</strong> a new air<br />

pathway into the <strong>silo</strong>. Supply air provided to the Excavator Room by the HVAC system<br />

will be exhausted by both the PVS and the PRS. When the PRS is no longer effective in<br />

retrieviog material, it will be discontinued.<br />

At this point, the Mechanical Retrieval System (MRS) (see Section 3.0) will begin to<br />

recover material from the <strong>silo</strong>. Mechanical retrieval will be performed using a remotely<br />

controlled excavator deployed from the Excavator Room. This recovery phase is identified<br />

as "Phase 2". During Phase 2, the PRS is not operating. Supply-air provided into the<br />

Excavator Room by the HVAC system will be exhausted only by the PVS. Flows<br />

associated with Phase 2 are described in the Material Balance Table.<br />

During- startup, balancing -acthities will be- performed to establikh appropriate damper<br />

positions for all phases <strong>of</strong> operation.<br />

' Material recovery by the PRS will be performed either from the <strong>silo</strong> dome using vacuum wands or<br />

from within the <strong>silo</strong> using the Excavator equipped witb an end effector for pneumatic retrieval.<br />

2-1 (BOQO97<br />

I<br />

I<br />

e


~ ~~~<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

In gdd,iiion to its primary function <strong>of</strong> removing and transferring Silo 3 material, the PRS is<br />

also used as a vacuum utility system for removal <strong>of</strong> material from Fines Collection Bins A<br />

and B (see Section 4.0) and utility service at the Container Management System (see<br />

Section 5.0). Hose connections are provided for potential area cleanup and removal <strong>of</strong><br />

material from the inlet chutes to the packaging stations.<br />

2.1 PRS EQUIPMENT<br />

Major equipment in the PRS is as follows:<br />

DCL-10-5002: Pneumatic Retrieval Collector<br />

FLT-10-5005: Cartridge Filter<br />

FLT-10-5004: HEPA FilteP<br />

BLR-10-5006: Pneumatic Retrieval Blower<br />

BLR-10-5008: Auxiliary Vacuum Bbwer<br />

ENC-10-5020 A through F: Vacuum Wand Enclosures A-F<br />

FLT-10-5070: Supply HEPA Fitter<br />

FDR-10-5102: Feed Conveyor<br />

FDR-10-5104: Pneumatic Retrieval Collector Discharge Feeder<br />

ROF-10-5 108: Primary Rotary Feeder<br />

ROF-10-5110: Secondary Rotary Feeder<br />

For detailed descriptions <strong>of</strong> all equipment associated with<br />

Section 2.1.<br />

2.2 PRS INSTRUMENTATION<br />

Table 2-1 summarizes, by function, all <strong>of</strong> the instrumentation in 1 le PRS.<br />

2.3 PRS CONTROL PHILOSOPHY<br />

- ~ ~ 6 9<br />

-<br />

the PRS, see the PD,<br />

The PRS is the first system used to remove material from Silo 3. PRS operations consist <strong>of</strong><br />

the following:<br />

Manipulation and control <strong>of</strong> Vacuum Wand Enclosures (VWEs) A-F (ENC-10-5020 A-F) I<br />

through manways on the <strong>silo</strong> dome;<br />

0- -0p.eration .<strong>of</strong> the remaining -F!RS-equipment (Le., .collectors, feeders,- blowers, -and<br />

filters); and<br />

Support <strong>of</strong> operation <strong>of</strong> the two Package Loading Stands (see Section 5.3).<br />

Operators at the Packaging Loading Stands have overall control responsibility for regulation<br />

<strong>of</strong> PRS operations. The rate at which material is conveyed to the Package Loading Stands<br />

is controlled by the packaging operators and is based on their capability to fill and process<br />

OHEPA = high-efficiency particulate air<br />

2-2<br />

I<br />

I<br />

I<br />

I<br />

- -


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

50 69<br />

____~<br />

material (i.e., seal, close, and remove filled container from station and prepare next<br />

container for filling).<br />

Building. The CCTV system allows the PRS operator to view the <strong>silo</strong> material and the<br />

wand movement and to control material retrieval.<br />

2-3<br />

000099<br />

~<br />

I


-<br />

e<br />

e<br />

e<br />

-<br />

0<br />

al<br />

al<br />

E<br />

.- a .<br />

LO<br />

._ .


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

- 5-0-6-9 -~<br />

Suction for the W E is provided by the Pneumatic Retrieval Blower (BLR-10-5006). This<br />

positive-displacement blower is purchased as a package unit with appropriate monitoring<br />

devices. The W E suction and transport airflow rate are established through proper<br />

selection <strong>of</strong> the blower. The blower is started by the PRS operators and runs continuously<br />

while the PRS is in operation.<br />

Flowable material6 retrieved by the W E continues through the transport pip'ing and is I<br />

drawn into the Pneumatic Retrieval Collector (DCL-10-5002). Once in the collector,<br />

material is separated from the transport air stream and discharged to the Pneumatic<br />

Retrieval Collector Discharge .Feeder (FDR-10-5104) and then ,through the Primary and<br />

Secondary Rotary Feeders (ROF-10-5108 and ROF-10-5110). The material feeds by<br />

gravity onto the Feed Conveyor (FDR-10-5102). This conveyor has two outlet valves on<br />

the underside. One valve (AOV-25-5260A) allows material to flow to Packaging Loading<br />

Stand A, and the other valve (AOV-25-5260B) allows material to flow to Packaging<br />

Loading Stand B. These valves are opened and closed as required by the packaging<br />

operators. Only one packaging line will be filling a container at any given time.<br />

The following parameters associated with the Pneumatic Retrieval Collector (DCL-10-<br />

5002) are monitored by the indicated instruments:<br />

material level: Level Switch High (LSH-DCL-10-5002) and High-High (LSHH-10-5002)<br />

0 pressure drop: Differential Pressure Indicating Transmitter (PDIT-DCL-10-5002)<br />

0 particulate discharge rate: Particulate Rate Indicating Transmitter (YENIT-DCL-10-<br />

5002)<br />

Pneumatic conveying air leaving the Pneumatic Retrieval Collector (DCL-10-5002) passes<br />

through the Cartridge Filter (FLT-10-5005) and then to the HEPA Filter (FLT-10-5004) for<br />

removal <strong>of</strong> suspended fine material. The following parameters associated with the .<br />

Cartridge Filter and the HEPA Filter are monitored by the indicated instruments:<br />

Cartridge Filter material level: Level Switch High (LSH-FLT-10-5005) and High-High<br />

(LSHH-FLT-10-5005)<br />

Cartridge Filter pressure drop: Differential Pressure Indicating Transmitter (PDIT-FLT-<br />

10-5005)<br />

HEPA Filter: Differential Pressure Indicating Transmitter (PDIT-FLT-10-5004)<br />

From the HEPA Filter, exhaust air continues on to the Exhaust Stack (STK-19-5209) for<br />

release to the atmosphere. Section 4.0 (PVS) provides additional information on the<br />

E-xh.austStack-and-Rs felafe~d~m~o~"it~o~~.n~~~fu~ncti-ons, - - - - - -- - - - - - - - - - - - - - --<br />

e Non-flowable Silo 3 material (i.e., material that cannot be retrieved by the PRS) is mechanically<br />

retrieved (see Section 3.0).<br />

2-5<br />

I<br />

I<br />

I<br />

I<br />

- - - - -


__ __ __<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

- 5069<br />

In addition to its primary function <strong>of</strong> removing and transferring Silo 3 material, the PRS is<br />

also used as a vacuum utility system for removal <strong>of</strong> material from Fines Collection Bins A<br />

and B (see Section 4.0) and utility service at the Container Management System (see<br />

Section 5.0). Hose connections are provided for potential area cleanup and removal <strong>of</strong><br />

material from the inlet chutes to the packaging stations.<br />

2.4 PRS INTERLOCKS<br />

A detailed listing <strong>of</strong> interlocks for the PRS is provided in both the referenced P&IDs and<br />

Table 2-2.<br />

Table 2-2 PRS Interlocks<br />

I 3 JAllow feeder to run only if one <strong>of</strong> the two1 FDR-10-5102 I ZS-AOV-25-5260A<br />

-<br />

4<br />

14<br />

15<br />

discharge valves is open. ZS-AOV-25-5260B<br />

Shut down Pneumatic Retrieval Collector<br />

Discharge Feeder if Feed Conveyor is not<br />

running.<br />

FDR-10-5104 YS-FDR-10-5102<br />

SSL-FDR-10-5102<br />

Shut down Blower on Low-Low Flow. BLR-10-5006 FI-BLR-10-5006<br />

BLR-10-5008 FI-BLR-10-5008<br />

Shut down Blower on High-High BLR-10-5006 TI-BLR-10-5006<br />

- -<br />

Temperature. BLR-10-5008 TI-BLR-10-5008<br />

16 Shut down Blower on High-High Current, BLR-10-5006 IT-BLR-10-5006<br />

BLR-10-5008 IT-BLR-10-5008<br />

17 Shut down Blower on High-High BLR-10-5006 PI-BLR-10-5006<br />

Pressure. BLR-10-5008 PI-BLR-10-5008 .<br />

18 Shut down Blower on High-High BLR-10-5006 YI-DCL-10-5002<br />

Particulate Levels from Dust Collector. BLR-10-5008<br />

20 Automatically pulse bags on High<br />

Differential Pressure on Dust Collector.<br />

DCL-10-5002 PDI-DCL-10-5002<br />

21 Shut down Blower on High-High BLR-10-5006 PDI-DCL-10-5002<br />

Differential Pressure on Dust Collector. BLR-10-5008<br />

22 Shut down Blower on High-High BLR-10-5006 PDI-FLT-10-5004<br />

Differential Pressure on HEPA Filter. BLR-10-5008<br />

34 Automatically pulse cartridges on High<br />

Differential Pressure on Cartridge Filter.<br />

FLT-10-5005 PDI-FLT-10-5005<br />

35 Shut down Pneumatic Retrieval Collector FDR-10-5 104 YS-ROF-10-5 1088<br />

Discharge Feeder if either the Primary or , YS-ROF-10-5110B<br />

- ____ - - - - - - - . - - - __ - - I -<br />

37 Shut down blower on High-High BLR-10-5006 PDI-FLT-10-5005<br />

Differential Pressure on Cartridge Filter. BLR-10-5008<br />

38 Shut down blower on High-High . BLR-10-5006 YI-CEM-19-5208<br />

Particulate Levels in Exhaust Stack. BLR-10-5008<br />

40 Shut down Pneumatic Retrieval Collector<br />

Discharge Feeder on High-High Current.<br />

FDR-10-5 104 11-FDR-10-5104<br />

- __ - - tha-S.ec.ondatyRotary_ Eeeder st~ps.-<br />

2-6<br />

I


2.5 PRS SETPOINTS<br />

5069'<br />

A detailed listing <strong>of</strong> setpoints for the PRS is provided in Table 2-3.<br />

2.6 PRS DATA ARCHIVING<br />

The following PRS parameters are archived:<br />

run time for all motorized equipment,<br />

alarm events, and<br />

interlock events.<br />

DCL-10-5002<br />

DCL-10-5002<br />

FLT-10-5004<br />

FLT-10-5005<br />

BLR-10-5006<br />

BLR-10-5006<br />

BLR-10-5006<br />

- - - - - ._ - I<br />

BLR-10-5006<br />

BLR-10-5008<br />

'<br />

LSH-DCL-10-5002<br />

1 in. wg I 7 in. wg<br />

I 8 in. wg<br />

I 36 in.<br />

LSHH-DCL-10-5002 48 in.<br />

YI-DCL-10-5002<br />

I<br />

PDI-FLT-10-5004<br />

2 grldscf<br />

I 5 gr/dscf<br />

I<br />

1 in. wg I 7 in. wg<br />

Table 2-3 PRS Setpoints<br />

1 in. wg<br />

7 in. wg<br />

8 in. wg<br />

LSH-FLT-10-5005 36 in.<br />

LSHH-FLT-10-5005 48 in.<br />

It-BLR-10-5006 118 amps<br />

124 amps<br />

FI-BLR-10-5006 1000 acfm<br />

1100 acfm<br />

TI-BLR-10-5006 200°F<br />

__ - - - - - - - - - - ---250~~<br />

PI-BLR-10-5006<br />

0.5 in. wg<br />

3 in. wg<br />

I 5 in. wg<br />

11-BLR-10-5008 I 22amps<br />

I 27amps<br />

'All setpoints will be reviewed and modified as necessary during startup.<br />

2-7<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

- ~ _ _ _ ~ _ _ - - _<br />

Pressure Differential:<br />

Low Operator Action<br />

High (20)<br />

High-High (21)<br />

High Level Operator Action<br />

High-High Level Operator Action<br />

High Particulate Count Operator Action<br />

High-High Particulate Count<br />

Pressure Differential:<br />

(1 81<br />

Low Operator Action<br />

High Operator Action<br />

High-High I (22)<br />

High Level in Condensate Leg I Operator Action<br />

Pressure Differential:<br />

Low Operator Action<br />

High (34)<br />

High-High (37)<br />

High Level Operator Action<br />

High-High Level<br />

. High Motor Current<br />

Operator Action<br />

Operator Action<br />

High-High Motor Current (1 6)<br />

LOW-LOW Flow (1 4)<br />

Low Flow Operator Action<br />

High Temperature Operator Action<br />

-High-High Temperature- - - - - - - .--(I 5)- - - -<br />

Pressure:<br />

Low Operator Action<br />

High Operator Action<br />

High-High (1 7)<br />

High Current Operator Action<br />

High-High Current (1 6)<br />

OU0103<br />

I.


e<br />

a<br />

.,<br />

i . 5U69<br />

' .<br />

Table 2-3 PRS Setpoints<br />

BLR-10-5008 TI-BLR-10-5008<br />

250 acfrn<br />

200°F<br />

250PF<br />

BLR-10-5008 PI-BLR-10-5008<br />

0.5 in. wg<br />

I<br />

FDR-10-5102 I II-FDR-10-5102<br />

3 in. wg<br />

I 5 in. wg<br />

I<br />

3.0 amp<br />

7.0 amp<br />

7.6 amp<br />

FDR-10-5104 II-FDR-10-5104 7.0 amp<br />

7.6 amp<br />

SILO-1 0-5070 PI-SILO-1 0-5070<br />

-2.0 in. wg<br />

-1 .O in. wg<br />

FLT-10-5070<br />

I PDI-FLT-10-5070<br />

-0;4 in. wg<br />

I -0.1 in. wg<br />

I<br />

0.2 in. wg<br />

I<br />

FDR-10-5 1 02 I SSL-FDR-10-5102<br />

1.0 in. wg<br />

2.0 in. wa<br />

I Orprn<br />

2-8<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

LOW-LOW Flow I<br />

Low Flow Operator Action<br />

High Temperature Operator Action<br />

High-High Temperature (1 5)<br />

Pressure :<br />

Low Operator Action<br />

High Operator Action<br />

Hig h-Hig h (1 7)<br />

Current:<br />

Low Operator Action<br />

High . Operator Action<br />

High-High ' Operator Action<br />

High Current Operator Action<br />

High-High Current (401<br />

Silo Pressure:<br />

Low-Low Operator Action<br />

Low Operator Action<br />

High Operator Action<br />

High-High Operator Action<br />

Pressure Differential:<br />

Low Operator Action<br />

High Operator Action<br />

High-High Operator Action<br />

Low speed (4)<br />

I<br />

I


- ~<br />

3.0<br />

MECHANICAL RETRIEVAL SYSTEM (SYSTEM 1 1)<br />

~~<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

- -<br />

5-0-6-9 ~~<br />

~~<br />

The following PFD and P&ID illustrate the Mechanical Retrieval System (MRS):<br />

94X-3900-F-01429 FOOO2 Material Retrieval and Feed Systems<br />

94X-3900-F-02369 NO099 Silo 3 Access<br />

94X-3900-N-01433 NO1 00 Mechanical Retrieval System<br />

94X-3900-N-01435 NO1 02 Feed System<br />

The MRS is used to access and remove the compacted material from Silo 3. A mechanical I<br />

excavator transfers Silo 3 .material to a bin located in the Excavator Room. A screw<br />

conveyor (integral to the bin) feeds the material to the Inclined Conveyor, which transports<br />

material to an elevation above the packaging systems and into the Transfer Conveyor.<br />

This in turn conveys material to the Feed Conveyor, which feeds both <strong>of</strong> the packaging<br />

stations.<br />

On an as-needed basis, the mechanical excavator will also be used to manipulate a<br />

vacuum hose end effector to retrieve material in a similar fashion to pneumatic retrieval<br />

(A&RS, Section 1.1.2).<br />

3.1 MRS EQUIPMENT<br />

I<br />

-Major equipment in the MRS is as follows:- -<br />

0 EXC-11-5050: Excavator<br />

0<br />

0<br />

EAR-1 1-5052: Retrieval Bin Register<br />

0 HBN-11-5054: Retrieval Bin<br />

0<br />

EAR-1 1-5053: Excavator Room Register<br />

FDR-11-5106: Retrieval Bin Discharge Feeder<br />

0 DFC-11-5056: Inclined conveyor<br />

0 FDR-11-5 1 00: Transfe.r Conveyor<br />

For detailed descriptions <strong>of</strong> all equipment associated with the MRS, see the PD,<br />

Section 2.2.<br />

3.2 MRS INSTRUMENTATION<br />

Table 3-1 summarizes, by function, all <strong>of</strong> the instrumentation in the MRS.<br />

3.3 MRS CONTROL PHILOSOPHY<br />

Silo material that is not removed by pneumatic operations is excavated from the <strong>silo</strong> using<br />

the Excavator (EXC-11-5050), which enters the <strong>silo</strong> through an opening cut in the side<br />

(A&RS, Section 5.2).<br />

3-1


__ --- B-S-<br />

Process Control Pian for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003 _.<br />

5069' _-<br />

The Excavator is an electrically powered machine. Operator control and machine status ' 0<br />

monitoring are by radio-frequency (RF)-based remote control. An umbilical system is<br />

provided in case <strong>of</strong> failure <strong>of</strong> the RF system. Since umbilical controls are local to the<br />

Excavator, operators must enter either the Excavator Room or the <strong>silo</strong> to use this system.<br />

A remote control operator box allows the Excavator to be controlled from an observation<br />

room adjacent to the Excavator Room. This operator station is capable <strong>of</strong> initiating and<br />

performing all machine surface travel and <strong>silo</strong> material removal functions. An excavator<br />

emergency stop is also provided.<br />

The <strong>silo</strong> material is raked, carried, or pushed out <strong>of</strong> the <strong>silo</strong> to the Retrieval Bin (HBN-11-<br />

5054). The Retrieval Bin Discharge Feeder (FDR-11-5106) is speed-controlled to feed the<br />

material onto the Inclined Conveyor (DFC-11-5056). Material loading <strong>of</strong> the Inclined<br />

Conveyor is monitored through the Motor Current Transmitter (IT-DFC-11-5056). Material<br />

in the Inclined Conveyor is transported to the Transfer Cgnveyor (FDR-11-5100), which<br />

then deposits the material onto the Feed Conveyor (FDR-10-5102). This conveyor (FDR-<br />

10-5102) has two outlets, one leading to Package Loading Stand A and the other leading<br />

to Package Loading Stand B. These conveyors are started at the main operator panel by I<br />

the packaging operators. Each conveyor is interlocked with the upstream conveyor(s).<br />

CCTV cameras are provided in the <strong>silo</strong> interior, on the Excavator, and near the Retrieval I<br />

- - - - - - -<br />

- --Birr to atlow the Excavator aperator to view the <strong>silo</strong>material and-the ExzwaTo-r ape-ration: - - - - - -<br />

3.4 MRS INTERLOCKS<br />

A detailed listing <strong>of</strong> interlocks for the MRS is provided in the P&IDs and Table 3-2.<br />

3.5 MRS SETPOINTS<br />

A detailed listing <strong>of</strong> setpoints for the MRS is provided in Table 3-3.<br />

3.6 MRS DATA ARCHIVING<br />

The following MRS parameters are archived:<br />

run time for all motorized equipment,<br />

alarm events, and<br />

0 interlock events.<br />

3-3


e<br />

e.<br />

~<br />

Table 3-2 MRS Interlocks<br />

2 Shut down Inclined Conveyor and<br />

Retrieval Bin Discharge Feeder if<br />

Transfer Conveyor is not running.<br />

3<br />

4<br />

13<br />

19<br />

~~ ~ ~~~<br />

IShut down Transfer Conveyor if Feed<br />

'Conveyor is not running.<br />

i shut down Inclined Conveyor (both<br />

motors) on High-High Current or Low<br />

Speed.<br />

33 Shut down Retrieval Bin Discharge<br />

Feeder if Inclined Conveyor shuts<br />

- - - - __ - - __ - - - do!?!, . - - - -- - - - - -. - - - - - -- -<br />

39<br />

Allow feeder to run only if one <strong>of</strong> the<br />

two discharge valves is open.<br />

Allow Retrieval Bin Discharge Feeder<br />

to run only if discharge valve is open.<br />

Shut down Retrieval Bin Discharge<br />

Feeder on High-High Current or Low<br />

Speed.<br />

. Table 3-3 MRS Setpoints<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

5069<br />

~ FDR-11-5100 ZS-AOV-25-5260A<br />

, ZS-AOV-2 5-5 260B<br />

FDR-11-5100 YS-FDR-10-5 102<br />

DFC-11-5056 II-DFC-11-5056<br />

SSL-DFC-11-5056<br />

FDR-11-5106 YS-AOV-11-5009<br />

FDR-11-5106 1 II-DFC-11-5056<br />

14 amps High-High Current (1 3)<br />

DFC-11-5056 SSL-DFC-11-5056 0 rprn Low speed (1 3)<br />

FDR-11-5 100 II-FDR-11-5 1 00 Current:<br />

2.5 amps Low Operator Action<br />

4.5 amps High Operator Action<br />

4.8 amps High-High Operator Action<br />

FDR-11-5100 SSL-FDR-11-5100 0 rpm Low speed (2)<br />

FDR-11-5 106 II-FDR-11-5 106 Current:.<br />

6amps Low Operator Action<br />

12 amps High Operator Action<br />

14 amps High-High (39)<br />

FDR-11-5106 SSL-FDR-11-5106 0 RPM Low Speed (39)<br />

All setpoints will be reviewed and modified as necessary during startup.<br />

3-4<br />

I<br />

I


- m.’!aBsL-<br />

__<br />

- 5-0-69 - ~<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

. Jacobs Project Number 35H19605<br />

September 6, 2003.<br />

___<br />

‘e<br />

4.0 PROCESS VENT SYSTEM (SYSTEM 19)<br />

The following PFD and P&IDs illustrate the Process Vent System (PVS):<br />

94X-3900-F-0143 1 F0003 Process Vent and Packaging Systems<br />

94X-3900-N-01439 NO106 Process Vent System, Sheet 1 <strong>of</strong> 2<br />

94X-3900-N-01440 NO107 Process Vent System, Sheet 2 <strong>of</strong> 2<br />

The PVS is a collection and filtration system for process vent streams from the Silo 3<br />

Project. These streams are associated with retrieval and packaging <strong>of</strong> Silo 3 material and<br />

are potentially contaminated with radon and particulates. The major process areas being<br />

vented are located on Silo 3 (via the VWEs), the Excavator Room, and the Packaging Area.<br />

Streams collected by the PVS pass through baghouse dust collectors and HEPA/ULPA filter<br />

housings, and are then routed to the Exhaust Stack, where they are sampled and<br />

discharged to the atmosphere.<br />

FQr a description <strong>of</strong> how the PVS interacts with the PRS, MRS, and HVAC systems, see<br />

Section 2.0.<br />

4.1 PVS EQUIPMENT<br />

Major equipment in the W S<br />

0<br />

is as follows:<br />

------------------<br />

DCL-19-5202A&B: Process Vent Dust Collectors A&B<br />

HBN-19-5205A&B: Fines Collection Bins A&B<br />

FLT-19-5204A&B: Process HEPA Filters A&B<br />

FAN-1 9-5206A&B: Process Exhaust Fans A&B<br />

STK-19-5209: Exhaust Stack<br />

0 CEM-19-5208: Continuous Emissions Monitor (CEM) (Radon, Particulate, and Flow<br />

Monitoring)<br />

For ’detailed descriptions <strong>of</strong> all equipment associated with the PVS, see the PD,<br />

Section 4.4.<br />

4.2 PVS INSTRUMENTATION<br />

Table 4-1 summarizes, by function, all <strong>of</strong> the instrumentation in the PVS.<br />

4.3 PVS CONTROL PHILOSOPHY<br />

The PVS is designed to:<br />

Remove radon and particulate-laden air from the various system components and filter<br />

the particulate decay products prior to discharge.<br />

Reduce radon and particulate concentrations in processing areas.<br />

Detect and measure radon and particulate releases to the atmosphere.<br />

Contaminated gases and dust are drawn through the PVS by redundant centrifugal fans<br />

(FAN-1 9-5206A&B). The fans and associated ductwork are designed to maintain<br />

appropriatevacuum levels in Silo 3, the Excavator Room, the Excavator Service Room, and<br />

4-1<br />

000189<br />

I


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

selected process equipment. Automatic dampers allow changeover <strong>of</strong> PVS process trains;<br />

manual dampers provide system isolation and balancing.<br />

4.3.1 Collection Header<br />

The PVS Collection Header consists <strong>of</strong> piping and manual dampers for the collection and<br />

removal <strong>of</strong> Silo 3 material. Pickup points are the WEs, the Retrieval Bin area, the Inclined<br />

Conveyor, and Package Loading Stands A and B.<br />

The operators are required to manually set the PVS flow rates from the various pickup<br />

points using a series <strong>of</strong> manually operated dampers and by observing local duct airflow<br />

rate indicators.<br />

4.3.2<br />

Dust Collectors, Filters, and Blowers<br />

Redundant trains <strong>of</strong> dust collectors, HEPA filters, and exhaust fans are provided. Duct<br />

crossover capability is also provided to allow operation with any combination <strong>of</strong><br />

components active in either path. The inlet valve to each <strong>of</strong> the redundant Process Vent<br />

Dust Collectors and the valves at the outlet <strong>of</strong> each Process Exhaust Fan are automated<br />

valves, selected and opened or closed as needed by the operator. All other dampers are<br />

manually operated.<br />

Operators align 4heuaCvesand--darnper~ and- staFt-one -<strong>of</strong>-the fansat the-beginning-<strong>of</strong>-the<br />

work shift. The fan runs continuously during either material handling or packaging<br />

operations. The control system has the capability to automatically realign the motorized<br />

valves and switch over to the <strong>of</strong>f-line dust collector or fan in the event <strong>of</strong> abnormal<br />

operating conditions.<br />

4.4 PVS INTERLOCKS<br />

A detailed listing <strong>of</strong> interlocks for the PVS is provided in the P&IDs and Table 4-2.<br />

4.6 PVS SETPOINTS<br />

A detailed listing <strong>of</strong> setpoints for the PVS is provided in Table 4-3.<br />

4.6 PVS DATA ARCHIVING<br />

The following PVS parameters are archived:<br />

0 run time for all motorized equipment,<br />

0 alarm events, and<br />

0 interlock events.<br />

4-2


5069<br />

y.<br />

0<br />

al<br />

0<br />

.-<br />

a<br />

a<br />

a<br />

5<br />

.- C<br />

0,<br />

w<br />

0<br />

a<br />

C<br />

0<br />

c<br />

0


0<br />

3<br />

9<br />

n<br />

I<br />

5<br />

3<br />

><br />

i<br />

.<br />

=-- 5069<br />

a<br />

e<br />

Q)<br />

Y<br />

Q1<br />

+<br />

000112<br />

-?<br />

t


23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

38<br />

41<br />

42<br />

Table 4-2 PVS Interlocks<br />

Open AOV-19-5200 and close AOV-<br />

19-521 1 on High or Low Differential<br />

Pressure in Dust Collector 8.<br />

Open AOV-19-5211 and close AOV-<br />

19-5200 on High or Low Differential<br />

Pressure in Dust Collector A.<br />

On Low Flow to stack (Fan A<br />

operating):<br />

Dust Collector 8.<br />

Open AOV-19-5211 and close AOV-<br />

19-5200 on High-High Particulates on<br />

Dust Collector A.<br />

On High-High current on Fan A:<br />

Open AOV-19-5232.<br />

Close AOV-19-5230.<br />

0 Shut down FAN-1 9-5206A.<br />

Start FAN-1 9-52068.<br />

On High-High current on Fan 8:<br />

Open AOV-19-5230.<br />

Close AOV-19-5232.<br />

Shut down FAN-1 9-52068.<br />

Start FAN-1 9-5206A.<br />

On High-High particulates in Exhaust<br />

Stack, shut down FAN-19-5206 A or<br />

B.<br />

On High-High level in Dust Collector A<br />

or B, switch to the alternate dust<br />

collector.<br />

Shut down Fan A or B on open signal<br />

from Emergency Egress Door 0086".<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

0 6 9<br />

AOV-19-5200<br />

AOV-19-5211<br />

AOV-19-5200<br />

AOV-19-5211<br />

0 Shut down FAN-1 9-5206A. FAN-1 9-5206A<br />

Start FAN-1 9-52068. FAN-1 9-52068<br />

Open AOV-19-5232. AOV-19-5232<br />

Close AOV-19-5230. AOV-19-5230<br />

On Low flow to stack (Fan B<br />

operating):<br />

Shut down FAN-1 9-52068. FAN-1 9-52068<br />

Start FAN-1 9-5206A. FAN-1 9-5206A<br />

0 Close AOV-19-5232. . AOV-19-5232<br />

ODen AOV-19-5230. AOV-19-5230<br />

4-5<br />

AOV-19-5200<br />

AOV-19-5211<br />

AOV-19-5232<br />

AOV-19-5230<br />

FAN-1 9-5206A<br />

FAN-1 9-52068<br />

AOV-19-5230<br />

AOV-19-5232<br />

FAN-19-5206B<br />

FAN-1 9-5206A<br />

' FAN-1 9-5206A<br />

FAN-1 9-5206B<br />

DCL-19-5202A<br />

DCL-19-52028<br />

FAN-19-5206A<br />

FAN-1 9-5206B<br />

00013.3<br />

'DI-DCL-19-57<br />

'DI-DCL-19-5202A<br />

FI-FAN-19-5206<br />

FI-FAN- 19-5206<br />

VI-DCL-19-5202<br />

YI-DCL-19-5202<br />

1II-FAN-19-5206A<br />

II-FAN-19-5206B<br />

YI-CEM-19-5208<br />

1.SHH-DCL-l9-5202B<br />

i


a<br />

e<br />

a<br />

~<br />

DCL-19-5202A<br />

DCL-19-5202B<br />

DCL-19-5202A<br />

PDI-DCL-19-<br />

5202A<br />

PDI-DCL-19-<br />

52028<br />

LSH-DCL-19-<br />

5202A<br />

LSHH-DCL-19-<br />

5202A<br />

LSH-DCL-19-<br />

52028<br />

LSHH-DCL-19-<br />

52028<br />

YI-DCL-19-5202<br />

LSH-HBN-19-<br />

5205A<br />

LSH-HBN-19-<br />

52058<br />

LSH-FLT-19-<br />

5204<br />

PDI-FLT-19-<br />

5204A<br />

Table 4-3 PVS Setpoints<br />

I<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Proiect Number 35H 19605<br />

September 5, 2003<br />

5069 I<br />

Differential Pressure:<br />

1 in wg Low (24)<br />

7 in wg High (24)<br />

8 in wg High-High Operator Action<br />

Differential Pressure:<br />

1 in wg Low (23)<br />

7 in wg High (23)<br />

8 in wg High-High Operator Action<br />

24 in High Level Operator Action<br />

36 in High-High Level (41 1<br />

24 in High Level Operator Action<br />

36 in High-High Level (41 1<br />

0.005 gr/scf High Particulate<br />

Count<br />

Operator Action<br />

0.01 0 gr/scf High-High Particulate<br />

Count<br />

(27, 28)<br />

24 in High Level Operator Action<br />

24 in High Level Operator Action I<br />

12 in High Level in Operator Action<br />

Condensate Leg13<br />

Differentia I Pressure :<br />

1 in wg Low Operator Action<br />

7 in wg High Operator Action<br />

8 in wg High-High . Operator Action<br />

l1 The PVS fans are shut down when the panic bar on emergency egress door 008B is activated.<br />

This relieves negative pressure in the Excavator Service Room, allowing the door to be opened, thus<br />

complying with Life Safety Code Requirements. The control system and HMI settings limit the<br />

number <strong>of</strong> fan restarts per hour.<br />

'* All setpoints will be reviewed and modified as necessary during startup.<br />

l3 The inlet duct to FLT-19-5204A&B exits the Process Building to the outdoors and drops<br />

approximately 20 ft to the filters. Since the duct carries high-dewpoint, conditioned air, condensate<br />

is likely to form inside the duct during cold weather. For this reason, a condensate leg (with high-<br />

level alarm and drain valve) is provided just upstream <strong>of</strong> the filters. This enables the operator to<br />

drain excess condensate out <strong>of</strong> the PVS before the duct fills with water, causing entrainment <strong>of</strong><br />

moisture into the HEPA/ULPA filter elements.<br />

.JL 008114<br />

4-6


FLT-19-52048<br />

FAN-1 9-520644<br />

FAN-1 9-5206B<br />

FAN-1 9-5206A&B<br />

FAN-1 9-5206A&B<br />

CEM-19-5208<br />

CEM-19-5208<br />

STK-19-5209<br />

BS 5-0-6-9 ~-<br />

Table 4-3 PVS Setpoints<br />

PDI-FLT-19-<br />

5204B 1 in wg<br />

7 in wg<br />

8 in wg<br />

11-FAN-19-5206A<br />

11-FAN-19-52068<br />

PI-FAN-1 9-5206<br />

FI-FAN-19-5206 I<br />

5,000 acfm<br />

5,250 acfm<br />

5,750 acfm<br />

6,000 acfm<br />

YI-CEM-19-5208 35,000 cpm<br />

110,000 cpm<br />

AQIT-CEM-19- 500 pCi/L<br />

5208 5,000 pCi/L<br />

FI-CEM-19- By Vendor<br />

152088 (scfm)<br />

LAH-STK-19-<br />

5209 I<br />

25 amps<br />

47 amps<br />

52 amDs<br />

25 amps<br />

47 amps<br />

52 amps<br />

0.5 in wg<br />

0.75 in wg<br />

3 in wg<br />

I 5 in wg<br />

By Vendor<br />

(scfm)<br />

6 in.<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H 19605<br />

September 5, 2003 -~<br />

Differential Pressure:<br />

Low Operator Action<br />

High Operator Action<br />

High-High ODerator Action<br />

Current:<br />

Low<br />

High<br />

Hiah-Hinh<br />

High-High<br />

Air Flow:<br />

Low-Low<br />

Low<br />

High<br />

High-High<br />

High Particulate<br />

Count<br />

High-High Particulate<br />

Count<br />

High Radon<br />

High-High Radon<br />

Low Sample Flow to<br />

Stack<br />

Operator Action<br />

Operator Action<br />

(291<br />

Operator Action<br />

Operator Action<br />

(25, 26)<br />

Operator Action<br />

Operator Action<br />

Operator Action<br />

(38) 8t<br />

Operator<br />

Actiont4<br />

Operator Action<br />

Operator Action<br />

Operator Action<br />

l4Once the PVS fans have been shut down, operations personnel will observe the particulate level in<br />

the stack. 'If it is still too high, they will also shut down the Pneumatic Retrieval Blower (if<br />

operating).<br />

4-7<br />

a


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

5049 September 5, 2003<br />

The following PFD and P&IDs illustrate the Container Management and Sampling Systems:<br />

94X-3900-F-01431 F0003 Process Vent and Packaging Systems<br />

94X-3900-N-01436 NO1 03 Bulk Bag Packaging Line A<br />

94X-3900-N-01437 NO104 Bulk Bag Packaging Line B<br />

511<br />

Two parallel packaging lines are provided. Major equipment in the Container Management<br />

System is listed in the following sections. For detailed descriptions <strong>of</strong> all equipment<br />

associated with the Container Management and Sampling Systems, see PD, Section 3.1 .<br />

5.1 .I<br />

These vendor-supplied systems contain the following equipment:<br />

0<br />

CONTAINER MANAGEMENT AND SAMPLING SYSTEM EQUIPMENT<br />

Container Management and Packaging Systems A&B (SKD-25-5250A&B)<br />

PKU-25-5270A&B: Package Loading Stands A&B<br />

RCV-25-5278A&B: Package Staging Conveyors A&B<br />

RCV-25-5282A&B: Airlock Conveyors A&B<br />

0 RCV-25-5288A&B: Off-Loading Conveyors A&B<br />

5.1.2 Transport Equipment<br />

0 BRC-25-5280: Bridge Crane<br />

Cargo containers, forklift, loading crane, and rail cars and/or trucks<br />

5.1.3 Miscellaneous Equipment<br />

0<br />

0<br />

0<br />

SSS-84-5252A&B: Packaging Samplers A&B<br />

NOZ-25-5260A&B: Discharge Chute Assembly A&B<br />

EAR-25-5290A&B: Packaging Station Exhaust Registers A&B<br />

ENC-25-529 1 A&B: Packaging Frames A&B<br />

RDR-05-5918: Roll-up Door 007D (Line A)<br />

RDR-05-5912: Roll-up Door 007G (Line A)<br />

RDR-05-5920: Roll-up Door 007C (Line B)<br />

RDR-05-5914: Roll-up Door 007F (Line B)<br />

RDR-05-5916: Roll-up Door 007E (Process Building)<br />

5.2 CONTAINER MANAGEMENT SYSTEM INSTRUMENTATION<br />

Table 5-1 summarizes, by function, all <strong>of</strong> the instrumentation in the Container<br />

Management and Packaging System.<br />

,. ,<br />

5-1<br />

I<br />

I<br />

I<br />

I


50 69<br />

000117


OBS<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

50 69 . I<br />

0 5.3 CONTAINER MANAGEMENT AND SAMPLING SYSTEM CONTROL PHILOSOPHY<br />

The Container Management and Packaging System is a vendor-supplied package. After<br />

final design, the vendor will provide a final detailed control system configuration and a<br />

detailed sequence <strong>of</strong> operation.<br />

@<br />

e<br />

The system is a continuously manned operation. The operators perform several manual<br />

steps to prepare the bags for filling. These steps include placing the Packaging Frame onto<br />

the Package Loading Stand, placing the container in the frame, positioning the loading<br />

spout, and coupling the container to the spout. The operator then activates the aeration<br />

blower, pre-inflating the container to conform to the frame.<br />

Operator interface is based primarily on local operation with input via local push buttons<br />

and hand switches. A primary hand control station is provided at the Package Loading<br />

Stand, and other control stations are provided as required for operation for the<br />

downstream conveyors. These control stations are suitably configured for manipulation by<br />

the operators, who are in standing positions alongside the conveyors.<br />

Control <strong>of</strong> the actual filling <strong>of</strong> the bags is a combination <strong>of</strong> manual, semi-automatic, and<br />

fully automated operations. Coupling the bag to the filling port, inflating the inner liner, and<br />

confirming an adequate closure are semi-automatic operations. Dispensing the material<br />

into the bag and operating the vibrating densification device are automated to reduce the<br />

possibility <strong>of</strong> overfilling. The operator initiates a filling sequence after having positioned the<br />

bag and having confirmed proper seal to the spout. The material discharge valve opens,<br />

and material begins to fill the container'', The vent valve opens to allow the deaeration<br />

blower to remove air from the bag as it is being filled. The densification'vibrator is<br />

activated when a fill weight <strong>of</strong> approximately 20 percent <strong>of</strong> anticipated final weight has<br />

been reached. Operators are required to visually monitor the filling level and be prepared<br />

to halt the filling process .as required; bullet cameras are provided in both fill heads to<br />

facilitate this. If overfilling occurs, a manually operated vacuum line is provided to allow<br />

operators to remove material from the bag and transfer it to the PRS.<br />

After the container is filled, the operator raises the loading spout, adjusts the inner-liner<br />

seal, and heat-seals the liner using the RF sealerle. The inner liner is then detached from<br />

the loading spout, and the gross weight <strong>of</strong> the entire assembly is measured and recorded.<br />

Using local hand controls, the operator moves the Packaging Frame from the Package<br />

Loading Stand to the Packaging Staging Conveyor, where swipe sampling is performed.<br />

The frame is then transferred to the Airlock Conveyor, and finally to the Off-Loading<br />

Conveyor. Position switches and interlocks on the conveyors and doors ensure that:<br />

'' Mixed additive solution is sprayed into the Discharge Chute Assemblies during the entire filling<br />

cycle. Once the container is full, the chute assembly's nozzles are flushed with process water,<br />

which also enters the container. See Section 8.0 for further .details on the Additive System.<br />

''The RF sealer provides a double seat at the top <strong>of</strong> the inner liner, with in-between perforation that<br />

enables the operator to tear. away the inner liner rather than cut it.<br />

5-3<br />

I<br />

I


0 Packaging Frames do not come into contact with each other;<br />

0<br />

0<br />

0<br />

0<br />

Packaging Frames do not come into contact with the roll-up doors;<br />

Receiving conveyors are in motion before frames are placed on them;<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

5.(-6-9-.-<br />

Frames come to a stop once they are fully on the Off-Loading Conveyors; and<br />

Roll-up doors and pass doors are operated to maintain the airlock.<br />

Bags are lifted from the Off-Loading Conveyors by the Bridge Crane (BRC-25-5280) and<br />

17. The need for sampling is pending confirmation <strong>of</strong> both regulatory and disposal-facility<br />

requirements.<br />

la These interlocks apply only to Packaging Line A. Equipment and instrumentation designators for<br />

Line B are similar. *<br />

5-4<br />

008119<br />

___ ~<br />

e<br />

e


I.L<br />

Table 5-2 Container Management System Interlocks<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

-- 5069<br />

7 To INDEX a bulk bag from the Package Staging Conveyor to the Airlock<br />

Conveyor, the following happens:<br />

All steel roll-up doors (RDR-05-5912, RDR-05-5912 YS-RDR-05-59128<br />

-591 4, and -591 6) must be closed. RDR-05-5914 YS-RDR-05-5914B<br />

RDR-05-5916 YS-RDR-05-5916B I<br />

The Fabric roll-up door (RDR-05- RDR-05-5918 YS-RDR-05-5918B I<br />

1591 8) ooens. 1 I<br />

The Airlock Conveyor starts.<br />

The Package Staging Conveyor<br />

starts.<br />

RCV-25-5282A YS-RCV-25-5282AB<br />

RCV-25-5278A YS-RCV-25-5278AB<br />

I '<br />

I<br />

When Limit Switch ZS-RCV-25-5282AB is activated:<br />

0 Stop Package Staging Conveyor. RCV-25-5278A ZS-RCV-25-5278AB<br />

0 Stop Airlock Conveyor. RCV-25-5282A ZS-RCV-25-5282.AB<br />

0 Close Fabric Door (RDR-05-<br />

5918).<br />

RDR-05-5918 ZS-RDR-05-5918<br />

8 To INDEX a bulk bag from the Airlock Conveyor to the Off-Loading Conveyor, the<br />

following happens:<br />

36<br />

58<br />

Fabric roll-up doors RDR-05-59 18 I RDR-05-5918 IYS-RDR-05-5918B<br />

and -5920 must be closed. I RDR-05-5920 (YS-RDR-05-5920B<br />

The Steel roll-up door (RDR-05-5912) I RDR-05-5912 (YS-RDR-05-59128<br />

opens and inhibits opening <strong>of</strong> either DOR-05-007A<br />

<strong>of</strong> the two airlock pass doors. DOR-05-007H<br />

The Off-Loading Conveyor starts. RCV-25-5288A YS-RCV-25-5288AB<br />

The Airlock Conveyor starts. RCV-25-5282A YS-RCV-25-5282AB<br />

When Limit Switch ZS-RCV-25-5288AB is activated:<br />

1 0 Stop Airlock Conveyor. RCV-25-5282A ZS-RCV-25-5282AB<br />

~0 Stop Off-Loading Conveyor. RCV-25-5288A ZS-RCV-25-5288AB<br />

Close Steel Door (RDR-05-5912). RDR-05-5912 ZS-RDR-05-5912<br />

Permissive to open AOV-25-5260 A AOV-25-5260A ZS-AOV-25-5260AB<br />

or B when bag is connected to AOV-25-5260B ZS-AOV-25-526OBB<br />

loading spout on Packaging Line A or<br />

B, respectively.<br />

Shut down Additive Charge Pumps A<br />

or B (PMP-44-5000 A or B) when: PM P-44-5 OOOB<br />

The Feed Conveyor shuts down,<br />

or<br />

The Package Loading Stand fails<br />

to show a weight gain <strong>of</strong> at least<br />

100 Ib./min. for 30 sec.<br />

5-5<br />

HS-FDR-10-5 102B<br />

WQI-PKU-25-<br />

5 2 70Af 0<br />

I<br />

I<br />

I<br />

I<br />

I


l9 All setpoints will be reviewed and modified as necessary during startup.<br />

. I<br />

5-6<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

. Jacobs Project Number 35H19605<br />

September 5, 2003<br />

-<br />

5-(-6-9!!--- ~<br />

000121<br />

-- -<br />

I<br />

a<br />

e


a 6.0<br />

* .<br />

O%S<br />

+ -.<br />

i-<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

5069<br />

PLANT AND INSTRUMENT AIR SYSTEM (SYSTEM 40)<br />

The following PFD and P&IDs illustrate the Plant and Instrument Air System:<br />

94X-3900-F-01432 F0005 Plant, Instrument, and Breathing Air Systems .<br />

94X-3900-N-01441 NO108 Plant Air System<br />

94X-3900-N-01442 NO1 09 Instrument Air System<br />

94X-3900-N-01444 NO1 1 1 Plant Air.System Connections<br />

.94X-3900-N-01446 NO1 13 Instrument Air System Connections<br />

The Plant and Instrument Air Compressors, Air Dryers, and associated equipment are<br />

vendor-supplied packages with controls provided by the vendors in accordance with<br />

purchase specifications. The vendors are required to provide control systems typical <strong>of</strong><br />

equipment used in industrial environments. Operating parameters, such as compressor<br />

motor running, air pressure, and system alarms, are available to the main PLC system for<br />

monitoring and alarming.<br />

6.1 PLANT/INSTRUMENT AIR COMPRESSOR SKID (SKD-40-5300)<br />

The Plant/lnstrument Air Compressor Skid is a' fully self-contained, structural steel skid unit.<br />

All components are purchased piped and wired, and ready for installation upon receipt. The<br />

skid includes, but is not limited to, the following equipment:<br />

ACP-40-5320A&B: Air Compressors A&B<br />

a ART-40-5310: Instrument Air Receiver Tank<br />

ADR-40-5312A&B: Desiccant Vessels A&B<br />

Miscellaneous filters, aftercoolers, traps, etc.<br />

6.2 PLANT/INSTRUMENT AIR SYSTEM OPERATION<br />

Ambient air is drawn through an inlet filter by Air Compressors A&B, and sent to the<br />

instrument Air Receiver Tank. The tank feeds air through the Desiccant Vessels and then<br />

to various plant and instrument air users.<br />

6.3<br />

PLANT/INSTRUMENT AIR SYSTEM CONTROL PHILOSOPHY<br />

The specification calls for the following controls:<br />

An enclosed, local control and instrument panel shall be furnished for the plant and<br />

Instrument Air Skid. The panel shall contain starthtop switches, pilot lights, emergency<br />

stop button, and hour meters in the panel. All instruments and gauges other than direct-<br />

r e a o l n g h - e r m m r s a nd pressure gauges snail be housea in or on the panel.<br />

.<br />

The compressor instrument and control panel shall include but not be limited to the I<br />

following:<br />

on/<strong>of</strong>f switch to actuate panel power;<br />

selector for auto or manual, unload/modulate, and pressure control;<br />

controller and readout for discharge pressure;<br />

0 start and stop push buttons;<br />

@ 008122<br />

6- 1<br />

_


__<br />

.<br />

m:JjA!!oBs-<br />

0 run time hour meter;<br />

0 oil pressure;<br />

oil temperature;<br />

air temperature; and<br />

0 discharge air pressure.<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

- - September-5, 2003--<br />

Alarm and shutdown functions with annunciation shall be provided to cause the air<br />

compressor to shut down 0.n selected alarm condition. These alarms will be connected to<br />

the facility PLC. The alarm and shutdown functions with annunciation include:<br />

0 high discharge pressure shutdown,<br />

0 high discharge temperature shutdown,<br />

low oil IeveVpressure,<br />

motor overload, and<br />

emergency stop button.<br />

6.4 PLANTIINSTRUMENT AIR SYSTEM DATA ARCHIVING .<br />

0<br />

The following Plant and Instrument Air System parameters are archived:<br />

run time for all motorized equipment, and a<br />

0 alarm events.<br />

6-2<br />

000123


I<br />

BHJACOBS<br />

** e- 5368<br />

7.0 BREATHING AIR SYSTEM (SYSTEM 41) -’<br />

The following PFD and P&IDs illustrate the Breathing Air System:<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

94X-3900-F-01432 F0005 Plant, Instrument, and Breathing Air Systems<br />

94X-3900-N-01443 NO1 10 Breathing Air System<br />

94X-3900-N-0 1445 NO1 12 Breathing Air System Connections<br />

7.1 BREATHING AIR COMPRESSOR SKID (SKD-41-5350)<br />

The Breathing Air System Compressor Skid is a fully self-contained, structural steel skid unit<br />

requiring only one electrical power connection and one air piping connection. All components<br />

are purchased piped and wired, and ready for installation upon receipt. The skid includes, but<br />

is not limited to, the following equipment:<br />

0<br />

0<br />

ACP-41-5360A&B: Breathing Air Compressors A&B<br />

ART-41 -5352: Breathing Air Receiver Tank<br />

SKD-41-5354: Refrigeration Dryer Skid (SKD-41-5354)<br />

Afterfilter<br />

0 CO monitor<br />

7.2<br />

Miscellaneous filters and coolers<br />

BREATHING AIR SYSTEM CONTROL PHILOSOPHY<br />

The specification calls for the following controls:<br />

An enclosed, local control and instrument panel shall be furnished for the Breathing Air<br />

Skid. The panel shall contain start/stop switches, pilot lights, emergency stop button, and<br />

hour meters in the panel. All instruments and gauges other than direct-reading<br />

thermometers and pressure gauges shall be housed in or on the panel.<br />

The compressor instrument and control panel shall include but not be limited to the<br />

following:<br />

on/<strong>of</strong>f switch to actuate panel power; .<br />

selector for auto or manual, unload/modulate, and pressure control;<br />

controller and readout for discharge pressure;<br />

start and stop push buttons;<br />

0 run time hour meter;<br />

0 air temperature; and<br />

0 discharge air pressure.<br />

___I --<br />

7-1<br />

I


__ -- BS--<br />

0 motor overload, and<br />

0 emergency stop button.<br />

7.3 BREATHING AIR SYSTEM DATA ARCHIVING<br />

The following Breathing Air System parameters are archived:<br />

0<br />

run time for all motorized equipment, and<br />

0 alarm events.<br />

Process Control Plan for the Silo 3 Project<br />

5.0-6-9-<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

- -_S_eptember 5,2003-<br />

7-2<br />

- -


8.0 ADDITIVE SYSTEM (SYSTEM 44)<br />

The following PFDs and P&IDs illustrate the Additive System:<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

50 69<br />

94X-3900-F-01431 F0003 Process Vent and Packaging Systems<br />

94X-3900-F-01430 F0004 Additive and Wastewater Systems<br />

94X-3900-N-01436 NO1 03 Bulk Bag Packaging Line A<br />

94X-3900-N-0 1437 NO1 04 Bulk Bag Packaging Line B<br />

94X-3900-N-01438 NO1 05 Additive Mixing and Wastewater Systems<br />

94X-3900-N-05147 NO1 16 Additive Charging System<br />

94X-3900-N-05139 NO1 17 Additive Feed System<br />

8.1 ADDITIVE SYSTEM EQUIPMENT<br />

Major equipment in the Additive System is listed in the following sections. For detailed<br />

descriptions <strong>of</strong> all equipment associated with the Additive System, see PD, Section 5.0.<br />

Pumps<br />

PMP-44-5000A: Sodium Lignosulfonate Pump<br />

PMP-44-5000B: Ferrous Sulfate Pump<br />

PMP-44-5002: Additive Pump<br />

0 PMP-44-5004A&B: Additive Charge Pumps A&B<br />

Tanks<br />

TNK-44-5000: Ferrous Sulfate Tank<br />

TNK-44-5002: Additive Mix Tank<br />

TNK-44-5004A&B: Additive Charge Tanks A&B<br />

Agitators<br />

MXA-44-5000: Ferrous Sulfate Tank Agitator<br />

MXA44-5002:. Additive Mix Tank Agitator<br />

Containment Dikes<br />

ENC-44-5000: Portable Containment Dike<br />

ENC-44-5000A: Sodium Lignosulfonate Portable Containment Dike<br />

8.2 ADDITIVE SYSTEM INSTRUMENTATION<br />

Table 8-1 summarizes, by function, all <strong>of</strong> the instrumentation in the Additive System.<br />

8.3 ADDITIVE SYSTEM CONTROL PHILOSOPHY<br />

Silo 3 material is conditioned with an aqueous mixture <strong>of</strong> two additives: ferrous sulfate, to<br />

reduce certain metals (e.g., chromium) to less-toxic valence states (FEMP 2003f); and<br />

sodium lignosulfonate, to reduce the dispersability <strong>of</strong> the material (Jenike and Johanson,<br />

2002).<br />

8-1<br />

000226


0<br />

8.3.1<br />

Receipt, Storage, and Transfer '<strong>of</strong> Raw Materials<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

~ ~~ ~~~ ~~~~~<br />

Sodium lignosulfonate is received as a 47% solution in portable tote containers, One<br />

container is placed in the concrete containment area, while a spare is placed in the Sodium<br />

Lignosulfonate Portable Containment Dike. On an as-needed basis, the Sodium<br />

Lignosulfonate Pump transfers full-strength solution to the Additive Mix Tank. Both flow<br />

rate and flow total are monitored by Flow Control Loop FQIT-PMP-44-5000A. The pump is<br />

shut <strong>of</strong>f on High level in the mix tank, or when a predetermined quantity <strong>of</strong> solution has<br />

been transferred (whichever happens first).<br />

Ferrous sulfate is received as a 15% solution in tanker trucks. Tankers are unloaded by on-<br />

board pumps into the Ferrous Sulfate Tank; a control valve on the pump discharge line<br />

closes on High-High level in the tank. The tank is continuously agitated unless the level<br />

drops to Low-Low, at which the point the agitator is shut <strong>of</strong>f. On an as-needed basis, the<br />

Ferrous Sulfate Pump transfers full-strength solution to the Additive Mix Tank. Both flow<br />

rate and flow total are monitored by Flow Control Loop FQIT-PMP-44-5000B. The pump is<br />

shut <strong>of</strong>f on High level in the mix tank, or when a predetermined quantity <strong>of</strong> solution has<br />

been transferred (whichever happens first).<br />

Process water is supplied to the suctions <strong>of</strong> both pumps for flushing the pumps, discharge<br />

lines, and/or the tank or tote. Manual valves are used to start and stop the flow <strong>of</strong> process<br />

water.<br />

8.3.2<br />

Preparation and Transfer <strong>of</strong> Mixed Additive<br />

On an as-needed basis, batches <strong>of</strong> mixed additive are prepared as follows:<br />

1. Open AOV-50-5002A and charge a predetermined quantity <strong>of</strong> domestic water to the<br />

Additive Mix Tank. The valve will automatically close on High level in the mix tank, or<br />

when the predetermined quantity has been added (whichever happens first).<br />

2. Both the Additive Mix Tank Agitator and the Additive Pump will start up once the mix<br />

tank's Low-Low level setpoint has been exceeded. Manual valves are aligned to allow<br />

recirculation back to the tank when additive is not being transferred to the Additive<br />

Charge Tanks.<br />

3. After a predetermined time period, start the Sodium Lignosulfonate Pump and transfer<br />

the appropriate quantity <strong>of</strong> solution to the mix tank. The pump will shut <strong>of</strong>f on High<br />

level in the mix tank, or when a predetermined quantity <strong>of</strong> solution has been<br />

transferred (whichever happens first).<br />

4. After a predetermined time period, start the Ferrous Sulfate Pump and transfer the<br />

appropriate quantity <strong>of</strong> solution to the mix tank. The pump will shut <strong>of</strong>f on High level in<br />

the mix tank, or when a predetermined quantity <strong>of</strong> solution has been transferred<br />

(whichever happens first).<br />

The Additive Pump transfers its contents to Additive charge Tanks A and B through AOV-<br />

44-5210 and -5197, respectively. These valves open only when the applicable charge<br />

tank is below the High-level setpoint, and additive is not being charged to the applicable<br />

Discharge Chute Assembly. If a higher transfer rate is desired, HOV-44-5244 in the<br />

Additive Mix Tank's recirculation line can be throttled back.<br />

OWM.28


-~ -5-0-6-9 ___ -<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

Through manual valve alignment, the Additive Mix Tank can also be set up to receive<br />

liquids from the Wastewater Tank Area Sump (i.e., discharge <strong>of</strong> Wastewater Tank Area<br />

Sump Pump). Ordinarily, such liquids are transferred to the Wastewater Tank (see Section<br />

9.0); however, if a spill or leak originates in the Additive Mix Tank and/or its downstream<br />

lines, and the sump is relatively free <strong>of</strong> other contaminants, Operations may choose the<br />

mix-tank route. Both routes are set up by manual-valve alignment.<br />

8.3.3 Charging <strong>of</strong> Mixed Additive<br />

Each <strong>of</strong> the Additive Charge Tanks feeds solution to one <strong>of</strong> the two Discharge Chute<br />

Assemblies (FEMP, 2003~): As stated in Section 5.0, additive solution is sprayed into the<br />

bags during the entire fill cycle, The feed rate to Discharge Chute Assemblies A&B is<br />

maintained at approximately 6 gpm by throttling HOV-44-5269 and -5208, respectively.<br />

The total flows are monitored by Flow Control Loops FQIT-PMP-44-5004A&B,<br />

respectively.<br />

Process water is supplied to the suctions <strong>of</strong> both pumps for flushing the pumps, discharge<br />

lines, and/or the tank or tote. Manual valves are used to start and stop the flow <strong>of</strong> process<br />

water.<br />

8.4 ADDITIVE SYSTEM INTERLOCKS<br />

A detailed listing <strong>of</strong> interlocks for the Additive System is provided in the P&IDs and<br />

Table 8-2.<br />

8.5 ADDITIVE SYSTEM SETPOINTS<br />

A detailed listing <strong>of</strong> setpoints for the Additive System is provided in Table 8-3.<br />

8.6 ADDITIVE SYSTEM DATA ARCHIVING<br />

The following Additive System parameters are archived:<br />

0<br />

run time for all motorized equipment,<br />

0 alarm events, and .<br />

0 interlock events.<br />

-~


50 69<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2505<br />

a<br />

..<br />

I<br />

I<br />

Table 8-2 Additive System Interlocks I<br />

a<br />

1 Additive Mix Tank.<br />

I I<br />

l Shut down Additive Mix Tank Agitator<br />

Low-Low level in Additive Mix Tank.<br />

MXA-44-5002 klC-TN K-44-5002<br />

Close AOV-44-5197 on High level in AOV-44-5 197 LIC-TNK-44-.5004B<br />

Additive Charge Tank B.<br />

Open AOV-44-5210 when Additive Charge AOV-44-5210<br />

Tank A is not in charge cycle. I<br />

Open AOV-44-5197 when Additive Charge 1 AOV-44-5197<br />

Tank B is not in charge cycle.<br />

3 Sequence<br />

I Sequence<br />

Lignosulfonate Pumps, and close AOV-50:<br />

5002A, on High level in Additive Mix Tank. '<br />

I<br />

Shut down Ferrous Sulfate and Sodium I BMP-44-500OA LIC-TNK-44-5002<br />

PMP-44-5000B<br />

AOV-50-5002A<br />

*<br />

Close AOV-50-5002A when predetermined<br />

quantity has been added to Additive Mix<br />

AOV-50-5002A FQI-AOV-50-5002A<br />

Tank.<br />

Shut down Sodium Lignosulfonate Pump<br />

when predetermined quantity has been I<br />

added to Additive Mix Tank.<br />

Shut down Ferrous Sulfate Pump when<br />

predetermined quantity has been added to<br />

Additive Mix Tank.<br />

PMP-44-5000A FQIT-PMP-44-5000A<br />

I I<br />

FQIT-PMP-44-50006 I<br />

II<br />

e<br />

o<br />

The Feed Conveyor shuts down, or<br />

The Package Loading Stand fails to show a<br />

weight gain <strong>of</strong> at least 100 Ib./min. for 30<br />

8-5<br />

0 YS-FDR-10-51028<br />

0 WQI-PKU-25- '<br />

5 2 70AlB<br />

I<br />

I<br />

I<br />

I


69<br />

o<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H99605<br />

Table 8-2 Additive System Interlocks 1<br />

when E-stop on AOV-25-5260A is<br />

open SOV-50-5004A.<br />

When Charge System B is in charge<br />

cycle, close SOV-50-5004B.<br />

System A or B, and if flow is detected in<br />

8-6<br />

PM P-44-5004A I Z I-AOV-2 5-5 2 60A<br />

FI-PWIP-44-5004B<br />

I


0<br />

TNK-44-5002<br />

BN K-44-5004A<br />

TNK-44-5004B<br />

BMP-44-5000A<br />

BMP-44-5000B<br />

PM P445O04A<br />

PMP-44-5004B<br />

AOV- 5 0-5 002A<br />

Tabie 8-3 Additive System Setpoints<br />

LlC-TMK-44-5002<br />

LlC-TNK-44-5004A<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 351-119605<br />

- - 5069 sap:s;r.ta: E, 2 0s<br />

5%<br />

10%<br />

90%<br />

100%<br />

6 in.<br />

20 in.<br />

I 80in.<br />

85 in.<br />

I 1 0%<br />

80%<br />

LOW-LOW<br />

Low<br />

High<br />

Hig h-High<br />

Operator Action<br />

Operator Action<br />

Level:<br />

Low-Low b44) (45)<br />

Low Operator Action<br />

High (43) (50)<br />

High-High Operation Action<br />

Bevel:<br />

Low (57)<br />

High (46)<br />

90% High-High Operator Action<br />

LIC-TNK-44-5004B<br />

10%<br />

I 80%<br />

90%<br />

Level:<br />

Low<br />

High<br />

High-High<br />

(57)<br />

(47)<br />

Operator Action<br />

FQI -PM P-44-5000A 4.3 gal Bow Quantity Operation Action<br />

5.4 gal Normal Quantity<br />

(52)<br />

6.5 gal High Quantity Operation Action<br />

FQI-PMP-44-5000B 304 gal Low Quantity Operation Action<br />

380 gal Normal Quantity<br />

(53)<br />

460 gal High Quantity Operation Action<br />

FI-PMP-44-5004A 4.5 gprn Low Flow<br />

Operation Action<br />

6.7 gpm High Flow<br />

Operation Action<br />

FI-PMP-44-5004B 4.5 gpm Low Flow<br />

Operation Action<br />

6.7 gprn High Flow Operation Action<br />

FQI-AOV-50-5002A 813 gal Low Quantity Operation Action<br />

9,016 gal Normal Quantity (51 1<br />

1,219 gal High Quantity Operation Action<br />

All setpoints will be reviewed and modified as necessary during startup.<br />

8-7


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5,2003<br />

+- 5069<br />

0 9.0 PROCESS AND WASTEWATER SYSTEMS (SYSTEMS 50 AND 62) ',<br />

0<br />

The following PFD and P&ID illustrate the Process and Wastewater Systems:<br />

94X-3900-F-01430 F0004 Additive and Wastewater Systems<br />

94X-3900-N-01438 NO1 05 Additive Mixing and Wastewater Systems<br />

94X-3900-N-01447 NO1 14 Domestic and Process Water Systems<br />

9.1 WASTEWATER SYSTEM EQUIPMENT<br />

Major equipment in the Wastewater System is as follows:<br />

PMP-62-5404: Excavator Service Room Sump Pump<br />

0 TNK-62-5600: Wastewater Tank<br />

0 MXA-62-5602: Wastewater Tank Agitator<br />

PMP-62-5604: Wastewater Tank Area Sump Pump<br />

PMP-62-5606: Wastewater Pump<br />

0 PMP-62-5642: Excavator Room Sump Pump<br />

9.2 WASTEWATER SYSTEM INSTRUMENTATION<br />

Table 9-1 summarizes, by function, all <strong>of</strong> the instrumentation in the Wastewater System.<br />

9.3 WASTEWATER SYSTEM CONTROL PHILOSOPHY<br />

Wastewater is generated from various washdown activities. Sump pumps in the Excavator<br />

Room, the Excavator Service Room, and the Wastewater Tank Area start automatically<br />

when their level switches are actuated by high water levels in the sumps. Manual valves in<br />

the piping are aligned to direct the water from the sump pumps to the Wastewater Tank.<br />

When the tank reaches high level and is being either analyzed or emptied, flow from the<br />

sump pumps is shut <strong>of</strong>f by closing manual valves.<br />

TheeWastewater Tank Agitator is activated by the operators on an as-needed basis, via a<br />

manual switch located near the tank. The agitator is automatically deactivated on low tank<br />

level.<br />

, Whenever a high level is reached in the Wastewater Tank and an appropriate mixing time<br />

has elapsed, the contents <strong>of</strong> the tank are analyzed. This is to ensure that the contents are<br />

suitable for on-site processing at the Advanced Wastewater Treatment ( A M ) facility. If<br />

contents are cleared for treatment at the AWWT, the entire contents <strong>of</strong> the tank are<br />

transferred by tanker to the A M .<br />

Process-water makeup (System 50) to the tank is manually initiated by the operator. Input<br />

process-water valve AOV-62-5600 automatically ctoses on high tank level.<br />

9.4 WASTEWATER SYSTEM INTERLOCKS<br />

A detailed listing <strong>of</strong> interlocks for the Wastewater System is provided in the P&IDs and<br />

Table 9-2.<br />

e .<br />

9-1<br />

I


.-<br />

c<br />

0<br />

CI<br />

Q<br />

c,<br />

5<br />

E<br />

-<br />

E =I<br />

c,<br />

tn<br />

e<br />

E<br />

a<br />

c,<br />

tn<br />

r<br />

v)<br />

r-- 5069<br />

. .<br />

..<br />

-. . c<br />

000134


o<br />

. ._ \I.<br />

Table 9-2 Wastewater System interlocks<br />

0 Low level in sump<br />

Sump pump to start up on High Level in<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

50 69 Ssperbe: E, 2OE<br />

High-High level in Wastewater Tank, or Q klC-TNK-62-5600<br />

shut down on:<br />

0 BSL-PMPi62-5642<br />

LSH-PMP'62-5642<br />

9 High-High level in Wastewater Tank, or c UC-TNK-62-5600<br />

o Low level in sump 0 LSL-PMP-62-5404<br />

Sump pump to start up on High Level in 4 LSH-PMP-62-5404<br />

8 High-High level in Wastewater Tank, or Q LIC-TNK-62-5600<br />

0 Low level in sump 0 LSL-BMP-6245604<br />

Sump pump to start up on High Level in 0 LSH-PMP-62-5604<br />

12 Wastewater Pump to shut down on Low- PMP-62-5606 LIC-TNK-62-5600<br />

Low level in Wastewater Tank<br />

9.5 WASTEWATER SYSTEM SETPOINTS<br />

A detailed listing <strong>of</strong> setpoints for the Wastewater System is provided in Table 9-3.<br />

Table 9-3 Wastewater System Setpoints<br />

;, . .:-.- '<br />

5%<br />

70%<br />

Low -Low<br />

Low<br />

(10, 12)<br />

Operator Action<br />

90% High (61<br />

100% High-High (4, 5, 9)<br />

Excavator Room Sump LSL/H-PMP-62-5642 4 in. Low level (1 1<br />

.30 in. High level (1 1<br />

Excavator Service Area LSLIH-PMP-62-5404 4 in. Low level (5)<br />

Sump 30 in. High level (5)<br />

Wastewater Tank Area LSL/H-PMP-62-5604 4 in. Low level (1 1)<br />

Sump 24 in. High Devei (1 1)<br />

21 All setpoints will be.reviewed and modified as necessary during startup.<br />

9-3<br />

000135<br />

I<br />

I


9.6 WASTEWATER SYSTEM DATA ARCHIVING<br />

The following Wastewater System parameters are archived:<br />

0<br />

0 alarm events,<br />

0 interlock events, and<br />

0<br />

run time for all motorized equipment,<br />

wastewater flow to AWWT (Le., flow totals per transfer).<br />

9-4<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

September - ____ 5, 2003<br />

-5-&6-9------<br />

. . ' . .. . .. .:<br />

* .<br />

. .<br />

....<br />

. .<br />

. . ..<br />

- :. .<br />

. .<br />

. .<br />

-


e<br />

10.0 HEATING, VENTILATION, AND AIR CONDITIONING<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

5069<br />

This section addresses both the Supply Air System (System 70) and the Exhaust Air<br />

System (System 71 I. It also discusses HVAC systems included in the Miscellaneous HVAC<br />

System (System 771, the trailer, and the CEM Building.<br />

For a description <strong>of</strong> how the HVAC systems interact with the PVS, PRS, and MRS, see<br />

Section 2.0.<br />

10.1 HVAC SYSTEM EQUIPMENT<br />

Major equipment in the HVAC 'systems is as follows:<br />

10.1.1 Supply Air System (System 70)<br />

0<br />

0<br />

0<br />

ACU-70-5700, -571 0, and -5720: Packaged Air Conditioning Units<br />

HTR-70-5730 A-D: Electric Heaters A-D, Packaging Area 004<br />

HTR-70-5732: Electric Heater Entry Corridor 001<br />

HTR-70-5734A&B: Electric Heaters A&B - Airlock 007<br />

HTR-70-5735: Electric Heater Airlock/D<strong>of</strong>f 003<br />

HTR-70-5736: Electric Heater Corridor 002<br />

10.1.2 Exhaust Air System (System 7 1 )<br />

0<br />

FAN-7 1 -5760A&B: Building Filtration Exhaust Fans A&B<br />

FLT-71-5770A&B: Building ULPA/HEPA Exhaust Modules A&B<br />

10.1.3 Miscellaneous HVAC System (System 77)<br />

AHU-77-5737: Air Handling Unit, Cargo Container Bay<br />

HTR-77-5740 A-C: Electric Heaters A-C, Cargo Container Bay<br />

ACU-77-5750: Continuous Emissions Monitoring Building A/C Unit<br />

0 FAN-77-5780: Silo Enclosure Exhaust Fan<br />

FAN-77-5790 A-C: Cargo Container Bay Exhaust Fans A-C<br />

FAN-77-5792: Storage and Wastewater Tank Area Exhaust Fan<br />

FAN-77-5795: Electrical Building Exhaust Fan<br />

. .<br />

. . - . - I<br />

.e.-. ,<br />

0 HTR-77-5796A&B: Electrical Building Electrical Unit Heaters A&B (including FAN-77-<br />

5796A&B)<br />

0 HTR-77-5797 A-C: Storage and Wastewater Tank Area Electric Unit Heaters A-C<br />

10.2 HVAC SYSTEM INSTRUMENTATION<br />

0<br />

Tables lO-lA, 10-18, and 10-1C summarize, by function, all <strong>of</strong> the instrumentation in the<br />

Supply Air System, the Exhaust Air System, and the Miscellaneous HVAC Systems,<br />

respectively.<br />

10-1<br />

. .<br />

I


000138<br />

5<br />

- 0<br />

- 9


0<br />

. * .<br />

I -<br />

-<br />

L<br />

-<br />

al<br />

e c.<br />

C<br />

0<br />

m<br />

c<br />

al<br />

f<br />

P<br />

000139<br />

3<br />

0<br />

F


-- 5069<br />

000140<br />

e


10.3 HVAC SYSTEM CONTROL PHILOSOPHY<br />

Process Control Plan for the Silo 3 Project<br />

I<br />

Document No. 40430-PL-OOO3, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

50 69 I<br />

The Supply and Exhaust Air Systems utilize controls typical <strong>of</strong> industrial installations. Each<br />

<strong>of</strong> the three air-handling units (consisting <strong>of</strong> intake filters, fans, electric heaters, and<br />

refrigeration-based air conditioning components) has local controls provided by the<br />

manufacturer. The exhaust filtration system consists <strong>of</strong> two filter units and two exhaust<br />

fans, with a crossover to allow either filter to be used with either fan. The major HVAC<br />

system components are interfaced with the main PLC control system, allowing monitoring<br />

and control <strong>of</strong> HVAC functions via the main HMI in the Operations SupportKhange Room<br />

Trailer. The HMI display configuration includes a suitable display area for HVAC control<br />

requirements.<br />

The system is operated from the HMI by aligning the dampers and then selecting and<br />

starting one <strong>of</strong> the two exhaust fans and two <strong>of</strong> the three air-handling units. One <strong>of</strong> the<br />

three air-handling units serves as a backup. The pressure differential between the<br />

Packaging Area and outside ambient is maintained using a variable-flow vacuum- relief<br />

damper. A PLC-based proportional-integral-derivative (PID) control loop modulates this<br />

damper. The PID loop uses input from a differential pressure transmitter, which senses<br />

both the Packaging-Area pressure and ambient pressure. The PID loop is enabled and<br />

provided with operating and alarm setpoints from the HMI. Additional inputs are provided<br />

from door position sensors to tailor the response <strong>of</strong> the PID algorithm during <strong>of</strong>f-normal<br />

operating conditions.<br />

The interior temperature is controlled by a PLC-based PID control loop utilizing input from a<br />

temperature sensor in the Packaging Area and setpoints from the HMI.<br />

The following upset conditions are alarmed at the HMI:<br />

0<br />

0<br />

Failure <strong>of</strong> an air-conditioning unit<br />

Failure <strong>of</strong> a fan<br />

Failure to maintain either temperature or differential pressure<br />

0 Detection <strong>of</strong> a fire<br />

The HVAC system control logic is interlocked with the fire detection and air quality<br />

monitoring systems to force the system to the most suitable operating mode during upset<br />

conditions. Operators are able to control or reset the HVAC system from the operations<br />

support trailer without entering the Process Building.<br />

10.4' HVAC SYSTEM INTERLOCKS<br />

------- ---- ----<br />

Detailed listings <strong>of</strong> interlocks for the Supply Air System, the Exhaust Air System, and the<br />

Miscellaneous HVAC Systems are provided in Tables lo-=,<br />

respectively.<br />

10-2B, and 10-2C,<br />

10.5 HVAC SYSTEM SETPOINTS<br />

Detailed listings <strong>of</strong> setpoints for the Supply Air System and the Exhaust Air System are<br />

provided in Tables 10-3A and 10-3B, respectively. There are no setpoints in the<br />

Miscellaneous HVAC Systems.<br />

10-5<br />

808141<br />

I<br />

I


I woo20-a<br />

H0020-2<br />

H0020-3<br />

H0022-'8<br />

fable 10-2A Supply Air System Interlocks<br />

Permissives to manually start up<br />

ACU-70-5700, -57 IO, or -5720<br />

D Shut down operating ACU and start<br />

up standby ACU oh3 how discharge air<br />

flow.<br />

9<br />

Bf operating ACU shuts down, start<br />

up standby ACU.<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

Se;3remkr E, 2532 -<br />

50 69<br />

ACU-70-5700<br />

ACU-70-5710<br />

ACU-70-5720<br />

ACU-70-5700<br />

ACU-70-57 10<br />

ACU-70-57'20<br />

ACU-70-5700<br />

ACU-70-5710<br />

ACU-70-5720<br />

Shut down operating ACU and start up 1 ACU-70-5700<br />

standby ACU on signal from smoke ACU-70-5710<br />

jetector. ACU-70-5720<br />

Shut down operating ACU on signal from ACU-70-5700<br />

lire-alarm system. ACU-70-57 'PO<br />

ACU-70-5720<br />

Modulate DPR-70-6020 on increase in DPR-70-6020<br />

xessure in Airlock 007.<br />

Iressure in Entry Corddor 001<br />

:lose FDP-70-6023 on signal from fire-<br />

jlarm system.<br />

I FDp-70-6023<br />

DPR-70-6016 open-<br />

DPR-70-609 8 open<br />

DPR-70-6020 open<br />

BPR-70-6022 open<br />

FDP-70-6023 open<br />

FB-BRAS-70-5700<br />

XA-ACU-70-5700<br />

XA-ACU-7015710<br />

XA-AC U-70- 5 7 20<br />

XE-ACU-70-5700<br />

XE-ACU-70-5710<br />

XE-AW-70-5720<br />

FAP-92-5860<br />

PDlC-DPR-70-6020<br />

PDIC-DPR-70-6022<br />

FAP-92-5868<br />

25 Unlike the P&DDs, The HVAC Control Diagrams do not assign a unique number to each interlock. I a<br />

Accordingly, this table uses both the interlock number and the sheet number for uniqueness.<br />

a 0-6


0<br />

'.c ' ...I .<br />

fire-alarm system.<br />

I<br />

0<br />

0<br />

0<br />

On signal from fire-alarm system;<br />

On signal from Radiation Monitoring<br />

Of pressure in Excavator Service<br />

Room 008 exceeds that <strong>of</strong><br />

Packaaina Area 004<br />

FDP-7 1-6029<br />

:lose: DMP-71-<br />

SO38 and -6039<br />

FAN-7 1 -5760B<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003. Rev. 1<br />

Jacobs Project Number 35H19605<br />

0 FAP-92-5860<br />

0 Continuous Air<br />

Monitors (various)<br />

0 PDI-DMP-71-6033A;<br />

-6037; Closed: DMP-7 7 -<br />

6038 and -6039<br />

Closed: DMP-$1-6836<br />

and -6037; Open: BMP-<br />

71 -6038 and -6039 .-<br />

: DMP-7 1-602-4<br />

and -6035; Open: FDP-<br />

70-6023, -71 -6027, -7 1 -<br />

6029, -71-6031, and<br />

BDI-FLT-74 -57'908<br />

26 Unlike the P&IDs, The HVAC Control Diagrams do not assign a unique number to each interlock.<br />

Accordingly, this table uses both the interlock number and the sheet number for uniqueness.<br />

ii 000143<br />

. ,<br />

9 0-7<br />

I


H0026-2<br />

ACU-70-5702<br />

DPW-70-6016<br />

DBR-70-6020<br />

DPR-70-6022<br />

Table 10-2C Miscellaneous HVAC Svsterns Interlocks<br />

is opened; start up exhaust fan when<br />

Door 0058 is closed.<br />

temperature rises above 6OoF.<br />

Table 10-3A Supply Air System Setpoints<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H 19605<br />

September 5, 2003<br />

FAP-92-5860<br />

I ACU-70-5701 I TI-ACU-70-5701 I 8 5 O F I High Temperature I Operator Action I I<br />

TI-ACU-70-5702 6OoF High Temperature (H0027-3)<br />

PDIC-DPR-70-6016<br />

-0.4 in. wg<br />

-o.25 in. wg<br />

Low Diff Pressure<br />

High Diff, Pressure<br />

Operator Action<br />

Operator Action<br />

PDIC-DPR-70-6020<br />

-0.3 in. wg<br />

-o.2 in. wg<br />

Low Diff Pressure<br />

High Diff. Pressure<br />

(H0022-1)<br />

(H0022-1)<br />

PDIC-DPR-70-6022<br />

-0.3 in. wg<br />

-o.2 in. wa<br />

Low Diff Pressure<br />

Hioh Diif. Pressure<br />

(H0022-2)<br />

27 Unlike the P&IDs, The HVAC Control Diagrams do not assign a unique number to each interlock.<br />

Accordingly, this table uses both the interlock number and the sheet number for uniqueness.<br />

28 All setpoints will be reviewed and modified as necessary during startup.<br />

10-8<br />

000144<br />

I<br />

a


a 29<br />

. *. ..<br />

. .<br />

. . . ’<br />

Table 18-36 Exhaust Air Svstem Setooints<br />

. Jacobs Project<br />

DMP-77-6035 BDIC-DMP-71-6035 -3 in. wg Low Diff. Pressure Operator Action<br />

The following HVAC parameters are archived:<br />

Q run time for all motorized equipment,<br />

e alarm events, and<br />

Q interlock events.<br />

All setpoints will be reviewed and modified as necessary during startup.<br />

I<br />

I


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

-~ -50-6-9-- -- -~<br />

1 1 .O CONTROL SYSTEM (SYSTEM'SO)<br />

11.1 CONTROL SYSTEM EQUIPMENT<br />

0 PLC-90-5870: Main Control PLC<br />

PNL-90-5871: Main PLC Control Enclosure<br />

PNL-90-5872: Auxiliary PLC Control Enclosure<br />

0' CPU-90-5874: Primary Control Operator Station<br />

CPU-90-5875: Engineering/Programming and Backup Operator Station<br />

PRN-90-5880: Report Printer<br />

PNL-90-5890: Packaging Area Operator Display<br />

Local PLC Racks (one In Electrical Building plus additional PLC Racks as needed)<br />

11.2 CONTROL SYSTEM FUNCTIONS<br />

Two redundant personal computer (PC)-based -human-machine interface (HMI) stations are<br />

installed in the Control Room. These HMI stations serve as central points for monitoring<br />

and control <strong>of</strong> the process and supporting utilities. The first PC is provided with HMI<br />

operating system s<strong>of</strong>tware only, whereas the second PC is provided with both HMI<br />

operating system and engineering support/programming s<strong>of</strong>tware. This configuration <strong>of</strong>fers<br />

redundancy and adequately addresses any programming, startup, and troubleshooting<br />

requirements.<br />

Monitoring and -alarming capabilities are configured for all systems. The necessary control<br />

functions to support unattended systems3' are incorporated in the HMI stations.<br />

A series <strong>of</strong> display screens is configured to show a graphic <strong>of</strong> each major system. This<br />

includes, as a minimum, the PRS, the MRS, the PVS, the HVAC Systems, and the<br />

Wastewater System. Extensive monitoring capability is incorporated, and process control<br />

is provided where applicable. Alarm status and history information are also provided. The<br />

HMI s<strong>of</strong>tware has typical batch reporting functions, which are used to archive a<br />

s<strong>of</strong>tware/electronic copy <strong>of</strong> each container's UNlD and time/date information.<br />

The Control Room is equipped with sufficient CCTV monitors linked with the cameras<br />

associated with the PRS, the <strong>silo</strong> interior, the MRS, and the Packaging Area. These enable<br />

Operations personnel to monitor and assist in coordinating facility activities.<br />

A programmable logic controller (PLC)-based control system is provided to monitor and<br />

control the facility material handling and packaging equipment, and utility systems. The<br />

main process PLC processor is installed in electrical panel PNL-90-587 1, which is located<br />

in the Electrical Building. This PLC performs all ov.erall process control logic, sequencing,<br />

alarm monitoring, and interlocking required to promctte an integrated, plant-wide control<br />

approach. Each <strong>of</strong> the two packaging lines has a dedicated control PLC. All control logic,<br />

so 'Unattended" systems are: Process Vent System, Plant and instrument Air System, Breathing Air I<br />

.<br />

System, and all HVAC systems.<br />

11-1


0<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Proiect Number 35H19605<br />

September 5,2003<br />

-<br />

5- 5069 I<br />

sequencing, alarm monitoring, and interlocking is performed in the PLCs. Use <strong>of</strong> relay<br />

logic, individual timers, and interlocks external to the PLCs is avoided. An exception to<br />

this is the emergency stop circuits, which are hard-wired and also have PLC inputs to reset<br />

process PLC control functions as required.<br />

Operator push buttons, hand switches, conveyor controls, motion detectors, solenoid<br />

valves, etc., are configured as inputs and outputs WO) to the PLC control system. Discreet<br />

input circuits are 120 VAC; discrete output circuits are either contact-closure or 24 VDC;<br />

and analog l/O circuits are 4-20 mA. Detailed I/O information is provided .in Attachment<br />

A.<br />

Packaging area control stations are suitably configured for manipulation by operators who<br />

are in a standing position alongside the associated equipment. A primary Allen-Bradley<br />

touch screen control station is provided at each <strong>of</strong> the two Package Loading Stands. Other<br />

small local control stations are provided as required for peripheral devices such as loading<br />

area conveyors and building airlock doors. An additional Allen-Bradley touch screen is<br />

installed at a convenient location for Packaging Area operators to monitor and control<br />

related overall facility functions, (such as the PRS or MRS operations) and facility utility<br />

functions.<br />

A local area network is installed to link all the PLC processors, the HMI PCs, and the<br />

Packaging Area touch screen displays. The communication format is Ethernet 1 OBase-T in<br />

accord with the communication facilities built into the .Allen-Bradley SLC5/05 processors<br />

and other field display stations. A configurable Ethernet switcher is provided with a<br />

0 sufficient number <strong>of</strong> ports for future expansion. .-<br />

All <strong>of</strong> the Control Room PCs, the main process PLC and packaging line PLCs, and the<br />

touch screen displays are powered from the Uninterruptible Power Source (UPS). This<br />

eliminates control system disruptions and processors reboot delays. Actual process<br />

equipment, including all conveyors, fans, etc., do not have backup power. The PLCs are<br />

programmed to turn all output circuits <strong>of</strong>f and to reset all process functions on utility<br />

power loss.<br />

11-2<br />

I<br />

I


12.0 . CCTV SYSTEM (SYSTEM 95)<br />

12.1 CCTV SYSTEM EQUIPMENT<br />

CCT-95-525lA-G: Color Cameras A-G<br />

0 CCT-95-5252A-E: 20” Color Monitors A-E<br />

CCT-95-5253A-D: Dome Controllers A-D<br />

CCT-95-5254: UTP Transceiver Hub<br />

CCT-95-5255: Digital Video Recorder Multiplexer<br />

CCT-95-5256A&B: Data Mergers A&B<br />

CCT-95-5257A&B: 2.4 GHz Transmitters/Receivers A&B<br />

0 CCT-95-5258: Switcher<br />

12.2 CCTV SYSTEM OPERATION<br />

Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

r- 5.0 6-9 _____ -~<br />

- I .<br />

A 20-in. color monitor is located on top <strong>of</strong> Silo 3. This monitor is used by the VWMS<br />

operators. A dome controller is also located on top <strong>of</strong> Silo 3. This controller is used by<br />

the W E operators to control panltilt and zoom <strong>of</strong> the Silo 3 North wall and inside <strong>silo</strong> I<br />

dome cameras.<br />

A 20-in. color monitor is located in the Excavator Room. This monitor is used by the<br />

Excavator operator. A dome controller is located in the Excavator Room, and is used to<br />

control pan/tilt and zoom <strong>of</strong> the Excavator camera and Retrieval Feed Bin camera.<br />

The Operations Support Trailer has two 20411. color monitors that can view any <strong>of</strong> the<br />

above-mentioned five cameras. Also, a dome controller in the Operations Support Trailer<br />

can control any <strong>of</strong> the five cameras.<br />

12-1


Process Control Plan for the Silo 3 Project<br />

Document No. 40430-PL-0003, Rev. 1<br />

Jacobs Project Number 35H19605<br />

September 5, 2003<br />

WJACOBS . . t- 5069<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

FEMP, 2003a. Process Description for the Silo 3 Project, Document No. 40430-RP-<br />

0003, Revision 1, July 2003a.<br />

FEMP, 2002a. Access and Retrieval Strategy for the Silo 3 Project, Document No.<br />

40430-PL-0002, Revision 0, July 1 1, 2002a.<br />

FEMP, 2002b. Design Basis and Requirements Document, Document No. 40430-DC-<br />

0001, Revision 0, February 2002b.<br />

Jacobs Engineering, 2002. "Fernald Silos 1 and 2 Project Equipment, Pipe, Valve,<br />

and Instrument Numbering," Procedure No. FF-103-01, Revision 2, May 10, 2002.<br />

FEMP, 2003b, Silo 3 Project Equipment fist, Document No. 40430-LST-0001,<br />

Revision 3, June 2003b.<br />

FEMP, 2003c, Piping fine List for the Silo 3 Project, Document No. 40430-LST-003,<br />

Revision 3, June 2003c.<br />

FEMP, 2003d, Piping Valve List for the Silo 3 Project, Document No. 40430-LST-<br />

006, Revision 3, June 2003d.<br />

FEMP, 2003e, lnstrument List for the Silo 3 Project, Document No. 40430-LST-<br />

0002, Revision 2, April 2003e.<br />

FEMP, 2003f. Silo 3 Conditlbning Repor?, Document No. 40430-RP-0025, February<br />

2003f.<br />

Jenike & Johanson Inc., 2002. Pretreatment <strong>of</strong> Silo 3 Material with Lignosulfonate<br />

Solution, 4584-1, August 2002.<br />

13-1


Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

Fernald<br />

Silo 3 Project<br />

Environmental Control Plan<br />

Document No. 40430-PL-0005<br />

September 23, 2003<br />

Revision C<br />

Fernald Project Number 40430<br />

ii<br />

5U69


@<br />

5069<br />

r : Silo 3 Environmental Control Plan<br />

40430.PL.0005. Rev . C<br />

Jacobs Project Number 35H19605<br />

September 23. 2003<br />

TABLE OF CONTENTS<br />

1.0 PURPOSE ................................................................................................... 1<br />

2.0 AIR EMISSIONS CONTROL PLAN ................................................................... 2<br />

2.1 AIR EMISSIONS CONTROLS ................................................................. 3<br />

2.1.1 Emission Control During Initial Silo Access ................................... 3<br />

2.1.2 Emission Control During Retrieval. Transfer. and Packaging ............ 4<br />

2.1.3 Ambient Monitoring .................................................................. 4<br />

2.2 ESTIMATED POINT SOURCE AIR EMISSION DATA .................................. 4<br />

3.0 EROSION AND STORMWATER CONTROL PLAN .............................................. 7<br />

3.1 FUNCTIONAL REQUIREMENT OF THE PLAN ........................................... 7<br />

3.2 RUN-ON/RUNOFF CONTROL STRUCTURAL PRACTICES ........................... 8<br />

3.2.1 Temporary Drainage Channels and Swales ................................... 9<br />

3.2.2 Check Dams ............................................................................ 9<br />

3.2.3 Riprap .................................................................................... 10<br />

3.2.4 Silt Fences ............................................................................. 10<br />

3.2.5 Temporary Diversions .............................................................. 11<br />

4.0 FUGITIVE DUST CONTROL PLAN .................................................................. 12<br />

4.1 SITE-SPECIFIC LIMITS ........................................................................ 12<br />

4.2 SUPPRESSION EQUIPMENT ................................................................. 12<br />

4.3 METHODS AND MATERIALS ............................................................... 13<br />

4.4 WORK PRACTICES ............................................................................. 13<br />

4.5 MONITORING .................................................................................... 14<br />

4.6 RECORD KEEPING .............................................................................. 15<br />

4.7 OFF-HOURS FUGITIVE DUST ALERT NOTIFICATION ............................... 15<br />

4.7.1 Notification Procedure .............................................................. 15 .<br />

4.7.2 The Contractor Site Response ................................................... 16<br />

4.7.3 Schedule and Contacts ............................................................. 16<br />

5.0 WASTE MANAGEMENT PLAN ...................................................................... 17<br />

5.1 WASTE TYPES .................................................................................. 17<br />

5.2 WASTE MINIMIZATION ....................................................................... 18<br />

5.3 CONSTRUCTION DEBRIS MANAGEMENT .............................................. 18<br />

5.5 UNKNOWN DEBRIS MANAGEMENT ...................................................... 19<br />

5.6 WASTE CONTAINER MANAGEMENT .................................................... 20<br />

5.7 WASTEWATER CONTROL ................................................................... 21<br />

6.0 REFERENCES ............................................................................................. 22<br />

APPENDICES<br />

Appendix A<br />

Appendix B<br />

Appendix C<br />

Appendix D<br />

Appendix E<br />

Details <strong>of</strong> Erosion and Stormwater Control Features<br />

Daily Records <strong>of</strong> Fugitive Emission Control<br />

Off-Hours Dust Control Procedure<br />

Material Segregation and Containerization Criteria<br />

Estimated Amounts <strong>of</strong> Waste Streams<br />

iii<br />

801915.1


ALARA<br />

BAT<br />

CFR<br />

DOE<br />

DPC<br />

EDE<br />

FEMP<br />

FTL<br />

HEPA<br />

NESHAP<br />

OAC<br />

OEPA<br />

ODNR<br />

OSDF<br />

ou<br />

PPE<br />

PVS<br />

RI<br />

UCL<br />

WAC<br />

WAO<br />

ULPA<br />

REFERENCE DRAWINGS<br />

ACRONYMS<br />

~~ 40430-PL-0005,<br />

5 O 6 9 Silo 3 Environmental Control Plan<br />

Rev.-C----- ~<br />

Jacobs Project Number 35H19605<br />

September 23, 2003 0<br />

As Low As Reasonably Achievable<br />

Best Available Technology<br />

Code <strong>of</strong> Federal Regulations<br />

U.S. <strong>Department</strong> <strong>of</strong> <strong>Energy</strong><br />

Designated Primary Contact<br />

estimated dose equivalent<br />

Fernald Environmental Management Project<br />

Field Tracking Log<br />

high-efficiency particulate air<br />

National Emissions Standard for Hazardous Air Pollutants<br />

Ohio Administrative Code<br />

Ohio Environmental Protection Agency<br />

Ohio <strong>Department</strong> <strong>of</strong> Natural Resources<br />

On-Site Disposal Facility<br />

operable unit<br />

personal protective equipment<br />

Process Vent System<br />

remedial investigation<br />

Upper Confidence Limit<br />

Waste Acceptance Criteria<br />

Waste Acceptance Organization<br />

Ultra Low Penetration Air<br />

G3104 94X-3900-G-01297, Site Plan<br />

G3105 94X-3900-G-01298, Grading, Drainage and Erosion Control Plan<br />

F0002 94X-3900-X-01429, Process Flow Diagram, Material Retrieval and<br />

Feed Systems<br />

F0003 94X-3900-F-01431, Process Flow Diagram, Process Vent and<br />

Packaging Systems<br />

H0004 94X-3900-H-13 1 49, Air Flow Diagram, Exhaust Filtration Units<br />

iv


@<br />

1.0 PURPOSE<br />

=- 5069<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

This Environmental Control Plan provides details <strong>of</strong> the methods and materials to be used<br />

during implementation <strong>of</strong> the Silo 3 project to control erosion, air emissions, stormwater,<br />

fugitive dust, contaminated soil, and construction and operations waste and minimize the<br />

impact <strong>of</strong> these activities on the environment. This plan covers the construction <strong>of</strong> the<br />

Silo 3 Process Building, Silo 3 ancillary facilities and the <strong>silo</strong> enclosure at the U.S.<br />

<strong>Department</strong> <strong>of</strong> <strong>Energy</strong> (DOE-FEMP) site. These areas are shown on drawing 94X-3900-G-<br />

01 297, Site Plan. The Silo 3 Environmental Control Plan contains the following plans:<br />

0 Air Emissions Control: The Stack Release Considerations for the Silo 3 document (Doc.<br />

No. 40430-CA-0003) calculates the potential emissions <strong>of</strong> air contaminants during the<br />

operation <strong>of</strong> the Silo 3 Project.<br />

Erosion and Stormwater Control: The methods and materials that will be used to<br />

prevent erosion <strong>of</strong> soil, either by wind or surface water, in the process or project work<br />

area and to reduce sediment loading in the stormwater are described. Also described<br />

are the methods, materials, and existing site features that will be used to capture and<br />

control stormwater.<br />

Fugitive Dust Control: The methods and materials that will be used to suppress and<br />

minimize the creation and dispersion <strong>of</strong> dust are described.<br />

Waste Management: The methods that will be used to manage waste and debris<br />

generated during site preparation and construction and operations are described.<br />

. ..<br />

1<br />

000153


- __<br />

- 5069<br />

Silo 3-Environmental-C-ontrol-Plan- ~<br />

40430-PL-0005, Rev. C<br />

---mJACOBS Jacobs Project Number 35H19605 @<br />

September 23, 2003<br />

2.0 AIR EMISSIONS CONTROL PLAN<br />

The Stack Release Considerations for the Silo 3 Project document (Doc. No. 40430-CA-<br />

0003) calculates the potential emissions <strong>of</strong> air contaminants during the operation <strong>of</strong> the<br />

Silo 3 Project. Primary sources <strong>of</strong> air contaminants are expected to be Silo 3, the process<br />

equipment and the process building. The locations <strong>of</strong> the sources <strong>of</strong> potential air emissions<br />

are illustrated on the Civil Site Plan, (Drawing 94X-3900-6-01297) and the Process Flow<br />

Diagram (Drawing 94X-3900-F-01431).<br />

Because <strong>of</strong> the physical nature <strong>of</strong> Silo 3 Material and its high thorium-230 content, control<br />

<strong>of</strong> airborne particulate emissions is a key criterion in designing the emission control and<br />

monitoring systems. The air emission control systems for the Silo 3 Project have been<br />

designed to Best Available Technology (BAT) in accordance with Ohio Administrative Code<br />

(OAC), Section 3745-31 -05(a)(3), and to meet Applicable or Relevant and Appropriate<br />

Requirements, the As Low As Reasonably Achievable (ALARA) requirement, and other<br />

applicable requirements.<br />

For radionuclide particulate emission sources at the FEMP, the Ohio Environmental<br />

Protection Agency (OEPA) has specified that BAT is the use <strong>of</strong> high-efficiency particulate<br />

air (HEPA) filters. The use <strong>of</strong> HEPA filters is also required for compliance with 40 Code <strong>of</strong><br />

Federal Regulations (CFR) 61, Subpart H. HEPA filters, pre-filters, and housing assemblies<br />

will be obtained in accordance with Silo 3 Project Technical Specifications and Project<br />

Quality Procedure 7.1, "Control <strong>of</strong> Purchased Items and Services." The air from the stack<br />

will also be filtered using ULPA filters as an additional measure <strong>of</strong> particulate emission<br />

control.<br />

Emission <strong>of</strong> radionuclide particulate materials will meet the requirements <strong>of</strong> 40 CFR Part<br />

61, Subpart H, National Emission Standards for Hazardous Air Pollutants (NESHAP). 40<br />

CFR Part 61.92, states that emissions <strong>of</strong> radionuclides to the ambient air from DOE<br />

facilities shall not exceed those amounts that would cause any member <strong>of</strong> the public to<br />

receive in any year an effective dose equivalent (EDE) <strong>of</strong> 10 millirem (mrem)/year or<br />

greater. NESHAP Subpart H also specifies continuous monitoring for certain point sources<br />

(stacks or vents).<br />

Radon emissions will be monitored during the Silo 3 Project to verify that the site fence<br />

line's radon concentration will not exceed an annual average <strong>of</strong> 0.5 picocuries per liter<br />

(pCi/L) above background.<br />

The Silo 3 air emission control systems are depicted by drawings 94X-3900-F-01429,<br />

94X-3900-F-01431, and 94X-3900-H-01349. The major components <strong>of</strong> the emission<br />

control systems are detailed below in the following sections.<br />

2


2.1 AIR EMISSIONS CONTROLS<br />

5069<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

The primary components <strong>of</strong> the air emission control strategy for the Silo 3 Project are as<br />

follows:<br />

Ventilation <strong>of</strong> radon emissions during initial <strong>silo</strong> access,<br />

Mitigation <strong>of</strong> particulate and radon emissions during retrieval <strong>of</strong> Silo 3 material by<br />

vacuum and mechanical means,<br />

Mitigation <strong>of</strong> emissions during transfer <strong>of</strong> Silo 3 material to the Process Building,<br />

Minimizing dust generation in processing and transportation by adding a dispersant and<br />

a stabilizing agent,<br />

Collection and filtration <strong>of</strong> emissions from the packaging equipment and facility, and<br />

0 Monitored discharge <strong>of</strong> emissions after filtration.<br />

The Silo 3 air emission control systems consist <strong>of</strong> filter modules, ductwork, fans, and air<br />

0<br />

distribution and control devices. The process flow <strong>of</strong> the air emission control equipment is<br />

depicted on drawings 94X-3900-F-01429 and 94X-3900-F-01431. Refer to Sections 4<br />

and 6.1 <strong>of</strong> the Process Description (Doc. No. 40430-RP-0003) for additional detail.<br />

2.1 .l Emission Control During Initial Silo Access<br />

The headspace above the waste material in Silo 3 is known to contain elevated radon<br />

concentrations. The Operable Unit (OU) 4 Remedial Investigation (RI) reports the Silo 3<br />

headspace radon concentration at the 95 percent upper confidence limit (UCL) at 239,000<br />

pCi/L. The OU4 RI reports the Silo 3 headspace volume at between 17,100 ft3 and<br />

17,754 ft3.<br />

Before the <strong>silo</strong> is accessed initially air flow from the Silo 3 headspace to the Process<br />

Vessel Vent System (PVS) will be established to produce a slightly negative pressure in the<br />

<strong>silo</strong>, thereby assuring that any emissions are routed through PVS. This air stream is<br />

HEPA-filtered to control particulate emissions and is monitored for both particulate<br />

radionuclides and radon. Airflow will be controlled during the initial establishment <strong>of</strong><br />

airflow from the Silo 3 headspace to the PVS so that exhaust stack emissions and<br />

resultant fence line air quality impacts are within the steady-state emission estimates<br />

reported in the Stack Release document (Doc. No. 40430-CA-0003). Weather conditions<br />

will be evaluated before the start <strong>of</strong> the radon release to assure that atmospheric stability<br />

and inversion conditions are consistent with the ALARA principle.<br />

. . ._ * ; 7<br />

..... . . .<br />

'?<br />

3<br />

000655


2.1.2 Emission Control During Retrieval, Transfer, and Packaging<br />

~~ 40430-Pt-0005,Rev;<br />

Silo 3 Environmental Control Plan<br />

-e--<br />

0<br />

-<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

Particulate and radon emissions from retrieval, transfer, and packaging operations are<br />

collected by the PVS, pneumatic retrieval system, and HVAC systems, which are<br />

described in the Process Description (Doc. No. 40430-RP-0003). The expected emissions<br />

from these operations and the resulting <strong>of</strong>f-site impact are summarized in Section 2.2 <strong>of</strong><br />

this document.<br />

The total design airflow for the PVS is approximately 5,500 standard cubic ft per minute<br />

(scfm). Gases from the following sources are transferred to the PVS:<br />

Silo 3,<br />

0 Vacuum Wand Enclosures (ENC-10-5020 A-F),<br />

0 Retrieval Bin Register (EAR-1 1-50521,<br />

0 Excavator Room Register (EAR-1 1-50531,<br />

Inclined Conveyor (DFC-11-50561, and<br />

Packaging Stations A & B Exhaust Registers A & B (EAR-25-5290A&B).<br />

Each <strong>of</strong> these sources are described in Section 4.2 <strong>of</strong> the Process Description (Doc. No.<br />

40430-RP-0003).<br />

2.1.3 Ambient Monitoring<br />

As detailed in Section 3.1 <strong>of</strong> the Fluor Fernald's Silos Project Environmental Monitoring<br />

Plan, monitoring and reporting <strong>of</strong> emissions from the Silo 3 Project will be accomplished<br />

through a combination ambient radon and particulate monitoring and project-specific stack<br />

monitoring.<br />

2.2 ESTIMATED POINT SOURCE AIR EMISSION DATA<br />

The Stack Release Considerations for the Silo 3 Project calculation (Doc. No. 40430-CA-<br />

0003) provides estimates <strong>of</strong> the anticipated air emissions from operation <strong>of</strong> the Silo 3<br />

Project. As described in the preceding sections, the emissions from various sources within<br />

the Silo 3 facilities are collected and discharged through the monitored exhaust stack after<br />

filtration. Table 2-1 summarizes expected emissions from the Silo 3 Exhaust Stack (STK-<br />

19-5209) for both Phase I Pneumatic Extraction and Phase II, Mechanical Extraction. The<br />

Silo 3 exhaust stack is equipped with an air particulate monitor and a continuous radon<br />

monitor.<br />

4


..<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

Table 2-1 : Estimate <strong>of</strong> Release from the Silo 3 Exhaust Stack<br />

Phase I Phase II<br />

Pneumatic Excavation Mechanical Extraction<br />

Exhaust stack flow (ft3/min) 13,900 1 2,700<br />

Offgas temperature (OF) 100 100<br />

Stack exit velocity (ft/min) 3,500 3,200<br />

Stack diameter (in) 27 27<br />

Stack height (ft) 125 125<br />

Max. Particulate emission uncontrolled 11.4<br />

(I b/hr)<br />

Max. Particulate emission controlled<br />

(Ib/hr)<br />

3.4 x 3.1 x 10-5<br />

0 Radionuclide emission - radon not<br />

included (pCi/L)<br />

6.8 X lo-' 6.8 X<br />

Radon emission (pCi/L) 169 185<br />

Dispersion modeling (Stack Release Considerations for the Silo 3 Project, Doc. No. 40430-<br />

CA-0003) was performed to quantify the impact <strong>of</strong> estimated emissions from the Silo 3<br />

exhaust stack. The dispersion modeling for the Silo 3 exhaust stack emissions used the<br />

FEMP site-specific meteorological data and the CAP88-PC computer s<strong>of</strong>tware package to<br />

be consistent with the requirements <strong>of</strong> 40 CFR 61, Subpart H. The results <strong>of</strong> the<br />

dispersion modeling for the Silo 3 exhaust stack emissions are summarized in Table 2-2.<br />

Table 2-2: Results <strong>of</strong> Dispersion Modeling for Releases from<br />

the Silo 3 Treatment Facility Exhaust Stack<br />

Phase I<br />

Phase II<br />

Pneumatic Extraction Mechanical Extraction<br />

Maximum EDE to <strong>of</strong>f-site receptor 21.3 1430<br />

(excluding radon) uncontrolled<br />

(mrem/yr)<br />

Maximum EDE to <strong>of</strong>f-site receptor<br />

(excluding radon) controlled (mrem/yr)<br />

6.4 X lo6 4.3 x lo4<br />

Maximum annual average FEMP fence 0.00 1 5 0.001 5<br />

@<br />

line radon concentration (pCi/L)<br />

Maximum hourly average FEMP fence 3.3 3.3<br />

5<br />

103<br />

5069


I-----<br />

. -<br />

line radon concentration (pCi/L)<br />

-<br />

- 9069<br />

Silo 3 Environmental ontrol Plan<br />

40430-PL-0005, Rev. C<br />

JSEbT Pioject Number 35H19605<br />

September 23, 2003 I<br />

Modeling <strong>of</strong> radionuclide emissions, not including radon, without credit for control<br />

equipment, predicted a maximum EDE <strong>of</strong>f the site <strong>of</strong> 1,430 mrem/year; therefore, as<br />

required by 40 CFR 61.93, the exhaust stack has a Continuous Emissions Monitor.<br />

Modeling <strong>of</strong> radon emissions predicts a fence line impact significantly below the 0.5 pCi/L<br />

annual average criterion. The exhaust stack will, however, include a continuous radon<br />

monitor. See drawing 94X-3900-G-01298 (G3105).<br />

6<br />

-__ -____


- - *<br />

3.0 EROSION AND STORMWATER CONTROL PLAN<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

This section describes the Erosion and Stormwater Control Plan that will be used during<br />

the construction phase <strong>of</strong> the Silo 3 Project, including erosion control practices and<br />

surface water management. This Plan addresses surface water management and erosion<br />

control practices throughout the construction <strong>of</strong> the Silo 3 process facilities and the Silo 3<br />

enclosure and is consistent with the construction drawing and Silo 3 specifications. See<br />

drawing 94X-3900-G-01298 (G3105).<br />

3.1 FUNCTIONAL REQUIREMENT OF THE PLAN<br />

The functional requirements <strong>of</strong> this Erosion and Stormwater Control Plan will satisfy the<br />

criteria outlined below:<br />

Route surface water to designated locations where it can be appropriately managed;<br />

Protect the Infrastructure Road, 2”d Street, Silo 3 and construction areas from damage<br />

caused by precipitation and stormwater run-on and run<strong>of</strong>f;<br />

0 Discharge surface water into existing watercourses in accordance with applicable Ohio<br />

<strong>Department</strong> <strong>of</strong> Natural Resources (ODNR), OEPA and DOE directives and requirements;<br />

and<br />

Segregate clean area run<strong>of</strong>f from potentially contaminated area run<strong>of</strong>f. Contaminated<br />

stormwater will not be discharged with “clean“ stormwater.<br />

Functional requirements will be met by constructing the run-onhun<strong>of</strong>f control features<br />

outlined below. Erosion control features will be installed prior to any disturbance <strong>of</strong> soil in<br />

work areas. The Civil Grading, Drainage and Erosion Control Plan, drawing 94X-3900-G-<br />

01 298(G3105), illustrates the location and limits <strong>of</strong> the control features. These include,<br />

but are not limited to, the following six control features:<br />

0 Installation <strong>of</strong> silt fences on the downslope sides <strong>of</strong> the construction areas;<br />

Installation <strong>of</strong> silt fences below sump discharges where applicable;<br />

Installation <strong>of</strong> check dams in drainage channels and swales as required;<br />

0 Maintenance, repair, or replacement <strong>of</strong> existing surface water and erosion control<br />

features as required;<br />

5069<br />

Excavations that are expected to be inactive for 45 days or more will be stabilized<br />

within 7 days <strong>of</strong> their final use; and<br />

a Dewatering.<br />

000159<br />

7


Silo 3 Environmental Control Plan<br />

40430-PL-0005, ___ Rev. C<br />

-JacobTPSject-NGKberL35H 1 9605<br />

September 23, 2003<br />

The type and location <strong>of</strong> erosion control features will be subject to adjustment depending<br />

on field conditions. The Contractor will routinely inspect and evaluate (in accordance with<br />

Section 3.2) the effectiveness <strong>of</strong>, and need for maintenance <strong>of</strong>, the control measures that<br />

are in place.<br />

3.2 RUN-ON/RUNOFF CONTROL STRUCTURAL PRACTICES<br />

Process design and operation will minimize the potential for generation <strong>of</strong> contaminated<br />

stormwater, including any run-on and run<strong>of</strong>f. A description <strong>of</strong> the construction,<br />

inspection, and maintenance <strong>of</strong> the run-onhun<strong>of</strong>f control features is presented in this<br />

section. These features may include, but will not be limited to:<br />

0 Drainage channels and swales,<br />

0 Riprap check dams,<br />

Culverts,<br />

Silt fences, and<br />

0 Diversions.<br />

Details <strong>of</strong> silt fences, check dams, and diversions can be seen in Appendix A. Any repairs<br />

to the erosion and stormwater control measures will be performed within 24 hours <strong>of</strong> a<br />

problem being discovered. Areas <strong>of</strong> excavation and all erosion control measures will be<br />

inspected to verify that they are installed in accordance with the Silo 3 specifications and<br />

are still functioning properly. An inspection checklist will be developed in support <strong>of</strong> the<br />

inspection schedule. Disturbed areas will also be inspected for evidence <strong>of</strong> excessive<br />

erosion or siltation. These inspections will occur, at a minimum, at the following<br />

frequency:<br />

0 Weekly for general inspections;<br />

Daily after each rain event exceeding 0.5 inches; and<br />

At least once per day during prolonged rainfall events.<br />

Inspections will be documented in the daily reports at the Silo 3 Project site. These<br />

records will be made available for review upon request. This inspection frequency is in<br />

addition to any specific requirements identified in the Inspection and Maintenance<br />

requirements for each control measure below.<br />

8<br />

000160


a 5JACOBS<br />

0 .<br />

3.2.1 Temporary Drainage Channels and Swales<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H 19605<br />

September 23, 2003<br />

If necessary, temporary drainage channel and swales will be constructed between control<br />

points on predefined lines and grades. Temporary drainage channels and swales will be<br />

stabilized in accordance with the Silo 3 specifications.<br />

Inspection and Maintenance<br />

Drainage channels and swales will be inspected in accordance with the following, as a<br />

minimum:<br />

The criteria stipulated in Section 3.2. Any necessary repairs to drainage channels will<br />

begin within 24 hours <strong>of</strong> the discovery <strong>of</strong> a problem.<br />

Drainage channels and swales shall be kept clear <strong>of</strong> debris at all times. The protective<br />

lining, vegetation or erosion-resistant materials will be maintained as built to prevent<br />

undermining, scour, or deterioration<br />

0 Silt fence placement requirements as stated in the Silo 3 specifications.<br />

Inspection and repair activities will be documented in the daily reports and available for<br />

review upon request.<br />

3.2.2 Check Dams<br />

Check dams will be used in channels that have a design flow equal to or greater than 3 ft<br />

per second or as needed. Check dams will be incorporated to enhance water quality<br />

benefits by maximizing the detention time within the swale and to increase channel<br />

stability by decreasing flow velocities.<br />

Check dams will be installed in accordance with the requirements <strong>of</strong> ODNR, "Rainwater<br />

and Land Development" manual, at the necessary spacing.<br />

Check dams will be constructed <strong>of</strong> 4-8-in. -diameter stone to a height <strong>of</strong> 2 ft over the<br />

entire channel width. The top <strong>of</strong> the check dam will be constructed so that the center is<br />

approximately 6 in. lower than the outer edges, so that water will flow across the center<br />

and not around the ends <strong>of</strong> the dam. The maximum height <strong>of</strong> the check dam at the center<br />

<strong>of</strong> the weir will not exceed 3 ft. A detail <strong>of</strong> the check dam is provided in Appendix A.<br />

Inspection and Maintenance<br />

Check Dams will be inspected in accordance with the following, as a minimum:<br />

The criteria stipulated in Section 3.2,<br />

Maintained as constructed, and<br />

. ,<br />

... .. . . '.<br />

9<br />

800161


-<br />

5069<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

roject Number 35H19605<br />

September 23, 2003<br />

Frequently inspected to ensure that the structures have not been damaged by high-<br />

energy flows.<br />

Inspection and repair activities will be documented in the daily reports and available for<br />

review upon request.<br />

3.2.3 Riprap<br />

Where required, properly sized riprap will be placed in the designated work area. Ohio<br />

<strong>Department</strong> <strong>of</strong> Transportation Type "D" riprap will be installed in the temporary drainage<br />

channel as check dams at appropriate locations.<br />

Inspection and Maintenance<br />

Riprap will be inspected and maintained according to the following, as a minimum:<br />

0 The criteria stipulated in Section 3.2<br />

0 To determine whether high flows have caused scour beneath the riprap or dislodged<br />

any <strong>of</strong> the stone. If repairs are needed, ensure that those repairs are accomplished<br />

within the same workday <strong>of</strong> their discovery.<br />

Inspection and repair activities will be documented in the daily reports and available for<br />

review upon request.<br />

3.2.4 Silt Fences<br />

Silt fences will be installed in accordance with ODNR requirements, the construction<br />

drawings, and the Silo 3 specifications. Silt fences will be constructed before upslope<br />

land disturbance begins. Silt fences will be.installed as close to the contours as possible<br />

so that water will not concentrate at low points in the fence. Silt fences will be installed<br />

on the downslope side <strong>of</strong> disturbed areas, perpendicular to where run-<strong>of</strong>f occurs as sheet<br />

flow or where flow through small rill can be converted to sheet flow. Appropriate<br />

equipment and personnel will be used to install the silt fence at locations shown on the<br />

construction drawings. The silt fence will be placed in a trench cut to a minimum <strong>of</strong> 9 in.<br />

deep, staked, and backfilled accordingly. The height <strong>of</strong> the silt fence will be a minimum <strong>of</strong><br />

16 in. above the original ground surface. To prevent water from flowing around the ends<br />

<strong>of</strong> the silt fence, each end will be constructed upslope so that the ends are 'at a higher<br />

elevation. Seams between sections <strong>of</strong> silt fencing will be overlapped with the end stakes<br />

<strong>of</strong> each section wrapped together before driven into the ground. Breaks and overlaps will<br />

be installed as necessary to allow equipment access to the construction area. Silt fences<br />

will remain in place until the disturbed area has been stabilized. Appropriate equipment<br />

will be available to maintain silt fencing.<br />

10


@ ;”)<br />

. ,, . . 50 69<br />

5@JACOSS<br />

Inspection and Maintenance<br />

-<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

Proper application <strong>of</strong> silt fencing will allow the intercepted run<strong>of</strong>f to pass as diffused flow<br />

through the geotextile. If diffused flow does not occur, the layout <strong>of</strong> the silt fence will be<br />

changed, accumulated sediment will be removed, and other practices will be implemented.<br />

Silt fences will be inspected and maintained according to the following, as a minimum:<br />

The criteria stipulated in Section 3.2<br />

0 Any sediment and debris that have been deposited and trapped will be removed from<br />

the silt fence will be relocated and stockpiled as directed by the Construction Manager.<br />

Inspection and repair activities will be documented in the daily reports and available for<br />

review upon request.<br />

3.2.5 Temporary Diversions<br />

If required by changing site conditions, the Contractor will construct temporary diversions.<br />

Earthen material cut out for the channel will be used to build the berm on the opposite<br />

side. The temporary diversion will be similar to the one shown in Appendix A. Check<br />

dams will be installed to slow the flow velocity.<br />

Inspection and Maintenance<br />

Temporary diversions will be regularly inspected and maintained as follows, as a minimum: ,<br />

The criteria stipulated in Section 3.2.<br />

Repair damage and removed deposits or sediment from the diversion.<br />

Restabilize as needed<br />

Check for points <strong>of</strong> scour, bank failure, rubbish, channel construction, rodent holes,<br />

breaching or settling <strong>of</strong> the berm, excessive wear for pedestrian traffic and<br />

construction traffic on a regular schedule.<br />

Inspection and repair activities will be documented in the daily reports and be available for<br />

review upon request.<br />

11<br />

000163


4.0 FUGITIVE DUST CONTROL PLAN<br />

- 5069<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs-Project Number 35H19605<br />

September 23, 2003 e<br />

The section describes the method that will be used for controlling fugitive dust emissions<br />

and ensuring compliance with the required standards and site-specific limits for the Silo 3<br />

Project. Dust releases from field activities will be proactively suppressed by applying BAT<br />

dust control materials andlor implementing BAT work practices at the beginning and during<br />

field activities. RM-0047, Fugitive Dust Control Requirements, will be used as the<br />

appropriate site-specific definition <strong>of</strong> BAT for fugitive dust control together with OAC<br />

3745-17-07 and OAC 3745-17-08, to minimize the creation and dispersion <strong>of</strong> fugitive<br />

dust.<br />

4.1 SITE-SPECIFIC LIMITS<br />

The following site-specific limits will be applied:<br />

Visible particulate emission from any paved roadway or paved parking area should not<br />

exceed 1 minute during any 60-minute observation period.<br />

0 Visible particulate emissions from any unpaved roadway, unpaved parking area, project<br />

field activities, or wind erosion from storage piles should not exceed 3 minutes during<br />

any 60-minute observation period.<br />

Personnel using 40 CFR Part 60, Appendix A, Method 22 "Visual Determination <strong>of</strong> Fugitive<br />

Emission from Material Sources and Smoke Emissions for Flares," will verify compliance<br />

with these limits. Fluor Fernald will provide.Method 22 training to qualify Contractor<br />

personnel.<br />

4.2 SUPPRESSION EQUIPMENT<br />

Due to the radiological issues associated with working on the Silo 3 Project, dedicated<br />

equipment will be used for radiological work zones to avoid having to decontaminate<br />

equipment. If required by site conditions, the Contractor may, switch equipment and<br />

systems between areas after decontamination and radiological sampling verifies no and<br />

radiological scanning, switch equipment and systems between areas after decontamination<br />

and radiological scanning verifies no contamination. The proposed equipment list to<br />

suppress dust releases includes, but is not limited to, the following:<br />

0 Motor grader,<br />

Backhoe,<br />

0 Miscellaneous hand tools (shovels, brooms),<br />

Miscellaneous pumps and hoses,<br />

12


a WJACOBS<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

0 Skid steer loader with broom attachment (for road crossing only if water flushing and<br />

wet brooming is ineffective).<br />

0 Water wagon, and<br />

Smooth drum roller.<br />

4.3 METHODS AND MATERIALS<br />

At the beginning <strong>of</strong> each day and periodically throughout that day, project personnel will<br />

tour the Silo 3 Project site, applying BAT fugitive dust controls and/or other work practices<br />

to identify and thereby minimize dust generation. If the visible limit is exceeded, (i.e.,<br />

visible particulate missions from any paved roadway or paved parking area exceed 1<br />

'minute during any 60-minute observation period or visible particulate emissions from any<br />

unpaved roadway, unpaved parking area, project field activities, or wind erosion from<br />

storage piles exceeding three minutes duration during any 60-minute period), mechanical<br />

dust-generating activities must cease immediately. BAT dust controls and/or work<br />

practices will be instigated or increased to bring the fugitive emission, as a minimum,<br />

below the visible limit during the dust-generating activities. Additionally, BAT dust<br />

controls and/or work practices will be implemented at the end <strong>of</strong> each day to minimize<br />

dust alerts <strong>of</strong>f-hours. Specific materials and methods may include the following:<br />

Water,<br />

0 Crusting agents such as Pine Sap Emulsion@ or equivalent (as approved by Fluor<br />

Fernald) ,<br />

Plastic sheeting or tarps, and/or<br />

0 Revegetation materials.<br />

4.4 WORK PRACTICES<br />

Project field activities will be monitored for visible emissions. The contractor shall<br />

implement, direct and coordinate BAT work practices to monitor project field activities for<br />

visible emissions. Specific work practices may include the following:<br />

0 Effective "wheel washing" before vehicles and/or equipment are brought onto the<br />

paved area and/or as required by contamination control.<br />

0 Applying dust suppression materials (mainly water) to active work areas or other areas<br />

where dust is likely to be generated<br />

Before the end <strong>of</strong> shift, sealing <strong>of</strong>f (by rolling, grading or compacting) work area<br />

stockpiles, working piles, etc. where fugitive emissions are likely to occur if not sealed<br />

13<br />

5069<br />

00016S


e<br />

e<br />

e<br />

7- 5069<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

1 9605<br />

September 23, 2003<br />

-JACOBS---- Jacobs-P~jecfNTmb35H<br />

During dry conditions or as needed, initiating dust control prior to start <strong>of</strong> shift and<br />

continuing throughout the day, as needed, to minimize fugitive dust emission.<br />

Wet sweep, blade or otherwise remove any clods, clumps, tracks, or other deposits <strong>of</strong><br />

soil or mud from paved roadways and parking area; applying appropriate dust control<br />

measures to suppress the generation <strong>of</strong> visible dust that may result from the removal<br />

process.<br />

Using alternative routing for hauling <strong>of</strong> materials.<br />

Changing method <strong>of</strong> excavation when feasible including reducing the rate <strong>of</strong><br />

excavation.<br />

Maintaining roadway shoulders.<br />

Minimizing unnecessary traffic.<br />

Adhering to site-specific speed limits <strong>of</strong> 15 mph on paved surfaces and 10 mph on<br />

unpaved and, if necessary, further reduce the speed <strong>of</strong> equipment and haul/other site<br />

vehicles.<br />

Applying water or other appropriate dust suppression agents to material being<br />

transported and covering truck beds when material is still likely to become airborne.<br />

Covering loads during equipment movement, regardless <strong>of</strong> whether truck is empty or<br />

full.<br />

Minimizing configuration <strong>of</strong> material being hauled (i.e., place less material in haul<br />

vehicle).<br />

Minimizing drop height during loading and unloading.<br />

If practical, cover small storage piles with tarps or plastic sheeting.<br />

For extended periods <strong>of</strong> planned inactivity, vegetating as a last resort, if protective<br />

cover or periodic application <strong>of</strong> surfactants or crusting agents prove ineffective.<br />

Repair or resurfacing roadwaydparking areas as needed or using an alternative road<br />

surface as a last resort.<br />

4.5 MONITORING<br />

All personnel who have been briefed on this plan will report suspected fugitive dust<br />

emissions to the appropriate personnel, who will then direct the implementation <strong>of</strong> BAT<br />

work practices and fugitive dust control. As outlined earlier, field conditions will be<br />

14<br />

000166<br />

-~


0 JACOBS<br />

@<br />

a<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

monitored for visible dust emission. When required, BAT material will be applied and BAT<br />

work practices will be implemented to limit fugitive dust emissions.<br />

4.6 RECORD KEEPING<br />

The record keeping process will begin with field supervisors and managers, who will brief<br />

those workers applying BAT materials pursuant to the required record keeping. The form<br />

to be filled out can be found in Appendix B. Appropriate personnel will complete these<br />

forms. Completed forms will be part <strong>of</strong> the Silo 3 Project daily reports and will be filed in<br />

the permanent project files and transmitted to Fluor Fernald when requested. Additional<br />

blank copies <strong>of</strong> the forms will be kept in the field trailer. Completed forms wil! be turned<br />

over to the Silo 3 Project Field Supervisors on a daily basis. Forms will be reviewed for<br />

completeness, and incomplete forms will be returned to the appropriate individual for<br />

corrections.<br />

4.7 OFF-HOURS FUGITIVE DUST ALERT NOTIFICATION<br />

A "Dust Alert" is defined as excessive or visible dust emanating from anywhere within the<br />

Work Area during non-working periods. "Non-Work" periods are defined as hours when<br />

neither the Contractor nor any subcontractor is performing Silo 3 construction activities on<br />

site. However, the FEMP remains staffed by Fluor Fernald Security personnel 24 hours per<br />

day. Silo 3 Project trained personnel will be on-call during non-work periods, 7 days per<br />

week (including holidays), to respond to any <strong>of</strong>f-hours fugitive dust alert. Therefore, if<br />

visible dust is observed within the Work Area during project non-work periods, Fluor<br />

Fernald will notify the Contractor. Dust suppression will begin within 2 hours <strong>of</strong><br />

notification by Fluor Fernald.<br />

4.7.1 Notification Procedure<br />

During a Dust Alert, Fluor Fernald will refer to the "Off-Hours Dust Alert Schedule" that<br />

will be provided by the Contractor prior to initiation <strong>of</strong> construction activities. If Fluor<br />

Fernald cannot contact the Designated Primary Contact (DPC) within a reasonable time<br />

frame, Fluor Fernald will attempt to reach the designated alternative contact. Similarly, if<br />

the alternative cannot be expeditiously contacted, the second alternative will be<br />

contacted. In the unlikely event that all three <strong>of</strong> these individuals cannot be reached, Fluor<br />

Fernald will attempt to contact any other person identified on the Contractor-approved<br />

contact list.<br />

Upon receiving notification from Fluor Fernald, the Contractor DPC will then contact<br />

qualified personnel, as appropriate, to respond to the Dust Alert. The Contractor DPC<br />

must verify that those responding to the "Off-Hours Dust Alert" are able to gain access to<br />

a controlled area if required. Only those personnel who meet the appropriate training and<br />

medical requirements for this work should be contacted. The Contractor DPC, as well as<br />

those personnel contacted, will go to the site to direct the work and implement the<br />

necessary corrective actions. Because dust suppression is defined as a Limited Scope<br />

- - ..<br />


.. .<br />

e ,,. * ’ +- 5069<br />

Silo 3 Environmental Control Plan<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

40430-PL-OO~,ReV.C-~ -~<br />

Work, the Contractor is not required to have the Site Health and Safety Officer respond to<br />

these Dust Alerts. Fluor Fernald will provide any necessary safety coverage.<br />

4.7.2 The Contractor Site Response<br />

Contractor personnel will use adequate BAT dust control methods to bring any fugitive<br />

dust emissions to below the site-specific limit during dust-generating activities.<br />

Designated Contractor personnel will not leave the Silo 3 Project site without concurrence<br />

from Fluor Fernald that sufficient controls are in place or until Fluor Fernald has signed the<br />

Dust Alert Work Order included in Appendix C.<br />

4.7.3 Schedule and Contacts<br />

The Off-Hours Dust Alert Schedule and Contact List will be provided to Fluor Fernald prior<br />

to the start <strong>of</strong> the Contractor’s Silo 3 Project construction activities.<br />

16<br />

088168


a<br />

. %.<br />

. 5069<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

5.0 WASTE MANAGEMENT PLAN<br />

The purpose <strong>of</strong> this section is to describe the materials and methodology for removal and<br />

disposition <strong>of</strong> relevant waste materials. Management <strong>of</strong> secondary wastes generated as a<br />

result <strong>of</strong> the Silo 3 Project construction and operational activities will be consistent with<br />

site procedures and applicable regulatory drivers.<br />

5.1 WASTE TYPES<br />

It is expected that construction activities will generate three main groups <strong>of</strong> secondary<br />

waste materials, (i.e., clean construction debris, radilogically contaminated construction<br />

debris, including soil and clean excavated soil). Smaller quantities <strong>of</strong> additional solid waste<br />

[e.g., personnel protection equipment (PPE), wood, and potentially some drums] are<br />

anticipated. Clean construction debris is material that as a result <strong>of</strong> construction has been<br />

brought onto the Silo 3 Project site or is created by construction activities, and has been<br />

surveyed or characterized and released as non-radioactive and non-hazardous waste.<br />

Radiologically contaminated construction debris is material that has been contaminated<br />

during construction inside the Controlled Area. Excess excavated soil will be generated as<br />

a consequence <strong>of</strong> earthwork.<br />

The following waste types are estimated to be generated during waste transfer and<br />

containerizing operations. A more detailed description with estimated quantities is<br />

included in the Timed Estimate <strong>of</strong> Secondary Waste document.<br />

Spent HEPA filters<br />

0 Spent roughing filters<br />

0 Spent Ultra Low Penetration Air (ULCA) filters<br />

0 Used PPE<br />

0 Damaged waste containers<br />

0 Damaged baghouse filter bags<br />

0 Containerizing and labeling waste<br />

0 Container cleaning waste.<br />

There is also the potential that some unknown debris will be encountered during soil<br />

excavation. This material may be manufactured objects or natural solid waste. These<br />

items will be dealt with on an item-by-item basis at the time <strong>of</strong> discovery. Fluor Fernald<br />

will be responsible for characterizing and approving the ultimate disposition <strong>of</strong> this<br />

material.<br />

.. :.<br />

'<br />

, . '.<br />

17<br />

0 d 0;i.G 9


, .<br />

c .a F- 5069<br />

-<br />

Silo 3 Environmental Cintrol Plan<br />

4043O-PL-O005,-Rev~C - -<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

Waste oils, engine coolants, hydraulic fluids, and other lubricants from the servicing <strong>of</strong><br />

equipment have not been identified as a "waste stream" as these items will not be stored<br />

on the site. Vehicle and construction equipment maintenance will be performed <strong>of</strong>f the<br />

site. On-site failure <strong>of</strong> equipment or vehicles will be managed on an item-by-item basis<br />

following approval by Fluor Fernald and in accordance with Fluor Fernald ACR-007, Waste<br />

Material Handling Criteria for Construction Projects. Any accidental spill <strong>of</strong> these materials<br />

will be subject to Fluor Fernald spill notification requirements. The Contractor will conduct<br />

weekly inspections <strong>of</strong> fuel storage tanks and equipment. An estimate <strong>of</strong> the amount <strong>of</strong><br />

each type <strong>of</strong> waste stream is given in Appendix E.<br />

5.2 WASTE MINIMIZATION<br />

Every effort will be made to minimize waste generation by limiting the amount <strong>of</strong> material<br />

that enters the Controlled Area. Material wrapping and packaging will be minimized on-<br />

site by requesting that suppliers provide material with as little packaging as possible.<br />

Where feasible, assembly <strong>of</strong> equipment modules will be done <strong>of</strong>f the site. Pre-job planning<br />

will be used to ensure that the number <strong>of</strong> tools identified and the equipment needed to<br />

complete the job are minimized. No hazardous materials will be brought into the<br />

Controlled Area unless absolutely necessary and only with the prior approval <strong>of</strong> Fluor<br />

Fernald.<br />

It is expected that only small quantities <strong>of</strong> "hazardous" materials (e.g., pipe sealants,<br />

concrete sealants, marking paints, caulking materials) will be required for the Silo 3 Project<br />

construction activities. To minimize the amount <strong>of</strong> this type <strong>of</strong> waste, only that quantity<br />

that is required to complete the job will be brought on the site.<br />

5.3 CONSTRUCTION DEBRIS MANAGEMENT<br />

Construction debris will be staged at predetermined locations that include controlled<br />

boundaries to define each area as well as limit access to them. The debris will be<br />

surveyed to verify that it meets the free-release criteria specified by Fluor Fernald Site<br />

Procedure RP-0009, Radiological Requirements for the Release <strong>of</strong> Materials at the FEMP.<br />

The waste will be segregated as either radiologically contaminated, hazardous or clean<br />

construction waste.<br />

Construction wastes such as fencing that are awaiting radiological survey will be cleaned<br />

<strong>of</strong> soils to ensure that they meet the free-release criteria.<br />

Construction debris that does not meet the free-release criteria for the site will be<br />

segregated and containerized into waste streams. Project personnel will be briefed on the<br />

waste segregation and size-reduction criteria for the Silo 3 Project prior to mobilization.<br />

The estimated volume <strong>of</strong> secondary waste from construction activities, underground<br />

material, s<strong>of</strong>t waste, concrete rubble and rebar from the Silo 3 opening, and<br />

caulking/sealants is estimated to be no greater than 87 yd3. The estimated amount <strong>of</strong><br />

each waste type is given in the table in Appendix E.<br />

18 000170<br />

e


1<br />

a JACOBS<br />

a<br />

e<br />

5.4 SOIL MANAGEMENT<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

During site preparation it is estimated that the Contractor will generate approximately 100<br />

yd3 <strong>of</strong> "cut" volume and 100 yd3 <strong>of</strong> "raw fill" soil. The "cut" volume will be monitored<br />

and dispositioned as directed by the Fluor Fernald Waste Acceptance Organization (WAO).<br />

Earthwork and related activities will not be performed during unfavorable weather<br />

conditions, e.g., rain, snow or high winds. Soil management will comply with the Erosion<br />

and Stormwater Control Plan and the Fugitive Dust Control Plan. Excess soil will be<br />

dispositioned as soon as practical after excavation. The schedule for soil transportation<br />

will depend on the OSDF availability and the OSDF subcontractor's transportation<br />

schedules. It is expected that transportation <strong>of</strong> excess soil to the OSDF will be completed<br />

within 45 days <strong>of</strong> completing excavation.<br />

Excavations will be monitored by a WAO representative to ensure that OSDF WAC are met<br />

as described in the DOE'S WAC Attainment Plan for the OSDF. Excess "cut" will be<br />

characterized as either Category 1 (soil and soil-like material), Category 2 (debris), or<br />

Category 4 (organic or highly compressible). Materials will be segregated by OSDF<br />

category within the work area before being transported Separate stockpiles <strong>of</strong> each<br />

category will be maintained as directed by the Construction Manager. The final volume <strong>of</strong><br />

excess material generated will be reported to Fluor Fernald at the end <strong>of</strong> each normal<br />

working day. These excess materials will be tracked by WAO through the use <strong>of</strong> the Field<br />

Tracking Log (FTL). Additionally, the WAO will track with the FTL any interim material<br />

movements (whether soil or debris) between Material Tracking Locations established by<br />

the WAO.<br />

During construction and excavation, materials may be encountered that may not meet the<br />

OSDF WAC. Upon discovery <strong>of</strong> these materials, the Fluor Fernald Construction Manager<br />

shall be notified and will require further evaluation through the use <strong>of</strong> the Fluor Fernald's<br />

real-time monitoring and OSDF WAC Attainment Plan.<br />

5.5 UNKNOWN DEBRIS MANAGEMENT<br />

During excavation, the Contractor may encounter debris e.g., conduit, piping, concrete.<br />

Before beginning earthwork, the contractor will determine the location <strong>of</strong> all existing<br />

underground utilities in the work area. In the event that unknown debris is unearthed the<br />

contractor will stop work and notify Fluor Fernald immediately <strong>of</strong> any non-soil debris<br />

requiring special handling or disposition. Unexpected debris will be managed in<br />

accordance with Fluor Fernald Safe Work Plan requirements (ACR-002). The Contractor<br />

will develop a Safe Work Plan for handling unknown debris that will include the criteria<br />

that must be met prior to resumption <strong>of</strong> excavation. Fluor Fernald will arrange for container<br />

delivery, debris characterization, any sampling tasks that may be required, and ultimate<br />

transportation <strong>of</strong> the container to the appropriate facility. Fluor Fernald will track the<br />

volume <strong>of</strong> such debris.<br />

19<br />

50 69


. .. )r 50<br />

-~ ~<br />

5.6 WASTE CONTAINER MANAGEMENT<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Projet-Num5eT35Hl-9-605<br />

September 23, 2003<br />

Fluor Fernald will provide the appropriate waste containers for the various waste<br />

categories identified in the Waste Management Plan. The Contractor will use the Material<br />

Segregation and Containerization Criteria form, Attachment D, to identify categories <strong>of</strong><br />

waste. These containers may include, but are not limited to, the following:<br />

Large metal boxes<br />

0 International Standards Organization containers<br />

0 Small metal boxes<br />

55-gallon drums with lids<br />

Roll-<strong>of</strong>f boxes<br />

Dumpsters.<br />

Waste containers staged inside the Controlled Area will be lockable and will be kept locked<br />

unless authorized loading is taking place. Fluor Fernald Radiological Control will be present<br />

to survey waste before authorized loading operations. Unfilled waste containers will be<br />

secured when no loading is in progress to prevent the addition <strong>of</strong> unknown materials. Fluor<br />

Fernald will provide and maintain the locks and keys to clean waste containers.<br />

Designated personnel will be responsible for supervising container operations, including<br />

inspection <strong>of</strong> empty containers on receipt and waste loading activities. They will be<br />

responsible for ensuring that containers, boxes, and drums are filled so that the interior<br />

volume is as efficiently and compactly loaded as practical, either up to the maximum gross<br />

weight limit <strong>of</strong> that container or until full by volume.<br />

Containers will be checked for free liquid before being loaded. Containers with free liquids<br />

will not be transported until it is proven that the container no longer contains free liquid.<br />

Ice is considered a free liquid. Containers will be protected from the weather, particularly<br />

when the lid is not secured, to prevent entry <strong>of</strong> snow and rain.<br />

Clean construction waste will be surveyed and loaded into dumpsters provided by the<br />

Contractor or its subcontractors on a daily basis to prevent an excessive amount <strong>of</strong><br />

material from piling up near the container staging area. These dumpsters will remain<br />

locked when they are not being loaded.<br />

Fluor Fernald will visibly inspect full containers prior to final securing <strong>of</strong> their lids and<br />

container disposition.<br />

20<br />

69


e JACOBS<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

The Contractor will follow the requirements <strong>of</strong> Fluor Fernald ACR-007, Waste Material<br />

Handling Criteria for Construction Projects (June 1 998).<br />

5.7 WASTEWATER CONTROL<br />

Wastewater generated during construction will be collected in sumps or by other means<br />

and pumped through silt fence or check dams prior to discharge to the existing drainage<br />

features near the site. Any contaminated wastewater encountered will be collected and<br />

disposed <strong>of</strong> at the direction <strong>of</strong> the Construction Manager and this plan. Wastewater<br />

generated during operation will be collected and treated according to the Process<br />

Description for the Silo 3 Project (Section 6.5).<br />

21<br />

5069


-' . . . .J ' .<br />

6 .O<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

14.<br />

15.<br />

REFERENCES<br />

Silo 3 Environmental Control Plan<br />

40430-PL;-0005r-Rev-~-C-~~ - ~<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

Fluor Fernald, PL-3088 Stormwater Pollution Prevention Plan, Rev. 0, October<br />

1999.<br />

OEPA, Chapter 3745-1 7-08 <strong>of</strong> the OAC, Restriction <strong>of</strong> Emission <strong>of</strong> Fugitive Dust,<br />

July 1997.<br />

Fluor Fernald, ACR-007, Waste Material Handling Criteria for Construction Projects,<br />

Rev. 2, June 1998.<br />

Fluor Fernald, Fugitive Dust Control Requirements, Rev. 0, August 1997.<br />

40 CFR Part 60, Appendix A, Method 22, Visual Determination <strong>of</strong> Fugitive Emission<br />

for Material Sources and Smoke Emissions for Flares<br />

Fluor Fernald Administrative Contractor Requirements, ACR-002, Contract Safe<br />

Work Plan Format Requirements, Rev. 2, November 1994.<br />

Fluor Fernald, RP-0009, Radiological Requirements for the Release <strong>of</strong> Materials at<br />

the FEMP.<br />

Stack Release Considerations for the Silo 3 Project document (Doc. No. 40430-CA-<br />

0003, Rev. 2).<br />

Process Description for the Silo 3 Project (Doc. No. 40430-RP-0003, Rev. 2)<br />

Silo 3 Project Technical Specifications and Project Quality Procedures 7.1, "Control<br />

<strong>of</strong> Purchased Items and Services<br />

Operable Unit (OU) 4 Remedial Investigation (RI) document<br />

Fluor Fernald's Silos Project Environmental Monitoring Plan<br />

ODNR, "Rainwater and Land Development" manual<br />

Timed Estimate <strong>of</strong> Secondary Waste document (Doc. No. 40430-RP-0012, Rev.0)<br />

Fluor Fernald's OSDF WAC Attainment Plan.<br />

22


.?: %t, !.) 1'<br />

e JACOBS<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

APPENDIX A<br />

DETAILS OF EROSION AND STORMWATER CONTROL FEATURES<br />

A- 1<br />

5069


. .<br />

SECTION<br />

Fence<br />

Silt Fence<br />

10'<br />

p-, Maximum -q<br />

n n<br />

Level Contour, No Slope<br />

+ naz Sbpc in Front d Barrier<br />

-.I: -<br />

-. -\<br />

A-2<br />

-+I<br />

Silo 3 Environmental Control Plan<br />

~ ____ 4043O-PL-O005,-Rev. C------ -~<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

FLOW / -<br />

\\ :I;=;'.=<br />

\ - -<br />

- - -<br />

-<br />

= l l i =ill =1!1<br />

=ill<br />

= I f 1<br />

80 03-76<br />

Trench to<br />

be<br />

Backfilled<br />

and<br />

Compacted


a ~JACQBS<br />

Temporary Diversion<br />

Diversion Slopes<br />

Shall Not be<br />

Matting, Seed<br />

and Mulch<br />

Steeper than 1: 1 Diversion<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

18” for Drainage Area 5 Acres<br />

1. Diversion shall be compacted by traversing with tracked earth-moving equipment.<br />

2. Diversions shall not be breached or lowered to allow construction traffic to cross; instead, the<br />

top width may be made wider and side slopes made flatter than specified above.<br />

3. Diversions shall be stabilized with check dams.<br />

A-3<br />

50 69


Dam Height (feet)<br />

1<br />

2<br />

3<br />

Specifications for Check Dam<br />

Channel Slope<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005,Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003 @<br />

1. The check dam shall be constructed <strong>of</strong> 4-8 inch diameter stone, placed so that it completely<br />

covers the width <strong>of</strong> the channel.<br />

2. The top <strong>of</strong> the check dam shall be constructed so that the center is approximately 6 inches<br />

lower than the outer edges, so water will flow across the center and not around the ends.<br />

3. The maximum height <strong>of</strong> the check dam at the center <strong>of</strong> the weir shall not exceed three feet.<br />

4. Spacing between dams shall be as shown in the plans or by the following table:<br />


a JACOBS<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005. Rev. C<br />

Jacobs Project Number 35H 19605<br />

September 23, 2003<br />

APPENDIX B<br />

DAILY RECORDS OF FUGITIVE EMISSION CONTROL<br />

B- 1<br />

5069


. .<br />

50 69


en<br />

-,<br />

*' .i lyl<br />

Silo 3 Environmental Control Plan<br />

JACOBS<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

APPENDIX C<br />

OFF-HOURS DUST CONTROL PROCEDURE<br />

c-1


, i.<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

OFF-HOUR DUST CONTROL PROCEDURE<br />

SILO 3 CONSTRUCTION<br />

F- 5069<br />

--<br />

Silo 3 Environmental Control Plan<br />

40430-PL-O0~0-5,-Rev. C - ~ ~<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

Contractor personnel or their subcontractors with responsibilities for the Off-Hour Dust<br />

Control Coverage will retain a copy <strong>of</strong> the Off-Hour Dust Alert Schedule and a<br />

Employee Contact Sheet, both at the Fluor Fernald Site Office and in their vehicle or<br />

home, i.e., the schedule and contact sheet should be readily available at all reasonable<br />

times.<br />

CONTRACTOR personnel or their subcontractors working on Silo 3 Project ccnstruction<br />

activities are responsible for being aware <strong>of</strong> their duties and responsibilities regarding<br />

Off-Hour Dust Control.<br />

If a scheduling conflict arises, personal or otherwise, the affected person is responsible<br />

for making the required revisions to the Off-Hour Dust Alert Schedule to ensure<br />

adequate personnel coverage is maintained at all times. The responsible person within<br />

Contractor or his designee must approve all revisions to this schedule. A copy <strong>of</strong> the<br />

modified schedule must be distributed to all affected Contractor and Fluor Fernald<br />

personnel no later than the Thursday before the affected week in the schedule.<br />

Each week, the Contractor will designate one person as the qualified water wagon<br />

operator and one person as the sprinkler system operator. The Contractor Designated<br />

Primary Contact (DPC) ant the designated operators must be fully trained and medically<br />

cleared to operate in a Controlled Area.<br />

When the Contractor is notified by Fluor Fernald that Off-Hour Dust Control is required,<br />

the Contractor DPC or his equivalent will contact the designated operators and<br />

coordinate the implementation <strong>of</strong> this dust control procedure, as detailed in approved<br />

Fugitive Dust Control Plan.<br />

If either <strong>of</strong> the designated operators have not responded within 15 minutes <strong>of</strong> initial<br />

attempts to contact them, alternative operators will be contacted until available<br />

operators can be found. These operators must also be fully trained and medically<br />

cleared to operate in a Controlled Area.<br />

It is the responsibility <strong>of</strong> the Contractor DPC to keep the designated Fluor Fernald<br />

Management Contact informed <strong>of</strong> all efforts to contact operators and to give details<br />

concerning their estimated arrival times at the Silo 3 Project site.<br />

Once on-site, the Contractor DPC and operators, together with the designated Fluor<br />

Fernald contact will implement the Emergency Oust Control measures including, but<br />

not necessarily limited to, the Fugitive Dust Control Plan and the preparation <strong>of</strong> a Safe<br />

Work Plan.<br />

c-2<br />

008182


BNJACOBS<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

9. The Contractor DPC is responsible for documenting Contractor's efforts, including<br />

contacts and response times and communication the same to Fluor Fernald and the'<br />

Silo 3 Project Management. The Off-Hour Dust Alert Work Order must be filled out by<br />

the Contractor and countersigned by the designated Fluor Fernald representative prior<br />

to the Contractor leaving the Silo 3 Project site. Note: Off-Hours Dust Control is an<br />

additive unit pay item to the Silo 3 Project contract and must be properly documented<br />

for payment.<br />

. .<br />

., . .<br />

c-3<br />

50 69<br />

.\-_I.-


_.<br />

t .<br />

Date <strong>of</strong> Response:<br />

Time <strong>of</strong> First Contact by Fluor Fernald:<br />

Management Person Responding:<br />

OperatorslLaborers Contacted<br />

OperatorslLaborers Responding<br />

Time Manager on Site:<br />

Time OperatorlLaborer on Site:<br />

Time Suppression Activities End:<br />

Total Elapsed Site Time:<br />

Description <strong>of</strong> Situation Causing Alert:<br />

OFF-HOURS DUST ALERT<br />

WORK ORDER<br />

Suppression Material and Equipment Utilized (including quantities):<br />

~ ~ ~~~ ~~ ~~ ~<br />

Describe Area Treated (attach sketch if necessary):<br />

Silo 3 Environmental Control Plan<br />

- -40430-PL-0005rRev; C - ~ ~-<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

By: Contractor's Representative Concurrence <strong>of</strong> Response Completion by Fluor Fernald<br />

c-4


e ~'~ACOBS<br />

APPENDIX D<br />

MATERIAL SEGREGATION AND<br />

CO NTAl N ERlZ AT1 0 N CRITERIA<br />

D-1<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H 19605<br />

September 23, 2003<br />

000185


.- tu<br />

ti<br />

c,<br />

g*<br />

m<br />

T<br />

5- 5069


a EHJACOBS<br />

APPENDIX E<br />

ESTIMATED AMOUNTS OF WASTE STREAM<br />

E- 1<br />

Silo 3 Environmental Control Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

5069


.. ,<br />

ESTIMATE OF WASTE DURING CONSTRUCTION<br />

Waste Type Estimated Volume<br />

(vd3)<br />

S<strong>of</strong>t Waste<br />

Construction Debris<br />

Soil<br />

Caulking, sealers<br />

Concrete Rubble & Rebar (Silo 3 Opening)<br />

Underground Debris<br />

ESTIMATE OF WASTE DURING CONSTRUCTION<br />

Waste Type<br />

Spent HEPA Filters<br />

Spent roughing filters<br />

SDent ULPA filters<br />

I PPE<br />

Sampling waste<br />

Containerizing and labeling waste<br />

Container cleaning waste<br />

'Denotes potential radiological contamination<br />

E-2<br />

+. 5069<br />

Silo 3 Environmental Control ___~_ Plan<br />

40430-PL-0005, Rev. C<br />

Jacobs Project Number 35H19605<br />

September 23, 2003<br />

13<br />

16<br />

1 OOR<br />

3<br />

2!jR<br />

30R<br />

Estimated Volume<br />

(yd3)<br />

1 3R<br />

5R<br />

4R<br />

lR<br />


p'. , ('> ;:;<br />

*' r; .; .


0<br />

0<br />

a<br />

*. ' i'<br />

.. . 5069<br />

B


*<br />

c<br />

E<br />

.- p!<br />

a<br />

0<br />

I2<br />

0<br />

E<br />

d<br />

a<br />

L<br />

0<br />

a c1<br />

2<br />

-<br />

L<br />

0 m


- 5069<br />

m


9<br />

Z<br />

50 69<br />

(v<br />

e<br />

w<br />

??<br />

b<br />

0<br />

In<br />

193


L<br />

a<br />

r<br />

I-.<br />

a .<br />

z<br />

'0<br />

c<br />

m<br />

-<br />

v)<br />

a)<br />

0<br />

I<br />

c<br />

v)<br />

8<br />

u-<br />

0<br />

a<br />

E<br />

0<br />

U<br />

c 9<br />

zg<br />

5069


I-<br />

o<br />

U<br />

I-<br />

o<br />

w<br />

2<br />

n<br />

e3<br />

0<br />

=!<br />

ua<br />

000196<br />

0<br />

K<br />

([I ._ .<br />

my<br />

mm<br />

- 5069


000197


000198<br />

N


- 5069<br />

000199


*- 5069


' ' .,j !<br />

500 0 0<br />

- 5069


v)<br />

I-<br />

z<br />

W<br />

E<br />

W<br />

U<br />

5<br />

U<br />

W<br />

U<br />

0<br />

m<br />

I-<br />

0<br />

d<br />

v)<br />

Id. ,<br />

. ..<br />

*- . 5049


c)<br />

C<br />

a<br />

dB00205


Q<br />

j:<br />

7- 5069


2<br />

a<br />

QI<br />

CI<br />

n<br />

U<br />

5069


v)<br />

I-<br />

z<br />

W<br />

I<br />

W<br />

p!<br />

5<br />

U<br />

w<br />

o<br />

m<br />

I-


I<br />

3<br />

2<br />

5069


J<br />

-. . - - ~~ - -- -- - - --<br />

.


c<br />

Calculation<br />

Nuclear Engineering<br />

.. .<br />

:alculation Title: Radioactive Parliculate and Radon-222 Stack Release Consideratlons for the Silo 3<br />

bmedial Action Project.<br />

?urpose:<br />

5b69<br />

The purpose <strong>of</strong> this calculation is to assess the radlolo@xl dose 10 the maximum exposed public receplor<br />

lue to the release 01 redlologicel particlrleles and redon-219/220/222 from a stack associated with the Sllo<br />

3 remedial action projjed. The released ecllvity is based on measured concenlratlons <strong>of</strong> relevant<br />

*adionuclldes in Silo 3 Waste and the currently planned remediel adion wade processing scheme.<br />

MA - Conforms to the Subcontract Requirements<br />

I 1 B - Minor Comment - lncoraolatoand Resubmi


Revislon History:<br />

.<br />

E N 0 I N E E R I N G@<br />

I<br />

Revision 1 - All I RevisedAdded<br />

Revision 2 - All Revised/Added<br />

+- 5069<br />

Calculation Number: 40430-CA-0003<br />

PageNod o f2<br />

000211<br />

Description <strong>of</strong> Revlslon<br />

Revised discharge rates for both<br />

particulates and radon. Revised stack<br />

height and flow rates. Calculate doses<br />

at particular receptor locations<br />

corresponding to monitoring stations, as<br />

well as the calculation <strong>of</strong> the maximum<br />

doseflocation <strong>of</strong> occurrence<br />

Change particulate source term from 1<br />

mg/cubic meter to one based on dust<br />

concentrations constrained to 10% <strong>of</strong><br />

the DAC for Th-230. Other changes<br />

include the consideration <strong>of</strong> the initial<br />

headspace venting <strong>of</strong> Silo 3 as a<br />

separate event, including Rn-219 and<br />

Rn-220, as well as Rn-222 in the radon<br />

calculations, and assuming the<br />

maximum exposed member <strong>of</strong> the<br />

public receives 100% <strong>of</strong> the exposure<br />

while outdoors.<br />

Changed density <strong>of</strong> waste from 42.2<br />

Ibs/ft3-to 50 ibs/ft3, and radon emanation<br />

factor from 0.18 to 0.35. Process<br />

removal rate changed from 10 cyhr to 6<br />

cyhr.<br />

:-


, "I<br />

4 ; .<br />

c: ," ir f 5069<br />

Description <strong>of</strong> Calculation:<br />

E N 0 I N E E R I N GQ<br />

Calculation Number: 40430-CA-0003<br />

Page Nod <strong>of</strong> _18<br />

This calculation determines the location and magnitude <strong>of</strong> dose consequences to a maximally exposed public<br />

receptor from Silo 3 Exhaust Stack emissions, which consist <strong>of</strong> radioactive particulates and radon associated<br />

with the Silo 3 remedial action operations. Dose rate data are also determined at specific air monitoring<br />

locations. Silo 3, the process equipment, and the process building associated with the remedial action project<br />

will be ventilated and the radon and uncaptured particulates will be discharged to the atmosphere through an<br />

elevated stack system.<br />

The Silo 3 material is retrieved by using two systems: pneumatic (Phase 1) and mechanical (Phase 2). The<br />

Process Vent System (PVS) collects and treats the air streams from both retrieval systems. The pneumatic<br />

retrieval system is operated first and continues to operate until it is no longer effective and until the <strong>silo</strong> wall<br />

can be safely breached to enable mechanical retrieval. During the first phase, the Silo 3 waste is<br />

pneumatically retrieved-by vacuuming the powdered .material and removing the air-entrained. waste .in a<br />

collector, feed conveyor, and bags. The air discharged from the pneumatic retrieval collector is filtered and<br />

discharged to the elevated stack. This post process filtration removes most <strong>of</strong> the particulate activity prior to<br />

venting the process air through the Exhaust Stack. The concentrations <strong>of</strong> the residual radioactive particulates<br />

and radon released to the environment are reduced by atmospheric dispersion occurring between the stack<br />

release location and the exposure location.<br />

After Phase 1 is complete, Phase 2 commences by cutling an access hole in the <strong>silo</strong> wall and the remaining<br />

material is removed by a mechanical excavator. The material is transferred to a retrieval bin, conveyors, and<br />

packaging system. In this phase, the suspended solids are filtered by the PVS and discharged to the Silo 3<br />

Exhaust Stack.<br />

In addition to the PVS air streams, the building Exhaust Air System draws from building "clean" rooms and<br />

areas with a potential for contamination. The exhaust air is also directed to HEPA filters and discharged to<br />

the Exhaust Stack.<br />

The computer calculation <strong>of</strong> the dose rate (mrembear) from particulates and radon Is based on the activity<br />

emitted by the pneumatic retrieval system, mechanical excavator area, and building ventilation. The<br />

radioactive material released from the stack and the dose to potential human receptors depends on:<br />

0<br />

The radioactive particulate and radon-219/220/222 concentrations in the stack discharge,<br />

The stack height and diameter,<br />

0 The rate <strong>of</strong> exhaust air discharge (momentum release model) and its temperature (buoyant release<br />

model),<br />

0 Meteorological parameters, and<br />

0 Potential receptor locations and exposure scenarios.<br />

An EPA atmospheric dispersion code, CAP88-PC, was used to estlmate atmospheric dispersion <strong>of</strong><br />

radioactive particulates and to determine the dose at the location <strong>of</strong> maximum exposure. This computer code<br />

is based on Gaussian dispersion <strong>of</strong> gases and airborne particulates from area or stack sources, and uses<br />

site-specific meteorological data and source design considerations.<br />

. .<br />

000212


. , -.<br />

' i , '1, . : -<br />

Assumptions:<br />

E N 0 I N E E R I N ai.<br />

PageNoA o f 3<br />

35H19605<br />

The joint-frequency distribution <strong>of</strong> wind speed and atmospheric stability as a function <strong>of</strong> 16 directions<br />

contained in Feasibility Study Report for Operable Unit 2, Vo1.4, Appendix D, Femald Environmental<br />

Management Project, March 1995, (Ref. 1) is indicative <strong>of</strong> average climatic conditions in the vicinity <strong>of</strong><br />

Silos 1 and 2 (Attachment A).<br />

Stack height and outlet diameter <strong>of</strong> 125 ft and 27 in., respectively (Ref. 2).<br />

Stack discharge rate <strong>of</strong> 13,900 ft3/min at 100°F during pneumatic waste removal in Phase 1. Stack<br />

discharge rate <strong>of</strong> 12,700 ft3/min at 100 O F during mechanical waste removal in Phase 2 (Ref. 3). The<br />

exhaust temperature ranges from 86°F in the winter to 106°F in the summer. The increase in exhaust<br />

temperature relative to ambient temperature is due to heating from the fans (Ref. 4). Since a momentum<br />

release is assumed in the calculations, the temperature-<strong>of</strong> theexhausted air is not an input parameter.<br />

1000 m atmospheric mixing heighfflid<br />

Estimates <strong>of</strong> air flow rates and radioactive particulate and radon concentrations in the stack discharge<br />

provided by Hazard Category Calculations for Silo 3, 40430-RP-0006 (Ref. 5) and Process Flow<br />

Diagram, Material Balance Table, Drawing 94X-3900-F-01428, Sheet F-0001, Rev. 0. (Ref. 3)<br />

Standard exposure, radon equilibrium fractions, and default 'assumptions and dose conversion factors <strong>of</strong><br />

CAP88-PC for the evaluation <strong>of</strong> dose to a public receptor. Dose to workers is not evaluated in these<br />

calculations.<br />

Receptor assumed to spend 100% outdoors at the exposure location, 0% indoor at the exposure location<br />

and 0% away from the exposure location. (Note: The maximum dose consequence to workers from<br />

Silo 3 stack emissions would be lower than that to a member <strong>of</strong> the public since the maximum<br />

atmospheric concentrations occur <strong>of</strong>f-site. In addition, the worker occupancy will be lower.)<br />

Conservative doses Lorn the exposure to radon progeny are calculated using an outdoor dose<br />

conversion factor for Rn progeny <strong>of</strong> 570 mremhrorking level month, where a working level month is<br />

defined as the product <strong>of</strong> the working level and the exposure duration (hrs) divided by 170 hrs (Ref 6).<br />

This dose factor was obtained from ResRad (Ref .6)<br />

Approximately 35 percent <strong>of</strong> the radon generated in the solid matrix material is free to emanate from the<br />

solid into the waste pore space based on measured values (Ref.7).<br />

The density <strong>of</strong> the Silo 3 waste is 50 lW3.


GaDeuPation Inputs:.<br />

Polorhm-218<br />

Radium-223<br />

Radium-224<br />

Radium-226<br />

Calculation Nu<br />

Page N o2 <strong>of</strong> 2<br />

o Major radionuclide concentrations in the Silo 3 Material are delineated in Table 4.<br />

Actinium-227 I 925<br />

Actinium-228 406<br />

Lead-21 2<br />

Polonium-210<br />

Polonium-211<br />

I<br />

I<br />

367<br />

3,480<br />

925<br />

1<br />

Polonium-212<br />

Polonium-215 I<br />

367<br />

925<br />

Polonium-216 367<br />

3.480<br />

925<br />

367<br />

3,870<br />

Radium-228<br />

Radon-219<br />

Radon-220<br />

I<br />

I<br />

406<br />

925<br />

367<br />

1<br />

Radon222 3.870<br />

The radon isotopes are assumed to be in secular equilibrium with their respective parents and the short<br />

lived radon daughters are included in the calculations<br />

e Filtration efficiency <strong>of</strong> cascade filtration syste.m for particulate removal from Pneumatic Retrieval<br />

System air stream: 99.9%, 99.99%. 99.97%<br />

000214<br />

5069


- ___ --<br />

EN 0 I N E E R I N G@<br />

-Cai.cwlation- ~ __<br />

Project: 35H19605<br />

Calculation Number: 40430-CA-0003<br />

Page No3 <strong>of</strong> _18<br />

0 Filtration efficiency <strong>of</strong> cascade filtration system for particulate removal from Mechanical Retrieval<br />

System air stream: 99.9%, 99.97%.<br />

0 Filtration efficiency <strong>of</strong> cascade filtration system for particulate removal from Building Ventilation<br />

System air stream: 99.97%<br />

The PVS filter housings contain provisions for ultra low penetratiomair (ULPA) units. This calculation<br />

does not take credit for ULPA filters.<br />

0 A momentum discharge velocity <strong>of</strong> 3,495 ft/min corresponds to a discharge rate <strong>of</strong> 13,900 ft3/min<br />

during Phase 1. A momentum discharge velocity <strong>of</strong> 3,195 Wmin corresponds to a discharge rate <strong>of</strong><br />

12,700 fts/min during Phase 2.<br />

Rural exposure condition.<br />

Radiological properties and annual radioactive particulate and radon activity discharge per year<br />

calculated from initial waste concentrations.<br />

S<strong>of</strong>tware:<br />

Title<br />

Clean Air Act<br />

Assessment Package<br />

88<br />

I I<br />

Developer I ' Versions<br />

Barry Parks, Health Physicist, U.S.<br />

<strong>Department</strong> <strong>of</strong> <strong>Energy</strong>, <strong>Energy</strong><br />

Research (ER-83), Laboratory<br />

Operations and ES&H, 9901<br />

Germantown Road, Germantown,<br />

Maryland, 20874-1290<br />

00021.5<br />

2.0, CAP88-PC<br />

Revision Level<br />

NIA<br />

. .- - --<br />

4<br />

4<br />

4


0<br />

. Q<br />

Calculation Section:<br />

1. Particulate Release Rete<br />

JACOBS<br />

E N 0 I N E E R I N O@<br />

Calculation<br />

Project: 35H19605<br />

Calculation Number: 40430-CA-0003<br />

Page Nod <strong>of</strong> 3<br />

The particulate release rate (grains/hr) is determined for the building ventilation system, the pneumatic<br />

retrieval system, and the mechanical retrieval system. Note that the unit <strong>of</strong> grains is used by Process<br />

Engineering in the Material Balance Table when concentrations are low. Grains are used in the<br />

calculations performed in this report for consistency with the material balance tables.<br />

A. Buildina Ventilation Svstem<br />

Assume the building atmosphere dust is on the order <strong>of</strong> lo3 g/m3, the dust release rate (D) for a building.<br />

ventilation rate <strong>of</strong> 7,200 cfm is<br />

D = lx lom3 g/m3 x m3/35.3 ft3 x 7200 ft3 /min x 60 min/hr x 0.0003<br />

D = 3.7 x lo5 ghr dust (equivalent)<br />

The radiological particulate release rate is based on maintaining air at less than the 1O%'<strong>of</strong> the DAC for<br />

Th-230: DAC = 6 x 1 0-l2 pCi/cm3 for Th-230. The air mass concentration C based on the Th-230 DAC is:<br />

C = 6 x 1013 pCVcm3 <strong>of</strong> air x &60,200 pCi x lo6 pCi/pCi = 9.97 x gW,~cm3air<br />

= 9.97 x 1 O~ gWa,dm3 air<br />

For a building ventilation rate <strong>of</strong> 7,200 cfm (12,233 m3/hr) and a HEPA filtration efficiency prior to stack<br />

release <strong>of</strong> 99.97%, the particulate release rate R is:<br />

R = 9.97 x gdm3 x 12,233 m3/hr x 0.0003<br />

= 3.66 x 1 Ob ghr x lb/454 g x 7000 gralnab<br />

= 5.64 x 1 O4 graindhr radiological particulate<br />

The radiological particulate release is, therefore, approximately 1 % <strong>of</strong> the total dust release.<br />

p. Pneumatic Retrieval Svstem<br />

The pneumatic retrieval system removes 8,100 lbhr <strong>of</strong> airborne <strong>silo</strong> material, which is based on 6 cyhr at<br />

50 Ib/cf. Therefore, the release rate <strong>of</strong> airborne particulates passing through the cascade filtration system,<br />

consisting <strong>of</strong> a dust collector, a cartridge filter , and a HEPA filter in series with respective efficiencies <strong>of</strong><br />

99.9%, 99.99%, and 99.97% .The release rate is :<br />

R = 8,100 Ibhr x 7000 graindlb x 0.001 x 0.0001 x 0.0003<br />

R = 0.0017 grainshr


C. Mechanical Retrieval Svstem<br />

E N G I N E E I? I N GQ<br />

Project:<br />

Calculation Number: 40430-CA-0003<br />

Page Nod <strong>of</strong> _18<br />

The mechanical retrieval system exhaust processes 72.8 Ibshr Q 50 Ib/cf for a 6 cyhr production rate,<br />

through a dust collector and HEPA filter with respective efficiencies <strong>of</strong> 99.9% and 99.97%, as shown in air<br />

stream number 12 in Reference 3. The release rate is:<br />

R = 72.8 Ibhr x 7000 grainsnb x 0.001 x 0.0003<br />

R = 0.153 grainshr<br />

D. Particulate Activitv Released<br />

During Phase 1 ,,the, release,rate. ls the sum-<strong>of</strong> the building ventilation and pneumatic<br />

total <strong>of</strong> 0.00056 + 0.001 7 = 0.00226 grainshr.<br />

.... . retrieval<br />

~<br />

system for a<br />

The total particulate activity per gram waste released as articulates is the total activity per gram given in<br />

Table 1 for the waste, 105,863 pCUg less the 35% <strong>of</strong> 218k@0Rn/%n that is free to emanate from the<br />

solid fraction <strong>of</strong> the waste: 105,863 - 1,807 pCVg = 104,056 pCi/g. Therefore, the activity released per<br />

year Q is<br />

Q = 0.00226 grainshr x lbt7000 grains x 454 gAb x 8760hr/yr<br />

= 1.28 glyr<br />

= 1.28 g/yr x 104,056 pC/g<br />

= 1.33 x IO-' ~Vyr<br />

Radionuclide specific release rates are determined using the radionuclide specific concentrations<br />

presented in Table 1 and the mass release rate for airborne particulates for Phase 1 (1.28 g/yr), based on<br />

6 cyhr continuously for 1 year. Radlonuclide-specific release rates are summarized in Table 3.<br />

During Phase 2, the release rate is the sum <strong>of</strong> the building ventilation and the. mechanical retrieval system<br />

for a total <strong>of</strong> 0.00056 + 0.153 = 0.154 grainshr.<br />

Q = 0.154 grains/hr x lb/7000 grains x 454 g/lb x 8760hr/yr<br />

= 87.5-r<br />

= 87.5 x 104,056 pciig<br />

= 9.1 x lod Ciryr<br />

Radionuclide specific release rates are determined using the radionuclide specific concentrations<br />

presented in Table 1 and the mass release rate for airborne particulates for Phase 2 (87.5 g/yr), based on<br />

6 cyhr continuously for 1 year. Radionuclide-specific release rates are summarized in Table 3.<br />

000217


2. Radon Release Rate<br />

35H19605<br />

The radon release rate (pCi/min) is determined for the pneumatic retrieval system, and the mechanical<br />

retrieval system. It is assumed that the building ventilation system discharges 7,200 cfm <strong>of</strong> air to the stack<br />

with negligible radon concentration. The pneumatic retrieval system discharges 1,200 cfm to the stack<br />

during Phase 1 only.<br />

The mechanical retrieval system exhaust path discharges 5,500 cfm to the stack during both project<br />

phases. This stream is made up <strong>of</strong> the <strong>silo</strong> vent exhaust (1,000 cfm), the retrieval bin hood (2,900 cfm),<br />

the conveyor bottom (300 cfm), the conveyor top (300 cfm), and the packaging system (1000 cfm).<br />

A. Silo Ventina Prior to Phase 1<br />

The <strong>silo</strong> vent removes radon from the <strong>silo</strong> headspace at the initiation <strong>of</strong> the Silo 3 Project prior to<br />

initiating the pneumatic retrieval <strong>of</strong> waste in Phase 1. The half-life <strong>of</strong> the radon isotopes *{'Rn and<br />

"'Rn generated by %a and in the waste are short lived (4s and 55s, respectively) relative to<br />

the diffusion rate through the waste to the headspace volume. Therefore, the concentrations <strong>of</strong> *"Rn<br />

and ='Rn in the headspace are negligible. The measured headspace =Rn concentration is 300,000<br />

pCi/L and the headspace volume is 5,600 ft3, yielding a headspace activity <strong>of</strong> 0.0475 Ci =Rn. If the<br />

entire headspace were vented in one day, the release would be 48 mCi =Rn.<br />

Assuming an equilibrium headspace activity (emanation from solids equals radon decay with no<br />

leakage), the emanation rate equals activity times the decay constant. It is also assumed the vent<br />

removes radon at the same rate it emanates from the stored solids.<br />

Emanation rate = release rate = 0.0475 Ci =Rn x 0.693/5500 min<br />

B. Pneumatic Retrieval - Phase 1<br />

= 6.0 x lo6 DCi/min =Rn<br />

1. The pneumatic retrieval system removes 8,100 Ibhr <strong>of</strong> <strong>silo</strong> material, which is based on 6 cyhr at<br />

50 Ib/cf. It is assumed that approximately 35 percent <strong>of</strong> the radon generated in the solid matrix<br />

material is free to diffuse from the solid into the waste pore space. Therefore, during retrieval<br />

operations, it is assumed that 35 percent <strong>of</strong> the radon in equilibrium with its radlum parent is residing<br />

in the solid matrix and is potentially released to the exhaust stream. Radon isotopic release rates for<br />

algRn, ='Rn, and =Fin, respectively, are:<br />

R (2'gRn) = 8,100 lbihr x 925 pCi/g x 454 gAb x hr/60 min x 0.35,<br />

- 5069<br />

R= 1;<br />

R (220Rn) = 8,100 Ibhr x 367 pCVg x 454 ghb x hr/60 min x 0.35,<br />

R = 7.87 x 10' DCilmin pORn = 4.1 CiEvr =Rq;<br />

R (=Rn) = 8,100 Ibhr x 3870 pCVg x 454 gAb x hr/60 min x 0.35,<br />

222<br />

R = 8.30 x lo' pCimin =Pn = 43.5 CW Rn<br />

The annual release assumes continuous operation for one year.<br />

' . 8 . - I . .<br />

(40821-8


!<br />

E N G I N E E R I N 0"<br />

35H19605<br />

Calculation Number: 40430-CA-0003<br />

PageNod o f 3<br />

2. Note that the exhaust flow from the inclined conveyor is maintained during Phase 1. Although no<br />

material is processed on the inclined conveyor during Phase 1, the Pneumatic Retrieval Collector<br />

discharges to a Feed Conveyor. The Feed Conveyor is exhausted via the inclined conveyor that is<br />

used only during the Mechanical Retrieval Phase 2 operations. Therefore, assuming 1,000 Ib<br />

material on the feed conveyor, the radon generation rate into the conveyor air flow stream during<br />

Phase 1 is:<br />

R = 925 pCi/g "%a x 454 S/lb x 0.693/0.067 min x 1000 Ib x 0.35<br />

R = 1.52 x 10 DCilmin<br />

R = 367 pCi/g 224Ra x 454 g/lb x 0.693/0.9237 min x 1000 Ib x 0.35<br />

. R = 4.38 x 10 ' DCi/min 220Rn<br />

R = 3870 pCi/g<br />

4<br />

R = 7.75 x 10 DCVmin =Rn<br />

x 454 gAb x 0.693/5500 rnin x 1000 Ib x 0.35<br />

3. The <strong>silo</strong> vent continues to remove radon from the <strong>silo</strong> headspace during Phase 1. The half-life <strong>of</strong><br />

the radon isotopes 21eRn and ='Rn generated by =Ra and 224Ra in the waste are short lived (4s and<br />

559, respectively) relative to the gusion rate through the waste to the headspace volume. Therefore,<br />

the concentrations <strong>of</strong> 2'9Rn and Rn in the headspace are negligible. As shown in Part A above, the<br />

release rate is 6.0 x lo6 DCimin =Rn.<br />

C. Mechanical Retrieval - Phase 2<br />

This exhaust path is comprised <strong>of</strong> the <strong>silo</strong> vent, retrieval bin hood, conveyor top and bottom, and<br />

packaging system. The fraction <strong>of</strong> radon from the packaging system is negligible based on the<br />

containment methods used.<br />

1. Silo Vent<br />

The <strong>silo</strong> vent continues to remove radon from the <strong>silo</strong> headspace during Phase 2. As shown in Part A<br />

above, the release rate is 6.0 x 10' DCVmin =Rn.<br />

2. Retrieval Bin Hood<br />

The retrieval bin receives material at the rate <strong>of</strong> 6 cy/hr, which is the same rate at which the pneumatic<br />

retrieval system is operated. Therefore, the radon release rates are the same values as calculated for<br />

the pneumatic retrieval system:<br />

R = 1,99 x lo7 DCilmin 2'eRn = 10.4. Cii 2'9Rn<br />

R = 7.87 X 10 ~Cl/min 220Rn = 4.1 Ci/vr ='Rn<br />

R = 8.30 x 10' DCVmin =Rn = 43.5 CW =Rn<br />

000219<br />

. .<br />

5C69


3. Convevor Tor> and Bottom<br />

EN G I N E E R I N G@<br />

Project:<br />

Calculation Number: 40430-CA-0003<br />

PageNoa o f d<br />

In addition to the radon released from the processed <strong>silo</strong> material in the retrieval bin, radon continues<br />

to be generated in the downstream conveyors. The radon generation rate is a function <strong>of</strong> the amount<br />

<strong>of</strong> solid material in each component.<br />

The conve or bottom measures approximately 12 in. x 12 in. x 20 ft. At a volume <strong>of</strong> 20 ft3 and density<br />

<strong>of</strong> 50 Ibht 3 , the material mass is approximately 1 .OOO Ib.<br />

The inclined conveyor measures approximately 12 in. wide, 3 in. deep, and 70 ft. long, for a volume <strong>of</strong><br />

17.5 ft3 and material mass <strong>of</strong> approximately 875 Ib.<br />

Assuming an emanation rate <strong>of</strong> 0.35, the radon generation rates from the inclined conveyor during<br />

Phase 2 are: ._<br />

R = 925 pCi/g 223Ra x 454 g/lb x 0.693/0.067 min x 875 Ib x 0.35<br />

R = 1.33 x 10' DCi/min 2''Rr\<br />

R = 367 pCi/g "4Ra x 454 g/lb x 0.693/0.9237 rnin x 875 Ib x 0.35<br />

R=3.83 x 10 ' ~Ci/min "'Rn<br />

R = 3870 pCVg "%a x 454 gAb x 0.693/5500 rnin x 875 Ib x 0.35<br />

R = 6.78 x lo4 DCi/min =Rn<br />

The radon generation rate from the conveyor bottom during Phase 2 is:<br />

R = 925 pCVg 223Ra x 454 glib x 0.69W0.067 min x 1000 Ib x 0.35<br />

R = 1.5 x 10' r>Ci/min 2'sRn<br />

R = 367 pCig 224Ra x 454 gllb x 0.69W0.9237 rnin x 1 OW Ib x 0.35<br />

R = 4.38 x 10' DCi/min =Rn<br />

R = 3870 pCVg =Ra x 454 glib x 0.693/5500 min x 1 OOO Ib x 0.35<br />

R=7.75 ~ 1' DC'imin 0 =Rn<br />

a '.' . . . Q00220<br />

5069


__ ~~<br />

JACOBS--<br />

a .<br />

1 :-<br />

D. Radon Summary<br />

Q<br />

-<br />

E N 0 I N E E R I N GQ<br />

Calculation<br />

Project: 35H19605<br />

-~alculation-Number:-40430-CA~003- ~<br />

PageNoa o f a<br />

The radon release rate results for all radon sources are summarized in the following table.<br />

Pneumatic<br />

Retrieval<br />

-Suo 3 Vent 1,000 6.00 x lo6 6.00 x. 10".<br />

Retrieval Bin 2,900<br />

Hnnd<br />

0 0 0 1.99 x lo7 7.87 x 10' 8.30 x 10'<br />

Packaging<br />

System<br />

1,000 0 0 0 0 0 0<br />

Building<br />

Exhaust<br />

7,200 0 0 0 0 0 0<br />

Total Exhaust<br />

,Stack Stack<br />

13,900 13,900 1.5 x ios 5.2 x 107 io7 8.9 x io7 2.9 x 109 9.0 x 107 io7 8.9 xi07 X1o7<br />

The total exhaust flow during Phase 1 is 13,900 cfm. The exhaust flow during Phase 2 is 12,700<br />

cfm, since pneumatic retrieval exhaust stream is not in operation.<br />

000221<br />

5069<br />

-<br />

- -<br />

-


3. Total Release Rate<br />

Calculation Number: 40430-CA-0003<br />

Page N o s <strong>of</strong> 3<br />

To obtain the annual discharge activity for each <strong>of</strong> the individual radionuclides making up the mixture, Q,,<br />

the total annual particulate mass discharge rate for the mixture is multiplied by the radionuclide specific<br />

activities in Table 1. The total particulate mass release rate is 1.48 g/yr during Phase 1 and 87.5 g/yr<br />

during Phase 2. Source release rates are summarized as follows.<br />

Table 3 . Silo 3 Stack Source Release Rate<br />

The annual I release rates in Table 3 are conservatively based on continuous release for 876( 1 hours at a<br />

processing rate <strong>of</strong> 6 cyhr and 50 Ib/cf.


E N 0 I N E E R I N GQP<br />

Transport and Dose Calculation using CAPSI-PC<br />

- 5069<br />

- - -<br />

Calculation- -- -- - -<br />

Project:<br />

Calculation Number:<br />

PageNod <strong>of</strong>-<br />

35H19605<br />

40430-CA-0003<br />

The atmospheric releasddispersiodexposure calculations were performed usin the annual estimated<br />

release rates, Table 2, for the major radionuclides in the Silo 3 waste, includingg'QRn, 210Rn and =Rn.<br />

Radionuclide concentrations and doses were calculated as a function <strong>of</strong> 16 uniformly distributed directions<br />

and potential receptor/monitoring station locations <strong>of</strong> 332 m, 527 m, 582 m, 930 m, QQlm, 994 m, 1064 rn,<br />

1241 m, 1320 rn, 1356 m, 1390 rn, 1454 m, 1457 rn, 1497 m. and 1506 rn from the stack. In addition, the<br />

location <strong>of</strong> the maximum exposure and dose is determined.<br />

Five CAP88-PC input files and execution runs were performed: 1) particulate releases during Phase 1,<br />

and 2, and 2) specific radon isotope releases for each project phase. The calculated results are detailed<br />

in ATTACHMENT C. The dose is not calculated for the initial headspace venting since the source term<br />

released in negligible. T,h" initial 48 mCi release is less than the average released per - day -. during removai --<br />

activities (e.g., 6.63 x 10 pCilmin or 95 mCilday)<br />

The maximum exposure/dose occurs at a distance <strong>of</strong> 994 m from the stack and in the north-easterly<br />

direction, for both the particulate and =Rn releases. Maximum exposure to *'Fin and =Rn occurs at<br />

332 m in the north-easterly direction, which is closer to the stack release location relative to the particulate<br />

and =Rn maximum exposure/dose location. This is due to the shorter half-life <strong>of</strong> 2'DRn (4s) and ='Rn<br />

(55s).<br />

Exposure <strong>of</strong> a hypothetical rural receptor, at 994 m northeast, to particulates resulting from the retrieval<br />

and packaging <strong>of</strong> Silo 3 waste would yield an estimated dose <strong>of</strong> 6.40 x lo4 mrew during Phase 1, and<br />

4.33 x lo4 mrem/yr during Phase 2. Dose rates due to isotopic radon that do not emanate from the solid<br />

particulate matrii and is atmospherically dispersed were not evaluated and are considered to insignificant.<br />

Thorium-230 is the largest contributor to risk. The 2?h concentration at the location <strong>of</strong> maximum dose is<br />

approximately 2.6 x 10'" pCVL and 1.7 x 10'" pCVL, during Phase 1 and 2, respectively.<br />

I<br />

Radoq<br />

The CAP-88 output for the release <strong>of</strong> various radon isotopes are shown in Attachment C3 - C8. The<br />

maximum concentration and dose due to =Rn and daughters occurs at 994 rn from Silo 3 in the north-<br />

easterly direction - The =Rn concentrations at this location are 1.5 x lo4 pCVL for both Phases 1 and 2.<br />

The dose-rates due to pure radon inhalation are 0.033 mremEyr for both Phases 1 and 2.<br />

The =Rn progeny dose is expressed in terms <strong>of</strong> working level, which is adjusted for a 31% equilibrium<br />

fraction at 994 m. The working level (WL) concentrations for Phase 1 and 2 are 4.76 x lob at the<br />

maximum exposure location. The dose for this working level can be correlated to dose assuming an 100%<br />

exposure time duration outdoors by using the outdoor conversion factor <strong>of</strong> 570 mremMILM, where a<br />

working level month, WLM, is 170 hours <strong>of</strong> exposure. Therefore, Phase 1 and 2 doserates are<br />

Dose-rate for Phase 1 and 2 = 4.76 x lo4 WL x (8760 hrs/yr / 170 hrs/mo) x 570 mremMlLM<br />

= 0.14 mremw.<br />

The total dose-rate from =Rn and progeny for a receptor located at 994 m from Silo 3 in NE direction are:<br />

Total dose-rate for Phase 1 and 2 = 0.033 + 0.14 = 0.17 mremlyr<br />

The corresponding =Rn dose conversion factor is approximately 0.01 1 pCVL per mrem/yr at 31 percent<br />

equilibrium, the assumed exposure durations, and at the stated dose conversion factor <strong>of</strong> 570 mrem<br />

008223


E N G I N E E R I N GQ<br />

Project: 35H19605<br />

Calculation Number: 40430-CA-0003<br />

Page N o d <strong>of</strong> 18<br />

MlLM outdoors. It is noted that a Fernald radon evaluation (Ref. 7) assumes a radon dose conversion<br />

factor <strong>of</strong> 27 pCi/L per mremhr based on 1.25 remMlLM and 50% equilibrium. As shown in the following<br />

equation, the CAP-88 results are comparable to the Fernald factor by a ratio <strong>of</strong> the variables,<br />

0.01 1 DCUL x 8760 hrs x 0.31 x 570 = 27.2 DCR<br />

mrem/yr yr 0.50 1.00~1250 mremhr<br />

The location <strong>of</strong> the maximum dose for the short hatf-life 2'9Rn and ='Rn radon isotopes is 332 m from the<br />

release stack, also in the north-easterly direction. As noted in Table 4, the maximum concentration <strong>of</strong><br />

*'%n is 1.9 x lo' pCi/L for Phase 1 and 3.7 x lo" for Phase 2 The corrwponding dose to 2'eRn and<br />

progeny, assuming secular equilibrium, are negligible (dose-rates due to Rn alone on the order <strong>of</strong> lo-'<br />

mrem/yr), and there is no practical method for measuring 2'gRn or progeny at these concentrations.<br />

Therefore, since '"Rn does not significantly contribute to the dose rate estimates , it will be dropped from<br />

further consideration.<br />

-<br />

..-_- -__----<br />

The maximum concentration <strong>of</strong> =Rn at 332 m is 1.6 x lo4 pCUL for Phase 1 and 2.8 x lo4 pCVL for<br />

Phase 2. The corresponding =Rn working level is calculated using the following equation discussed in<br />

the ResRad manual (Ref.8):<br />

W L = 9.48 X 1 Om'' (216Po) + 1.23 x 1 O4 (*"Pb) + 1 .17 x lo" (*I2Bi),<br />

where3(''6Po), (212Pb) , and r2Bi) are the respective concentrations <strong>of</strong> the mRn progeny measured in<br />

0<br />

Cum . In the nominally 150 second transit time it takes for the effluent to reach the location <strong>of</strong> nearest<br />

"Rn exposure (332 m divided b the average wind speed <strong>of</strong> 2.21 miles/sec) '16Po ingrows to secular<br />

equilibrium with its 220Rn parent, "Pb grows to 0.27 % <strong>of</strong> its equilibrium concentration, and the ingrowth<br />

<strong>of</strong> *12Bi is insignificant. Consequently, the estimated WL is:<br />

WL = 9.48 x 10" WUpCVm3 x 0.16 pCVm3 + 1.23 x lo4 WUpCi/m3 (0.16) x 0.00271 pCVm3<br />

= 5.3 x lo'* WL for Phase 1<br />

WL = 9.48 x 1 Q'O W UpCi/m3 x 028 pCim3 + 1.23 x 1 O4 W UpCi/m3 (0.28) x 0.00271 pCVm3<br />

= 9.4 x 10' WL for Phase 2:<br />

For a =Rn dose conversion factor <strong>of</strong> 250 mremMlLM (Ref.9), the estimated maximum dose-rates are<br />

Dose-rate = 5.3 x log WL x 8760 h m x monWl70 hrs x 250 mremMlLM<br />

Dose-rate= 6.8 x 1 O4 mremlyr for Phase 1. and<br />

Dose-rate =9.4 x lo4 WL x 8760 hrdyr x rnontWl70 hrs x 250 mremMlLM<br />

Dose-rate= 1.2 x lo9 mremlyr for Phase 1<br />

The maximum dose to the inhalation <strong>of</strong> pure q n at the 332 m location is 4.7 x 1 O4 mremlyr for Phase 1<br />

and 8.1 x lo4 mremiyr for Phase 2. The total maximum dose-rate from =Rn and progeny is 1.2 x lo9<br />

mremiyr, for Phase 1 and 2.0 x lo9 mremlyr for Phase 2.<br />

5069<br />

008224


Total Dose<br />

--<br />

Piiiject:<br />

Calculation Number: 40430-CA-0003<br />

PageNoa o f 3<br />

The total project duration is 6 moths: 300 hours in Phase 1 and 700 hours in Phase 2.<br />

The maximum total dose rates during Phase 1 and 2 due to particulates and mRn/progeny occur at a<br />

location 994 m from Silo 3 in the north-easterly direction and are 0.16 mrem/yr.<br />

The maximum total dose rate during Phase 1 and Phase 2 due to mRn/progeny occur at a location 332 m<br />

from Silo3 in the north-easterly direction, and are 1.2 x lo4 mrem/yr and 2.0 x lo” mrem/yr, respectively.<br />

Although the maximum dose rates occur at different locations. a conservative estimate <strong>of</strong> the maximum<br />

dose rate for an <strong>of</strong>fsite receptor due to Silo 3 stack emissions may be obtained by combining the dose<br />

rates to obtain 0.17 mremlyr for Phase 1 and 0.17 mrem/yr for Phase 2. It should be noted that these<br />

annual doses are based on 1 year (8760 hours) continuous release for each phase.<br />

Since phase 1 operations are conservatively estimated to last 300 hours, the Phase 1 dose is 0.0058<br />

mrem.<br />

Since phase 2 operations are conservatively estimated to last 700 hours, the Phase 2 dose is 0.0139<br />

mrem.<br />

The total calculated potential public receptor dose estimate for both phases <strong>of</strong> Silo 3 operations is 0.02<br />

mrem.<br />

F- 5049


* nACOBS<br />

E N 0 I N E E R I N G@<br />

DosdConcentration Calculation at Site Air Monitorins Stations<br />

Calculation<br />

Project: 35H 1 9605<br />

Calculation Number: 40430-CA-0003<br />

PageNod o f 3<br />

The particulate dose rate and radon isotope concentrations due to Silo 3 emissions are also calculated at<br />

the location <strong>of</strong> 16 site air monitoring stations. The location <strong>of</strong> the monitoring stations and the respective<br />

doses and concentrations are identified in Table 4. It should be noted that the calculated radon<br />

concentrations are well below those that can be measured by practical techniques. The =Rn<br />

concentrations during Phase 1 are the same as those during Phase 2. The 218Rn and "'Fin<br />

concentrations during Phase 1 will be slightly less than the concentration during Phase 2.<br />

Table 4. Silo 3 Stack Emission Dose-Rate at Monitoring Stations<br />

- .Radon Isotope Concentration @CVL)<br />

Monitoring Distance Particulate Dose (mrem/yr) Phase 2<br />

Station Direction (m) Phase 1 Phase 2 218Rn 220Rn =Rn<br />

AMS 28<br />

AMS 7<br />

AMS 27<br />

AMS 6<br />

AMS 26<br />

AMS 5<br />

AMS 25<br />

AMS 4<br />

AMs 24<br />

AMS 29<br />

AMS 3<br />

AMS 9C<br />

AMS 8A<br />

AMS 22<br />

AMs 23<br />

AMs 2<br />

N 993.6 2.6 x lo6 1.8 x 10"<br />

NNW<br />

NW<br />

WSW<br />

ssw<br />

929.6 1.7 x lo*<br />

527.3 9.4 x lo4<br />

332.2 3.6 x lo*<br />

582.1 2.0~ lo*<br />

1.1 x lo"<br />

6.3 x 10'~<br />

2.7 x 10'<br />

1.2x 10"<br />

S 990.6 2.1 x 10" 1.4~10"<br />

SSE 1389.8 2.5X lo* 1.4 X 10".<br />

SE 1319.7 2.6Xlo" 1.8.X 10"<br />

SE<br />

ESE<br />

1240.5 2.7 X lo*<br />

1469.1 3.3 X lO*<br />

1.8 X 10"<br />

2.1 x lo"<br />

E<br />

E<br />

ENE<br />

NE<br />

1453.8 4.0 X los<br />

1456.9 4.0 x lo8<br />

1505.6 4.0~ lo*<br />

332 '<br />

2.7 X 10"<br />

2.7 x 10'<br />

2.1 x lo"<br />

NE 994* 6.4~ lo* 4.1 x lod<br />

NE 1063.7 6.3~ lo4 4.2 x 10"<br />

NE 1356.3 5.6~10~ 3.8 x 10"<br />

NE 1496.5 5.4~ lo4 3.6 x 10"<br />

9.9 x 1.7 x lo4 6.2 x 10"<br />

3.8x1tf5<br />

1.8 x 10"'<br />

1.1 x104<br />

1 .O x<br />

3.8~10'<br />

2.0 x 10"<br />

2.6~10'<br />

1.1 x lo-''<br />

1.7~1019<br />

5.6 x lo*<br />

8.0~10'<br />

5.6 x 10"<br />

7.3 x loi6<br />

7.1 X 1U2'<br />

1.0 x la4<br />

5.7 X lo8<br />

5.0 x 10'<br />

4.9 x 10"<br />

6.9 X 10"' 8.3 X 10" 6.1 x 10"<br />

7.2XlU" l.0XlU5 6.3~10~<br />

1.2 X lo'" 8.3 X lo* 7.5 x 10"<br />

2.5 X 10'" 1.0 x lo* 9.6 x 10"<br />

2.3 x lo2' 1.0 x 10" 9.6 x 10"<br />

5.8~10'~ 9.6~10~ 1.1 xlU3<br />

3.7 x 10" 2.8 x 10"<br />

1.5 x lo4<br />

3.2 x 1O-l' 3.7 x 10" 1.5 X lo3<br />

5.7~10'~ 1.7~10" 1.4~10'~<br />

8.8 x lop 1.3 x lo6 1.3 x lo-'<br />

1.The concentrations at 332 m northeast is the calculated location for maximum ewoaure/dose for<br />

2'sRn and POAn. No monitoring station is located at this point.<br />

2.The doses and concentrations at 994 m northeast is the calculated location for medmum<br />

exposure/dose for paniculates and =Fin. No monitoring station is located at this point.<br />

%me 2?h concentration (pCi) at any station can be determined by multiplying the dose (mrenJvr)<br />

by 3.8 x lo4. The concentration <strong>of</strong> all single radionuclides is provided in the computer output files.<br />

:-.<br />

--<br />

5069<br />

. . ,' . . .:<br />

000226


___ -~<br />

7- . * * .- I<br />

E N 0 I N E E R I N QQ<br />

ConciusIondRecommendations:<br />

Calculation<br />

Project:-<br />

Calculation Number: 40430-CA-0003<br />

PageNoa o f 3<br />

The Silo 3 Stack, which is 125 ft. tall and 27 inches in diameter, discharges process air and building exhaust<br />

at a rate <strong>of</strong> 13,900 ft3/min during Phase 1 and 12,700 ft3/min during Phase 2.<br />

The maximum exposure/dose occurs at a distance <strong>of</strong> 994 m from the stack, in the notth-easterly direction.<br />

The maximum dose to an <strong>of</strong>f-site receptor from Silo 3 operations (6 month duration) is 0.02 mrem.<br />

The conclusion that can be derived from this analysis is that the Silo 3 stack emissions do not exceed the<br />

amount that would cause any member <strong>of</strong> the public to receive an effective dose equivalent <strong>of</strong> 10 mrem/yr,<br />

as specified in 40 CFR 61.71, Subpart HI NESHAPS.<br />

Reference:<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

Feasibility Study Report for Operable Unit 2, Vol.4, Appendix 0, Femald Environmental<br />

Management Project, March 1995.<br />

Process Description for the Silo 3 Project, 40430-RP-0003.<br />

Silo 3 Process Flow Diagram, Material Balance Table, Drawing 94X-3900-F-01428, Sheet F-0001.<br />

Silo 3, Cooling and Heating Load Estimates, 40430-CA-0006, Attachment H.<br />

Hazard Category Calculations for Silo 3,40430-RP-0006.<br />

Yu, A.J. Zielen, J.J Cheng, D.J. LePoire, E. Gnanapragasam, A. Wallo 111, W.A. Williams, and H.<br />

Peterson, Manual for Implementing Residual Radioactive Material Guidelines Using RESRAD,<br />

Version 6.0, ANUEAD-4, Argonne National Laboratory, Argonne, Illinois 60439, July 2001<br />

Guidance from Fluor Femald.<br />

C. Yu, C. Loureiro, et. al., 'Radon Emanation Coefficient,' Chapter 8, Data Collection Handbook to<br />

Support Modeling Impacts <strong>of</strong> Radioactive Materials in Soil, Argonne National Laboratory, Argonne,<br />

Illinois 60439, April 1993.<br />

000227<br />

-<br />

5065


m<br />

w<br />

E N G I N E E R I N G@<br />

AllACHMENT A<br />

Calculation<br />

Project: 35H 1 9603<br />

Fernald Environmental Management Project Joint Frequency Distribution<br />

5069<br />

I


ATTACHMENT A<br />

ENGINEERING@<br />

I baicuiaiion IY<br />

Fernald Environmental Management Project Joint Frequency Distribution<br />

Wind Wind Speed (kts)<br />

Direction


t' 0<br />

AITACHMENT A<br />

JACOBS<br />

E N G I N E E R I N G@<br />

Calculation<br />

Project: 35H 1 9605<br />

Calculation Number: 40430-CA-0003<br />

Fernald Environmental Management Project Joint Frequency Distribution (cont'd)<br />

Wind<br />

Wind Speed (kts)<br />

Direction c/= 3 c/= 6 e/= 10


-<br />

ATTACHMENT A<br />

-- - --_Project:__- __ -35H19605 - -~ - -~<br />

Calculation Number: 40430-CA-0003<br />

E N 0 I N E E R I N GQ<br />

Fernald Environmental Management Project Joint Frequency Distribution (cont’d)<br />

Stability Class E<br />

N<br />

NNE<br />

NE<br />

ENE<br />

E<br />

ESE<br />

SE<br />

SSE<br />

S<br />

ssw<br />

sw<br />

wsw<br />

W<br />

WNW<br />

Nw<br />

NNW<br />

0.00362<br />

0.00260<br />

0,00298<br />

0.00869<br />

0.00820<br />

0.00479<br />

0.00484<br />

0.00557<br />

0.00697<br />

0.01158<br />

0.01850<br />

0.01780<br />

0.01249<br />

0.00948<br />

0.00834<br />

0.00621<br />

Stability Class F<br />

N<br />

NNE<br />

NE<br />

ENE<br />

E<br />

ESE<br />

SE<br />

SSE<br />

S<br />

SSW<br />

sw<br />

wsw<br />

W<br />

WNW<br />

Nw<br />

NNW<br />

0.00499<br />

0.00525<br />

0.00508<br />

0.00910<br />

0.01336<br />

0.00893<br />

0.00592<br />

0.00546<br />

0.00700<br />

0.01182<br />

0.01958<br />

0.02681<br />

0.02976<br />

0.02932<br />

0.02279<br />

0.01152<br />

0.00388<br />

0.00309<br />

0.00347<br />

0.00922<br />

0.00274<br />

0.00125<br />

0,00172<br />

0.00341<br />

0.00767<br />

0.01403<br />

0.01826<br />

0.01033<br />

0.01001<br />

0.00761<br />

0.00467<br />

0 - 00382<br />

0 - 00012<br />

0.00009<br />

0 - 00012<br />

0.00161<br />

0.00090<br />

0.00006<br />

0.00032<br />

0.00018<br />

0.00047<br />

0.00120<br />

0.00210<br />

0.00187<br />

0.00067<br />

0.00023<br />

0.00076<br />

0.00088<br />

0.00076<br />

0.00079<br />

0.00044<br />

0.00181<br />

0.00023<br />

0.00015<br />

0,00029<br />

0.00128<br />

0.00336<br />

0.00680<br />

0.00741<br />

0.00330<br />

0.00414<br />

0.00330<br />

0.00111<br />

0 - 00108<br />

0 - 00000<br />

0.00003<br />

0 - 00000<br />

0 - 00012<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0 - 00026<br />

0.00003<br />

0.00006<br />

0.00003<br />

0.00003<br />

0.00006<br />

0.00006<br />

0.00003<br />

0.00018<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00020<br />

0.00064<br />

0.00169<br />

0.00064<br />

0.00064<br />

0.00015<br />

0.00058<br />

0. OOOlS<br />

0.00026<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0 - 00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0 .ooooo<br />

0.00000<br />

0.00000<br />

000231<br />

0 - 00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0 - 00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000<br />

0.00000


E N G I N E E R I N GQD<br />

AITACHMENT B<br />

Project: 35H19605<br />

Calculation Number: 40430-CA-0003<br />

Silo 3 Alrflow Diagram, Drawing 94X-3900-H -01429 Sheet F-0002, Rev 0<br />

000232


!<br />

!<br />

!<br />

!<br />

!<br />

I<br />

I<br />

!<br />

!<br />

I<br />

!<br />

I<br />

!<br />

!<br />

I<br />

!<br />

I<br />

I<br />

!<br />

!<br />

-I<br />

Zi<br />

ri<br />

".<br />

. I<br />

i<br />

9<br />

J<br />

Q00233<br />

D I " I 0 I .<br />

I<br />

m.<br />

5069<br />

._ ~-<br />

a<br />

a


. . ..


8<br />

I '<br />

. .%<br />

SILO 3 PROJECT<br />

TIMED ESTIMATE OF SECONDARY WASTE<br />

PREPARED BY:<br />

SUBMITTED TO:<br />

FLUOR FERNALD, INC.<br />

CONTRACT NO. DE-AC24-01 OH201 15<br />

DOCUMENT NO.: 40430-RP-0012<br />

OJECT MANAGER<br />

REVIEWED BY: DATE:<br />

J#@j#iUyE!3, FW FERNALD, INC., ENGINEERING MANAGER<br />

w t<br />

> y d APPROVED BY: DATE:%/G/O L .<br />

DORIS EDWARDS, FLUOR FEMALD, INC., PROJECT MANAGER<br />

U.S. DEPARTMENT OF ENERGY<br />

FERNALD ENVIRONMENTAL MANAGEMENT PROJECT<br />

PREPARED UNDER CONTRACT NO. DE-AC24-01 OH201 15<br />

JACOBS ENGINEERING PROJECT NO. 35H19605<br />

- 5069<br />

008234


I Approved BY I<br />

TIMEQ ESTIMATE OF SECONDARY<br />

WASTE<br />

C. Smith<br />

40430-RP-0012<br />

July 11, 2002<br />

Revision 0<br />

Fernald Project Number 40430<br />

I I I I<br />

000235


0<br />

e<br />

i<br />

Revision<br />

0<br />

Date<br />

07/11 /02<br />

Revision Sheet<br />

Pages<br />

Affect e d<br />

ALL<br />

i .<br />

Timed Estimate <strong>of</strong> Secondary Waste for the Silo 3 Project<br />

Document No. 40430-RP-0012, Rev. 0<br />

JE Project No. 35H19605<br />

July 11,2002<br />

Reason for Revision<br />

ORIGINAL ISSUE<br />

,<br />

. . .<br />

. . ,. .<br />

_ .<br />

008236<br />

50 69.


Timed Estimate <strong>of</strong> Secondary Waste for the Silo 3 Project<br />

Document No. 40430-RP-0012, Rev. 0<br />

JE Project No. 35H19605<br />

July 11. 2002<br />

t,<br />

TABLE OF CONTENTS 5069<br />

1.0 TIMED ESTIMATE OF SECONDARY WASTE .................................................... 1<br />

2.0 DESIGN BASIS ............................................................................................ 2<br />

2.1 Pneumatic Retrieval System ......................... .................................................. 2<br />

2.2 Mechanical Retrieval System ......................................................................... 3<br />

2.3 Packaging System. .. . . .... .. .. . . ... . . . .. . ... .. .. .... .. . ... . .. . . . .. . .. . . . . .. .. .... .. . .. . .. . .. . . . . .. ... . . . 3<br />

2.4 Process Vent System ....... ...... , ......... ........... .... ..... ....... .. ......................... ...... 3<br />

2.5 Process /Decon Water., .. .... . . ... . .. .. . .. , .. .. .. .... . .... .. .. .... .. .. .. .... .... .. . .. . .. ... . . . . .. .. . . .. 4<br />

2.6 Compressed Air Systems ... .. ..... . , . .... .. .. ... . .. . ... . .. ........ .. .. .. .. . ... ... .. . .. ... .. . . .. .. . . . . 4<br />

2.7 HVAC System ...................... ...................................................................... 4<br />

2.8 Miscellaneous Streams ....... ..... .. ..... . . .. .... .. .. . . .. . .. .. . .. . .. .... .. .. .... .. . .. . .. ... . . . . .. .. . . .. 5<br />

3.0 ATTACHMENTS .......................................................................................... 5<br />

ii<br />

000237<br />

e<br />

e


EOJ<br />

HEPA<br />

HVAC<br />

MRS<br />

PPE<br />

PRS<br />

PVS<br />

U LPA<br />

VWMS<br />

end <strong>of</strong> job<br />

high-efficiency particulate air<br />

ACRONYMS<br />

heating, ventilation, and air conditioning<br />

Mechanical Retrieval System<br />

personal protective equipment<br />

Pneumatic Retrieval System<br />

Process Vent System .<br />

ultra-low penetrating air<br />

Vacuum Wand Management System<br />

i<br />

.- ..- . '-:<br />

.. . .<br />

. . , v . ,<br />

iii<br />

Timed Estimate <strong>of</strong> Secondary Waste for the sit0 3 Project<br />

Document No. 40430-RP-0012, Rev. 0<br />

JE Project No. 35H 19605<br />

July 11, 2002<br />

008238


__ __- -<br />

Timed Estimate <strong>of</strong> Secondary Waste for the Silo 3 Project<br />

Document No. 40430-RP-0012, Rev. 0<br />

JE Project No. 35H19605<br />

July 11, 2002<br />

___~ ____<br />

-~ - ~ --<br />

1 .O TIMED ESTIMATE OF SECONDARY WASTE - 0<br />

5069<br />

This study identifies and estimates the secondary waste streams that will be generated<br />

during the retrieval and packaging <strong>of</strong> Silo 3 material at the Fernald Environmental<br />

Management Project (FEMP) site in Fernald, Ohio. Secondary waste is defined as any<br />

waste generated as a byproduct during operations.<br />

This report subdivides the facility into a number <strong>of</strong> major areas or systems and the types<br />

and quantities <strong>of</strong> secondary waste that each will generate. The systems include:<br />

1. Pneumatic Retrieval System (PRS)<br />

2. Mechanical Retrieval System (MRS)<br />

3. Packaging System<br />

4. Process Vent System (PVS) ,<br />

5. Decontamination (Decon) Water<br />

6. Compressed Air Systems (both Plant & Instrument and Breathing Air Systems)<br />

7. Heating, Ventilation and Air Conditioning (HVAC)<br />

8. Miscellaneous<br />

Secondary waste streams considered in this estimate include filters (bag, cartridge, and<br />

panel type), containment devices (plastic sheeting), spool tubing, personal protective<br />

equipment (PPE) (e.g., coveralls, booties, cartridges, gloves), sample jarskontainers,<br />

chemical wipes from smear tests, decon water, and miscellaneous wastes (e.g.,<br />

lubrication oil, secondary containment water, boxes, and spools).<br />

Sanitary wastes from support trailers, <strong>of</strong>fice trash from the Operations Support Trailer, and<br />

wastes generated during the cleaning <strong>of</strong> empty containers are not included in the<br />

quantities provked in this report. No replacement <strong>of</strong> major equipment items from failures is<br />

anticipated. The facility will operate for less than 1 year. Secondary waste streams<br />

generated from decontamination and dismantlement <strong>of</strong> the facility are not included in this<br />

estimate.<br />

As a basis for this study, it is assumed that the PRS will operate for 3 months, then the<br />

MRS will operate for 6 months, and the packaging system and all support systems'will<br />

operate for the entire 9 months. The quantities <strong>of</strong> secondary waste generated for Silo 3<br />

operations are based upon these assumptions and others as noted. If Silo 3 operations<br />

were to continue beyond the assumed time frame, the generation <strong>of</strong> process-related<br />

secondary waste would not alter appreciably because the reduced material recovery rates<br />

would result in less frequent change-outs <strong>of</strong> filters, etc. However, extended operations will<br />

increase the generation <strong>of</strong> consumables, like PPE, proportionally.<br />

Table 1 (see Attachment) presents the Timed Estimate <strong>of</strong> Secondary Waste for the Silo 3<br />

Facility. The table includes descriptions, disposal as rad or non-rad, type, approximate size<br />

(if applicable), generation frequency, volume produced annually, and applicable notes as to<br />

the determination <strong>of</strong> secondary waste generated.<br />

000239<br />

1


-<br />

2.0 DESIGN BASIS<br />

2. I Pneumatic Retrieval System<br />

Timed Estimate <strong>of</strong> Secondary Waste for the Silo 3 Project<br />

Document No. 40430-RP-0012, Rev. 0<br />

JE Project No. 35H19605<br />

July 11, 2002<br />

The following assumptions apply to the PRS for the am’ount <strong>of</strong> secondary waste<br />

generated:<br />

0<br />

0<br />

e<br />

e<br />

0<br />

e<br />

0 .<br />

e<br />

e<br />

0<br />

e<br />

0<br />

Three 35 percent supply pre-filters from a 1 x 3 array will be changed out every 3<br />

weeks for 3 months.<br />

Three 90 percent supply final filters from a 1 x 3 array will be changed out every 6<br />

weeks for 3 months.<br />

Three supply high-efficiency particulate air (HEPA) filters from a 1 x 3 array will be<br />

changed out at the end <strong>of</strong> the PRS campaign.<br />

Three 35 percent exhaust pre-filtek from a 1 x 3 array will be changed out every 3<br />

weeks for 3 months.<br />

Three 90 percent exhaust final filters from a 1 x 3 array will be changed out every 3<br />

weeks for 3 months.<br />

Three HEPA exhaust filters from a 1 x 3 array will be changed out every 3 weeks for 3<br />

months.<br />

Three ultra-low penetrating air (ULPA) filters from a 1 x 3 array will be changed out at<br />

the end <strong>of</strong> the PRS campaign.<br />

A total <strong>of</strong> 44 fabric filter bags plus a 10 percent allowance for changeout during<br />

operations will be disposed <strong>of</strong> at the end <strong>of</strong> the PRS campaign.<br />

A total <strong>of</strong> four filter cartridges plus a 10 percent allowance for changeout during<br />

operations &ill be disposed <strong>of</strong> at the end <strong>of</strong> the PRS campaign.<br />

The plastic containment sleeving associated with the Vacuum Wand Management<br />

System (VWMS) (10 polyethylene sleeve bags) will be changed out every 6 weeks for<br />

3 months and will generate two drums <strong>of</strong> waste.<br />

The VWMS will generate 15 spool pieces <strong>of</strong> aluminum tubing for each <strong>of</strong> the 5 VWMS<br />

modules. This material will be disposed <strong>of</strong> at the end <strong>of</strong> the PRS campaign.<br />

The amount <strong>of</strong> PPE clothing generated as secondary waste will depend on the number<br />

<strong>of</strong> PPE entries per day. Based on a normal operation and regular maintenance<br />

schedule, it is estimated that 20 PPE entries will be made each day. This will provide<br />

10 persons with two changes a day, or it could be distributed between fewer operators<br />

with a greater changeout frequency. The PPE will be designated as 30 percent<br />

radiologically contaminated and 70 percent non-radiologically contaminated. This<br />

generation rate is based on 3 months, 4 weeks a month, and 5 days a week. It is<br />

assumed that 50 PPE units will be contained in a 55-gallon drum.<br />

.. I 000240<br />

2.


2.'2 Mechanical Retrieval System<br />

Timed Estimate <strong>of</strong> Secondary Waste for the Silo 3 Project<br />

Document No. 40430-RP-0012, Rev. 0<br />

JE Project No. 35H19605<br />

July 11, 2002<br />

The following assumptions apply to the MRS for the amount <strong>of</strong> secondary waste<br />

generated:<br />

0 The tether lines and cable associated with the excavator will be disposed <strong>of</strong> at the end<br />

<strong>of</strong> the MRS campaign. They will be placed in two 55-gallon drums.<br />

e<br />

The concrete that will be removed from the <strong>silo</strong> wall to provide access to the <strong>silo</strong> will<br />

be removed in a month. It will consist <strong>of</strong> pieces that combined will have dimensions <strong>of</strong><br />

15ftx20ftx1 ft.<br />

e The plastic containments and structures will be generated during the <strong>silo</strong> wall cutting in<br />

the first month <strong>of</strong> MRS operation. The debris will be equivalent to five 55-gallon drums.<br />

0<br />

A number <strong>of</strong> tools and consumables like saw blades and drill bits will be used to cut<br />

the <strong>silo</strong> wall during the first month'<strong>of</strong> MRS operation. An allowance <strong>of</strong> two 55-gallon<br />

drums was used for this waste estimate.<br />

0 Based on a normal operation and regular maintenance schedule, it is estimated that 20<br />

PPE entries will be made each day. This will provide 10 persons with two changes a<br />

day, or it could be distributed between fewer operators with a greater changeout<br />

frequency. The PPE will be designated as 50 percent radiologically contaminated and<br />

50 percent non-radiologically contaminated. This generation rate is based on 6 months,<br />

4 weeks a month, and 5 days a week. It is assumed that 50 PPE units will be<br />

contained in a 55-gallon drum. Using the same generation frequency as stated above<br />

and elevating the ratio <strong>of</strong> radiologically contaminated PPE units, the increased manual<br />

nature <strong>of</strong> work associated with the <strong>silo</strong> intrusion and the resultant increased secondary<br />

waste generation during the first month <strong>of</strong> operations for the MRS is addressed.<br />

2.3 Packaging System<br />

I<br />

The following assumptions apply to the Packaging System for the amount <strong>of</strong> secondary<br />

waste generated:<br />

Analytical sampling and testing protocols are being determined, An allowance <strong>of</strong> two<br />

drums for the duration <strong>of</strong> the project is included in the estimate. ,<br />

The PPE and respirators used for packaging system operations are included in PRS and<br />

MRS activities.<br />

2.4 Process Vent System -<br />

The following assumptions apply to the PVS for the amount <strong>of</strong> secondary waste<br />

generated :<br />

3<br />

000241


Timed Estimate <strong>of</strong> Secondary Waste for the Silo 3 Project<br />

Document No. 40430-RP-00 12, Rev. 0<br />

JE Project No. 35H19605<br />

July 1 1,2002<br />

a . . , :, -<br />

5069<br />

$ ,j., it**.;<br />

.c<br />

Six 35 percent supply pre-filters from a 2 x 3 array will be changed out every month<br />

for 6 months.'<br />

Six 90 percent final filters from a 2 x<br />

months.'<br />

Six HEPA filters from a 2 x 3 array will<br />

Six ULPA filters from a 2 x 3 array<br />

campaign. '<br />

3 array will be changed out every month for 6<br />

be changed out every month for 6 months. '<br />

will be changed out at the end <strong>of</strong> the MRS<br />

A total <strong>of</strong> 80 fabric filter bags plus a 5 percent allowance for changeout during<br />

operations will be disposed <strong>of</strong> at the end <strong>of</strong> the MRS campaign.<br />

The PPE and respirators used for packaging system operations are included in PRS and<br />

MRS activities.<br />

2.5 Process /Decon Water<br />

The following assumption applies to the Process/Decon Water System for the amount<br />

secondary waste generated:<br />

e An allowance <strong>of</strong> 5000 gallons for decon water for the duration <strong>of</strong> the project<br />

included in the estimate.<br />

2.6 Compressed Air Systems<br />

The following assumptions apply to the Compressed Air Systems for the amount<br />

secondary waste generated:<br />

Inlet filters for air supply will be changed out biweekly for 1 year.<br />

An allowanee <strong>of</strong> 3 ft3 is included in the estimate for desiccant and adsorbent.<br />

2.7 HVAC System<br />

I<br />

The following assumptions apply to the HVAC System for the amount <strong>of</strong> secondary waste<br />

generated:<br />

Six 35 percent supply pre-filters will be changed out at the end <strong>of</strong> 6 months.<br />

Six 90 percent final filters will be changed out at the end <strong>of</strong> 6 months.<br />

_. . --- -<br />

Six HEPA filterswill be changed out at the end <strong>of</strong> 1 year.<br />

Six ULPA filters will be changed out at the end <strong>of</strong> 1 year.<br />

Three inlet filters for the air-handling units will be replaced on a biweekly basis for 1<br />

year.<br />

' PVS Filter Trains are operated on alternate months<br />

. . -<br />

,.- 1 1 .. (. b ! '<br />

. . ._<br />

<strong>of</strong><br />

is<br />

Of<br />

- . -<br />

000242,


,: 'L - ~~<br />

*' j :-<br />

0<br />

- -~~____<br />

Timed Estimate <strong>of</strong> Secondary Waste for the Silo 3 Project<br />

Document No. 40430-RP-0012, Rev. 0<br />

JE Project No. 35H19605<br />

July 11, 2002<br />

The PPE and respirators used for HVAC are included in PRS and MRS activities.<br />

2.8 Miscellaneous Streams<br />

______<br />

- 5069<br />

The following assumptions apply to the miscellaneous stream amount <strong>of</strong> secondary waste<br />

generated:<br />

An allowance <strong>of</strong> one 55-gallon drum per month for secondary containment water is<br />

included in the estimate<br />

Unused Silo 3 sample material will be shipped to the same ultimate disposition as the<br />

bulk <strong>of</strong> the Silo 3 material recovered during operations. Silo 3 material in its sampling<br />

containers will be discarded in 55-gallon drums. An allowance <strong>of</strong> two drums is included<br />

in the estimate.<br />

An allowance <strong>of</strong> 5 gallons <strong>of</strong> lubricating oil is included in the estimate. One half will be<br />

used in 6 months and the other will be generated at the end.<br />

A 10 percent allowance for miscellaneous and currently unidentified streams is<br />

provided in the estimate for radiologically contaminated materials.<br />

A 25 percent allowance for miscellaneous and currently unidentified streams is<br />

provided in the estimate for non-radiologically contaminated materials.<br />

3.0 ATTACHMENTS<br />

Table 1, Secondary Waste Generation<br />

.. . ..<br />

5<br />

000243


,<br />

>.<br />

I<br />

s a \<br />

z z<br />

el<br />

> >


I<br />

00<br />

x<br />

n<br />

2<br />

U<br />

C<br />

m


d cu<br />

P<br />

> 2<br />

000247<br />

5u69


I.<br />

- .-<br />

c<br />

0 c<br />

m<br />

a<br />

t<br />

t<br />

cu<br />

T- 5069<br />

0<br />

'c


a<br />

a<br />

u,<br />

c<br />

-1


Signature Page<br />

I<br />

SILOS PROJECTS<br />

ENVIRONMENTAL MONITORING PLAN<br />

40000-PL-00 10<br />

Revision 2<br />

S. Beckman, Silos Project Environmental<br />

Compliance<br />

Date<br />

Reviewed by:<br />

1<br />

M. Frank, Manager Environmental Monitoring<br />

8lZ? /.- t3<br />

Date<br />

Approved by:<br />

R. Corra& Project Director, Silos Project<br />

Date<br />

(600249


-.<br />

Fhis page has been intentionally left blank.]<br />

000250


issue<br />

Authorization<br />

Date<br />

Effective<br />

Date<br />

PCN<br />

No.<br />

Rev.<br />

No.<br />

May 17, 2000 0<br />

November 1,<br />

2000<br />

September 1,<br />

2002<br />

Initial issue<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

Description<br />

Minor revision in response to comments on<br />

AWR RD package - Monitoring station<br />

designations in Sections 3.1.3 and 3.1.4 and<br />

Attachment A corrected to agree with new light<br />

pole numbers; IEMP reporting clarified in<br />

Section 4.<br />

Revision to for inclusion in revised Silos<br />

Projects Remedial Design Packages<br />

i<br />

69


-.<br />

This page has been intentionally left blank.<br />

ii<br />

5069


SECTION<br />

SILOS PROJECTS<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

ENVIRONMENTAL MONITORING PLAN<br />

40000-PL-00 1 0<br />

Revision 2<br />

TABLE OF CONTENTS<br />

1 .O General ................................................... .. .......................................................... 1<br />

2.0 Integrated Environmental Monitoring ....... .... .. . . .. . ... . .. .. ...... ... .. . ..... . .. .. .. ... .. ... . . . .. .... . . 1<br />

3.0 Project-Specific Environmental Monitoring ............................................................. 1<br />

3.1 Environmental Radiological Air Emissions Monitoring . .. .. .. ...... ... . . . .. .. . . ... . .. . . .. ... ... . .2<br />

3.1.1 Project-Specific Stack Monitoring Program ................................................... 2<br />

3.1.2 The IEMP Air Monitoring Program ............................................................... 3<br />

3.1.3 The IEMP Environmental Radon Monitoring Network ..................................... 3<br />

3.1.4 Project-Specific Air Particulate Monitoring Program ....................................... 4<br />

3.2 Direct Radiation Monitoring ..... . . . . . .. .. . ... ... .. . .. . . . .. .. .. . . . ... . . .. . .. .. .. .. . .. . . . . .. . . .. . . . .. ...... .5<br />

3.3 Wastewater Monitoring ........ ... ........ .......... . . .. .......................... ........... .............. 6<br />

Groundwater Monitoring ......................................................................................... 6<br />

4.0 Reporting ........................................................................................................... 7<br />

5.0 References ......................................................................................................... 7<br />

...<br />

Ill<br />

5069


- _________ ~<br />

~ .-<br />

s: '& 4 '<br />

..<br />

ALARA<br />

ARAR<br />

ASL<br />

AWR<br />

AWWT<br />

CERCLA<br />

DOE<br />

FEMP<br />

HAMDC<br />

IEMP<br />

ISER<br />

OU4<br />

pCi<br />

SCQ<br />

TLO<br />

WAC<br />

WPRAP<br />

~<br />

~ ___~ _ ~ _<br />

~ -<br />

ACRONYM LIST<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

- -__<br />

e<br />

5069<br />

As Low As Reasonably Achievable<br />

Applicable, Relevant, and Appropriate<br />

Analytical Support Level<br />

Accelerated Waste Retrieval<br />

Advanced Waste Water Treatment<br />

Comprehensive Environmental Response, Compensation and Liability Act<br />

<strong>Department</strong> <strong>of</strong> <strong>Energy</strong><br />

Fernald Environmental Management Project<br />

Highest allowable minimal detectable concentration<br />

Integrated Environmental Management Plan<br />

Integrated Site Environmental Report<br />

Operable Unit 4<br />

* pic0 curie<br />

Sitewide CERCLA Quality assurance plan<br />

Thermoluminescent Dosimeter<br />

Waste Acceptance Criteria<br />

Waste Pits Remedial Action Plan<br />

iV


F 33<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

a 1 SlLQS *, *: :rROJECTS<br />

*. ENVIRONMENTAL MONITORING PLAN 5 0 6 g<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

1.0 General<br />

The current focus <strong>of</strong> environmental monitoring at the Fernald Environmental Management<br />

Project (FEMP) is the implementation <strong>of</strong> site-wide environmental monitoring and project-specific<br />

environmental monitoring. Site-wide environmental monitoring is addressed in the Integrated<br />

Environmental Monitoring Plan (IEMP) while project-specific requirements are addressed within<br />

the environmental control plans, process control plans, and other design documents which<br />

constitute the project's remedial design package. For the Silo 3 Project, Silos 1 and 2<br />

Accelerated Waste Retrieval Project (AWR Project), and Silos 1 and 2 Project, modifications<br />

to the site-wide environmental program were made to support project activities. The focus <strong>of</strong><br />

this plan is to describe the project-specific and Integrated Environmental Monitoring Plan<br />

requirements for Operable Unit 4 (OU4) during the conduct <strong>of</strong> all\ three projects.<br />

13 2.0 Integrated Environmental Monitoring<br />

14<br />

15<br />

6<br />

7<br />

8<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

The IEMP focuses on monitoring air, direct radiation, groundwater, and surface water to ensure<br />

protection <strong>of</strong> human health and the environment during the conduct <strong>of</strong> site-wide remediation<br />

activities. The IEMP incorporates regulatory requirements for site-wide monitoring, trending,<br />

reporting, and it serves as the central reporting mechanism to the regulators and stakeholders<br />

for the ongoing emission control/ monitoring activities at the FEMP.<br />

3.0 Project-Specific Environmental Monitoring<br />

Project-specific environmental monitoring requirements are identified in the applicable design<br />

documentation for both the Silo 3 Project and the AWR Project (References 1 and 2). These<br />

requirements for the Silos 1 and 2 Project will be identified in the RD package for that project.<br />

Fluor Fernald Inc. has identified additional enhancements to the existing site monitoring<br />

program that are integral to all three projects. As a result, this project-specific environmental<br />

monitoring plan documents the additional requirements addressing air, direct radiation, and<br />

project wastewater (i.e., slurry wastewater and decontamination wastewater) monitoring<br />

within and surrounding specified project boundaries that will be established by Fluor Fernald,<br />

Inc. The need and extent <strong>of</strong> project-specific monitoring has been evaluated based on the<br />

following criteria:<br />

0 Project complexity, extent <strong>of</strong> contamination, and scope;<br />

0 Applicable, Relevant, and Appropriate Requirements (ARARs) compliance strategy;<br />

0 DOE Orders compliance strategy; and,<br />

0 Existing monitoring data, modeling, and monitoring programs.<br />

1 <strong>of</strong>7<br />

.


Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

5 n 5 9<br />

. f This project-specific environmental monitoring plan considers the location <strong>of</strong> the projects with -.<br />

w<br />

c 2' .'<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

( 18<br />

. 19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

.. * 37<br />

.-. _.<br />

respect to other remediation activities [e.g. the Waste Pit Remedial Action Pian (WPRAP)<br />

project] and the FEMP boundary. The plan also considers project-specific constraints such as<br />

the contaminants <strong>of</strong> concern; the characteristics <strong>of</strong> the OU4 wastes; and the material transfer,<br />

handling, and storage processes. Project-specific emission modeling <strong>of</strong> both normal and upset<br />

conditions have provided the basis for identifying and instituting process emission controls that<br />

are protective to the workers, public, and the environment (References 6 and 7). The<br />

effectiveness <strong>of</strong> the project-specific emission controls will be evaluated through analysis <strong>of</strong><br />

monitoring results to identify whether increased or altered emission control methods are<br />

necessary. Project-specific environmental monitoring summary results will be provided in<br />

project completion reports.<br />

1 2 3.1 Environmental -. Radiological Air Emissions Monitoring<br />

1 3 Environmental radiological air monitoring for the Silos Projects will -consist <strong>of</strong> three programs:<br />

14 1 ) Project-specific stack monitoring programs; 2) the IEMP air monitoring program (primarily<br />

15 property boundary and general site areas) including the environmental radon monitoring<br />

16 network; and 3) the Silos area project-specific air monitoring program (within the Silos project<br />

' 7 area boundary).<br />

3.1.1 Project-Specific Stack Monitoring Program<br />

The Silo 3 and Silos 1 and 2 AWR Project stack monitoring requirements are described in the<br />

RD Packages for the projects. Radiological contaminants represent the primary contaminants<br />

<strong>of</strong> concern, therefore the focus <strong>of</strong> stack air monitoring will be for radionuclides; however,<br />

monitoring for other contaminants <strong>of</strong> concern will be added, as warranted. Stack monitoring<br />

for the Silos 1 and 2 project will be addressed in the Silos 1 and 2 RD Package. All three<br />

projects will deploy isokinetic sampling for particulate radionuclides, monitoring, and recording<br />

<strong>of</strong> stack exhaust that is compliant with Title 40 <strong>of</strong> the Code <strong>of</strong> Federal Regulations (CFR), Part<br />

61, Subpart H, and DOE Order 5400.5, Section IV.6.B.<br />

Additionally, the stack exhaust will be continuously monitored for radon to verify that<br />

emissions are controlled such that fence line radon concentrations remain below 0.5 pCi/L, as<br />

an annual average above background. Exhaust Stack radon concentration data from this<br />

monitor will be modeled to determine the resulting fenceline radon concentration and verify<br />

compliance with the annual average 0.5 pCi/l above background fenceline criterion.<br />

Actual ambient concentrations measured by the fenceline and <strong>silo</strong> area radon monitors will be<br />

used to verify the modeling results. These measurements will be compared to historical<br />

baseline data to identify any trends (Le., increased fenceline concentrations) potentially<br />

resulting from Silos Project operations. Data from the background monitors specified in the<br />

2 <strong>of</strong> 7<br />

000256


e 1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

.<br />

i<br />

14<br />

15<br />

16<br />

17<br />

;:<br />

20<br />

, 'r 6.<br />

.& r, '-<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

e;(&<br />

J 9<br />

IEMP will be used to determine background concentrations for use in determining the "annual<br />

average above-background" concentrations at the fenceline monitors in order to verify that the<br />

modeled stack data successfully demonstrate compliance with the annual average 0.5 pCi/l<br />

above background fenceline criterion.<br />

3.1.2 The IEMP Air Monitoring Program<br />

The IEMP air monitoring program is an established program that will continue throughout<br />

remediation. Within the IEMP air monitoring program, the radiological air particulate monitoring<br />

program provides a fenceline monitoring network for assessing the collective site-wide impact<br />

<strong>of</strong> FEMP multiple concurrent remediation activities. This program demonstrates FEMP<br />

compliance with all ARARs and provides early warning feedback regarding the cumulative<br />

sitewide effectiveness <strong>of</strong> project-specific emission controls. The radiological air particulate<br />

monitoring program is reviewed annually in order to account for changes in remediation<br />

projects at the FEMP.<br />

Additionally, within the IEMP air monitoring program, the radon monitoring network has been<br />

designed to focus on monitoring Silos 1 and 2 headspaces, environmental radon levels in the<br />

vicinity <strong>of</strong> the <strong>silo</strong>s, as well as radon levels at the site fenceline. In support <strong>of</strong> the Silo 3 and<br />

AWR projects and in anticipation <strong>of</strong> treatment <strong>of</strong> Silo1 and 2 material, the IEMP environmental<br />

radon monitoring network has been modified as described below, and as summarized in<br />

Revision 1 <strong>of</strong> this plan.<br />

21 3.1.3 The IEMP Environmental Radon Monitoring Network<br />

22 During the Silo 3 Project and the AWR Project, remediation activities directed toward the<br />

23 removal, processing, and storage <strong>of</strong> radon-generating wastes create the potential for the<br />

24 release <strong>of</strong> radon to the environment. Modifications and additions to the existing IEMP<br />

25 environmental radon monitoring network were implemented in 2000 and early 2001 to<br />

26 accommodate construction activities associated with the AWR Project and to better monitor<br />

27 levels around the Silo 1 and 2 area during the OU4 remediation. Four existing radon monitoring<br />

28 stations near the K-65 Silos were re-located to accommodate construction activities. . The<br />

29 monitoring stations were re-located as follows:<br />

30 0 KNW at the K-65 exclusion fence was moved to the western side <strong>of</strong> the road, re-<br />

31 designated KNW-A.<br />

32 0 KSW at the K-65 exclusion fence was moved to the western side <strong>of</strong> the road, re-<br />

33 designated KSW-A.<br />

34 0 T28 northeast <strong>of</strong> the K-65 exclusion fence was moved across the road; in the prevailing<br />

35 . wind direction from the K-65 Silos, re-designated T28A.<br />

0 KNE at the K-65 exclusion fence was moved approximately 50 feet north <strong>of</strong> its former<br />

location and re-designated KNE-A.<br />

3 <strong>of</strong> 7<br />

.


.<br />

1<br />

2<br />

- 3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

I 20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

~ -- -- - - - - __ ---4- 'n * 6.-9- __<br />

0<br />

To better monitor radon levels in the K-65 area, five radon monitoring locations were added<br />

to the existing IEMP radon network in 2000. The monitors currently provide additional<br />

monitoring <strong>of</strong> radon levels in the vicinity <strong>of</strong> the <strong>silo</strong>s and will continue to do so during the Silo<br />

3 and AWR projects and subsequent operations for the Silos 1 and 2 material. The locations<br />

and designations for the monitors are:<br />

0<br />

0<br />

0<br />

0<br />

0<br />

North <strong>of</strong> Silo 2 at the K-65 exclusion fence, designated KNO.<br />

South <strong>of</strong> Silo 1 near the new south camera tower, designated KSO.<br />

East <strong>of</strong> Silo 4 and in the prevailing wind direction from Silo 3, designated LP2.<br />

East <strong>of</strong> the <strong>silo</strong> project construction area near Trailer #117, designated T117.<br />

An additional station was selected on the FEMP's west fenceline-to supplement the<br />

established IEMP monitoring network. The monitor (PR-1) is co-located with the WPTH-2<br />

*<br />

air particulafe monitor, on the western perimeter <strong>of</strong> the facility.<br />

The detail <strong>of</strong> the OU4 radon monitoring locations is shown on Dwg. 94X-5500-SK-5527<br />

(Attachment A). The map <strong>of</strong> the entire IEMP radon monitoring network is shown Attachment<br />

B. In order to accommodate construction activities, it may be necessary to re-locate radon<br />

monitors. Changes in monitoring locations will be documented and reviewed through the<br />

Design Change Notice (DCN) process.<br />

Real-time data from selected fenceline and <strong>silo</strong>s area monitors is available via a secure Internet<br />

address (the IEMP Data Information Site). The data will include the date and time <strong>of</strong> the most<br />

recent transmission, location, and latest radon concentration. This data is sent from the<br />

monitoring instrumentation without review or validation. Data review and validation will be<br />

conducted in a manner consistent with the current methods used under the IEMP radon<br />

monitoring program. Monthly radon summary data will also be posted to the IEMP Data<br />

Information Site after quarterly data quality reviews are completed.<br />

3.1.4 Project-Specific Air Particulate Monitoring Program<br />

The IEMP air particulate monitoring program, which is based on air monitors located at the<br />

FEMP's perimeter fenceline, provides early warning feedback regarding the cumulative sitewide<br />

effectiveness <strong>of</strong> all remediation project emission controls. The OU4 project-specific air<br />

particulate monitoring program will provide data that confirms the performance <strong>of</strong> the projects'<br />

emissions controls. In addition to providing confirmatory data, the monitoring program will also<br />

provide data to quantify the nature and extent <strong>of</strong> releases from the projects in the event <strong>of</strong> an<br />

upset condition. The program consists <strong>of</strong> four high-volume particulate air samplers that are<br />

co-located with the radon monitors at the Bio-surge lagoon, LP2, T117, and KNW-A locations<br />

shown on Attachment A. These samplers maintain a consistent air sample flow rate between<br />

40 and 50 cubic feet per minute through an 8 by 10-inch filter. In order to accommodate<br />

QOWS8<br />

4 <strong>of</strong> 7


L<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

. .? !\\ r-<br />

I’ I- .<br />

e- 5069<br />

c<br />

August 29, 2002<br />

. construction activities, it may be necessary to re-locate air monitors. Changes in monitoring<br />

locations will be documented and reviewed through the Design Change Notice (DCN) process.<br />

The sampling and analysis program will consist <strong>of</strong> bi-weekly isotopic thorium, radium-226, and<br />

total particulate analyses. Results from the isotopic thorium analysis (thorium-228, thorium-<br />

230, and thorium-232) will be used to specifically monitor thorium-230, the primary isotope<br />

<strong>of</strong> concern within the Silo 3 residues. The radium-226 analysis will be used to assess the<br />

effectiveness <strong>of</strong> prosess-control measures during the Silo 3 and AWR projects. Total<br />

particulate analysis will be used to determine if the results are indicative <strong>of</strong> project emissions<br />

or reflect the measurement <strong>of</strong> fugitive emissions from other sources (e.g. dust from<br />

construction vehicle traffic). The Project may evaluate the feasibility <strong>of</strong> changing the sample<br />

frequency (from biweekly to weekly or monthly) based upon factors such as historical results,<br />

the status <strong>of</strong> Silos Project activities, results from occupational particulate monitors, and the<br />

frequency <strong>of</strong> other IEMP boundary monitors. Any proposed change to the particulate sample<br />

analysis frequency will be documented and reviewed through the DCN process. .<br />

Samples will be analyzed according to the requirements for Analytical Support Level (ASL) B<br />

in the Sitewide CERCLA Quality (SCQ) assurance plan. The highest allowable minimal<br />

detectable concentrations (HAMDCs) for ASL B are 9.0 pCi/filter for isotopic thorium analyses<br />

and 4.0 pCi/filter for radium-226 analysis.<br />

3.2 Direct Radiation Monitoring<br />

In addition to airborne emissions, exposure to direct radiation is also a radiological hazard at<br />

the FEMP, particularly in the vicinity <strong>of</strong> Silo 1 and Silo 2. Direct, (penetrating) radiation is<br />

emitted from the radioactive materials stored onsite. The largest source <strong>of</strong> penetrating<br />

radiation at the FEMP results from the transformation <strong>of</strong> radium-bearing materials stored in<br />

Silos 1 and 2.<br />

The existing IEMP environmental monitoring network includes five locations that monitor direct<br />

radiation levels in the vicinity <strong>of</strong> Silos 1 and 2. The monitoring is conducted using<br />

thermoluminescent dosimeters (TLDs). The monitoring network has been established and the<br />

locations were strategically chosen to ensure a monitoring envelope for each radiation source.<br />

During the AWR Project, major sources <strong>of</strong> direct radiation at the FEMP will undergo change.<br />

For example, the operation <strong>of</strong> the Radon Control System (RCS) is expected to result in lower<br />

direct radiation levels on top <strong>of</strong> the <strong>silo</strong>s and elevated direct radiation levels adjacent to the<br />

carbon beds. The removal <strong>of</strong> the berm surrounding Silos 1 and 2 will result in changes to<br />

existing radiation shielding. These processes, together with the removal and relocation <strong>of</strong> the<br />

<strong>silo</strong> wastes to the Transfer Tank Area (TTA) may require modification <strong>of</strong> the IEMP TLD network<br />

to ensure adequate coverage <strong>of</strong> direct radiation sources.<br />

5 <strong>of</strong> 7<br />

000259


-- f ' ..<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

______ 0-69-. _- August 29, __ 2002<br />

l<br />

/<br />

1 The existing IEMP TLD monitoring network will be modified in late 2002 to take into account<br />

2 the pending relocation <strong>of</strong> the wastes stored in the K-65 <strong>silo</strong>s. As necessary, current TLD<br />

3 locations will be adjusted and new TLD locations added to adequately characterize and monitor<br />

4 the direct radiation in the vicinity <strong>of</strong> the AWR project and the site fenceline. The following<br />

5 new TLD locations are planned for the Silos area:<br />

6 0 Location 43 located on the western side <strong>of</strong> the Silos, near the KNW-A radon monitor,<br />

7 0 Location 44 located on the western side <strong>of</strong> the Silos, near the KSW-A radon monitor.<br />

8 Location 45 located on the southern side <strong>of</strong> the Silos, near the KSO radon monitor<br />

9 0 Location 46 located on the project boundary south on the transfer tank area building<br />

10 0 Location 47 located on the project boundary south <strong>of</strong> the planned location <strong>of</strong> the Silos 1<br />

11 and 2 remediation facility<br />

12<br />

13<br />

14<br />

15<br />

The <strong>silo</strong> area dirpct radiation monitoring locations (TLDs) are shown in Attachment A. Due to<br />

project construction activities, it may be necessary to re-locate TLDs. Changes in monitoring<br />

locations will be documented and approved through the DCN process<br />

16 3.3 Wastewater Monitoring<br />

17 All wastewater from the Silo 3 Project, AWR Project, and Silos 1 and 2 Project will be<br />

I 8 discharged to the FEMP Advanced Wastewater Treatment ( A M ) facility, after sampling to<br />

19 confirm that it is acceptable for transfer. Expected wastewater streams from Silos Project<br />

20 activities will be appropriately incorporated into the FEMP NPDES permit. Given the expected<br />

21 characteristics <strong>of</strong> the wastewater, and the discharge criteria for the AWWT, no wastewater<br />

22 unacceptable for transfer to the AWWT is expected to be generated. If analytical results for<br />

23 a particular batch <strong>of</strong> wastewater are found to be unacceptable, the batch will be managed on<br />

24 a case-by-case basis at the direction <strong>of</strong> AWWT operations. The specific disposition <strong>of</strong> the<br />

25 wastewater will be dependant upon factors including the amount, and specific characteristics<br />

26 <strong>of</strong> the batch <strong>of</strong> wastewater and upon current and planned AWWT operations at the time the<br />

27 AWR wastewater is generated. Details on the disposition <strong>of</strong> wastewater from each project<br />

28<br />

29<br />

30<br />

are provided in the Environmental Control Plan included in each project's Remedial Design<br />

-<br />

Package.<br />

31 Groundwater Monitoring<br />

32<br />

33<br />

34<br />

35<br />

36<br />

.- 37<br />

Groundwater monitoring is currently managed by the Aquifer Restoration Project (ARP). The<br />

ARP provides the monitoring necessary to identify the effect <strong>of</strong> FEMP remediation activities.<br />

This monitoring is adequate for assessing potential impacts on groundwater quality due to the<br />

Silo 3 and AWR projects. In the event that collection <strong>of</strong> groundwater samples is needed to<br />

support the projects (or to assess any incidental releases), ARP managers will be notified to<br />

coordinate the appropriate groundwater monitoring activity.<br />

6 <strong>of</strong> 7


2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

4.0 Reporting<br />

Silos Project Environmental Monitoring Pian<br />

40000-PL-0010<br />

August 29, 2002<br />

5-- 5Qh9<br />

All project-specific environmental monitoring will be reported in Project Completion Reports,<br />

which will include a summary <strong>of</strong> the results generated during the projects. For radon<br />

monitoring, the report will identify each <strong>of</strong> the radon monitoring locations and the minimum,<br />

maximum, and average radon levels at each <strong>of</strong> those locations. For project-specific air<br />

particulate monitoring, the report will identify each <strong>of</strong> the monitoring locations and the<br />

minimum, maximum, and average levels <strong>of</strong> each analyte at each <strong>of</strong> the locations. For direct<br />

radiation monitoring, the report will include -TLD locations and a summary <strong>of</strong> quarterly results.<br />

Data from the radon monitors discussed in Section 3.1.3 will be reported in the IEMP mid-year<br />

summary and the Site Environmental Report (SER) in addition to the radon summary data and<br />

real-time radon data available through the IEMP Data Information Site. Direct radiation<br />

monitoring datasfrom the TLD locations discussed in Section 3.2 will also be reported in these<br />

two IEMP reports. In addition, other project-specific data may be reported as necessary in the<br />

IEMP mid-year report or SER to explain results that have the potential to impact regulatory<br />

compliance limits as measured through the IEMP air monitoring program.<br />

5.0 References<br />

Revised Silo 3 Project Remedial Design Package, 40430-RDP-0001, May 2002.<br />

Revised Silos 1 and 2 Accelerated Waste Retrieval Project Remedial Design Package,<br />

June 2002<br />

Environmental Control Plan for the Silos 1 and 2 Accelerated Waste Retrieval Project,<br />

407 10-PL-0007, June 2002.<br />

Silo 3 Project Environmental Control Pian, 40430-PL-0005, April 2002.<br />

Integrated Environmental Monitoring Plan, 2505-WP-0022, Revision 2 January 200 1 .<br />

Preliminary Hazards Analysis Report for Silo 3, RMR-0445-0056-002, Rocky Mountain<br />

Remediation Services, January 2000.<br />

Preliminary Hazards Analysis report for the Silos 1 and 2 Accelerated Waste Retrieval<br />

Project, 624-P622-50, Foster Wheeler Environmental Corporation, January 2000<br />

7 <strong>of</strong> 7


Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

i’ a 5069<br />

-.<br />

Attachment A<br />

008262


A<br />

I<br />

8 I 7 I 6 I 5 0 4 I 3 I 2 I' 1<br />

a<br />

8<br />

8<br />

8<br />

9<br />

8 8<br />

s<br />

8 m<br />

(0<br />

2 *<br />

9<br />

0<br />

Q) u1<br />

2<br />

*<br />

0<br />

0 e *<br />

2<br />

s!<br />

r- *<br />

2<br />

9<br />

8 N<br />

r- *<br />

2<br />

0<br />

n<br />

yc *<br />

2<br />

3<br />

s<br />

2<br />

UY r- 8<br />

*<br />

2<br />

8 r- *<br />

2<br />

2<br />

r- *<br />

2<br />

w<br />

I<br />

w<br />

I<br />

w<br />

I<br />

w<br />

I<br />

w<br />

I<br />

w<br />

I<br />

td<br />

I<br />

w<br />

I<br />

w<br />

I<br />

w<br />

I<br />

I I<br />

BADGE IN<br />

STATION<br />

t-<br />

- N. 481100.0<br />

- N. 481Ooo.o<br />

- N. 480900.0<br />

- N. 480700.0<br />

i - N. 480600.0<br />

i i<br />

i<br />

i<br />

=!= --,RALLY(poINT<br />

I o<br />

i<br />

i<br />

- N. 480500.0<br />

i - N. 480300.0<br />

i<br />

-N. 480200.0<br />

--N. 480100.0<br />

+<br />

0<br />

H<br />

#<br />

A<br />

0<br />

JFGFND OF SYMaqLs<br />

= RADON MONITOR LOCATION<br />

= RALLY POINT LOCATION<br />

= BADGE IN STATION LOCATION<br />

= EXISTING TLD LOCATION<br />

= NEW TLD LOCATION<br />

= HIGH VOLUME PtmncuuTE<br />

MONITOR LOCATION<br />

DEPARTMENT OF -ENERGY<br />

FERNAID ENVlRONMENfAL MANAGEMENT PROJECl<br />

LI-llWo-<br />

FLUOR DANIEL<br />

I FERNALD<br />

9-<br />

RADON MONITOR LOCATION<br />

SILOS AREA LOCATION PLAN<br />

OU 4 SILOS PROJECT


-.<br />

Attachment B<br />

Silos Project Environmental Monitoring Plan<br />

40000-PL-0010<br />

August 29, 2002<br />

5069


SEE DRAWING<br />

94X-5500-SK-5527<br />

. .. . . . .<br />

..<br />

LEGEND:<br />

RAD1 OLOGl-CAL AI R MO N IT0 RI N G LO CAT1 0 N S<br />

AMs- 12<br />

( BACKGROUND<br />

-@A<br />

3.2 MILES<br />

MORGAN<br />

TOWNSHIP<br />

AMs- 16<br />

C BACKGROUND)<br />

6:2 MILES<br />

MIAMITDWN, PA<br />

OHIO 16<br />

/"\ -'<br />

a - SILO ____ HEAd SPACE RADON --- FEMP BOUNDARY<br />

--_ .CAI<br />

LOCATION 0 AMS LOCATION I A ~ A T I ~ L I<br />

A RAOC IN LOCATION<br />

LVLn I IUlY El WPTh LU~MIIUI- ,/ CENTER OF PRODUCTION<br />

0007fi.~ AREA TO OFF MAP LOCATION<br />

a I n fiAmnN i DENOTES DISTANCE FROM<br />

I<br />

e PKUJLLI ^3EC1 3t FI C<br />

1-OCATION MAP FOR AIR MON --- ITORING LOCATIONS<br />

P<br />

-..<br />

-a<br />

ANALYTICAL .REGIME<br />

AMS - BIWEEKLY<br />

* TOTAL U<br />

* TOTAL PARTICULATE<br />

- QUARTERLY COMPOSITE<br />

* u234<br />

, u 2w/u6, u 2sB<br />

* Thz8, Th 2x1 Th<br />

WPTH - BIWEEKLY<br />

252<br />

* Th*'# Th 250 8 Th<br />

* TOTAL PARTICULATE<br />

2000 1000<br />

SCALE<br />

2s2<br />

5869<br />

000265<br />

..<br />

0 ' 2000 FEEI<br />

Mor. 27. 2000


a<br />

SILOS PROJECT<br />

Health and<br />

Safety Controls<br />

40000-PL-00 14<br />

MARCH 2002<br />

FERNALD ENVIRONMENTAL MANAGEMENT PROJECT<br />

FERNALD OHIO<br />

U S DEPARTMENT OF ENERGY 000266


a.<br />

This document has been reviewed and approved by<br />

40000-PL 0014 H&S Controls<br />

Project Manager - - Date 4//8/oS<br />

Health and Safety<br />

Manager Date<br />

Industrial Safety<br />

Lead Date<br />

Industrial Hygiene<br />

Lead<br />

Page i<br />

Date<br />

#/Fa L<br />

q?qki-<br />

000267<br />

5069


40000 PL 0014 H&S Controls<br />

The Health and Safety Controls portion <strong>of</strong> the Remedial Design Package is designed to illustrate<br />

the planned preventative or mitigative measures to address the occupational hazards identified<br />

for the Silos Project The Health and Safety Controls are presented consistent with the Silos<br />

Health and Safety Plan The Silos Health and Safety Plan takes into account the specific hazards<br />

inherent to the Silos Project site and presents procedures to be followed by Fluor Fernald its<br />

subcontractors and all other on site personnel to avoid and if necessary protect against health<br />

and/or safety hazards Exhibit 1 0 1 an excerpt from the Silos Health and Safety Plan illustrates<br />

the activities associated with the Silos Project and the hazards associated with the activities<br />

. The Health and Safety Matrix (Exhibit 1 0 2) lists the occupational hazards as identified in the<br />

Silos Project Health and Safety Plan The hazards identified in the Health and Safety Matrix are<br />

limited to those considered to be common construction and/or occupational safety hazards<br />

These hazards are addressed by the safety programs policies and procedures used to ensure that<br />

work is performed safely Some <strong>of</strong> the health and safety controls used to mitigate the<br />

occupational hazards identified are listed in terms <strong>of</strong><br />

0 Frequency and type <strong>of</strong> monitoring required<br />

0 Personnel Protective Equipment (PPE)<br />

0 Trahinp Requirements<br />

0 Medical Monitoring Requirements<br />

0 Administrative and Engineering Control Measures<br />

0 Permit@)<br />

0 Decontamination and Disposal Procedures<br />

The FEW Emergency Plan PL 3020 describes the emergency management program that<br />

responds to potential hazards at the site Potential hazards identified at FEME) include severe<br />

weather hazardous and radiological material releases bomb threats vehicldtransportation<br />

accidents earthquakes and other events The Emergency Plan identifies the responsible parties<br />

to contact in the event <strong>of</strong> an emergency and details which personnel would respond to the event<br />

Specific elements <strong>of</strong> emergency support procedures are addressed in the Silos Project Health and<br />

Safety Plan These elements include communications local emergency support units<br />

preparation for medical emergencies first aid for injuries incurred on site record keeping and<br />

emergency site evacuation procedures<br />

The health and safety controls will be developed firther as the Operations Phase <strong>of</strong> the Silos<br />

Project is hrther delineated and with the development <strong>of</strong> activity specific Work Plans<br />

Additional occupational hazards and associated mitigative measures may be identified as the<br />

project progresses<br />

Page 1 <strong>of</strong> 18<br />

5069


I<br />

r<br />

tp<br />

t<br />

1<br />

m<br />

f<br />

z<br />

0<br />

0<br />

3 0<br />

0<br />

0<br />

EL<br />

c<br />

c,<br />

Q<br />

s<br />

v)<br />

a<br />

.e e<br />

m<br />

a


E:<br />

(d - P k a<br />

-I<br />

tE<br />

c<br />

4<br />

- 5069<br />

I


1 5<br />

5 L<br />

- m<br />

P<br />

f<br />

0<br />

0<br />

-!I<br />

4.<br />

0<br />

.-<br />

or<br />

I<br />

I<br />

I<br />

5069


080273


L 5<br />

- m<br />

Q,<br />

I<br />

d<br />

v-<br />

0<br />

3<br />

4 0<br />

0<br />

*<br />

I<br />

5069<br />

000274


sg<br />

2.<br />

E<br />

Q<br />

9<br />

50 69<br />

L-


E<br />

0<br />

B<br />

I-<br />

O<br />

4<br />

I<br />

50 69


i<br />

a<br />

f -<br />

8<br />

- c l<br />

(.<br />

E<br />

4<br />

h<br />

C<br />

C<br />

C<br />

C<br />

1<br />

tl<br />

000277<br />

5069


: ."!<br />

. * , _<br />

-- 5069


C<br />

a<br />

f -<br />

- 0<br />

5<br />

:<br />

5<br />

H<br />

C<br />

C<br />

C<br />

C<br />

d


i- 't<br />

',- ? . 50 69<br />

000.280


u)<br />

L<br />

c el . ;<br />

2. I<br />

I 000281<br />

I<br />

I<br />

1<br />

I


! 4<br />

z<br />

0<br />

0<br />

.-<br />

A<<br />

1<br />

- 5069


Q<br />

5<br />

- a<br />

I<br />

! j<br />

d<br />

T-<br />

O<br />

0<br />

4<br />

% 0<br />

0<br />

0<br />

-r<br />

I<br />

a<br />

000283<br />

I


I 506


Civil Drawings<br />

94X-3900-G-01297 Civil Site Plan<br />

94X-3900-G-01298 Grading, Drainage, and Erosion Control Plan<br />

Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision 1, September 2003<br />

5069


a<br />

a<br />

I I<br />

I---. .._ 7<br />

I 2 I 3 I 4<br />

I<br />

I<br />

3 4 I 5 I 6<br />

5 l 6 7 I a<br />

- 2<br />

I<br />

\IOTES:<br />

I<br />

i FOR GEEERAL WTES NO LE- SEE y(EET G3102.<br />

!. FOR ENfRAL ARR*HGDIENT YE PEE1 uooO1.<br />

1. FOR STRVCTUFVL FC4QQATVIS NO BulLDHts Sa SHEET SOUO.<br />

-<br />

r<br />

, 5069<br />

IINATE LISTIN(<br />

cool -<br />

=<br />

1<br />

2<br />

3<br />

4<br />

- 5<br />

6<br />

7<br />

8<br />

9<br />

m<br />

11<br />

12<br />

13<br />

u<br />

15<br />

16<br />

l7<br />

m<br />

19<br />

-<br />

&<br />

& 27<br />

28 -<br />

48087154<br />

480869.58<br />

480892.57<br />

480890.54<br />

480868.71<br />

480867.24<br />

480839.85<br />

480857.32<br />

480780.01<br />

480781.21 ;<br />

480775.S.<br />

480775.26<br />

480737.94<br />

480724.50<br />

480702.26<br />

480704.l2<br />

480708.98<br />

480711.76<br />

480815.22<br />

480815.0<br />

?%E<br />

t-2!zE&<br />

u*c*h.*<br />

480851.35<br />

480874.36<br />

ESTNG<br />

~4rma.n<br />

l347010.47<br />

l347onlo<br />

l347085.39<br />

1347067.59<br />

U47121.57<br />

1347129.07<br />

134702.94<br />

l3470l.37<br />

047127.47<br />

l347U7.31<br />

l347U1.56<br />

l347U0.54<br />

U47l34.17<br />

l347Lu.56<br />

1347065.59<br />

l347oM.80<br />

U46963.34<br />

-6966.12<br />

-<br />

l347065.85<br />

wi$mY<br />

1347028.29<br />

REF DWG NO. DRAWNC TITLE<br />

YO001 YECMICM/GDERM LRRANGEYENT PLOT PLul<br />

SO120 STRUCTURUFOWDATUWS GENERAL STE PLAN<br />

1<br />

SCKE: 1"- 20'<br />

I -auuam--o.n<br />

Imnl CI<br />

IMSIom<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

ERNMD WR-AL YANAGEMENT PROJECT<br />

REvDm PER DCN 401.30-EG-073 I....lud/<br />

!3Lo 3


!_ ".""".. I<br />

..<br />

. .. ...<br />

..<br />

I-- ...<br />

I<br />

L<br />

I 2 I 3 I 4 I 5 6 7 I a<br />

I I<br />

I I I<br />

NOTES:<br />

I<br />

1. NL ORMNAGE SWLL BE WECTEJJ TOWIRD ONE OF THE EXSTNC<br />

SA PAD OrUINKiE S TWTWES WHERE POSSBLE.<br />

2. AIL sED.ENT pw) EROSION CMROL FEATlRES WUL BE WST*LLEO<br />

AS RECUSED AND OPERATIDNK FWOR TO ELRTH WSTWANCE<br />

ACTIVITIES.<br />

3. CONTRACTOR SHML BE RESP0NSrBI.f FOR RWOVK OF STORYWATER<br />

COUTCTW<br />

WATER RESUTIMC IN MEAS FROM EXCAVATED RPPIU: BELOW OF CROUH) GRADE. OR *NI -OFF DISOURCE WATER<br />

IRE& L(VST BE ROUTED T~ROUQI<br />

SEDDIENTATDN co)(TRoL STRLICTUES *M) NOT DISCHLRGED WIECTL'<br />

NTO REECOVWC CH-s. RVNOFF ouu Ef VUUCED IN<br />

ACCORDANCE<br />

A)(D TRWSPMITED VllH FEW IO AN STORUWATER<br />

ON-SITE LOCATUN PoUWlON DETERWO PREVENTION BY THE RAN<br />

FROU TRD(Ms OR o m<br />

OWNER.<br />

4. ROOF DRMS FROU KL BULMNGS W L W TO THE EAST<br />

TOWIRD THE ISA P*D WHWE PO==.<br />

5. SBT FENCE LOCATIONS SHOWN ARE AVROXOIATE. PM) KJDITIONAL<br />

SILT FENCE AND/OR ADJUST LOCATION AS )(EcEssARY TO WET<br />

FlELD COLWTIONS.<br />

6. GRADE OlTW TO FLOW TO THE NORTH..<br />

7. CONTRPETOR YWI PROECT EXISTNC CATCn ESNS UUI OTHER<br />

STORUWATER CONTROLS DURMG CONSTRUCTION.<br />

- 5069<br />

9. FOR GEMRK NOTES LEGEND AND u Tnm MSICNATORS SEE<br />

=ET ~31~2.<br />

3. .EXCAVATKN. GR-C PNO 8PCXFILl.INt W U BE PERFORYED FOR<br />

THE sno REWNFORCEUENT DELIONSTRATION N THE SILO 4 PREA<br />

REF DWG NO.<br />

I<br />

DRAWING TITLE<br />

I<br />

SCNE: 1"- 20<br />

UNITED STATES<br />

-<br />

n M lRvm[ I<br />

D_<br />

-P--<br />

L(yII0MTI<br />

DEPARTMENT OF ENERGY<br />

FERNALD RlvlROWYDCTAL MANAGEMENT PROJECl<br />

TKTDLWmPmeY


W<br />

n<br />

U


Process Flow Diagrams<br />

94X-3900-F-01428 Material Balance Table<br />

94X-3900-F-0 1 429 Material Retrieval and Feed Systems<br />

94X-3900-F-0143 1 Process Vent and Packaging Systems<br />

94X-3900-F-0 1 430 Additive and Wastewater Systems<br />

94X-3900-F-01432 Plant, Instrument, and Breathing Air Systems<br />

Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision 1, September 2003<br />

000289


+<br />

I I 2 I 3 I 4 I 5 I 6 I 7 I a<br />

STREAM DESCRPTION<br />

TOTAL FLOW<br />

TO PROCESS<br />

EXHWST FANS<br />

TOT& FLOW<br />

FROM PROCESS<br />

EXHAVST FMIS<br />

PROCESS<br />

BVlLOlNG<br />

EXHAUST<br />

SILO 3 - MATERIAL BALANCE TABLE<br />

TOT* EXHAUST<br />

oncHmcx OF<br />

FROU STACK EXCAVATOR ROOU<br />

PND EXCAVATOR<br />

SERVICE ROOM<br />

SWAP PVUPS<br />

oncnmx OF<br />

WASTEWATER<br />

PUUPS ---<br />

PHASE 2 bPPLLS TO EXCAVATION OF SLO 3 UATERIAL.<br />

3. UWOR OlSCREP/WCIES IN UASS BALANCE t4J.f THE RESULT OF<br />

, EITHER ROUNDOFF OR TRUNCATIOII.<br />

1. ESTIUATEO<br />

TOT& OUANTITY TO BE OF 5088 SLO yoa. 3 UATERIAL TO BE REUOMO IS<br />

6. OENSlTY OF 42.4 LBlFT J WAS USE0 FOR SLO 3 UATERIAL<br />

FROU lQSTORC& DATA LNO CHmRLETERIZAWJN. TREATLBILITY<br />

#MI COUPACTION STVDY.<br />

7.mo 3 UATEWAL n 5.2% WATER BY WEIGHT FROM<br />

STABelZATlON WORK PLAN 40430-WP-ooO2.<br />

NOTES: 506.9<br />

1. DURWG PHASE 2. PIR WILL BE REUOVED USING STREW 6.<br />

2. DCRlNG PHASE 1. AIR CbN BE REUOVEO USING STREW 6<br />

WRtNC SPOOL PIECE ADOITION TO PNELIUATIC VACWM WAND<br />

ASSEMEiY.<br />

3.STREAMS 18 AND 19 ARE OPERATED lNOlVlOUALLY<br />

MATERIAL<br />

7.BASED ON 5% BY WEIGHT OF SILO 3 MATERIAL IN THE<br />

WASTEWATER STREAU.<br />

3.THE FLW RATES SHOWN ARE INSTANTANEOUS.<br />

REF OWG NO. DRAW niLE<br />

PFO-WTWLL RETRIEVAL *H) FEE0 SYSTEUS<br />

FUEC FROU PVS DISCHARGE<br />

WASTEWATER OF VACUUM NTERYITTENT EXHWST<br />

13 FEES<br />

PFD-PROCESS VENT AND PAWXNC SlSTEUS<br />

COLLECTION S W PUUP FROU FEES<br />

ENS AhB<br />

COLLECTION<br />

PFD-LWITIYE M@ WASTEWATER SYSTEUS<br />

SYSTEY BWS<br />

m2qEENG<br />

10004 I H V L NR FLOW DUCRW<br />

8 STREAM NUMBER<br />

* STREAM DESCRIPTION<br />

SoMuLl FERROUS SULFATE CXLUTION WATER WED ADolTlVE )roxED ADDITIVE YXEO MOlTlVE NOZZLE FLUSH NOZZLE FLUSH SILO 3 MATERIAL<br />

LIOIK)SUFONATE TO MOlTNE MX TO AOOlTNE TO CHARGE TO PACK= TO PACKPGE<br />

TO LDMTNE UIX T M MX T M TANKSAMIOB LONJNG<br />

TPNK STAN0 A STMIO e Lome<br />

STMiO A<br />

LOmNG<br />

STAN0 B<br />

2.PHpsE IbPPLlES TO REUUATK: REUOVU Of YLO 3 UATERIAL.<br />

5. A PHASE OESlGNATION NOICATES USAGE OUN4TITY OUR!NG<br />

THE W1CATEO PHASE ONLY. NO PHASE OESWATIOW INDICATES<br />

USffiE OUANTITY IS THE W E OURP4C BOTH PHASES OF<br />

0PERATK)FI.<br />

S.STREAM 14 WILL BE IN OPERATION OURING PHASE 1 AND<br />

SILO 1 INTRUSION ACTIVITIES (CUTTING OF THE CONCRETE<br />

I4LL ).<br />

6.STREAH 9 OPERATES OWING PHASE 1 TO PROVIDE A SLIGHT<br />

VACUUM ON FEED CONVEYOR (FOR-10-5102).<br />

8.STREANS 13A AN0 138 ARE NOT ACTIVE AT THE SAUE TIME.<br />

10.RADON FLOW RATES ARE IN THE RANGE OF 1 X 10-6 CilHR,<br />

WHICH IS CONSIOEREO TO BE NEGLIGIBLE.<br />

I.RAOON CONCENTRATIONS ARE CONSIDERED TO BE NEGLIGIBLE~<br />

il3.ONLY ONE OF THE SUU? P W S WILL OPERATE AT A TIME. :<br />

\14.STREAU 18 IS SILO 3 MATERIAL PLUS ADDITIVES AN0 WATER :<br />

1 REMSED PER CCN 40430-EG-035<br />

0 SlEDTOCO)(STRVETDN m N m m m<br />

II. .o<br />

a m - m - -<br />

.DI .nw I<br />

lMulDDuL<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNALD MVWoHlDlTAL NANAGEMENT PROJEC1<br />

lI6-mmEl<br />

FLOW MAGRALlS<br />

PROCESS FLOW DIAGRAkl


AHBlE<br />

AIR<br />

FLT-10-5070<br />

UT-10-507Q<br />

SUPPLY HEPA<br />

FILTER<br />

I<br />

SILO 3<br />

t<br />

I 2 I 3 I 4 I 5 I 6<br />

9'<br />

ExC-11-s~<br />

EXCAVATOR<br />

EAR-1 1 -50s<br />

EXCAVATOR<br />

ROOM REGISTER<br />

!<br />

-<br />

!<br />

! TO FINES<br />

! COLLECTIN BINS ANC<br />

PACKAGING SYSTEMS<br />

I F0003 )<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

OUST TO PROCESS COLLECTORS VENT<br />

!<br />

OCL-19-5202AAB<br />

I<br />

I<br />

ROF-10-51 Q4<br />

&BN-11-5014 tW-62-5642 QFC-11- FOR-10-51QZ ELT - _<br />

NOTE 9 !<br />

J<br />

YO-1 D-5006 .<br />

F0003<br />

TO CONTAINER<br />

YINACEUENT AND<br />

PACKAGING SYSTEM<br />

TO CONTAINER<br />

YINAGEYNT AN0<br />

. PACKAGING<br />

SKO-25-52508 SYSTEU<br />

I F0003 )<br />

TO WASTEWATER TANK<br />

10 5004 m a BLR-lMppg<br />

RETRIEVAL<br />

BIN<br />

EXCAVATOR ROOH<br />

suw PUW<br />

INCLINE0<br />

CONVEYOR<br />

PNEUMATIC RETRIEVAL<br />

COLLECTOR<br />

FEE0 CONVEYOR HEPA FILTER VACUUM BLOYER<br />

SKID<br />

PRIMARY<br />

ROTARY FEEDER<br />

PNEUUAT I C RETRIEVAL<br />

BLOWER<br />

- _<br />

PMP-67-5404 FDR-11-5lM) - - @OF-10-5 1 10<br />

RETRIEVAL<br />

BIN REGISTER<br />

EXCAVITOR SERVICE<br />

RO(lU SUW PUMP<br />

TRANSFER CWVEYOR CARTRIDGE FILTER SECONDARY<br />

ROTARY FEEDER<br />

BLR-10-500Q<br />

AUXILIARY VACWU<br />

BLOWER<br />

FJR-11-5106 FOR-10-5104<br />

RETRIEVAL BIN<br />

DISCHARGE FEEDER<br />

PNEUWT 1 C RETR I EVIL<br />

CmLECTOR DISCHARGE<br />

FEEDER<br />

7 8<br />

GENERAL NOTES:<br />

1. ALL SYUBOLOGY (E.G.. VALVES. SPECIALTY ITEHS.<br />

ABBREVIATIONS. SYSTEU NAMES AN0 NUMBERS. AND EOUIPWNT<br />

DESIGNATORS) ARE PROVIDE0 ON PIPING AN0 INSTRUU€NT<br />

DIAGRAMS NO001 AND N0003.<br />

NOTES:<br />

1 .PHANTOU LINES (--.------IINOICATE ALTERNATE OPERATION.<br />

2-STREAM 6 IS USEO FOR VACUUU RETRIEVAL WAN0<br />

ASSEWLY MANIPULATIONS AN0 UJVEUENT. AN0 SPOOLPIECE<br />

IOOITION. DURING PHASE 1.<br />

3.ENC-10-5020 IS TYPICAL OF FIVE SILO-OOLf LOCATIONS.<br />

4.STREAM 9 IS IN SERVICE DURING BOTH PHASE 1 AN0 PHASE 2.<br />

5.STREAM 10 :S IN SERVICE @NLY DURING PHASE 2.<br />

€.AIR SUPPLIEJ BY HVAC. REF DUG. No. 94X-3900-H-01304<br />

(H00031.<br />

1.<br />

B.REGISTER USEO TO EXHAUST EXCAVATOR ROOM DURING PNEUMATIC<br />

RETRIEVAL ANQ OURING SILO 3 WALL CUTTING.<br />

O.ONLY ONE OF THE SUW PUMPS WILL OPERATE AT A TIME.<br />

REF OWG NO,<br />

DWWG TITLE<br />

Do01 PFD-UAErUbL BbLINtE TABLE<br />

I<br />

1<br />

I l l<br />

2 I REVISED PER DCN 40430-AG-065 Gw, I d I QM<br />

1 REVISED PER 004 40430-JEG-035<br />

OUEDloJ a JTN<br />

0 lSSUEDT0CONSlRUCTDN<br />

n p.<br />

IpILauuv-<br />

m m UPU m<br />

m Rvn n<br />

-*oMlE<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNALD ENVIR-AL MANAGENEN1 PROJECT<br />

n 6 D U B r n D B T<br />

DpEm<br />

FLOW MAGRAMS<br />

PROCESS FLOW DIAGRAM


FROM SUPPLY<br />

FROM EUlLOlNG<br />

HVAC SYSTEM<br />

H0005<br />

sskLe&u<br />

I<br />

A<br />

I 2 3 I 4 I 5 I 6 I 7 I 8<br />

z<br />

7<br />

I c<br />

1<br />

- -<br />

FLT-1942046<br />

-@-<br />

FAN-19-52W lA<br />

GENERAL NOTES:<br />

1.ALL SYU5OLOGY LE.G.. VILVES. SPECI(UTY ITEUS.<br />

ABBREVIATIONS. SYSTEY HIYES 4NO NUWEAS. IN0 EOUIPbENT<br />

OESIGNATORSI ARE PROVIOEO ON PIPING 4NO INSTRUYENT<br />

DIAGRAMS NO001 AND N0001.<br />

7 5069<br />

’. FINES FROM PROCESS VENT DUST COLLECTDRS ARE<br />

COLLECTED IN FINES CDLLECTION BINS. &FER BIN IS<br />

FILLED. FINES ARE TRANSPORTEO VIA PNEUUATIC RETRIEVAL<br />

SYSTEY ONLY ONE EACK BIN TO IS THE EWTIEO PNEUMATIC AT A RETRIEVAL<br />

TILE. COLLECTCR.<br />

1. PHANTOM LINES I------IINOICATE ALTERNATE OPERATION.<br />

!<br />

I<br />

I<br />

- -<br />

1<br />

I<br />

! HEN-19-w !<br />

! !<br />

UT-19-5204B<br />

I I<br />

I<br />

I<br />

I<br />

FAN-19-52Om<br />

I<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

i<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

I<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

CARGO<br />

CONTAINER<br />

FAN-l9-52Q§A<br />

PROCESS EXHAUST<br />

PROCESS pFL-19-5202A VENT FINES COLLECTION EXHAUST $TK-l9-5209 STACK<br />

FAN A OUST CDLLECTDR A<br />

BIN A<br />

FL 1-19-52048 FAN-19-5m EL-19-52oa YBN-19-52058 GEM-(9-52011<br />

AND PROCESS KPA FILTER E<br />

PROCESS EXHAUST PROCESS VENT FINES COLLECTION CONTINUOUS<br />

FAN E<br />

OUST COLLECTOR E<br />

BIN E<br />

EYI SS I ONS<br />

roIllToR<br />

- .. - 2<br />

- 3 4 I 5 I 6<br />

I<br />

u unom3<br />

r .<br />

AND PROCESS HEPA FILER A BRIDGE CRANE<br />

STK-19-52B _ - ae<br />

TO PNEUMATIC<br />

RETRIEVAL<br />

OCL-10-5002 COLLECTCR<br />

TO ENVIROCARE<br />

--I EIL ><br />

a. PNEUMATIC CONVEYING CONNECTIONS ARE PROVIOEO AT<br />

THE LOADING SPOUTS FOR VACLNY ATTACHYNTS. THESE<br />

ATTACHKNTS ARE USE0 TO RECOVER YATERIAL IN THE<br />

EVENT OF AN OVERFILLED BAG.<br />

5. STREAM 20 IS EWALLY SPLIT BETWEEN PACKAGING STATION<br />

EXHAUST REGISTERS Am.<br />

I<br />

I REVlSEOPEROCIl404SD-JEGQ55<br />

) bsLEDT0coNsTRucTRhl olmw m<br />

D<br />

-mmFwux--<br />

.yI Rvn I<br />

.IDIsIoMlE<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNALD WRONUENTAL UANAGEMENT PROJECT<br />

Q6lPIIEmvmDBI


i I I I I<br />

I 2 3 4<br />

DOKSTIC WATER<br />

FROM EXISTING<br />

4' UAlN<br />

BIL -<br />

FROM SUUP PUMPS<br />

PUP-62-5404 6<br />

PHP-62-5642<br />

I FOOOZ ><br />

~<br />

BFP<br />

A<br />

TNI(-44-5000 PMP-'4_ypppg<br />

FERROUS SULATE<br />

TANK<br />

MXA-4 4 -5009<br />

~~~~f~<br />

PUMP<br />

UXA-44-5002<br />

ADDITIVE MIX<br />

TANK AGITATOR<br />

il<br />

BFp 0<br />

I R<br />

5 6 7 I<br />

- NOTE 1<br />

EYEWASH<br />

TO SAFETY STATIONS SHOWER/<br />

OOIESTIC WATER<br />

PRCCESS WATER<br />

I TO UTlLlTY<br />

SiAi rotis<br />

I 4<br />

<<br />

<<br />

lp-<br />

TO NOZ-25-5260A<br />

PW-44-5W4R<br />

NOTES:<br />

I. SEE PLD ~~X-J~W-N-OU~~. NOW. FOR DETAILS.<br />

CHmCWG TO THE FEE0 CIQITES.<br />

3. CTER EACH BAC-FILLINC CYCLE, PROCESS WATER IS INTRODUCE[<br />

INTO THE SUCTION LWS OF THE WTIM CHAFGE WMPS TO<br />

FLUS4 OUT THE NOZZLES. THE SPENT FLUSH WATER IS<br />

WHmGED TO THE BAGS.<br />

GENERAL NOTES:<br />

- 5069<br />

1.ALL SY)rBOLOGY fE.G.+ VALVES. SPECIALTY ITEMS.<br />

ABBREVIATIONS. SYSTEU NAtES AND NUMBERS. AN0 EOUIPKNT<br />

DESIGNATORS) ARE PROVIDED ON PIPING AND INSTRUUENT<br />

DIAGRAMS NO001 AND N0003.<br />

REF OWG NO. WwNG mLE<br />

1001 PFDWTERIbL WANE TABLE<br />

)02 PFD-WTWM RETRIEVK *ND m0 SYSTEMS<br />

I105 I PLID-WASTEWATER SYSTEU<br />

Ill4<br />

1 PbID-WMESTIC WATER SYSTEM<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

RRNALD ENVRO)O(TAL YANAGMHT PROJECT<br />

llsDulGmwLn


a<br />

I 1 I<br />

_ -- _ -.._..____..-.. - -..-<br />

I 7<br />

AMBIENT<br />

AIR<br />

1 I<br />

AUBIENT j<br />

AIR<br />

I<br />

1<br />

I<br />

j<br />

I<br />

AMBIENT i<br />

AIR<br />

j<br />

!<br />

i<br />

1<br />

j<br />

!<br />

AMBIENT j<br />

AIR<br />

ACP-40-51Zpe<br />

j ACP-40-53208<br />

!<br />

I<br />

1<br />

i<br />

1<br />

-<br />

II<br />

m<br />

1 I<br />

a~r-qo-51~8 j<br />

I<br />

1 n i<br />

- 1<br />

ART-40-531 Q<br />

.I I V I I I<br />

1<br />

I<br />

i<br />

I i<br />

j<br />

I I<br />

I<br />

j<br />

!<br />

I<br />

[p-]<br />

j CONDENSATE<br />

TO GRADE<br />

!<br />

I<br />

1<br />

i<br />

I<br />

j<br />

1<br />

I<br />

CONDENSATE<br />

$KO-41 -5350 TO GRADE<br />

I 1<br />

i I<br />

! 1<br />

I I<br />

i<br />

i<br />

4cp-41-53hpB<br />

ACP4143W<br />

ART-4 1 -=<br />

- D<br />

pm SKO-41-5354 -<br />

i<br />

I<br />

i<br />

I<br />

AFTERFILTER W/ACTI VATEO CO NONITOR 1<br />

CARBON<br />

SKD-41-5350 pCP-40-532W ACP-41S360<br />

A S l ( D - 4 0 - 5 3 0 2 ART-41-5352 ART-40-5303 ADR-40-5312A SKD-4 1-5354 ART-40-5310<br />

LANT/INSTRUUENT AIR<br />

COMPRESSOR SKI0<br />

BREATHING AIR<br />

COMPRESSOR SKID<br />

AIR COYPRESSOR A BREATHING AIR<br />

COWRESSOR A<br />

REFRIGERATIW<br />

ORYER SKID<br />

BREATHING AIR<br />

RECEIVER TANK<br />

PLANT AIR<br />

RECEIVER TANK<br />

DESICCANT<br />

VESSEL A<br />

REFRIGERATION DRYER<br />

SI: IO<br />

INSTRUYNT AIR<br />

RECEIVER TANK<br />

~~-40--53a LtP-41-53508<br />

AIR COYPRESSOR B BREATHING AIR<br />

COYPRESSOR B<br />

n0~-40-53128<br />

DESICCANT<br />

VESSEL B<br />

j<br />

!<br />

j<br />

!<br />

j<br />

TO PLANT AIR<br />

I TO INSTRUMENT AIR<br />

USERS<br />

NOTE 2<br />

I<br />

1<br />

i<br />

TU BREATHING<br />

j AIR USERS<br />

I<br />

-1 NOTE 3<br />

j<br />

I<br />

CONDENSATE<br />

TO GRADE<br />

NOTES:<br />

1. SEE PdlO N0111. FOR DETAILS.<br />

2. SEE ?610 N0113. FOR DETAILS.<br />

3. SEE PdlD N0112. FOR DETAIL:.<br />

GENERAL NOTES:<br />

+ 5069<br />

1. ALL SYYBOLOGY 4E.G.. VALVES. SPECIALTY ITEMS.<br />

ABBREVIATIOE~S. SYSTEM NAUES AND NUMBERS. AND EOUIPUENT<br />

DESIGNATORS) ARE PROVIDED ON PIPING AND INSTRUMENT<br />

DIAGRAMS NO001 AN0 N0003.<br />

REF OWG No. I DRAWWG TITLE<br />

3m PWI-PCANT NR SYSTEY<br />

3m PIID-MTRULWT NR SfSTEU<br />

5110 PIID-BREATHDIG CIR SYSTEM<br />

5111 l'&ID-PLPNT PIR SYSTN CONNECTIONS<br />

3112 I PLID-BREATHDIG CIR SYSTEM CONNECTIONS<br />

1113 I PLID-MTRUUENT MI SYSTEU CONMCTONS<br />

E<br />

YE I-m 4M3D<br />

DpyTTllLL<br />

FLOW OIAGRAUS<br />

PROCESS FLOW OMRAM<br />

DDemP<br />

94X-3900-F-01432<br />

A


v ..<br />

a<br />

0


Piping and Instrumentation Diagrams<br />

94X-3900-N-0138 1 Piping, Valves, and Miscellaneous<br />

94X-3900-N-01382 Instrumentation<br />

94X-3900-N-01383 Equipment and Miscellaneous<br />

94X-3900-N-02369 Silo 3 Access<br />

94X-3900-N-01433 Mechanical Retrieval System<br />

94X-3900-N-01434 Pneumatic Retrieval System<br />

94X-3900-N-01435 Feed System<br />

94X-3900-N-01436 Bulk Packaging Line A<br />

94X-3900-N-01437 Bulk Packaging Line B<br />

94X-3900-N-01438 Additive Mixing and Wastewater System<br />

94X-3900-N-01439 Process vent System, Sheet 1 <strong>of</strong> 2<br />

94X-3900-N-01440 Process Vent System, Sheet 2 <strong>of</strong> 2<br />

94X-3900-N-01441 Plant Air System<br />

94X-3900-N-01443 Breathing Air System<br />

94X-3900-N-01444 Plant Air System Connections<br />

94X-3900-N-01446 Instrument Air System Connections<br />

94X-3900-N-01447 Domestic and Process Water Systems<br />

94X-3900-N-02993 Vacuum Wand Enclosure<br />

94X-3900-N-05 147 Additive Charging System<br />

94X-3900-N-05 1 39 Additive Feed System<br />

94X-3900-N-02489 Control System Block Diagram<br />

Silo 3 RDlRA Package, 40430-RDP-0001<br />

Revision 1, September 2003<br />

5069<br />

000295


I<br />

t<br />

f F<br />

i<br />

ABBREVIATIONS<br />

I<br />

ffi reOVECROUM)<br />

-LE MB*N SWETY OF MATW.<br />

REF-ATKN #NO<br />

AlU<br />

AWT<br />

BIL<br />

BTL<br />

BYP<br />

cc<br />

CL<br />

co<br />

co<br />

cow<br />

cs<br />

csc<br />

cso<br />

CTR<br />

DCS<br />

DES<br />

OIA<br />

OP<br />

DIP<br />

DRN<br />

DT<br />

DWG<br />

(E)<br />

EA<br />

EL<br />

ESD<br />

FOF<br />

IF)<br />

FO<br />

I<br />

FLG<br />

FP<br />

FR<br />

FRL<br />

FRP<br />

F"<br />

GO<br />

GPU<br />

GI1<br />

nc<br />

HDPE<br />

WR<br />

HEPA<br />

HH<br />

HOA<br />

MP<br />

nz<br />

MPT<br />

IAS<br />

INS1<br />

EBL<br />

LP<br />

LPT<br />

M<br />

tm<br />

YOV<br />

UTL<br />

UW<br />

NNF<br />

NO2<br />

O K<br />

OlCIA<br />

010<br />

OP<br />

OSBL<br />

OVW<br />

Fn<br />

PLC<br />

PLCS<br />

PRESS<br />

PRV<br />

PYG<br />

PV<br />

PVC<br />

(RI<br />

REM)<br />

RTO<br />

SA<br />

sc<br />

SffU<br />

SM<br />

so<br />

SG<br />

m<br />

so<br />

SP<br />

ss<br />

SIS<br />

SSE<br />

SlO<br />

TA<br />

TIC<br />

TDH<br />

TEW<br />

TMD<br />

11<br />

TSO<br />

TIT<br />

TIP<br />

uc<br />

ULPA<br />

V<br />

VhC<br />

VB<br />

VNT<br />

WI<br />

WID<br />

bR C-W E-ERS<br />

ATUOSFHEK<br />

IDVANED WASTEWATER TREATMENT<br />

BATTERY LMT<br />

BOTTOM T M N l Luc<br />

BYPAS<br />

MMCM CLTbWUT<br />

CENlERLlQ<br />

UEYlOUT<br />

~~ ..<br />

c m UWOXE<br />

coN(Ecncu<br />

-<br />

CIRBON STEEL<br />

CIR SEM aosco<br />

CbR SELL OPEN<br />

CENTER<br />

OBTKiWJTED CONTROL SYSTEU<br />

OESW<br />

DUYETER<br />

MSGN PRESSURE<br />

DFFERENTUL PRESSURE<br />

ORW<br />

M W TELIPERATURE<br />

GUAWOX;<br />

EXlSTlNG<br />

EX)(UJST rn<br />

ELEVATE%<br />

EUERCENCY WTOOWN<br />

FACE OF FLW<br />

FURnSKO<br />

FLOOR DRIUN<br />

F M INDETfRMNATE<br />

FLINCE<br />

FULL PORT<br />

FUTCRIRECUAIOR<br />

F UTER/REGlUATOR/LUBWCATOR<br />

FBfRCCASS REDIFORCEO PLASTIC<br />

Fa1 VUWY<br />

GEM OPERATED<br />

GMLONS PER W T E<br />

CRLDE<br />

HOSE CWCTION<br />

UlW-DENSITY PQLYElHYLEN<br />

SUER<br />

l4Gl EFFICENCI PN7TICVLAlE M<br />

num HOLE<br />

HMIOFFIWTOUATIC<br />

W E POWER<br />

WRTZ<br />

ffiH PomT<br />

NSTRU(ENT NR SUPPLY<br />

NSTRIUENT UQ CONTROLS GROUP<br />

WIDE BATTERY LMTS<br />

LOW PRESyRt<br />

LOW POlNl<br />

UUlUUU<br />

Utwuu<br />

UOTOR OPERATED VMVE<br />

UATERVV<br />

UbNWAY<br />

HORUNLY NO FLOW<br />

NOZZLE<br />

OPENICLOSC<br />

OPWICLOSEIAUTOUATIC<br />

OWffF<br />

WTWT<br />

DUTSIDE BATTERY LMTS<br />

OVERICLD<br />

RUSE<br />

I'UOCRlWlgLE LOGIC CONTROLLER<br />

RACES<br />

PRESSURE<br />

PRESSURE REWCDlG VILVE<br />

POWDS PER YWmE INCH.GNJGE<br />

PROCESS VLRllBLE<br />

mLmn cnomm<br />

ELOCATED<br />

REOWZD<br />

REBTubz TEYP. DETECTca<br />

YPPLY 1R<br />

S W E UIDECTION<br />

SlMIRD aSn: FEET PER UWUTE<br />

KKDUt<br />

Wmam<br />

SPECFC GRAWTY<br />

UFETI MWENTED SYSTEM<br />

STEW Wl<br />

SET PoNl<br />

sTmEss STEL<br />

STLRTlSTOP<br />

W T Y WWR Uic ETEWASn<br />

STMmIRD<br />

TRuraER UR<br />

TOTM DFFEREHTUL HEM<br />

TELPOIATUIE<br />

THIEMED<br />

TYZOIT Lus<br />

TMT OdJl CFF<br />

TbWENl-To-TlMjENl<br />

TIRUL<br />

UBxECFaJa<br />

UTRA LOW F€I€TRAT!JG bR<br />

VOLT<br />

VICUY<br />

VORIEX mu(ER<br />

MNl '<br />

w m .<br />

Ymaul<br />

I 2 I 3 I 4 I 5 I 6 I 7 I a<br />

VALVE SYtdBOLS<br />

PIPING SPECIALTY ITEMS<br />

MATERIAL SPECIFICATION SYSTEM NUMBERING TABLE (JJ)<br />

OPEN ROYD<br />

W GATE H<br />

w aom w<br />

m NEEDLE bm<br />

cm PLUC 01<br />

0 BML 0<br />

m PWH n<br />

lhl BUTTERFLY 111<br />

rh MCLE %<br />

& 3-WAY<br />

9 4-WAY<br />

-<br />

N CHECK<br />

WUBLE WCK<br />

& UANUM CHECK<br />

I?I KNE GATE<br />

NORUM PQSEWS 4.l VNVES<br />

NO-INOCATES NORUULY OPEN<br />

NC-WICATES NORUMLY CLOSEO<br />

!J2sxEo POSlTnNS LLL VNVES<br />

LO-INDICATES LOCKED OPEN<br />

LC-WDKATES LOCKED CLOSEO<br />

FUL POSITIONS ML VbLVES<br />

FO-PIDICATES FW OPEN<br />

FC-WDICATES FNI CLOSED<br />

FL-NCUCATES FW LAST WSlTION<br />

VALVE ACTUATORS<br />

PlPING FITTINGS<br />

FLUICE<br />

SCREWED CAP<br />

WELDED cw<br />

w*)N JOINT<br />

CONCENTRIC (OR CCNERlC) REOVCER<br />

ECCENTRK REWXER<br />

HOSE CONMCTON (FEWLEI<br />

HOSE CONNECTKM (WE)<br />

Lap1 PLUG<br />

PIPING LINE SYMBOLS<br />

E$<br />

[ BACK<br />

BF P<br />

&<br />

d WI<br />

I-TYPf STRDNER<br />

CONE STRMR<br />

DUPLEX S T W R<br />

BASKET STRlELR<br />

EXPANSION JON1<br />

nExmLE c w c m<br />

ATUOSPHERIC MNT<br />

FlLlER<br />

TRAP<br />

PUSATION O-KR<br />

H-LM SLWCER<br />

VENT SLENCER<br />

ROTMY VbLVt<br />

DRWT OWPER<br />

BACK fLOW WEVENTER<br />

FLTERIREGUATORILUBRKATOR<br />

FUTERlREGlUAlOR<br />

F~TERIREClUATORILUBRICATDR<br />

w/ PRESYlRE WTATTMI<br />

FLlERlRECUATOR<br />

PRESSWE WKATOR<br />

LINE IDENTIF CATION<br />

LINE SERVICE CODES (11)<br />

CA -- UR.COYPRESSf0<br />

CS -- M(0CMLSGVTION<br />

OW -- OOSSllC WAIER<br />

u -- m.uIsTmDENl<br />

LPW -- UrxIDpRoQSs WASTE<br />

URS -- MECMCN RETREVU SYSlEU<br />

PA __ m. PUHT<br />

Fs -- __ -TK<br />

PROC SS VENT<br />

KTR€VX<br />

SYSTW<br />

SYSTEU<br />

SA -- m,BAEATmG<br />

TW -- PRMXSS WATER<br />

C4SlAATK)N TYPE COOES (00)<br />

AS -- #NWSWEAT<br />

CC -- COLD SiRVIQ HSUATON<br />

HC -- WAT ca(suNATlW WSULAlW<br />

PP -- F€Rwum PROTECTION HULAT~UN<br />

HEAT TRACE TYPE CODES (11)<br />

'sa3<br />

*5lO6<br />

.5125<br />

'506 '5127<br />

15128<br />

'5135<br />

'5157<br />

w<br />

103<br />

Y)6<br />

n5<br />

T26<br />

127<br />

128<br />

07 u5<br />

SI'EClALTY ITEM IDENTIFICATION<br />

VALVE CODE (AAA)<br />

UR OPERATED VMK<br />

8hCK FLOW PRfVfNTER<br />

CHECK VMM<br />

DOUBLE CHECK VeLVE<br />

DWPER HUiD OPERATE0 (BUTTERFLY1 V/VM<br />

YOTOR OPERATED VNVE<br />

PRESYlRE REWCYG VMM<br />

SOLENO0 OPERATED VkVE<br />

NOZZLE IDENTIFICATION<br />

I - m<br />

L E N TSYSTEU I T Y HYBER WRBER<br />

NOZZLE OENTFER<br />

(FROU VESSEL DATA SHfET)<br />

MISCELLANEOUS<br />

t<br />

-I--<br />

+<br />

D<br />

TEU *BBREVIAXW<br />

DW<br />

TW. LPW (CS)<br />

PRS<br />

PRS. PVS. 1915<br />

PVS<br />

LW (PVC)<br />

14 PA<br />

SA<br />

AOV<br />

BTP<br />

cuv<br />

ocv OMP<br />

nov<br />

uov PRV<br />

sov<br />

PID(IGE0 EWPYENT LIMTS<br />

SIRPLY OR TRANSFER M1<br />

mow DRECMEI<br />

EXHMST OR TRINSFER UR<br />

FLOW DPSECTlON<br />

RNRN UR FLOW<br />

DRECTlCw<br />

PAGE COWCTOR<br />

PltE WHNECTOR<br />

PIGE COMlECTOR<br />

B0RECTK)NK FLOW<br />

BATTERY LMS<br />

00 01<br />

02<br />

03<br />

04 05<br />

06<br />

07<br />

08<br />

09<br />

0 11<br />

12<br />

I3<br />

14<br />

15<br />

16<br />

17<br />

18 19<br />

20<br />

21<br />

22<br />

23<br />

24 25<br />

26<br />

27<br />

28 29<br />

30<br />

31 32<br />

33<br />

34<br />

35 36<br />

37<br />

38<br />

39<br />

40 41<br />

42 43<br />

44<br />

45<br />

46 47<br />

48<br />

49<br />

50 1<br />

53 52<br />

54 55<br />

56<br />

57 58<br />

59<br />

60 61<br />

62<br />

64 63<br />

65<br />

66<br />

67<br />

Ea<br />

69<br />

70<br />

72<br />

73 70<br />

75 76<br />

77<br />

78 79<br />

a0<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87 aa<br />

89<br />

90<br />

92 91<br />

93<br />

94<br />

95<br />

96 97<br />

99 98<br />

NOT VSED<br />

NO1 USED<br />

NOT USED<br />

NOT PROCESS M O VENT SYSTEU<br />

NOT M O<br />

NOT M O<br />

NOT USED<br />

mcan7lwamc<br />

NOT USED<br />

NOT VSED<br />

CWTUW U*NAGESNT SYSTEU<br />

NOT M D<br />

NOT<br />

m1 USED<br />

NOT M D<br />

PLbNT UQ QJSTRJUENT UR SYSTEU<br />

BREATIWG M1 SYSTEU<br />

NOT M D<br />

NOT M D<br />

ADWIVE SYSTEU ICs)<br />

NOT M D<br />

NOT USED<br />

NOT VYD<br />

NOT VYD<br />

NOT UYD<br />

.IIlTEl) mu5<br />

PROCESS WATER SYSTEM<br />

DCUESTK WATER SYSTEM<br />

NOT M O<br />

NOT USE0<br />

NOT USE0<br />

NOT USE0<br />

NOT USED<br />

NOT USED<br />

NOT USED<br />

NOT M D<br />

W m E mmy5<br />

NOT M D<br />

NOT M D<br />

WASTEWATER SYSTEU<br />

NOT M O<br />

NOT USED<br />

NOT USED<br />

NOT USED<br />

NOT M D<br />

NOT M O<br />

NOT Us0<br />

my: m~c16<br />

SUPPLY UR SYSTEU<br />

Envml bR SYSTEU<br />

NOT USED<br />

NOT VSED<br />

NOT USED<br />

NOT USED<br />

NOT v5m<br />

LPSCELLMOUS HVAC SYSTEMS<br />

NOT USED<br />

HOT USED<br />

lCOVtlL*DYUlnx.mTEm<br />

NOT USED<br />

NOT VSED<br />

NOT USED<br />

NOT USEO<br />

SYPUNG SYSTEU<br />

NOT VSED<br />

NOT VYD<br />

NOT M D<br />

NOT USED<br />

NOT USED<br />

Ic-mDcallnasIsTDIs<br />

COHTRCL SYSTEY<br />

NOT USED<br />

FIRE DETECTION Iw MN7U SYSEY<br />

NOT USED<br />

mi vno<br />

CCTV SYSTEU<br />

NOT VYD<br />

NOT USED<br />

NOT USED<br />

NOT VSED<br />

1. '5 W SOLENOP) EXCEPTION VMMS TO THE ASSOCIATED VMM CENTFKAllON<br />

WITH bR-OPERATED SYSTEM<br />

VMVES. THESE ARE IENTMD AS. SOV-MV-JJ-WKK.<br />

E-<br />

&<br />

--<br />

i<br />

I<br />

1<br />

i<br />

I<br />

i<br />

!<br />

i<br />

I<br />

I<br />

!<br />

!<br />

f<br />

800296


I<br />

I 2 I 3 I 4 I<br />

INSTRUMENT FUNCTION SYMBOLS PRIMARY ELEMENT<br />

SYMBOLS (FLOW) SELF-ACTUATED DEVICES<br />

GENERAL INSTRUMENT SYMEOLS<br />

A ANALOG I CURRENT<br />

(1 ORIFICE<br />

B BINARY 0 ELECTRWAGNETIC. SONIC<br />

D mark P PNEUMATIC<br />

E VOLTAGE R REYSTbvUCE (ELECTRICAL) fl ORIFICE IN OUICK CHWGE FITTING<br />

H HYDRAULIC<br />

INSTRUMENT LINE SYMBOLS<br />

-<br />

-AS-<br />

-1A-<br />

-PA-<br />

- ES-<br />

-GS-<br />

-HS-<br />

- NS-<br />

-ss-<br />

-ws-<br />

&<br />

-<br />

t<br />

+<br />

---__<br />

*<br />

4<br />

-<br />

4-<br />

-<br />

-<br />

.-+-<br />

LIM SUPPLY<br />

L M SUPPLY AIR<br />

L M SUPPLY AIR INSTR.<br />

LIM SUPPLY AIR PLPNT<br />

LINE SUPPLY ELECTRIC<br />

LINE SUPPLY GAS<br />

LINE SUPPLY HYDRwlc<br />

LINE SUPPLY NITROGEN<br />

LINE SUPPLY STEN<br />

LINE SUPPLY WATER<br />

L M UNDEFINED SlGNbL<br />

LINE PNEUMATIC YCNAL<br />

LIM ELECTRIAL SIGNAL A<br />

LINE ELECTRIAL SIGNAL B<br />

LINE HYDRAULIC SIGNAL<br />

L M CAPILLARY TUBE<br />

LINE EM SONIC SIGNAL G<br />

LINE EM SONIC SiGNAL NG<br />

LINE INTERNAL SYSTEM LINK<br />

LINE UECHPNICAL LINK<br />

LINE PNEUMATIC BINARY<br />

LINE ELECTRIC BINARY A<br />

LINE ELECTRIC BINARY B<br />

GI nroT TUBE<br />

U VENTURI<br />

- v<br />

AVERAGING FIT01 TUBE<br />

FLWE<br />

El WEIR<br />

Ixl TURBINE<br />

8" SOMC<br />

POS-DISP<br />

VORTEX<br />

TARGET<br />

NOZZLE<br />

MAGNETIC<br />

~ x x x<br />

XXXX - MASS, CORIOLIS.<br />

TERM AL...<br />

IN-LRE FLOW ELEMENT<br />

x WITH SEPARATE TRWSMITTER<br />

VIBRATOR<br />

fl HEIGHT ADJUSTMENT<br />

MISCELLANEOUS SYMBOLS<br />

a CHEUICAL SEAL/DIAPHRAGU<br />

0 UNDEFINEO INTERLOCK LOGIC<br />

WAL FUNCTKIN OR INSTRUMENTS<br />

MNG COWON HousmG<br />

PILOT LIGHT GAUGE GLASS ILLUMNATOR, '0: ORUNIYkKON<br />

/<br />

xxxQzz INSTRUMENT WITH LONG TAG NUMBER<br />

AJC4BLEALARU<br />

m<br />

CONTROL SYSTEM W O G PMMTER WlALARU Y T<br />

POINTS FOR HGH-WH. HGH. LOW. AND LOW-LOW COwIT!OoNs<br />

LL<br />

TANK MSULATKJN<br />

VPdlABLE AREA FLOW UETER<br />

PRESSURE REDUCING<br />

REGULATOR<br />

WI EXTERNAL TAD<br />

DIFFERENTIAL Pl7ESSURE<br />

REDUCWG REGULATOR<br />

BACK PRESSURE<br />

REGULATOR<br />

ISELF-CONTNNED)<br />

BACK PRESSURE<br />

REGULATOR<br />

WI EXTERNAL TAP<br />

PRESSURE RELEF<br />

OR SLFETY VALVE<br />

VACWUM RELEF<br />

VALVE<br />

PRESME /wD VACUUM<br />

RELIEF VALVE OR<br />

CONSERVATION VENT<br />

PILOT OPERATED<br />

REEF VALVE<br />

SAFETY HEAD FOR<br />

PRESSURE RELIEF<br />

RUPTURE DISC<br />

(WIEXPLOSION PANEL)<br />

SLFETY HEAD FOR<br />

VACUUM RELIEF<br />

RUPTURE DISC<br />

(WIEXPLOSION PANEL)<br />

BACKFLOW PREVENTER<br />

5 I 6 I 7 I 8<br />

FIELD MOUNTED<br />

LOCATIONIACCESSIBILITY<br />

1. FELD OR LOCALLY MOUNTED.<br />

2.ACCESSBLE TO W OPERATOR AT<br />

DEVICE<br />

PRDAARY LOCATKJN NORMALLY<br />

ACCESSIBLE TO AN OPERATOR<br />

I. CENTRAL OR UAIN CONTROL ROOM.<br />

2.FRONT OF MAN P M L OR<br />

CONSOLE MOUNTED<br />

3. VISIBLE ON WE0 DISPLAY.<br />

4. ACCESYBLE TO AN OPERATOR AT<br />

DEVICE OR CONSOLE.<br />

'RMARY LOCATION NORMALLY<br />

NACCESSIBLE TO AN OPERATOR<br />

1. CENTRbl OR MAIN CONTROL ROOM.<br />

2. REAR OF P M L OR CABINET<br />

MOUNTED.<br />

3. NOT VIYBLE ON VDEO DISPLAY.<br />

4. NOT NORUALLY KCESSIBLE TO AN<br />

OPERATOR AT DNCE OR CONSOLE.<br />

UXlLlARY LOCATKJN NORMALLY<br />

CCESS!BLE TO AN OPERATOR<br />

1. SECONDARY OR LOCAL CONTROL ROOM<br />

2.FIELO OR LOCAL CONTROL PML.<br />

%FRONT PANEL MOUNTED.<br />

OF SECONDARY OR LOCAL<br />

4.vismLE ON VIDEO DISPLAY.<br />

5.ACCESSIBLE TO PN OPERATOR AT<br />

DEVlCE OR CONSOLE.<br />

UXlLlARY LOCATION NORMALLY<br />

lACCESSlBLE TO AN OPERATOR<br />

1. SECONDARY OR LOCAL CONTROL ROOM<br />

2. FIELD OR LOCAL CONTROL PANEL.<br />

3. REAR OF SECONDARY. OR LOCAL<br />

PANEL OR CABINET MOUNTED.<br />

*.NOT VISIBLE ON VIDEO DISPLAY.<br />

5. NOT NORMALLY ACCESSIBLE TO AN<br />

OPERATOR AT DEVICE OR CONSOLE.<br />

Q<br />

INSTRUMENT IDENTIFICATION LETTERS<br />

5. 5069<br />

REF DWG No. DRAWING nu<br />

F%D PmG. VNVES. m MLSCELWOUS<br />

PW EOUFWNT AND MSCELLINEOUS<br />

-<br />

1 REVlSED !XI? DCN 40450-EG-035<br />

D ISUIDTOCONSTRUCTION<br />

m ID_<br />

5 E m - m DcI1.l*<br />

-fBa<br />

07m upu JTN<br />

nn Rv.l I<br />

mmnasyDDllt<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNALD ENVIRO)(YB(TAL WNAGEUENT PROJECT<br />

5 G<br />

sb- a w<br />

-*YE IQ -3-<br />

sno3 000297<br />

IpII(cm<br />

PIPING AND lNSTRULlENT INSTRUMENT ATlON DIAGRAM


DDLLSTlC WATER<br />

HEAOER<br />

WASfEWATER FRCU<br />

EXCAVATOR SERVICE<br />

I<br />

WASTEWATER FROU<br />

EXCAVATOR RODH SUW P W<br />

NO100<br />

-- h<br />

I O IY I<br />

LW-62-518.<br />

LPWbZ5111-.--U8<br />

r. ..<br />

I 2 I 3 I 4<br />

I 5 I 6 I 7 I R<br />

I<br />

HOV-62-5260<br />

TW-505171-2'-106 -<br />

TN-505171-2--106<br />

&I<br />

n LPN-625100-2~-106<br />

WASTEWATER T I K AREA SUP PLW<br />

20 BY e 46' TOH<br />

3X3*1.1517.631<br />

C.S.<br />

.n<br />

SCREEN<br />

!-xl-<br />

-2'<br />

I<br />

Y<br />

'I 8<br />

I<br />

I<br />

HOV-44-5243<br />

lKK-4432 yXA-44-5W2<br />

AOOlTlVE MIX TANK<br />

6' OlA k'? %:A?% SIDE<br />

FRP<br />

AmITIvE MIX TANK<br />

AGITATOR<br />

*<br />

-<br />

-2.Yl;A a.D-3-<br />

24 c-2' E-2.<br />

HOV-62-5125<br />

V E E R IS<br />

SCREEN<br />

ck'<br />

LPldZ5106-2* 101<br />

LPW-625108-2. 101<br />

v - HOV-62-51 t 3<br />

UOV-62-5273<br />

2.x1.9<br />

UNINSULATEO<br />

WASTEWATER =I- HCfT<br />

CARGO CONTAINER<br />

TANK AREA BAY<br />

pLp-4a-5002 Tnx62-5600 yXA-62-5602 PLpdz-5606<br />

MDlTlVE PULP<br />

25 GPY 0 (9' mH<br />

1 x lb2 x 6.25 (6)<br />

pIIB-44-<br />

1'- nP<br />

1ASTEUTER TU&<br />

1700 CMLWS<br />

6' Dl4 X 8' STRAIGHT SIDE<br />

FRP<br />

WASTEUATER TANK<br />

AGlTAlC4<br />

WASTEWATER P W<br />

25 GPU 0 19. TOH<br />

lxl'? X6.25 16)<br />

I I I I<br />

2 3<br />

. .<br />

. .<br />

4 5 6<br />

I<br />

RYlT NR<br />

NOTES:<br />

~ ~ D I T l PUUPS v E PUP-44-5000 A AND 0 TO SHUT OWN ON<br />

iICH LEVEL IN TNK-44-5002.<br />

3 ZOSE OO1ESTIC WATER INLET VALVE MEN PREDETERYINEO<br />

ANTITY HAS BEEN ADDED TO lNK-44-5002.<br />

I<br />

NSTRYENTATKHI<br />

EWYNT 1K) USCELWOVS<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

B<br />

5069<br />

000298


P<br />

81<br />

I I I I I<br />

I 2<br />

n STACK<br />

EOUlPMENT SYMBOLS EQUIPMENT SYMBOLS (CONT')<br />

GEAR WUP<br />

CENTRlFUGAL SUMP PUMP<br />

POSITIVE<br />

DISPLACEMENT<br />

METERM PUMP<br />

MIXER OR AGITATOR<br />

CENTRFUGK FAN WIO WET VANES<br />

3 4 5 6 7<br />

FlLTER HOUSING<br />

m<br />

U ENCLOSURE<br />

INCLINE0 CONVEYOR<br />

BELT CONVEYOR<br />

ROLL-UP DOOR<br />

I 1 a<br />

EQUrPUENT<br />

MSCRlPTlON NOTES:<br />

CAT EXCWGER<br />

FZL<br />

GDM<br />

HTX<br />

HEATER HTR<br />

HOPPERI0W<br />

HYDRAIAK: ACTUATOR<br />

HEN<br />

HYO<br />

HYDRAULIC<br />

LIFT TABLE SYSTEM SKI0<br />

HSS<br />

LFT<br />

LIVE ROLLER CONVEYOR<br />

L9ADING SPOUT<br />

LJUVER<br />

MXER I AGITATOR<br />

kXER / BLENDER<br />

LRC<br />

LSR<br />

LVR<br />

YXA<br />

MY0<br />

CENTRLFUGPL FAN<br />

MBLY<br />

WlWLET VWE<br />

unt<br />

O M R xxx-JJ-zzzz<br />

d&2fE<br />

PUXAGE UNIT PKU<br />

PWEL CONTROL1 PNL<br />

T T T<br />

PWELEOARD PNE<br />

P m S M L CONTWWATION MONITOR PCM<br />

P 1ASE SEP*RATOR PHS<br />

POSITIVE DSPLACEUENT BLOWER<br />

PPSSURE SMTY ELEMENT PSE<br />

FWOUCT WEIGH BIN<br />

PWE<br />

P W PUP<br />

S~PLER<br />

REACTOR REA<br />

RIICEIVER RVR<br />

REGISTER REG<br />

RXLER CONVEYOR RCV<br />

ROLL UP DOOR ROR ROF<br />

CENTWUGAL COMPRESSOR<br />

ROTARY FEEDER<br />

EXHAUST REGISTER<br />

EREATHWG NR STATION SAS<br />

SdFETY SHOWER AW EYEWASH<br />

SSE<br />

SWLWG SYSTEM GASES1 SSG<br />

SWLWG SYSTEM ILIOS) SSL<br />

S W L W SYSTEM (SOLIDS) sss<br />

REWROCATING COMPRESSOR<br />

SlPLE SCL<br />

DRIVERS<br />

SCREW CONVEYOR (METERING1 SCT SCM<br />

SCREW CONVEYOR (TRANSFER)<br />

SCRUBBER<br />

a<br />

SC R<br />

SKD<br />

SRS<br />

SCREW COMPRESSOR<br />

STK<br />

STY<br />

STR<br />

DIESEL ENGm<br />

SUP<br />

TNU<br />

SHELL AW TUBE HEAT EXCHANGER<br />

TRPP<br />

TRP<br />

(LOCATE NOZZLES TO RWLECT ACTUAL<br />

UMNTERRUPTlBLE<br />

U2S BATTERY RACK POWER SUPPLY<br />

UPS<br />

!NERNM/EXTERNAL CONFKXRATMl<br />

UBR<br />

VWRIZER<br />

VACUUU BREAKER<br />

VEX<br />

ELECTRIC MOTOR m<br />

VPR<br />

VBRATOR<br />

m<br />

WATER METER PIT w<br />

M1-COOLED HEAT EXWANGER<br />

WATER TREATMENT PLWT<br />

WTP<br />

PLATE WO FRPM HEAT EXCHNGER<br />

FILTERS<br />

35% m b E<br />

90% ASCIRK<br />

HEPA<br />

ULPA<br />

EOUIPMENT NUMBER IDENTIFICATION<br />

L L<br />

EOUIPMENT SEOMNCE NUMBER<br />

SYSTEM NUMBER (SEE NO0011<br />

EOUlPMENT OEYGNATOR<br />

I. M L MOTORS *RE 3 PHASE 60 HERTZ 230/460 V<br />

n ~ 1750 ) RPY UNLESS O T ~ R ~ SN~TEO. E<br />

REF DWC NO. I DRAWING TITLE<br />

5069<br />

?SVSEO PER OCN 40430-JEGO35 -4ACm<br />

1 muEDTocoIIsTRucTw m m WM JTN<br />

-rn-=.m<br />

pn rrn II<br />

IIpfmm<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

:ERNAID D(VIRO)(YDITAL MANAGEMENT PROJECT<br />

n6DuIcemsr


i<br />

I<br />

i<br />

I<br />

i<br />

~<br />

I<br />

E<br />

F<br />

-<br />

WEN<br />

I<br />

I 2<br />

I<br />

n N<br />

3<br />

0<br />

3 I 4<br />

I 5 I<br />

6<br />

f<br />

I 7 I A<br />

S m Y m<br />

TO PACJwlNC<br />

STATTOM U6I FWES<br />

1.ML VACUUY UNO LhCLOSURES SMALL BE EOUlPPEO WITH A PP!<br />

EXHAUS1 LIhE. PRS SUPPLY LINE. AN0 A PVS EXHAUS1 LINE.<br />

OETAILS RELlTEO TO VICWY WAN0 ENCLOSURES AN0 CONNECTI(<br />

ShALL BE PROVIDEO BY FLU(R FERNALO. THE WUIBER OF<br />

ENCLOSURES 10 BE DPERATCO 41 ANY TI& SMALL BE Of ILRYII<br />

BY FLUB fLRNAL0.<br />

2.THC DETAILS UIO RIXlTlNG Of ALL FLEXIBLE HOSES LOCATE0 C<br />

THE SILO SHALL BE FIELD OETERYINEO. COM(ECT1W DETAILS<br />

SHALL BE PROVIDE0 BY FLUOR FERNALO.<br />

I. VUWA FLUOR F~NYO WNU ENCLOSURES<br />

TO -Y. WOWN FOR B2FOffUATION ONLY:<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

E M<br />

R(VIROWY)CTU YAWAOOWT PROJECT<br />

DOP11SlLhsmn<br />

5069


EXC-11-5050<br />

DKCHbRCE<br />

EXCAVATOR FROU<br />

I Noow )<br />

I I 2 I 3 I 4 I 5 I 6 I 7 I R<br />

----+----<br />

DUP-19-5005<br />

0(*-1=202D<br />

1WXl<br />

61<br />

1. i 1<br />

x<br />

_ _<br />

p-) OK/<br />

A0 11 5009A<br />

NOTE 1 Y<br />

+-&<br />

A0V-11-50090<br />

-<br />

I AI I ( I I<br />

UTR-11-50564<br />

10 19<br />

NOTES:<br />

2.RETRIEVU 0DI (H0N-11-50541 SUPPUED WTH RON CRATDU; en0<br />

CRATE SUPPORT. KWE GATE IS RECTMUAffl *M) SHOULD<br />

UATW 12"XlB" RECT*Ncu*R FL*NCED CONWCTKWS ON EWYENi<br />

3.ON SHUTDOWN OF T N RETRLVU BY USDURGE FEELER<br />

ffDR-ll-5D6). TtE LOW-LOW CURRENT PLfflM W'LL PROVIDE<br />

WDICATION TO CE*sE EXCAVATION.<br />

DEPARTMENT OF ENERGY<br />

ERNALD ENVROIYBTTAL YAWIOEYDCT PROJECT<br />

n6lPICnaramn<br />

mm=gfgp<br />

AYCTY<br />

SILO 3<br />

i .- ,... . . . . . .<br />

!<br />

' 5069<br />

I<br />

0003Q1


a<br />

I<br />

IA-405248-1--135<br />

YPASS AIR FRW<br />

Ll-lO-5010<br />

Now9 2 I<br />

PRS-105013-4~-121<br />

I 2 I 3 I 4 I 5 I 6 I 7 I 0<br />

j<br />

11-405249-1 --I 35<br />

._<br />

I<br />

1<br />

-L<br />

Q<br />

1<br />

I<br />

I<br />

!<br />

1<br />

!<br />

1<br />

1: :-<br />

1 12' NOTE 3<br />

1<br />

i<br />

I<br />

I<br />

!<br />

1<br />

j<br />

!<br />

i<br />

f<br />

!<br />

j<br />

!<br />

i<br />

Q Q Q<br />

-NOTE 1<br />

NOTE 11<br />

SILO TO FOR-10-5102<br />

3 NAlERIM<br />

No102<br />

NOTES:<br />

(.ONLY SELECTED EOUIPYNT ITEYS SHOW FOR VENOOR<br />

DESIGNED bN0 SUPPLIED SKIDS. INTERNAL VALYING.<br />

CWTROLS AND INSTRUIENTAION. A W ACCESSORIES.<br />

COMECTl(HS<br />

ARE NOT OETAILED TO AND ON FROY DRIUINCS. THE SKIDS ALL PROCESS SHALL BE 150 LB.<br />

RAISEO FACE FLWGED cooecT1ms. 5069<br />

2. BOTH THE PNEUMATIC RETRIEVAL COLLECTOR LDCL-IO-SO021<br />

AND THi CARTRIDGE FILTER (FLT-10-50051<br />

ARE SWPLIEO WITH RECTANGULAR KNIFE GaTE<br />

VALVES.<br />

3.DIRECT KCHANICAL CIWECTIW: NO PIPING REWIRE0<br />

4.DUPLlCATE BLR-lM006 INTERLOCKS M BLR-10-5008.<br />

%SET POINT BY VEWOR.<br />

INTERLOCKS:<br />

@SHUT UOW BLOWER BLR-10-5006 ON LOI-LOY iLol<br />

@SHUl DOIN BLOWER BLR-10-5006 ON HlUIttlGH TEWERATURE.<br />

@SHUT DOWN BLOWER BLR-10-5006 ON HIUI-HIGH CURRENT.<br />

@SHUT OOW BLOXER BLR-10-5006 HICH-HIGH PRESSURE.<br />

SLO 3<br />

iDIcrmE<br />

INSTRUIENTATION<br />

P6JWG AEQ NSTRUYENT OlAcRAu<br />

000302


I<br />

I 2 I 3 I 4 I 5 I 6 I 7 I 8<br />

SlLC 3 WTERIAL<br />

FROM PNEUMATIC<br />

RETRIEVAL COLLECTOR<br />

OlSCH4RGE FEEDER<br />

NO101 12- (NOTE 1) .<br />

SILO 3 YlTERl4L<br />

FROY INCLINED<br />

CONVEYOR<br />

Nom Y1S-l15MO-l8~-126<br />

-..- I;<br />

Q<br />

-<br />

WR-10-5102<br />

FOR-I 1-51 00 '<br />

FOR-10-SlOZ PUP-62-5404<br />

T R ~ S F C R T O R FEED CCNVEYOR EXCAVATOR SERVEE ROOY SJMP P W<br />

5s SS<br />

20 GPY e 55 FT 1w<br />

yrr(-11-5100 ~X~,$XRW~.SU<br />

3 HP 5nP C.S.<br />

YSOV-4OV-25-52608<br />

7<br />

!<br />

j<br />

n<br />

NOTES:<br />

@SHUT OWN PyP-44-5001P WHEN E-STOP ON 4W-25-526OA<br />

IS 4ClIVITED. WEN AOV-25-52604 IS OPEN.<br />

PERMISSIVE TO START UP PW-44-5001A<br />

@>SHUl OOm PyP-44-50048 WHEN E-STOP ON 40V-25-52608<br />

15 ACTIVATED. WREN AOV-25-526OB 15 OPEN.<br />

PERMISSIVE 10 STIR1 UP P)Ip-44-50040<br />

am----<br />

IwIo0.n<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

RR#MD EwIRIollyEwTAL MANAGEMENT PROJECT<br />

nE(.LIDc-Ln<br />

A -. '50r 9<br />

C<br />

D<br />

L<br />

000303


I<br />

SUPPLY AIR FRDM<br />

FLT-ID-5DTD<br />

PRS-1 OS01 4-3.-127<br />

Noma I<br />

I 2 I 3 1 4 I 5 I 6<br />

DW-10-5025<br />

MAERIAL FR(IU<br />

FEED CONVEYOR<br />

~ ~ ~ 1 2 3 ~<br />

$KO-ZS-52504<br />

FDdZS2frOe<br />

INDTE 31 .ii<br />

......... .-,:. ......_. ..... _:.. .....<br />

....... P'.. .... .>, ....<br />

.:..<br />

h<br />

PRS-105014-3~-127<br />

I<br />

SUPPLY 41R TO<br />

FIK<<br />

TO PNEUMATIC<br />

RETRIEVAL CCLLECTLlR<br />

-1, No04 ><br />

HDV-lD-5D27<br />

- - __._<br />

!<br />

F-<br />

j<br />

!<br />

!<br />

i.<br />

I<br />

j<br />

!<br />

!<br />

r u E o BAGS TO<br />

CARGO CDNTAINERS<br />

TO FLOW OR4lN<br />

FD-62-52SD B<br />

NOlM ><br />

555-84-52524 NOZ-2552604 PRU-25-52701<br />

RCV-25-5218A<br />

PACKAGE RCV-25-5282A<br />

RDR-05-5912<br />

EAR-25-52904 RCV-25-52141 RDR-05-5918<br />

RCV-25-52884<br />

WTAIMR WiN4GEYNT PICK:*GING DISCHARGE CHUTE A S S E ~ Y A P4CK4GE LOADING STAN0 A PAUAGING STATIW<br />

3 P4CXAGlNG SYSTEM 4 SIIPLER A FOUR NOZZLES ss<br />

ExHal R ~ ~ I INERYDIAE S ~ ~ PACKAGING R~L-UP D m 007~ tOUMyOR 41m0CK CONVEym OFFi@dDING cWvEym<br />

5s MTR-25-52701 CS C w Y W A FABRIC<br />

cs cs CS<br />

CS<br />

yIn-04-5252.<br />

CS<br />

3 HP. REV.<br />

yTR-01-5912<br />

M.mjEmR<br />

116 HP+ 1 PH. 115 V<br />

WR-25-5274&<br />

3 UP. REV.<br />

3 W. REV.<br />

1 HP. REV.<br />

3 UP. REV.<br />

1.5 HP. REV.<br />

PAUAGING FRM A<br />

3 UP. REV.<br />

I<br />

NOTFS:<br />

I 8<br />

I. SUPPLY PRcxlMlTY OR PRESSURE SUITCH ON FLEXIBLE CORD<br />

TO BE ATTACHED TO THE BULK BAG FRM. THIS SWITCH<br />

SHNL ALARY ON HIGH LEVEL IN THE BAG 4ND CLOSE THE<br />

FILL VALVE ON HIGH - HIGH LEVEL IN THE BAG.<br />

1. *INFLATOR* AIR WILL BE PROVIDED VIA A SMALL<br />

BLOIER INTEGRAL TO THE P4CKACE LOADING STAND.<br />

I. OILY SELECTED E(XIIP16Nl ITEL6 SHOW FOR VENDOR<br />

DESIMD AN0 SUPPLIED SKIDS. INTERNAL VALVING.<br />

CMlRRS AND IUSTRU~NlAlION. AND ACCESSDRILS<br />

ARE HOT DETAILED Cy DRAUINCS. ALL<br />

RmClSS C M C T I W S TO AND FRDU THE SKIDS<br />

WALL BE 150 LB. RAISED FACE FLANGE Ca8€ClIWS<br />

4. USE 50 BENOS 4ND 45' LATERALS FOR THIS LINE.<br />

~.EICRGE*C~ STOP Pan BUTTONS SHALL BE PRDVIDLO IN I~E<br />

Pf luRl CWlROL SIATION AND bT SUllA0LC PDlNIS ON IHE<br />

RRLER CWVEVOR SECTIOhS. ALSO. A SlAhDARD CABLE-AClUlll<br />

ELZRCENCY STW SWITCH SHALL BE PROVIDED W IhE CDNvErOR<br />

SIDE FACING 1°C NORMAL (PERATOR PDSlllONS<br />

6. f.EX HDICS AND BLIND FLlNCES ALLOW SUPPLY AIR AND VEUl<br />

LIGS ID BE CWNLClEO ABDVE AND BELDU 1HE PACKAGING<br />

SUPLCR. RESP. FINAL ROUTING AND CoNyECllON DElAlLS<br />

F'X FtELD-OElERMINED<br />

SUPPLI AIR AND BASED VENT ON LINES INfORMAllON SHALL BE FRW IhC CWl.INE<br />

UWAGENNI AND PACKAGING SISlEY VENWR.<br />

INTERLOCKS: .<br />

9 :8E~l~L~~Kc~&~~F ;I$ E_'C~4CNTIYRNSNVEIDR<br />

.TM STEEL ROLL+ DOOR (RDR-DS-59121 WST BE CLDSED.<br />

*THE FABRIC RCLL-UP DOOR IRDR-135-5918> OPENS.<br />

. THL PACKAGE STACINC CONVEYDR (RCV-25-5278Al STIRTS.<br />

*THE AIRLOtK CONVEYOR ST4RTS.<br />

WEN LIMIT SWITCH ZI-RCV-25-5282AB IS ACTIVATED:<br />

"STOP PACKAGE STAGING (RCV-25-5278A) CWVEYOR.<br />

* STOP AIRLOCK CWVEYOR IRCV-25-5282AI.<br />

*CLOSE F4BRlC DOOR IRDR-05-5918).<br />

@;o !mix A BULK BAG FROM Tni AIRLOCK CWVEY~R<br />

RCV-25-52821 I TO THE OFF-LDIDING CDNMYDR.<br />

rHE FaLOWlNG HAPPENS:<br />

. THE FA0RIC RDLLYP DDDR (RDR-05-59181 WSl BE CLDSEJ.<br />

ITHE STEEL ROLL-UP DOOR IROR-05-5912 1 WENS.<br />

*THE 4IRLOEK CONVEYOR IRCV-ZS-5282LI STARTS.<br />

, THE (FF-LD4DING CONVEYOR lRCV-25-5288Al STARTS.<br />

(HEN LIMIT SWITCH 21-RCV-25-5288AB IS ICTIVATED:<br />

.STOP 4IRLOCK CWYEYDR lRCV-25-5282A).<br />

STOP OFF-LOADING CONVEYOR lRCV-ZS-SZ8BAl.<br />

.CLOSE STEEL OODR lRDR-05-59121.<br />

$ADDITIVE CHARGE PUWS 4 4ND B IPW-44-5W4A AND 81<br />

*RE INTERLOCKED UlTH THE SILD WTERIAL-HANDLING<br />

IYSlEU LOGIC. THE PUWS SHUT DODN MEN THE FEED<br />

':DNEYOR IFDR-ID-51021 IS NOT WERAlING. THE PUWS<br />

NSD SHUT DOlN MEN THE P4CK4GE LOADING STAND LOM .<br />

CELL DOES NOT SHOW 4 WEIGHT GAIN FOR 60 SEC.<br />

REF DVCI Ho. al*1B1c TITLE<br />

sa0 3<br />

C<br />

5069<br />

080304


I<br />

FROY PACKAGE<br />

LOADING STAHD A<br />

I<br />

I 2 I 3 I 4<br />

I 5 I 6<br />

PROCESS VENT FRDY<br />

PACKAGE LOADING<br />

STAND A<br />

1 mn3 > u CI<br />

SUPPLY AIR<br />

FROU FLT-10-5010<br />

NW99<br />

UATERIAL FRW<br />

FEE0 CONVEYOR<br />

NO02 -<br />

3'XZ'<br />

L<br />

R-<br />

-<br />

HOV-1 C-5034<br />

Q<br />

-<br />

RW-05-59200<br />

U-A<br />

v<br />

I<br />

TO PMUWlTlC<br />

NOTES:<br />

. SUPPLY TU BE ATTACHED PROXlUlTY TO C4 THE PRESSURE BULK BAG SVITOI FRM. M mFLEXIBLE ts svmn COR0<br />

YlYL YAW ON HIGH LEVEL IN THE BAG Urn CLOSE THE<br />

F;LL VALVE ON HIGH - HIGH LEVEL IU THE 0AG.<br />

A TD-~NOEX IRCV-25-528201 i &-BAG TO THE F&-;H;-&.GcK OFF-LOAOING CMYOR. CONVEYOR<br />

THE FC4LLWlNG HAPPENS:<br />

STHE FbERIC ROLL-UP OOOR IROR-05-59201 MUST BE CLOSEO.<br />

.THE STEEL ROLL-UP OOOR lRDR-055914l WENS.<br />

*THE AIRLOCK CONVEYOR STARTS !RCV-25-5282Bi.<br />

.THE OFF-LOADING CONVEYOR IRCV-25-528801 STAHTS.<br />

WEN LIYIT SVITCH Zl-RCV-25-528800 IS ACTIVATEO:<br />

- STCP AIRLOCK CONVEYOR I RCV-25-52828 I.<br />

*STOP .CLOY OFF-LOADING<br />

STEEL OODR CCUVEYOR<br />

lRDR-05-59141. IRCV-25-528881.<br />

3 DELETED<br />

$m NOT ALLOW BLILK BAG FILLING BAG VALVE IS TO CONNECTED OPEN UNTIL TO<br />

PERATIR GIVES ASSURANCE THAT<br />

ILLING SPOUT.<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

E R W WvROlyerrM YANAGEUENT PROJECT<br />

-... .<br />

mm-87<br />

. .<br />

5069<br />

000305


I I 2<br />

I<br />

FRDY MTRUUENT<br />

LR %MER<br />

NO113 IA-405202-1"-135<br />

DUP-19-5036<br />

HOV-40.5043<br />

I I<br />

3 4<br />

ADV-z2DOA AD'"'^<br />

I - HOV-19-5083<br />

t NOTE 2<br />

PVS-195030-24'-127<br />

1 A<br />

5<br />

I 6 I I<br />

HBN-l9-52051 b<br />

FINES CoLLECTmk<br />

BNSALB C.S.<br />

Y T 0 30" W.C.<br />

8<br />

& CH<br />

DCL-19-5202<br />

-<br />

Y<br />

TO RINYATC<br />

NOTES:<br />

8 "<br />

!.ONLY SELECTED EOUIPMXNT ITEUS SHOWN FOR VENDOR<br />

DESIWED AND SUPPLIED SKIDS. lNTERN4L W4LVIWG.<br />

CONTROLS AND INSTRNNTAION. 4ND ACCESSWIES<br />

ARE NOT DET4ILED OH DRAWINGS. ILL PROCESS<br />

COIHECTIONS TO AN0 FRDY WE SKIDS SHML BE 150 LB<br />

RAISED F4CE FLANGED COHNECTIOHS.<br />

2. DIRECT SCHINICAL CWMCTIDN; NO PIPING REWIRED.<br />

INTERLOCKS:<br />

'@FFDF';A9Df:-59$YDEOSE 4W-19-5211 ON POW<br />

4) ~E~D,:,"'~9,::!:9~~D::OSE 40V-1952W ON PD4H<br />

9<br />

WEN 4OV-19-5200 4ND CLOSE 4OV-19-5211 ON HIGH<br />

HIGH P4RTICULATE ON DCL-19-52028.<br />

WEN 4OW-19-5211 AM) CLOSE 4OV-195200 ON lilGH<br />

HlCH P4RTlCUL4TE ON OCL-1052024.<br />

I SYITCH TO NTERNITE DUST COLLECTOR ON LSHH<br />

IN EITHER WST COLLECTOR.<br />

-><br />

I<br />

DEPARTMENT OF ENERGY<br />

-AL yAwIQR1E13T PROJECT<br />

Tl6--W<br />

I.<br />

SILO 3<br />

5069<br />

0438306


I<br />

I 2 I 3 I 4 I 5 I 6<br />

PROCESS HEPA FILTERS A b B<br />

5500 ACFY<br />

BAG-IN/B*G-(IIT TYPE<br />

ss<br />

P A r d B<br />

6000 ACFY P 21- S.P.<br />

CS<br />

CR-19-52061 6 R<br />

40 MP<br />

KO-10-5040<br />

F-1- lctl<br />

EY-19-5208<br />

STK-19-5209 FEM-19-52pS<br />

EXHALIST SIAU TOP 2'-3' DlA<br />

80' YlNlYDl cs HIGH TAPERED<br />

UHTlyuOuS<br />

EYISSICNS yI(iTm<br />

I<br />

NOTES:<br />

INTERLOCKS:<br />

@SHUT DOm FAN-19-52061 LW LO1 FLOW AND<br />

WEN AOV-19-5232 AN0 START FAN-19-52060<br />

AND c..w AOV-19-5230.<br />

9 :% cLmE $TI:"%:?:%<br />

ADV-19-523~. 8Ak$F%9!&6A AND<br />

FAN-19-5206A AND START FAN-19-52068.<br />

$'<br />

"?<br />

\<br />

5069<br />

3G?m AOV-13-5230 AND CLOSE AOV-19-5232 ON HIGM-<br />

HIGH CURRENT W FAN-19-52068. AN0 SHUTDOWN<br />

FAN-19-52068 AND START FAN-19-5206A.<br />

9 ~ U ~ L ~ " J : ~ ~ l ~ 5 6 ~ , " ~ ~ G ~<br />

EXHALST STACK.<br />

A ~ ; ~ ~ ~ ~ ~ ~ A ~ ~ v ~ ~ ~ - ~ ~ - S 0 0 6


RUNNING 'a'<br />

.---________..__...__<br />

ACP-40-532OB<br />

SYSTEM PRESSURE<br />

r--...__...________<br />

1 SISTEU FAULT<br />

,r - . .._ _..___ -.<br />

:<br />

SUO-40-5 00<br />

-w<br />

4 8 ' jji i<br />

, I<br />

i j j j ACP 40 5 00<br />

j j j i<br />

:I: :<br />

;i j j<br />

- I I I I d U<br />

I I I<br />

I 0<br />

w -<br />

......a<br />

ACP-4L5320A<br />

t<br />

CONOENSATE<br />

TO GRADE<br />

SKO-40-53W ACP-40-5320A d 8<br />

PLANT/IKSTRUUENT AR COWRESSOR SKID PJR COUPRESSORS A & E<br />

125 SCFM 0 125 PSlC<br />

cs<br />

YTR-40-53201 d B<br />

40 W<br />

Y(0-40-5502<br />

REFRIGERATION DRYER SUO<br />

250 SCN 0 125 PSlC<br />

cs<br />

NOTE 2<br />

aRT-400-5308<br />

RANT /UR<br />

RECOVER TlWK<br />

250 GPLLON. CS<br />

PA-405200-2"-135<br />

1<br />

7<br />

NOTES:<br />

2.SKO-40-5302 INCLUOES A 5 HP MOTOR.<br />

3. SAD-40-5300 IS CONTINUED ON N0109.<br />

REF OWG NO. I DRAWING TITLE<br />

~- NO003<br />

ISSUED TO CONSTRUCTION<br />

P1PING. VALVES. M40 YlSCELLLMOUS<br />

WSTSTRUYENTATION<br />

EOUWlENT AN0 UISCELLbNEOvS<br />

..<br />

0 7 m m a


NOTE 2<br />

1 I I .J I U I I 1 tl<br />

T<br />

IA-40520; -1 "-1 35 J 4 CONOENSATE<br />

TO CR4OE<br />

AOR-40-5312 AbB<br />

DESICCANT<br />

VESSELS A d E<br />

100 SCFM o 125 PSIG<br />

CS<br />

INSTRUMENT<br />

AIR ORYtR<br />

AFTER FILTER<br />

1 . - 2 I<br />

SK0-40-53OQ<br />

NOTE 2<br />

SKO-40-5300<br />

PLANTIINSTRUSNT AIR<br />

CWRESSDR SKI0<br />

1<br />

PRT-40-5310<br />

INSTRULENT AIR<br />

RECEIVER i4NK<br />

150 GALLON. CS<br />

7<br />

I<br />

!<br />

j<br />

I<br />

, rlP-405207-Z"-135<br />

'+7<br />

t<br />

,--lA-405206-1'-135<br />

CONOENSATE<br />

TO GRADE<br />

NOTES:<br />

2. CONTINUATION OF SKO-40-5500 FROM NO108<br />

+ 5069<br />

REF DWC NO. ORAWM TITLE<br />

NWOl WWG. VKVES. WD LOSCELLMOUS<br />

NWOZ WSTRUUENTATMN<br />

lSSUED TO CowsTRucTlON OlmM<br />

tzaammaaaes--m<br />

M mn<br />

-ius Io m<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

ERNAAU) EwvRmAL MANAGEMENT PROJECT<br />

lUSDu1s-W<br />

SILO 3<br />

-m<br />

INSTRUMENTATION<br />

PPMG AND INSTRUMENT DIAGRW


!<br />

I<br />

1<br />

!<br />

1<br />

I<br />

I<br />

1<br />

I<br />

1<br />

I<br />

j<br />

I<br />

I-..-<br />

NOTE 1 f<br />

CONDENSATE<br />

TO GRADE<br />

- I I I I " I " I I I 0<br />

- - - -<br />

MIEN1<br />

NR<br />

! SYSTEM FAULT<br />

L----____________<br />

HLET<br />

SYSTEM PRESSURE<br />

------..._______.._<br />

RUNNING * A " q<br />

ACP-41-5 6oB<br />

SK0-41-53M<br />

RREATWG NR<br />

COMPRESSOR SKU)<br />

ACP-41-5560 A U<br />

BREATHM; AIR COWRESSORS<br />

A b B<br />

50 SCFM 0 125 PSK;<br />

cs<br />

MTR-k1-5360 A & 6<br />

15 HP<br />

SKO-41-5W<br />

p s ( & 3<br />

BREATHING LIR RECEIVER<br />

TPNK<br />

250 GKLON. CS<br />

_.<br />

REFRIGERATION DRYER SKD<br />

cs<br />

NOTE 2<br />

1<br />

I<br />

!<br />

j<br />

I<br />

!<br />

I<br />

j<br />

!<br />

I<br />

j<br />

!<br />

LCfl MONITOR I<br />

I<br />

1<br />

i<br />

1<br />

NOTES:<br />

2. SKO-41-5354 INCLUDES A 1 HP MOTOR<br />

--- 5069<br />

REF DWC NO. WAWIWC TITLE<br />

NWOl<br />

-.___<br />

p(p(M;. VKVES. ps3D UISCELLWDUS<br />

No002 !NSTRlNENTATU)N<br />

K%E~IILYB*REQS ESCWTOI<br />

#muts*ow<br />

UNITED STATES<br />

DEPARTWT OF ENERGY<br />

FERNMD ENVplO AL MANAGEMEN" PROJECT<br />

n6opL.*bpIILp~ur<br />

SILO 3<br />

-mu<br />

INSTRUNENTATON<br />

PIPING AND INSTRUMENT WAGRAU


I<br />

E<br />

C<br />

D<br />

E<br />

F<br />

..<br />

..<br />

I. .<br />

. . . .<br />

I I 2 I 3 I 4 I 5 I 6 I<br />

p W<br />

HOV-40-5073<br />

I 1A-bOS251.2"-05<br />

I<br />

HOV-40-5116<br />

I<br />

MV-IF5009 MI00<br />

i ++<br />

NOtO3 NO07<br />

MV-19-5026 AOV-19-5230<br />

? -.ii<br />

HOV-40-5161<br />

HSTRULIENT ,<br />

(NOTE 1)<br />

2X%"<br />

1*-40S207-2"-135<br />

I 11-405205-2-135<br />

IA-405205-2"-135 J<br />

INSTRMNT<br />

(NOTE I)<br />

: M)-6<br />

0<br />

f<br />

-<br />

z"xr<br />

MV-K3-5053 MV-(9-5211<br />

Nom<br />

mv-10-5054 LoV-l9-5200<br />

NO106 NO106<br />

SPIRE WI<br />

PLUG<br />

K1V-40.5176<br />

TO EL-10-5032<br />

nomi<br />

VOTES:<br />

.AIR SUPPLY BEYDO HEMER VALVES WILL BE INSTRMNT<br />

TLBINC bND CWlRaS SPECIFIED BY THE IWSTRUYNT bND<br />

C(HTRL1S GROUP. THIS PdlD IDENTIFIES THE INSFWENT<br />

OF bCTUbT(R SUPRIED AND THE Pall0 SHEET W E R ON MlCH<br />

TIE CWMNT IS SHGRN.<br />

REF DWC NO. MIAYDIC TITLE<br />

Nuxll WNC. VKMS. #NO MQUMOUS<br />

W 2 WWJBENTAllON<br />

-<br />

: 5069


______<br />

I I 2 I 3 I 4 I 5 I 6<br />

I<br />

HC-ET (NOTE 31<br />

UWYSULATEO<br />

TW-505178-i"-U16-HC-ET '-g v<br />

w1v-50-5:7*<br />

TW-505177-V-lOS-HC-ET 2"xy<br />

-0-0- -<br />

-<br />

TW-505173-2-m6-'IC-€T<br />

HJV-50-5149<br />

UTUllY STATION ~w-m~i76-1--1m<br />

2x1"<br />

WV-50-5029<br />

t<br />

TW-505171-2"-106<br />

I<br />

HOV-50-SOS4<br />

UTLllY<br />

I<br />

t Hov-5J-5097<br />

STATlON 2<br />

TO TNK-62-5600<br />

NOW ><br />

TO PUP-44-5004A 6 B<br />

SUCTION Urn MSCHbRGE<br />

NO116<br />

-<br />

NOTES:<br />

1. MLETED<br />

l a<br />

2. UTUTI STATIONS bRE DESIGNATE0 AS FOLLOWS:<br />

TWZ 1 - COUPRESSED M N P R Y HOSE ONLY.<br />

TIR z- COIPRESSEO m SUPPLV nosi mu A PROCESS<br />

WATER SUPPLY nm.<br />

3.WYSTE WATER WSDE CMGO CONTluNER 8AY TO BE<br />

TRym N9JLATEO.<br />

-<br />

r n DWG ~ uo. I D R A W TITLE<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

F E W<br />

-AL PROJECT<br />

ll6pIIC-m<br />

I.<br />

sa0 3<br />

-mu<br />

MSNSTRUENTATION<br />

-<br />

A<br />

B<br />

C<br />

D<br />

E<br />

5069


I<br />

-<br />

I 2 I 3 I 4 I 5 I 6 I 7 I 8<br />

I<br />

FRW SUPPLY<br />

HEPA FILTER<br />

L<br />

(EX1 SI’<br />

Jt<br />

IC I<br />

TO PNEUUAlIC<br />

RETRIEVAL CaLECTOR<br />

TO PROCESS VENT<br />

DUST COLLECTOR<br />

GENERAL NOTES:<br />

I<br />

I. THE WeLR Or V A W WAND ENCLOSURES Ih WERATlPl AT<br />

THE SAIE IlE SHALL BE DElEfWlNED 81 FLUOR FERNUD.<br />

WE FLLX HOSE FRDY IhE PNEUMATIC RElRlEVU SYSIEY 4EWE<br />

WILL BL ATIACHED TO THE WAND IN USE.<br />

IDLE EllClDSURES TO dAVE COVERS INSTALLED.<br />

?. DCLElED<br />

).EACH VICWY UAND ENCLOSURE HAS A ‘ri HP YOTOR FOR<br />

A HOIST.<br />

I. DELETED<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNAID -AL YAWIQemrr PROJEC<br />

uSpLI0-m<br />

sa0 3<br />

PllDrmr<br />

INSTRUENTATION<br />

RPNC *M, NST<br />

- 5069<br />

000313


CS-445310-1 .-lOIJ<br />

I I 2 I 3 I 4<br />

I 5 I 6 I<br />

C5-445309-1 *-lo1<br />

AOV-44 -5 197<br />

-2-<br />

0-2'<br />

C5-445301-2*-101<br />

CS-445304-31k--101<br />

4 HOV-44-5233<br />

NC<br />

L<br />

0 -<br />

N<br />

.n<br />

n<br />

"7<br />

v<br />

HOV-44-5201 ,',z-x%:<br />

HOV-50-5246 CKV-H)-5247 STR-44-5DMB<br />

*<br />

"3 0<br />

Q = v<br />

HOV-~~-SZOZ<br />

IL<br />

1<br />

HOV-44-5203<br />

eyP-44-5004<br />

TNT.-44-50044 PLP-44-5~4 ~~~-44-50040 PLP-4450948<br />

)soITIM CHUIGE TANK 4<br />

120 CUL'M<br />

2'-7- 014. X 3 5lR4IGHT SIDE<br />

MOlTlVE CHARGE Pulp A<br />

10 ow e 60' IOH<br />

2-x l'-;x???<br />

MOITIVE UIbRQ TUX 8<br />

120 GNLO(S<br />

2.-1* 011. x 3' STRAIG-IT 510E<br />

)SDITIv€ CHARGE PlDe 8<br />

io WY e 60' mn<br />

2-x l'.;x???<br />

HOPE HOPE<br />

NOTE 1<br />

CS-445300-3/4.-101<br />

TO NOZ-25-52604<br />

NO103 ><br />

NOlES:<br />

I.HNLI V4LvE TO BE HLNUALLY POSITIWEO TO E514BLISH 4<br />

FL3W OF 6 CPY TO NOZ-25-52604 & 8.<br />

WE RL 0 C K S :<br />

L CS-445301-3/4*-101 @ CLOSE 401-44-5210 W HIGH LEVEL IN TNK-44-50044<br />

@ CLOSE AOV-44-5197 ON HIGH LEVEL IN 7NK-44-5004s<br />

@ :?PEN AOV-44-5210 WHEN 1NX-44-50041 NO1 IN CH4RGE<br />

c1CLE.<br />

@ g:'EfOV-44-5197 WHEN TNK-44-50048 NO1 IN CH4RGE<br />

@ S4 jHUT LOW 00WN LEVEL MOlTlVE IN TNX-50044 CH4RGE OR PUW 8. IPW-4450041 OR 81<br />

@ , ~ U ~ c S ~ T ~ ~ - 4 gE:0V-25-52604<br />

~ ~ O ~ ~ - ~ ~ 2 ~ ~ ~ T ~ ~<br />

PERYl5SlVE TO STIR1 UP PW-44-50044<br />

@ ~ ~ ~ c S ~ ~ 8;E;y-25-52606<br />

T ~ ~ ~ ~ ~ ~ O ~ ~ ~ -<br />

I'ERYIS5IVE TO STIR1 UP PLp-44-50046.<br />

@ $ty5;y;;iy &Yo~-;;-;N6g~aRGE CYCLE. CLOSE E ITHER<br />

WEN SYSTEM A OR B 15 IN RINSE CYCLE. OPEN EITHER<br />

i0V-50-5167 OR SOV-50-5169.<br />

UETECTEO<br />

JTER THE RINSE E1 EITHER CYCLE FIT-PW-44-50004<br />

IN SYSTEM A OR 8. OR 8. IF FLOW CLDSE IS<br />

3LMK V4LVE 4OV-50-5181.<br />

REF OWE NO. I DRAW TITLE - ooo1 I PPHG.V#LMS.LElD usCELLu(E0us<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

ERWILD -AL yA)IuopIEwT P-1<br />

%-PILI-m<br />

- . - I . . . . . . .<br />

.- .<br />

.. .<br />

. . :<br />

- .<br />

.. ..


I<br />

OPERATIONS SUPPORT TRNLER<br />

Lu<br />

'0<br />

I 2 I 3 1 4<br />

I 5 6 I 7 I 8<br />

, , .r ,? ' PRN-C;<br />

BACKUP CONTROL SYSTEU<br />

WIbNO ENGINEERING STATION<br />

EOW No. CPU-90-5875<br />

PRINTER<br />

EWtP NO.<br />

IP ADOR: 10.16.38.64<br />

0 I<br />

IP nDOR: 10.16.38.62 ! IP ADDR: 10.16.38.63<br />

I I<br />

pCPU.90-587.-S<br />

I ~cpu-90-5875-~<br />

I ._._._._. J<br />

I It ETMAMT USCO<br />

L.-.-.-.-.-.-.-.-.-.<br />

SWITCHER<br />

-I .. ii<br />

CPU-90-5876<br />

r.- .-.-. -.-.-.<br />

i<br />

j/--PNL-90-5890-5 i<br />

I<br />

i IP mDR(0.16.58.65<br />

VERSAVIEW 1500P<br />

TOUCH SCREEN DISPLAY<br />

A-8<br />

EOUIP. NO. PNL-90-5890<br />

Lr;<br />

J<br />

, :.-PRN-90-5884-S<br />

.-.<br />

-5KO-25-5250A-S<br />

.-..-<br />

I<br />

1<br />

. .<br />

B<br />

I<br />

!<br />

!<br />

j<br />

i<br />

I<br />

!<br />

1<br />

I<br />

IP hLIDR:10.16.38.66 IP ADOR;10.16.38.67<br />

I<br />

PACKAGING STATION A<br />

PLC A-B SLC 5/05<br />

EQUIP. NO. SKD-25-5250A<br />

PACKAGING STATION B<br />

PLC A-E SLC 5/05<br />

EOUP. NO. SKO-25-52508<br />

r UPIN PLC CONTROL PANEL UCC ROOM - E W NO. PNL-90-5871<br />

I PLC LOCK RACK 2<br />

WITH 1747-SN<br />

I<br />

REUOTE VO SCANNER<br />

I PLC LOCAL R m 1 MOOULE<br />

I<br />

I PLC-90-5870<br />

I<br />

I<br />

I<br />

j<br />

I<br />

!<br />

I<br />

1 PNL-90-5871-52<br />

!<br />

I<br />

j<br />

!<br />

j<br />

1<br />

P NJOR: 10.16.38.6:<br />

PNL-90-587l-S1 -..-.<br />

A-0 RIO LIM<br />

"BLUE HOSE<br />

I -.<br />

!<br />

I<br />

i ,<br />

F<br />

RI<br />

AL RACK 3<br />

747-94<br />

0 SCNER<br />

I<br />

I<br />

I<br />

U<br />

PLC REMOTE RACK 4<br />

WITH 1747-68<br />

REMOTE MOOULE 110 PLlSLPTER<br />

PLC REMOTE RACK 5 PLC<br />

WI<br />

REUO<br />

L --<br />

I\uX PLC CONTROL P N L YCC ROOM - EPUP NO. PNL-90-5872<br />

.. _.<br />

t ITE RACK !<br />

DULE<br />

<<br />

'I'<br />

I\ I !<br />

J<br />

j<br />

-.-.-._<br />

,NOTES:<br />

CAT 5 UTP ETHERNET CABLE BELOEN CAT. NO.<br />

1585A-015UHX) COUCODE (08093170. PLENUM<br />

BLUEJACKET.<br />

A-8 REUOTE I/O LINK CABLE (A-0 BLUE HOSE)<br />

BELOEN CAT. NO. 9463.<br />

PLC RACK INTERCONNECT CABLE, ALLEN-<br />

BRNkEY CAT. No. 1746-C16 (50 W.1.<br />

Y USCO OVTELLlGENr SWITCH, 24 PORT 101100 WITH 2 GBlC SLOTS<br />

UNPOPULATED. ClCSO CAT. NO. WS-3550-24 PWRlEMl<br />

><br />

><br />

REF DWG NO.<br />

MlAWffi TITLE<br />

:WOl-EOOlO I DlSlRUUENTATlON LOCATKM PLMS<br />

1 10203 I tNSTRUYENTATmN OPERATIONS WPWRT TRNLER<br />

IOZD8<br />

I INSTRUUENTATKIN PNL-90-5871<br />

i<br />

I<br />

i<br />

DEPARTMENT -OF ~NERGY<br />

FERNALD ENVIRO~~YEMAL MANA~EYIENT PR~JECT<br />

THsDpRcpSpRlDBT<br />

-3900-N-02489<br />

4<br />

5069


Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision 1, September 2003<br />

Heating, Ventilation, and Air Conditioning Air Flow Diagrams<br />

94X-3900-H-0 1 302 Systems and Equipment Designations<br />

94X-3900-H-0 1 303 Legend, Symbols, and Abbreviations<br />

94X-3900-H-0 1 348 Process Building - Packaged Air Conditioning Units<br />

94X-3900-H-01304 Process Areas<br />

94X-3900-H-01349 Process Building - Exhaust Filtration Units<br />

94X-3900-H-01347 Silo 3 Enclosure<br />

94X-3900-H-01423 Storage and Wastewater Tank Area<br />

94X-3900-H-01350 Cargo Container Bay<br />

Heating, Ventilation, and Air Conditioning Control Diagrams<br />

94X-3900-H-0 1 722 Process Building - Packaged Air Conditioning Units<br />

94X-3900-H-01718 Process Building - Packaging Area<br />

94X-3900-H-017 1 9 Process Building - Corridors/Airlocks<br />

94X-3900-H-01720 Process Building - Excavator Room<br />

94X-3900-H-0 1 72 1 Process Building - Exhaust Filtration Units<br />

94X-3900-H-01723 Silo Enclosure<br />

94X-3900-H-01724 Cargo Container Bay<br />

94X-3900-H-01725<br />

94X-3900-H-0 1 726<br />

Storage and Wastewater Tank Area<br />

Controls Sequence <strong>of</strong> Operation<br />

5069


I I<br />

I 2 I 3 I 4<br />

I 5 I 6 I 7 I 8<br />

EQUIPMENT EQUIPMENT<br />

DESCRIPTION DESlG N AT OR<br />

(XXX)<br />

1IR CONDITIONIJG UNIT . *cU<br />

M( HANDLNG UMT AW<br />

M( FLOW WEGIJRlNG STATION WS<br />

ENCLOSURE ENC<br />

E X W T *IR RECASTER EAR<br />

EXPANSION JOINT . EXP<br />

FAN FW<br />

FILTER FL T<br />

FIRE DWPER FOP<br />

FLEXIBLE CONVECTION FLY<br />

GRAVITY OAUFFR GDM<br />

HEATER HTR<br />

HUIODIFER HUM<br />

JWCTION BOX JBX<br />

LOUVER LVR<br />

YPLN CIRCUIT BREWER MCB<br />

MOTOR MTR<br />

MOTOR CONTROL CENTER MCC<br />

UOTOR STARTER PANEL MSP<br />

PACKAGE UNIT PKU<br />

PWEL (CONTROL) PNL<br />

PMLEOrnO PNB<br />

PITOT TUBE STATION PTS<br />

POWER DISTR!EUTION PWEL PDP<br />

POWER PPNa WN<br />

POWER P M L UNSTWENTATION) PWP<br />

RETURN UR MLLE RAG<br />

RETURN UR REUSTER RAR<br />

STACK STK<br />

SUPPLY NR DIFFUSER SM<br />

SUPPLY NR GRILLE SAC<br />

SUPPLY UR REGISTER SAR<br />

VACUUM BREAKER VBK<br />

SYSTEM NUMBERING<br />

(YY)<br />

OD<br />

Dl<br />

02<br />

03<br />

04<br />

05<br />

06<br />

07<br />

08<br />

09<br />

F W I E S<br />

NOT USED<br />

NOT USED<br />

WASTE RETRIEVU FACLlTtS<br />

NOT USED<br />

NOT UKD<br />

LIpjCELLWEOUS FACLITIES<br />

NOT USED<br />

NOT USED<br />

NOT USED<br />

NOT USEO<br />

(0<br />

mBVK<br />

PNEUMATIC RETMEVAL SYSTEM<br />

11<br />

12<br />

U<br />

14<br />

MECHnMCAL RETRIEVAL SYSTEM<br />

NOT USED<br />

NOT USEO<br />

NOT USEO<br />

PROQSSMG<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

NOT USEO<br />

NOT USEO<br />

NOT USEO<br />

NOT USEO<br />

PROCESS VENT SYSTEM<br />

NOT USED<br />

NOT USED<br />

NOT USEO<br />

PRMUCT WLINC<br />

23<br />

24<br />

NOT USEO<br />

NOT USED<br />

26 25<br />

27<br />

28<br />

29<br />

NOT CONT*PSR USEO UAN/\GEMENT SYSTEM<br />

NOT USED<br />

NOT USED<br />

NOT USED<br />

NCTRlCIL<br />

30<br />

31<br />

32<br />

33<br />

HlGH VMTAGE SYSTEM<br />

480 VOLT DISTRRUTION SYSTEM<br />

STANDBY ELECTRCU SYSTEM<br />

UNNTERRUPTIELE POWER SYSTEM<br />

35 34<br />

36 ..<br />

37<br />

38<br />

LIGHTING<br />

GRWMWNG SYSTEU SYSTEM<br />

UnT lltFn ----<br />

NOT USEO<br />

NOT USEO<br />

39 MISCELLANEOUS ELECTRICAL<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

UTlLlTlES AND MM3ALS<br />

PLANT AND INSTRUMENT NR SYSTEM<br />

BREATHING AIR S'STEM<br />

NOT USEO<br />

NOT USEO<br />

NOT USED<br />

NOT USEO<br />

NOT USED<br />

NOT USEO<br />

NOT USED<br />

NOT USEO<br />

WATER SYSTEUS<br />

PROCESS WATER SYSTEM<br />

WUESTIC WATER SYSTEM<br />

NOT USED<br />

HOT USE0<br />

NOT USED<br />

NOT USEO<br />

NOT USED<br />

NOT USE0<br />

NOT USED<br />

NOT USED<br />

WASTE SYSTEKS<br />

NOT USE0<br />

NOT USED<br />

WASTEWATER SYSTEM<br />

NOT USED<br />

NOT USED<br />

NOT USED<br />

NOT USED<br />

NOT USEO<br />

NOT USED<br />

NOT USEO<br />

HVAC SYSTEUS<br />

70 SLPPLY AIR SYSTEM<br />

71 EXHAUST AIR SYSTEM<br />

72 NOT USEO<br />

73 NOT USEO<br />

74 NOT USED<br />

75 NOT USEO<br />

76 NOT USEO<br />

77 UlsCELL*MOLlS HVAC SYSTEM<br />

78 NOT USED<br />

79 NOT USE0<br />

80 81<br />

82<br />

85<br />

uE0u)ScAL LH) Lw4LYTfcLL SYSTEYS<br />

NOT USEO USED<br />

NOT USEO<br />

NOT USED<br />

84<br />

E5<br />

86<br />

87<br />

88<br />

89<br />

WPLING SYSTEM<br />

NOT UYD<br />

NOT USED<br />

NOT VYD<br />

NOT USED<br />

NOT USED<br />

E QUIP ME NT NUMBER IDENT lFlC AT ION<br />

_._.<br />

XXX-YY-ZZZZ<br />

T T T<br />

- -<br />

amlrnl<br />

.I<br />

P2IIIN oL(p( SUA LMUUWGS 2<br />

I 3 I 4 I 5 I<br />

6 I<br />

I<br />

GENERAL NOTES:<br />

1. ALL NOTEO DUCT DWENYONS *RE WSIDE OMNSIONS UNLESS<br />

OTHEFWtSE NOTED.<br />

2. ALL DUCTWORK SHALL BE GALVANIZED STEEL AS WWCATED IN<br />

SPEUFICATION SECTION: 1SBW IN BIR SUPPLY AMI MSTRBUTION<br />

SYSTEM UNLESS OlHERWtSE NOTED.<br />

3. ALL WCTWORK ELEVATIONS bRE SOTTOM'OF SHEET METAL.<br />

MESS OTHERWISE NOTED.<br />

4. ROOM PRESSURES INDICATED ON ORAMNCS ARE WERENTIAL<br />

PRESSURES (IN INCHES WC) WlTH RESPECT TO ATUOSPHERIC<br />

PRESSURE.<br />

5. -LOW RATES SHOWN El CUBIC FEET PER LDNUTE (CFU) ARE<br />

ACTUAL FLOWS (ACFMI AT THE SITE ELEVATION MOVE SEA<br />

LEVEL.<br />

6. ALL EOUIPMENT SUPPORTS. FOVNOATIONS. PPDS. WUL OPENINGS<br />

AND PENETRATIONS S W BE VERIFIED WITH THE ACTUAL<br />

€ W E N T FOR SIZE AND FIT. THE EOUSPSNT SIZES MICATED<br />

ON THE DRAWINGS HAVE BEEN SELECTED FOR ENGINEERING DESIGN<br />

AND SPACE ALLOCATION PURPOSES. THE ACTUAL SIZES UAY<br />

VARY DEPENDING ON EQUPMENT MPMJFACTURER<br />

7. &L MOTORS WlE 3 PHASE. 60 HERTZ. 2301460 VOLTS UNLESS<br />

OTHERWISE NOTED.<br />

- 5069<br />

REF DWC NO. DRAWWC TlLE<br />

OD2 I WAC LEGEND rmBoLS AND b68REVIATIONS<br />

I<br />

lssuED FOR CONSTRUCTIOW<br />

-(II---mrrPm<br />

mas.otm<br />

UNITED STATES<br />

DEPARTMENT<br />

--<br />

OF ENERGY<br />

ERNALD ENVRowylEHTAL NAN- PROJECT<br />

ll6-pprplsDW<br />

1<br />

~~


3<br />

f.<br />

m<br />

m<br />

-<br />

I L I I 3 I 4 5 I 6<br />

HEATING, VENTILATION AND AIR CONDITIONING LEGEND, SYMBOLS AND ABBREVIATIONS<br />

SINGLE LINE<br />

ABBREVIATIONS<br />

FlLTER (35% ASHRE<br />

EFFICLENCY RATING)<br />

ABBREV. WORD OR TERM<br />

bBOVE<br />

OUTSOE<br />

ACTUAL CUBlC FEET PER UWTE<br />

uR<br />

OPPOSED .BLADE DWER<br />

M7 PJR WNDITOMNG<br />

CQWnONwG UMT<br />

p I<br />

ROUND DUCT END ELEVATION<br />

TR/WSITMN RECTLHGULAR TO<br />

R O W<br />

FLTER (90-95% *sHRA€<br />

EFFICIENCY RATING)<br />

WGH EFFICENCY<br />

PAQTKXLATE Mi (HEPPJ<br />

FLTER<br />

ULTRA-LOW<br />

PMTRATING AIR (ULPAJ<br />

FLTER<br />

ARBREV<br />

bBV<br />

*CFU<br />

AC<br />

ACU<br />

m o x<br />

ATU<br />

AUTO<br />

BEL<br />

BHP<br />

BOG<br />

BOD<br />

BOL<br />

Bop<br />

BOU<br />

BTUH<br />

BYP<br />

CNTFGL<br />

CW<br />

ccw<br />

CD<br />

CFH<br />

CFU<br />

CG<br />

CL<br />

CLG<br />

CONC<br />

COND<br />

b N<br />

F 1’<br />

FC<br />

FO<br />

n<br />

FWD CRY<br />

*PPROXBAATELY<br />

ATYOSPHERE<br />

UJTOWTIC<br />

BELOW<br />

BRME HORSEPOWER<br />

BOTTOM OF CRlLLE<br />

BOTTW OF WCT<br />

BoTlDU OF LOUVER<br />

BOTTOM OF APE<br />

BOTTDU OF W T<br />

BRlTW THERUM UNITS PER HOUR<br />

BWASS<br />

CENTRIFUGAL<br />

CCYUON<br />

CWrnTY<br />

CDUNERCLQCKWLSE<br />

CmING DIFFUSER<br />

atBlC FEET PER HOUR<br />

CUBlC FEET PER UINUTE<br />

CEILHG CENTERLINE GRILLE<br />

FURNISHED<br />

SWLIIE FEET<br />

CUBIC FEET<br />

F a CLOSE0<br />

FPA OPEN<br />

FORWAQD<br />

FPA LOCKED CURVED<br />

OA<br />

OBD<br />

oc<br />

OD<br />

OVHD<br />

OP<br />

OPER<br />

OPNG<br />

PO<br />

PENET<br />

PF<br />

PH<br />

PL<br />

P&S<br />

PNEU<br />

POC<br />

POS<br />

PRESS<br />

myl<br />

PDAL<br />

PDI<br />

PDlC<br />

PDIT<br />

AP<br />

PSlG<br />

uc<br />

uc<br />

Vu:<br />

VEL<br />

VNT<br />

W<br />

W I<br />

wc<br />

WG w/o<br />

WT<br />

WTR<br />

WTSDE ON CENTER DIIUIETER<br />

OVERHEAD<br />

OUTPUT<br />

OPfR ATINGIOFERATOR<br />

OPEm<br />

PRESSURE<br />

PEMTRATON DROP<br />

PREFQTER<br />

P H S<br />

PLATE PLACES<br />

P W L<br />

P N E LIM A T I C<br />

POINT OF CONNECTION<br />

POSITIVE<br />

PRESWRE<br />

PRESSURE DbFERfNTlAL ALMU HKjH<br />

PRESSURE DFFERENTUL ALARM LOW<br />

PRESSURE MFFERENTUL WWCATOR<br />

PRESSURE DbERENTlAL NDEATING CONTROLLER<br />

PRESWRE DIFFERENTIAL INDICATING TRANSUITTER<br />

PRESSURE DIFFERENTIAL<br />

POUNDS PER SQUARE INCH (GAUGE)<br />

CWUNG<br />

ELBOW WITH TURNING VbNES<br />

RADIUS ELBOW<br />

DUCT SIZE (FIRST FIGURE 15<br />

SIDE SHOWN SECOND FIGURE<br />

IS SIDE NOT’ SHOWN)<br />

bMS AIR UEASURMG STATION<br />

BKD BACKORNT DPMPER<br />

DPR NON BUTTERFLY DAUPiR<br />

DMP BUTTERFLY DWPER<br />

FOP COLIBINATION<br />

UOTORIZED FIRE/ISOLATION<br />

DWER WITH YEEVE<br />

FDP CURTNN TYPE STAT!€<br />

FIRE OPMPER WITH SLEEVE<br />

N<br />

B<br />

P<br />

1<br />

OUTSIDE PJR LOWER<br />

BACUORPFT DWER UPNUAL VOLUUE DWER<br />

MOTOR OPERATED DPMPER<br />

MOTOR OPERATE0 FIRE<br />

DPMPER<br />

FLUE OAUPER<br />

(WITH FUmLE LINK)<br />

PlTOT TUBE STATION<br />

cow<br />

CR<br />

cs<br />

CTR<br />

cv<br />

CW<br />

DES<br />

DIA<br />

DISCH<br />

ON<br />

DIP<br />

DUN<br />

01<br />

DWG<br />

(E)<br />

EA<br />

EFF<br />

EG<br />

ELB<br />

EL<br />

EN1<br />

EQUIP<br />

EP<br />

ER<br />

E50<br />

EVAC<br />

EXF!L<br />

EXH<br />

(F)<br />

:: !>E<br />

.F WB<br />

FD<br />

FLE <<br />

FLG<br />

FLU<br />

FLTR<br />

FP<br />

FPI<br />

FPU<br />

CONCRETE<br />

COWENSATE<br />

CONNECTON<br />

CMBON CELHG REGtSTER STEEL<br />

CENTER<br />

CMCK VALVE<br />

CLoU(WIsE<br />

DESlW<br />

DIMTER<br />

DISCHARGE<br />

DOWN<br />

DRW DIFFERENTIAL PRESSURE<br />

DRAWING DEYGN TEUPERATURE<br />

EXISTING<br />

EXHWUST AIR<br />

EFFlUENCY<br />

EXHWT ELBOW GRILLE<br />

ELEVATION<br />

ENTERWG<br />

EQUmENT<br />

EXPLOSlON PROOF<br />

EXWST EMERGENCY REGlSTE SHUTDOWN R<br />

EVACUATION<br />

EXFILTRATION<br />

EXHPOST<br />

FURMSHED<br />

DEGREES FMRENHfIT<br />

DEGREES DEGREES FAJiRENFEIT<br />

FAHREMEIT DRY WET BULB<br />

FIRE DUlPfR<br />

FLEXl6l.E<br />

FLLHGE<br />

FLOOR<br />

FILTER<br />

FIRE PROTECTION<br />

FINS PER INCH<br />

FEET PER umux<br />

orr<br />

R<br />

RA<br />

RD<br />

REF<br />

REG<br />

REQO<br />

RG<br />

RFGT<br />

RH<br />

RL<br />

RPU<br />

RR<br />

RS<br />

SA<br />

sc<br />

SCFU<br />

SCH<br />

u)<br />

SEC<br />

SG<br />

SIS<br />

SL<br />

SPD<br />

SP<br />

SR<br />

ss<br />

STD<br />

sv sw<br />

TA<br />

TEFC<br />

TEW<br />

TC<br />

TOC<br />

TOD<br />

TOS<br />

TR<br />

TRNY<br />

TSP<br />

TYP<br />

QUbNTlTY<br />

REFRlGERbNT<br />

ROWS RETURN AIR DISCHAQGE<br />

REFERENCE<br />

REGISTER<br />

REQUIRED<br />

RETUM GRILLE<br />

REFRIGERANT<br />

RELATIVE HUNUIDITY<br />

REVOLUTIONS<br />

REFRWRPNT LIQUID PER UWJTE<br />

RETlRN REUSTER<br />

REFPJGERMT SUCTION<br />

my<br />

STBNDPRD &ECTlON CUBIC FEET PER UWUTE<br />

SCHEDULE<br />

SHUTDOWN<br />

SECOM)MY<br />

SVPPLY GRILLE<br />

SWETY INSTRUMENTED SYSTEM<br />

SOUNO LNNG<br />

SPEED<br />

STATIC SUPPLY PRESSURE<br />

REGISTER<br />

STWESS STEEL<br />

26%2kD VALVE<br />

SWITCH<br />

TRANSFER LIR<br />

TOTALLY ENCLOSE0 FPJi COOLED<br />

TEUPERATURE<br />

TRbNSFER GRILLE<br />

TOP OF CONCRETE<br />

TOP OF DUCT<br />

TOP OF STEEL<br />

TRbNSFER REGISTER<br />

TOTAL TRPNSFER STATE PRESWRE<br />

TYPICAL<br />

UNDERCUT<br />

UNDERGROUND DOOR<br />

SYMBOLS<br />

SYMBOL DEFINITION<br />

0 AT<br />

E CENTERLNE<br />

0 MIUIETER<br />

08<br />

ELECTRIC HEATING COL<br />

GAL<br />

cuv<br />

GPU GR<br />

ELECTRIC UOTOR H<br />

HTG<br />

HEPA<br />

HVAC<br />

CIC-CWLNG con<br />

H/C-HOT WATER COIL<br />

I<br />

ELECTRIC RADIANT<br />

HEATER<br />

a DUCT TRbNNBTbm<br />

+<br />

D<br />

D<br />

0<br />

SUPPLY ps)<br />

FLOW DRECTDN<br />

OOWST !J4FLTRATION OR<br />

UFLTRATION mow‘ MRECTDN<br />

HD<br />

HDR<br />

w<br />

HGT<br />

HOA<br />

HPl<br />

HR<br />

HZ<br />

IAS<br />

m<br />

LE.<br />

IN<br />

HFlL<br />

HSTR<br />

IN WC<br />

IN WG<br />

KW KaOWATT<br />

L<br />

LG<br />

LGTH<br />

LP<br />

LPT<br />

LiBH<br />

MAX<br />

UCC<br />

uw<br />

Llpl<br />

UOY<br />

MTD<br />

UTG<br />

YTL<br />

YFR<br />

Nc<br />

MG<br />

Mi€<br />

NK<br />

NO<br />

. NTS<br />

GALLON<br />

CALVMZED<br />

GALLONS PER YIFR)TE<br />

CFUDE<br />

HlGH<br />

HEATING<br />

HlcH EFFlUENCY PMTICUI .ATE<br />

HEATDIG. VENTILATION BND LIR<br />

HELD<br />

HELDER<br />

H0RSEWWE.Q<br />

H*M)/OFF/LUTOUATIC<br />

MrnT<br />

m WElT<br />

HOUR<br />

HERTZ<br />

AIR CONDITIONING FILTER<br />

WSTRULWT uR SUPPLY<br />

WSUATION<br />

THAT D<br />

HCH<br />

WFLTRATION<br />

WSTRUL(ENT<br />

Y W S WATER COLUMN<br />

WHES WATER GAUGE<br />

LONG<br />

LEVEL GUlCE<br />

LENGTH<br />

LOW PRESSURE<br />

LOW powr<br />

VACWM<br />

VELOUTY<br />

VENT<br />

“,IO,:<br />

W i i k COLUUN<br />

WATER GAUGE<br />

WITHOUT<br />

WEIGHT<br />

WATER<br />

1 a<br />

* 5069<br />

REF DWG NO. I DRAW!NG TITLE<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

--<br />

FERNALD ENVIROWYEWTAL YANAQEYEWT PROJECl<br />

n6-IBPmm<br />

DDlcTlTLE<br />

WAC<br />

LEGEND, SYWOLS & ABBREVIATIONS


575<br />

OUT<br />

PUB<br />

NR<br />

575<br />

OUT<br />

u1B<br />

UR<br />

I I 4 I V I 3 I b I<br />

m-70-5700<br />

(50% CAPACITY) I<br />

ACU-70-5710<br />

(50% CAPACITY)<br />

ACU-70-5720<br />

I%/ CAPACITY)<br />

XU-70-5700<br />

PMXMD NR<br />

CO- U(IT<br />

xu-10-5710<br />

P*MA(xD m<br />

corn- WT<br />

ACU-70-5720<br />

PLCKAGED m<br />

C0NDITK)NPIc LWT<br />

TO<br />

I<br />

t<br />

5.750 CFY<br />

PROCESS<br />

BUlLDDlc<br />

TO PROCESS<br />

BUILDING<br />

nvX -y<br />

I HOW4 \<br />

1 I R<br />

NOTE:<br />

1. ONLY TWO ACVS SHKL BE OPERATYG AT ONE T IE<br />

e- 5069<br />

REF OWC NO. WAIDI(: TITLE<br />

I KSUXlTOCMTRUCT*)N<br />

HVAC SYSTEMS N4D EOUPUENT DEYGNATORS<br />

HVAC LECEM).SYLBOLS UO IBBREWATM<br />

=LOW aLauy PROCESS *REA<br />

n om larnlm<br />

~rncIBD(IIpPII-DLoDBm<br />

*Nys*Dmm<br />

UNITED STATES<br />

DEPARTWNT OF ENERGY<br />

FERNMD ENVIRONMENTAL MANAGEMENT PROJECT<br />

n6DUlG-n<br />

I<br />

!


~<br />

~~~<br />

I I 2 I 3 I 4 I 5 I b<br />

I I<br />

NOTES:<br />

FROM<br />

ACU-70-5700<br />

woo5<br />

5.7M CFM<br />

m<br />

FROM<br />

FRW<br />

NXI-70-5720<br />

I HOO03<br />

‘<br />

5.7Y) CFM ,<br />

1.350 CFM .<br />

ENTRY<br />

800 CFM CORRIWR<br />

- a 1630 CFU 4.670 CFU<br />

280 OM’ - +<br />

INFFBTRATION<br />

.(SEE NOTE 1. TYPJ<br />

130 CFM<br />

930 CFM<br />

I<br />

I;<br />

0<br />

m<br />

L 2<br />

110 CFM<br />

(SEE NOTE 3)<br />

7.120 CFM<br />

VARIABLE FLOW<br />

VpiaLu RELEF -<br />

I4<br />

b7<br />

0<br />

EXCAVATOR<br />

ROOM<br />

(SEE NOTE 41 I<br />

EXCAVATOR<br />

4.230 CFM SERVKX<br />

TO FLT-71-5770A<br />

100 CFM -<br />

I u<br />

DWNG THE LJR SYSTEM B&#NCING IN amER TO OFFSET<br />

THE XTU& INFLTRATION RATES. THE EXHAUST LJR FILTRATON<br />

WITS ARE SIZE0 TO W E THE BUEOWG INFILTRATION<br />

WrnTY.<br />

2. NOT USED.<br />

3. 1.000 CFU 6 EXMSTEO FRW PCKAWNC AREA ROOM 004<br />

BY PROCESS EXHAUST SYSTEM. SEE SHEET FO002.<br />

4. 4.500 CFU 1s EXHAUSTED FROM EXCAVATOR ROW 009<br />

BY PROCESS EXHAUST SYSTEM. SEE SHEET FWO2.<br />

e- 5049<br />

REF DWG NO. I DRAWPIG TlTLE<br />

KO001 I WAC SYSTEMS LND EWIRENT DESIGNATORS<br />

1 REVbED PER OCN 40430-&G-088<br />

0 lssLEoT0coxslRucTloN OlM B.O.C. CC<br />

om .nn -<br />

n .D.<br />

-mmmsmx-opLpm<br />

IIysmw<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY


E<br />

E<br />

FROM PROCESS<br />

EULMNC<br />

EXHWST<br />

HOOD4<br />

7.200 CFM<br />

I - 1 . I f<br />

SrnE PHD WECTm/<br />

CONEECTIONS UYP)<br />

SLIlPLE IWD lNJECTUX(<br />

COHNECTIONS ,TYP)-/<br />

FLT-71-5770A<br />

(100% CAPACITY) \-ULPA FILTER<br />

FLT-71-5770B<br />

11wx CAPMTY)<br />

I 3 I 0 I<br />

t<br />

7.200 CFM<br />

-1<br />

7.200 CFY<br />

I 7.200 CFY<br />

(loo% FM-71-576m CAPACITY)<br />

FIW 71-57-<br />

BvILD(HG FQ.TRATMN<br />

EXIWJST FAN B<br />

7.200 CFM<br />

7.200 CFY<br />

1<br />

7.200 CFU<br />

TO EXHWST<br />

STK-f9-5209<br />

I 8<br />

REF DWC NO. I MI- TITLE<br />

1<br />

e- 5069<br />

H W l I HVrC SYSTEMS a EOUlPLPNT DESGNATORS<br />

m w 2 Hvlc LEGEND.SYmaS L LB8REVlAlDNS<br />

HW04 m o w DlAcubM<br />

F W 3 PROCESS VENT L PAcKcchy: SYSTEMS<br />

ISSLIED TO coNsTRucTKy(<br />

I<br />

a(.----<br />

DlllIrn"1 r.ll<br />

UlnsIOoLR<br />

UNITED STATES<br />

DEPARTS NT OF ENERGY<br />

:ERNAD ENVIR AL YANAGEMENT PROJECT


I I<br />

DPR-77-6OQJ 1<br />

QPR-77-6006 4<br />

_.<br />

SILO ENCLOSURE<br />

LOWER b OWPER<br />

- _<br />

SILO ENCLOSURE<br />

LOUVER b OMPER<br />

SILO ENCLOSURE<br />

1010)<br />

I J I 0 I<br />

15.000 CFM -v)<br />

(5.000 CFU YY<br />

50.000 CFU<br />

FAN-77-5789<br />

SILO ENUOUlRE<br />

EXHWST FW<br />

EXCAVATOR ROW<br />

10091<br />

I 8<br />

REF OWG No. DRAWUS TITLE<br />

liOOO1<br />

5069<br />

HVIt SYSTEMS Yo EOUlPYENT DEYGWTORS<br />

n mn Ian1 -<br />

P<br />

S%S~SE*BDIIIIIOP ~ppsm<br />

mnuLsmw<br />

UNITED STATES<br />

DEPARTWT OF ENERGY<br />

FERNALD ENVIRO AL WAGEENT PROJECT<br />

n6-PEPaQm


.-<br />

STORAGE AND WASTEWATFR<br />

TANK #REA<br />

LOUVERIOWPER NiO FLTER<br />

- _<br />

STORAGE U0 WASTEWATER<br />

TPNK AREA<br />

LOUVERID- WO FLTER<br />

I<br />

"<br />

STORAtE bN0 WASTEWATER TANK I\REA<br />

pGE)<br />

I<br />

-r<br />

!<br />

2.600 CFM<br />

FW-77-5792<br />

STORM /IND WASTEWATER<br />

T/\NK PJ?EA EXHAJJST FW<br />

I 3 I 0 I<br />

tl P<br />

REF owc No. I ORAWNG TITLE<br />

L- 5069<br />

I I l l<br />

a(.----<br />

.TysIomli<br />

UNITED STATES<br />

DEPARTWNT OF ENERGY<br />

FERNALD ENVIRO-AL WNAGENENT PROJECT<br />

n6-Fiwmcom


i<br />

1<br />

L<br />

I " I f I J I 0 I<br />

FPN-77-5790A FAN-77-57908 F&4-77-5790C<br />

t t<br />

t<br />

SOM)<br />

CFM<br />

FAN-77-579QA<br />

CnRu) CWTUILER BAY<br />

EXHAUST FPN A<br />

t<br />

3000<br />

CFM<br />

CMCO CONTMR BAY<br />

a<br />

fPN-77-579QB<br />

CARGO CONTUNER BAY<br />

E X M T FW B<br />

9.000 CfY -<br />

3000<br />

CFU<br />

f CN-77-519M;<br />

CMGO CONTWR BAY<br />

EXHWST FPN C<br />

z<br />

8<br />

0<br />

(Ir<br />

r<br />

m-77-5737<br />

CARGO CONlUU€R BAY<br />

Nu nmDIc UMT<br />

n ID.<br />

sumpraw---<br />

I 8<br />

t-- 5069<br />

mmmn<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERWLD ENVIRONMENTAL YAIIAoEyENf PROJECT<br />

rY5rr-m<br />

AIRFLOW- - WACRAM


I<br />

100% OUTmE<br />

ALlslENl YR<br />

5750 CFU<br />

loo)! OUTSIDE<br />

-EN1 NR<br />

5750 CFU<br />

mol WTPDE<br />

ALlslENT UR<br />

5750 CFM<br />

, L<br />

I I d I t I 3 I 0<br />

ACU-70.5710<br />

Lw<br />

,-SEE NOTE 4<br />

[SEE NOTE 4<br />

ACU-70-5700<br />

__I<br />

ACU-70-5700<br />

(50% CWACITY)<br />

I EUO-70-6009<br />

PROCESS<br />

PTS-70-6042 moon: WAC<br />

SUPPLY<br />

Hoot1 ><br />

I I n<br />

NOTES:<br />

- 506<br />

1. CONTROL PIwEL/OtscMCT SVlTCH FURNLSI(E0 WITH MU.<br />

UOUNTEO IWO WIRED. YNGLE SOLlRCE POWER SUPPLY<br />

REOUIRED.<br />

2. RWU TEWPERATURE SEIORS FURMSMO WllH ACU.LOCATE0<br />

Y PACU- MEA 004.<br />

3. WOKE OETECTOR FURNISHED. UOUNTEO. L W W BY FIRE<br />

NARU SYSTEU VWOOR.<br />

4.<br />

POI'S ARf FURNISM0,UOUNTED WnH ACWS.<br />

FROU TIC<br />

.~ACU-70-5700<br />

SHEET Ho021<br />

(SEE NOTE 2) INTERLOCKS:<br />

EKO-70-6011<br />

(SEE NOTE 1) j j j<br />

FROM TIC<br />

I # ,<br />

I I .___.._____________<br />

2 ACU-70-5710<br />

,<br />

, I<br />

I<br />

I<br />

SHEET HOO21<br />

(SEE NOTE 2)<br />

T ,<br />

I<br />

ACU- 70-5710<br />

i. --<br />

rSEE NOTE 4<br />

ACU-70.5710<br />

(50% CWACITY)<br />

Acv-70-5720<br />

(50% CAPACITY)<br />

ELECTRIC<br />

FROU TIC<br />

---$ ACU-70-5720<br />

MEET H0021<br />

(SEE NOTE 2)<br />

5750 CFM<br />

DPR-70-6012 32x16<br />

PROCESS<br />

EULCWG WAC<br />

- PROCESS<br />

EULOYG WAC<br />

- , PTS-70-6044 5750 CFM SUPPLY<br />

\<br />

-. H0021 ><br />

\<br />

OPR-70-6014 32x16<br />

4<br />

EU0-70-60l3<br />

- -<br />

5. FOR HVAC CONTROL SEOUENCE OF OPERATION SEE SHEET WO28.<br />

TWO ACVS w u BE SELECTED *s Pmww WD STARTED BY<br />

THE OPERATOR. TM RfWW Lw WfLL BE STW-BY. T M<br />

FOLLOWING INTERLOCUS WST BE SATSFLO:<br />

VER!FY OPR-70-6015.6018.6020 b 6022 ME OPEN<br />

VERlM FDP-70-6023 Is OPEN<br />

ON LOW FLOW INDICATION FROU FI-ACU-70-5700 ENERGIZE<br />

STAND-BY ACU AND oE-EmazE ~M~~EVER PRI~ARY ACU<br />

6 DETERMNED TO BE PERFORUUG WPLEWATELY.<br />

ON ACU SHUTDOWN NIRY. XA. EMRGIZE STPNO-BY Acu.<br />

ACU WILL SHUT DOWN ON SMOKE DRECTION. ALAfW WILL BE<br />

POSTED IN (XTRATDNS WPORT CENTER. STM-EY ACU WILL<br />

@ BE STARTED.<br />

0 :H& ~ $ ~ N A C & O ~ y ~ TO ~ N PROCESS CONTROL SYSTEM<br />

REF OWC NO. DRAW TITLE<br />

m 4<br />

HVX SYSTEUS LIQ E(XIPYEN7 CEgolnTORS<br />

WAC LEGfND.SnsOLS 6 ~REVIATlWS<br />

HVM CDNTRcl aKRw PLo(HG AREA<br />

HVAC EOUlPYNT SCHEMES<br />

) 6SUEDTOCONSTRVCM)( 0 7 m Bbc/<br />

'1<br />

wl lrrnlma----<br />

.ITuLIIIoDLR<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNAU) ENVIRO)(I;ID(TAL MANAGEMENT PROJECT<br />

lm--m


.<br />

-<br />

E<br />

F<br />

I<br />

ROY<br />

UV-70-5700<br />

I<br />

I 2 I 3 I 4 I 5 I 6<br />

PTS-70-6046<br />

m *.<br />

DPR-70-60017<br />

mo CTU<br />

!0.U<br />

A<br />

AT*<br />

- 2.070 CFU LOXI CFU<br />

? CFu<br />

I'O'O CFU 1<br />

SET e 68.f<br />

(NOTE 5)<br />

5.280 ffu 4.320 CFU<br />

SEl 0 68'F<br />

(NOTE 51<br />

w<br />

HTR-70.5 SOD<br />

SET 0 68.F<br />

(NOTE 5)<br />

Y)-<br />

4-<br />

825 CFU<br />

.ye<br />

' 6-0<br />

825 CFU<br />

n YH) CFU<br />

Y u-e<br />

124 I<br />

I I 8<br />

NOTES:<br />

TO mLm<br />

007<br />

mK122 1. NOT mo.<br />

:1. FOR HVIC CONlRoL SEMNCE Of OPERATION SEE 9EET HoO28.<br />

8. ROW TEUPERATURE SENSORS FLRRNSHEO win m comTmtwG<br />

WTS<br />

5. TE'S. TCS FW3EHEO WITH )(EATERS<br />

6. LOCATE0 ON SOUTH WKL OUlW l)(E EL%ONC.<br />

7. LOCATED W E PICKIWG PS€A<br />

8. LOW CFU 6 EXHAUSTED FROU PYJKACNG lREA Rooy W4 BY<br />

PRCCKSS EXHAUST SYSTEU. YE SMET FW03.<br />

W-70-5710 Yir+ UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERWAU) -AL YAWAoermT PROJECT<br />

w w - m<br />

Icu-70-5720<br />

ffY<br />

5069<br />

.L<br />

TO LN-70-s7w<br />

CONTFmL PMEL<br />

SKEET Hw20<br />

2,<br />

10 Lsv-70-5710<br />

CoHTRci PML<br />

SiTT m20<br />

2,<br />

10 #Cl-?0-5720<br />

CONTROL PINL<br />

sal M)ozo KU fq<br />

70 5 01<br />

cmTE 71 - mrr61 - TO ENTRY<br />

COR<br />

800327<br />

800 CFU<br />

m=--<br />

MI ..<br />

MD22


a<br />

DPR-70-6019 W-70-6020<br />

FC<br />

FROM PACKAGING<br />

AREA 004 PTS-71-6049<br />

- * " OW-71-6026<br />

280 CFU +<br />

WLTRATION<br />

Ls_y<br />

FDP-71-6027<br />

FC<br />

1lO CFU +<br />

INFILTRATION<br />

12x10 4 818<br />

-<br />

I 675 cFM<br />

).<br />

I -<br />

I" I 675 cFu<br />

HlR-70-57346<br />

v<br />

(NOTE 4) (NOTE 4)<br />

TR-70-5735<br />

m<br />

UTR-ZS 5 35<br />

(NOTE 4)<br />

I FC<br />

FDP-71-6031<br />

PTS-71-6051<br />

1.630 CFU<br />

12- U - I<br />

IMP-71-6028<br />

AREA 004 PTS-71-6050<br />

2.450 CFU<br />

H0021<br />

14" 0 U DW-71-6056 -.<br />

I<br />

\ u<br />

FROU ACU-70-57M).<br />

: mi<br />

-L, I<br />

ENTRY CORRlOOR<br />

4<br />

950 CFU<br />

FDP-70-6023<br />

FC<br />

UO CFU<br />

NFLTRATION<br />

HTR-70-5732<br />

WTE 41<br />

HTR-70-5732 ._ m 7 0 - c 5<br />

ENTRY CORRlWR DO1<br />

ELECTRIC HEATER<br />

2 KW<br />

moa( 007<br />

ELECTElC HEATER A<br />

2 KW<br />

NRLOCKIWFF DO3<br />

ELECTRK: mATER<br />

2 KW<br />

-<br />

950 CFU<br />

CORRlDOR<br />

I CNnTF 11 I<br />

I L<br />

.. ._ . - .<br />

I<br />

HTR-7 - 73 _ _<br />

COROR Do2<br />

ELECTRIC HEATER E<br />

2Kw<br />

ELECTRIC HEATER<br />

2 KW<br />

D m Y O<br />

FOP-71-6029<br />

FC<br />

1 PTS-71-6054<br />

DW-71-6042<br />

7.120 CFM<br />

240<br />

TO HEPA<br />

FILTER WITS<br />

FLT-71-5770A 8<br />

FLT-71-57708<br />

HO023<br />

NOTES:<br />

I<br />

I THE ROOU EXHNJST ##?FLOW RATES NCLUDE THE CALCULATE0<br />

NFILTRATIDN RATES. /u).NST THE ROOU EXUAVST YRFLOW<br />

I. RELOACTED 2W0DIWPER.<br />

b. FOR HVAC CDNTROL YOVENCE OF OPERATION SEE M E T HDD26.<br />

1. TE'S. TC'S FURNISHED WlTH HEATERS.<br />

INTERLOCKS:<br />

- 5069<br />

ON A RISE IN ROOM PRESSURE ABOVE SET RWGE.MOWLAfE<br />

0 CLOSED OPR-70-6020. ILlUlTED TO 50% OPEN.)<br />

ON A RIY IN ROOU PRESSURE ABOVE SET RANCE.UODULATE<br />

@ CLOSED DPR-70-6022. (LWTEO TO 50% OPEN.)<br />

CLOSE FOP-70.6023. FW-71-6027, FOP-71-6029 6 FDP-71-6031<br />

UPON SIGNAL TO PROCESS CONTROL SYSTEM FROU FRE<br />

ALARM SYSTEM.<br />

CLOSE FDP-71-6031 ON A SIGNAL FROM PbNlC-EAR CONTACT<br />

@ SWITCH ON EUERGENCY-EXIT DOOR No. OO3D. (D-R WILL<br />

BE RE-OPENED BY OPERATOR FROM THE CONTROL ROOU.)<br />

REF DWC NO. I DRAWING TITLE<br />

WAC. SYSTEYS AN0 EOLUPUENT DESIGNATORS<br />

WAC. LEGEM). SYMBOLS L *BBREVIATIONS<br />

WAC CONTROL am*u P ~ MEA G<br />

HDo23 CGUTRDL DIAGRM EXCAVATOR ROWS<br />

HD€u4 WVIY: EaUlRlENT SMEDULES<br />

1 I I l l<br />

1<br />

REvlyD PER DCN 40430-JEC-088<br />

REVlSED PER DCN 40450-.EG-025. -029<br />

b ISSUEDTOCOWSTRUCllON<br />

mND1EDc ccs<br />

-0Ip.BDIIIwp.m<br />

fm<br />

mIonuE<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNAID ENVIRO~AL UANAGENENT PROJECT<br />

D6--BT


.-<br />

FROM PACKAGING<br />

MEA 004<br />

HOD22<br />

I<br />

I 2 I 3 I 4 I 5 I 6 I 7 I 8<br />

ATM<br />

!TGJH<br />

DMP-71-6033A<br />

"L -1<br />

300 CFM<br />

0<br />

m<br />

100% AMBlENl<br />

OUTSIOE IUR<br />

EXCAVATOR SERVICE ROOM<br />

4,500 CFM<br />

ATM<br />

-<br />

OM rn 71 6 33<br />

EXCAVATOR ROOM<br />

OM -71-6 33 4 - TO MFCS<br />

CONIINKVJS ELmSlONS<br />

UOYTOWG BUQDINC<br />

XU-77-5750 (CEM)<br />

OA<br />

m-77-5750<br />

HEATER FbN 425 3.5 CFU KW<br />

EXFUTRATION<br />

-v)<br />

50 CFM<br />

TO =PA<br />

F~TER UNITS<br />

FLT-71-5770A b<br />

FLT-71-57708<br />

HOD24 ><br />

NOTES :<br />

2. NOT USED<br />

I<br />

3. FOR HVAC CONTROL SECUENCE OF WERATION SEE SHEET HD028.<br />

4. 4 500 ffM IS EXHUSTED FRW EXCAVATOR ROOM 009<br />

6Y PROCESS EXHWST SYSTEM. SEE SHEET NOlOO.<br />

INTERLOCKS:<br />

CLOSE UPON SIGNAL TO PROCESS CONTROL SYSTEM FROM<br />

@ -FIRE ALNW SYSTEM<br />

. CLOSE UPON SIGNAL TO PROCESS CONTROL SYSTEM FROM<br />

RMIMOGICAL UOMTORING SYSTEM<br />

IF EXCAVATOR SERVCE ROOM 008 PRESSURE BECOMES<br />

GREATER CLOSE FOP-71-6034.<br />

THAN PACKAWNG AREA 004 PRESSURE.<br />

REF DWC NO. DRAWING n u<br />

HOoOl<br />

w021<br />

WAC CONTROL D WUI PXKWC AREA<br />

HW24 WAC Exn*usT FLTUATCH W TS<br />

WAC EOUPUENT SCHEDULES<br />

1 - . I l l<br />

-m---ms-mm<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNALD -AL MAN- PROJECT<br />

mscamcmenmm<br />

!SILOS<br />

WAC<br />

CONTROL MAGW


a<br />

a<br />

FROM PACKAGWG MEA<br />

AND NRLOCKIDOFF<br />

I<br />

-- -<br />

I 2 I 3 4 I 5 I 6<br />

t. T<br />

0<br />

x<br />

m<br />

FLT-71-5770A '<br />

"r"<br />

P<br />

FLT-71-577OE<br />

6ULCRN€ ULPUIEPA I3HPLE.T UOWLE E<br />

AMS-71-5760<br />

i<br />

T<br />

7.200 CFU<br />

FAN-71-576OA<br />

(no% CAPACITY)<br />

rzm7<br />

0<br />

I<br />

----------------!<br />

SELECTOR<br />

Fffl-71-57600<br />

i (100% CAPACITY)<br />

I<br />

I<br />

- .<br />

1 I 7.200 CFM<br />

I<br />

I<br />

'I I 7.200 CFM<br />

li I 24"0<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

24"0<br />

.<br />

TO EXH*VST<br />

><br />

I I . Y<br />

! T<br />

FAN 71-5760A<br />

BULDNG FILTRATION UHPIJST FAN A<br />

7.200 CFM a Is- WC SP<br />

Bun- FILTRATION E N 71-57MLB EXH*VST FAN E<br />

7.200 CFM a IS- wc SP<br />

Y-<br />

BukDWG FUTRATW EXHMIST FAN MOTOR A<br />

30 HP<br />

EUIUMG FILTRATION E W T FAN MOTOR E<br />

30 HP<br />

I<br />

I<br />

L - - - - - -- Y<br />

v<br />

I a<br />

NOTES:<br />

1. WI'S ARE FURNISED. UOUIITED WITH BuaDPVC EMMIST MODULES<br />

3. -MIPS. ACIUATORS UO POSnY)PERS FUIMSMD. UOUNTED WITH<br />

5069<br />

INTERLOCKS:<br />

0 OMY ONE EXIWJST FAN.57WA OR 57608 WILL BE ABLE<br />

TO RUN IN AUTO MODE AT ANY GWEN TUE. OPERATOR WILL<br />

SELECT PRI- FAN TO RUN AN0 OTHER FAN WlLL BE<br />

STAND-BY.<br />

THE FOLLOWWG INTERLOCKS MUST BE SATISFIED:<br />

e<br />

VERFY PRLUARY -DING EXHWST UOWLE SOLATION<br />

OIJIPERS ARE OPEN *ND STAVO-BY EUILOlNG EXH/V1Sl<br />

D M m (EITHER<br />

UP.71-603 6 6037 Mp.71-6038 6 60391<br />

VERIFY FOP-70-6023. FDP-71-6027. FDP-71-6029.<br />

FOP-71-6031. *NO FDP-71-6034 PSIE OPEN.<br />

IF SET POINT FLOW RANGE CANNOT BE MAINTNNEO. SHUT<br />

@ WWN PRIMARY EXHWST FAN #NO START STAND-BY EXHAUST<br />

FAN.<br />

WHEN FLOW REACHES LOW ALARM SETPOINT, RECORD LOW<br />

ALm TO PROUPT SERVICE<br />

WHEN POI REACHES HGH ALARU SETP0YT;RECORO HGH<br />

ALARM TO PROMPT SERVICE.<br />

WHEN POI REACHES HlGHlM SETPOINT. OPEN SOLATION VALVf<br />

FOR STfflO-BY WllLMNG E X H M l UOWLE N CLOSE<br />

ISOLATION VALVES FOR PRIMARY BUROINC EXHWST MODULE<br />

RECORD HICH-HIGH ALARM TO PROW1 SERVICE<br />

SHUT DOWN FANS ON SIGNAL TO PROCESS CONTROL SYSTEM<br />

@ FROM FIRE ALARM SYSTEM<br />

REF DWG NO. mWNc TITLE'<br />

HOOOl HVAC SYSTEMS AND EaLpuENi DESGNATORS<br />

HOW2 HVAC LEC€Ml.STMBOLS M ABBREVIATIONS<br />

HIM73 I HVPIE. CONTROL DIAGRAM. EXCAVATOR ROOUS<br />

HIM44 I HVAC E(XPYENT SCHEDULES<br />

REVISED PER DCN 4043O-JEGQ25<br />

s s m m m - -<br />

IanusIDcNE<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNALD ENWRo)(yacTAL WNMiEYDcT PROJECl<br />

n6-uEPIIcDBI<br />

C1.<br />

SILO 3 0<br />

-N<br />

-<br />

WAC<br />

CONTROL DIAGRAM


I - I 4 I .t<br />

I<br />

OPR-77-6001 J<br />

5%CFM<br />

AMBIENT -<br />

YR<br />

YR<br />

OPR-77-<br />

AMBIENT - YR<br />

OUTSIDE P<br />

7<br />

$<br />

DPR-77-6001<br />

SILO ENCLOSURE<br />

LOUVER & DAMPER<br />

DPR-77-60QZ<br />

SILO ENCLOSURE<br />

LOUVER 6 OWPER<br />

DPR-77-WO3<br />

SUO ENCLOSURE<br />

LOUVER L DAMPER<br />

..<br />

M O ENCLOSURE<br />

LOUVER b DAMPER<br />

_ _<br />

sno ENCLOSURE<br />

LOUVER b DWPER<br />

5%CFM<br />

5000_CFM<br />

5 Z C F M<br />

5 z C F M<br />

5000 CFM -<br />

SILO ENCLOSURE<br />

I 3 I b I I I<br />

a<br />

15.000 CFM 542<br />

2-, 15.000 CFM<br />

0;<br />

9 zL<br />

30.000 CFM<br />

MTR-77-5789<br />

EXCAVATOR ROOM<br />

piJ<br />

vTART/SlOP<br />

FW-77 5 BOA<br />

.J<br />

FAN-77-5789<br />

SILO ENCLOSURE EXHAUST FAN<br />

30.000 CFM 0 1.75" WC SP<br />

-.<br />

5110 ENCLOSURE EXHWST<br />

FrW 20 MOTOR<br />

w<br />

NOTES:<br />

1. FOR HVAC CONTROL SEOUENCE OF OPERATION SEE SHEET H002E<br />

INTERLOCKS:<br />

SHUT DOWN FAN ON SIGNAL TO PROCESS CONTROL<br />

0 SYSTEM FROM FIRE &ARM SYSTEM.<br />

REF OWG NO, I DRAW TITLE<br />

50 69<br />

HWOl I HVK SYSTEMS IWD EOWUENT DESIGNATORS<br />

ISSUED TO COt6TRVCTY)N<br />

HVAC LEGEND. SYWOLS b NIBREVIATIONS<br />

HV*C EP-NT so(EwLES<br />

PLD MSTRLIMENTATION __.<br />

DOTIP-- DcIIspm<br />

-<br />

rn IN.ll<br />

ITwsmo1Tc<br />

UNITED STATES<br />

DEPART ENT OF ENERGY<br />

ERNAID ENVW MANAGEMENT PROJECT<br />

716~psplRmBI


FAN-77-5790A<br />

!<br />

HTR-77-57404<br />

SET 0 55'F<br />

(NOTE 2)<br />

I I I J I 0 I<br />

FAN- 77-57905 FPA-77-579OC<br />

HTR-77-57408<br />

SET 0 55'F<br />

(NOTE 2)<br />

CARGO CONTYNER BAY<br />

FAN-77-5790A FAN-77-5790@ FW-77-579OC<br />

CmGO CONTNNER BAY<br />

E X W T FW A<br />

3.000 CFU 0 0.25" WC SP<br />

CARGO CONTMUER BAY<br />

EXHPJJST FW B<br />

3.000 mc 0 0.25 wc SP<br />

CARGO CONT/UMR BAY<br />

EXHPJJST FW C<br />

3.000 CFY 0 0.25- WC SP<br />

YTR-77-5790A UTR-77-57908 UTR- 77-579K<br />

CARGO CONTNWR BAY<br />

E w r FAN MOTOR A<br />

v3 Hp<br />

CARGO CONTlUMR BAY<br />

EXHMJST FAN YOTOR E<br />

v3 w<br />

CARGO CONTNNER BAY<br />

EXHIVST F W UOTOR C<br />

v3 Hp<br />

HTR-77-574a HTR-77-574B<br />

CMGO CONTANER EAY<br />

CARGO CONTUNER EAY<br />

ELECTMC MATER A<br />

ELECTKC MATER E<br />

13.5 KW 13.5 KW<br />

.<br />

3.000 CFM<br />

44x14<br />

c -<br />

m<br />

hid77-5j40C<br />

HTR-77-5740C<br />

u<br />

SET 0 55.F<br />

(NOTE 2)<br />

- _<br />

CARGO ELECTRlC CDNTPMR MATER BAY C<br />

U.5 KW .<br />

-<br />

NOTE 1<br />

FAN-77-5737<br />

WU-77-5737A<br />

'-f<br />

q<br />

AHU-77-5 378<br />

mu-77-5737<br />

AM)-77-5737<br />

CARGO CONTAINER BAY<br />

YR HWNG UNT<br />

9,000 CFH 0 1.50 WC SP<br />

FAN-77-5737<br />

CARGO CONTBB4ER BAV<br />

SUPRY FAN<br />

UTA-77-5737<br />

CMCO SUPRY CONTlUMR FbN YOTOR BAY<br />

71% w<br />

START/STOP<br />

I I X<br />

NOTES:<br />

1. SMOKE DETECTOR FURNISHED. MOUNTED. AND WREO BY FRE<br />

OETECTON VENOMI.<br />

2. TE'S. TC'S FURNMO WITH HEATERS.<br />

3. PDIFURIIISHEO.UOUNTE0 WITH *w.<br />

4. CONTROL PANEL. MOTOR STARTERIDISCONNECT SWITCH FURNISHED<br />

WITH W. MOUNTED AND PRE-WIRED. SYGLE SOURCE<br />

POWER SWLY REWIRED.<br />

5. DAMPER MOTOR AND INTERLOCK PRE-WIRED.<br />

6. FOR HVAC CONTROL SEOUENCE OF OPERATION SEE SHEET H0028.<br />

7. A LOCAL MANUAL STARTERIOVERLOAD CONTROL IS PROVIDED BY<br />

FPA YPNLIFACTURER.<br />

INTERLOCKS:<br />

50 69<br />

0 WHEN MU SUPPLY FAN IS ENERUZE0,EXHWST FANS ARE<br />

ENERGIZED. WMN MU SUPPLY FAN 6 DE-ENERUZED. EXWST<br />

FPNS ARE DE-ENERGIZED.<br />

@ WHEN fflU WPPLY FAN IS ENERGIZED.DAWER WILL OPEN.<br />

WIEN fflU SUPRY FAN IS DE-ENERGIZED. DAMPER WnL<br />

CLOSE.<br />

@ ;;ti; CM&~ALffl$YO~y~f[tL$ TO PROCESS CONTROL SYSTEM<br />

I<br />

REF OWG NO. DRAWING TITLE<br />

WOO1 I HVIC SYSTEUS N O EWiPYENT DESCNATORS<br />

HOOO2 1 HVAC LEGENO.SYYBOLS k #BBREWATIONS<br />

HW4 I HVIC EO1IIR(ENT SCHEDVLES<br />

~~~CIBDIRIBOIE mscsmm<br />

-*oD.lf<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

'ERNAID ENVRO&ENTAL MANAGEMENT PROJECT<br />

n6-m-w<br />

,<br />

SILO 3<br />

-mu<br />

HVAC<br />

CONTROL DIAGRAM<br />

CARCO CONTAlER BAY<br />

l&um l=$,m 194X-3900-H-01724 IH00261 0<br />

R


I<br />

E<br />

C<br />

-<br />

D<br />

-<br />

i<br />

-<br />

I<br />

i<br />

L /<br />

I<br />

DPR-77-6007<br />

STORAGE AND WASTEWATER<br />

TANK AREA COUEVNATION<br />

LOUVERIOWPER/WTH 35% FILTER<br />

DPR-77-KOm<br />

STORAGE bN0 WASTEWATER<br />

TANK AREA COMBNATION<br />

LOUVERIDI\MPERIWITH 35% FILTER<br />

DPR-77-EO43<br />

STORAGE U4D WASTEWATER<br />

TANK AREA COUBINATION<br />

LOUVERIDMPERIWTM 35% FRTER<br />

SET a 45 OEG F<br />

(NOTE 2)<br />

HTq-77-5797A<br />

STORAGE MO WASTEWATER<br />

TbNU AREA ELECTRIC UNIT &EATER A<br />

5 KW<br />

STORAGE AND WASTEWATER TANK AREA<br />

pGZFI<br />

SET a 45 OEG.F<br />

(NOTE 2)<br />

_ _<br />

HTR-77-579B<br />

STORAGE AND WASTEWATER<br />

T/w( AREA ELECTRIC UNlT HEATER B<br />

5 KW<br />

FAN-77-5792<br />

!<br />

1<br />

I 2.600 CFM<br />

p - y s<br />

FAN-72 92A<br />

SET a 45 OEG.F.<br />

(NOTE 2)<br />

7 HTR-77-5797C<br />

t--/<br />

r'<br />

& STORAGE AND WASTEWATER<br />

2600 CFU ~~~~~~~1 0 1.50 WC FAN SP<br />

STORAGE AND W&STEWATER<br />

TWK AREA EXHAUST FAN MOTOR<br />

1 HP<br />

STORAGE *HD WASTEWATER<br />

TANK AREA ELECTRE UNIT HEATER C<br />

5 KW<br />

. .-<br />

I<br />

I<br />

L<br />

NOTES:<br />

I<br />

I<br />

INTERLOCKS:<br />

. . _. .. .<br />

DE-ENERGIZE FAN WHEN ROLL-W DOOR 0058<br />

ENERGIZE FAN WMEN DOOR 0058 IS CLOSED.<br />

REMSED PER Ocn 40450-JEG-036<br />

-kec.m<br />

ISSUEDTOCONSTRUCTON 07/11/02 BDC m<br />

- a p L l s D l - - m<br />

Iyn -"(an<br />

*Nu.omn<br />

8<br />

50 69<br />

IS OPEN<br />

DE-ENERGIZE FAN ON SIGNAL TO PROCESS CONTROL<br />

@ SYSTEM FROM FIRE ALmM SYSTEM.<br />

DE-ENERGIZE FAN ON DROP IN OUTSIDE TEMPERATURE<br />

mow WF. ENERGIZE FAN ON RSE IN OUTSIDE<br />

TEMPERATURE ABOVE 6O'F.<br />

REF DWG NO. I<br />

A<br />

ORAWC TITLE<br />

HOW1 1 HVAC SYSTEMS AND EQUFUENT DESIGNATORS<br />

Hooo2<br />

no044<br />

Now2<br />

HVAC LEGEND. SYMBOLS L I\BBREVIATIONS<br />

MVLC EWIPYENT SCHEDULES<br />

PMD NSTRUMENTATION<br />

~~


I<br />

I<br />

F<br />

-<br />

I<br />

GEcLEBbl<br />

THE sno 3 WAC SYSTEMS CONSIST OF THE FOLLOWING:<br />

PRROCESS BUILCdNG CASCME HVAC SYSTEU<br />

C*RW CONTUNER BAY HEATW AND YENTILATON SYSTEM<br />

STORACE nM WASTEWATER TbNK M A VENTLATION SYSTEU<br />

%LO ENCLOSURE VENTILATION SYSTEU<br />

CONTHlouS E MSSM YOMTORWG (CEU) BUILWJC PIC SYSTEU<br />

I L I I I I 6<br />

J 4 5 I<br />

WITH TM EXQPTON OF THE CEM UC SYSTEM THE HVAC SYSTEMS WILL BE OPERATED.<br />

CONTROCLED. LND UONITORED BY AND FRW T& Ulul PLC PROCESS CONTROL SYSTEU.<br />

WXEINYTER REFERRED TO AS THE UPCS. THE OPERATOR CONTROL STATION FOR THIS<br />

SYSTEM ULL BE LOCATED IN THE OPERATION SUPPORT CENTER. HEREWbSTER REFERRED<br />

TO AS 1HE OSC.<br />

THE PROCESS 8uLDnrC CASCME HVAC SYSTEM IS DESICNU) IHD CONTROLLED TO PROVQE<br />

FOR THE FOLLOWW:<br />

OUANTITES OF SWPLYIEXHUJST AIR REW1RED TO LIUNTUN UWUUU AlR CPTURE<br />

VELWTlES TIRWH OPEMNCS; E.G.. DUCT PENETRAIONS. DOORS. ETC.<br />

WWTITES OF SWPLYIEXHUJST M1 REMrmED TO UUNTUN NDNlOUM ROOMIAREA<br />

MGATIVE PRESSES FOR PROPER CASCMYG OF AW FLOW FROM "CLELN" TO<br />

POTENTIULY CONTPYWATED ROOUS/*REAS.<br />

OUbNTIlES OF CONDITIONED M1 TO THE VhWOuS RDOUS/G€AS WlTMN THE PROCESS<br />

BUILDlNG 10 UIOlTUN DESIGN TEUPERATURE REOLIIRIUENTS FOR BOTH HEATING IHD<br />

COOLINC.<br />

OUANTITES Of SUPPLYIEXHUJST AD? REOVVlEO TO WNTW RECOLlYENDED DESIGN *w<br />

CHWCE RATES.<br />

THE THREE UUN COUPONENTS OF THE PROCESS WRONG CASCADE HVAC SYSTEM *RE AS<br />

FOLLOWS:<br />

%&st,',". i%?S%P,':2&o&jE %:dFF ~fr's"*&O~yT,":"%!~G ':R<br />

TO NEET 0EM;N TEUPERATURE REWIREUENTS. THEY SuPnY VARYING OUANTITIES OF<br />

THE COWITIOEO MR TO TM PACKffiWC AREA. ENTIIY CORRIDOR. IHD PJRLOCK.<br />

FLT-71-5770A k 57708. OF WCH M Y ONE IS UTUED AT ANY WEN TDIE. YCLUM<br />

PRE-FILTERS. FWU FLTERS. HEPA FILTERS. /wD ULPb FUTERS. TO FLTER THE EXHAUST<br />

AJR STREW.<br />

FW-71-5760A k 57608. OF WHICH ONLY OM OPERATES AT ANY GIVEN TDIE. PROVIDE THE<br />

VACWU SOURCE FOR THE CASCME SYSTEU BY DRAWNG UR FROU THE VARIOUS<br />

ROOUSleREI THROUGH THE FUTRATION UOWLES. Wg DISCHARGWG THE FLTEREO<br />

EXHUJST AIR OUT THE STACK.<br />

FOR WTUL STMT-UP OF THE HVAC SYSTEM LN) F.M ANY SUBSEMNT STARTS AFTER<br />

EITHER w *uTcu*nc SHUT-DOWN WE TO A FRE OR A RADIOLOGICAL CONDITION. EX.. OR<br />

A POWER FMURE CONOIllON. TtiT FOCLOWWC SEOUENCE SHML OCCUR:<br />

SELECT TWO OF THE THREE PXKffiED UR COWITIUWG UMTS (,XU-70-5700.5710, k<br />

5720) AS PWURY AND THE REUlMNC ACU AS STUD-BY.<br />

SELECT ONE OF THE TWO BUILDING EXHUJST UODUES (FLT-71-5770A b 57708) AS<br />

PRUY AND THE REUPJW UOWLE AS STAND-BY.<br />

SELECT ONE OF THE TWO BUlDWC FILTRATION EXHN~T FINS (FAN-71-5760A k 57606) AS<br />

PRIUARY AND THE REMPJNING FAN AS STAND-BY.<br />

VERfY THAT THE FOLLOWING DWERS *RE OPEN:<br />

DPR-70-6016 60@ 6020. k 6022<br />

FOP-70-602j. 602i. 6029.60J1 b 6034<br />

PRUARY BULDING EXHUJST MODULE ISOLATION OPYPERS (EITHER OW-71-6036 k 6057.<br />

OR DUP-71-6038 k 6039)<br />

VERFY THAT THE FMLOWWG OWERS LRE CLOSE0<br />

W-71-6024 k 6035<br />

STIWO-BY BUllDWG EXHUJST MODULE ISOLATION DUPERS IEIWR OW-71-6056 h 6037.<br />

OR DUP-71-6038 k 6039)<br />

VERUY THAT OM OF THE PROCESS EXHMT FANS IS OPERATYC (EITHER FAN-19-5206A OR<br />

52068)<br />

WlTUTE A STIR1 FOR THE PRUARY BULDUlG FLTRATON EXHAUST FAN FROM ITS HS IWO<br />

PLACE IT W 'WTW MODE TO &LOW Fit-bus-71-5760 TO CONTROL THE FAN SPEED<br />

THROUGH ITS VBRIMLE SPEED ORVE (SC-FAN-71-575OA OR 576081 TO WNTAN EXUAUST<br />

CFU SETWNT. lWTUL SETPWT SHUL BE 7.2W CFYI<br />

NOM OF THE *M CAN BE STARTED UNfL THE PRYARY BVRDING FILTRATION EXHAUS1<br />

FAN AND EXHWST UOWLE ARE OPERAT%.<br />

ENERGIZE THE TWO Pmwy PACK~GEO UR CMYDITIWG UNJTS FROU m HSS AND<br />

?LACE M U W "WTO' MODE TO ULOW FOR TME TWO ACLK TO INlTlATE THElR YTERNM<br />

CONTRRS FOR START-UP SEOUENahy: IHD CONTROL. TIE w)IyIDu/v ANIS ARE<br />

CONTROLLED FROU IHER DwwxlN ROW-WJWTED TEUPERATURE SENSORS TO UmTUN<br />

DESIGN CONIJmTM W I N THE P*Q(*GslG AREA 004. (MTUL SETWMT SHML BE 72<br />

OEG F FOR CM)wc IHD 68 OEC F FOR HEATNG)<br />

ON TOW-FLOW WDICAnON FROY Fl-bus-70-5700 ENERQZE STbhn-BY AN. DE-ENERGIZE<br />

ONE OF THE TWO -MY ACL6 W T IS DElERkD TO E€ P E W W W NMEMUTELY.<br />

ANI REAS- LPRX)PRA.TE AWS AS W Y IHD STAND-BY. f SE-1 STILL<br />

CANNOT EE ULDITWD. RECORD A TOW FLOW" MhW 10 PROlpT SERVICE.<br />

IHE PROCESS B~ROWG CASCME nvc sysrm uRFLow RATES w wmULy BL<br />

BALWCED USWG MNWK BU*Mwc OWERS 10 ESIAELISH THE MLNMUU DESIGN<br />

MFLOW RATES Wllr(Y EACH ROOU UhOER NORUU OPERATWG CONDITONS AS SPECPIED<br />

ON It€ RESPECTIVE CONTROC OI*cR*ys W MC4llON. WRhC WTIU BMWCM OF<br />

AJRFLON RATES THE ROOM MSlCN I€CATNE PRESSlRES SHML BE UPJNTMO TO<br />

ENURE ThAT T k JlRECTlON Of ROOUTO-ROOU CASCMYG AIRFLOWS-IS IN bCCOR3WCE<br />

WITH THAT ON THE CONTROL DIGRUS MTER WTlU BUANCINC. SHE U Wbl<br />

DWPCRS SHML BE LOCKED N IrtER SET PosIlIoNS<br />

DOOR 0050 IS AN EMERGENCY OOOR THeT LEMS FRW THE PJRLOCKIDOFF 003 TO THE<br />

OUTSDE. BECLUY OF THE WH NEGATNE PRESSURE BONG MPINTNNED WITHIN TMS<br />

ROW. THE EXHUJST WLOW FRW TMS ROOM MUST BE INTERRUPTED Y ORDER TO ASSIST<br />

W THE OPEW OF THIS DOOR Y THE EVENT OF AN EMERGENCY. TI€ DOOR PANIC BAR IS<br />

EQUIPPED wnn A SWITCH WHCH. WHEN ACTNATEO. WILL CLOSE FOP-71-6031. THE DOOR<br />

FRWE IS EOWED WITH A WOR STANS SWITCH. WHEN THE DOOR IS CLOSED. THE<br />

OPERATOR W U RETURN FOP-71-6031 TO ITS ORGMM OPEN POSITION.<br />

DFfCRENlIbl PRESSM lR@t4suITTERS mf LOCATE0 W EACH ROOM WITH E m H * ~ G<br />

DIDEATION IN TI€ WCS TO LUOW TIE CXRAlCR IO UONTOR 1HE ACWU PRESSURE FOR PWT-OW-71-6055 MOMTORS THE DIFFERENTUL PRESSURE W THE UUN EXHAUST OW1<br />

EACH ROOu (W RELATON 10 IkE OUTSIDE ATuOMQRlC PRESSURE) UPON WTlM<br />

HEMER UPSTREM OF M BUILDWG HEPA EXHLUST MOWLES. ON A OROP IN<br />

BMWCDIC OF THE SYSTEU TO ESTAELISH THE ROCM DESIGN URFLOW RATES. LCTUnL OFFERENTUL PRESSURE BELOW THE SETWYT (IMTIULY SET AT -J" WC; HOWEVER. IT<br />

ROOWWA PRESSURE DFFERENTUYS UQ UW SET-PMNIS SHNL BE EST*BUSM. UAY BE RESET BY OPERATIONS AS NEEDED) pli M~RU waL BE POSTED IN THE UPCS ma<br />

FOR UCEPT48LE ROOU DIFFERENTUL RWGES. 10 UERT THE OPERATOR UPON OEVATIONS DW-71-6035 V1L BE WOULATkO TO OPEN'WIDER TO REUEVE WE EXCESSIVE NECATiVE<br />

FROU TMSE DETERYMED R N S . A 6O.SECON) TINE DELAY WILL BE IKOFSORAlEJ PRESSURE CONDITION. ON A RSE W WFERENTIU PRESSURE AEOVE THE SETPUWT<br />

WTO THS MARY LOGE TO PREVENT NWSANCE UARUS. TUS WLL ULOW CONTWUWCE DUP-77-6055 WUL BE YODULATEO TOWARDS ITS CLOSED POSITION (TO RESTRICT iNCOMWC<br />

OF NORUN OPERATIONS WITH WWNC OF DOORS. WCH ME ANTIC'BATED 10 CW5E<br />

OUTSIDE UR).<br />

RITERMTTDIT. S-ORT-WRATON SWINGS DI THE ROOY PRESSURE OCFERENllUS<br />

THERE ARE OWY THREE ROWS. HRncH RECENE UR MRECTLY FROM THE ACUS. THESE<br />

ROOUS M E USTED BELOW:<br />

ENTRY CORRWR 001<br />

PICKACING AREA 004<br />

PJRLOCK 007<br />

CLOSE FOP-71-6034<br />

DE-ENERGIZE ONE OF T M TWO PRMARY ACUS.<br />

TI-DUP-71-6035 UOMTORS THE EXCAVATOR ROOM TEMPERATURE. ON A RISE N ROOM<br />

FANS ~ ~ ~ E ~ , ' , " , ~ u . ~ ~ ~ ~ R6~25~&~~5p!0F2& w ~ H ~ l T ~ o2, v ~ ~ ~ ~ ~ ~ ~ ~<br />

-0.25"WC TO -0.40"WC. RESPECTNELY.<br />

AND ;&lI;I~;HEbS~~s.T" SETPWT (INITIALLY SET AT 120 DEG. F). AN UARM SHALL BE<br />

-<br />

THE REUANDER OF THE R O W AN0 THEIR RESPECTIVE OIFFERENTIN PRESSURES<br />

SHUL BE AS FMLOWS: TI-ACU-70-5701 UONllORS THE PACKXINC AREA TEWERATURE. ON A RISE Y ROOM<br />

TEYPERATURE MOVE THE SETPOWT (WITIMLY SET AT 85 MG. F). *n MMhl SHNL BE<br />

POSTED IN THE MPCS.<br />

0.s' b 058'<br />

QM'bQX)'<br />

QR'bQs<br />

UL OF THE RMIWT HEATERS ARE SUPPLIED mTH THERMOSTATS'THAT WILL BE<br />

WUL-MOUNTED WIltQN THE SPACE THAT THEY SERVE. ON A DROP IN ROOU TEUPERATURE<br />

BELOW THE THERWSTAT SErPouiT mnuy SET AT 68 OEG F:noww~~.ir UAY BE<br />

RESET BY OPERATIONS. AS NEEDED1 THE HEATER WlLL BE ENERGIZED. ON A RISE IN<br />

TEUPERATURE PgOVE THE SETPOOYT', THE HEATER WILL BE DE-ENERGIZED.<br />

THE FOLLOWING CONTROLS *RE PROVED 10 UJTOUAl!€MLY MUNTM THE PRESSR(ES<br />

WITHLW THEIR SETPOINT RANGES FOR THE PACKAGING MEA, ENTRY CORROOR w*) Tf<br />

mOCK:<br />

ON A RISE IN ROOM DlFFERENTlU PRESSURE BEYOND THE SETPCViT RWCE (RANGE IS<br />

-0.25" WC TO -0.40. WC: THEREFORE. ON A RISE #ROVE -0.25" WCI. UODULATE OUPERS<br />

OPR-70-6016 60l8 EOUULY 10 CLOSE THEU TOWPRDS THER Y I W OPEN<br />

posmms. wcn IS LIWTED TO 'hsoz OPEN BY THER ACTUATORS. ON A DROP w ROOU<br />

WFERfNTlU PRESSURE BEYOND -0.25 WC STMT UWULATNG THESE DUPERS BLCK TO<br />

THER FULL-OPEN POSITIONS. ON b CDNTHlkD ORUP IN ROOM PRESSURE BEYOND -0.40"<br />

WC.MCMOATE OPEN OW-71-6024 TO DRAW OUTmE UR INTO THE EXHAUST DUCT<br />

REVERSE THE SEOUENCE IF THE PRESSURE DCFERENTI~ @PEARS TO BE UOVWG em TO<br />

THE -0.25 WC TO -0.40" WC RIVVCE.<br />

ON A RISE Lh ROOM OFFERENTIM PRESSUX BEYOM) THE SETPOOYT RANGE CbBOVE -020<br />

WCI. UODUAIE OPR-70-6020 10 CLOSE IOW*RoS ITS MWIUW OPEN POSITON 150,<br />

LMTED BY AClUATOR) Oh A OROP W ROOU PTSSURE BEYON) -0 2 0 WC. START<br />

UON4ATffi IWS DWER BACK TO ITS FULL.OPEN POSITION.<br />

THE TWEE DMPERS LI<br />

OPEN POSITION TO PROrur I_ a -M -I UP LWUII-D NN 10 BL 5<br />

TO THE PROCESS BULDYG TO HELP UUNTNN TEMPERATURE CONDITONS. WITHOUT<br />

LMTS. ANY OF THESE OMIPERS COULD CLOSE CWLETELY F ITS RESPECTNE<br />

ROOUIARiA WFERENTUL PRESSURE WERE HOT BMC UUNTUNED. TWS ELWATW<br />

CONOITONED SUPRY AIR TO THAI RWAREA<br />

NONE OF THE WAC EWUWENT OR cwims. IRE CONMC~I :D TO EUFRGENCY POYER.<br />

THS YCLUOES ACUS. MUS. EXH~IJST FINS. RMWT HEATERS, OUCT HEATERS. WD<br />

OWPER OPERATORS.<br />

NL UOTORIZED DUPERS FUL IN THE POSITIONS AS WDlCATED ON THE CONTROL<br />

OUGRUS<br />

FO . F/UL OPEN<br />

FC - F M CLOSED<br />

FL - FM LAST Pomw<br />

ML UOTORIZEO FRE DWERS (FOPS) ARi POWERED TO OPEN AND FUL CLOYD<br />

cELmmam<br />

Y<br />

-<br />

THE EVENT OF A SWK FROU THE FIRE UW SYSTEM TO THE UPCS TIE FOLLOW<br />

ACTIONS W U OCCUR<br />

CLOSE IVL FRE OAM'EFS (FOPS)<br />

DE-ENERGIZE U L THRET /\cvs (XU-70-5700 5710. h 5770)<br />

DE-ENERGIZE BOTH BULWNG FILTRATMN EXHMKT FANS (FW-71-5760A k 57600)<br />

W THE EVENT OF A SWIV FROY THE RMOIOCOGICM LlonTOF(bk, SYSTEU TO M WCS.<br />

IHE FOLLOWP(C UlIM WU OCcul ITIS COWlTON WLL SHUT OOWN THE PROCESS<br />

EXHUJST FW).<br />

UOSE FOP-71-6034<br />

7<br />

EXWST FAN, FAN-77-5780 CRAWS AlR INTO THE a0 ENCLOSURE THROUGH COUBYATION<br />

LOUVERIBKKORAV<br />

ATUOSPHERE.<br />

DUPERS. AND ExnWsTs THE UR THROUGH OUCTWORK TO<br />

FW-77-5780 IS OE-ENERGIZED ON A SIWK TO THE MPCS FROM THE FIRE &ARM SYSTEM<br />

ROLL-UP R 00% I:<br />

-e,


General Arrangement Drawings<br />

94X-3900-M-0146 1 General Arrangement Plot Plan<br />

94X-3900-M-01463 General Arrangement East Elevation<br />

94X-3900-M-01464 General Arrangement 1 St Floor Plan<br />

94X-3900-M-01465 General Arrangement Plan at EL 597'-8"<br />

94X-3900-M-01466 General Arrangement Section E<br />

94X-3900-M-01467 General Arrangement Section A<br />

94X-3900-M-01468 General Arrangement Section B<br />

94X-3900-M-01469 General Arrangement Section C<br />

94X-3900-M-01470 General Arrangement Section D<br />

Silo 3 RD/RA Package, 40430-RDP-0001<br />

Revision1 , September 2003<br />

5069<br />

000335


a<br />

e REF<br />

I<br />

I 2 I 3 I 4 I 5 I 6<br />

r<br />

0<br />

I 19-0" 41'-8"<br />

42-1w<br />

(REF)<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

I<br />

!<br />

!<br />

!<br />

!<br />

I<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

I<br />

. I<br />

! !<br />

! i<br />

.! :<br />

1<br />

I<br />

PROCESS BLDG 1<br />

HP LOW Roos EL 601'-5" i<br />

!<br />

!<br />

TRNER 30~12x10 !<br />

!<br />

!<br />

I<br />

1. ML ECUPUENT MSGNATORS ARE EXPLNNEO ON THE PkW<br />

LEN SHEETS 1i.c. NOOOI. NOOOZ. AN0 NOOOSL<br />

2. *BBREVIATU)M ARE A5 FMLOWS:<br />

HP M;H FaNT<br />

EL ELEVATION<br />

HPFF If)(;H POINT OF FINISHED FLOOR<br />

3. Au OMNYONS NOT LOCATING EOVO*(ENT ARE REFERENCE ONLY.<br />

4. UTILITY HOSE STATnNS:<br />

TYPE 1 2 (PLANT NR) NR M POTABLE WATER)<br />

DIMENSION TO BE PROWED BY FLUOR FERNALO<br />

NOTES:<br />

1. SUO ENCLOSURE ROOF NOT SHOWN FOR CLARITY.<br />

DWC No.<br />

I<br />

50 69<br />

DR*wD(G TmE<br />

d<br />

I<br />

w m - - - m<br />

(.NLfloOln<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERN- ENWROwlENTAL YANAGEMENT PROJECT<br />

n6EpL.*cAILplllDBT<br />

I-<br />

-\<br />

\-<br />

SILO 3 0 0 0 ~<br />

-mu<br />

UEQuINlCAL<br />

GENERAL ARRANGEUENT<br />

i<br />

I<br />

1 I<br />

I<br />

!<br />

!<br />

i<br />

I<br />

I<br />

!


.-<br />

I<br />

c<br />

0<br />

E<br />

F<br />

-<br />

I<br />

STICK PLATFORM<br />

EL MY-3“<br />

STICK RAWMU<br />

EL 628-5”<br />

I’ 2 I 3 I 4 I ‘5 I 6<br />

4<br />

STKX PLATFORM<br />

EL 603’-P<br />

9<br />

EL 702’-5”<br />

1 STK-19-5209<br />

I<br />

S.0<br />

EAST ELEVATION<br />

I<br />

GENERAL NOTES:<br />

1. P U ECUPUENT DESGNATQIS #Ri EXPLYNU 011 TIE FWD<br />

LEM WETS &e. KyH)l. WOOZ. *ND NoOO3).<br />

2. mmrvuims ME M FCUOWS:<br />

HP ffiH W T<br />

EL ELEVATKIN<br />

HPFF HCH POMT OF F W D FLOOR<br />

3. LLL DDlEwoNs NOT LOCATWG EQLIVUENT #RE REFERENCE OM?.<br />

I REV6ED PER 004 40430-JEG-043. -034. -042 rp/<br />

I lssLEcT0camRvcTlDl w m Lw N<br />

5e-m.-<br />

- rrn<br />

I<br />

-om<br />

UNITED STATES<br />

DEPARTMENT<br />

ENWROEYPITAL YAwAOByEIIT OF ENERGY<br />

FERNAID<br />

DE--n<br />

PROJECT<br />

!<br />

5069<br />

000337


0 0 0 0 0 0<br />

I<br />

I<br />

7 I 8<br />

I<br />

GENERAL NOTES:<br />

1. Ml EOLWUE~ DESWATORS YIE EXPLND ON lli€ PW<br />

L W SMTS (io. m 1 . No002 LH) m3).<br />

2. *BBRVUnms IRE As fmLOwS:<br />

HP MGH WHT<br />

EL NVLWN<br />

WFF mli POHT OF FMSED RMlR<br />

3. Y L WENSONS NOT LO€ATW EOWUENT #RE REfERENCE ONLY.<br />

4. UTUll’f TYI’E HOSE 1 lK*NT STATON5 Ne)<br />

TYPE 2 (PLM Ne hW POI-LE WATER)<br />

SECTION AND DETAIL KEY<br />

000338<br />

5069


?<br />

i?<br />

I 2<br />

q- FM-77-5790C<br />

I 3 I 4 I 5 I 6<br />

19'-0" 15'-0"<br />

!<br />

!<br />

!<br />

I<br />

!<br />

!<br />

!<br />

! a<br />

FAN-77-5792<br />

! ! !<br />

! ! !<br />

! ! !<br />

! ! L !<br />

! !<br />

! ! !<br />

! !<br />

!<br />

!<br />

!<br />

!<br />

!<br />

I<br />

!<br />

!<br />

!<br />

!<br />

! LOW ROOF<br />

!<br />

! HP EL 601'-5"<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

EXCAVATOR BLOC<br />

W ROOF EL 601'-9<br />

FLT-10-5070 -<br />

I -<br />

UTILITY HOSE<br />

STATaLl NO. 9<br />

FAN-77-5780<br />

trz 21<br />

U I W R N , I<br />

f<br />

11'-4- 22'-11-<br />

I<br />

15-0" 41'-8"<br />

!<br />

_.<br />

AT EL w0'-0' pLAN AN0 MOM<br />

FAN-77-579OA<br />

*<br />

!<br />

!<br />

!<br />

!<br />

I<br />

T<br />

CARW COUTNNER @LOG<br />

HP ROOF EL 615'-2"<br />

FAN-77-57906<br />

KEY PLAN<br />

4 0 4<br />

I<br />

0<br />

SCPLE: %-- r-0-<br />

I<br />

I a<br />

GENERAL NOTES:<br />

1. ALL EOULWENT OESWTORS #RE EXPLNNEO ON THE P&D<br />

LEAD SHEETS (Le. NOOOl. N0002. PND NOOOJ).<br />

2. asBREVIATK)M NlE AS FOLLOWS:<br />

EL HP ELEVATION HlCH POINT<br />

HPFF niw POINT OF FINIY(EO FLOOR<br />

3. ALL WnN9ONS NOT LOCATING EOWUENT ARE REFERENCE ONLY.<br />

4. UTlLlTY HOSE STATIONS:<br />

TYPE 1 (PLANT AIR)<br />

TYPE 2 (PLANT IUR /wD POTABLE WATER)<br />

REF DWG No.<br />

- a WI*L<br />

OR LmER<br />

or Porn<br />

32<br />

-prnrw U l N w n o y ~<br />

PCMN m DETIL SECTVN m on=<br />

6 1-<br />

6 W .U<br />

SECTION AND DETAIL KEY<br />

I<br />

I<br />

I<br />

1 ~TOCOWSTRVCnoN<br />

-m-RBoli-mrrm<br />

M A W TITLE<br />

50 6 9<br />

Qlrn yR( JTH<br />

m 1u.m.1 I<br />

mmls.oDLlc<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

ERNALD ENVIRO).IDCTAL MANAGEMENT PROJECT<br />

n6-ppEpILmBT


..<br />

I I 2 I 3 I 4<br />

I<br />

I I<br />

KXA-44-5000<br />

R<br />

1<br />

I<br />

=?3L<br />

LWXIlG WORTH<br />

I I<br />

FRYB<br />

r<br />

I<br />

5 I 6<br />

I<br />

I<br />

I<br />

GENERAL NOTES:<br />

I a<br />

1 PU EOlWENT DESo1AToRs -0 ON THE ma)<br />

LESI XETS I, e Nwol. NwO2. *ND WWOJl<br />

2 @ER?fM*TMNS *RE AS FOLLOWS<br />

w m m<br />

EL ELEVATIW<br />

WFF HW pow OF -D FLWR<br />

3 ML IYYENWNS NOT LOCAlWG ECUFWNT IRE REFEREWE ONLY<br />

SECTION AND DETAIL KEY<br />

REF DWG NO. DRAYDIG rmE<br />

I<br />

5069<br />

000340


.-<br />

TNK-44-5002 -<br />

TNK-44-5004B-<br />

TNK-44-5004A-<br />

CONTYNMENT<br />

WALL EL 577'-11"<br />

- -. . -. - - -<br />

I<br />

I<br />

I-<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

I 2 I 3 I 4 I 5 6<br />

@ 13'-0 9 27-0"<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

I<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

i<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

! I .<br />

Q<br />

W ROOF EL 628-5"<br />

PLATFORM EL 614'-7"<br />

PLATFORM EL 600'-5" -<br />

20-0 ' 0 w-0" 30-6<br />

..<br />

! ! !!<br />

! ! ! !<br />

! ! ! !<br />

! ! ! !<br />

! !!<br />

- I<br />

0<br />

-EXCAVATOR TOOL<br />

STAGING MEA<br />

WFF EL 577-5"<br />

I<br />

..- . . . . . . - .<br />

I a<br />

GENERAL NOTES:<br />

1. &L EOUPIENT OESGNATORS AQE EXPLMD ON THE PblO<br />

LEAD SHEETS (;.e. NOOOl. N0002. AND N0003).<br />

2. ABBREVlATloNS PRE AS FOLLOWS:<br />

Hp m POINT<br />

EL ELEVATION<br />

WFF W PO!Nl OF FIMD(E0 FLOOR<br />

3. &L MUENSIONS NOT LOCATING EOUIPYENT #RE REFERENCE ONLY.<br />

4. THE PAtKAGlNG SAW'LERS UAY BE DELETED FROU THE SILO 3<br />

OEStGN. FLUOR FERNN.0. DJC.. IS TO BE CONWLTED BEFORE<br />

PROCUREMENT/tNSTKLATlON OF THE EOUPMENT.<br />

50 69<br />

SECTION AND DETAIL KEY<br />

REF DWG NO. I DRAWDJG TITLE<br />

) ISSUEDTOCONSTFUCTIOEI mmupu m<br />

-v ua IRvnl-<br />

D m m - w . -<br />

mmsmoIn<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNALD ENVIROWENTAL MANAGENENT PROJECT<br />

Tm-lilEPllLDBI


I<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

-<br />

I 2 I 3 I 4 I 5 I 6<br />

,<br />

!<br />

!<br />

!<br />

i<br />

, W RWF EL 628'-<br />

!<br />

!<br />

!<br />

!<br />

, CIRGO CONTNNER ELM;<br />

i<br />

I<br />

LWNC EL 501-3"<br />

. .<br />

WFF EL 577-3"<br />

GENERAL NOTES:<br />

1. UL E-NT WSICNATORS LRE EXPLNNCD ON THE pLm<br />

L W WETS 6.e. NOMI. NOW2. Mi0 NW031.<br />

2. mVUl*)Ns LRE AS FOLLOWS:<br />

WHFHFUNT<br />

EL ELEVATION<br />

WFF )(Di -1 OF FwaED FLWR<br />

3. U L OIUEHSONS NOT LOCATWC EOUVUENT IRE REFERENCE ONLY.<br />

-<br />

UNITED STATES<br />

-ID-<br />

DEPARTMENT OF ENERGY<br />

FERNAID MVIROWDCTAL YANAGEYaFT PROJECT<br />

D6oLLIo-W<br />

I<br />

50 69<br />

000342


I<br />

I<br />

2 I 3<br />

I I<br />

4 5 6 7 R \ \<br />

I I I<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

I<br />

i<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

i<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

L<br />

FI 577.3"<br />

- I<br />

GENERAL NOTES:<br />

l. 4l.L E-NT DESIGNATORS IRE E-D ON TI€ PLLl<br />

LTCD M T S (iC. NOW\ W 2 . *HD NWO31.<br />

2. mMITmNs LRE As FOLLOWS<br />

W W WNT<br />

WFF EL ELEV4TmN w;H WNT OF FWMD FLOW<br />

3. XL ImENSIONS NOT LOC4TNC EOUPYENT IRE REFEllENCE ONLY.<br />

SECTION AND DETAIL KEY<br />

\ \<br />

:. .\(<br />

, \<br />

1<br />

i<br />

5069<br />

000343


I<br />

E<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

I 2 3 I 4 I 5 I 6<br />

!<br />

!<br />

!<br />

! ! !<br />

I<br />

P ROOF EL 628 ‘-S<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

!<br />

HPfF<br />

EL 577-3”<br />

1 I R<br />

D 10<br />

GENERAL NOTES:<br />

1. ALL EOWMENT DESIGNATORS ARE EXPLAINED ON THE PblD<br />

LEAD SkEETS &e. NOaOl. NW2, AM) NOOO3).<br />

2. *BBREVIAT#)NS #RE AS FOLLOWS:<br />

UP EL ELEVATtON<br />

mcn mwi<br />

WFF wcn mua OF FUUSED FLOOR<br />

3. ALL MUENSONS NOT LOCATING EOUPMENT NE REFERENCE ONLY.<br />

4.THE PACKAGING SUlPLERS MAY BE MLETEO FROU T M SQO 3<br />

DESIGN. FLUOR FERNALO. IC.. IS TO BE CONSULTED BEFORE<br />

PROC~LIENTIINSTALLATION OF THIS EOWUENT.<br />

REF DWG NO.<br />

I<br />

50 69<br />

SECTION AND DETAL KEY<br />

~QlpEDnaorr--<br />

DRAWPIC TmE<br />

mloDLIT<br />

UNITED STATES<br />

DEPARTMENT OF ENERGY<br />

FERNALD RNIRONMENTAL YANAGEHENT PROJECT<br />

ll6-psPlpmBI


t<br />

TOTAL WEIGHT: 30,000 LBS., APPROX.<br />

-. . . ._<br />

PAINTING INSTRUCT1 ONS<br />

m<br />

6 5 4_- 3 2<br />

-<br />

1<br />

SCALE IN FEET - -<br />

CERTIFIED FOR CONSTRUCTILW<br />

7 1<br />

000345


a<br />

_-


5069<br />

000346


2<br />

W<br />

I-<br />

fr<br />

,. . . .<br />

I :; ..<br />

b' .<br />

z<br />

f<br />

a<br />

W<br />

v)<br />

I<br />

0<br />

L<br />

i<br />

c3<br />

9<br />

rn<br />

v) W<br />

v) v)<br />

ww p<br />

gtJ &<br />

Zn<br />

--F- -- --<br />

N ...<br />

Y<br />

n<br />

b<br />

'r z<br />

f<br />

a<br />

z<br />

3<br />

e<br />

5c, 6 9<br />

3<br />

v)<br />

a<br />

w'<br />

v)<br />

z<br />

W-<br />

z<br />

w'<br />

L<br />

e


--<br />

0<br />

f<br />

I<br />

W<br />

v)<br />

I<br />

0<br />

L<br />

a<br />

h<br />

con 000348<br />

. I<br />

r<br />

aD

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!