25.03.2013 Views

Engine Selection Guide Two-stroke MC/MC-C Engines - Fsb

Engine Selection Guide Two-stroke MC/MC-C Engines - Fsb

Engine Selection Guide Two-stroke MC/MC-C Engines - Fsb

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Two</strong>-<strong>stroke</strong> <strong>MC</strong>/<strong>MC</strong>-C <strong>Engine</strong>s<br />

This book describes the general technical features of the <strong>MC</strong> Programme<br />

This <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong> is intended as a 'tool' for assistance in the initial<br />

stages of a project.<br />

As differences may appear in the individual suppliers’ extent of delivery, please<br />

contact the relevant engine supplier for a confirmation of the actual execution and<br />

extent of delivery.<br />

For further informatoin see the Project <strong>Guide</strong> for the relevant engine type.<br />

This <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong> and most of the Project <strong>Guide</strong>s are available on a CD<br />

ROM.<br />

The data and other information given is subject to change without notice.<br />

5th Edition<br />

February 2000


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong> Data<br />

<strong>Engine</strong> Power<br />

The table contains data regarding the engine power,<br />

speed and specific fuel oil consumption of the engines<br />

of the <strong>MC</strong> Programme.<br />

<strong>Engine</strong> power is specified in both BHP and kW, in<br />

rounded figures, for each cylinder number and layout<br />

points L1, L2, L3 and L4:<br />

L1 designates nominal maximum continuous rating<br />

(nominal <strong>MC</strong>R), at 100% engine power and 100%<br />

engine speed.<br />

L2, L3 and L4 designate layout points at the other<br />

three corners of the layout area, chosen for easy reference.<br />

Power<br />

L3<br />

L4<br />

Speed<br />

Fig. 1.01: Layout diagram for engine power and speed<br />

Overload corresponds to 110% of the power at<br />

<strong>MC</strong>R, and may be permitted for a limited period of<br />

one hour every 12 hours.<br />

The engine power figures given in the tables remain<br />

valid up to tropical conditions at sea level, ie.:<br />

Blower inlet temperature . . . . . . . . . . . . . . . . 45 °C<br />

Blower inlet pressure. . . . . . . . . . . . . . . 1000 mbar<br />

Seawater temperature . . . . . . . . . . . . . . . . . . 32 °C<br />

L1<br />

L2<br />

Specific fuel oil consumption (SFOC)<br />

Specific fuel oil consumption values refer to brake<br />

power, and the following reference conditions:<br />

ISO 3046/1-1986:<br />

Blower inlet temperature . . . . . . . . . . . . . . . . 25 °C<br />

Blower inlet pressure. . . . . . . . . . . . . . . 1000 mbar<br />

Charge air coolant temperature. . . . . . . . . . . 25 °C<br />

Fuel oil lower calorific value . . . . . . . . 42,700 kJ/kg<br />

(10,200 kcal/kg)<br />

Although the engine will develop the power specified<br />

up to tropical ambient conditions, the specific<br />

fuel oil consumption varies with ambient conditions<br />

and fuel oil lower calorific value. For calculation of<br />

these changes, see section 2.<br />

SFOC guarantee<br />

The figures given in this project guide represent the<br />

values obtained when the engine and turbocharger<br />

are matched with a view to obtaining the lowest<br />

possible SFOC values and fulfilling the IMO NO x<br />

emission limitations.<br />

The Specific Fuel Oil Consumption (SFOC) is guaranteed<br />

for one engine load (power-speed combination),<br />

this being the one in which the engine is optimised.<br />

The guarantee is given with a margin of 5%.<br />

As SFOC and NO x are interrelated parameters, an<br />

engine offered without fulfilling the IMO NO x limitations<br />

is subject to a tolerance of only 3% of the<br />

SFOC.<br />

Lubricating oil data<br />

The cylinder oil consumption figures stated in the<br />

tables are valid under normal conditions.<br />

During running-in periods and under special conditions,<br />

feed rates of up to 1.5 times the stated values<br />

should be used.<br />

430100 400 198 22 27<br />

1.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

The engine types of the <strong>MC</strong> programme are<br />

identified by the following letters and figures<br />

6<br />

S 70 <strong>MC</strong> - C<br />

Fig. 1.02: <strong>Engine</strong> type designation<br />

Design<br />

Concept<br />

<strong>Engine</strong> programme<br />

Diameter of piston in cm<br />

Stroke/bore ratio<br />

Number of cylinders<br />

C Compact engine<br />

S Stationary plant<br />

C Camshaft controlled<br />

E Electronic controlled (Intelligent <strong>Engine</strong>)<br />

S Super long <strong>stroke</strong> approximately 4.0<br />

L Long <strong>stroke</strong> approximately 3.2<br />

K Short <strong>stroke</strong> approximately 2.8<br />

178 34 39-1.0<br />

430100 400 198 22 27<br />

1.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Layout<br />

point<br />

<strong>Engine</strong><br />

speed<br />

Mean<br />

effective<br />

430100 400 198 22 27<br />

1.03<br />

Power KW<br />

BHP<br />

Number of cylinders<br />

r/min<br />

pressure<br />

bar 4 5 6 7 8 9 10 11 12<br />

K98<strong>MC</strong> L1 94 18.2<br />

34320<br />

46680<br />

40040<br />

54460<br />

45760<br />

62240<br />

51480<br />

70020<br />

57200<br />

77800<br />

62920<br />

85580<br />

68640<br />

93360<br />

Bore<br />

980 mm<br />

L2 94 14.6<br />

27480<br />

37320<br />

32060<br />

43540<br />

36640<br />

49760<br />

41220<br />

55980<br />

45800<br />

62200<br />

50380<br />

68420<br />

54960<br />

74640<br />

Stroke<br />

2660 mm L3 84 18.2<br />

30660<br />

41700<br />

35770<br />

48650<br />

40880<br />

55600<br />

45990<br />

62550<br />

51110<br />

69500<br />

56210<br />

76450<br />

61320<br />

83400<br />

L4 84 14.6<br />

24540<br />

33360<br />

28630<br />

38920<br />

32720<br />

44480<br />

36810<br />

50040<br />

40900<br />

55600<br />

44990<br />

61160<br />

49080<br />

66720<br />

K98<strong>MC</strong>-C L1 104 18.2<br />

34260<br />

46560<br />

39970<br />

54320<br />

45680<br />

62080<br />

51390<br />

69840<br />

57100<br />

77600<br />

62810<br />

85360<br />

68520<br />

93120<br />

Bore<br />

980 mm<br />

L2 104 14.6<br />

27420<br />

37260<br />

31990<br />

43470<br />

36560<br />

49680<br />

41130<br />

55890<br />

45700<br />

62100<br />

50270<br />

68310<br />

54840<br />

74520<br />

Stroke<br />

2400 mm L3 94 18.2<br />

30960<br />

42120<br />

36120<br />

49140<br />

41280<br />

56160<br />

46440<br />

63180<br />

51600<br />

70200<br />

56760<br />

77220<br />

61920<br />

84240<br />

L4 94 14.6<br />

24780<br />

33720<br />

28910<br />

39270<br />

33040<br />

44880<br />

37170<br />

50490<br />

41300<br />

56100<br />

45430<br />

61710<br />

49560<br />

67320<br />

S90<strong>MC</strong>-C L1 76 19.0<br />

29340<br />

39900<br />

34230<br />

46550<br />

39120<br />

53200<br />

44010<br />

59850<br />

Bore<br />

900 mm<br />

L2 76 15.2<br />

23520<br />

31980<br />

27440<br />

37300<br />

31360<br />

42640<br />

35280<br />

47970<br />

Stroke<br />

3188 mm L3 61 19.0<br />

23580<br />

32060<br />

27510<br />

37400<br />

31440<br />

42750<br />

35370<br />

48090<br />

L4 61 15.2<br />

18840<br />

25610<br />

21980<br />

29880<br />

25120<br />

34150<br />

28260<br />

38420<br />

L90<strong>MC</strong>-C L1 83 19.0<br />

29340<br />

39480<br />

34230<br />

46480<br />

39120<br />

53120<br />

44010<br />

59760<br />

48900<br />

66400<br />

53790<br />

73040<br />

58680<br />

79680<br />

Bore<br />

900 mm<br />

L2 83 12.2<br />

18780<br />

25500<br />

21910<br />

29750<br />

25040<br />

34000<br />

28170<br />

38250<br />

31300<br />

42500<br />

34430<br />

46750<br />

37560<br />

51000<br />

Stroke<br />

2916 mm L3 62 19.0<br />

21900<br />

29760<br />

25550<br />

34720<br />

29200<br />

39680<br />

32850<br />

44640<br />

36500<br />

49600<br />

40150<br />

54560<br />

43800<br />

59520<br />

L4 62 12.2<br />

14040<br />

19080<br />

16380<br />

22260<br />

18720<br />

25440<br />

21060<br />

28620<br />

23400<br />

31800<br />

25740<br />

34980<br />

28080<br />

38160<br />

K90<strong>MC</strong> L1 94 18.0<br />

18280<br />

24880<br />

22850<br />

31100<br />

27420<br />

37320<br />

31990<br />

43540<br />

36560<br />

49760<br />

41130<br />

55980<br />

45700<br />

62200<br />

50270<br />

68420<br />

54840<br />

74640<br />

Bore<br />

900 mm<br />

L2 94 11.5<br />

11700<br />

15920<br />

14650<br />

19900<br />

17580<br />

23880<br />

20510<br />

27860<br />

23440<br />

31840<br />

26370<br />

35820<br />

29300<br />

39800<br />

32230<br />

43780<br />

35160<br />

47760<br />

Stroke<br />

2550 mm L3 71 18.0<br />

13720<br />

18640<br />

17150<br />

23300<br />

20580<br />

27960<br />

24010<br />

32620<br />

27440<br />

37280<br />

30870<br />

41940<br />

34300<br />

46600<br />

37730<br />

51260<br />

41160<br />

55920<br />

L4 71 11.5<br />

8800<br />

11960<br />

11000<br />

14950<br />

13200<br />

17940<br />

15400<br />

20930<br />

17600<br />

23920<br />

19800<br />

26910<br />

22000<br />

29900<br />

24200<br />

32890<br />

26400<br />

35880<br />

Fig. 1.03a: Power and speed<br />

178 46 78-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Layout<br />

point<br />

<strong>Engine</strong><br />

speed<br />

Mean<br />

effective<br />

Power kW<br />

BHP<br />

Number of cylinders<br />

r/min<br />

pressure<br />

bar 4 5 6 7 8 9 10 11 12<br />

K90<strong>MC</strong>-C L1 104 18.0<br />

27360<br />

37260<br />

31920<br />

43470<br />

36480<br />

49680<br />

41040<br />

55890<br />

45600<br />

62100<br />

50160<br />

68310<br />

54720<br />

74520<br />

Bore<br />

900 mm<br />

L2 104 14.4<br />

21900<br />

29820<br />

25550<br />

34790<br />

29200<br />

39760<br />

32850<br />

44730<br />

36500<br />

49700<br />

40150<br />

54670<br />

43800<br />

59640<br />

Stroke<br />

2300 mm L3 89 18.0<br />

23280<br />

31620<br />

27160<br />

36890<br />

31040<br />

42160<br />

34920<br />

47430<br />

38800<br />

52700<br />

42680<br />

57970<br />

46560<br />

63240<br />

L4 89 14.4<br />

18600<br />

25320<br />

21700<br />

29540<br />

24800<br />

33760<br />

27900<br />

37980<br />

31000<br />

42200<br />

34100<br />

46420<br />

37200<br />

50640<br />

S80<strong>MC</strong>-C L1 76 19.0<br />

23280<br />

31680<br />

27160<br />

36960<br />

31040<br />

42240<br />

Bore<br />

800 mm<br />

L2 76 12.2<br />

14880<br />

20280<br />

17360<br />

23660<br />

19840<br />

27040<br />

Stroke<br />

3200 mm L3 57 19.0<br />

17460<br />

23760<br />

20370<br />

27720<br />

23280<br />

31680<br />

L4 57 12.2<br />

11160<br />

15180<br />

13020<br />

17710<br />

14880<br />

20240<br />

S80<strong>MC</strong> L1 79 19.0<br />

15360<br />

20880<br />

19200<br />

26100<br />

23040<br />

31320<br />

26880<br />

36540<br />

30720<br />

41760<br />

34560<br />

46980<br />

Bore<br />

800 mm<br />

L2 79 12.2<br />

9840<br />

13360<br />

12300<br />

16700<br />

14760<br />

20040<br />

17220<br />

23380<br />

19680<br />

26720<br />

22140<br />

30060<br />

Stroke<br />

3056 mm L3 59 19.0<br />

11480<br />

15600<br />

14350<br />

19500<br />

17220<br />

23400<br />

20090<br />

27300<br />

22960<br />

31200<br />

25830<br />

35100<br />

L4 59 12.2<br />

7360<br />

10040<br />

9200<br />

12550<br />

11040<br />

15060<br />

12880<br />

17570<br />

14720<br />

20080<br />

16560<br />

22590<br />

L80<strong>MC</strong> L1 93 18.0<br />

14560<br />

19760<br />

18200<br />

24700<br />

21840<br />

29640<br />

25480<br />

34580<br />

29120<br />

39520<br />

32760<br />

44460<br />

36400<br />

49400<br />

40040<br />

54340<br />

43680<br />

59280<br />

Bore<br />

800 mm<br />

L2 93 11.5<br />

9320<br />

12640<br />

11650<br />

15800<br />

13980<br />

18960<br />

16310<br />

22120<br />

18640<br />

25280<br />

20970<br />

28440<br />

23300<br />

31600<br />

25630<br />

34760<br />

27960<br />

37920<br />

Stroke<br />

2592 mm L3 70 18.0<br />

10960<br />

14880<br />

13700<br />

18600<br />

16440<br />

22320<br />

19180<br />

26040<br />

21920<br />

29760<br />

24660<br />

33480<br />

27400<br />

37200<br />

30140<br />

40920<br />

32880<br />

44640<br />

L4 70 11.5<br />

7000<br />

9520<br />

8750<br />

11900<br />

10500<br />

14280<br />

12250<br />

16660<br />

14000<br />

19040<br />

15750<br />

21420<br />

17500<br />

23800<br />

19250<br />

26180<br />

21000<br />

28560<br />

K80<strong>MC</strong>-C L1 104 18.0<br />

21660<br />

29400<br />

25270<br />

34300<br />

28880<br />

39200<br />

32490<br />

44100<br />

36100<br />

49000<br />

39710<br />

53900<br />

43320<br />

58800<br />

Bore<br />

800 mm<br />

L2 104 14.4<br />

17340<br />

23520<br />

20230<br />

27440<br />

23120<br />

31360<br />

26010<br />

35280<br />

28900<br />

39200<br />

31790<br />

43120<br />

34680<br />

47040<br />

Stroke<br />

2300 mm L3 89 18.0<br />

18540<br />

25200<br />

21630<br />

29400<br />

24720<br />

33600<br />

27810<br />

37800<br />

30900<br />

42000<br />

33990<br />

46200<br />

37080<br />

50400<br />

L4 89 14.4<br />

14820<br />

20160<br />

17290<br />

23520<br />

19760<br />

26880<br />

22230<br />

30240<br />

24700<br />

33600<br />

27170<br />

36960<br />

29640<br />

40320<br />

Fig. 1.03b: Power and speed<br />

430100 400 198 22 27<br />

1.04<br />

178 46 78-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Layout<br />

point<br />

<strong>Engine</strong><br />

speed<br />

Mean<br />

effective<br />

430100 400 198 22 27<br />

1.05<br />

Power kW<br />

BHP<br />

Number of cylinders<br />

r/min<br />

pressure<br />

bar 4 5 6 7 8 9 10 11 12<br />

S70<strong>MC</strong>-C L1 91 19.0<br />

12420<br />

16880<br />

15525<br />

21100<br />

18630<br />

25320<br />

21735<br />

29540<br />

24840<br />

33760<br />

Bore<br />

700 mm<br />

L2 91 12.2<br />

7940<br />

10800<br />

9925<br />

13500<br />

11910<br />

16200<br />

13895<br />

18900<br />

15880<br />

21600<br />

Stroke<br />

2800 mm L3 68 19.0<br />

9320<br />

12660<br />

11650<br />

15825<br />

13980<br />

18990<br />

16310<br />

22155<br />

18640<br />

25320<br />

L4 68 12.2<br />

5960<br />

8100<br />

7450<br />

10125<br />

8940<br />

12150<br />

10430<br />

14175<br />

11920<br />

16200<br />

S70<strong>MC</strong> L1 91 18.0<br />

11240<br />

15280<br />

14050<br />

19100<br />

16860<br />

22920<br />

19670<br />

26740<br />

22480<br />

30560<br />

Bore<br />

700 mm<br />

L2 91 11.5<br />

7200<br />

9760<br />

9000<br />

12200<br />

10800<br />

14640<br />

12600<br />

17080<br />

14400<br />

19520<br />

Stroke<br />

2674 mm L3 68 18.0<br />

8440<br />

11440<br />

10550<br />

14300<br />

12660<br />

17160<br />

14770<br />

20020<br />

16880<br />

22880<br />

L4 68 11.5<br />

5400<br />

7320<br />

6750<br />

9150<br />

8100<br />

10980<br />

9450<br />

12810<br />

10800<br />

14640<br />

L70<strong>MC</strong> L1 108 18.0<br />

11320<br />

15380<br />

14150<br />

19225<br />

16980<br />

23070<br />

19810<br />

26915<br />

22640<br />

30760<br />

Bore<br />

700 mm<br />

L2 108 11.5<br />

7240<br />

9840<br />

9050<br />

12300<br />

10860<br />

14760<br />

12670<br />

17220<br />

14480<br />

19680<br />

Stroke<br />

2268 mm L3 81 18.0<br />

8480<br />

11540<br />

10600<br />

14425<br />

12720<br />

17310<br />

14840<br />

20195<br />

16960<br />

23080<br />

L4 81 11.5<br />

5420<br />

7380<br />

6775<br />

9225<br />

8130<br />

10070<br />

9485<br />

12915<br />

10840<br />

14760<br />

S60<strong>MC</strong>-C L1 105 19.0<br />

9020<br />

12280<br />

11275<br />

15350<br />

13530<br />

18420<br />

15785<br />

21490<br />

18040<br />

24560<br />

Bore<br />

600 mm<br />

L2 105 12.2<br />

5780<br />

7860<br />

7225<br />

9825<br />

8670<br />

11790<br />

10115<br />

13755<br />

11560<br />

15720<br />

Stroke<br />

2400 mm L3 79 19.0<br />

6760<br />

9200<br />

8450<br />

11500<br />

10140<br />

13800<br />

11830<br />

16100<br />

13520<br />

18400<br />

L4 79 12.2<br />

4340<br />

5880<br />

5425<br />

7350<br />

6510<br />

8820<br />

7595<br />

10290<br />

8680<br />

11760<br />

S60<strong>MC</strong> L1 105 18.0<br />

8160<br />

11120<br />

10200<br />

13900<br />

12240<br />

16680<br />

14280<br />

19460<br />

16320<br />

22240<br />

Bore<br />

600 mm<br />

L2 105 11.5<br />

5240<br />

7120<br />

6550<br />

8900<br />

7860<br />

10680<br />

9170<br />

12460<br />

10480<br />

14240<br />

Stroke<br />

2292 mm L3 79 18.0<br />

6120<br />

8320<br />

7650<br />

10400<br />

9180<br />

12480<br />

10710<br />

14560<br />

12240<br />

16640<br />

L4 79 11.5<br />

3920<br />

5320<br />

4900<br />

6650<br />

5880<br />

7980<br />

6860<br />

9310<br />

7840<br />

10640<br />

Fig. 1.03c: Power and speed<br />

178 46 78-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Layout<br />

point<br />

<strong>Engine</strong><br />

speed<br />

Mean<br />

effective<br />

430100 400 198 22 27<br />

1.06<br />

Power kW<br />

BHP<br />

Number of cylinders<br />

r/min<br />

pressure<br />

bar 4 5 6 7 8 9 10 11 12<br />

L60<strong>MC</strong> L1 123 17.0<br />

7680<br />

10400<br />

9600<br />

13000<br />

11520<br />

15600<br />

13440<br />

18200<br />

15360<br />

20800<br />

Bore<br />

600 mm<br />

L2 123 10.9<br />

4920<br />

6680<br />

6150<br />

8350<br />

7380<br />

10020<br />

8610<br />

11690<br />

9840<br />

13360<br />

Stroke<br />

1944 mm L3 92 17.0<br />

5760<br />

7800<br />

7200<br />

9750<br />

8640<br />

11700<br />

10080<br />

13650<br />

11520<br />

15600<br />

L4 92 10.9<br />

3680<br />

5000<br />

4600<br />

6250<br />

5520<br />

7500<br />

6440<br />

8750<br />

7360<br />

10000<br />

S50<strong>MC</strong>-C L1 127 19.0<br />

6320<br />

8580<br />

7900<br />

10725<br />

9480<br />

12870<br />

11060<br />

15015<br />

12640<br />

17160<br />

Bore<br />

500 mm<br />

L2 127 12.2<br />

4040<br />

5500<br />

5050<br />

6875<br />

6060<br />

8250<br />

7070<br />

9625<br />

8080<br />

11000<br />

Stroke<br />

2000 mm L3 95 19.0<br />

4740<br />

6440<br />

5925<br />

8050<br />

7110<br />

9660<br />

8295<br />

11270<br />

9480<br />

12880<br />

L4 95 12.2<br />

3040<br />

4120<br />

3800<br />

5150<br />

4560<br />

6180<br />

5320<br />

7210<br />

6080<br />

8240<br />

S50<strong>MC</strong> L1 127 18.0<br />

5720<br />

7760<br />

7150<br />

9700<br />

8580<br />

11640<br />

10010<br />

13580<br />

11440<br />

15520<br />

Bore<br />

500 mm<br />

L2 127 11.5<br />

3640<br />

4960<br />

4550<br />

6200<br />

5460<br />

7440<br />

6370<br />

8680<br />

7280<br />

9920<br />

Stroke<br />

1910 mm L3 95 18.0<br />

4280<br />

5840<br />

5350<br />

7300<br />

6420<br />

8760<br />

7490<br />

10220<br />

8560<br />

11680<br />

L4 95 11.5<br />

2760<br />

3720<br />

3450<br />

4650<br />

4140<br />

5580<br />

4830<br />

6510<br />

5520<br />

7440<br />

L50<strong>MC</strong> L1 148 17.0<br />

5320<br />

7240<br />

6650<br />

9050<br />

7980<br />

10860<br />

9310<br />

12670<br />

10640<br />

14480<br />

Bore<br />

500 mm<br />

L2 148 10.9<br />

3400<br />

4640<br />

4250<br />

5800<br />

5100<br />

6960<br />

5950<br />

8120<br />

6800<br />

9280<br />

Stroke<br />

1620 mm L3 111 17.0<br />

4000<br />

5440<br />

5000<br />

6800<br />

6000<br />

8160<br />

7000<br />

9520<br />

8000<br />

10880<br />

L4 111 10.9<br />

2560<br />

3480<br />

3200<br />

4350<br />

3840<br />

5220<br />

4480<br />

6090<br />

5120<br />

6960<br />

S46<strong>MC</strong>-C L1 129 19.0<br />

5240<br />

7140<br />

6550<br />

8925<br />

7860<br />

10710<br />

9170<br />

12495<br />

10480<br />

14280<br />

Bore<br />

460 mm<br />

L2 129 15.2<br />

4200<br />

5700<br />

5250<br />

7125<br />

6300<br />

8550<br />

7350<br />

9975<br />

8400<br />

11400<br />

Stroke<br />

1932 mm L3 108 19.0<br />

4400<br />

5980<br />

5500<br />

7475<br />

6600<br />

8970<br />

7700<br />

10465<br />

8800<br />

11960<br />

L4 108 15.2<br />

3520<br />

4780<br />

4400<br />

5975<br />

5280<br />

7170<br />

6160<br />

8365<br />

7040<br />

9560<br />

Fig. 1.03d: Power and speed<br />

178 46 78-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Layout<br />

point<br />

<strong>Engine</strong><br />

speed<br />

Mean<br />

effective<br />

430100 400 198 22 27<br />

1.07<br />

Power kW<br />

BHP<br />

Number of cylinders<br />

r/min<br />

pressure<br />

bar 4 5 6 7 8 9 10 11 12<br />

S42<strong>MC</strong> L1 136 19.5<br />

4320<br />

5880<br />

5400<br />

7350<br />

6480<br />

8820<br />

7560<br />

10290<br />

8640<br />

11760<br />

9720<br />

13230<br />

10800<br />

14700<br />

11880<br />

16170<br />

12960<br />

17640<br />

Bore<br />

420 mm<br />

L2 136 15.6<br />

3460<br />

4700<br />

4325<br />

5875<br />

5190<br />

7050<br />

6055<br />

8225<br />

6920<br />

9400<br />

7785<br />

10575<br />

8650<br />

11750<br />

9515<br />

12925<br />

10380<br />

14100<br />

Stroke<br />

1764 mm L3 115 19.5<br />

3660<br />

4960<br />

4575<br />

6200<br />

5490<br />

7440<br />

6405<br />

8680<br />

7320<br />

9920<br />

8235<br />

11160<br />

9150<br />

12400<br />

10065<br />

13640<br />

10980<br />

14880<br />

L4 115 15.6<br />

2920<br />

3980<br />

3650<br />

4975<br />

4380<br />

5970<br />

5110<br />

6965<br />

5840<br />

7960<br />

6570<br />

8955<br />

7300<br />

9950<br />

8030<br />

10945<br />

8760<br />

11940<br />

L42<strong>MC</strong> L1 176 18.0<br />

3980<br />

5420<br />

4975<br />

6775<br />

5970<br />

8130<br />

6965<br />

9485<br />

7960<br />

10840<br />

8955<br />

12195<br />

9950<br />

13550<br />

10945<br />

14905<br />

11940<br />

16260<br />

Bore<br />

420 mm<br />

L2 176 11.5<br />

2540<br />

3460<br />

3175<br />

4345<br />

3810<br />

5190<br />

4445<br />

6055<br />

5080<br />

6920<br />

5715<br />

7785<br />

6350<br />

8650<br />

6985<br />

9515<br />

7620<br />

10380<br />

Stroke<br />

1360 mm L3 132 18.0<br />

2980<br />

4060<br />

3725<br />

5075<br />

4470<br />

6090<br />

5215<br />

7105<br />

5960<br />

8120<br />

6705<br />

9135<br />

7450<br />

10150<br />

8195<br />

11165<br />

8940<br />

12180<br />

L4 132 11.5<br />

1920<br />

2600<br />

2400<br />

3250<br />

2880<br />

3900<br />

3360<br />

4550<br />

3840<br />

5200<br />

4320<br />

5850<br />

4800<br />

6500<br />

5280<br />

7150<br />

5760<br />

7800<br />

S35<strong>MC</strong> L1 173 19.1<br />

2960<br />

4040<br />

3700<br />

5050<br />

4440<br />

6060<br />

5180<br />

7070<br />

5920<br />

8080<br />

6660<br />

9090<br />

7400<br />

10100<br />

8140<br />

11110<br />

8880<br />

12120<br />

Bore<br />

350 mm<br />

L2 173 15.3<br />

2380<br />

3220<br />

2975<br />

4025<br />

3570<br />

4830<br />

4165<br />

5635<br />

4760<br />

6440<br />

5355<br />

7245<br />

5950<br />

8050<br />

6545<br />

8855<br />

7140<br />

9660<br />

Stroke<br />

1400 mm L3 147 19.1<br />

2520<br />

3420<br />

3150<br />

4275<br />

3780<br />

5130<br />

4410<br />

5985<br />

5040<br />

6840<br />

5670<br />

7695<br />

6300<br />

8550<br />

6930<br />

9405<br />

7560<br />

10260<br />

L4 147 15.3<br />

2020<br />

2740<br />

2525<br />

3425<br />

3030<br />

4110<br />

3535<br />

4795<br />

4040<br />

5480<br />

4545<br />

6165<br />

5050<br />

6850<br />

5555<br />

7535<br />

6060<br />

8220<br />

L35<strong>MC</strong> L1 210 18.4<br />

2600<br />

3520<br />

3250<br />

4400<br />

3900<br />

5280<br />

4550<br />

6160<br />

5200<br />

7040<br />

5850<br />

7920<br />

6500<br />

8800<br />

7150<br />

9680<br />

7800<br />

10560<br />

Bore<br />

350 mm<br />

L2 210 14.7<br />

2080<br />

2820<br />

2600<br />

3525<br />

3120<br />

4230<br />

3640<br />

4935<br />

4160<br />

5640<br />

4680<br />

6345<br />

5200<br />

7050<br />

5720<br />

7755<br />

6240<br />

8460<br />

Stroke<br />

1050 mm L3 178 18.4<br />

2200<br />

3000<br />

2750<br />

3750<br />

3000<br />

4500<br />

3850<br />

5250<br />

4400<br />

6000<br />

4950<br />

6750<br />

5500<br />

7500<br />

6050<br />

8250<br />

6600<br />

9000<br />

L4 178 14.7<br />

1760<br />

2400<br />

2200<br />

3000<br />

2640<br />

3600<br />

3080<br />

4200<br />

3520<br />

4800<br />

3960<br />

5400<br />

4400<br />

6600<br />

4840<br />

6600<br />

5280<br />

7200<br />

S26<strong>MC</strong> L1 250 18.5<br />

1600<br />

2180<br />

2000<br />

2725<br />

2400<br />

3270<br />

2800<br />

3815<br />

3200<br />

4360<br />

3600<br />

4905<br />

4000<br />

5450<br />

4400<br />

5995<br />

4800<br />

6540<br />

Bore<br />

260 mm<br />

L2 250 14.8<br />

1280<br />

1740<br />

1600<br />

2175<br />

1920<br />

2610<br />

2240<br />

3045<br />

2560<br />

3480<br />

2880<br />

3915<br />

3200<br />

4350<br />

3520<br />

4785<br />

3840<br />

5220<br />

Stroke<br />

980 mm<br />

L3 212 18.5<br />

1360<br />

1860<br />

1700<br />

2325<br />

2040<br />

2790<br />

2380<br />

3255<br />

2720<br />

3720<br />

3060<br />

4185<br />

3400<br />

4650<br />

3740<br />

5115<br />

4080<br />

5580<br />

L4 212 14.8<br />

1100<br />

1480<br />

1375<br />

1850<br />

1650<br />

2220<br />

1925<br />

2590<br />

2200<br />

2960<br />

2475<br />

3330<br />

2750<br />

3700<br />

3025<br />

4070<br />

3300<br />

4440<br />

Fig. 1.03e: Power and speed<br />

178 46 78-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specific fuel oil consumption<br />

g/kWh<br />

g/BHPh<br />

Lubricating oil consumption<br />

With high efficiency turbochargers System oil Cylinder oil<br />

At load layout point 100% 80%<br />

K98<strong>MC</strong><br />

and<br />

K98<strong>MC</strong>-C<br />

S90<strong>MC</strong>-C<br />

L90<strong>MC</strong>-C<br />

K90<strong>MC</strong><br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

171<br />

126<br />

162<br />

119<br />

171<br />

126<br />

162<br />

119<br />

167<br />

123<br />

160<br />

118<br />

167<br />

123<br />

160<br />

118<br />

167<br />

123<br />

155<br />

114<br />

167<br />

123<br />

155<br />

114<br />

171<br />

126<br />

159<br />

117<br />

171<br />

126<br />

159<br />

117<br />

Fig. 1.04a: Fuel and lubricating oil consumption<br />

Approx.<br />

kg/cyl. 24h<br />

g/kWh<br />

g/BHPh<br />

430 100 100 198 22 28<br />

1.08<br />

165<br />

121<br />

158<br />

116<br />

165<br />

121<br />

158<br />

116<br />

165<br />

121<br />

157<br />

116<br />

165<br />

121<br />

157<br />

116<br />

165<br />

121<br />

154<br />

113<br />

165<br />

121<br />

154<br />

113<br />

169<br />

124<br />

158<br />

116<br />

169<br />

124<br />

158<br />

116<br />

7.5-11<br />

7-10<br />

7-10<br />

7-10<br />

0.8-1.2<br />

0.6-0.9<br />

0.95-1.5<br />

0.7-1.1<br />

0.8-1.2<br />

0.6-0.9<br />

0.8-1.2<br />

0.6-0.9<br />

178 46 79-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specific fuel oil consumption<br />

430 100 100 198 22 28<br />

1.09<br />

g/kWh<br />

g/BHPh<br />

Lubricating oil consumption<br />

With high efficiency turbochargers System oil Cylinder oil<br />

At load layout point 100% 80%<br />

K90<strong>MC</strong>-C<br />

S80<strong>MC</strong>-C<br />

S80<strong>MC</strong><br />

L80<strong>MC</strong><br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

171<br />

126<br />

165<br />

121<br />

171<br />

126<br />

165<br />

121<br />

167<br />

123<br />

155<br />

114<br />

167<br />

123<br />

155<br />

114<br />

167<br />

123<br />

155<br />

114<br />

167<br />

123<br />

155<br />

114<br />

174<br />

128<br />

162<br />

119<br />

174<br />

128<br />

162<br />

119<br />

Fig. 1.04b: Fuel and lubricating oil consumption<br />

169<br />

124<br />

162<br />

119<br />

169<br />

124<br />

162<br />

119<br />

165<br />

121<br />

154<br />

113<br />

165<br />

121<br />

154<br />

113<br />

165<br />

121<br />

154<br />

113<br />

165<br />

121<br />

154<br />

113<br />

171<br />

126<br />

160<br />

118<br />

171<br />

126<br />

160<br />

118<br />

Approx.<br />

kg/cyl. 24h<br />

7-10<br />

6-9<br />

6-9<br />

6-9<br />

g/kWh<br />

g/BHPh<br />

0.8-1.2<br />

0.6-0.9<br />

0.95-1.5<br />

0.7-1.1<br />

0.95-1.5<br />

0.7-1.1<br />

0.8-1.2<br />

0.6-0.9<br />

178 46 79-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specific fuel oil consumption<br />

With conventional<br />

turbochargers<br />

g/kWh<br />

g/BHPh<br />

With high efficiency<br />

turbochargers<br />

At load layout point 100% 80% 100% 80%<br />

K80<strong>MC</strong>-C<br />

S70<strong>MC</strong>-C<br />

S70<strong>MC</strong><br />

L70<strong>MC</strong><br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

171<br />

126<br />

159<br />

117<br />

171<br />

126<br />

159<br />

117<br />

171<br />

126<br />

159<br />

117<br />

171<br />

126<br />

159<br />

117<br />

Fig. 1.04c: Fuel and lubricating oil consumption<br />

169<br />

124<br />

158<br />

116<br />

169<br />

124<br />

158<br />

116<br />

169<br />

124<br />

158<br />

116<br />

169<br />

124<br />

158<br />

116<br />

Lubricating oil consumption<br />

System oil Cylinder oil<br />

Approx.<br />

kg/cyl. 24h<br />

g/kWh<br />

g/BHPh<br />

430 100 100 198 22 28<br />

1.10<br />

171<br />

126<br />

165<br />

121<br />

171<br />

126<br />

165<br />

121<br />

169<br />

124<br />

156<br />

115<br />

169<br />

124<br />

156<br />

115<br />

169<br />

124<br />

156<br />

115<br />

169<br />

124<br />

156<br />

115<br />

174<br />

128<br />

162<br />

119<br />

174<br />

128<br />

162<br />

119<br />

169<br />

124<br />

162<br />

119<br />

169<br />

124<br />

162<br />

119<br />

166<br />

122<br />

155<br />

114<br />

166<br />

122<br />

155<br />

114<br />

166<br />

122<br />

155<br />

114<br />

166<br />

122<br />

155<br />

114<br />

171<br />

126<br />

160<br />

118<br />

171<br />

126<br />

160<br />

118<br />

6-9<br />

5.5-7.5<br />

5.5-7.5<br />

5.5-7.5<br />

0.8-1.2<br />

0.6-0.9<br />

0.95-1.5<br />

0.7-1.1<br />

0.95-1.5<br />

0.7-1.1<br />

0.8-1.2<br />

0.6-0.9<br />

178 46 79-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specific fuel oil consumption<br />

With conventional<br />

turbochargers<br />

g/kWh<br />

g/BHPh<br />

With high efficiency<br />

turbochargers<br />

At load layout point 100% 80% 100% 80%<br />

S60<strong>MC</strong>-C<br />

S60<strong>MC</strong><br />

L60<strong>MC</strong><br />

S50<strong>MC</strong>-C<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

173<br />

127<br />

160<br />

118<br />

173<br />

127<br />

160<br />

118<br />

173<br />

127<br />

160<br />

118<br />

173<br />

127<br />

160<br />

118<br />

174<br />

128<br />

162<br />

119<br />

174<br />

128<br />

162<br />

119<br />

174<br />

128<br />

162<br />

119<br />

174<br />

128<br />

162<br />

119<br />

Fig. 1.05d: Fuel and lubricating oil consumption<br />

170<br />

125<br />

159<br />

117<br />

170<br />

125<br />

159<br />

117<br />

170<br />

125<br />

159<br />

117<br />

170<br />

125<br />

159<br />

117<br />

171<br />

126<br />

160<br />

118<br />

171<br />

126<br />

160<br />

118<br />

171<br />

126<br />

160<br />

118<br />

171<br />

126<br />

160<br />

118<br />

Lubricating oil consumption<br />

System oil Cylinder oil<br />

Approx.<br />

kg/cyl. 24h<br />

g/kWh<br />

g/BHPh<br />

430 100 100 198 22 28<br />

1.11<br />

170<br />

125<br />

158<br />

116<br />

170<br />

125<br />

158<br />

116<br />

170<br />

125<br />

158<br />

116<br />

170<br />

125<br />

158<br />

116<br />

171<br />

126<br />

159<br />

117<br />

171<br />

126<br />

159<br />

117<br />

171<br />

126<br />

159<br />

117<br />

171<br />

126<br />

159<br />

117<br />

167<br />

123<br />

156<br />

115<br />

167<br />

123<br />

156<br />

115<br />

167<br />

123<br />

156<br />

115<br />

167<br />

123<br />

156<br />

115<br />

169<br />

124<br />

158<br />

116<br />

169<br />

124<br />

158<br />

116<br />

169<br />

124<br />

158<br />

116<br />

169<br />

124<br />

158<br />

116<br />

5-6.5<br />

5-6.5<br />

5-6.5<br />

4-5<br />

0.95-1.5<br />

0.7-1.1<br />

0.95-1.5<br />

0.7-1.1<br />

0.8-1.2<br />

0.6-0.9<br />

0.95-1.5<br />

0.7-1.1<br />

178 46 79-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specific fuel oil consumption<br />

With conventional<br />

turbochargers<br />

430 100 100 198 22 28<br />

1.12<br />

g/kWh<br />

g/BHPh<br />

With high efficiency<br />

turbochargers<br />

At load layout point 100% 80% 100% 80%<br />

S50<strong>MC</strong><br />

L50<strong>MC</strong><br />

S46<strong>MC</strong>-C<br />

S42<strong>MC</strong><br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

174<br />

128<br />

162<br />

119<br />

174<br />

128<br />

162<br />

119<br />

175<br />

129<br />

163<br />

120<br />

175<br />

129<br />

163<br />

120<br />

174<br />

128<br />

169<br />

124<br />

174<br />

128<br />

169<br />

124<br />

177<br />

130<br />

171<br />

126<br />

177<br />

130<br />

171<br />

126<br />

Fig. 1.05e: Fuel and lubricating oil consumption<br />

171<br />

126<br />

160<br />

118<br />

171<br />

126<br />

160<br />

118<br />

173<br />

127<br />

162<br />

119<br />

173<br />

127<br />

162<br />

119<br />

173<br />

127<br />

167<br />

123<br />

173<br />

127<br />

167<br />

123<br />

175<br />

129<br />

170<br />

125<br />

175<br />

129<br />

170<br />

125<br />

171<br />

126<br />

159<br />

117<br />

171<br />

126<br />

159<br />

117<br />

173<br />

127<br />

160<br />

118<br />

173<br />

127<br />

160<br />

118<br />

169<br />

124<br />

158<br />

116<br />

169<br />

124<br />

158<br />

116<br />

170<br />

125<br />

159<br />

117<br />

170<br />

125<br />

159<br />

117<br />

Lubricating oil consumption<br />

System oil Cylinder oil<br />

Approx.<br />

kg/cyl. 24h<br />

4-5<br />

4-5<br />

3.5-4.5<br />

3-4<br />

g/kWh<br />

g/BHPh<br />

0.95-1.5<br />

0.7-1.1<br />

0.8-1.2<br />

0.6-0.9<br />

0.95-1.5<br />

0.7-1.1<br />

0.95-1.5<br />

0.7-1.1<br />

178 46 79-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specific fuel oil consumption<br />

g/kWh<br />

g/BHPh<br />

At load layout point 100% 80%<br />

L42<strong>MC</strong><br />

S35<strong>MC</strong><br />

L35<strong>MC</strong><br />

S26<strong>MC</strong><br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

L1<br />

L2<br />

L3<br />

L4<br />

Lubricating oil consumption<br />

With conventional turbochargers System oil Cylinder oil<br />

177<br />

130<br />

165<br />

121<br />

177<br />

130<br />

165<br />

121<br />

178<br />

131<br />

173<br />

127<br />

178<br />

131<br />

173<br />

127<br />

177<br />

130<br />

171<br />

126<br />

177<br />

130<br />

171<br />

126<br />

179<br />

132<br />

174<br />

128<br />

179<br />

132<br />

174<br />

128<br />

Fig. 1.05f: Fuel and lubricating oil consumption<br />

Approx.<br />

kg/cyl. 24h<br />

g/kWh<br />

g/BHPh<br />

430 100 100 198 22 28<br />

1.13<br />

174<br />

129<br />

163<br />

120<br />

174<br />

129<br />

163<br />

120<br />

177<br />

130<br />

171<br />

126<br />

177<br />

130<br />

171<br />

126<br />

175<br />

129<br />

170<br />

125<br />

175<br />

129<br />

170<br />

125<br />

178<br />

131<br />

173<br />

127<br />

178<br />

131<br />

173<br />

127<br />

3-4<br />

2-3<br />

2-3<br />

1.5-3<br />

0.8-1.2<br />

0.6-0.9<br />

0.95-1.5<br />

0.7-1.1<br />

0.8-1.2<br />

0.6-0.9<br />

0.95-1.5<br />

0.7-1.1<br />

178 46 79-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 1.05: K98<strong>MC</strong> engine cross section<br />

430 100 018 198 22 29<br />

1.14<br />

178 32 80-6.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 1.06: S80<strong>MC</strong> engine cross section<br />

430 100 018 198 22 29<br />

1.15<br />

178 36 24-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 1.07: S70<strong>MC</strong>-C engine cross section<br />

178 44 14-4.1<br />

430 100 018 198 22 29<br />

1.16


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 1.08: S60<strong>MC</strong> engine cross section<br />

430 100 018 198 22 29<br />

1.17<br />

178 32 19-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 1.09: S50<strong>MC</strong>-C engine cross section<br />

178 16 07-0.0<br />

430 100 018 198 22 29<br />

1.18


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 1.10: L42<strong>MC</strong> engine cross section<br />

430 100 018 198 22 29<br />

1.19<br />

178 43 10-1.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 1.11: S26<strong>MC</strong> engine cross section<br />

430 100 018 198 22 29<br />

1.20<br />

178 42 12-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

2 <strong>Engine</strong> Layout and Load Diagrams<br />

Propulsion and <strong>Engine</strong> Running Points<br />

Propeller curve<br />

The relation between power and propeller speed for<br />

a fixed pitch propeller is as mentioned above described<br />

by means of the propeller law, i.e. the third<br />

power curve:<br />

Pb =cxn 3 , in which:<br />

Pb = engine power for propulsion<br />

n = propeller speed<br />

c = constant<br />

The power functions Pb =cxn i will be linear functions<br />

when using logarithmic scales.<br />

Therefore, in the Layout Diagrams and Load Diagrams<br />

for diesel engines, logarithmic scales are<br />

used, making simple diagrams with straight lines.<br />

Propeller design point<br />

Normally, estimations of the necessary propeller<br />

power and speed are based on theoretical calculations<br />

for loaded ship, and often experimental tank<br />

tests, both assuming optimum operating conditions,<br />

i.e. a clean hull and good weather. The combination<br />

of speed and power obtained may be called<br />

the ship’s propeller design point (PD), placed on the<br />

light running propeller curve 6. See Fig. 2.01. On the<br />

other hand, some shipyards, and/or propeller manufacturers<br />

sometimes use a propeller design point<br />

(PD’) that incorporates all or part of the so-called<br />

sea margin described below.<br />

Fouled hull<br />

When the ship has sailed for some time, the hull and<br />

propeller become fouled and the hull’s resistance<br />

will increase. Consequently, the ship speed will be<br />

reduced unless the engine delivers more power to<br />

the propeller, i.e. the propeller will be further loaded<br />

and will be heavy running (HR).<br />

As modern vessels with a relatively high service<br />

speed are prepared with very smooth propeller and<br />

hull surfaces, the fouling after sea trial, therefore,<br />

will involve a relatively higher resistance and thereby<br />

a heavier running propeller.<br />

Sea margin at heavy weather<br />

If, at the same time the weather is bad, with head<br />

winds, the ship’s resistance may increase compared<br />

to operating at calm weather conditions.<br />

When determining the necessary engine power, it is<br />

therefore normal practice to add an extra power<br />

margin, the so-called sea margin, see Fig. 2.02<br />

which is traditionally about 15% of the propeller design<br />

(PD) power.<br />

<strong>Engine</strong> layout (heavy propeller)<br />

When determining the necessary engine speed<br />

considering the influence of a heavy running propeller<br />

for operating at large extra ship resistance, it is<br />

recommended - compared to the clean hull and<br />

calm weather propeller curve6-tochoose a heavier<br />

propeller curve 2 for engine layout, and the propeller<br />

402 000 004 198 22 30<br />

2.01<br />

178 05 41-5.3<br />

Line 2 Propulsion curve, fouled hull and heavy weather<br />

(heavy running), recommended for engine layout<br />

Line 6 Propulsion curve, clean hull and calm weather<br />

(light running), for propeller layout<br />

MP Specified <strong>MC</strong>R for propulsion<br />

SP Continuous service rating for propulsion<br />

PD Propeller design point<br />

HR Heavy running<br />

LR Light running<br />

Fig. 2.01: Ship propulsion running points and engine layout


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

curve for clean hull and calm weather in curve 6 will<br />

be said to represent a “light running” (LR) propeller,<br />

see area 6 on Figs. 2.07a and 2.07b.<br />

Compared to the heavy engine layout curve 2 we<br />

recommend to use a light running of 3.0-7.0% for<br />

design of the propeller, with 5% as a good average.<br />

<strong>Engine</strong> margin<br />

178 05 67-7.1<br />

Fig. 2.02: Sea margin based on weather conditions in the<br />

North Atlantic Ocean. Percentage of time at sea where<br />

the service speed can be maintained, related to the extra<br />

power (sea margin) in % of the sea trial power.<br />

Besides the sea margin, a so-called “engine margin”<br />

of some 10% is frequently added. The corresponding<br />

point is called the “specified <strong>MC</strong>R for propulsion”<br />

(MP), and refers to the fact that the power<br />

for point SP is 10% lower than for point MP, see Fig.<br />

2.01. Point MP is identical to the engine’s specified<br />

<strong>MC</strong>R point (M) unless a main engine driven shaft<br />

generator is installed. In such a case, the extra<br />

power demand of the shaft generator must also be<br />

considered.<br />

Note:<br />

Light/heavy running, fouling and sea margin are<br />

overlapping terms. Light/heavy running of the propeller<br />

refers to hull and propeller deterioration and<br />

heavy weather and, – sea margin i.e. extra power to<br />

the propeller, refers to the influence of the wind and<br />

the sea. However, the degree of light running must<br />

be decided upon experience from the actual trade<br />

and hull design.<br />

402 000 004 198 22 30<br />

2.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Influence of propeller diameter and pitch on<br />

the optimum propeller speed<br />

In general, the larger the propeller diameter, the<br />

lower is the optimum propeller speed and the kW<br />

required for a certain design draught and ship<br />

speed, see curve D in Fig. 2.03.<br />

The maximum possible propeller diameter depends<br />

on the given design draught of the ship, and the<br />

clearance needed between the propeller and the<br />

aft-body hull and the keel.<br />

The example shown in Fig. 2.03 is an 80,000 dwt<br />

crude oil tanker with a design draught of 12.2 m and<br />

a design speed of 14.5 knots.<br />

When the optimum propeller diameter D is increased<br />

from 6.6 m to 7.2. m, the power demand is<br />

reduced from about 9,290 kW to 8,820 kW, and the<br />

optimum propeller speed is reduced from 120 r/min<br />

to 100 r/min, corresponding to the constant ship<br />

speed coefficient = 28 (see definition of in next<br />

section).<br />

Fig. 2.03: Influence of diameter and pitch on propeller design<br />

Once an optimum propeller diameter of maximum<br />

7.2 m has been chosen, the pitch in this point is<br />

given for the design speed of 14.5 knots, i.e. P/D =<br />

0.70.<br />

However, if the optimum propeller speed of 100<br />

r/min does not suit the preferred / selected main engine<br />

speed, a change of pitch will only cause a relatively<br />

small extra power demand, keeping the same<br />

maximum propeller diameter:<br />

• going from 100 to 110 r/min (P/D = 0.62) requires<br />

8,900 kW i.e. an extra power demand of 80 kW.<br />

• going from 100 to 91 r/min (P/D = 0.81) requires<br />

8,900 kW i.e. an extra power demand of 80 kW.<br />

In both cases the extra power demand is only of<br />

0.9%, and the corresponding 'equal speed curves'<br />

are =+0.1 and =-0.1, respectively, so there is a<br />

certain interval of propeller speeds in which the<br />

'power penalty' is very limited.<br />

402 000 004 198 22 30<br />

2.03<br />

178 47 03-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Constant ship speed lines<br />

The constant ship speed lines , are shown at the<br />

very top of Fig. 2.04. These lines indicate the power<br />

required at various propeller speeds to keep the<br />

same ship speed provided that the optimum propeller<br />

diameter with an optimum pitch diameter ratio is<br />

used at any given speed, taking into consideration<br />

the total propulsion efficiency.<br />

Normally, the following relation between necessary<br />

power and propeller speed can be assumed:<br />

P2 =P1 (n2/n1) <br />

where:<br />

P = Propulsion power<br />

n = Propeller speed, and<br />

= the constant ship speed coefficient.<br />

For any combination of power and speed, each<br />

point on lines parallel to the ship speed lines gives<br />

the same ship speed.<br />

When such a constant ship speed line is drawn into<br />

the layout diagram through a specified propulsion<br />

Fig. 2.04: Layout diagram and constant ship speed lines<br />

<strong>MC</strong>R point "MP1", selected in the layout area and<br />

parallel to one of the -lines, another specified propulsion<br />

<strong>MC</strong>R point "MP2" upon this line can be chosen<br />

to give the ship the same speed for the new<br />

combination of engine power and speed.<br />

Fig. 2.04 shows an example of the required power<br />

speed point MP1, through which a constant ship<br />

speed curve = 0.25 is drawn, obtaining point MP2<br />

with a lower engine power and a lower engine speed<br />

but achieving the same ship speed.<br />

Provided the optimum pitch/diameter ratio is used<br />

for a given propeller diameter the following data applies<br />

when changing the propeller diameter:<br />

for general cargo, bulk carriers and tankers<br />

= 0.25 -0.30<br />

and for reefers and container vessels<br />

= 0.15 -0.25<br />

When changing the propeller speed by changing the<br />

pitch diameter ratio, the constant will be different,<br />

see above.<br />

402 000 004 198 22 30<br />

2.04<br />

178 05 66-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong> Layout Diagram<br />

The layout procedure has to be carefully considered<br />

because the final layout choice will have a considerable<br />

influence on the operating condition of the main<br />

engine throughout the whole lifetime of the ship. The<br />

factors that should be conisdered are operational flexibility,<br />

fuel consumption, obtainable power, possible<br />

shaft generator application and propulsion efficiency.<br />

An engine’s layout diagram is limited by two constant<br />

mean effective pressure (mep) lines L1-L3 and L2-L4,<br />

and by two constant engine speed lines L1-L2 and<br />

L3-L4, see Fig. 2.04. The L1 point refers to the engine’s<br />

nominal maximum continuous rating.<br />

Please note that the areas of the layout diagrams are<br />

different for the engines types, see Fig. 2.05.<br />

Within the layout area there is full freedom to select the<br />

engine’s specified <strong>MC</strong>R point M which suits the demand<br />

of propeller power and speed for the ship.<br />

On the X-axis the engine speed and on the Y-axis the<br />

engine power are shown in percentage scales. The<br />

scales are logarithmic which means that, in this diagram,<br />

power function curves like propeller curves (3rd<br />

power), constant mean effective pressure curves (1st<br />

power) and constant ship speed curves (0.15 to 0.30<br />

power) are straight lines.<br />

Fig. 2.06 shows, by means of superimposed diagrams<br />

for all engine types, the entire layout area for the<br />

<strong>MC</strong>-programme in a power/speed diagram. As can be<br />

seen, there is a considerable overlap of power/speed<br />

combinations so that for nearly all applications, there<br />

is a wide section of different engines to choose from all<br />

of which meet the individual ship's requirements.<br />

Specified maximum continuous rating, S<strong>MC</strong>R = “M”<br />

Based on the propulsion and engine running points,<br />

as previously found, the layout diagram of a relevant<br />

main engine may be drawn-in. The specified <strong>MC</strong>R<br />

point (M) must be inside the limitation lines of the layout<br />

diagram; if it is not, the propeller speed will have to<br />

be changed or another main engine type must be chosen.<br />

Yet, in special cases point M may be located to<br />

the right of the line L1-L2, see “Optimising Point”.<br />

402 000 004 198 22 30<br />

2.05<br />

Power<br />

Power<br />

Power<br />

Power<br />

L 3<br />

L 4<br />

L 3<br />

L 4<br />

L 3<br />

L 4<br />

L 3<br />

L 4<br />

L 1<br />

L 2<br />

Speed<br />

L 1<br />

L 2<br />

Speed<br />

L 1<br />

L 2<br />

Speed<br />

L 1<br />

L 2<br />

Speed<br />

Fig. 2.05: Layout diagram sizes<br />

Layout diagram of<br />

100 - 64% power and<br />

100 - 75% speed range<br />

valid for the types:<br />

L90<strong>MC</strong>-C S60<strong>MC</strong>-C<br />

K90<strong>MC</strong> S60<strong>MC</strong><br />

S80<strong>MC</strong>-C L60<strong>MC</strong><br />

S80<strong>MC</strong> S50<strong>MC</strong>-C<br />

L80<strong>MC</strong> S50<strong>MC</strong><br />

S70<strong>MC</strong>-C L50<strong>MC</strong><br />

S70<strong>MC</strong> L42<strong>MC</strong><br />

L70<strong>MC</strong><br />

Layout diagram of<br />

100 - 80% power and<br />

100 - 80% speed range<br />

valid for the types:<br />

S90<strong>MC</strong>-C<br />

Layout diagram of<br />

100 - 80% power and<br />

100 - 85% speed range<br />

valid for the types:<br />

K90<strong>MC</strong>-C<br />

K80<strong>MC</strong>-C<br />

S46<strong>MC</strong>-C<br />

S42<strong>MC</strong><br />

S35<strong>MC</strong><br />

L35<strong>MC</strong><br />

S26<strong>MC</strong><br />

Layout diagram of<br />

100 - 80% power and<br />

100 - 90% speed range<br />

valid for the types:<br />

K98<strong>MC</strong><br />

K98<strong>MC</strong>-C<br />

178 13 85-1.4


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.06: Layout diagrams of the two-<strong>stroke</strong> engine <strong>MC</strong>-programme as per January 2000<br />

402 000 004 198 22 30<br />

2.06<br />

178 13 80-2.8


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Continuous service rating (S)<br />

The Continuous service rating is the power at which<br />

the engine is normally assumed to operate, and<br />

point S is identical to the service propulsion point<br />

(SP) unless a main engine driven shaft generator is<br />

installed.<br />

Optimising point (O)<br />

The optimising point O is the rating at which the<br />

turbocharger is matched, and at which the engine timing<br />

and compression ratio are adjusted.<br />

On engines with Variable Injection Timing (VIT) fuel<br />

pumps, the optimising point (O) can be different than<br />

the specified <strong>MC</strong>R (M), whereas on engines without<br />

VIT fuel pumps “O” has to coincide with “M”.<br />

The large engine types have VIT fuel pumps as standard,<br />

but on some types these pumps are an option.<br />

Small-bore engines are not fitted with VIT fuel pumps.<br />

Type With VIT Without VIT<br />

K98<strong>MC</strong> Basic<br />

K98<strong>MC</strong>-C Basic<br />

S90<strong>MC</strong>-C Basic<br />

L90<strong>MC</strong>-C Basic<br />

K90<strong>MC</strong> Basic<br />

K90<strong>MC</strong>-C Basic<br />

S80<strong>MC</strong>-C Basic<br />

S80<strong>MC</strong> Basic<br />

L80<strong>MC</strong> Basic<br />

S70<strong>MC</strong>-C Optional Basic<br />

S70<strong>MC</strong> Basic<br />

L70<strong>MC</strong> Basic<br />

S60<strong>MC</strong>-C Optional Basic<br />

S60<strong>MC</strong> Basic<br />

L60<strong>MC</strong> Basic<br />

S50<strong>MC</strong>-C Optional Basic<br />

S50<strong>MC</strong> Basic<br />

S46<strong>MC</strong>-C Basic<br />

S42<strong>MC</strong> Basic<br />

L42<strong>MC</strong> Basic<br />

S35<strong>MC</strong> Basic<br />

L35<strong>MC</strong> Basic<br />

S26<strong>MC</strong> Basic<br />

<strong>Engine</strong>s with VIT<br />

The optimising point O is placed on line 1 of the load<br />

diagram, and the optimised power can be from 85 to<br />

100% of point M's power, when turbocharger(s) and<br />

engine timing are taken into consideration. When<br />

optimising between 93.5% and 100% of point M's<br />

power, 10% overload running will still be possible<br />

(110% of M).<br />

The optimising point O is to be placed inside the layout<br />

diagram. In fact, the specified <strong>MC</strong>R point M can,<br />

in special cases, be placed outside the layout diagram,<br />

but only by exceeding line L1-L2, and of<br />

course, only provided that the optimising point O is<br />

located inside the layout diagram and provided that<br />

the specified <strong>MC</strong>R power is not higher than the L1<br />

power.<br />

<strong>Engine</strong> without VIT<br />

Optimising point (O) = specified <strong>MC</strong>R (M)<br />

On engine types not fitted with VIT fuel pumps,<br />

the specified <strong>MC</strong>R – point M has to coincide with<br />

point O.<br />

402 000 004 198 22 30<br />

2.07


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Load Diagram<br />

Definitions<br />

The load diagram, Figs. 2.07, defines the power and<br />

speed limits for continuous as well as overload operation<br />

of an installed engine having an optimising<br />

point O and a specified <strong>MC</strong>R point M that confirms<br />

the ship’s specification.<br />

Point A is a 100% speed and power reference point<br />

of the load diagram, and is defined as the point on<br />

the propeller curve (line 1), through the optimising<br />

point O, having the specified <strong>MC</strong>R power. Normally,<br />

point M is equal to point A, but in special cases, for<br />

example if a shaft generator is installed, point M may<br />

be placed to the right of point A on line 7.<br />

The service points of the installed engine incorporate<br />

the engine power required for ship propulsion<br />

and shaft generator, if installed.<br />

Limits for continuous operation<br />

The continuous service range is limited by four lines:<br />

Line 3 and line 9:<br />

Line 3 represents the maximum acceptable speed<br />

for continuous operation, i.e. 105% of A.<br />

If, in special cases, A is located to the right of line<br />

L1-L2, the maximum limit, however, is 105% of L1.<br />

During trial conditions the maximum speed may be<br />

extended to 107% of A, see line 9.<br />

The above limits may in general be extended to<br />

105%, and during trial conditions to 107%, of the<br />

nominal L1 speed of the engine, provided the torsional<br />

vibration conditions permit.<br />

The overspeed set-point is 109% of the speed in A,<br />

however, it may be moved to 109% of the nominal<br />

speed in L1, provided that torsional vibration conditions<br />

permit.<br />

Running above 100% of the nominal L1 speed at a<br />

load lower than about 65% specified <strong>MC</strong>R is, however,<br />

to be avoided for extended periods. Only<br />

plants with controllable pitch propellers can reach<br />

this light running area.<br />

Line 4:<br />

Represents the limit at which an ample air supply<br />

is available for combustion and imposes a limitation<br />

on the maximum combination of torque and<br />

speed.<br />

Line 5:<br />

Represents the maximum mean effective pressure<br />

level (mep), which can be accepted for continuous<br />

operation.<br />

Line 7:<br />

Represents the maximum power for continuous<br />

operation.7<br />

Limits for overload operation<br />

The overload service range is limited as follows:<br />

Line 8:<br />

Represents the overload operation limitations.<br />

The area between lines 4, 5, 7 and the heavy dashed<br />

line 8 is available for overload running for limited periods<br />

only (1 hour per 12 hours).<br />

402 000 004 198 22 30<br />

2.08<br />

A 100% reference point<br />

M Specified <strong>MC</strong>R point<br />

O Optimising point<br />

Line 1 Propeller curve through optimising point (i = 3)<br />

(engine layout curve)<br />

Line 2 Propeller curve, fouled hull and heavy weather<br />

– heavy running (i = 3)<br />

Line 3 Speed limit<br />

Line 4 Torque/speed limit (i = 2)<br />

Line 5 Mean effective pressure limit (i = 1)<br />

Line 6 Propeller curve, clean hull and calm weather –<br />

light running (i = 3), for propeller layout<br />

Line 7 Power limit for continuous running (i = 0)<br />

Line 8 Overload limit<br />

Line 9 Speed limit at sea trial<br />

Point M to be located on line 7 (normally in point A)<br />

Regarding “i” in the power functions Pb =cxn i , see<br />

page 2.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.07a: <strong>Engine</strong> load diagram for engine with VIT<br />

Fig. 2.07b: <strong>Engine</strong> load diagram for engine without VIT<br />

402 000 004 198 22 30<br />

2.09<br />

178 05 42-7.3<br />

178 39 18-4.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Recommendation<br />

Continuous operation without limitations is allowed<br />

only within the area limited by lines 4, 5, 7 and 3 of<br />

the load diagram, except for CP propeller plants<br />

mentioned in the previous section.<br />

The area between lines 4 and 1 is available for operation<br />

in shallow waters, heavy weather and during<br />

acceleration, i.e. for non-steady operation without<br />

any strict time limitation.<br />

After some time in operation, the ship’s hull and propeller<br />

will be fouled, resulting in heavier running of<br />

the propeller, i.e. the propeller curve will move to the<br />

left from line 6 towards line 2, and extra power is required<br />

for propulsion in order to keep the ship’s<br />

speed.<br />

In calm weather conditions, the extent of heavy running<br />

of the propeller will indicate the need for cleaning<br />

the hull and possibly polishing the propeller.<br />

Once the specified <strong>MC</strong>R (and the optimising point)<br />

has been chosen, the capacities of the auxiliary<br />

equipment will be adapted to the specified <strong>MC</strong>R,<br />

and the turbocharger etc. will be matched to the optimised<br />

power, however considering the specified<br />

<strong>MC</strong>R.<br />

If the specified <strong>MC</strong>R (and/or the optimising point) is<br />

to be increased later on, this may involve a change<br />

of the pump and cooler capacities, retiming of the<br />

engine, change of the fuel valve nozzles, adjusting<br />

of the cylinder liner cooling, as well as rematching of<br />

the turbocharger or even a change to a larger size of<br />

turbocharger. In some cases it can also require<br />

larger dimensions of the piping systems.<br />

It is therefore of utmost importance to consider, already<br />

at the project stage, if the specification should<br />

be prepared for a later power increase.<br />

Examples of the use of the Load Diagram<br />

In the following see Figs. 2.08 - 2.13, are some examples<br />

illustrating the flexibility of the layout and<br />

load diagrams and the significant influence of the<br />

choice of the optimising point O.<br />

The upper diagrams of the examples 1, 2, 3 and 4<br />

show engines with VIT fuel pumps for which the optimising<br />

point O is normally different from the specified<br />

<strong>MC</strong>R point M as this can improve the SFOC at<br />

part load running. The lower diagrams also show<br />

engine wihtout VIT fuel pumps, i.e. point A=O.<br />

Example 1 shows how to place the load diagram for<br />

an engine without shaft generator coupled to a fixed<br />

pitch propeller.<br />

In example 2 are diagrams for the same configuration,<br />

here with the optimising point to the left of the<br />

heavy running propeller curve (2) obtaining an extra<br />

engine margin for heavy running.<br />

As for example 1 example 3 shows the same layout<br />

for an engine with fixed pitch propeller, but with a<br />

shaft generator.<br />

Example 4 shows a special case with a shaft generator.<br />

In this case the shaft generator is cut off, and<br />

the GenSets used when the engine runs at specified<br />

<strong>MC</strong>R. This makes it possible to choose a smaller engine<br />

with a lower power output.<br />

Example 5 shows diagrams for an engine coupled to<br />

a controllable pitch propeller, with or without a shaft<br />

generator, (constant speed or combinator curve operation).<br />

Example 6 shows where to place the optimising<br />

point for an engine coupled to a controllable pitch<br />

propeller, and operating at constant speed.<br />

For a project, the layout diagram shown in Fig.<br />

2.14 may be used for construction of the actual<br />

load diagram.<br />

402 000 004 198 22 30<br />

2.10


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 1:<br />

Normal running conditions. <strong>Engine</strong> coupled to fixed pitch propeller (FPP) and without shaft generator<br />

With VIT<br />

M Specified <strong>MC</strong>R of engine Point A of load diagram is found:<br />

S Continuous service rating of engine Line 1 Propeller curve through optimising point (O) is<br />

O Optimising point of engine<br />

equal to line 2<br />

A Reference point of load diagram Line 7 Constant power line through specified <strong>MC</strong>R (M)<br />

MP Specified <strong>MC</strong>R for propulsion Point A Intersection between line 1 and 7<br />

SP Continuous service rating of propulsion<br />

For engines with VIT, the optimising point O and its propeller<br />

curve 1 will normally be selected on the engine<br />

service curve 2, see the upper diagram of Fig. 2.08a.<br />

For engines without VIT, the optimising point O will<br />

have the same power as point M and its propeller<br />

curve 1 for engine layout will normally be selected<br />

Without VIT<br />

Fig. 2.08a: Example 1, Layout diagram for normal running Fig. 2.08b: Example 1, Load diagram for normal running<br />

conditions, engine with FPP, without shaft generator conditions, engine with FPP, without shaft generator<br />

on the engine service curve 2 (for fouled hull and<br />

heavy weather), as shown in the lower diagram of<br />

Fig. 2.08a.<br />

Point A is then found at the intersection between propeller<br />

curve 1 (2) and the constant power curve through<br />

M, line 7. In this case point A is equal to point M.<br />

402 000 004 198 22 30<br />

2.11<br />

178 05 44-0.6<br />

178 39 20-6.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 2:<br />

Special running conditions. <strong>Engine</strong> coupled to fixed pitch propeller (FPP) and without shaft generator<br />

M Specified <strong>MC</strong>R of engine Point A of load diagram is found:<br />

S Continuous service rating of engine Line 1 Propeller curve through optimising point (O)<br />

O Optimising point of engine<br />

is equal to line 2<br />

A Reference point of load diagram Line 7 Constant power line through specified <strong>MC</strong>R (M)<br />

MP Specified <strong>MC</strong>R for propulsion Point A Intersection between line 1 and 7<br />

SP Continuous service rating of propulsion<br />

Fig. 2.09a: Example 2, Layout diagram for special running<br />

conditions, engine with FPP, without shaft generator<br />

Once point A has been found in the layout diagram,<br />

the load diagram can be drawn, as shown in Fig.<br />

2.08b and hence the actual load limitation lines of the<br />

diesel engine may be found by using the inclinations<br />

from the construction lines and the %-figures stated.<br />

With VIT<br />

Without VIT<br />

A similar example 2 is shown in Figs. 2.09. In this<br />

case, the optimising point O has been selected<br />

more to the left than in example 1, obtaining an extra<br />

engine margin for heavy running operation in heavy<br />

weather conditions. In principle, the light running<br />

margin has been increased for this case.<br />

402 000 004 198 22 30<br />

2.12<br />

178 05 46-4.6<br />

178 39 23-1.0<br />

Fig. 2.09b: Example 2, Load diagram for special running<br />

conditions, engine with FPP, without shaft generator


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 3:<br />

Normal running conditions. <strong>Engine</strong> coupled to fixed pitch propeller (FPP) and with shaft generator<br />

M Specified <strong>MC</strong>R of engine Point A of load diagram is found:<br />

S Continuous service rating of engine Line 1 Propeller curve through optimising point (O)<br />

O Optimising point of engine Line 7 Constant power line through specified <strong>MC</strong>R (M)<br />

A Reference point of load diagram Point A Intersection between line 1 and 7<br />

MP Specified <strong>MC</strong>R for propulsion<br />

SP Continuous service rating of propulsion<br />

SG Shaft generator power<br />

Fig. 2.10a: Example 3, Layout diagram for normal running<br />

conditions, engine with FPP, without shaft generator<br />

In example 3 a shaft generator (SG) is installed, and<br />

therefore the service power of the engine also has to<br />

incorporate the extra shaft power required for the<br />

shaft generator’s electrical power production.<br />

In Fig. 2.10a, the engine service curve shown for<br />

heavy running incorporates this extra power.<br />

With VIT<br />

Without VIT<br />

The optimising point O will be chosen on the engine<br />

service curve as shown, but can, by an approximation,<br />

be located on curve 1, through point M.<br />

Point A is then found in the same way as in example<br />

1, and the load diagram can be drawn as shown in<br />

Fig. 2.10b.<br />

402 000 004 198 22 30<br />

2.13<br />

178 05 48-8.6<br />

178 39 25-5.1<br />

Fig. 2.10b: Example 3, Load diagram for normal running<br />

conditions, engine with FPP, with shaft generator


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 4:<br />

Special running conditions. <strong>Engine</strong> coupled to fixed pitch propeller (FPP) and with shaft generator<br />

M Specified <strong>MC</strong>R of engine Point A of load diagram is found:<br />

S Continuous service rating of engine Line 1 Propeller curve through optimising point (O) or<br />

point S<br />

O Optimising point of engine Point A Intersection between line 1 and line L1 -L3<br />

A Reference point of load diagram Point M Located on constant power line 7 through<br />

MP Specified <strong>MC</strong>R for propulsion<br />

SP Continuous service rating of propulsion<br />

SG Shaft generator<br />

See text on next page.<br />

Fig. 2.11a: Example 4. Layout diagram for special running<br />

conditions, engine with FPP, with shaft generator<br />

With VIT<br />

Without VIT<br />

402 000 004 198 22 30<br />

2.14<br />

178 06 35-1.6<br />

point A (O =Aiftheengine is without VIT)<br />

and with MP's speed.<br />

178 39 28-0.2<br />

Fig. 2.11b: Example 4. Load diagram for special running<br />

conditions, engine with FPP, with shaft generator


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 4:<br />

Also in this special case, a shaft generator is installed<br />

but, compared to Example 3, this case has a<br />

specified <strong>MC</strong>R for propulsion, MP, placed at the top<br />

of the layout diagram, see Fig. 2.11a.<br />

This involves that the intended specified <strong>MC</strong>R of the<br />

engine M’ will be placed outside the top of the layout<br />

diagram.<br />

One solution could be to choose a larger diesel<br />

engine with an extra cylinder, but another and<br />

cheaper solution is to reduce the electrical power<br />

production of the shaft generator when running in<br />

the upper propulsion power range.<br />

In choosing the latter solution, the required specified<br />

<strong>MC</strong>R power can be reduced from point M’ to<br />

point M as shown in Fig. 2.11a. Therefore, when running<br />

in the upper propulsion power range, a diesel<br />

generator has to take over all or part of the electrical<br />

power production.<br />

However, such a situation will seldom occur, as<br />

ships are rather infrequently running in the upper<br />

propulsion power range.<br />

Point A, having the highest possible power, is<br />

then found at the intersection of line L1-L3 with<br />

line 1, see Fig. 2.11a, and the corresponding load<br />

diagram is drawn in Fig. 2.11b. Point M is found<br />

on line 7 at MP’s speed.<br />

402 000 004 198 22 30<br />

2.15


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 5:<br />

<strong>Engine</strong> coupled to controllable pitch propeller (CPP) with or without shaft generator<br />

Without VIT<br />

With VIT<br />

M Specified <strong>MC</strong>R of engine O Optimising point of engine<br />

S Continuous service rating of engine A Reference point of load diagram<br />

Fig. 2.12: Example 5: <strong>Engine</strong> with Controllable Pitch Propeller (CPP), with or without shaft generator<br />

Fig. 2.12 shows two examples: on the left diagrams<br />

for an engine without VIT fuel pumps (A=O=M),on<br />

the right, for an engine with VIT fuel pumps (A = M).<br />

Layout diagram - without shaft generator<br />

If a controllable pitch propeller (CPP) is applied, the<br />

combinator curve (of the propeller) will normally be<br />

selected for loaded ship including sea margin.<br />

The combinator curve may for a given propeller speed<br />

have a given propeller pitch, and this may be heavy running<br />

in heavy weather like for a fixed pitch propeller.<br />

Therefore it is recommended to use a light running<br />

combinator curve as shown in Fig. 2.12 to obtain an<br />

increased operation margin of the diesel engine in<br />

heavy weather to the limit indicated by curves 4 and 5.<br />

Layout diagram - with shaft generator<br />

The hatched area in Fig. 2.12 shows the recommended<br />

speed range between 100% and 96.7% of<br />

the specified <strong>MC</strong>R speed for an engine with shaft<br />

generator running at constant speed.<br />

The service point S can be located at any point<br />

within the hatched area.<br />

The procedure shown in examples 3 and 4 for engines<br />

with FPP can also be applied here for engines<br />

with CPP running with a combinator curve.<br />

The optimising point O for engines with VIT may be<br />

chosen on the propeller curve through point A=M<br />

with an optimised power from 85 to 100% of the<br />

specified <strong>MC</strong>R as mentioned before in the section<br />

dealing with optimising point O.<br />

Load diagram<br />

Therefore, when the engine’s specified <strong>MC</strong>R point<br />

(M) has been chosen including engine margin, sea<br />

margin and the power for a shaft generator, if installed,<br />

point M may be used as point A of the load<br />

diagram, which can then be drawn.<br />

The position of the combinator curve ensures the<br />

maximum load range within the permitted speed<br />

range for engine operation, and it still leaves a reasonable<br />

margin to the limit indicated by curves 4<br />

and 5.<br />

Example 6 will give a more detailed description of<br />

how to run constant speed with a CP propeller.<br />

402 000 004 198 22 30<br />

2.16<br />

178 39 31-4.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 6: <strong>Engine</strong>s with VIT fuel pumps running<br />

at constant speed with controllable pitch<br />

propeller (CPP)<br />

Fig. 2.13a Constant speed curve through M, normal<br />

and correct location of the optimising point O<br />

Irrespective of whether the engine is operating on a<br />

propeller curve or on a constant speed curve<br />

through M, the optimising point O must be located<br />

on the propeller curve through the specified <strong>MC</strong>R<br />

point M or, in special cases, to the left of point M.<br />

The reason is that the propeller curve 1 through the<br />

optimising point O is the layout curve of the engine,<br />

and the intersection between curve 1 and the maximum<br />

power line 7 through point M is equal to 100%<br />

power and 100% speed, point A of the load diagram<br />

- in this case A=M.<br />

In Fig. 2.13a the optimising point O has been placed<br />

correctly, and the step-up gear and the shaft generator,<br />

if installed, may be synchronised on the constant<br />

speed curve through M.<br />

Fig. 2.13b: Constant speed curve through M,<br />

wrong position of optimising point O<br />

If the engine has been service-optimised in point O<br />

on a constant speed curve through point M, then the<br />

specified <strong>MC</strong>R point M would be placed outside the<br />

load diagram, and this is not permissible.<br />

Fig. 2.13c: Recommended constant speed running<br />

curve, lower than speed M<br />

In this case it is assumed that a shaft generator, if installed,<br />

is synchronised at a lower constant main engine<br />

speed (for example with speed equal to O or<br />

lower) at which improved CP propeller efficiency is<br />

obtained for part load running.<br />

In this layout example where an improved CP propeller<br />

efficiency is obtained during extended periods<br />

of part load running, the step-up gear and the<br />

shaft generator have to be designed for the applied<br />

lower constant engine speed.<br />

402 000 004 198 22 30<br />

2.17<br />

Constant speed service<br />

curve through M<br />

Fig. 2.13a: Normal procedure<br />

Constant speed service<br />

curve through M<br />

Fig. 2.13b: Wrong procedure<br />

Constant speed service<br />

curve with a speed lower<br />

than M<br />

Fig. 2.13c: Recommended procedure<br />

Logarithmic scales<br />

M: Specified <strong>MC</strong>R<br />

O: Optimised point<br />

A: 100% power and speed of load<br />

diagram (normally A=M)<br />

Fig. 2.13: Running at constant speed with CPP<br />

178 19 69-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.14 contains a layout diagram that can be used for construction<br />

of the load diagram for an actual project, using the<br />

%-figures stated and the inclinations of the lines.<br />

Fig. 2.14: Diagram for actual project<br />

178 46 87-5.0<br />

402 000 004 198 22 30<br />

2.18


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Emission Control<br />

IMO NOx emission limits<br />

All <strong>MC</strong> engines are delivered so as to comply with<br />

the IMO speed dependent NOx limit, measured according<br />

to ISO 8178 Test Cycles E2/E3 for Heavy<br />

Duty Diesel <strong>Engine</strong>s.<br />

The Specific Fuel Oil Consumption (SFOC) and the<br />

NOx are interrelated parameters, and an engine offered<br />

with a guaranteed SFOC and also guaranteed<br />

to comply with the IMO NOx limitation will be subject<br />

to a 5% fuel consumption tolerance.<br />

30-50% NOx reduction<br />

Water emulsification of the heavy fuel oil is a well<br />

proven primary method. The type of homogenizer is<br />

either ultrasonic or mechanical, using water from<br />

the freshwater generator and the water mist<br />

catcher. The pressure of the homogenised fuel has<br />

to be increased to prevent the formation of the<br />

steam and cavitation. It may be necessary to modify<br />

some of the engine components such as the fuel<br />

pumps, camshaft, and the engine control system.<br />

Up to 95-98% NOx reduction<br />

This reduction can be achieved by means of secondary<br />

methods, such as the SCR (Selective Catalytic<br />

Reduction), which involves an after-treatment<br />

of the exhaust gas.<br />

Plants designed according to this method have<br />

been in service since 1990 on four vessels, using<br />

Haldor Topsøe catalysts and ammonia as the reducing<br />

agent, urea can also be used.<br />

The compact SCR unit can be located separately in<br />

the engine room or horizontally on top of the engine.<br />

The compact SCR reactor is mounted before the<br />

turbocharger(s) in order to have the optimum working<br />

temperature for the catalyst.<br />

More detailed information can be found in our publications:<br />

P. 331 Emissions Control, <strong>Two</strong>-<strong>stroke</strong> Low-speed<br />

<strong>Engine</strong>s<br />

P. 333 How to deal with Emission Control.<br />

402 000 004 198 22 30<br />

2.19


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specific Fuel Oil Consumption<br />

<strong>Engine</strong> with from 98 to 50 cm bore engines are as<br />

standard fitted with high efficiency turbochargers.<br />

The smaller bore from 46 to 26 cm are fitted with the<br />

so-called "conventional" turbochargers<br />

High efficiency/conventional turbochargers<br />

Some engine types are as standard fitted with high<br />

efficiency turbochargers but can alternatively use<br />

conventional turbochargers. These are:<br />

S70<strong>MC</strong>-C, S70<strong>MC</strong>, S60<strong>MC</strong>-C, S60<strong>MC</strong>, L60<strong>MC</strong>,<br />

S50<strong>MC</strong>-C, S50<strong>MC</strong> and L50<strong>MC</strong>.<br />

The high efficiency turbocharger is applied to the<br />

engine in the basic design with the view to obtaining<br />

the lowest possible Specific Fuel Oil Consumption<br />

(SFOC) values.<br />

Fig. 2.15: Example of part load SFOC curves for the two engine versions<br />

With a conventional turbocharger the amount of air<br />

required for combustion purposes can, however, be<br />

adjusted to provide a higher exhaust gas temperature,<br />

if this is needed for the exhaust gas boiler. The<br />

matching of the engine and the turbocharging system<br />

is then modified, thus increasing the exhaust<br />

gas temperature by 20 °C.<br />

This modification will lead to a 7-8% reduction in the<br />

exhaust gas amount, and involve an SFOC penalty<br />

of up to 2 g/BHPh, see the example in Fig. 2.15.<br />

The calculation of the expected specific fuel oil consumption<br />

(SFOC) can be carried out by means of the<br />

following figures for fixed pitch propeller and for<br />

controllable pitch propeller, constant speed.<br />

Throughout the whole load area the SFOC of the engine<br />

depends on where the optimising point O is<br />

chosen.<br />

402 000 004 198 22 30<br />

2.20<br />

178 47 08-1.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

SFOC at reference conditions<br />

The SFOC is based on the reference ambient conditions<br />

stated in ISO 3046/1-1986:<br />

1,000 mbar ambient air pressure<br />

25 °C ambient air temperature<br />

25 °C scavenge air coolant temperature<br />

and is related to a fuel oil with a lower calorific value of<br />

10,200 kcal/kg (42,700 kJ/kg).<br />

For lower calorific values and for ambient conditions<br />

that are different from the ISO reference conditions,<br />

the SFOC will be adjusted according to the conversion<br />

factors in the below table provided that the maximum<br />

combustion pressure (Pmax) is adjusted to the<br />

nominal value (left column), or if the Pmax is not<br />

re-adjusted to the nominal value (right column).<br />

Parameter Condition change<br />

With<br />

Pmax<br />

adjusted<br />

SFOC<br />

change<br />

Without<br />

Pmax<br />

adjusted<br />

SFOC<br />

change<br />

Scav. air coolant<br />

temperature per 10 °C rise + 0.60% + 0.41%<br />

Blower inlet<br />

temperature per 10 °C rise<br />

+ 0.20% + 0.71%<br />

Blower inlet<br />

pressure per 10 mbar rise - 0.02% - 0.05%<br />

Fuel oil lower<br />

calorific value<br />

rise 1%<br />

(42,700 kJ/kg)<br />

-1.00% - 1.00%<br />

With for instance 1 °C increase of the scavenge air<br />

coolant temperature, a corresponding 1 °C increase<br />

of the scavenge air temperature will occur and involves<br />

an SFOC increase of 0.06% if Pmax is adjusted.<br />

SFOC guarantee<br />

The SFOC guarantee refers to the above ISO reference<br />

conditions and lower calorific value, and is guaranteed<br />

for the power-speed combination in which the<br />

engine is optimised (O).<br />

The SFOC guarantee is given with a margin of 5% for<br />

engines fulfilling the IMO NOx emission limitations.<br />

As SFOC and NOx are interrelated paramaters, an engine<br />

offered without fulfilling the IMO NOx limitations<br />

only has a tolerance of 3% of the SFOC.<br />

Examples of graphic calculation of<br />

SFOC<br />

Diagram 1 in the following figures are valid for fixed<br />

pitch propeller and constant speed, respectively,<br />

shows the reduction in SFOC, relative to the SFOC<br />

at nominal rated <strong>MC</strong>R L1.<br />

The solid lines are valid at 100, 80 and 50% of the<br />

optimised power (O).<br />

The optimising point O is drawn into the abovementioned<br />

Diagram 1. A straight line along the<br />

constant mep curves (parallel to L1-L3) is drawn<br />

through the optimising point O. The line intersections<br />

of the solid lines and the oblique lines indicate<br />

the reduction in specific fuel oil consumption<br />

at 100%, 80% and 50% of the optimised power,<br />

related to the SFOC stated for the nominal <strong>MC</strong>R<br />

(L1) rating at the actually available engine version.<br />

The SFOC curve for an engine with conventional<br />

turbocharger is identical to that for an engine with<br />

high efficiency turbocharger, but located at 2<br />

g/BHPh higher level.<br />

In Fig. 2.24 an example of the calculated SFOC<br />

curves are shown on Diagram 2, valid for two alternative<br />

engine ratings: O1 = 100% M and<br />

O2 = 85%M for a 6S70<strong>MC</strong>-C with VIT fuel pumps.<br />

402 000 004 198 22 30<br />

2.21


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

SFOC in g/BHPh at nominal <strong>MC</strong>R (L1)<br />

<strong>Engine</strong> kW/cyl. BHP/cyl. r/min g/kWh g/BHPh<br />

6-12K98<strong>MC</strong> 5720 7780 94 171 126<br />

6-12K98<strong>MC</strong>-C 5710 7760 104 171 126<br />

Data optimising point (O):<br />

Power: 100% of (O) BHP<br />

Speed: 100% of (O) r/min<br />

SFOC found: g/BHPh<br />

These figures are valid both for engines with fixed pitch propeller and for engines running at constant speed.<br />

Fig. 2.16a: SFOC for engines with fixed pitch propeller, K98<strong>MC</strong> and K98<strong>MC</strong>-C<br />

178 87 11-3.0<br />

402 000 004 198 22 30<br />

2.22<br />

178 44 22-7.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.16b: SFOC for engines with constant speed,<br />

402 000 004 198 22 30<br />

2.23<br />

178 44 22-7.0<br />

178 44 22-7.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

402 000 004 198 22 30<br />

2.24<br />

SFOC in g/BHPh at nominal <strong>MC</strong>R (L1)<br />

<strong>Engine</strong> kW/cyl. BHP/cyl. r/min g/kWh g/BHPh<br />

6-9S90<strong>MC</strong>-C 4890 6650 76 167 123<br />

Fig. 2.17a: Example of SFOC for engines with fixed pitch propeller, S90<strong>MC</strong>-C<br />

178 37 74-4.0<br />

178 87 12-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.17b: Example of SFOC for engines with constant speed,<br />

178 37 75-6.0<br />

178 11 68-5.0<br />

402 000 004 198 22 30<br />

2.25


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.18a: Example of SFOC for engines with fixed pitch propeller,<br />

SFOC in g/BHPh at nominal <strong>MC</strong>R (L1)<br />

)<strong>Engine</strong> kW/cyl. BHP/cyl. r/min g/kWh g/BHPh<br />

6-12K90<strong>MC</strong>-C 4560 6210 104 171 126<br />

6-12K80<strong>MC</strong>-C 3610 4900 104 171 126<br />

Data optimising point (O):<br />

Power: 100% of (O) BHP<br />

Speed: 100% of (O) r/min<br />

SFOC: g/BHPh<br />

178 06 87-7.0<br />

402 000 004 198 22 30<br />

2.26<br />

178 87 13-7.0<br />

178 39 35-1.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.18b: Example of SFOC for engines with constant speed,<br />

178 06 89-0.0<br />

402 000 004 198 22 30<br />

2.27<br />

178 44 22-7.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.19a: Example of SFOC for engines with fixed pitch propeller<br />

178 15 92-3.0<br />

SFOC in g/BHPh at nominal <strong>MC</strong>R (L1)<br />

Turbochargers<br />

High efficiency Conventional<br />

<strong>Engine</strong> kW/cyl. BHP/cyl. r/min g/kWh g/BHPh g/kWh g/BHPh<br />

6-12L90<strong>MC</strong>-C 4890 6650 83 167 123<br />

4-12K90<strong>MC</strong> 4570 6220 94 171 126<br />

6-8S80<strong>MC</strong>-C 3880 5280 76 167 123<br />

4-9S80<strong>MC</strong> 3840 5220 79 167 123<br />

4-12L80<strong>MC</strong> 3640 4940 93 174 128<br />

4-8S70<strong>MC</strong>-C* 3105 4220 91 169 124 171 126<br />

4-8S70<strong>MC</strong> 2810 3820 91 169 124 171 126<br />

4-8L70<strong>MC</strong> 2830 3845 108 174 128<br />

4-8S60<strong>MC</strong>-C* 2255 3070 105 170 125 173 127<br />

4-8S60<strong>MC</strong> 2040 2780 105 170 125 173 127<br />

4-8L60<strong>MC</strong> 1920 2600 123 171 126 174 128<br />

4-8S50<strong>MC</strong>-C* 1580 2145 127 171 126 174 128<br />

4-8S50<strong>MC</strong> 1430 1940 127 171 126 174 128<br />

4-8L50<strong>MC</strong> 1330 1810 148 173 127 175 129<br />

4-12L42<strong>MC</strong>* 995 1355 176 177 130<br />

* Note: <strong>Engine</strong>s without VIT fuel pumps have to be optimised at the specified <strong>MC</strong>R power<br />

These figures are valid both for engines with fixed pitch propeller and for engines running at constant speed.<br />

Data optimising point (O):<br />

Power: 100% of (O) BHP<br />

Speed: 100% of (O) r/min<br />

SFOC found: g/BHPh<br />

178 43 63-9.0<br />

402 000 004 198 22 30<br />

2.28


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.19b: Example of SFOC for engines with constant speed<br />

178 15 91-1.0<br />

178 43 63-9.0<br />

402 000 004 198 22 30<br />

2.29


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specified <strong>MC</strong>R (M) = optimised point (O)<br />

SFOC in g/BHPh at nominal <strong>MC</strong>R (L1)<br />

<strong>Engine</strong> kW/cyl. BHP/cyl. r/min g/kWh g/BHPh<br />

4-8S46<strong>MC</strong>-C 1310 1785 129 174 128<br />

4-12S42<strong>MC</strong> 1080 1470 136 177 130<br />

4-12S35<strong>MC</strong> 740 1010 173 178 131<br />

4-12L35<strong>MC</strong> 650 880 210 177 130<br />

4-12S26<strong>MC</strong> 400 545 250 179 132<br />

Data optimising point (O):<br />

Power: 100% of (O) BHP<br />

Speed: 100% of (O) r/min<br />

These figures are valid both for engines with fixed pitch propeller and for engines running at constant speed.<br />

Fig. 2.20a: Example of SFOC for engines with fixed pitch propeller<br />

178 06 88-9.0<br />

402 000 004 198 22 30<br />

2.30<br />

178 87 15-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Specified <strong>MC</strong>R (M) = optimised point (O)<br />

Fig. 2.20b: Example of SFOC for engines with constant speed<br />

178 43 63-9.0<br />

402 000 004 198 22 30<br />

2.31<br />

178 06 90-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 2.21: Example of SFOC for 6S70<strong>MC</strong>-C with fixed pitch propeller, high efficiency turbocharger and VIT fuel pumps<br />

178 15 88-8.0<br />

Data at nominal <strong>MC</strong>R (L1): 6S70<strong>MC</strong>-C Data of optimising point (O) O1 O2<br />

100% Power:<br />

100% Speed:<br />

High efficiency turbocharger:<br />

25,320<br />

91<br />

124<br />

BHP<br />

r/min<br />

g/BHPh<br />

Power: 100% of O<br />

Speed: 100% of O<br />

SFOC found:<br />

178 43 67-6.0<br />

402 000 004 198 22 30<br />

2.32<br />

21,000 BHP<br />

81.9 r/min<br />

122.1 g/BHPh<br />

Note: <strong>Engine</strong>s without VIT fuel pumps have to be optimised at the specified <strong>MC</strong>R power<br />

O1: Optimised in M<br />

O2: Optimised at 85% of power M<br />

Point 3: is 80% of O2 = 0.80 x 85% of M = 68% M<br />

Point 4: is 50% of O2 = 0.50 x 85% of M = 42.5% M<br />

17,850 BHP<br />

77.4 r/min<br />

119.7 g/BHPh<br />

178 43 66-4.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fuel Consumption at an Arbitrary Load<br />

Once the engine has been optimised in point O,<br />

shown on this Fig., the specific fuel oil consumption<br />

in an arbitrary point S1, S2 or S3 can be estimated<br />

based on the SFOC in points “1" and ”2".<br />

These SFOC values can be calculated by using the<br />

graphs for fixed pitch propeller (curve I) and for the<br />

constant speed (curve II), obtaining the SFOC in<br />

points 1 and 2, respectively.<br />

Then the SFOC for point S1 can be calculated as an<br />

interpolation between the SFOC in points “1" and<br />

”2", and for point S3 as an extrapolation.<br />

Fig. 2.22: SFOC at an arbitrary load<br />

The SFOC curve through points S2, to the left of<br />

point 1, is symmetrical about point 1, i.e. at speeds<br />

lower than that of point 1, the SFOC will also increase.<br />

The above-mentioned method provides only an approximate<br />

figure. A more precise indication of the<br />

expected SFOC at any load can be calculated by<br />

using our computer program. This is a service which<br />

is available to our customers on request.<br />

178 05 32-0.1<br />

402 000 004 198 22 30<br />

2.33


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

3 Turbocharger Choice<br />

Turbocharger Types<br />

The <strong>MC</strong> engines are designed for the application of<br />

either MAN B&W, ABB or Mitsubishi (MHI) turbochargers<br />

which are matched to comply with the IMO<br />

speed dependent NOx emission limitations, measured<br />

according to ISO 8178 Test Cycles E2/E3 for<br />

Heavy Duty Diesel <strong>Engine</strong>s.<br />

<strong>Engine</strong> type Conventional<br />

turbocharger<br />

High efficiency<br />

turbocharger<br />

K98<strong>MC</strong> S<br />

K98<strong>MC</strong>-C S<br />

S90<strong>MC</strong>-C S<br />

L90<strong>MC</strong>-C S<br />

K90<strong>MC</strong> S<br />

K90<strong>MC</strong>-C S<br />

S80<strong>MC</strong>-C S<br />

S80<strong>MC</strong> S<br />

L80<strong>MC</strong> S<br />

K80<strong>MC</strong>-C S<br />

S70<strong>MC</strong>-C O S<br />

S70<strong>MC</strong> O S<br />

L70<strong>MC</strong> S<br />

S60<strong>MC</strong>-C O S<br />

S60<strong>MC</strong> O S<br />

L60<strong>MC</strong> O S<br />

S50<strong>MC</strong>-C O S<br />

S50<strong>MC</strong> O S<br />

L50<strong>MC</strong> O S<br />

S46<strong>MC</strong>-C S<br />

S42<strong>MC</strong> S<br />

L42<strong>MC</strong> S<br />

S35<strong>MC</strong> S<br />

L35<strong>MC</strong> S<br />

S26<strong>MC</strong> S<br />

S = Standard design<br />

O = Optional design<br />

Fig. 3.01: Turbocharger designs<br />

Location of turbochargers<br />

• On the exhaust side:<br />

On all 98, 90, 80, 70, 60-bore engines<br />

On 10-12 cylinder 42, 35 and 26-bore engines.<br />

Optionally on 50 and 46-bore engines.<br />

• One turbocharger on the aft end:<br />

On all 50 and 46-bore engines<br />

On 4-9 cylinder 42, 35 and 26-bore engines.<br />

Optionally on 60-bore engines.<br />

For other layout points than L1, the number or size of<br />

turbochargers may be different, depending on the<br />

point at which the engine is optimised.<br />

<strong>Two</strong> turbochargers can be applied at extra cost for<br />

those stated with one, if this is desirable due to<br />

space requirements, or for other reasons.<br />

In order to clean the turbine blades and the nozzle<br />

ring assembly during operation, the exhaust gas inlet<br />

to the turbocharger(s) is provided with a dry<br />

cleaning system using nut shells and a water washing<br />

system.<br />

Coagency of SFOC and Exhaust Gas Data<br />

Conventional turbocharger(s)<br />

For certain engine types the amount of air required<br />

for the combustion can, however, be adjusted to<br />

provide a higher exhaust gas temperature, if this is<br />

needed for the exhaust gas boiler. In this case the<br />

conventional turbochargers are to be applied, see<br />

the options in Fig. 3.01. The SFOC is then about 2<br />

g/BHPh higher, see section 2.<br />

485 600 100 198 22 31<br />

3.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Number of cylinders<br />

4 5 6 7 8 9 10 11 12<br />

K98<strong>MC</strong> – – 3xNA70/T9* 3xNA70/T9 3xNA70/T9 4xNA70/T9* 4xNA70/T9 4xNA70/T9 5xNA70/T9*<br />

K98<strong>MC</strong>-C – – 3xNA70/T9* 3xNA70/T9 3xNA70/T9 4xNA70/T9* 4xNA70/T9 4xNA70/T9 5xNA70/T9*<br />

S90<strong>MC</strong>-C – – 2xNA70/T9 3xNA70/T9* 3xNA70/T9 3xNA70/T9 – – –<br />

L90<strong>MC</strong>-C – – 2xNA70/T9 2xNA70/T9 3xNA70/T9 3xNA70/T9 3xNA70/T9 4xNA70/T9 4xNA70/T9<br />

K90<strong>MC</strong> 2xNA57/T9 2xNA70/T9 2xNA70/T9 2xNA70/T9 3xNA70/T9 3xNA70/T9 3xNA70/T9 4xNA70/T9 4xNA70/T9<br />

K90<strong>MC</strong>-C – – 2xNA70/T9 3xNA70/T9* 3xNA70/T9 3xNA70/T9 3xNA70/T9 4xNA70/T9 4xNA70/T9<br />

S80<strong>MC</strong>-C – – 2xNA70/T9 2xNA70/T9 2xNA70/T9 – – – –<br />

S80<strong>MC</strong> 1xNA70/T9 2xNA57/T9 2xNA70/T9 2xNA70/T9 2xNA70/T9 3xNA70/T9 – – –<br />

L80<strong>MC</strong> 1xNA70/T9 2xNA57/T9 2xNA70/T9 2xNA70/T9 2xNA70/T9 3xNA70/T9 3xNA70/T9 3xNA70/T9 3xNA70/T9<br />

K80<strong>MC</strong>-C – – 2xNA70/T9 2xNA70/T9 2xNA70/T9 2xNA70/T9 3xNA70/T9 3xNA70/T9 3xNA70/T9<br />

S70<strong>MC</strong>-C 1xNA70/T9 1xNA70/T9 2xNA57/T9 2xNA70/T9 2xNA70/T9 – – – –<br />

S70<strong>MC</strong> 1xNA70/T9 1xNA70/T9 2xNA57/T9 2xNA57/T9 2xNA70/T9 – – – –<br />

L70<strong>MC</strong> 1xNA70/T9 1xNA70/T9 2xNA57/T9 2xNA57/T9 2xNA70/T9 – – – –<br />

S60<strong>MC</strong>-C 1xNA57/T9 1xNA70/T9 1xNA70/T9 1xNA70/T9 2xNA57/T9 – – – –<br />

S60<strong>MC</strong> 1xNA57/T9 1xNA57/T9 1xNA70/T9 1xNA70/T9 1xNA70/T9 – – – –<br />

L60<strong>MC</strong> 1xNA57/T9 1xNA57/T9 1xNA70/T9 1xNA70/T9 1xNA70/T9 – – – –<br />

S50<strong>MC</strong>-C 1xNA48/S 1xNA57/T9 1xNA57/T9 1xNA70/T9 1xNA70/T9 – – – –<br />

S50<strong>MC</strong> 1xNA48/S 1xNA57/T9 1xNA57/T9 1xNA57/T9 1xNA70/T9 – – – –<br />

L50<strong>MC</strong> 1xNA48/S 1xNA48/S 1xNA57/T9 1xNA57/T9 1xNA57/T9 – – – –<br />

* Turbocharger installation requires special attention<br />

– Not included in the production programme<br />

Example of full designation: 6S70<strong>MC</strong>-C requires 2xNA57/T9 at nominal <strong>MC</strong>R.<br />

Fig. 3.02: MAN B&W high efficiency turbochargers for engines with nominal rating (L1)<br />

complying with IMO's NOx emission limitatoins<br />

485 600 100 198 22 31<br />

3.02<br />

178 86 83-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Number of cylinders<br />

4 5 6 7 8 9 10 11 12<br />

K98<strong>MC</strong> – – 2 x 85-B12 2 x 85-B12 3 x 85-B11 3 x 85-B12 3 x 85-B12 4 x 85-B11 4 x 85-B12<br />

K98<strong>MC</strong>-C – – 2 x 85-B12 3 x 85-B11 3 x 85-B11 3 x 85-B12 3 x 85-B12 4 x 85-B11 4 x 85-B12<br />

S90<strong>MC</strong>-C – – 2 x 85-B11 2 x 85-B12 2 x 85-B12 3 x 85-B11 – – –<br />

L90<strong>MC</strong>-C – – 2 x 85-B11 2 x 85-B12 2 x 85-B12 3 x 85-B11 3 x 85-B11 3 x 85-B12 3 x 85-B12<br />

K90<strong>MC</strong> 1 x 85-B12 2 x 80-B12 2 x 85-B11 2 x 85-B11 2 x 85-B12 3 x 85-B11 3 x 85-B11 3 x 85-B11 3 x 85-B12<br />

K90<strong>MC</strong>-C – – 2 x 85-B11 2 x 85-B11 2 x 85-B12 3 x 85-B11 3 x 85-B11 3 x 85-B12 3 x 85-B12<br />

S80<strong>MC</strong>-C – – 2 x 80-B12 2 x 85-B11 2 x 85-B11 – – – –<br />

S80<strong>MC</strong> 1 x 85-B11 1 x 85-B12 2 x 80-B12 2 x 85-B11 2 x 85-B11 2 x 85-B12 – – –<br />

L80<strong>MC</strong> 1 x 85-B11 1 x 85-B12 2 x 80-B12 2 x 85-B11 2 x 85-B11 2 x 85-B12 2 x 85-B12 3 x 85-B11 3 x 85-B11<br />

K80<strong>MC</strong>-C – – 2 x 80-B11 2 x 80-B12 2 x 85-B11 2 x 85-B11 2 x 85-B12 2 x 85-B12 3 x 85-B11<br />

S70<strong>MC</strong>-C 1 x 80-B12 1 x 85-B11 1 x 85-B12 2 x 80-B11 2 x 80-B12 – – – –<br />

S70<strong>MC</strong> 1 x 80-B12 1 x 85-B11 1 x 85-B11 1 x 85-B12 2 x 80-B12 – – – –<br />

L70<strong>MC</strong> 1 x 80-B12 1 x 85-B11 1 x 85-B12 2 x 80-B11 2 x 80-B12 – – – –<br />

S60<strong>MC</strong>-C 1 x 77-B12 1 x 80-B11 1 x 80-B12 1 x 85-B11 1 x 85-B12 – – – –<br />

S60<strong>MC</strong> 1 x 77-B11 1 x 80-B11 1 x 80-B12 1 x 85-B11 1 x 85-B11 – – – –<br />

L60<strong>MC</strong> 1 x 77-B11 1 x 80-B11 1 x 80-B12 1 x 85-B11 1 x 85-B11 – – – –<br />

S50<strong>MC</strong>-C 1 x 73-B12 1 x 77-B11 1 x 77-B12 1 x 80-B11 1 x 80-B12 – – – –<br />

S50<strong>MC</strong> 1 x 73-B11 1 x 77-B11 1 x 77-B12 1 x 80-B11 1 x 80-B12 – – – –<br />

L50<strong>MC</strong> 1 x 73-B11 1 x 73-B12 1 x 77-B11 1 x 77-B12 1 x 80-B11 – – – –<br />

All turbochargers in this table are of the TPL-type.<br />

- Not included in the production programme<br />

Example of full designation: 6S70<strong>MC</strong>-C requires 1 x TPL85-B12 at nominal <strong>MC</strong>R.<br />

Fig. 3.03: ABB high efficiency turbochargers, type TPL, for engines with nominal rating (L1)<br />

complying with IMO's NOx emission limitations<br />

485 600 100 198 22 31<br />

3.03<br />

178 86 84-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Number of cylinders<br />

4 5 6 7 8 9 10 11 12<br />

K98<strong>MC</strong> – – n.a. 3 x 714D 3 x 714D n.a. 4 x 714D 4 x 714D n.a.<br />

K98<strong>MC</strong>-C – – n.a. 3 x 714D n.a. n.a. 4 x 714D n.a. n.a.<br />

S90<strong>MC</strong>-C – – 2 x 714D n.a. 3 x 714D 3 x 714D – – –<br />

L90<strong>MC</strong>-C – – 2 x 714D n.a. 3 x 714D 3 x 714D n.a. 4 x 714D 4 x 714D<br />

K90<strong>MC</strong> 2 x 564D 2 x 714D 2 x 714D n.a. 3 x 714D 3 x 714D 3 x 714D 4 x 714D 4 x 714D<br />

K90<strong>MC</strong>-C – – 2 x 714D n.a. 3 x 714D 3 x 714D n.a. 4 x 714D 4 x 714D<br />

S80<strong>MC</strong>-C – – 2 x 714D 2 x 714D 2 x 714D – – – –<br />

S80<strong>MC</strong> 1 x 714D 2 x 564D 2 x 714D 2 x 714D 2 x 714D 3 x 714D – – –<br />

L80<strong>MC</strong> 1 x 714D 2 x 564D 2 x 714D 2 x 714D 2 x 714D 3 x 714D 3 x 714D 3 x 714D 3 x 714D<br />

K80<strong>MC</strong>-C – – 2 x 714D 2 x 714D 2 x 714D 3 x 714D 3 x 714D 3 x 714D 3 x 714D<br />

S70<strong>MC</strong>-C 1 x 714D 1 x 714D 2 x 564D 2 x 714D 2 x 714D – – – –<br />

S70<strong>MC</strong> 1 x 714D 1 x 714D 2 x 564D 2 x 564D 2 x 714D – – – –<br />

L70<strong>MC</strong> 1 x 714D 1 x 714D 2 x 564D 2 x 714D 2 x 714D – – – –<br />

S60<strong>MC</strong>-C 1 x 564D 1 x 714D 1 x 714D 1 x 714D 2 x 564D – – – –<br />

S60<strong>MC</strong> 1 x 564D 1 x 714D 1 x 714D 1 x 714D 2 x 564D – – – –<br />

L60<strong>MC</strong> 1 x 564D 1 x 564D 1 x 714D 1 x 714D 1 x 714D – – – –<br />

S50<strong>MC</strong>-C 1 x 564D 1 x 564D 1 x 564D 1 x 714D 1 x 714D – – – –<br />

S50<strong>MC</strong> 1 x 454D 1 x 564D 1 x 564D 1 x 714D 1 x 714D – – – –<br />

L50<strong>MC</strong> 1 x 454D 1 x 564D 1 x 564D 1 x 564D 1 x 714D – – – –<br />

All turbochargers in this table are of the VTR-type and have the suffix "-32".<br />

n.a. Not applicable<br />

– Not included in the production programme<br />

Example of full designation: 6S70<strong>MC</strong>-C requires 2 x VTR564D-32 at nominal <strong>MC</strong>R.<br />

Fig. 3.04: ABB high efficiency turbochargers, type VTR-32, for engines with nominal rating (L1)<br />

complying with IMO's NOx emission limitations<br />

485 600 100 198 22 31<br />

3.04<br />

178 86 86-1.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Number of cylinders<br />

4 5 6 7 8 9 10 11 12<br />

K98<strong>MC</strong> – – 2xMET83SE 2xMET90SE 2xMET90SE 3xMET83SE 3xMET90SE 3xMET90SE 3xMET90SE<br />

K98<strong>MC</strong>-C – – 2xMET83SE 2xMET90SE 3xMET83SE 3xMET83SE 3xMET90SE 3xMET90SE 4xMET83SE<br />

S90<strong>MC</strong>-C – – 2xMET83SE 2xMET83SE 2xMET90SE 2xMET90SE – – –<br />

L90<strong>MC</strong>-C – – 2xMET83SE 2xMET83SE 2xMET90SE 2xMET90SE 3xMET83SE 3xMET83SE 3xMET90SE<br />

K90<strong>MC</strong> 1xMET90SE 2xMET71SE 2xMET83SE 2xMET83SE 2xMET90SE 2xMET90SE 3xMET83SE 3xMET83SE 3xMET90SE<br />

K90<strong>MC</strong>-C – – 2xMET83SE 2xMET83SE 2xMET90SE 2xMET90SE 3xMET83SE 3xMET83SE 3xMET90SE<br />

S80<strong>MC</strong>-C – – 2xMET71SE 2xMET83SE 2xMET83SE – – – –<br />

S80<strong>MC</strong> 1xMET83SE 1xMET90SE 1xMET90SE 2xMET71SE 2xMET83SE 2xMET83SE – – –<br />

L80<strong>MC</strong> 1xMET83SE 1xMET90SE 1xMET90SE 2xMET71SE 2xMET83SE 2xMET83SE 2xMET90SE 2xMET90SE 2xMET90SE<br />

K80<strong>MC</strong>-C – – 1xMET90SE 2xMET71SE 2xMET83SE 2xMET83SE 2xMET83SE 2xMET90SE 2xMET90SE<br />

S70<strong>MC</strong>-C 1xMET71SE 1xMET83SE 1xMET83SE 1xMET90SE 2xMET71SE – – – –<br />

S70<strong>MC</strong> 1xMET66SE 1xMET83SE 1xMET83SE 1xMET90SE 1xMET90SE – – – –<br />

L70<strong>MC</strong> 1xMET71SE 1xMET83SE 1xMET83SE 1xMET90SE 2xMET71SE – – – –<br />

S60<strong>MC</strong>-C 1xMET66SE 1xMET66SE 1xMET71SE 1xMET83SE 1xMET83SE – – – –<br />

S60<strong>MC</strong> 1xMET66SE 1xMET66SE 1xMET71SE 1xMET83SE 1xMET83SE – – – –<br />

L60<strong>MC</strong> 1xMET66SE 1xMET66SE 1xMET71SE 1xMET83SE 1xMET83SE – – – –<br />

S50<strong>MC</strong>-C 1xMET53SE 1xMET66SE 1xMET66SE 1xMET66SE 1xMET71SE – – – –<br />

S50<strong>MC</strong> 1xMET53SE 1xMET53SE 1xMET66SE 1xMET66SE 1xMET66SE – – – –<br />

L50<strong>MC</strong> 1xMET53SE 1xMET53SE 1xMET66SE 1xMET66SE 1xMET66SE – – – –<br />

– Not included in the production programme<br />

Fig. 3.05: Mitsubishi high efficiency turbochargers for engines with nominal rating (L1)<br />

complying with IMO's NOx emission limitations<br />

485 600 100 198 22 31<br />

3.05<br />

178 86 87-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Number of cylinders<br />

4 5 6 7 8 9 10 11 12<br />

S70<strong>MC</strong>-C 1xNA57/T9 1xNA70/T9 1xNA70/T9 2xNA57/T9 2xNA57/T9 – – – –<br />

S70<strong>MC</strong> 1xNA57/T9 1xNA70/T9 1xNA70/T9 2xNA57/T9 2xNA57/T9 – – – –<br />

L70<strong>MC</strong> n.a. n.a. n.a. n.a. n.a. – – – –<br />

S60<strong>MC</strong>-C 1xNA57/T9 1xNA57/T9 1xNA70/T9 1xNA70/T9 1xNA70/T9 – – – –<br />

S60<strong>MC</strong> 1xNA48/S 1xNA57/T9 1xNA57/T9 1xNA70/T9 1xNA70/T9 – – – –<br />

L60<strong>MC</strong> 1xNA48/S 1xNA57/T9 1xNA57/T9 1xNA70/T9 1xNA70/T9 – – – –<br />

S50<strong>MC</strong>-C 1xNA48/S 1xNA48/S 1xNA57/T9 1xNA57/T9 1xNA70/T9 – – – –<br />

S50<strong>MC</strong> 1xNA48/S 1xNA48/S 1xNA57/T9 1xNA57/T9 1xNA57/T9 – – – –<br />

L50<strong>MC</strong> 1xNA40/S 1xNA48/S 1xNA48/S 1xNA57/T9 1xNA57/T9 – – – –<br />

S46<strong>MC</strong>-C 1xNA40/S 1xNA48/S 1xNA48/S 1xNA57/T9 1xNA57/T9 – – – –<br />

S42<strong>MC</strong> 1xNA40/S 1xNA40/S 1xNA48/S 1xNA48/S 1xNA48/S 1xNA57/T9 2xNA40/S 2xNA48/S 2xNA48/S<br />

L42<strong>MC</strong> 1xNA34/S 1xNA40/S 1xNA48/S 1xNA48/S 1xNA48/S 1xNA57/T9 2xNA40/S 2xNA40/S 2xNA48/S<br />

S35<strong>MC</strong> 1xNA34/S 1xNA34/S 1xNA40/S 1xNA40/S 1xNA48/S 1xNA48/S 2xNA34/S 2xNA40/S 2xNA40/S<br />

L35<strong>MC</strong> 1xNR29/S 1xNA34/S 1xNA34/S 1xNA40/S 1xNA40/S 1xNA40/S 2xNA34/S 2xNA34/S 2xNA34/S<br />

S26<strong>MC</strong> 1xNR20/S 1xNR24/S 1xNR29/S 1xNR29/S 1xNA34/S 1xNA34/S 2xNR24/S 2xNR24/S 2xNR29/S<br />

n.a. Not applicable<br />

- Not included in the production programme<br />

Fig. 3.06: MAN B&W conventional turbochargers for engines with nominal rating (L1)<br />

complying with IMO's NOx emission limits<br />

485 600 100 198 22 31<br />

3.06<br />

178 86 87-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Number of cylinders<br />

4 5 6 7 8 9 10 11 12<br />

S70<strong>MC</strong>-C 1 x 80-B11 1 x 85-B11 1 x 85-B11 1 x 85-B12 2 x 80-B11 – – – –<br />

S70<strong>MC</strong> 1 x 80-B11 1 x 80-B12 1 x 85-B11 1 x 85-B12 2 x 80-B11 – – – –<br />

L70<strong>MC</strong> n.a. n.a. n.a. n.a. n.a. – – – –<br />

S60<strong>MC</strong>-C 1 x 77-B11 1 x 80-B11 1 x 80-B12 1 x 85-B11 1 x 85-B11 – – – –<br />

S60<strong>MC</strong> 1 x 77-B11 1 x 77-B12 1 x 80-B11 1 x 80-B12 1 x 85-B11 – – – –<br />

L60<strong>MC</strong> 1 x 77-B11 1 x 77-B12 1 x 80-B11 1 x 80-B12 1 x 85-B11 – – – –<br />

S50<strong>MC</strong>-C 1 x 73-B11 1 x 77-B11 1 x 77-B11 1 x 77-B12 1 x 80-B11 – – – –<br />

S50<strong>MC</strong> 1 x 73-B11 1 x 73-B12 1 x 77-B11 1 x 77-B12 1 x 80-B11 – – – –<br />

L50<strong>MC</strong> 1 x 73-B11 1 x 73-B12 1 x 77-B11 1 x 77-B11 1 x 77-B12 – – – –<br />

S46<strong>MC</strong>-C 1 x 73-B11 1 x 73-B11 1 x 77-B11 1 x 77-B11 1 x 77-B12 – – – –<br />

S42<strong>MC</strong> 1 x 69-A10 1 x 73-B11 1 x 73-B11 1 x 73-B12 1 x 77-B11 1 x 77-B11 2 x 73-B11 2 x 73-B11 2 x 73-B11<br />

L42<strong>MC</strong> 1 x 69-A10 1 x 73-B11 1 x 73-B11 1 x 73-B12 1 x 73-B12 1 x 77-B11 2 x 73-B11 2 x 73-B11 2 x 73-B11<br />

S35<strong>MC</strong> 1 x 65-A10 1 x 69-A10 1 x 69-A10 1 x 73-B11 1 x 73-B11 1 x 73-B11 2 x 69-A10 2 x 69-A10 2 x 69-A10<br />

L35<strong>MC</strong> 1 x 65-A10 1 x 65-A10 1 x 69-A10 1 x 69-A10 1 x 73-B11 1 x 73-B11 2 x 65-A10 2 x 65-A10 2 x 69-A10<br />

S26<strong>MC</strong> 1xTPS57D* 1xTPS57D* 1 x 61-A10 1 x 61-A10 1 x 65-A10 1 x 65-A10 2 x TPS57D* 2 x 61-A10 2 x 61-A10<br />

All turbochargers in this table are of the TPL-type.<br />

* For 4 and 5 cylinder S26<strong>MC</strong> the full designation is listed in the table.<br />

n.a. Not applicable<br />

- Not included in the production programme<br />

Example of a full designation: 6S70<strong>MC</strong>-C requires 1 x TPL85-B11 at nominal <strong>MC</strong>R.<br />

Fig. 3.07: ABB conventional turbochargers, type TPL, for engines with nominal rating (L1)<br />

complying with IMO's NOx emission limits<br />

485 600 100 198 22 31<br />

3.07<br />

178 86 89-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Number of cylinders<br />

4 5 6 7 8 9 10 11 12<br />

S70<strong>MC</strong>-C 1 x 714D 1 x 714D 2 x 564D 2 x 564D 2 x 714D – – – –<br />

S70<strong>MC</strong> 1 x 714D 1 x 714D 1 x 714D 2 x 564D 2 x 714D – – – –<br />

L70<strong>MC</strong> n.a. n.a. n.a. n.a. n.a. – – – –<br />

S60<strong>MC</strong>-C 1 x 564D 1 x 564D 1 x 714D 1 x 714D 1 x 714D – – – –<br />

S60<strong>MC</strong> 1 x 564D 1 x 564D 1 x 714D 1 x 714D 1 x 714D – – – –<br />

L60<strong>MC</strong> 1 x 564D 1 x 564D 1 x 714D 1 x 714D 1 x 714D – – – –<br />

S50<strong>MC</strong>-C 1 x 454D 1 x 564D 1 x 564D 1 x 564D 1 x 714D – – – –<br />

S50<strong>MC</strong> 1 x 454D 1 x 564D 1 x 564D 1 x 564D 1 x 714D – – – –<br />

L50<strong>MC</strong> 1 x 454D 1 x 454D 1 x 564D 1 x 564D 1 x 564D – – – –<br />

S46<strong>MC</strong>-C 1 x 454D 1 x 454D 1 x 564D 1 x 564D 1 x 564D – – – –<br />

S42<strong>MC</strong> 1 x 454P 1 x 454D 1 x 454D 1 x 564D 1 x 564D 1 x 564D 2 x 454D 2 x 454D 2 x 454D<br />

L42<strong>MC</strong> 1 x 454P 1 x 454D 1 x 454D 1 x 454D 1 x 564D 1 x 564D 2 x 454D 2 x 454D 2 x 454D<br />

S35<strong>MC</strong> 1 x 354P 1 x 354P 1 x 454D 1 x 454D 1 x 454D 1 x 454D 2 x 354P 2 x 454P 2 x 454D<br />

L35<strong>MC</strong> 1 x 354P 1 x 354P 1 x 454P 1 x 454D 1 x 454D 1 x 454D 2 x 354P 2 x 354P 2 x 454P<br />

S26<strong>MC</strong> 1 x 254P 1 x 254P 1 x 304P 1 x 304P 1 x 354P 1 x 354P 2 x 254P 2 x 304P 2 x 304P<br />

All turbochargers in this table are of the VTR-type and have the suffix "-32". Example of a full designation is VTR714D-32.<br />

n.a. Not applicable<br />

- Not included in the production programme<br />

Example of full designation: 6S70<strong>MC</strong>-C requires 2 x VTR564D-32 at nominal <strong>MC</strong>R.<br />

Fig. 3.08: ABB conventional turbochargers, type VTR-32, for engines with nominal rating (L1)<br />

complying with IMO's NOx emission limits<br />

485 600 100 198 22 31<br />

3.08<br />

178 86 90-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong><br />

type<br />

Number of cylinders<br />

4 5 6 7 8 9 10 11 12<br />

S70<strong>MC</strong>-C 1xMET66SD1xMET83SD1xMET83SD 1xMET90SE 1xMET90SE – – – –<br />

S70<strong>MC</strong> 1xMET66SD 1xMET71SE 1xMET83SD1xMET83SD 1xMET90SE – – – –<br />

L70<strong>MC</strong> n.a. n.a. n.a. n.a. n.a. – – – –<br />

S60<strong>MC</strong>-C 1xMET66SD1xMET66SD 1xMET71SE 1xMET83SD1xMET83SD – – – –<br />

S60<strong>MC</strong> 1xMET66SD1xMET66SD1xMET66SD 1xMET71SE 1xMET83SD – – – –<br />

L60<strong>MC</strong> 1xMET53SD1xMET66SD1xMET66SD 1xMET71SE 1xMET83SD – – – –<br />

S50<strong>MC</strong>-C 1xMET53SD 1xMET53SE 1xMET66SD1xMET66SD 1xMET71SE – – – –<br />

S50<strong>MC</strong> 1xMET53SD1xMET53SD1xMET66SD1xMET66SD1xMET66SD – – – –<br />

L50<strong>MC</strong> 1xMET53SD1xMET53SD1xMET66SD1xMET66SD1xMET66SD – – – –<br />

S46<strong>MC</strong>-C 1xMET53SD1xMET53SD1xMET53SD1xMET66SD1xMET66SD – – – –<br />

S42<strong>MC</strong> 1xMET42SE 1xMET53SE 1xMET53SE 1xMET53SE 1xMET66SD1xMET66SD 2xMET53SE 2xMET53SE 2xMET53SE<br />

L42<strong>MC</strong> 1xMET42SD 1xMET42SE 1xMET53SD1xMET53SD1xMET53SD1xMET66SD 2xMET42SE 2xMET53SD2xMET53SD<br />

S35<strong>MC</strong> 1xMET33SD1xMET42SD1xMET42SD1xMET53SD1xMET53SD1xMET53SD2xMET42SD2xMET42SD2xMET42SD<br />

L35<strong>MC</strong> 1xMET30SR1xMET33SD1xMET33SD1xMET42SD 1xMET42SE 1xMET53SD2xMET33SD2xMET42SD2xMET42SD<br />

S26<strong>MC</strong> 1xMET26SR1xMET26SR1xMET30SR1xMET30SR1xMET33SD1xMET33SD2xMET26SR2xMET30SR2xMET30SR<br />

n.a. Not applicable<br />

– Not included in the production programme<br />

Fig. 3.09: Mitsubishi conventional turbochargers for engines with nominal rating (L1)<br />

complying with IMO's NOx emission limits<br />

485 600 100 198 22 31<br />

3.09<br />

178 86 91-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Cut-Off or By-Pass of Exhaust Gas<br />

The exhaust gas can be cut-off or by-passed by the<br />

turbochargers using either of the following systems.<br />

Turbocharger cut-out system<br />

The application of this optional system, Fig. 3.10,<br />

depends on the layout of the turbocharger(s) in each<br />

individual case. It can be economical to apply the<br />

cut-out system on an engine with two or more<br />

turbochargers if the engine is to operate for long<br />

periods at low loads of about 50% of the optimised<br />

power or below.<br />

Fig. 3.10: Position of turbocharger cut-out valves<br />

Advantages:<br />

• Reduced SFOC if one turbocharger is cut-out<br />

• Reduced heat load on essential engine components,<br />

due to increased scavenge air pressure.<br />

This results in less maintenance and lower spare<br />

parts requirements<br />

• The increased scavenge air pressure permits running<br />

without the use of an auxiliary blower down<br />

to 20-30% of the specified <strong>MC</strong>R from 30-40%,<br />

thus saving electrical power.<br />

At 50% of the optimised power, the SFOC savings<br />

will be about 1-2 g/BHPh, and the savings will be<br />

larger at lower loads.<br />

485 600 100 198 22 31<br />

3.10<br />

178 06 93-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Valve for partial by-pass<br />

This optional system can only be applied on engines<br />

having a turbocharger capacity higher than required<br />

for the specifed <strong>MC</strong>R.<br />

A valve for partial by-pass of the exhaust gas around<br />

the high efficiency turbocharger(s), Fig. 3.11, can be<br />

used in order to obtain improved SFOC at part<br />

loads. For engine loads above 50% of optimised<br />

power, the turbocharger allows part of the exhaust<br />

gas to be by-passed around the turbcoharger, giving<br />

an increased exhaust temperature to the exhaust<br />

gas boiler.<br />

At loads below 50% of the optimised power, the<br />

by-pass closes automatically and the turbocharger<br />

works under improved conditions with high efficiency.<br />

Furthermore, the limit for activating the auxiliary<br />

blowers is reduced in relation to the normal<br />

limit for plants without partial bypass.<br />

Fig. 3.11: Valve for partial by-pass<br />

178 06 69-8.0<br />

Total by-pass for emergyency running<br />

The total amount of exhaust gas around the<br />

turbocharger is only by-passed in case of emergency<br />

running upon turbocharger failure, Fig. 3.12.<br />

This enables the engine to run at a higher load than<br />

with a locked rotor during emergency conditions. If<br />

this system is applied, the engine's exhaust gas receiver<br />

will be fitted with a by-pass flange of the same<br />

diameter as the inlet pipe to the turbocharger. The<br />

emergency pipe between the exhaust receiver and<br />

the exhaust pipe after the turbocharger is yard's delivery.<br />

Fig. 3.12: Total by-pass of exhaust gas for emergency running<br />

485 600 100 198 22 31<br />

3.11<br />

178 06 72-1.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

4 Electricity Production<br />

Introduction<br />

Next to power for propulsion, electricity production<br />

is the largest fuel consumer on board. The electricity<br />

is produced by using one or more of the following<br />

types of machinery, either running alone or in parallel:<br />

• Auxiliary diesel generating sets<br />

• Main engine driven generators<br />

• Steam driven turbogenerators<br />

• Emergency diesel generating sets.<br />

The machinery installed should be selected based<br />

on an economical evaluation of first cost, operating<br />

costs, and the demand of man-hours for maintenance.<br />

In the following, technical information is given regarding<br />

main engine driven generators (PTO) and<br />

the auxiliary diesel generating sets produced by<br />

MAN B&W.<br />

The possibility of using a turbogenerator driven by<br />

the steam produced by an exhaust gas boiler can be<br />

evaluated based on the exhaust gas data.<br />

Power Take Off (PTO)<br />

With a generator coupled to a Power Take Off (PTO)<br />

from the main engine, the electricity can be produced<br />

based on the main engine’s low SFOC and<br />

use of heavy fuel oil. Several standardised PTO systems<br />

are available, see Fig. 4.01 and the designations<br />

on Fig. 4.02:<br />

PTO/RCF<br />

(Power Take Off/Renk Constant Frequency):<br />

Generator giving constant frequency, based on<br />

mechanical-hydraulical speed control.<br />

PTO/CFE<br />

(Power Take Off/Constant Frequency Electrical):<br />

Generator giving constant frequency, based on<br />

electrical frequency control.<br />

PTO/GCR<br />

(Power Take Off/Gear Constant Ratio):<br />

Generator coupled to a constant ratio step-up gear,<br />

used only for engines running at constant speed.<br />

The DMG/CFE (Direct Mounted Generator/Constant<br />

Frequency Electrical) and the SMG/CFE (Shaft<br />

Mounted Generator/Constant Frequency Electrical)<br />

are special designs within the PTO/CFE group in<br />

which the generator is coupled directly to the main engine<br />

crankshaft and the intermediate shaft, respectively,<br />

without a gear. The electrical output of the generator<br />

is controlled by electrical frequency control.<br />

Within each PTO system, several designs are available,<br />

depending on the positioning of the gear:<br />

BW I:<br />

Gear with a vertical generator mounted onto the<br />

fore end of the diesel engine, without any connections<br />

to the ship structure.<br />

BW II:<br />

A free-standing gear mounted on the tank top<br />

and connected to the fore end of the diesel engine,<br />

with a vertical or horizontal generator.<br />

BW III:<br />

A crankshaft gear mounted onto the fore end of<br />

the diesel engine, with a side-mounted generator<br />

without any connections to the ship structure.<br />

BW IV:<br />

A free-standing step-up gear connected to the<br />

intermediate shaft, with a horizontal generator.<br />

The most popular of the gear based alternatives are<br />

the type designated BW III/RCF for plants with a<br />

fixed pitch propeller (FPP) and the BW IV/GCR for<br />

plants with a controllable pitch propeller (CPP). The<br />

BW III/RCF requires no separate seating in the ship<br />

and only little attention from the shipyard with respect<br />

to alignment.<br />

485 600 100 198 22 32<br />

4.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

PTO/RCF<br />

PTO/CFE<br />

PTO/GCR<br />

Alternative types and layouts of shaft generators Design Seating Total<br />

efficiency (%)<br />

1a 1b BW I/RCF On engine<br />

(vertical generator)<br />

485 600 100 198 22 32<br />

4.02<br />

88-91<br />

2a 2b BW II/RCF On tank top 88-91<br />

3a 3b BW III/RCF On engine 88-91<br />

4a 4b BW IV/RCF On tank top 88-91<br />

5a 5b DMG/CFE On engine 84-88<br />

6a 6b SMG/CFE On tank top 84-88<br />

Fig. 4.01: Types of PTO<br />

7 BW I/GCR On engine<br />

(vertical generator)<br />

8 BW II/GCR On tank top 92<br />

9 BW III/GCR On engine 92<br />

10 BW IV/GCR On tank top 92<br />

92<br />

178 19 66-3.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

The BW III -design can be applied on all engines<br />

from the 98 to the 42 bore types. On the 60, 50,<br />

46, and 42 type engines special attention has to<br />

be paid to the space requirements for the BW III<br />

system, if the turbocharger is located on the exhaust<br />

side.<br />

For the smaller engine types, (the L/S35 and the<br />

S26) the step-up gear and generator have to be<br />

located on a separate seating, i.e. the BW II or the<br />

BW IV system is to be used.<br />

For further information please refer to the respective<br />

project guides and our publication:<br />

P. 364 “Shaft Generators<br />

Power Take Off<br />

from the Main <strong>Engine</strong>”<br />

Which is also available at the Internet address:<br />

www.manbw.dk under “Libraries”.<br />

Power take off:<br />

BW III S70-C/RCF 700-60<br />

Fig. 4.02: Designation of PTO<br />

485 600 100 198 22 32<br />

4.03<br />

50: 50 Hz<br />

60: 60 Hz<br />

kW on generator terminals<br />

RCF: Renk constant frequency unit<br />

CFE: Electrically frequency controlled unit<br />

GCR: Step-up gear with constant ratio<br />

<strong>Engine</strong> type on which it is applied<br />

Layout of PTO: See Fig. 4.01<br />

Make: MAN B&W<br />

178 45 49-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

PTO/RCF<br />

Side mounted generator, BWIII/RCF<br />

(Fig. 4.01, Alternative 3)<br />

The PTO/RCF generator systems have been developed<br />

in close cooperation with the German gear<br />

manufacturer Renk. A complete package solution is<br />

offered, comprising a flexible coupling, a step-up<br />

gear, an epicyclic, variable-ratio gear with built-in<br />

clutch, hydraulic pump and motor, and a standard<br />

generator, see Fig. 4.03.<br />

For marine engines with controllable pitch propellers<br />

running at constant engine speed, the hydraulic<br />

system can be dispensed with, i.e. a PTO/GCR design<br />

is normally used.<br />

Fig. 4.03: Power Take Off with Renk constant frequency gear: BW III/RCF<br />

Fig. 4.03 shows the principles of the PTO/RCF arrangement.<br />

As can be seen, a step-up gear box<br />

(called crankshaft gear) with three gear wheels is<br />

bolted directly to the frame box of the main engine.<br />

The bearings of the three gear wheels are mounted<br />

in the gear box so that the weight of the wheels is not<br />

carried by the crankshaft. In the frame box, between<br />

the crankcase and the gear drive, space is available<br />

for tuning wheel, counterweights, axial vibration<br />

damper, etc.<br />

The first gear wheel is connected to the crankshaft<br />

via a special flexible coupling made in one piece<br />

with a tooth coupling driving the crankshaft gear,<br />

thus isolating it against torsional and axial vibrations.<br />

485 600 100 198 22 32<br />

4.04<br />

178 00 45-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

By means of a simple arrangement, the shaft in the<br />

crankshaft gear carrying the first gear wheel and the<br />

female part of the toothed coupling can be moved<br />

forward, thus disconnecting the two parts of the<br />

toothed coupling.<br />

The power from the crankshaft gear is transferred,<br />

via a multi-disc clutch, to an epicyclic variable-ratio<br />

gear and the generator. These are mounted on a<br />

common bedplate, bolted to brackets integrated<br />

with the engine bedplate.<br />

The BWIII/RCF unit is an epicyclic gear with a hydrostatic<br />

superposition drive. The hydrostatic input<br />

drives the annulus of the epicyclic gear in either direction<br />

of rotation, hence continuously varying the<br />

gearing ratio to keep the generator speed constant<br />

throughout an engine speed variation of 30%. In the<br />

standard layout, this is between 100% and 70% of<br />

the engine speed at specified <strong>MC</strong>R, but it can be<br />

placed in a lower range if required.<br />

The input power to the gear is divided into two paths<br />

– one mechanical and the other hydrostatic – and<br />

the epicyclic differential combines the power of the<br />

two paths and transmits the combined power to the<br />

output shaft, connected to the generator. The gear is<br />

equipped with a hydrostatic motor driven by a pump,<br />

and controlled by an electronic control unit. This<br />

keeps the generator speed constant during single running<br />

as well as when running in parallel with other generators.<br />

The multi-disc clutch, integrated into the gear input<br />

shaft, permits the engaging and disengaging of the<br />

epicyclic gear, and thus the generator, from the<br />

main engine during operation.<br />

An electronic control system with a Renk controller<br />

ensures that the control signals to the main electrical<br />

switchboard are identical to those for the normal<br />

auxiliary generator sets. This applies to ships with<br />

automatic synchronising and load sharing, as well<br />

as to ships with manual switchboard operation.<br />

Internal control circuits and interlocking functions<br />

between the epicyclic gear and the electronic control<br />

box provide automatic control of the functions<br />

necessary for the satisfactory operation and protection<br />

of the BWIII/RCF unit. If any monitored value exceeds<br />

the normal operation limits, a warning or an<br />

alarm is given depending upon the origin, severity<br />

and the extent of deviation from the permissible values.<br />

The cause of a warning or an alarm is shown on<br />

a digital display.<br />

Extent of delivery for BWIII/RCF units<br />

The delivery comprises a complete unit ready to be<br />

built-on to the main engine. Fig. 4.04 shows the gen-<br />

eral arrangement. Space requirements for a specific<br />

In the case that a larger generator is required, please<br />

contact MAN B&W Diesel A/S.<br />

If a main engine speed other than the nominal is required<br />

as a basis for the PTO operation, this must be<br />

taken into consideration when determining the ratio<br />

of the crankshaft gear. However, this has no influence<br />

on the space required for the gears and the<br />

generator.<br />

The PTO can be operated as a motor (PTI) as well as<br />

a generator by adding some minor modifications.<br />

485 600 100 198 22 32<br />

4.05<br />

Standard sizes of the crankshaft gears and the RCF<br />

units are designed for 700, 1200, 1800 and 2600 kW,<br />

while the generator sizes of make A. van Kaick are:<br />

Type<br />

DSG<br />

62 M2-4<br />

62 L1-4<br />

62 L2-4<br />

74 M1-4<br />

74 M2-4<br />

74 L1-4<br />

74 L2-4<br />

86 K1-4<br />

86 M1-4<br />

86 L2-4<br />

99 K1-4<br />

440 V<br />

1800<br />

kVA<br />

707<br />

855<br />

1056<br />

1271<br />

1432<br />

1651<br />

1924<br />

1942<br />

2345<br />

2792<br />

3222<br />

60 Hz<br />

r/min<br />

kW<br />

566<br />

684<br />

845<br />

1017<br />

1146<br />

1321<br />

1539<br />

1554<br />

1876<br />

2234<br />

2578<br />

380 V<br />

1500<br />

kVA<br />

627<br />

761<br />

940<br />

1137<br />

1280<br />

1468<br />

1709<br />

1844<br />

2148<br />

2542<br />

2989<br />

50 Hz<br />

r/min<br />

kW<br />

501<br />

609<br />

752<br />

909<br />

1024<br />

1174<br />

1368<br />

1475<br />

1718<br />

2033<br />

2391<br />

178 34 89-3.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Yard deliveries are:<br />

1. Cooling water pipes to the built-on lubricating oil<br />

cooling system, including the valves.<br />

2. Electrical power supply to the lubricating oil<br />

stand-by pump built on to the RCF unit.<br />

3. Wiring between the generator and the operator<br />

control panel in the switch-board.<br />

4. An external permanent lubricating oil filling-up<br />

connection can be established in connection with<br />

the RCF unit. The system is shown in Fig. 4.07 “Lubricating<br />

oil system for RCF gear”. The dosage<br />

tank and the pertaining piping are to be delivered<br />

by the yard. The size of the dosage tank is stated in<br />

the table for RCF gear in “Necessary capacities for<br />

PTO/RCF” (Fig. 4.06).<br />

The necessary preparations to be made on the engine<br />

are specified in Figs. 4.05a and 4.05b.<br />

Additional capacities required for BWIII/RCF<br />

The capacities stated in the “List of capacities” for<br />

the main engine in question are to be increased by<br />

the additional capacities for the crankshaft gear and<br />

the RCF gear stated in Fig. 4.06.<br />

485 600 100 198 22 32<br />

4.06


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 4.04a: Arrangement of side mounted generator PTO/RCF type BWlll RCF for engines with turbocharger on the<br />

exhaust side (98-90-80-70-60-50-46 types)<br />

Fig. 4.04b: Arrangement of side mounted generator PTO/RCF type BWlll RCF for engines with turbocharger on the at end<br />

(60-50-46 types and 4-9 cylindere engine of the 42 type)<br />

485 600 100 198 22 32<br />

4.07<br />

178 36 29-6.0<br />

178 05 11-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 4.05a: Necessary preparations to be made on engine for mounting PTO (to be decided when ordering the engine)<br />

485 600 100 198 22 32<br />

4.08<br />

178 40 42-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pos. 1 Special face on bedplate and frame box<br />

Pos. 2 Ribs and brackets for supporting the face and machined blocks for alignment of gear or stator<br />

housing<br />

Pos. 3 Machined washers placed on frame box part of face to ensure, that it is flush with the face on the<br />

bedplate<br />

Pos. 4 Rubber gasket placed on frame box part of face<br />

Pos. 5 Shim placed on frame box part of face to ensure, that it is flush with the face of the bedplate<br />

Pos. 6 Distance tubes and long bolts<br />

Pos. 7 Threaded hole size, number and size of spring pins and bolts to be made in agreement with PTO<br />

maker<br />

Pos. 8 Flange of crankshaft, normally the standard execution can be used<br />

Pos. 9 Studs and nuts for crankshaft flange<br />

Pos. 10 Free flange end at lubricating oil inlet pipe (incl. blank flange)<br />

Pos. 11 Oil outlet flange welded to bedplate (incl. blank flange)<br />

Pos. 12 Face for brackets<br />

Pos. 13 Brackets<br />

Pos. 14 Studs for mounting the brackets<br />

Pos. 15 Studs, nuts, and shims for mounting of RCF-/generator unit on the brackets<br />

Pos. 16 Shims, studs and nuts for connection between crankshaft gear and RCF-/generator unit<br />

Pos. 17 <strong>Engine</strong> cover with connecting bolts to bedplate/frame box to be used for shop test without PTO<br />

Pos. 18 Intermediate shaft between crankshaft and PTO<br />

Pos. 19 Oil sealing for intermediate shaft<br />

Pos. 20 <strong>Engine</strong> cover with hole for intermediate shaft and connecting bolts to bedplate/frame box<br />

Pos. 21 Plug box for electronic measuring instrument for check of condition of axial vibration damper<br />

Pos. no: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21<br />

BWIII/RCF A A A A B A B A A A A A B B A A<br />

BWIII/GCR, BWIII/CFE A A A A B A B A A A A A B B A A<br />

BWII/RCF A A A A A A<br />

BWII/GCR, BWII/CFE A A A A A A<br />

BWI/RCF A A A A B A B A A<br />

BWI/GCR, BWI/CFE A A A A B A B A A A A<br />

DMG/CFE A A A B C A B A A<br />

A: Preparations to be carried out by engine builder<br />

B: Parts supplied by PTO-maker<br />

C: See text of pos. no.<br />

Fig. 4.05b: Necessary preparations to be made on engine for mounting PTO (to be decided when ordering the engine)<br />

485 600 100 198 22 32<br />

4.09<br />

178 33 84-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Crankshaft gear lubricated from the main engine lubricating oil system<br />

The figures are to be added to the main engine capacity list:<br />

Nominal output of generator kW 700 1200 1800 2600<br />

Lubricating oil flow m3/h 4.1 4.1 4.9 6.2<br />

Heat dissipation kW 12.1 20.8 31.1 45.0<br />

RCF gear with separate lubricating oil system:<br />

Nominal output of generator kW 700 1200 1800 2600<br />

Cooling water quantity m3/h 14.1 22.1 30.0 39.0<br />

Heat dissipation kW 55 92 134 180<br />

El. power for oil pump kW 11.0 15.0 18.0 21.0<br />

Dosage tank capacity m3 0.40 0.51 0.69 0.95<br />

El. power for Renk-controller<br />

24V DC ± 10%, 8 amp<br />

From main engine:<br />

Design lube oil pressure: 2.25 bar<br />

Lube oil pressure at crankshaft gear: min. 1 bar<br />

Lube oil working temperature: 50 °C<br />

Lube oil type: SAE 30<br />

Fig. 4.06: Necessary capacities for PTO/RCF, BW III/RCF system<br />

Fig. 4.07: Lubricating oil system for RCF gear<br />

485 600 100 198 22 32<br />

4.10<br />

Cooling water inlet temperature: 36 °C<br />

Pressure drop across cooler: approximately 0.5 bar<br />

Fill pipe for lube oil system store tank (~ø32)<br />

Drain pipe to lube oil system drain tank (~ø40)<br />

Electric cable between Renk terminal at gearbox and<br />

operator control panel in switchboard: Cable type<br />

FMGCG 19 x2x0.5<br />

178 33 85-0.0<br />

The letters refer to the “List of flanges”,<br />

which will be extended by the engine builder,<br />

when PTO systems are built on the main engine<br />

178 06 47-1.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

DMG/CFE Generators<br />

Fig. 4.01 alternative 5, shows the DMG/CFE (Direct<br />

Mounted Generator/Constant Frequency Electrical)<br />

which is a low speed generator with its rotor mounted<br />

directly on the crankshaft and its stator bolted on<br />

to the frame box as shown in Figs. 4.08 and 4.09.<br />

The DMG/CFE is separated from the crankcase by a<br />

plate, and a labyrinth stuffing box.<br />

The DMG/CFE system has been developed in cooperation<br />

with the German generator manufacturers<br />

Siemens and AEG, but similar types of generators<br />

Fig. 4.08: Standard engine, with direct mounted generator (DMG/CFE)<br />

can be supplied by others, e.g. Fuji, Nishishiba and<br />

Shinko in Japan.<br />

For generators in the normal output range, the mass<br />

of the rotor can normally be carried by the foremost<br />

main bearing without exceeding the permissible<br />

bearing load (see Fig. 4.09), but this must be<br />

checked by the engine manufacturer in each case.<br />

If the permissible load on the foremost main bearing<br />

is exceeded, e.g. because a tuning wheel is needed,<br />

this does not preclude the use of a DMG/CFE.<br />

178 06 73-3.1<br />

485 600 100 198 22 32<br />

4.11


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 4.09: Standard engine, with direct mounted generator and tuning wheel<br />

Fig. 4.10: Diagram of DMG/CFE with static converter<br />

178 06 63-7.1<br />

178 56 55-3.1<br />

485 600 100 198 22 32<br />

4.12


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

In such a case, the problem is solved by installing a<br />

small, elastically supported bearing in front of the<br />

stator housing, as shown in Fig. 4.09.<br />

As the DMG type is directly connected to the crankshaft,<br />

it has a very low rotational speed and, consequently,<br />

the electric output current has a low frequency<br />

– normally in order of 15 Hz.<br />

Therefore, it is necessary to use a static frequency<br />

converter between the DMG and the main switchboard.<br />

The DMG/CFE is, as standard, laid out for<br />

operation with full output between 100% and 70%<br />

and with reduced output between 70% and 50% of<br />

the engine speed at specified <strong>MC</strong>R.<br />

Static converter<br />

The static frequency converter system (see Fig.<br />

4.10) consists of a static part, i.e. thyristors and control<br />

equipment, and a rotary electric machine.<br />

The DMG produces a three-phase alternating current<br />

with a low frequency, which varies in accordance<br />

with the main engine speed. This alternating<br />

current is rectified and led to a thyristor inverter producing<br />

a three-phase alternating current with constant<br />

frequency.<br />

Since the frequency converter system uses a DC intermediate<br />

link, no reactive power can be supplied<br />

to the electric mains. To supply this reactive power,<br />

a synchronous condenser is used. The synchronous<br />

condenser consists of an ordinary synchronous<br />

generator coupled to the electric mains.<br />

Extent of delivery for DMG/CFE units<br />

The delivery extent is a generator fully built-on to the<br />

main engine inclusive of the synchronous condenser<br />

unit, and the static converter cubicles which<br />

are to be installed in the engine room.<br />

The DMG/CFE can, with a small modification, be<br />

operated both as a generator and as a motor (PTI).<br />

Yard deliveries are:<br />

1. Installation, i.e. seating in the ship for the synchronous<br />

condenser unit, and for the static converter<br />

cubicles<br />

2. Cooling water pipes to the generator if water<br />

cooling is applied<br />

3. Cabling.<br />

The necessary preparations to be made on the engine<br />

are specified in Figs. 4.05a and 4.05b.<br />

485 600 100 198 22 32<br />

4.13


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

PTO type: BW IV/GCR<br />

Power Take Off/Gear Constant Ratio<br />

The shaft generator system, type BW IV/GCR, installed<br />

in the shaft line (Fig. 4.01 alternative 10) can<br />

generate power on board ships equipped with a controllable<br />

pitch propeller running at constant speed.<br />

The PTO-system can be delivered as a tunnel gear<br />

with hollow flexible coupling or, alternatively, as a<br />

generator step-up gear with flexible coupling integrated<br />

in the shaft line.<br />

The main engine needs no special preparation for<br />

mounting this type of PTO system if it is connected<br />

to the intermediate shaft.<br />

The PTO-system installed in the shaft line can also<br />

be installed on ships equipped with a fixed pitch<br />

propeller or controllable pitch propeller running in<br />

combinator mode. This will, however, also require<br />

an additional Renk Constant Frequency gear (Fig.<br />

4.01 alternative 4) or additional electrical equipment<br />

Fig. 4.11: BW IV/GCR, tunnel gear<br />

for maintaining the constant frequency of the generated<br />

electric power.<br />

Tunnel gear with hollow flexible coupling<br />

This PTO-system is normally installed on ships with<br />

a minor electrical power take off load compared to<br />

the propulsion power, up to approximately 25% of<br />

the engine power.<br />

The hollow flexible coupling is only to be dimensioned<br />

for the maximum electrical load of the power take<br />

off system and this gives an economic advantage<br />

for minor power take off loads compared to the system<br />

with an ordinary flexible coupling integrated in<br />

the shaft line.<br />

The hollow flexible coupling consists of flexible segments<br />

and connecting pieces, which allow replacement<br />

of the coupling segments without dismounting<br />

the shaft line, see Fig. 4.11.<br />

485 600 100 198 22 32<br />

4.14<br />

178 18 25-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Auxiliary Propulsion System/Take Home<br />

System<br />

From time to time an Auxiliary Propulsion System/Take<br />

Home System capable of driving the<br />

CP-propeller by using the shaft generator as an<br />

electric motor is requested.<br />

MAN B&W Diesel can offer a solution where the<br />

CP-propeller is driven by the alternator via a<br />

two-speed tunnel gear box. The electric power is<br />

produced by a number of GenSets. The main engine<br />

is disengaged by a conical bolt clutch<br />

(CB-Clutch) made as an integral part of the shafting.<br />

The clutch is installed between the tunnel<br />

gear box and the main engine, and conical bolts<br />

are used to connect and disconnect the main engine<br />

and the shafting. See Figure 4.12.<br />

The CB-Clutch is operated by hydraulic oil pressure<br />

which is supplied by the power pack used to<br />

control the CP-propeller.<br />

A thrust bearing, which transfers the auxiliary propulsion<br />

propeller thrust to the engine thrust bear-<br />

Fig. 4.12: Auxiliary propulsion system<br />

ing when the clutch is disengaged, is built into the<br />

CB-Clutch. When the clutch is engaged, the thrust<br />

is transferred statically to the engine thrust bearing<br />

through the thrust bearing built into the clutch.<br />

To obtain high propeller efficiency in the auxiliary<br />

propulsion mode, and thus also to minimise the<br />

auxiliary power required, a two-speed tunnel gear,<br />

which provides lower propeller speed in the auxiliary<br />

propulsion mode, is used.<br />

The two-speed tunnel gear box is made with a<br />

friction clutch which allows the propeller to be<br />

clutched in at full alternator/motor speed where<br />

the full torque is available. The alternator/motor is<br />

started in the de-clutched condition with a start<br />

transformer.<br />

The system can quickly establish auxiliary propulsion<br />

from the engine control room and/or bridge,<br />

even with unmanned engine room.<br />

Re-establishment of normal operation requires attendance<br />

in the engine room and can be done within<br />

a few minutes.<br />

485 600 100 198 22 32<br />

4.15<br />

178 47 02-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Generator step-up gear and flexible coupling<br />

integrated in the shaft line<br />

For higher power take off loads, a generator step-up<br />

gear and flexible coupling integrated in the shaft line<br />

may be chosen due to first costs of gear and coupling.<br />

The flexible coupling integrated in the shaft line will<br />

transfer the total engine load for both propulsion and<br />

electricity and must be dimensioned accordingly.<br />

The flexible coupling cannot transfer the thrust from<br />

the propeller and it is, therefore, necessary to make<br />

the gear-box with an integrated thrust bearing.<br />

This type of PTO-system is typically installed on<br />

ships with large electrical power consumption,<br />

e.g. shuttle tankers.<br />

Fig. 4.13: Power Take Off (PTO) BW II/GCR<br />

Power Take Off/Gear Constant Ratio,<br />

PTO type: BW II/GCR<br />

The system Fig. 4.01 alternative 8 can generate<br />

electrical power on board ships equipped with a<br />

controllable pitch propeller, running at constant<br />

speed.<br />

The PTO unit is mounted on the tank top at the fore<br />

end of the engine and, by virtue of its short and compact<br />

design, it requires a minimum of installation<br />

space, see Fig. 4.13. The PTO generator is activated<br />

at sea, taking over the electrical power production<br />

on board when the main engine speed has stabilised<br />

at a level corresponding to the generator frequency<br />

required on board.<br />

The BW II/GCR cannot, as standard, be mechanically<br />

disconnected from the main engine, but a hydraulically<br />

activated clutch, including hydraulic<br />

pump, control valve and control panel, can be fitted<br />

as an option.<br />

178 18 22-5.0<br />

485 600 100 198 22 32<br />

4.16


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

5 Installation Aspects<br />

Installation Aspects<br />

Space requirement for the engine<br />

Overhaul with double jib crane<br />

Arrangenant of epoxy shocks<br />

Mechanical top bracing<br />

Hydraulic top bracing<br />

Earthing device<br />

400 000 050 178 50 15


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

5 Installation Aspects<br />

The figures shown in this section are intended as an<br />

aid at the project stage. The data are subject to<br />

change without notice, and binding data is to be<br />

given by the engine builder in the “Installation Documentation”.<br />

Please note that the newest version of most of the<br />

drawings of this section can be downloaded from<br />

our website on www.manbw.dk under 'Products,<br />

'Marine Power', '<strong>Two</strong>-<strong>stroke</strong> <strong>Engine</strong>s' where you<br />

then choose the engine type.<br />

Space Requirements for the <strong>Engine</strong><br />

The space requirements stated in Figs. 5.01 are<br />

valid for engines rated at nominal <strong>MC</strong>R (L1).<br />

The additional space needed for engines equipped<br />

with PTO is available on request.<br />

If, during the project stage, the outer dimensions of<br />

the turbochargers seem to cause problems, it is<br />

possible, for the same number of cylinders, to use<br />

turbochargers with smaller dimensions by increasing<br />

the indicated number of turbochargers by one,<br />

see chapter 3.<br />

Overhaul of <strong>Engine</strong><br />

The distances stated from the centre of the crankshaft<br />

to the crane hook are for vertical or tilted lift,<br />

see Figs. 5.01a and 5.01b.<br />

The capacity of a normal engine room crane can be<br />

found in Fig. 5.02.<br />

The area covered by the engine room crane shall be<br />

wide enough to reach any heavy spare part required<br />

in the engine room.<br />

A lower overhaul height is, however, available by using<br />

the MAN B&W double-jib crane, built by Danish Crane<br />

Building ApS, shown in Figs. 5.02 and 5.03.<br />

Please note that the distances H3 and H4 given for a<br />

double-jib crane is from the centre of the crankshaft<br />

to the lower edge of the deck beam.<br />

A special crane beam for dismantling the turbocharger<br />

must be fitted. The lifting capacity of the<br />

crane beam for dismantling the turbocharger is<br />

stated in the respective Project <strong>Guide</strong>s.<br />

The overhaul tools for the engine are designed to be<br />

used with a crane hook according to DIN 15400,<br />

June 1990, material class M and load capacity 1Am<br />

and dimensions of the single hook type according to<br />

DIN 15401, part 1.<br />

The total length of the engine at the crankshaft level<br />

may vary depending on the equipment to be fitted<br />

on the fore end of the engine, such as adjustable<br />

counterweights, tuning wheel, moment compensators<br />

or PTO.<br />

<strong>Engine</strong> Masses and Centre of Gravity<br />

The total engine masses appear from Fig 5.01. The<br />

centre of gravity as well as masses of water and oil in<br />

the engine are stated in the respective Project<br />

<strong>Guide</strong>s.<br />

430 100 030 198 22 33<br />

5.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

<strong>Engine</strong> Seating and Arrangement of<br />

Holding Down Bolts<br />

The dimensions of the engine seating stated in Fig.<br />

5.04 are for guidance only.<br />

The engine is basically mounted on epoxy chocks<br />

in which case the underside of the bedplate’s lower<br />

flanges has no taper.<br />

The epoxy types approved by MAN B&W Diesel A/S<br />

are:<br />

“Chockfast Orange PR 610 TCF”<br />

from ITW Philadelphia Resins Corporation, USA,<br />

and<br />

“Epocast 36"<br />

from H.A. Springer – Kiel, Germany<br />

The engine may alternatively, be mounted on cast<br />

iron chocks (solid chocks), in which case the underside<br />

of the bedplate’s lower flanges is with taper<br />

1:100.<br />

Please note that the K98<strong>MC</strong>, K98<strong>MC</strong>-C and the<br />

S90<strong>MC</strong>-C are designed for mounting on epoxy chocks<br />

only.<br />

Top Bracing<br />

The so-called guide force moments are caused by<br />

the transverse reaction forces acting on the<br />

crossheads due to the connecting rod/crankshaft<br />

mechanism. When the piston of a cylinder is not exactly<br />

in its top or bottom position, the gas force from<br />

the combustion, transferred through the connecting<br />

rod will have a component acting on the crosshead<br />

and the crankshaft perpendicularly to the axis of the<br />

cylinder. Its resultant is acting on the guide shoe (or<br />

piston skirt in the case of a trunk engine), and together<br />

they form a guide force moment.<br />

The moments may excite engine vibrations moving<br />

the engine top athwartships and causing a rocking<br />

(excited by H-moment) or twisting (excited by<br />

X-moment) movement of the engine.<br />

For engines with fewer than seven cylinders, this<br />

guide force moment tends to rock the engine in<br />

transverse direction, and for engines with seven cyl-<br />

inders or more, it tends to twist the engine. Both<br />

forms are shown in section 7 dealing with vibrations.<br />

The guide force moments are harmless to the engine,<br />

however, they may cause annoying vibrations<br />

in the superstructure and/or engine room, if proper<br />

countermeasures are not taken.<br />

As a detailed calculation of this system is normally<br />

not available, MAN B&W Diesel recommend that top<br />

bracing is installed between the engine’s upper<br />

platform brackets and the casing side.<br />

However the top bracing is not needed in all cases. In<br />

some cases the vibration level is lower if the top bracing<br />

is not installed. This has normally to be checked by<br />

measurements, i.e. with and without top bracing.<br />

If a vibration measurement in the first vessel of a series<br />

shows that the vibration level is acceptable<br />

without the top bracing, then we have no objection<br />

to the top bracing being dismounted and the rest of<br />

the series produced without top bracing.<br />

It is our experience that especially the 7 cyl. engine<br />

will often have a lower vibration level without top<br />

bracing.<br />

Without top bracing, the natural frequency of the<br />

vibrating system comprising engine, ship’s bottom,<br />

and ship’s side, is often so low that resonance with<br />

the excitation source (the guide force moment) can<br />

occur close the the normal speed range, resulting in<br />

the risk of vibraiton.<br />

With top bracing, such a resonance will occur<br />

above the normal speed range, as the top bracing<br />

increases the natural frequency of the abovementioned<br />

vibrating system.<br />

The top bracing is normally placed on the exhaust<br />

side of the engine, but the top bracing can alternatively<br />

be placed on the camshaft side.<br />

430 100 030 198 22 33<br />

5.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Mechanical top bracing<br />

The mechanical top bracing shown in Figs. 5.05 and<br />

5.06 comprises stiff connections (links) with friction<br />

plates.<br />

The forces and deflections for calculating the transverse<br />

top bracing’s connection to the hull structure<br />

are stated in Fig. 5.06.<br />

Mechanical top bracings can be applied on all types<br />

from 98 to the S35 and no top bracing is needed on<br />

L35 and S26 types.<br />

The mechanical top bracing is to be made by the shipyard<br />

in accordance with MAN B&W instructions.<br />

Hydraulic top bracing<br />

The hydraulic top bracings are available with pump<br />

station or without pump station, see Figs. 5.07, 5.08<br />

and 5.09.<br />

The hydraulically adjustable top bracing is an alternative<br />

to the mechanical top bracing and is intended<br />

for appliction in vessels where hull deflection is foreseen<br />

to exceed the usual level.<br />

The hydraulically adjustable top bracing is intended<br />

for one side mounting, either the exhaust side (alternative<br />

1), or the camshaft side (alternative 2).<br />

Hydraulic top bracings can be applied on all 98-50<br />

types.<br />

Position of top bracings<br />

All engines can have a top bracing on the exhaust side.<br />

All 98-S35 engines can have a top bracing on the<br />

camshaft side, except for S70<strong>MC</strong>-C, S60<strong>MC</strong>-C and<br />

S50<strong>MC</strong>-C engines where only a hydraulic top bracing<br />

can be placed in both ends of the engine.<br />

The number of top bracings required and their location<br />

are stated in the respective Project <strong>Guide</strong>s.<br />

For further information see section 7 “Vibration aspects”.<br />

Earthing Device<br />

In some cases, it has been found that the difference<br />

in the electrical potential between the hull and the<br />

propeller shaft (due to the propeller being immersed<br />

in seawater) has caused spark erosion on the main<br />

bearings and journals of the engine.<br />

A potential difference of less than 80 mV is harmless<br />

to the main bearings so, in order to reduce the potential<br />

between the crankshaft and the engine structure<br />

(hull), and thus prevent spark erosion, we recommend<br />

the installation of a highly efficient earthing<br />

device.<br />

The sketch Fig. 5.10 shows the layout of such an<br />

earthing device, i.e. a brush arrangement which is<br />

able to keep the potential difference below 50 mV.<br />

We also recommend the installation of a shaft-hull<br />

mV-meter so that the potential, and thus the correct<br />

functioning of the device, can be checked.<br />

430 100 030 198 22 33<br />

5.03


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Lmin<br />

K98 K98-C S90-C L90-C K90 K90-C S80-C S80 L80 K80-C S70-C S70 L70 S60-C S60 L60<br />

Dimensions in mm<br />

A 1700 1700 1800 1699 1699 1699 1736 1736 1510 1510 1520 1520 1323 1300 1300 1134<br />

B 4640 4370 5000 5000 4936 4286 5000 4824 4388 4088 4390 4250 3842 3770 3478 3228<br />

E 1750 1750 1602 1602 1602 1602 1424 1424 1424 1424 1190 1246 1246 1020 1068 1068<br />

H1 13075 12400 14450 13900 14050 12075 14400 14050 12400 11475 12400 12225 10850 10650 10500 9325<br />

H2 11950 11325 13300 12800 12925 11100 13275 13150 11575 10675 11525 11400 10075 9925 9825 8675<br />

H3 13025 12575 13425 13125 13175 11950 13025 12950 11775 11125 11250 11125 10125 9675 9550 8725<br />

Lmin<br />

4 cyl. 9176 8051 8386 6591 7177 7008 5648 6116 5956<br />

5 cyl. 10778 9475 9810 7781 8423 8254 6668 7184 7024<br />

6 cyl. 12865 12865 12087 12400 12380 12447 10899 10899 11234 11104 8971 9669 9500 7688 8252 8092<br />

7 cyl. 14615 14615 13689 15502 13982 14049 12323 12323 12658 12528 10161 10915 10746 8708 9320 9160<br />

8 cyl. 17605 17605 15291 17104 17084 15651 13747 13747 14082 13952 11351 12161 11992 9728 10388 10228<br />

9 cyl. 19355 19355 18193 18706 18686 18403 16331 16786 16526<br />

10 cyl. 21105 21105 20308 20288 20005 18210 17950<br />

11 cyl. 22855 22855 21910 21890 21607 19634 19374<br />

12 cyl. 24605 24605 23512 23492 23209 21058 20798<br />

Dry masses in tons<br />

4 cyl. 787 636 580 408 413 383 263 273 270<br />

5 cyl. 931 756 681 480 492 448 314 319 318<br />

6 cyl. 1152 1100 1105 1077 1074 986 805 864 791 774 555 562 525 358 371 343<br />

7 cyl. 1318 1265 1235 1279 1272 1106 880 996 864 875 624 648 592 410 422 407<br />

8 cyl. 1528 1475 1410 1446 1411 1253 985 1105 974 984 704 722 667 467 470 451<br />

9 cyl. 1678 1621 1588 1589 1553 1415 1223 1120 1101<br />

10 cyl. 1856 1797 1734 1700 1561 1218 1202<br />

11 cyl. 2006 1946 1877 1840 1686 1339 1302<br />

12 cyl. 2157 2095 2038 1980 1826 1440 1423<br />

The distances H1 and H2 are from the centre of the crankshaft to the crane hook.<br />

The distance H3 for the double jib crane is from the centre of the crankshaft to the lower edge of the deck beam<br />

E - Cylinder distance H1 - Vertical lift H2 - Tilted lift H3 - Electrical double jib crane<br />

Fig. 5.01a: Space requirements and masses<br />

E<br />

H1<br />

H2<br />

430 100 450 198 22 34<br />

5.04<br />

B<br />

H3<br />

A<br />

178 16 77-5.0<br />

178 87 18-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Lmin<br />

S50-C S50 L50 S46-C S42 L42 S35 L35 S26<br />

Dimensions in mm<br />

A 1085 1085 944 986 900 690 650 550 420<br />

B 3150 2950 2710 2924 2670 2460 2200 1980 1880<br />

E 850 890 890 782 748 748 600 600 490<br />

H1 8950 8800 7825 8600 8050 6700 6425 5200 4825<br />

H2 8375 8250 7325 8075 7525 6250 6050 4850 4725<br />

H3 8150 8100 7400 7850 7300 6350 5925 5025 4525<br />

H4 5850 4825 4500<br />

Lmin<br />

4 cyl. 4739 5730 5615 4357 4240 4661 3480 3445 2975<br />

5 cyl. 5589 6620 6505 5139 4988 5409 4080 4045 3465<br />

6 cyl. 6439 7510 7395 5921 5736 6157 4680 4645 3955<br />

7 cyl. 7289 8400 8285 6703 6484 6905 5280 5245 4445<br />

8 cyl. 8139 9290 9175 7485 7232 7653 5880 5845 4935<br />

9 cyl. 7980 8401 6480 6445 5425<br />

10 cyl. 9476 9897 7080 7645 6405<br />

11 cyl. 10224 10645 8280 8245 6895<br />

12 cyl. 10972 11393 8880 8845 7385<br />

Dry masses in tons<br />

4 cyl. 155 171 163 133 109 95 57 50 32<br />

5 cyl. 181 195 188 153 125 110 65 58 37<br />

6 cyl. 207 225 215 171 143 125 75 67 42<br />

7 cyl. 238 255 249 197 160 143 84 75 48<br />

8 cyl. 273 288 276 217 176 158 93 83 53<br />

9 cyl. 195 176 103 92 58<br />

10 cyl. 232 210 122 108 68<br />

11 cyl. 249 229 132 118 74<br />

12 cyl. 269 244 141 126 79<br />

The distances H1 and H2 are from the centre of the crankshaft to the crane hook. The distances H3 and H4 for the double<br />

jib crane are from the centre of the crankshaft to the lower edge of the deck beam.<br />

E - Cylinder distance H1 - Vertical lift H2 - Tilted lift H3 - Electrical double jib crane H4 Manual double jib crane<br />

Fig. 5.01b: Space requirements and masses<br />

E<br />

H1<br />

H2<br />

430 100 450 198 22 34<br />

5.05<br />

B<br />

H3<br />

H4<br />

A<br />

178 16 76-0.0<br />

178 87 19-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Lifting capacity in tons<br />

<strong>Engine</strong> type For normal<br />

overhaul<br />

Fig. 5.02: <strong>Engine</strong> room crane capacities for overhaul<br />

488 701 010 198 22 35<br />

5.06<br />

For double<br />

jib crane<br />

K98<strong>MC</strong> 12.5 2 x 6.3<br />

K98<strong>MC</strong>-C 12.5 2 x 6.3<br />

S90<strong>MC</strong>-C 10.0 2 x 5.0<br />

L90<strong>MC</strong>-C 10.0 2 x 5.0<br />

K90<strong>MC</strong> 10.0 2 x 5.0<br />

K90<strong>MC</strong>-C 10.0 2 x 5.0<br />

S80<strong>MC</strong>-C 10.0 2 x 5.0<br />

S80<strong>MC</strong> 8.0 2 x 4.0<br />

L80<strong>MC</strong> 8.0 2 x 4.0<br />

K80<strong>MC</strong>-C 6.3 2 x 4.0<br />

S70<strong>MC</strong>-C 6.3 2 x 3.0<br />

S70<strong>MC</strong> 5.0 2 x 2.5<br />

L70<strong>MC</strong> 5.0 2 x 2.5<br />

S60<strong>MC</strong>-C 4.0 2 x 2.0<br />

S60<strong>MC</strong> 3.2 2 x 1.6<br />

L60<strong>MC</strong> 3.2 2 x 1.6<br />

S50<strong>MC</strong>-C 2.0 2 x 1.6<br />

S50<strong>MC</strong> 2.0 2 x 1.0<br />

L50<strong>MC</strong> 1.6 2 x 1.0<br />

S46<strong>MC</strong>-C 2.0 2 x 1.0<br />

S42<strong>MC</strong> 1.25 2 x 1.0<br />

L42<strong>MC</strong> 1.25 2 x 1.0<br />

S35<strong>MC</strong> 0.8 2 x 0.5<br />

L35<strong>MC</strong> 0.63 2 x 0.5<br />

S26<strong>MC</strong> 0.5 2 x 0.5<br />

178 87 20-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

The double-jib crane<br />

can be delivered by:<br />

Danish Crane Building A/S<br />

P.O. Box 54<br />

Østerlandsvej 2<br />

DK-9240 Nibe, Denmark<br />

Telephone:<br />

Telefax:<br />

E-mail:<br />

+4598353133<br />

+4598353033<br />

dcb@dcb.dk<br />

Fig. 5.03: Overhaul with double-jib crane<br />

Deck beam<br />

488 701 010 198 22 35<br />

5.07<br />

MAN B&W Double<br />

Jib Crane<br />

Centreline crankshaft<br />

178 06 25-5.3


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Dimensions are stated in mm<br />

<strong>Engine</strong> type A B C D E F G H I Jh Jv K L M N P<br />

K98<strong>MC</strong> 3255 2910 50 2310 60 1525 50 1510 30 781 1700 80 50 500 38<br />

K98<strong>MC</strong>-C 3120 2775 50 2175 60 1375 50 1360 30 781 1700 80 50 500 38<br />

S90<strong>MC</strong>-T 3360 3100 44 2480 55 1755 44 1730 30 920 1800 75 50 470 34<br />

L90<strong>MC</strong>-C 3360 3100 44 2480 55 1755 44 1730 30 920 1800 75 50 470 34<br />

K90<strong>MC</strong> 3420 3054 44 2359 55 1675 44 1650 30 885 1699 75 50 470 34<br />

K90<strong>MC</strong>-C 3090 2729 44 2034 55 1405 44 1380 30 610 1699 75 50 470 34<br />

S80<strong>MC</strong>-C 3275 2950 40 2450 50 1700 40 1675 25 920 1736 70 50 440 34<br />

S80<strong>MC</strong> 3275 2950 40 2320 50 1700 40 1675 25 805 1736 70 50 440 34<br />

L80<strong>MC</strong> 3040 2720 40 2100 50 1490 40 1465 25 785 1510 70 50 440 34<br />

K80<strong>MC</strong>-C 2890 2570 40 1950 50 1340 40 1315 25 677 1510 70 50 430 34<br />

S70<strong>MC</strong>-C 2880 2616 36 2195 45 1530 36 1515 22 805 1520 65 50 400 34<br />

S70<strong>MC</strong> 2880 2616 36 2046 45 1500 36 1480 22 695 1520 65 50 400 34<br />

L70<strong>MC</strong> 2670 2410 36 1840 45 1310 36 1290 20 685 1323 65 50 400 34<br />

S60<strong>MC</strong>-C 2410 2175 30 1855 40 1330 30 1315 20 700 1300 60 50 400 22<br />

S60<strong>MC</strong> 2410 2175 30 1690 40 1215 30 1200 20 630 1300 60 50 400 25<br />

L60<strong>MC</strong> 2270 2045 30 1565 40 1095 30 1080 20 1150 605 1134 60 50 400 25<br />

S50<strong>MC</strong>-C 2090 1880 28 1540 36 1110 28 1095 20 1075 518 1088 50 47 400 22<br />

S50<strong>MC</strong> 2090 1880 28 1450 36 1035 28 1020 20 1050 520 1085 50 50 400 22<br />

L50<strong>MC</strong> 1970 1760 28 1330 36 915 28 900 18 1046 515 944 50 50 400 22<br />

S46<strong>MC</strong>-C 1955 1755 28 1435 32 1060 28 1045 18 830 550 986 50 50 380 22<br />

S42<strong>MC</strong> 1910 1720 25 1330 30 955 24 980 15 880 510 900 45 50 350 19<br />

L42<strong>MC</strong> 1785 1595 25 1230 30 870 25 855 18 940 560 690 45 50 350 19<br />

S35<strong>MC</strong> 1616 1475 20 1155 25 855 20 840 18 775 495 650 45 40 350 19<br />

L35<strong>MC</strong> 1505 1350 20 1035 25 720 20 705 18 745 465 550 45 40 350 19<br />

S26<strong>MC</strong> 1390 1235 20 695 20 680 15 690 470 420 40 35 19<br />

Jv = with vertical oil outlets Jh = with horizontal oil outlets<br />

FIg. 5.04: Profile of engine seating, epoxy chocks 178 87 22-1.0<br />

430 100 450 198 22 36<br />

5.08<br />

178 06 43-4.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 5.05: Mechanical top bracing arrangement<br />

178 46 90-9.0<br />

Top bracing should only be installed on one side,<br />

either the exhaust side, or the camshaft side<br />

483 110 007 198 22 37<br />

5.09<br />

Force per mechanical top bracing and minimum<br />

horizontal rigidity at attachment to the hull<br />

<strong>Engine</strong> type<br />

Force per<br />

bracing in<br />

kN<br />

Minimum<br />

horizontal<br />

rigidity in<br />

MN/m<br />

K98<strong>MC</strong> 248 230<br />

K98<strong>MC</strong>-C 248 230<br />

S90<strong>MC</strong>-C 209 210<br />

L90<strong>MC</strong>-C 209 210<br />

K90<strong>MC</strong> 209 210<br />

K90<strong>MC</strong>-C 209 210<br />

S80<strong>MC</strong>-C 165 190<br />

S80<strong>MC</strong> 165 190<br />

L80<strong>MC</strong> 165 190<br />

K80<strong>MC</strong>-C 165 190<br />

S70<strong>MC</strong>-C 126 170<br />

S70<strong>MC</strong> 126 170<br />

L70<strong>MC</strong> 126 170<br />

S60<strong>MC</strong>-C 93 140<br />

S60<strong>MC</strong> 93 140<br />

L60<strong>MC</strong> 93 140<br />

S50<strong>MC</strong>-C 64 120<br />

S50<strong>MC</strong> 64 120<br />

L50<strong>MC</strong> 64 120<br />

S46<strong>MC</strong>-C 55 110<br />

S42<strong>MC</strong> 45 100<br />

L42<strong>MC</strong> 45 100<br />

S35<strong>MC</strong> 32 85<br />

L35<strong>MC</strong> * *<br />

S26<strong>MC</strong> * *<br />

* = top bracings are normally not required<br />

Fig. 5.06: Mechanical top bracing outline<br />

178 09 63-3.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

178 46 89-9.0<br />

Fig. 5.07: Hydraulic top bracing arrangement, turbocharger located exhaust side of engine<br />

483 110 008 198 22 39<br />

5.10<br />

Force per hydraulic top bracing and maximum<br />

horizontal deflection at attachment to the hull<br />

<strong>Engine</strong> type<br />

Number of<br />

top<br />

bracings<br />

per engine<br />

Force per<br />

bracing in<br />

kN<br />

Max.<br />

horizontal<br />

deflection<br />

in mm<br />

11-12K98<strong>MC</strong> 6 127 0.51<br />

6-10K98<strong>MC</strong>-C 4 127 0.51<br />

11-12K98<strong>MC</strong>-C 6 127 0.51<br />

6-10K98<strong>MC</strong>-C 4 127 0.51<br />

S90<strong>MC</strong>-C 4 127 0.51<br />

L90<strong>MC</strong>-C 4 127 0.51<br />

K90<strong>MC</strong> 4 127 0.51<br />

K90<strong>MC</strong>-C 4 127 0.51<br />

S80<strong>MC</strong>-C 4 127 0.51<br />

S80<strong>MC</strong> 4 127 0.51<br />

L80<strong>MC</strong> 4 127 0.51<br />

K80<strong>MC</strong>-C 4 127 0.51<br />

S70<strong>MC</strong>-C 2 127 0.36<br />

S70<strong>MC</strong> 2 127 0.36<br />

L70<strong>MC</strong> 2 127 0.36<br />

S60<strong>MC</strong>-C 2 81 0.23<br />

S60<strong>MC</strong> 2 81 0.23<br />

L60<strong>MC</strong> 2 81 0.23<br />

S50<strong>MC</strong>-C 2 81 0.23<br />

S50<strong>MC</strong> 2 81 0.23<br />

L50<strong>MC</strong> 2 81 0.23<br />

S46<strong>MC</strong>-C 2* 46* 0.13*<br />

S42<strong>MC</strong> 2* 46* 0.13*<br />

L42<strong>MC</strong> 2* 46* 0.13*<br />

S35<strong>MC</strong> 2* 35* 0.07*<br />

L35<strong>MC</strong> ** ** **<br />

S26<strong>MC</strong> ** ** **<br />

* = with mechanical top bracings only<br />

** = top bracings are norminally not required<br />

178 87 24-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

With pneumatic/hydraulic<br />

cylinders only<br />

Fig. 5.08a: Hydraulic top bracing layout of system with pump station, option: 4 83 122<br />

Hull<br />

side<br />

Pipe:<br />

Electric wiring:<br />

Inlet Outlet<br />

Pump station<br />

including:<br />

two pumps<br />

oil tank<br />

filter<br />

releif valves and<br />

control box<br />

Fig. 5.08b: Hydraulic cylinder for option 4 83 122<br />

Valve block with<br />

solenoid valve<br />

and relief valve<br />

The hydraulically adjustable top bracing system consists<br />

basically of two or four hydraulic cylinders, two<br />

accumulator units and one pump station<br />

<strong>Engine</strong><br />

side<br />

483 110 008 198 22 39<br />

5.11<br />

Hydraulic cylinders<br />

Accumulator unit<br />

178 16 68-0.0<br />

178 16 47-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

With pneumatic/hydraulic<br />

cylinders only<br />

Fig. 5.09a: Hydraulic top bracing layout of system without pump station, option: 4 83 123<br />

Fig. 5.09b: Hydraulic cylinder for option 4 83 123<br />

483 110 008 198 22 39<br />

5.12<br />

178 18 60-7.0<br />

178 15 73-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Cross section must not be smaller than 45 mm 2 and<br />

the length of the cable must be as short as possible<br />

Silver metal<br />

graphite brushes<br />

Rudder<br />

Propeller<br />

Fig. 5.10: Earthing device, (yard's supply)<br />

Slipring<br />

Propeller shaft<br />

Current<br />

420 600 010 198 22 40<br />

5.13<br />

Voltmeter for shaft-hull<br />

Voltmeter for shafthull<br />

potential difference<br />

Earthing device<br />

Hull<br />

Main bearing<br />

Intermediate shaft<br />

178 32 07-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.01 Calculation of Capacities<br />

The <strong>MC</strong> engines are available in the following three<br />

versions with respect to the Specific Fuel Oil Consumption<br />

(SFOC):<br />

• With high efficiency turbocharger(s):<br />

K98<strong>MC</strong>, K98<strong>MC</strong>-C, S90<strong>MC</strong>-C, L90<strong>MC</strong>-C, K90<strong>MC</strong>,<br />

K90<strong>MC</strong>-C, S80<strong>MC</strong>-C, S80<strong>MC</strong>, L80<strong>MC</strong>, K80<strong>MC</strong>-C and<br />

L70<strong>MC</strong><br />

• With conventional turbocharger(s):<br />

S46<strong>MC</strong>-C, S42<strong>MC</strong>, L42<strong>MC</strong>, S35<strong>MC</strong>, L35<strong>MC</strong> and S26<strong>MC</strong><br />

• With high efficiency turbocharger or optionally with<br />

conventional turbocharger:<br />

S70<strong>MC</strong>-C, S70<strong>MC</strong>, S60<strong>MC</strong>-C, S60<strong>MC</strong>, L60<strong>MC</strong>,<br />

S50<strong>MC</strong>-C, S50<strong>MC</strong> and L50<strong>MC</strong>.<br />

A 2 g/BHPh penalty must be added to the SFOC if a<br />

higher exhaust gas temperature is required by using a<br />

conventional turbocharger<br />

Cooling Water Systems<br />

The capacities given in the tables are based on tropical<br />

ambient reference conditions and refer to engines<br />

with high efficiency or conventional turbocharger<br />

running at nominal <strong>MC</strong>R (L1) for:<br />

• Seawater cooling system, Figs. 6.01.01 and 6.01.03<br />

Fig. 6.01.01: Diagram for seawater cooling system<br />

Fig. 6.01.02: Diagram for central cooling water system<br />

430 200 025 198 22 41<br />

6.01.01<br />

• Central cooling water system, Figs. 6.01.02 and 6.01.04<br />

The capacities for the starting air receivers and the<br />

compressors are stated in Fig. 6.01.05<br />

Each system is briefly described in sections 6.02 to<br />

6.10. A detailed specification of the components<br />

can be found in the respective Project <strong>Guide</strong>s.<br />

If a freshwater generator is installed, the water production<br />

can be calculated by using the formula<br />

stated later in this section and the way of calculating<br />

the exhaust gas data is also shown later in this section.<br />

The air consumption is approximately 98% of<br />

the calculated exhaust gas amount.<br />

The diagrams use the symbols shown in Fig. 6.01.19<br />

“Basic symbols for piping”. The symbols for instrumentation<br />

can be found in section 8 of the Project <strong>Guide</strong>s.<br />

Heat radiation<br />

The radiation and convection heat losses to the<br />

engine room are stated as an approximate percentage<br />

of the engine's nominal power (kW in L1).<br />

1.1% for the 98 and 90 types<br />

1.2% for the 80 and 70 types<br />

1.3% for the 60 and 50 types<br />

1.5% for the 46 and 42 types<br />

1.8% for the 35 types, and<br />

2.0% for the 26 type<br />

178 11 26-4.1<br />

178 11 27-6.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 94 r/min kW 34320 40040 45760 51480 57200 62920 68640<br />

Fuel oil circulating pump m 3 /h 13.2 15.4 17.7 19.9 22.0 24.0 26.0<br />

Fuel oil supply pump m 3 /h 8.8 10.2 11.7 13.2 14.6 16.1 17.6<br />

Jacket cooling water pump m 3 /h 1) 305 350 395 450 495 540 600<br />

2) 275 320 370 415 460 510 550<br />

3) n.a. 335 385 n.a. 480 530 n.a.<br />

4) 275 320 370 415 460 510 550<br />

Seawater cooling pump* m 3 /h 1) 1090 1270 1440 1630 1810 1990 2170<br />

2) 1080 1260 1450 1620 1800 1990 2170<br />

3) n.a. 1260 1430 n.a. 1790 1970 n.a.<br />

4) 1080 1250 1430 1610 1790 1970 2150<br />

Lubricating oil pump* m 3 /h 1) 750 860 980 1110 1230 1350 1480<br />

2) 740 860 990 1110 1230 1360 1480<br />

3) n.a. 830 950 n.a. 1190 1310 n.a.<br />

4) 740 860 980 1110 1230 1350 1470<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Heat dissipation approx. kW 14000 16340 18670 21010 23340 25670 28010<br />

Seawater m 3 Lubricating oil cooler<br />

/h 712 830 950 1068 1187 1306 1424<br />

Heat dissipation approx.* kW 1) 2860 3290 3720 4250 4680 5110 5630<br />

2) 2960 3390 4010 4440 4870 5490 5920<br />

3) n.a. 3010 3440 n.a. 4300 4730 n.a.<br />

4) 2790 3260 3690 4180 4670 5100 5530<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 378 440 490 562 623 684 746<br />

2) 368 430 500 552 613 684 746<br />

3) n.a. 430 480 n.a. 603 664 n.a.<br />

Jacket water cooler<br />

4) 368 420 480 542 603 664 726<br />

Heat dissipation approx. kW 1) 5040 5840 6640 7520 8320 9120 10000<br />

2) 4800 5600 6400 7200 8000 8800 9600<br />

3) n.a. 5880 6680 n.a. 8370 9170 n.a.<br />

4) 4800 5600 6400 7200 8000 8800 9600<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 345 405 465 520 580 630 680<br />

Exhaust gas flow at 235 °C** kg/h 329490 384405 439320 494235 549150 604065 658980<br />

Air consumption of engine kg/s 89.8 104.7 119.7 134.7 149.6 164.6 179.6<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03a: List of capacities, K98<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.02<br />

K98<strong>MC</strong><br />

178 86 64-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 94 r/min kW 34320 40040 45760 51480 57200 62920 68640<br />

Fuel oil circulating pump m 3 /h 13.2 15.4 17.7 19.9 22.0 24.0 26.0<br />

Fuel oil supply pump m 3 /h 8.8 10.2 11.7 13.2 14.6 16.1 17.6<br />

Jacket cooling water pump m 3 /h 1) 305 350 395 450 495 540 600<br />

2) 275 320 370 415 460 510 550<br />

3) n.a. 335 385 n.a. 480 530 n.a.<br />

4) 275 320 370 415 460 510 550<br />

Central cooling water pump* m 3 /h 1) 880 1020 1160 1310 1450 1590 1740<br />

2) 870 1010 1160 1300 1450 1600 1740<br />

3) n.a. 1010 1150 n.a. 1440 1580 n.a.<br />

4) 860 1000 1150 1290 1440 1580 1720<br />

Seawater pump* m 3 /h 1) 1040 1210 1380 1560 1730 1900 2080<br />

2) 1040 1210 1380 1550 1720 1900 2070<br />

3) n.a. 1200 1370 n.a. 1710 1880 n.a.<br />

4) 1030 1200 1370 1540 1710 1880 2050<br />

Lubricating oil pump* m 3 /h 1) 750 860 980 1110 1230 1350 1480<br />

2) 740 860 990 1110 1230 1360 1480<br />

3) n.a. 830 950 n.a. 1190 1310 n.a.<br />

4) 740 860 980 1110 1230 1350 1470<br />

Booster pump for camshaft m 3 /h n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

13890 16210 18520 20840 23150 25470 27780<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 498 581 664 747 830 912 995<br />

Heat dissipation approx.* kW 1) 2860 3290 3720 4250 4680 5110 5630<br />

2) 2960 3390 4010 4440 4870 5490 5920<br />

3) n.a. 3010 3440 n.a. 4300 4730 n.a.<br />

4) 2790 3260 3690 4180 4670 5100 5530<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 382 439 496 563 620 678 745<br />

2) 372 429 496 553 620 688 745<br />

3) n.a. 429 486 n.a. 610 668 n.a.<br />

Jacket water cooler<br />

4) 362 419 486 543 610 668 725<br />

Heat dissipation approx. kW 1) 5040 5840 6640 7520 8320 9120 10000<br />

2) 4800 5600 6400 7200 8000 8800 9600<br />

3) n.a. 5880 6680 n.a. 8370 9170 n.a.<br />

4) 4800 5600 6400 7200 8000 8800 9600<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 21790 25340 28880 32610 36150 39700 43410<br />

2) 21650 25200 28930 32480 36020 39760 43300<br />

3) n.a. 25100 28640 n.a. 35820 39370 n.a.<br />

4) 21480 25070 28610 32220 35820 39370 42910<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 345 405 465 520 580 630 680<br />

Exhaust gas flow at 235 °C** kg/h 329490 384405 439320 494235 549150 604065 658980<br />

Air consumption of engine kg/s 89.8 104.7 119.7 134.7 149.6 164.6 179.6<br />

Fig. 6.04a: List of capacities, K98<strong>MC</strong> with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.03<br />

K98<strong>MC</strong><br />

178 86 65-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 104 r/min kW 34260 39970 45680 51390 57100 62810 68520<br />

Fuel oil circulating pump m 3 /h 13.2 15.4 17.6 19.8 22.0 24.0 26.0<br />

Fuel oil supply pump m 3 /h 8.8 10.2 11.7 13.1 14.6 16.1 17.5<br />

Jacket cooling water pump m 3 /h 1) 305 350 395 450 495 540 600<br />

2) 275 320 370 415 460 510 550<br />

3) n.a. 335 n.a.s n.a. 480 n.a. n.a.<br />

4) 275 320 370 415 460 510 550<br />

Seawater cooling pump* m 3 /h 1) 1110 1290 1470 1660 1840 2020 2210<br />

2) 1100 1290 1470 1650 1830 2020 2200<br />

3) n.a. 1280 n.a. n.a. 1820 n.a. n.a.<br />

4) 1090 1280 1460 1640 1820 2000 2190<br />

Lubricating oil pump* m 3 /h 1) 750 860 980 1110 1230 1350 1480<br />

2) 740 870 990 1110 1230 1360 1480<br />

3) n.a. 830 n.a. n.a. 1190 n.a. n.a.<br />

4) 740 860 990 1110 1230 1350 1480<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Heat dissipation approx. kW 14610 17040 19480 21910 24350 26780 29220<br />

Seawater m 3 Lubricating oil cooler<br />

/h 730 852 975 1097 1218 1340 1462<br />

Heat dissipation approx.* kW 1) 2860 3290 3720 4250 4680 5110 5630<br />

2) 2960 3580 4010 4440 4870 5490 5920<br />

3) n.a. 3010 n.a. n.a. 4300 n.a. n.a.<br />

4) 2790 3260 3750 4180 4670 5100 5570<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 380 438 495 563 622 680 748<br />

2) 370 438 495 553 612 680 738<br />

3) n.a. 428 n.a. n.a. 602 n.a. n.a.<br />

Jacket water cooler<br />

4) 360 428 485 543 602 660 728<br />

Heat dissipation approx. kW 1) 5040 5840 6640 7520 8320 9120 10000<br />

2) 4800 5600 6400 7200 8000 8800 9600<br />

3) n.a. 5880 n.a. n.a. 8370 n.a. n.a.<br />

4) 4800 5600 6400 7200 8000 8800 9600<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 345 405 460 520 580 630 680<br />

Exhaust gas flow at 235 °C** kg/h 343350 400575 457800 515025 572250 629475 686700<br />

Air consumption of engine kg/s 93.6 109.2 124.8 140.5 156.1 171.7 187.3<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03b: List of capacities, K98<strong>MC</strong>-C with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.04<br />

K98<strong>MC</strong>-C<br />

178 86 66-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 104 r/min kW 34260 39970 45680 51390 57100 62810 68520<br />

Fuel oil circulating pump m 3 /h 13.2 15.4 17.6 19.8 22.0 24.0 26.0<br />

Fuel oil supply pump m 3 /h 8.8 10.2 11.7 13.1 14.6 16.1 17.5<br />

Jacket cooling water pump m 3 /h 1) 305 350 395 450 495 540 600<br />

2) 275 320 370 415 460 510 550<br />

3) n.a. 335 n.a. n.a. 480 n.a. n.a.<br />

4) 275 320 370 415 460 510 550<br />

Central cooling water pump* m 3 /h 1) 890 1030 1180 1330 1470 1620 1770<br />

2) 880 1030 1180 1320 1470 1620 1760<br />

3) n.a. 1020 n.a. n.a. 1460 n.a. n.a.<br />

4) 870 1020 1170 1310 1460 1600 1750<br />

Seawater pump* m 3 /h 1) 1070 1250 1420 1600 1760 1950 2130<br />

2) 1070 1250 1420 1600 1780 1960 2130<br />

3) n.a. 1230 n.a. n.a. 1760 n.a. n.a.<br />

4) 1060 1230 1410 1580 1760 1940 2110<br />

Lubricating oil pump* m 3 /h 1) 750 860 980 1110 1230 1350 1480<br />

2) 740 870 990 1110 1230 1360 1480<br />

3) n.a. 830 n.a. n.a. 1190 n.a. n.a.<br />

4) 740 860 990 1110 1230 1350 1480<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Heat dissipation approx. kW 14500 16910 19330 21740 24160 26580 28990<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 510 595 680 765 850 936 1021<br />

Heat dissipation approx.* kW 1) 2860 3290 3720 4250 4680 5110 5630<br />

2) 2960 3580 4010 4440 4870 5490 5920<br />

3) n.a. 3010 n.a. n.a. 4300 n.a. n.a.<br />

4) 2790 3260 3750 4180 4670 5100 5570<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 380 435 500 565 620 684 749<br />

2) 370 435 500 555 620 684 739<br />

3) n.a. 425 n.a. n.a. 610 n.a. n.a.<br />

Jacket water cooler<br />

4) 360 425 490 545 610 664 729<br />

Heat dissipation approx. kW 1) 5040 5840 6640 7520 8320 9120 10000<br />

2) 4800 5600 6400 7200 8000 8800 9600<br />

3) n.a. 5880 n.a. n.a. 8370 n.a. n.a.<br />

4) 4800 5600 6400 7200 8000 8800 9600<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 22400 26040 29690 33510 37160 40810 44620<br />

2) 22260 26090 29740 33380 37030 40870 44100<br />

3) n.a. 25800 n.a. n.a. 36830 n.a. n.a.<br />

4) 22090 25770 29480 33120 36830 40480 44160<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 345 405 460 520 580 630 680<br />

Exhaust gas flow at 235 °C** kg/h 343350 400575 457800 515025 572250 629475 686700<br />

Air consumption of engine kg/s 93.6 109.2 124.8 140.5 156.1 171.7 187.3<br />

Fig. 6.04b: List of capacities, K98<strong>MC</strong>-C with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.05<br />

K98<strong>MC</strong>-C<br />

178 86 67-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9<br />

Nominal <strong>MC</strong>R at 76 r/min kW 29340 34230 39120 44010<br />

Fuel oil circulating pump m 3 /h 11.3 13.2 15.1 17.0<br />

Fuel oil supply pump m 3 /h 7.2 8.4 9.6 10.8<br />

Jacket cooling water pump m 3 /h 1) 250 295 335 370<br />

2) 230 270 305 345<br />

3) 240 n.a. 320 360<br />

4) 230 270 305 345<br />

Seawater cooling pump* m 3 /h 1) 860 1000 1140 1280<br />

2) 860 1000 1140 1290<br />

3) 850 n.a. 1130 1270<br />

4) 850 990 1130 1270<br />

Lubricating oil pump* m 3 /h 1) 550 640 730 820<br />

2) 550 640 720 820<br />

3) 520 n.a. 700 790<br />

4) 550 640 730 820<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 10.4 12.1 13.9 15.6<br />

Heat dissipation approx. kW 11310 13200 15090 16970<br />

Seawater m 3 Lubricating oil cooler<br />

/h 554 647 739 832<br />

Heat dissipation approx.* kW 1) 2170 2590 2920 3250<br />

2) 2360 2690 3020 3540<br />

3) 1980 n.a. 2640 2970<br />

4) 2190 2520 2890 3220<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 306 353 401 448<br />

2) 306 353 401 458<br />

3) 296 n.a. 391 438<br />

Jacket water cooler<br />

4) 296 343 391 438<br />

Heat dissipation approx. kW 1) 4120 4860 5520 6180<br />

2) 3960 4620 5280 5940<br />

3) 4150 n.a. 5560 6220<br />

4) 3960 4620 5280 5940<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 295 345 395 445<br />

Exhaust gas flow at 240 °C** kg/h 273400 319000 364600 410100<br />

Air consumption of engine kg/s 74.5 86.9 99.4 111.8<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03c: List of capacities, S90<strong>MC</strong>-C with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.06<br />

S90<strong>MC</strong>-C<br />

178 37 42-1.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9<br />

Nominal <strong>MC</strong>R at 76 r/min kW 29340 34230 39120 44010<br />

Fuel oil circulating pump m 3 /h 11.3 13.2 15.1 17.0<br />

Fuel oil supply pump m 3 /h 7.2 8.4 9.6 10.8<br />

Jacket cooling water pump m 3 /h 1) 250 295 335 370<br />

2) 230 270 305 345<br />

3) 240 n.a. 320 360<br />

4) 230 270 305 345<br />

Central cooling water pump* m 3 /h 1) 720 840 960 1070<br />

2) 720 830 950 1080<br />

3) 710 n.a. 950 1060<br />

4) 710 830 950 1060<br />

Seawater pump* m 3 /h 1) 840 980 1120 1260<br />

2) 840 980 1110 1260<br />

3) 830 n.a. 1110 1250<br />

4) 830 970 1110 1240<br />

Lubricating oil pump* m 3 /h 1) 550 640 730 820<br />

2) 550 640 720 820<br />

3) 520 n.a. 700 790<br />

4) 550 640 730 820<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 10.4 12.1 13.9 15.6<br />

Heat dissipation approx. kW 11220 13090 14960 16840<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 416 485 554 624<br />

Heat dissipation approx.* kW 1) 2170 2590 2920 3250<br />

2) 2360 2690 3020 3540<br />

3) 1980 n.a. 2640 2970<br />

4) 2190 2520 2890 3220<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 304 355 406 446<br />

2) 304 345 396 456<br />

3) 294 n.a. 396 436<br />

Jacket water cooler<br />

4) 294 345 396 436<br />

Heat dissipation approx. kW 1) 4120 4860 5520 6180<br />

2) 3960 4620 5280 5940<br />

3) 4150 n.a. 5560 6220<br />

4) 3960 4620 5280 5940<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 17510 20540 23400 26270<br />

2) 17540 20400 23260 26320<br />

3) 17350 n.a. 23160 26030<br />

4) 17370 20230 23130 26000<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 295 345 395 445<br />

Exhaust gas flow at 240 °C** kg/h 273400 319000 364600 410100<br />

Air consumption of engine kg/s 74.5 86.9 99.4 111.8<br />

Fig. 6.04c: List of capacities, S90<strong>MC</strong>-C with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.07<br />

S90<strong>MC</strong>-C<br />

178 37 43-3.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 83 r/min kW 29340 34230 39120 44010 48900 53790 586800<br />

Fuel oil circulating pump m 3 /h 11.3 13.2 15.1 17.0 18.9 21.0 23.0<br />

Fuel oil supply pump m 3 /h 7.2 8.4 9.6 10.8 12.0 13.2 14.4<br />

Jacket cooling water pump m 3 /h 1) 250 285 335 370 410 455 495<br />

2) 230 270 305 345 385 420 460<br />

3) 240 n.a. 320 360 n.a. 440 480<br />

4) 230 270 305 345 385 420 460<br />

Seawater cooling pump* m 3 /h 1) 860 1000 1150 1290 1430 1580 1720<br />

2) 860 1000 1140 1290 1430 1570 1710<br />

3) 850 n.a. 1140 1280 n.a. 1560 1700<br />

4) 850 990 1130 1270 1420 1560 1700<br />

Lubricating oil pump* m 3 /h 1) 560 650 750 840 930 1040 1130<br />

2) 570 660 750 850 940 1030 1120<br />

3) 540 n.a. 720 810 n.a. 990 1080<br />

4) 570 660 750 840 940 1030 1130<br />

Booster pump for camshaft+exh. m 3 /h<br />

Scavenge air cooler<br />

10.4 12.1 13.9 15.6 17.3 19.1 20.8<br />

Heat dissipation approx. kW 11300 13200 15100 17000 18900 20700 22600<br />

Seawater m 3 Lubricating oil cooler<br />

/h 554 647 739 832 924 1016 1109<br />

Heat dissipation approx.* kW 1) 2240 2580 3010 3350 3690 4130 4470<br />

2) 2430 2770 3110 3640 3980 4320 4660<br />

3) 2050 n.a. 2730 3070 n.a. 3750 4090<br />

4) 2250 2590 2980 3320 3720 4060 4460<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 306 353 411 458 506 564 611<br />

2) 306 353 401 458 506 554 601<br />

3) 296 n.a. 401 448 n.a. 544 591<br />

Jacket water cooler<br />

4) 296 343 391 438 496 544 591<br />

Heat dissipation approx. kW 1) 4120 4780 5520 6180 6840 7580 8240<br />

2) 3960 4620 5280 5940 6600 7280 7920<br />

3) 4150 n.a. 5560 6220 n.a. 7630 8290<br />

4) 3960 4620 5280 5940 6600 7260 7920<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 295 345 395 445 495 550 600<br />

Exhaust gas flow at 240 °C** kg/h 273400 319000 364600 410100 455700 501300 546800<br />

Air consumption of engine kg/s 74.5 86.9 99.4 111.8 124.2 136.6 149.0<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03d: List of capacities, L90<strong>MC</strong>-C with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.08<br />

L90<strong>MC</strong>-C<br />

178 87 00-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

L90<strong>MC</strong>-C<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 83 r/min kW 29340 34230 39120 44010 48900 53790 58680<br />

Fuel oil circulating pump m 3 /h 11.3 13.2 15.1 17.0 18.9 21.0 23.0<br />

Fuel oil supply pump m 3 /h 7.2 8.4 9.6 10.8 12.0 13.2 14.4<br />

Jacket cooling water pump m 3 /h 1) 250 285 335 370 410 455 495<br />

2) 230 270 305 345 385 420 460<br />

3) 240 n.a. 320 360 n.a. 440 480<br />

4) 230 270 305 345 385 420 460<br />

Central cooling water pump* m 3 /h 1) 720 840 960 1080 1200 1320 1440<br />

2) 720 840 960 1080 1200 1320 1430<br />

3) 710 n.a. 950 1070 n.a. 1310 1420<br />

4) 710 830 950 1070 1190 1300 1420<br />

Seawater pump* m 3 /h 1) 840 980 1120 1260 1400 1550 1680<br />

2) 840 980 1120 1260 1400 1540 1670<br />

3) 830 n.a. 1110 1250 n.a. 1530 1670<br />

4) 830 970 1110 1250 1390 1530 1670<br />

Lubricating oil pump* m 3 /h 1) 560 650 750 840 930 1040 1130<br />

2) 570 660 750 850 940 1030 1120<br />

3) 540 n.a. 720 810 n.a. 990 1080<br />

4) 570 660 750 840 940 1030 1130<br />

Booster pump for camshaft+exh. m 3 /h<br />

Scavenge air cooler<br />

10.4 12.1 13.9 15.6 17.3 19.1 20.8<br />

Heat dissipation approx. kW 11200 13100 15000 16800 18700 20600 22400<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 416 485 554 624 693 762 832<br />

Heat dissipation approx.* kW 1) 2240 2580 3010 3350 3690 4130 4470<br />

2) 2430 2770 3110 3640 3980 4320 4660<br />

3) 2050 n.a. 2730 3070 n.a. 3750 4090<br />

4) 2250 2590 2980 3320 3720 4060 4460<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 304 355 406 456 507 558 608<br />

2) 304 355 406 456 507 558 598<br />

3) 294 n.a. 396 446 n.a. 548 588<br />

Jacket water cooler<br />

4) 294 345 396 446 497 538 588<br />

Heat dissipation approx. kW 1) 4120 4780 5520 6180 6840 7580 8240<br />

2) 3960 4620 5280 5940 6600 7260 7920<br />

3) 4150 n.a. 5560 6220 n.a. 7630 8290<br />

4) 3960 4620 5280 5940 6600 7260 7920<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 17600 20500 23500 26300 29200 32300 35100<br />

2) 17600 20500 23400 26400 29300 32200 35000<br />

3) 17400 n.a. 23300 26100 n.a. 32000 34800<br />

4) 17400 20300 23300 26100 29000 31900 34800<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 295 345 395 445 495 550 600<br />

Exhaust gas flow at 240 °C** kg/h 273400 319000 364600 410100 455700 501300 546800<br />

Air consumption of engine kg/s 74.5 86.9 99.4 111.8 124.2 136.6 149.0<br />

178 87 01-7.0<br />

Fig. 6.04d: List of capacities, L90<strong>MC</strong>-C with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.09


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 94 r/min kW 18280 22850 27420 31990 36560 41130 45700 50270 54840<br />

Fuel oil circulating pump m 3 /h 7.4 9.3 11.1 13.0 14.8 16.7 18.5 20.0 22.0<br />

Fuel oil supply pump m 3 /h 4.7 5.8 7.0 8.2 9.4 10.5 11.7 12.9 14.0<br />

Jacket cooling water pump m 3 /h 1) 155 200 235 270 315 350 385 430 470<br />

2) 145 180 215 250 290 325 360 395 430<br />

3) 150 190 225 n.a. 305 340 375 415 450<br />

4) 145 180 215 250 290 325 360 395 430<br />

Seawater cooling pump* m 3 /h 1) 580 720 860 1000 1150 1290 1440 1580 1730<br />

2) 570 720 860 1010 1150 1300 1440 1580 1720<br />

3) 570 710 850 n.a. 1140 1280 1420 1570 1710<br />

4) 570 710 860 1000 1140 1280 1430 1570 1710<br />

Lubricating oil pump* m 3 /h 1) 420 530 630 730 840 940 1040 1160 1260<br />

2) 415 520 630 730 830 950 1050 1150 1250<br />

3) 405 510 610 n.a. 810 910 1010 1110 1210<br />

4) 420 530 630 730 840 940 1050 1150 1260<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Heat dissipation approx. kW 7460 9330 11200 13060 14930 16800 18660 20530 22390<br />

Seawater m 3 Lubricating oil cooler<br />

/h 374 467 561 654 748 841 935 1028 1121<br />

Heat dissipation approx.* kW 1) 1560 1990 2350 2710 3170 3530 3890 4340 4700<br />

2) 1630 2070 2540 2900 3260 3810 4170 4530 4890<br />

3) 1440 1800 2160 n.a. 2880 3240 3600 3960 4320<br />

4) 1560 1970 2370 2730 3130 3490 3910 4270 4690<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 206 253 299 346 402 449 505 552 609<br />

2) 196 253 299 356 402 459 505 552 599<br />

3) 196 243 289 n.a. 392 439 485 542 589<br />

Jacket water cooler<br />

4) 196 243 299 346 392 439 495 542 589<br />

Heat dissipation approx. kW 1) 2670 3330 3970 4600 5320 5950 6580 7300 7930<br />

2) 2540 3170 3810 4440 5080 5710 6350 6980 7620<br />

3) 2670 3360 3990 n.a. 5360 5990 6630 7360 7990<br />

4) 2540 3170 3810 4440 5080 5710 6350 6980 7620<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 195 245 290 340 390 440 485 520 580<br />

Exhaust gas flow at 235 °C** kg/h 175600 219500 263300 307200 351100 395000 438900 482800 526700<br />

Air consumption of engine kg/s 47.9 59.8 71.7 83.7 95.7 107.6 119.6 131.6 143.5<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03e: List of capacities, K90<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.10<br />

K90<strong>MC</strong><br />

178 87 73-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 94 r/min kW 18280 22850 27420 31990 36560 41130 45700 50270 54840<br />

Fuel oil circulating pump m 3 /h 7.4 9.3 11.1 13.0 14.8 16.7 18.5 20.0 22.0<br />

Fuel oil supply pump m 3 /h 4.7 5.8 7.0 8.2 9.4 10.5 11.7 12.9 14.0<br />

Jacket cooling water pump m 3 /h 1) 155 200 235 270 315 350 385 430 470<br />

2) 145 180 215 250 290 325 360 395 430<br />

3) 150 190 225 n.a. 305 340 375 415 450<br />

4) 145 180 215 250 290 325 360 395 430<br />

Central cooling water pump* m 3 /h 1) 465 580 690 810 930 1040 1150 1270 1390<br />

2) 460 580 690 810 920 1040 1150 1270 1380<br />

3) 455 570 680 n.a. 920 1030 1140 1260 1370<br />

4) 455 570 690 800 910 1030 1140 1250 1370<br />

Seawater pump* m 3 /h 1) 560 700 830 970 1110 1250 1390 1530 1670<br />

2) 550 690 840 970 1110 1250 1390 1530 1660<br />

3) 550 690 830 n.a. 1100 1240 1380 1520 1650<br />

4) 550 690 830 960 1100 1240 1380 1510 1650<br />

Lubricating oil pump* m 3 /h 1) 420 530 630 730 840 940 1040 1160 1260<br />

2) 415 520 630 730 830 950 1050 1150 1250<br />

3) 405 510 610 n.a. 810 910 1010 1110 1210<br />

4) 420 530 630 730 840 940 1050 1150 1260<br />

Booster pump for camshaft+exh. m 3 /h<br />

Scavenge air cooler<br />

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Heat dissipation approx. kW 7410 9260 11110 12960 14810 16660 18510 20370 22220<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 260 326 391 456 521 586 651 716 781<br />

Heat dissipation approx.* kW 1) 1560 1990 2350 2710 3170 3530 3890 4340 4700<br />

2) 1630 2070 2540 2900 3260 3810 4170 4530 4890<br />

3) 1440 1800 2160 n.a. 2880 3240 3600 3960 4320<br />

4) 1560 1970 2370 2730 3130 3490 3910 4270 4690<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 205 254 299 354 409 454 499 554 609<br />

2) 200 254 299 354 399 454 499 554 599<br />

3) 195 244 289 n.a. 399 444 489 544 589<br />

Jacket water cooler<br />

4) 195 244 299 344 389 444 489 534 589<br />

Heat dissipation approx. kW 1) 2670 3330 3970 4600 5320 5950 6580 7300 7930<br />

2) 2540 3170 3810 4440 5080 5710 6350 6980 7620<br />

3) 2670 3360 3990 n.a. 5360 5990 6630 7360 7990<br />

4) 2540 3170 3810 4440 5080 5710 6350 6980 7620<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 11640 14580 17430 20270 23300 26140 28980 32010 34850<br />

2) 11580 14500 17460 20300 23150 26180 29030 31880 34730<br />

3) 11520 14420 17260 n.a. 23050 25890 28740 31690 34530<br />

4) 11510 14400 17290 20130 23020 25860 28770 31620 34530<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 195 245 290 340 390 440 485 520 580<br />

Exhaust gas flow at 235 °C** kg/h 175600 219500 263300 307200 351100 395000 438900 482800 526700<br />

Air consumption of engine kg/s 47.9 59.8 71.7 83.7 95.7 107.6 119.6 131.6 143.5<br />

Fig. 6.04e: List of capacities, K90<strong>MC</strong> with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.11<br />

K90<strong>MC</strong><br />

178 87 74-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 104 r/min kW 27360 31920 36480 41040 45600 50160 54720<br />

Fuel oil circulating pump m 3 /h 11.1 13.0 14.8 16.7 18.5 20.0 22.0<br />

Fuel oil supply pump m 3 /h 7.0 8.2 9.3 10.5 11.7 12.8 14.0<br />

Jacket cooling water pump m 3 /h 1) 215 260 290 325 355 400 430<br />

2) 200 230 265 295 330 365 395<br />

3) 210 n.a. 280 310 n.a. 385 415<br />

4) 200 230 265 295 330 365 395<br />

Seawater cooling pump* m 3 /h 1) 890 1040 1190 1330 1480 1630 1780<br />

2) 890 1030 1180 1330 1480 1620 1770<br />

3) 880 n.a. 1180 1320 n.a. 1620 1760<br />

4) 880 1030 1170 1320 1470 1610 1760<br />

Lubricating oil pump* m 3 /h 1) 610 720 820 920 1010 1120 1220<br />

2) 610 710 810 920 1020 1120 1220<br />

3) 590 n.a. 790 880 n.a. 1080 1180<br />

4) 610 710 820 910 1020 1120 1220<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Heat dissipation approx. kW 11680 13630 15580 17530 19470 21420 23370<br />

Seawater m 3 Lubricating oil cooler<br />

/h 586 684 781 879 977 1074 1172<br />

Heat dissipation approx.* kW 1) 2350 2810 3170 3530 3890 4340 4700<br />

2) 2540 2900 3260 3810 4170 4530 4890<br />

3) 2160 n.a. 2880 3240 n.a. 3960 4320<br />

4) 2370 2730 3130 3490 3910 4270 4690<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 304 356 409 451 503 556 608<br />

2) 304 346 399 451 503 546 598<br />

3) 294 n.a. 399 441 n.a. 546 588<br />

Jacket water cooler<br />

4) 294 346 389 441 493 536 588<br />

Heat dissipation approx. kW 1) 3970 4680 5320 5950 6580 7300 7930<br />

2) 3810 4440 5080 5710 6350 6980 7620<br />

3) 3990 n.a. 5360 5990 n.a. 7360 7990<br />

4) 3810 4440 5080 5710 6350 6980 7620<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 290 340 390 440 485 520 580<br />

Exhaust gas flow at 235 °C** kg/h 274700 320500 366200 412000 457800 503600 549400<br />

Air consumption of engine kg/s 74.9 87.4 99.9 112.4 124.9 137.3 149.8<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03f: List of capacities, K90<strong>MC</strong>-C with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.12<br />

K90<strong>MC</strong>-C<br />

178 87 75-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 104 r/min kW 27360 31920 36480 41040 45600 50160 54720<br />

Fuel oil circulating pump m 3 /h 11.1 13.0 14.8 16.7 18.5 20.0 22.0<br />

Fuel oil supply pump m 3 /h 7.0 8.2 9.3 10.5 11.7 12.8 14.0<br />

Jacket cooling water pump m 3 /h 1) 215 260 290 325 355 400 430<br />

2) 200 230 265 295 330 365 395<br />

3) 210 n.a. 280 310 n.a. 385 415<br />

4) 200 230 265 295 330 365 395<br />

Central cooling water pump* m 3 /h 1) 710 840 950 1070 1180 1310 1420<br />

2) 710 830 950 1070 1190 1300 1420<br />

3) 700 n.a. 940 1060 n.a. 1290 1410<br />

4) 710 820 940 1050 1170 1290 1410<br />

Seawater pump* m 3 /h 1) 860 1010 1150 1290 1430 1570 1710<br />

2) 860 1000 1140 1290 1430 1570 1710<br />

3) 850 n.a. 1130 1270 n.a. 1560 1700<br />

4) 850 990 1130 1270 1420 1560 1700<br />

Lubricating oil pump* m 3 /h 1) 610 720 820 920 1010 1120 1220<br />

2) 610 710 810 920 1020 1120 1220<br />

3) 590 n.a. 790 880 n.a. 1080 1180<br />

4) 610 710 820 910 1020 1120 1220<br />

Booster pump for camshaft+exh. m 3 /h<br />

Scavenge air cooler<br />

n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Heat dissipation approx. kW 11590 13530 15460 17390 19320 21250 23190<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 410 478 546 614 683 751 819<br />

Heat dissipation approx.* kW 1) 2350 2810 3170 3530 3890 4340 4700<br />

2) 2540 2900 3260 3810 4170 4530 4890<br />

3) 2160 n.a. 2880 3240 n.a. 3960 4320<br />

4) 2370 2730 3130 3490 3910 4270 4690<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 300 362 404 456 497 559 601<br />

2) 300 352 404 456 507 549 601<br />

3) 290 n.a. 394 446 n.a. 539 591<br />

Jacket water cooler<br />

4) 300 342 394 436 487 539 591<br />

Heat dissipation approx. kW 1) 3970 4680 5320 5950 6580 7300 7930<br />

2) 3810 4440 5080 5710 6350 6980 7620<br />

3) 3990 n.a. 5360 5990 n.a. 7360 7990<br />

4) 3810 4440 5080 5710 6350 6980 7620<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 17910 21020 23950 26870 29790 32890 35820<br />

2) 17940 20870 23800 26910 29840 32760 35700<br />

3) 17740 n.a. 23700 26620 n.a. 32570 35500<br />

4) 17770 20700 23670 26590 29580 32500 35500<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 290 340 390 440 485 520 580<br />

Exhaust gas flow at 235 °C** kg/h 274700 320500 366200 412000 457800 503600 549400<br />

Air consumption of engine kg/s 74.9 87.4 99.9 112.4 124.9 137.3 149.8<br />

Fig. 6.04f: List of capacities, K90<strong>MC</strong>-C with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.13<br />

K90<strong>MC</strong>-C<br />

178 87 76-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8<br />

Nominal <strong>MC</strong>R at 76 r/min kW 23280 27160 31040<br />

Fuel oil circulating pump m 3 /h 9.6 11.2 12.7<br />

Fuel oil supply pump m 3 /h 5.7 6.7 7.6<br />

Jacket cooling water pump m 3 /h 1) 215 250 285<br />

2) 200 230 265<br />

3) 210 240 275<br />

4) 200 230 265<br />

Seawater cooling pump* m 3 /h 1) 700 810 920<br />

2) 690 810 930<br />

3) 690 800 920<br />

4) 690 800 920<br />

Lubricating oil pump* m 3 /h 1) 445 510 580<br />

2) 440 520 590<br />

3) 420 490 560<br />

4) 445 520 590<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 10.4 12.1 13.9<br />

Heat dissipation approx. kW 8970 10460 11960<br />

Seawater m 3 Lubricating oil cooler<br />

/h 441 515 588<br />

Heat dissipation approx.* kW 1) 1770 2040 2300<br />

2) 1850 2230 2490<br />

3) 1580 1850 2110<br />

4) 1750 2060 2320<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 259 295 332<br />

2) 249 295 342<br />

3) 249 285 332<br />

Jacket water cooler<br />

4) 249 285 332<br />

Heat dissipation approx. kW 1) 3590 4160 4730<br />

2) 3430 4000 4580<br />

3) 3620 4190 4760<br />

4) 3430 4000 4580<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 250 295 335<br />

Exhaust gas flow at 240 °C** kg/h 216700 252800 289000<br />

Air consumption of engine kg/s 59.1 68.9 78.8<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03g: List of capacities, S80<strong>MC</strong>-C with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.14<br />

S80<strong>MC</strong>-C<br />

178 37 44-5.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 12<br />

Nominal <strong>MC</strong>R at 76 r/min kW 23280 27160 31040<br />

Fuel oil circulating pump m 3 /h 9.6 11.2 12.7<br />

Fuel oil supply pump m 3 /h 5.7 6.7 7.6<br />

Jacket cooling water pump m 3 /h 1) 215 250 285<br />

2) 200 230 265<br />

3) 210 240 275<br />

4) 200 230 265<br />

Central cooling water pump* m 3 /h 1) 590 690 780<br />

2) 590 690 780<br />

3) 580 680 770<br />

4) 580 680 780<br />

Seawater pump* m 3 /h 1) 680 790 900<br />

2) 680 790 910<br />

3) 670 790 900<br />

4) 670 790 900<br />

Lubricating oil pump* m 3 /h 1) 445 510 580<br />

2) 440 520 590<br />

3) 420 490 560<br />

4) 445 520 590<br />

Booster pump for camshaft m 3 /h 10.4 12.1 13.9<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

8900 10380 11860<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 334 390 445<br />

Heat dissipation approx.* kW 1) 1770 2040 2300<br />

2) 1850 2230 2490<br />

3) 1580 1850 2110<br />

4) 1750 2060 2320<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 256 300 335<br />

2) 256 300 335<br />

3) 246 290 325<br />

Jacket water cooler<br />

4) 246 290 335<br />

Heat dissipation approx. kW 1) 3590 4160 4730<br />

2) 3430 4000 4580<br />

3) 3620 4190 4760<br />

4) 3430 4000 4580<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 14260 16580 18890<br />

2) 14180 16610 18930<br />

3) 14100 16420 18730<br />

4) 14080 16440 18760<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 250 295 335<br />

Exhaust gas flow at 240 °C** kg/h 216700 252800 289000<br />

Air consumption of engine kg/s 59.1 68.9 78.8<br />

Fig. 6.04g: List of capacities, S80<strong>MC</strong>-C with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.15<br />

S80<strong>MC</strong>-C<br />

178 37 45-7.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9<br />

Nominal <strong>MC</strong>R at 79 r/min kW 15360 19200 23040 26880 30720 34560<br />

Fuel oil circulating pump m 3 /h 6.3 7.9 9.4 11.0 12.6 14.2<br />

Fuel oil supply pump m 3 /h 3.7 4.7 5.6 6.6 7.5 8.4<br />

Jacket cooling water pump m 3 /h 1) 140 175 215 250 285 325<br />

2) 135 165 200 230 265 300<br />

3) 140 175 210 240 275 315<br />

4) 135 165 200 230 265 300<br />

Seawater cooling pump* m 3 /h 1) 465 580 700 810 930 1050<br />

2) 465 580 700 820 930 1040<br />

3) 460 580 690 810 920 1040<br />

4) 460 580 690 810 920 1040<br />

Lubricating oil pump* m 3 /h 1) 305 380 460 530 610 690<br />

2) 305 375 455 540 610 680<br />

3) 295 365 440 510 590 660<br />

4) 305 380 455 540 610 680<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 6.9 8.7 10.4 12.1 13.9 15.6<br />

Heat dissipation approx. kW 5910 7390 8860 10340 11820 13290<br />

Seawater m 3 Lubricating oil cooler<br />

/h 294 368 441 515 588 662<br />

Heat dissipation approx.* kW 1) 1190 1500 1840 2110 2390 2760<br />

2) 1290 1570 1920 2310 2580 2860<br />

3) 1100 1370 1650 1920 2200 2470<br />

4) 1200 1500 1770 2090 2410 2680<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 171 212 259 295 342 388<br />

2) 171 212 259 305 342 378<br />

3) 166 212 249 295 332 378<br />

Jacket water cooler<br />

4) 166 212 249 295 332 378<br />

Heat dissipation approx. kW 1) 2370 2990 3590 4160 4730 5390<br />

2) 2290 2860 3430 4000 4580 5150<br />

3) 2380 2990 3620 4190 4760 5430<br />

4) 2290 2860 3430 4000 4580 5150<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 165 205 245 290 330 370<br />

Exhaust gas flow at 240 °C** kg/h 142800 178500 214200 249900 285600 321300<br />

Air consumption of engine kg/s 38.9 48.7 58.4 68.1 77.8 87.6<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03h: List of capacities, S80<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1) f or engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.16<br />

S80<strong>MC</strong><br />

178 36 25-9.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9<br />

Nominal <strong>MC</strong>R at 79 r/min kW 15360 19200 23040 26880 30720 34560<br />

Fuel oil circulating pump m 3 /h 6.3 7.9 9.4 11.0 12.6 14.2<br />

Fuel oil supply pump m 3 /h 3.7 4.7 5.6 6.6 7.5 8.4<br />

Jacket cooling water pump m 3 /h 1) 140 175 215 250 285 325<br />

2) 135 165 200 230 265 300<br />

3) 140 175 210 240 275 315<br />

4) 135 165 200 230 265 300<br />

Central cooling water pump* m 3 /h 1) 390 490 590 680 780 880<br />

2) 390 485 580 680 780 870<br />

3) 385 480 580 670 770 870<br />

4) 385 480 580 670 770 870<br />

Seawater pump* m 3 /h 1) 450 570 680 790 900 1020<br />

2) 450 560 680 790 900 1010<br />

3) 445 560 670 780 890 1010<br />

4) 445 560 670 780 900 1010<br />

Lubricating oil pump* m 3 /h 1) 305 380 460 530 610 690<br />

2) 305 375 455 540 610 680<br />

3) 295 365 440 510 590 660<br />

4) 305 380 455 540 610 680<br />

Booster pump for camshaft m 3 /h 6.9 8.7 10.4 12.1 13.9 15.6<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

5860 7330 8800 10260 11730 13190<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 218 273 328 382 437 491<br />

Heat dissipation approx.* kW 1) 1190 1500 1840 2110 2390 2760<br />

2) 1290 1570 1920 2310 2580 2860<br />

3) 1100 1370 1650 1920 2200 2470<br />

4) 1200 1500 1770 2090 2410 2680<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 172 217 262 298 343 389<br />

2) 172 212 252 298 343 379<br />

3) 167 207 252 288 333 379<br />

Jacket water cooler<br />

4) 167 207 252 288 333 379<br />

Heat dissipation approx. kW 1) 2370 2990 3590 4160 4730 5390<br />

2) 2290 2860 3430 4000 4580 5150<br />

3) 2380 2990 3620 4190 4760 5430<br />

4) 2290 2860 3430 4000 4580 5150<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 9420 11820 14230 16530 18850 21340<br />

2) 9440 11760 14150 16570 18890 21200<br />

3) 9340 11690 14070 16370 18690 21090<br />

4) 9350 11690 14000 16350 18720 21020<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 165 205 245 290 330 370<br />

Exhaust gas flow at 240 °C** kg/h 142800 178500 214200 249900 285600 321300<br />

Air consumption of engine kg/s 38.9 48.7 58.4 68.1 77.8 87.6<br />

Fig. 6.04h: List of capacities, S80<strong>MC</strong> with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.17<br />

S80<strong>MC</strong><br />

178 36 27-2.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 93 r/min kW 14560 18200 21840 25480 29120 32760 36400 40040 43680<br />

Fuel oil circulating pump m 3 /h 6.3 7.8 9.4 11.0 12.5 14.1 15.7 17.2 18.8<br />

Fuel oil supply pump m 3 /h 3.7 4.7 5.6 6.5 7.5 8.4 9.3 10.2 11.2<br />

Jacket cooling water pump m 3 /h 1) 120 145 180 210 235 275 300 325 355<br />

2) 110 135 165 190 220 245 275 300 330<br />

3) 115 145 175 200 230 260 290 315 345<br />

4) 110 135 165 190 220 245 275 300 330<br />

Seawater cooling pump* m 3 /h 1) 465 580 700 820 930 1060 1170 1290 1400<br />

2) 465 580 700 820 930 1050 1160 1290 1400<br />

3) 460 580 700 810 930 1040 1160 1270 1390<br />

4) 465 580 690 810 930 1040 1160 1270 1390<br />

Lubricating oil pump* m 3 /h 1) 350 435 530 610 700 790 870 960 1040<br />

2) 350 435 520 610 700 780 870 960 1050<br />

3) 335 420 510 590 670 760 840 930 1010<br />

4) 350 435 520 610 700 780 870 960 1040<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 6.9 8.7 10.4 12.1 13.9 15.6 17.3 19.1 20.8<br />

Heat dissipation approx. kW 6210 7760 9310 10860 12410 13960 15510 17060 18620<br />

Seawater m 3 Lubricating oil cooler<br />

/h 302 378 454 529 605 680 756 832 907<br />

Heat dissipation approx.* kW 1) 1260 1580 1940 2230 2520 2900 3200 3490 3780<br />

2) 1360 1650 2010 2420 2710 3000 3290 3770 4070<br />

3) 1160 1460 1750 2040 2330 2620 2910 3200 3490<br />

4) 1270 1580 1870 2210 2540 2830 3160 3450 3740<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 163 202 246 291 325 380 414 458 493<br />

2) 163 202 246 291 325 370 404 458 493<br />

3) 158 202 246 281 325 360 404 438 483<br />

Jacket water cooler<br />

4) 163 202 236 281 325 360 404 438 483<br />

Heat dissipation approx. kW 1) 2170 2740 3290 3820 4340 4940 5460 5990 6510<br />

2) 2090 2610 3130 3660 4180 4700 5220 5750 6270<br />

3) 2180 2740 3320 3840 4370 4980 5510 6030 6550<br />

4) 2090 2610 3130 3660 4180 4700 5220 5750 6270<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 165 205 245 290 330 370 410 450 495<br />

Exhaust gas flow at 235 °C** kg/h 145700 182200 218600 255000 291500 327900 364400 400800 437200<br />

Air consumption of engine kg/s 39.7 49.7 59.6 69.5 79.5 89.4 99.4 109.3 119.2<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03i: List of capacities, L80<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.18<br />

L80<strong>MC</strong><br />

178 36 26-0.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 93 r/min kW 14560 18200 21840 25480 29120 32760 36400 40040 43680<br />

Fuel oil circulating pump m 3 /h 6.3 7.8 9.4 11.0 12.5 14.1 15.7 17.2 18.8<br />

Fuel oil supply pump m 3 /h 3.7 4.7 5.6 6.5 7.5 8.4 9.3 10.2 11.2<br />

Jacket cooling water pump m 3 /h 1) 120 145 180 210 235 275 300 325 355<br />

2) 110 135 165 190 220 245 275 300 330<br />

3) 115 145 175 200 230 260 290 315 345<br />

4) 110 135 165 190 220 245 275 300 330<br />

Central cooling water pump* m 3 /h 1) 390 490 590 690 780 890 980 1080 1170<br />

2) 390 485 590 690 780 880 970 1080 1180<br />

3) 385 485 580 680 770 870 970 1070 1160<br />

4) 390 485 580 680 780 870 970 1060 1160<br />

Seawater pump* m 3 /h 1) 460 570 690 800 920 1040 1150 1260 1380<br />

2) 460 570 690 810 920 1030 1140 1270 1380<br />

3) 455 570 680 800 910 1030 1140 1250 1360<br />

4) 455 570 680 800 910 1020 1140 1250 1360<br />

Lubricating oil pump* m 3 /h 1) 350 435 530 610 700 790 870 960 1040<br />

2) 350 435 520 610 700 780 870 960 1050<br />

3) 335 420 510 590 670 760 840 930 1010<br />

4) 350 435 520 610 700 780 870 960 1040<br />

Booster pump for camshaft m 3 /h 6.9 8.7 10.4 12.1 13.9 15.6 17.3 19.1 20.8<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

6150 7690 9230 10770 12310 13850 15390 16930 18460<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 227 284 340 397 454 510 567 624 680<br />

Heat dissipation approx.* kW 1) 1260 1580 1940 2230 2520 2900 3200 3490 3780<br />

2) 1360 1650 2010 2420 2710 3000 3290 3770 4070<br />

3) 1160 1460 1750 2040 2330 2620 2910 3200 3490<br />

4) 1270 1580 1870 2210 2540 2830 3160 3450 3740<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 163 206 250 293 326 380 413 456 490<br />

2) 163 201 250 293 326 370 403 456 500<br />

3) 158 201 240 283 316 360 403 446 480<br />

Jacket water cooler<br />

4) 163 201 240 283 326 360 403 436 480<br />

Heat dissipation approx. kW 1) 2170 2740 3290 3820 4340 4940 5460 5990 6510<br />

2) 2090 2610 3130 3660 4180 4700 5220 5750 6270<br />

3) 2180 2740 3320 3840 4370 4980 5510 6030 6550<br />

4) 2090 2610 3130 3660 4180 4700 5220 5750 6270<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 9580 12010 14460 16820 19170 21690 24050 26410 28750<br />

2) 9600 11950 14370 16850 19200 21550 23900 26450 28800<br />

3) 9490 11890 14300 16650 19010 21450 23810 26160 28500<br />

4) 9510 11880 14230 16640 19030 21380 23770 26130 28470<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 165 205 245 290 330 370 410 450 495<br />

Exhaust gas flow at 235 °C** kg/h 145700 182200 218600 255000 291500 327900 364400 400800 437200<br />

Air consumption of engine kg/s 39.7 49.7 59.6 69.5 79.5 89.4 99.4 109.3 119.2<br />

Fig. 6.04i: List of capacities, L80<strong>MC</strong> with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.19<br />

L80<strong>MC</strong><br />

178 36 28-2.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 104 r/min kW 21660 25270 28880 32490 36100 39710 43320<br />

Fuel oil circulating pump m 3 /h 9.4 10.9 12.5 14.0 15.6 17.1 18.7<br />

Fuel oil supply pump m 3 /h 5.5 6.5 7.4 8.3 9.2 10.2 11.1<br />

Jacket cooling water pump m 3 /h 1) 175 200 225 250 285 315 340<br />

2) 155 180 210 235 260 285 310<br />

3) 165 190 220 250 275 300 325<br />

4) 155 180 210 235 260 285 310<br />

Seawater cooling pump* m 3 /h 1) 670 780 890 1000 1110 1220 1330<br />

2) 670 780 890 1000 1110 1220 1340<br />

3) 660 770 880 990 1100 1210 1320<br />

4) 660 770 880 990 1100 1210 1320<br />

Lubricating oil pump* m 3 /h 1) 495 580 650 730 820 900 980<br />

2) 495 570 660 740 820 900 990<br />

3) 475 550 630 710 790 870 950<br />

4) 490 580 660 740 820 900 980<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 10.4 12.1 13.9 15.6 17.3 19.1 20.9<br />

Heat dissipation approx. kW 8840 10310 11780 13260 14730 16200 17680<br />

Seawater m 3 Lubricating oil cooler<br />

/h 441 515 588 662 735 809 882<br />

Heat dissipation approx.* kW 1) 1860 2140 2420 2700 3070 3350 3630<br />

2) 1940 2220 2610 2890 3170 3450 3920<br />

3) 1670 1950 2230 2510 2790 3060 3340<br />

4) 1800 2120 2440 2720 2990 3310 3590<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 229 265 302 338 375 411 448<br />

2) 229 265 302 338 375 411 458<br />

3) 219 255 292 328 365 401 438<br />

Jacket water cooler<br />

4) 219 255 292 328 365 401 438<br />

Heat dissipation approx. kW 1) 2940 3400 3860 4330 4870 5330 5790<br />

2) 2780 3240 3700 4170 4630 5090 5560<br />

3) 2970 3430 3890 4450 4910 5370 5840<br />

4) 2780 3240 3700 4170 4630 5090 5560<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 245 285 330 365 410 450 490<br />

Exhaust gas flow at 235 °C** kg/h 207900 242600 277200 311900 346500 381200 415800<br />

Air consumption of engine kg/s 56.7 66.1 75.5 85.0 94.4 103.9 113.3<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03j: List of capacities, K80<strong>MC</strong>-C with seawater system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.20<br />

K80<strong>MC</strong>-C<br />

178 87 79-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 104 r/min kW 21660 25270 28880 32490 36100 39710 43320<br />

Fuel oil circulating pump m 3 /h 9.4 10.9 12.5 14.0 15.6 17.1 18.7<br />

Fuel oil supply pump m 3 /h 5.5 6.5 7.4 8.3 9.2 10.2 11.1<br />

Jacket cooling water pump m 3 /h 1) 175 200 225 250 285 315 340<br />

2) 155 180 210 235 260 285 310<br />

3) 165 190 220 250 275 300 325<br />

4) 155 180 210 235 260 285 310<br />

Central cooling water pump* m 3 /h 1) 540 630 710 800 890 980 1070<br />

2) 530 620 710 800 890 970 1070<br />

3) 530 620 700 800 880 970 1060<br />

4) 530 620 710 790 880 970 1060<br />

Seawater pump* m 3 /h 1) 650 750 860 970 1080 1180 1290<br />

2) 650 750 860 970 1070 1180 1290<br />

3) 640 750 850 960 1070 1170 1280<br />

4) 640 750 850 960 1060 1170 1280<br />

Lubricating oil pump* m 3 /h 1) 495 580 650 730 820 900 980<br />

2) 495 570 660 740 820 900 990<br />

3) 475 550 630 710 790 870 950<br />

4) 490 580 660 740 820 900 980<br />

Booster pump for camshaft m 3 /h 10.4 12.1 13.9 15.6 17.3 19.1 20.8<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

8770 10230 11690 13150 14610 16070 17540<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 309 360 412 463 515 566 617<br />

Heat dissipation approx.* kW 1) 1860 2140 2420 2700 3070 3350 3630<br />

2) 1940 2220 2610 2890 3170 3450 3920<br />

3) 1670 1950 2230 2510 2790 3060 3340<br />

4) 1800 2120 2440 2720 2990 3310 3590<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 231 270 298 337 375 414 453<br />

2) 221 260 298 337 375 404 453<br />

3) 221 260 288 337 365 404 443<br />

Jacket water cooler<br />

4) 221 260 298 327 365 404 443<br />

Heat dissipation approx. kW 1) 2940 3400 3860 4330 4870 5330 5790<br />

2) 2780 3240 3700 4170 4630 5090 5560<br />

3) 2970 3430 3890 4450 4910 5370 5840<br />

4) 2780 3240 3700 4170 4630 5090 5560<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 13570 15770 17970 20180 22550 24750 26960<br />

2) 13490 15690 18000 20210 22410 24610 27020<br />

3) 13410 15610 17810 20110 22310 24500 26720<br />

4) 13350 15590 17830 20040 22230 24470 26690<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 245 285 330 365 410 450 490<br />

Exhaust gas flow at 235 °C** kg/h 207900 242600 277200 311900 346500 381200 415800<br />

Air consumption of engine kg/s 56.7 66.1 75.5 85.0 94.4 103.9 113.3<br />

Fig. 6.04j: List of capacities, K80<strong>MC</strong>-C with central cooling water system stated at the nominal <strong>MC</strong>R power (L1) for engines<br />

complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.21<br />

K80<strong>MC</strong>-C<br />

178 87 80-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 91 r/min kW 12420 15525 18630 21735 24840<br />

Fuel oil circulating pump m 3 /h 5.5 6.9 8.3 9.6 11.0<br />

Fuel oil supply pump m 3 /h 3.1 3.9 4.6 5.4 6.2<br />

Jacket cooling water pump m 3 /h 1) 110 140 165 190 225<br />

2) 105 130 155 180 205<br />

3) 110 135 160 190 215<br />

4) 105 130 155 180 205<br />

Seawater cooling pump* m 3 /h 1) 405 500 610 710 810<br />

2) 405 510 610 710 810<br />

3) 400 500 600 700 800<br />

4) 400 500 600 700 800<br />

Lubricating oil pump* m 3 /h 1) 265 325 390 455 530<br />

2) 260 325 390 460 520<br />

3) 250 315 380 440 500<br />

4) 265 325 390 455 530<br />

Booster pump for exh. valve act. m 3 /h<br />

Scavenge air cooler<br />

2.0 2.5 3.0 3.5 4.0<br />

Heat dissipation approx. kW 5070 6330 7600 8870 10130<br />

Seawater m 3 Lubricating oil cooler<br />

/h 269 336 404 471 538<br />

Heat dissipation approx.* kW 1) 980 1200 1440 1660 1950<br />

2) 1030 1320 1540 1840 2060<br />

3) 880 1100 1320 1540 1760<br />

4) 970 1200 1420 1680 1970<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 136 164 206 239 272<br />

2) 136 174 206 239 272<br />

3) 131 164 196 229 262<br />

Jacket water cooler<br />

4) 131 164 196 229 262<br />

Heat dissipation approx. kW 1) 1880 2330 2830 3280 3760<br />

2) 1800 2250 2700 3150 3600<br />

3) 1890 2340 2830 3340 3790<br />

4) 1800 2250 2700 3150 3600<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 145 180 220 250 290<br />

Exhaust gas flow at 235 °C** kg/h 117600 147000 176400 205800 235200<br />

Air consumption of engine kg/s 32.1 40.1 48.1 56.1 64.1<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03k: List of capacities, S70<strong>MC</strong>-C with high efficiency turbocharger seawater system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.22<br />

S70<strong>MC</strong>-C<br />

178 45 60-4.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 91 r/min kW 12420 15525 18630 21735 24840<br />

Fuel oil circulating pump m 3 /h 5.5 6.9 8.3 9.6 11.0<br />

Fuel oil supply pump m 3 /h 3.1 3.9 4.6 5.4 6.2<br />

Jacket cooling water pump m 3 /h 1) 110 140 165 190 225<br />

2) 105 130 155 180 205<br />

3) 110 135 160 190 215<br />

4) 105 130 155 180 205<br />

Central cooling water pump* m 3 /h 1) 310 385 465 540 620<br />

2) 310 385 460 540 620<br />

3) 305 380 455 530 610<br />

4) 305 380 455 530 610<br />

Seawater pump* m 3 /h 1) 380 470 570 660 750<br />

2) 375 470 560 660 750<br />

3) 375 465 560 650 750<br />

4) 375 465 560 650 750<br />

Lubricating oil pump* m 3 /h 1) 265 325 390 460 530<br />

2) 260 325 390 460 520<br />

3) 250 315 380 440 500<br />

4) 265 325 390 455 530<br />

Booster pump for exh. valve act. m 3 /h 2.0 2.5 3.0 3.5 4.0<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

5030 6290 7540 8800 10060<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 173 216 259 302 345<br />

Heat dissipation approx.* kW 1) 980 1200 1440 1660 1950<br />

2) 1030 1320 1540 1840 2060<br />

3) 880 1100 1320 1540 1740<br />

4) 980 1200 1420 1680 1970<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 137 169 206 238 275<br />

2) 137 169 201 238 275<br />

3) 132 164 196 228 265<br />

Jacket water cooler<br />

4) 132 164 196 228 265<br />

Heat dissipation approx. kW 1) 1880 2330 2830 3280 3760<br />

2) 1800 2250 2700 3150 3600<br />

3) 1890 2340 2830 3340 3790<br />

4) 1800 2250 2700 3150 3600<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 7890 9820 11810 13740 15770<br />

2) 7860 9860 11780 13790 15720<br />

3) 7800 9730 11690 13680 15610<br />

4) 7810 9740 11660 13630 15630<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 145 180 220 250 290<br />

Exhaust gas flow at 235 °C** kg/h 117600 147000 176400 205800 235200<br />

Air consumption of engine kg/s 32.1 40.1 48.1 56.1 64.1<br />

Fig. 6.04k: List of capacities, S70<strong>MC</strong>-C with high efficiency turbocharger central cooling water system stated at the<br />

nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.23<br />

S70<strong>MC</strong>-C<br />

178 45 61-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 91 r/min kW 11240 14050 16860 19670 22480<br />

Fuel oil circulating pump m 3 /h 5.2 6.4 7.7 9.0 10.3<br />

Fuel oil supply pump m 3 /h 2.8 3.5 4.2 4.9 5.6<br />

Jacket cooling water pump m 3 /h 1) 94 115 135 155 190<br />

2) 85 105 125 150 170<br />

3) 90 110 135 155 180<br />

4) 85 105 125 150 170<br />

Seawater cooling pump* m 3 /h 1) 355 440 530 620 710<br />

2) 355 440 530 620 710<br />

3) 350 440 530 610 700<br />

4) 350 440 530 610 700<br />

Lubricating oil pump* m 3 /h 1) 245 305 370 425 490<br />

2) 245 305 365 425 490<br />

3) 235 295 355 410 470<br />

4) 245 305 365 425 485<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 6.2 7.8 9.4 10.9 12.5<br />

Heat dissipation approx. kW 4460 5570 6690 7800 8920<br />

Seawater m 3 Lubricating oil cooler<br />

/h 231 289 347 404 462<br />

Heat dissipation approx.* kW 1) 890 1090 1310 1510 1780<br />

2) 930 1180 1380 1580 1860<br />

3) 800 990 1190 1390 1590<br />

4) 870 1100 1300 1520 1710<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 124 151 183 216 248<br />

2) 124 151 183 216 248<br />

3) 119 151 183 206 238<br />

Jacket water cooler<br />

4) 119 151 183 206 238<br />

Heat dissipation approx. kW 1) 1710 2110 2570 2980 3410<br />

2) 1630 2030 2440 2850 3260<br />

3) 1720 2130 2570 2980 3440<br />

4) 1630 2030 2440 2850 3260<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 135 170 200 235 270<br />

Exhaust gas flow at 235 °C** kg/h 106300 132800 159400 186000 212500<br />

Air consumption of engine kg/s 29.0 36.2 43.4 50.7 57.9<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03l: List of capacities, S70<strong>MC</strong> with high efficiency turbocharger seawater system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.24<br />

S70<strong>MC</strong><br />

178 87 81-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 91 r/min kW 11240 14050 16860 19670 22480<br />

Fuel oil circulating pump m 3 /h 5.2 6.4 7.7 9.0 10.3<br />

Fuel oil supply pump m 3 /h 2.8 3.5 4.2 4.9 5.6<br />

Jacket cooling water pump m 3 /h 1) 94 115 135 155 190<br />

2) 85 105 125 150 170<br />

3) 90 110 135 155 180<br />

4) 85 105 125 150 170<br />

Central cooling water pump* m 3 /h 1) 290 360 430 500 580<br />

2) 285 360 430 500 570<br />

3) 285 355 425 495 570<br />

4) 285 355 425 495 570<br />

Seawater pump* m 3 /h 1) 335 420 500 590 670<br />

2) 335 420 500 580 670<br />

3) 330 415 495 580 660<br />

4) 330 415 495 580 660<br />

Lubricating oil pump* m 3 /h 1) 245 305 370 425 490<br />

2) 245 305 365 425 490<br />

3) 235 295 355 410 470<br />

4) 245 305 365 425 485<br />

Booster pump for camshaft m 3 /h 6.2 7.8 9.4 10.9 12.5<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

4420 5530 6630 7740 8840<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 164 205 246 287 328<br />

Heat dissipation approx.* kW 1) 890 1090 1310 1510 1780<br />

2) 930 1180 1380 1580 1860<br />

3) 800 990 1190 1390 1590<br />

4) 870 1100 1300 1520 1710<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 126 155 184 213 252<br />

2) 121 155 184 213 242<br />

3) 121 150 179 208 242<br />

Jacket water cooler<br />

4) 121 150 179 208 242<br />

Heat dissipation approx. kW 1) 1710 2110 2570 2980 3410<br />

2) 1630 2030 2440 2850 3260<br />

3) 1720 2130 2570 2980 3440<br />

4) 1630 2030 2440 2850 3260<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 7020 8730 10510 12230 14030<br />

2) 6980 8740 10450 12170 13960<br />

3) 6940 8650 10390 12110 13870<br />

4) 6920 8660 10370 12110 13810<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 135 170 200 235 270<br />

Exhaust gas flow at 235 °C** kg/h 106300 132800 159400 186000 212500<br />

Air consumption of engine kg/s 29.0 36.2 43.4 50.7 57.9<br />

Fig. 6.04l: List of capacities, S70<strong>MC</strong> with high efficiency turbocharger and central cooling water system stated at the<br />

nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.25<br />

S70<strong>MC</strong><br />

178 87 83-1.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 108 r/min kW 11320 14150 16980 19810 22640<br />

Fuel oil circulating pump m 3 /h 5.3 6.6 7.9 9.2 10.6<br />

Fuel oil supply pump m 3 /h 2.9 3.6 4.3 5.1 5.8<br />

Jacket cooling water pump m 3 /h 1) 105 125 150 175 205<br />

2) 94 120 140 165 190<br />

3) 99 125 150 175 200<br />

4) 94 120 140 165 190<br />

Seawater cooling pump* m 3 /h 1) 375 465 560 650 750<br />

2) 370 465 560 650 740<br />

3) 370 460 550 650 740<br />

4) 370 460 550 640 740<br />

Lubricating oil pump* m 3 /h 1) 255 320 385 445 510<br />

2) 255 320 380 450 510<br />

3) 245 310 370 430 490<br />

4) 260 320 380 445 520<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 6.2 7.8 9.4 10.9 12.5<br />

Heat dissipation approx. kW 4820 6030 7240 8440 9650<br />

Seawater m 3 Lubricating oil cooler<br />

/h 248 310 372 434 496<br />

Heat dissipation approx.* kW 1) 890 1090 1310 1510 1780<br />

2) 930 1190 1380 1660 1860<br />

3) 800 990 1190 1390 1590<br />

4) 880 1100 1300 1520 1760<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 127 155 188 216 254<br />

2) 122 155 188 216 244<br />

3) 122 150 178 216 244<br />

Jacket water cooler<br />

4) 122 150 178 206 244<br />

Heat dissipation approx. kW 1) 1720 2130 2590 3000 3440<br />

2) 1640 2050 2460 2870 3280<br />

3) 1730 2140 2590 3060 3470<br />

4) 1640 2050 2460 2870 3280<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 140 175 205 240 280<br />

Exhaust gas flow at 235 °C** kg/h 113400 141800 170100 198500 226800<br />

Air consumption of engine kg/s 30.9 38.7 46.4 54.1 61.9<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03m: List of capacities, L70<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.26<br />

L70<strong>MC</strong><br />

178 87 84-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 108 r/min kW 11320 14150 16980 19810 22640<br />

Fuel oil circulating pump m 3 /h 5.3 6.6 7.9 9.2 10.6<br />

Fuel oil supply pump m 3 /h 2.9 3.6 4.3 5.1 5.8<br />

Jacket cooling water pump m 3 /h 1) 105 125 150 175 205<br />

2) 94 120 140 165 190<br />

3) 99 125 150 175 200<br />

4) 94 120 140 165 190<br />

Central cooling water pump* m 3 /h 1) 295 370 445 520 590<br />

2) 295 370 440 520 590<br />

3) 295 365 440 510 590<br />

4) 295 365 440 510 590<br />

Seawater pump* m 3 /h 1) 355 440 530 620 710<br />

2) 350 440 530 620 700<br />

3) 350 435 520 610 700<br />

4) 350 435 520 610 700<br />

Lubricating oil pump* m 3 /h 1) 255 320 385 445 510<br />

2) 255 320 380 450 510<br />

3) 245 310 370 430 490<br />

4) 260 320 380 445 520<br />

Booster pump for camshaft m 3 /h 6.2 7.8 9.4 10.9 12.5<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

4790 5990 7180 8380 9580<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 172 215 258 301 344<br />

Heat dissipation approx.* kW 1) 890 1090 1310 1510 1780<br />

2) 930 1190 1380 1660 1860<br />

3) 800 990 1190 1390 1590<br />

4) 880 1100 1300 1520 1760<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 123 155 187 219 246<br />

2) 123 155 182 219 246<br />

3) 123 150 182 209 246<br />

Jacket water cooler<br />

4) 123 150 182 209 246<br />

Heat dissipation approx. kW 1) 1720 2130 2590 3000 3440<br />

2) 1640 2050 2460 2870 3280<br />

3) 1730 2140 2590 3060 3470<br />

4) 1640 2050 2460 2870 3280<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 7400 9210 11080 12890 14800<br />

2) 7360 9230 11020 12910 14720<br />

3) 7320 9120 10960 12830 14640<br />

4) 7310 9140 10940 12770 14620<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 140 175 205 240 280<br />

Exhaust gas flow at 235 °C** kg/h 113400 141800 170100 198500 226800<br />

Air consumption of engine kg/s 30.9 38.7 46.4 54.1 61.9<br />

Fig. 6.04m: List of capacities, L70<strong>MC</strong> with central cooling water system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.27<br />

L70<strong>MC</strong><br />

178 87 85-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 105 r/min kW 9020 11275 13530 15785 18040<br />

Fuel oil circulating pump m 3 /h 4.5 5.6 6.8 7.9 9.0<br />

Fuel oil supply pump m 3 /h 2.3 2.8 3.4 3.9 4.5<br />

Jacket cooling water pump m 3 /h 1) 80 105 125 140 160<br />

2) 76 95 115 135 150<br />

3) 79 100 120 140 160<br />

4) 76 95 115 135 150<br />

Seawater cooling pump* m 3 /h 1) 300 370 445 515 600<br />

2) 300 370 445 515 590<br />

3) 295 365 440 510 590<br />

4) 295 365 440 515 590<br />

Lubricating oil pump* m 3 /h 1) 190 240 285 330 380<br />

2) 190 240 285 335 380<br />

3) 185 230 275 320 370<br />

4) 190 240 290 335 380<br />

Booster pump for exh. valve act. m 3 /h<br />

Scavenge air cooler<br />

1.6 2.0 2.4 2.8 3.2<br />

Heat dissipation approx. kW 3670 4590 5500 6420 7340<br />

Seawater m 3 Lubricating oil cooler<br />

/h 198 247 297 346 395<br />

Heat dissipation approx.* kW 1) 700 900 1060 1220 1400<br />

2) 760 950 1110 1340 1500<br />

3) 640 800 960 1120 1280<br />

4) 710 870 1050 1220 1380<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Seawater m 3 /h 1) 97 128 148 174 195<br />

2) 97 123 148 174 195<br />

3) 97 123 143 164 195<br />

Jacket water cooler<br />

4) 97 118 143 164 195<br />

Heat dissipation approx. kW 1) 1390 1730 2060 2390 2770<br />

2) 1320 1650 1980 2310 2640<br />

3) 1380 1740 2070 2400 2770<br />

4) 1320 1650 1980 2310 2640<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 120 145 180 205 235<br />

Exhaust gas flow at 235 °C** kg/h 85260 106575 127890 149205 170520<br />

Air consumption of engine kg/s 23.2 29.0 34.9 40.7 46.5<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03n: List of capacities, S60<strong>MC</strong>-C with high efficiency turbocharger seawater system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.28<br />

S60<strong>MC</strong>-C<br />

178 45 58-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

430 200 025 198 22 41<br />

6.01.29<br />

S60<strong>MC</strong>-C<br />

Nominal <strong>MC</strong>R at 105 r/min kW 9020 11275 13530 15785 18040<br />

Fuel oil circulating pump m 3 /h 4.5 5.6 6.8 7.9 9.0<br />

Fuel oil supply pump m 3 /h 2.3 2.8 3.4 3.9 4.5<br />

Jacket cooling water pump m 3 /h 1) 80 105 125 140 160<br />

2) 76 95 115 135 150<br />

3) 79 100 120 140 160<br />

4) 76 95 115 135 150<br />

Central cooling water pump* m 3 /h 1) 225 285 340 395 450<br />

2) 225 280 335 395 450<br />

3) 225 280 335 390 445<br />

4) 225 280 335 390 445<br />

Seawater pump* m 3 /h 1) 275 345 410 480 550<br />

2) 275 340 410 480 550<br />

3) 270 340 405 475 540<br />

4) 270 340 405 475 540<br />

Lubricating oil pump* m 3 /h 1) 190 240 285 330 380<br />

2) 190 240 285 335 380<br />

3) 185 230 275 320 370<br />

4) 190 240 290 335 380<br />

Booster pump for exh. valve act. m 3 /h 1.6 2.0 2.4 2.8 3.2<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

3640 4550 5460 6380 7290<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 126 158 189 221 252<br />

Heat dissipation approx.* kW 1) 700 900 1060 1220 1400<br />

2) 760 950 1110 1340 1500<br />

3) 640 800 960 1120 1280<br />

4) 710 870 1050 1220 1380<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 99 127 151 174 198<br />

2) 99 122 146 174 198<br />

3) 99 122 146 169 193<br />

Jacket water cooler<br />

4) 99 122 146 169 193<br />

Heat dissipation approx. kW 1) 1390 1730 2060 2390 2770<br />

2) 1320 1650 1980 2310 2640<br />

3) 1380 1740 2070 2400 2770<br />

4) 1320 1650 1980 2310 2640<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 5730 7180 8580 9990 11460<br />

2) 5720 7150 8550 10030 11430<br />

3) 5660 7090 8490 9900 11340<br />

4) 5670 7070 8490 9910 11310<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 120 145 180 205 235<br />

Exhaust gas flow at 235 °C** kg/h 85260 106575 127890 149205 170520<br />

Air consumption of engine kg/s 23.2 29.0 34.9 40.7 46.5<br />

Fig. 6.04n: List of capacities, S60<strong>MC</strong>-C with high efficiency turbocharger central cooling system stated at the<br />

nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

178 45 59-4.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 105 r/min kW 8160 10200 12240 14280 16320<br />

Fuel oil circulating pump m 3 /h 4.2 5.3 6.4 7.4 8.5<br />

Fuel oil supply pump m 3 /h 2.0 2.5 3.1 3.6 4.1<br />

Jacket cooling water pump m 3 /h 1) 67 82 100 120 135<br />

2) 62 78 93 110 125<br />

3) 66 83 98 115 130<br />

4) 62 78 93 110 125<br />

Seawater cooling pump* m 3 /h 1) 265 325 395 455 520<br />

2) 260 325 390 460 520<br />

3) 260 325 390 455 520<br />

4) 260 325 390 455 520<br />

Lubricating oil pump* m 3 /h 1) 175 220 265 310 350<br />

2) 175 220 265 310 350<br />

3) 170 210 255 295 340<br />

4) 180 220 265 310 350<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 5.2 6.5 7.8 9.1 10.4<br />

Heat dissipation approx. kW 3240 4050 4860 5670 6480<br />

Seawater m 3 Lubricating oil cooler<br />

/h 172 215 258 301 344<br />

Heat dissipation approx.* kW 1) 640 780 960 1100 1250<br />

2) 680 850 1000 1200 1340<br />

3) 580 720 860 1010 1150<br />

4) 650 790 950 1110 1250<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 93 110 137 154 176<br />

2) 88 110 132 159 176<br />

3) 88 110 132 154 176<br />

Jacket water cooler<br />

4) 88 110 132 154 176<br />

Heat dissipation approx. kW 1) 1250 1550 1860 2160 2460<br />

2) 1190 1480 1780 2080 2380<br />

3) 1250 1580 1880 2170 2500<br />

4) 1190 1480 1780 2080 2380<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 110 140 170 195 225<br />

Exhaust gas flow at 235 °C** kg/h 77300 96600 115900 135200 154600<br />

Air consumption of engine kg/s 21.1 26.3 31.6 36.8 42.1<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03o: List of capacities, S60<strong>MC</strong> with high efficiency turbocharger seawater system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.30<br />

S60<strong>MC</strong><br />

178 30 51-8.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 105 r/min kW 8160 10200 12240 14280 16320<br />

Fuel oil circulating pump m 3 /h 4.2 5.3 6.4 7.4 8.5<br />

Fuel oil supply pump m 3 /h 2.0 2.5 3.1 3.6 4.1<br />

Jacket cooling water pump m 3 /h 1) 67 82 100 120 135<br />

2) 62 78 93 110 125<br />

3) 66 83 98 115 130<br />

4) 62 78 93 110 125<br />

Central cooling water pump* m 3 /h 1) 210 265 320 370 420<br />

2) 210 265 315 370 420<br />

3) 210 260 315 365 420<br />

4) 210 260 315 365 415<br />

Seawater pump* m 3 /h 1) 245 305 365 425 485<br />

2) 245 305 365 425 485<br />

3) 240 300 360 420 485<br />

4) 240 300 360 420 480<br />

Lubricating oil pump* m 3 /h 1) 175 220 265 310 350<br />

2) 175 220 265 310 350<br />

3) 170 210 255 295 340<br />

4) 180 220 265 310 350<br />

Booster pump for camshaft m 3 /h 5.2 6.5 7.8 9.1 10.4<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

3220 4020 4830 5630 6440<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 122 152 183 213 244<br />

Heat dissipation approx.* kW 1) 640 780 960 1100 1250<br />

2) 680 850 1000 1200 1340<br />

3) 580 720 860 1010 1150<br />

4) 650 790 950 1110 1250<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 88 113 137 157 176<br />

2) 88 113 132 157 176<br />

3) 88 108 132 152 176<br />

Jacket water cooler<br />

4) 88 108 132 152 171<br />

Heat dissipation approx. kW 1) 1250 1550 1860 2160 2460<br />

2) 1190 1480 1780 2080 2380<br />

3) 1250 1580 1880 2170 2500<br />

4) 1190 1480 1780 2080 2380<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 5110 6350 7650 8890 10150<br />

2) 5090 6350 7610 8910 10160<br />

3) 5050 6320 7570 8810 10090<br />

4) 5060 6290 7560 8820 10070<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 110 140 170 195 225<br />

Exhaust gas flow at 235 °C** kg/h 77300 96600 115900 135200 154600<br />

Air consumption of engine kg/s 21.1 26.3 31.6 36.8 42.1<br />

Fig. 6.04o: List of capacities, S60<strong>MC</strong> with high efficiency turbocharger central cooling system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.31<br />

S60<strong>MC</strong><br />

178 30 53-1.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

**<br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 123 r/min kW 7680 9600 11520 13440 15360<br />

Fuel oil circulating pump m 3 /h 4.1 5.2 6.2 7.3 8.3<br />

Fuel oil supply pump m 3 /h 2.0 2.4 2.9 3.4 3.9<br />

Jacket cooling water pump m 3 /h 1) 64 79 99 115 130<br />

2) 60 75 90 105 120<br />

3) 64 79 95 110 125<br />

4) 60 75 90 105 120<br />

Seawater cooling pump* m 3 /h 1) 250 310 370 430 490<br />

2) 245 310 370 430 495<br />

3) 245 305 365 425 490<br />

4) 245 305 365 430 490<br />

Lubricating oil pump* m 3 /h 1) 175 220 265 305 350<br />

2) 175 220 260 305 350<br />

3) 170 210 255 295 340<br />

4) 175 220 265 305 350<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 5.2 6.5 7.8 9.1 10.4<br />

Heat dissipation approx. kW 3060 3820 4590 5350 6110<br />

Seawater m 3 Lubricating oil cooler<br />

/h 160 200 239 279 319<br />

Heat dissipation approx.* kW 1) 630 770 950 1090 1230<br />

2) 670 840 990 1190 1330<br />

3) 570 710 850 990 1140<br />

4) 640 780 940 1100 1240<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 90 110 131 151 171<br />

2) 85 110 131 151 176<br />

3) 85 105 126 146 171<br />

Jacket water cooler<br />

4) 85 105 126 151 171<br />

Heat dissipation approx. kW 1) 1210 1500 1800 2090 2380<br />

2) 1150 1440 1720 2010 2300<br />

3) 1210 1500 1820 2100 2390<br />

4) 1150 1440 1720 2010 2300<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 110 135 165 190 220<br />

Exhaust gas flow at 235 °C** kg/h 73900 92400 110900 129400 147800<br />

Air consumption of engine kg/s 20.1 25.2 30.2 35.3 40.3<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03p: List of capacities, L60<strong>MC</strong> with high efficiency turbocharger seawater system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.32<br />

L60<strong>MC</strong><br />

178 87 86-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 123 r/min kW 7680 9600 11520 13440 15360<br />

Fuel oil circulating pump m 3 /h 4.1 5.2 6.2 7.3 8.3<br />

Fuel oil supply pump m 3 /h 2.0 2.4 2.9 3.4 3.9<br />

Jacket cooling water pump m 3 /h 1) 64 79 99 115 130<br />

2) 60 75 90 105 120<br />

3) 64 79 95 110 125<br />

4) 60 75 90 105 120<br />

Central cooling water pump* m 3 /h 1) 200 250 300 350 400<br />

2) 200 250 300 350 400<br />

3) 200 245 300 345 395<br />

4) 200 250 295 345 395<br />

Seawater pump* m 3 /h 1) 235 290 350 405 465<br />

2) 230 290 345 405 465<br />

3) 230 285 345 400 460<br />

4) 230 290 345 400 460<br />

Lubricating oil pump* m 3 /h 1) 175 220 265 305 350<br />

2) 175 220 260 305 350<br />

3) 170 210 255 295 340<br />

4) 175 220 265 305 350<br />

Booster pump for camshaft m 3 /h 5.2 6.5 7.8 9.1 10.4<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

3030 3790 4550 5300 6060<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 113 142 170 199 227<br />

Heat dissipation approx.* kW 1) 630 770 950 1090 1230<br />

2) 670 840 990 1190 1330<br />

3) 570 710 850 990 1140<br />

4) 640 780 940 1100 1240<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 87 108 130 151 173<br />

2) 87 108 130 151 173<br />

3) 87 103 130 146 168<br />

Jacket water cooler<br />

4) 87 108 125 146 168<br />

Heat dissipation approx. kW 1) 1210 1500 1800 2090 2380<br />

2) 1150 1440 1720 2010 2300<br />

3) 1210 1500 1820 2100 2390<br />

4) 1150 1440 1720 2010 2300<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 4870 6060 7300 8480 9670<br />

2) 4850 6070 7260 8500 9690<br />

3) 4810 6000 7220 8390 9590<br />

4) 4820 6010 7210 8410 9600<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 110 135 165 190 220<br />

Exhaust gas flow at 235 °C** kg/h 73900 92400 110900 129400 147800<br />

Air consumption of engine kg/s 20.1 25.2 30.2 35.3 40.3<br />

Fig. 6.04p: List of capacities, L60<strong>MC</strong> with high efficiency turbocharger central cooling system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.33<br />

L60<strong>MC</strong><br />

178 87 87-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 127 r/min kW 6320 7900 9480 11060 12640<br />

Fuel oil circulating pump m 3 /h 3.7 4.6 5.6 6.5 7.4<br />

Fuel oil supply pump m 3 /h 1.6 2.0 2.4 2.8 3.2<br />

Jacket cooling water pump m 3 /h 1) 53 70 84 100 115<br />

2) 53 66 79 92 105<br />

3) 56 69 83 97 110<br />

4) 53 66 79 92 105<br />

Seawater cooling pump* m 3 /h 1) 195 245 340 345 390<br />

2) 195 245 335 340 390<br />

3) 195 240 335 340 385<br />

4) 195 245 335 340 385<br />

Lubricating oil pump* m 3 /h 1) 135 165 200 235 265<br />

2) 135 165 195 230 260<br />

3) 125 160 190 220 255<br />

4) 130 165 200 230 265<br />

Booster pump for exh. valve act. m 3 /h<br />

Scavenge air cooler<br />

1.5 2.0 2.0 2.5 2.5<br />

Heat dissipation approx. kW 2570 3210 3850 4490 5130<br />

Seawater m 3 Lubricating oil cooler<br />

/h 126 158 234 221 252<br />

Heat dissipation approx.* kW 1) 530 610 720 870 980<br />

2) 520 650 760 900 1010<br />

3) 440 550 660 770 880<br />

4) 495 620 730 840 970<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 69 87 106 124 138<br />

2) 69 87 101 119 138<br />

3) 69 82 101 119 133<br />

Jacket water cooler<br />

4) 69 87 101 119 133<br />

Heat dissipation approx. kW 1) 920 1220 1450 1690 1920<br />

2) 920 1150 1380 1610 1840<br />

3) 980 1210 1440 1700 1930<br />

4) 920 1150 1380 1610 1840<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 97 120 145 170 195<br />

Exhaust gas flow at 235 °C** kg/h 59600 74600 89500 104400 119300<br />

Air consumption of engine kg/s 16.2 20.3 24.4 28.4 32.5<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03q: List of capacities, S50<strong>MC</strong>-C with high efficiency turbocharger seawater system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.34<br />

S50<strong>MC</strong>-C<br />

178 32 47-3.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

430 200 025 198 22 41<br />

6.01.35<br />

S50<strong>MC</strong>-C<br />

Nominal <strong>MC</strong>R at 127 r/min kW 6320 7900 9480 11060 12640<br />

Fuel oil circulating pump m 3 /h 3.7 4.6 5.6 6.5 7.4<br />

Fuel oil supply pump m 3 /h 1.6 2.0 2.4 2.8 3.2<br />

Jacket cooling water pump m 3 /h 1) 53 70 84 100 115<br />

2) 53 66 79 92 105<br />

3) 56 69 83 97 110<br />

4) 53 66 79 92 105<br />

Central cooling water pump* m 3 /h 1) 170 215 260 300 345<br />

2) 170 215 255 300 340<br />

3) 170 210 255 300 340<br />

4) 170 215 255 295 340<br />

Seawater pump* m 3 /h 1) 190 240 285 335 385<br />

2) 190 240 285 335 380<br />

3) 190 235 285 330 380<br />

4) 190 235 285 330 380<br />

Lubricating oil pump* m 3 /h 1) 135 165 200 235 265<br />

2) 135 165 195 230 260<br />

3) 125 160 190 220 255<br />

4) 130 165 200 230 265<br />

Booster pump for exh. valve act. m 3 /h 1.5 2.0 2.0 2.5 2.5<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

2550 3190 3820 4460 5100<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 103 128 154 180 205<br />

Heat dissipation approx.* kW 1) 530 610 720 870 980<br />

2) 520 650 760 900 1010<br />

3) 440 550 660 770 880<br />

4) 495 620 730 840 970<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 67 87 106 120 140<br />

2) 67 87 101 120 135<br />

3) 67 82 101 120 135<br />

Jacket water cooler<br />

4) 67 87 101 115 135<br />

Heat dissipation approx. kW 1) 920 1220 1450 1690 1920<br />

2) 920 1150 1380 1610 1840<br />

3) 980 1210 1440 1700 1930<br />

4) 920 1150 1380 1610 1840<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 4000 5020 5990 7020 8000<br />

2) 3990 4990 5960 6970 7950<br />

3) 3970 4950 5920 6930 7910<br />

4) 3970 4960 5930 6910 7910<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 97 120 145 170 195<br />

Exhaust gas flow at 235 °C** kg/h 59600 74600 89500 104400 119300<br />

Air consumption of engine kg/s 16.2 20.3 24.4 28.4 32.5<br />

Fig. 6.04q: List of capacities, S50<strong>MC</strong>-C with high efficiency turbocharger central cooling system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

178 32 48-5.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 127 r/min kW 5720 7150 8580 10010 11440<br />

Fuel oil circulating pump m 3 /h 3.5 4.4 5.3 6.2 7.1<br />

Fuel oil supply pump m 3 /h 1.4 1.8 2.2 2.5 2.9<br />

Jacket cooling water pump m 3 /h 1) 44 59 70 81 96<br />

2) 44 55 66 77 87<br />

3) 46 58 69 82 93<br />

4) 44 55 66 77 87<br />

Seawater cooling pump* m 3 /h 1) 170 210 250 290 335<br />

2) 165 210 250 290 335<br />

3) 165 210 250 290 330<br />

4) 165 205 250 290 330<br />

Lubricating oil pump* m 3 /h 1) 125 155 185 215 250<br />

2) 125 155 185 220 250<br />

3) 120 150 180 210 240<br />

4) 125 155 190 220 250<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 4.2 5.2 6.2 7.3 8.3<br />

Heat dissipation approx. kW 2280 2840 3410 3980 4550<br />

Seawater m 3 Lubricating oil cooler<br />

/h 104 130 156 182 208<br />

Heat dissipation approx.* kW 1) 495 570 670 770 910<br />

2) 480 610 710 840 950<br />

3) 405 510 610 710 810<br />

4) 460 560 680 780 880<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 66 80 94 108 127<br />

2) 61 80 94 108 127<br />

3) 61 80 94 108 122<br />

Jacket water cooler<br />

4) 61 75 94 108 122<br />

Heat dissipation approx. kW 1) 840 1110 1320 1530 1750<br />

2) 840 1040 1250 1460 1670<br />

3) 880 1110 1320 1560 1770<br />

4) 840 1040 1250 1460 1670<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 92 115 140 165 185<br />

Exhaust gas flow at 235 °C** kg/h 54200 67700 81300 94800 108400<br />

Air consumption of engine kg/s 14.8 18.4 22.2 25.8 29.5<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03r: List of capacities, S50<strong>MC</strong> with high efficiency turbocharger seawater system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.36<br />

S50<strong>MC</strong><br />

178 87 88-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 127 r/min kW 5720 7150 8580 10010 11440<br />

Fuel oil circulating pump m 3 /h 3.5 4.4 5.3 6.2 7.1<br />

Fuel oil supply pump m 3 /h 1.4 1.8 2.2 2.5 2.9<br />

Jacket cooling water pump m 3 /h 1) 44 59 70 81 96<br />

2) 44 55 66 77 87<br />

3) 46 58 69 82 93<br />

4) 44 55 66 77 87<br />

Central cooling water pump* m 3 /h 1) 155 195 220 255 295<br />

2) 155 195 220 255 295<br />

3) 150 195 220 255 295<br />

4) 150 190 220 250 290<br />

Seawater pump* m 3 /h 1) 170 215 255 300 345<br />

2) 170 215 255 300 340<br />

3) 170 210 255 300 340<br />

4) 170 210 255 295 340<br />

Lubricating oil pump* m 3 /h 1) 125 155 185 215 250<br />

2) 125 155 185 220 250<br />

3) 120 150 180 210 240<br />

4) 125 155 190 220 250<br />

Booster pump for camshaft m 3 /h 4.2 5.2 6.2 7.3 8.3<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

2260 2820 3380 3950 4510<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 90 115 126 144 170<br />

Heat dissipation approx.* kW 1) 495 570 670 770 910<br />

2) 480 610 710 840 950<br />

3) 405 510 610 710 810<br />

4) 460 560 680 780 880<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 65 80 94 111 125<br />

2) 65 80 94 111 125<br />

3) 60 80 94 111 125<br />

Jacket water cooler<br />

4) 60 75 94 106 120<br />

Heat dissipation approx. kW 1) 840 1110 1320 1530 1750<br />

2) 840 1040 1250 1460 1670<br />

3) 880 1110 1320 1560 1770<br />

4) 840 1040 1250 1460 1670<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 3600 4500 5370 6250 7170<br />

2) 3580 4470 5340 6250 7130<br />

3) 3550 4440 5310 6220 7090<br />

4) 3560 4420 5310 6190 7060<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 92 115 140 165 185<br />

Exhaust gas flow at 235 °C** kg/h 54200 67700 81300 94800 108400<br />

Air consumption of engine kg/s 14.8 18.4 22.2 25.8 29.5<br />

Fig. 6.04r: List of capacities, S50<strong>MC</strong> with high efficiency turbocharger central cooling system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.37<br />

S50<strong>MC</strong><br />

178 87 89-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 148 r/min kW 5320 6650 7980 9310 10640<br />

Fuel oil circulating pump m 3 /h 3.4 4.3 5.2 6.0 6.9<br />

Fuel oil supply pump m 3 /h 1.4 1.7 2.1 2.4 2.7<br />

Jacket cooling water pump m 3 /h 1) 41 51 66 76 86<br />

2) 41 51 62 72 82<br />

3) 43 55 65 75 87<br />

4) 41 51 62 72 82<br />

Seawater cooling pump* m 3 /h 1) 160 200 240 280 320<br />

2) 160 200 240 280 320<br />

3) 160 200 240 280 320<br />

4) 160 200 240 280 320<br />

Lubricating oil pump* m 3 /h 1) 125 155 185 215 245<br />

2) 125 155 185 215 245<br />

3) 120 150 180 210 240<br />

4) 125 155 185 215 245<br />

Booster pump for camshaft m 3 Scavenge air cooler<br />

/h 4.2 5.2 6.2 7.3 8.3<br />

Heat dissipation approx. kW 2080 2600 3120 3640 4160<br />

Seawater m 3 Lubricating oil cooler<br />

/h 100 125 150 175 200<br />

Heat dissipation approx.* kW 1) 490 590 670 770 870<br />

2) 480 580 710 810 940<br />

3) 405 500 600 710 810<br />

4) 455 560 670 780 880<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 60 75 90 105 120<br />

2) 60 75 90 105 120<br />

3) 60 75 90 105 120<br />

Jacket water cooler<br />

4) 60 75 90 105 120<br />

Heat dissipation approx. kW 1) 790 990 1250 1450 1650<br />

2) 790 990 1190 1390 1580<br />

3) 840 1050 1250 1450 1680<br />

4) 790 990 1190 1390 1580<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 89 115 135 155 180<br />

Exhaust gas flow at 235 °C** kg/h 50300 62800 75400 88000 100500<br />

Air consumption of engine kg/s 13.7 17.1 20.5 24.0 27.4<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03s: List of capacities, L50<strong>MC</strong> with high efficiency turbocharger seawater system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.38<br />

L50<strong>MC</strong><br />

178 87 90-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 148 r/min kW 5320 6650 7980 9310 10640<br />

Fuel oil circulating pump m 3 /h 3.4 4.3 5.2 6.0 6.9<br />

Fuel oil supply pump m 3 /h 1.4 1.7 2.1 2.4 2.7<br />

Jacket cooling water pump m 3 /h 1) 41 51 66 76 86<br />

2) 41 51 62 72 82<br />

3) 43 55 65 75 87<br />

4) 41 51 62 72 82<br />

Central cooling water pump* m 3 /h 1) 125 170 200 220 265<br />

2) 125 170 200 215 265<br />

3) 125 170 195 215 265<br />

4) 125 170 195 215 260<br />

Seawater pump* m 3 /h 1) 160 200 240 280 320<br />

2) 160 200 240 280 320<br />

3) 160 200 235 275 315<br />

4) 160 200 235 275 315<br />

Lubricating oil pump* m 3 /h 1) 125 155 185 215 245<br />

2) 125 155 185 215 245<br />

3) 120 150 180 210 240<br />

4) 125 155 185 215 245<br />

Booster pump for camshaft m 3 /h 4.2 5.2 6.2 7.3 8.3<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

2060 2580 3090 3610 4120<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 64 94 108 112 144<br />

Heat dissipation approx.* kW 1) 490 590 670 770 870<br />

2) 480 580 710 810 940<br />

3) 405 500 600 710 810<br />

4) 455 560 670 780 880<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 61 76 92 108 121<br />

2) 61 76 92 103 121<br />

3) 61 76 87 103 121<br />

Jacket water cooler<br />

4) 61 76 87 103 116<br />

Heat dissipation approx. kW 1) 790 990 1250 1450 1650<br />

2) 790 990 1190 1390 1580<br />

3) 840 1050 1250 1450 1680<br />

4) 790 990 1190 1390 1580<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 3340 4160 5010 5830 6640<br />

2) 3330 4150 4990 5810 6640<br />

3) 3310 4130 4940 5770 6610<br />

4) 3310 4130 4950 5780 6580<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 89 115 135 155 180<br />

Exhaust gas flow at 235 °C** kg/h 50300 62800 75400 88000 100500<br />

Air consumption of engine kg/s 13.7 17.1 20.5 24.0 27.4<br />

Fig. 6.04s: List of capacities, L50<strong>MC</strong> with high efficiency turbocharger central cooling system<br />

stated at the nominal <strong>MC</strong>R power (L1) for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.39<br />

L50<strong>MC</strong><br />

178 87 91-4.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

Pumps<br />

Coolers<br />

**<br />

***<br />

Cyl. 4 5 6 7 8<br />

Nominal <strong>MC</strong>R at 129 r/min kW 5240 6550 7860 9170 10480<br />

Fuel oil circulating pump m 3 /h 3.4 4.3 5.1 6.0 6.8<br />

Fuel oil supply pump m 3 /h 1.3 1.7 2.0 2.3 2.7<br />

Jacket cooling water pump m 3 /h 1) 44 55 66 81 92<br />

2) 44 55 66 77 88<br />

3) 46 57 70 81 92<br />

4) 44 55 66 77 88<br />

Seawater cooling pump* m 3 /h 1) 170 215 255 300 340<br />

2) 170 215 255 300 340<br />

3) 170 210 255 295 340<br />

4) 170 210 255 295 340<br />

Lubricating oil pump* m 3 /h 1) 125 150 170 190 210<br />

2) 130 150 170 190 210<br />

3) 120 140 160 180 200<br />

4) 125 145 165 190 210<br />

Booster pump f. exh. valve actuator*** m 3 /h<br />

Scavenge air cooler<br />

1.0 1.5 1.5 2.0 2.0<br />

Heat dissipation approx. kW 2010 2510 3010 3510 4010<br />

Seawater m 3 Lubricating oil cooler<br />

/h 108 135 162 189 216<br />

Heat dissipation approx.* kW 1) 485 610 710 790 890<br />

2) 490 600 730 830 930<br />

3) 415 520 620 730 830<br />

4) 470 570 680 800 900<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 62 80 93 111 124<br />

2) 62 80 93 111 124<br />

3) 62 75 93 106 124<br />

Jacket water cooler<br />

4) 62 75 93 106 124<br />

Heat dissipation approx. kW 1) 830 1030 1240 1510 1720<br />

2) 830 1030 1240 1450 1650<br />

3) 870 1080 1300 1510 1720<br />

4) 830 1030 1240 1450 1650<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 89 115 135 155 180<br />

Exhaust gas flow at 255 °C** kg/h 44900 56100 67400 78600 89800<br />

Air consumption of engine kg/s 12.2 15.3 18.3 21.4 24.4<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

No booster pumps are required for engines produced according to Plant Specifications ordered after January 2000<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03t: List of capacities, S46<strong>MC</strong>-C with seawater system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.40<br />

S46<strong>MC</strong>-C<br />

178 32 71-1.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8<br />

430 200 025 198 22 41<br />

6.01.41<br />

S46<strong>MC</strong>-C<br />

Nominal <strong>MC</strong>R at 129 r/min kW 5240 6550 7860 9170 10480<br />

Fuel oil circulating pump m 3 /h 3.4 4.3 5.1 6.0 6.8<br />

Fuel oil supply pump m 3 /h 1.3 1.7 2.0 2.3 2.7<br />

Jacket cooling water pump m 3 /h 1) 44 55 66 81 92<br />

2) 44 55 66 77 88<br />

3) 46 57 70 81 92<br />

4) 44 55 66 77 88<br />

Central cooling water pump* m 3 /h 1) 150 185 225 250 285<br />

2) 150 185 225 250 285<br />

3) 150 185 220 250 285<br />

4) 150 185 220 250 285<br />

Seawater pump* m 3 /h 1) 160 200 235 275 315<br />

2) 160 195 235 275 315<br />

3) 155 195 235 275 310<br />

4) 155 195 235 275 310<br />

Lubricating oil pump* m 3 /h 1) 125 150 170 190 210<br />

2) 130 150 170 190 210<br />

3) 120 140 160 180 200<br />

4) 125 145 165 190 210<br />

Booster pump f. exh. valve actuator*** m 3 /h 1.0 1.5 1.5 2.0 2.0<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

1990 2490 2980 3480 3980<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 87 108 130 142 162<br />

Heat dissipation approx.* kW 1) 485 610 710 790 890<br />

2) 490 600 730 830 930<br />

3) 415 520 620 730 830<br />

4) 470 570 680 800 900<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 63 77 95 108 123<br />

2) 63 77 95 108 123<br />

3) 63 77 90 108 123<br />

Jacket water cooler<br />

4) 63 77 90 108 123<br />

Heat dissipation approx. kW 1) 830 1030 1240 1510 1720<br />

2) 830 1030 1240 1450 1650<br />

3) 870 1080 1300 1510 1720<br />

4) 830 1030 1240 1450 1650<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 3310 4130 4930 5780 6590<br />

2) 3310 4120 4950 5760 6560<br />

3) 3280 4090 4900 5720 6530<br />

4) 3290 4090 4900 5730 6530<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 89 115 135 155 180<br />

Exhaust gas flow at 255 °C** kg/h 44900 56100 67400 78600 89800<br />

Air consumption of engine kg/s 12.2 15.3 18.3 21.4 24.4<br />

Fig. 6.04t: List of capacities, S46<strong>MC</strong>-C with central cooling system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

178 32 72-3.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

Pumps<br />

Coolers<br />

**<br />

***<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 136 r/min kW 4320 5400 6480 7560 8640 9720 10800 11880 12960<br />

Fuel oil circulating pump m 3 /h 2.2 2.6 2.9 3.5 3.9 4.3 5.0 5.7 6.3<br />

Fuel oil supply pump m 3 /h 1.1 1.4 1.7 2.0 2.2 2.5 2.8 3.1 3.4<br />

Jacket cooling water pump m 3 /h 1) 41 51 61 71 82 96 100 110 120<br />

2) 41 51 61 71 82 92 100 110 120<br />

3) 43 53 64 75 85 95 105 115 125<br />

4) 41 51 61 71 82 92 100 110 120<br />

Seawater cooling pump* m 3 /h 1) 140 175 210 245 280 315 350 385 420<br />

2) 140 175 210 245 280 315 350 385 420<br />

3) 140 175 210 245 280 315 350 380 415<br />

4) 140 175 210 245 280 315 350 385 420<br />

Lubricating oil pump* m 3 /h 1) 100 125 150 175 195 220 250 275 295<br />

2) 99 125 150 175 195 220 250 275 300<br />

3) 95 120 145 165 190 215 240 260 285<br />

4) 98 125 150 170 200 220 250 270 295<br />

Booster pump f. exh. valve actuator*** m 3 /h<br />

Scavenge air cooler<br />

1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0<br />

Heat dissipation approx. kW 1660 2070 2490 2900 3310 3730 4140 4560 4970<br />

Seawater m 3 Lubricating oil cooler<br />

/h 88 110 132 154 176 199 221 243 265<br />

Heat dissipation approx.* kW 1) 400 480 580 660 740 800 960 1080 1160<br />

2) 395 485 570 650 760 840 970 1050 1140<br />

3) 330 410 490 570 660 740 820 900 980<br />

4) 360 465 550 630 730 810 930 1010 1090<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 52 65 78 91 104 116 129 142 155<br />

2) 52 65 78 91 104 116 129 142 155<br />

3) 52 65 78 91 104 116 129 137 150<br />

Jacket water cooler<br />

4) 52 65 78 91 104 116 129 142 155<br />

Heat dissipation approx. kW 1) 700 880 1060 1230 1410 1650 1760 1940 2110<br />

2) 700 880 1060 1230 1410 1580 1760 1940 2110<br />

3) 750 920 1100 1300 1470 1650 1850 2020 2200<br />

4) 700 880 1060 1230 1410 1580 1760 1940 2110<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 58 68 76 92 100 115 130 150 165<br />

Exhaust gas flow at 260 °C** kg/h 37200 46500 55800 65000 74300 83600 92900 102200 111500<br />

Air consumption of engine kg/s 10.1 12.6 15.2 17.7 20.2 22.7 25.2 27.8 30.3<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

No booster pumps are required for engines produced according to Plant Specifications ordered after January 2000<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03u: List of capacities, S42<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.42<br />

S42<strong>MC</strong><br />

178 42 71-6.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

430 200 025 198 22 41<br />

6.01.43<br />

S42<strong>MC</strong><br />

Nominal <strong>MC</strong>R at 136 r/min kW 4320 5400 6480 7560 8640 9720 10800 11880 12960<br />

Fuel oil circulating pump m 3 /h 2.2 2.6 2.9 3.5 3.9 4.3 5.0 5.7 6.3<br />

Fuel oil supply pump m 3 /h 1.1 1.4 1.7 2.0 2.2 2.5 2.8 3.1 3.4<br />

Jacket cooling water pump m 3 /h 1) 41 51 61 71 82 96 100 110 120<br />

2) 41 51 61 71 82 92 100 110 120<br />

3) 43 53 64 75 85 95 105 115 125<br />

4) 41 51 61 71 82 92 100 110 120<br />

Central cooling water pump* m 3 /h 1) 140 175 210 245 280 315 350 385 420<br />

2) 140 175 210 245 280 315 350 385 420<br />

3) 140 175 210 245 280 315 350 380 415<br />

4) 140 175 210 245 280 315 350 385 420<br />

Seawater pump* m 3 /h 1) 130 165 195 230 260 295 325 360 395<br />

2) 130 165 195 230 260 295 325 360 390<br />

3) 130 160 195 225 260 290 325 355 390<br />

4) 130 165 195 225 260 290 325 360 390<br />

Lubricating oil pump* m 3 /h 1) 100 125 150 175 195 220 250 275 295<br />

2) 99 125 150 175 195 220 250 275 300<br />

3) 95 120 145 165 190 215 240 260 285<br />

4) 98 125 150 170 200 220 250 270 295<br />

Booster pump f. exh. valve actuator*** m 3 /h 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

1650 2060 2470 2880 3290 3700 4110 4530 4940<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 88 110 132 154 176 199 221 243 265<br />

Heat dissipation approx.* kW 1) 400 480 580 660 740 800 960 1080 1160<br />

2) 395 485 570 650 760 840 970 1050 1140<br />

3) 330 410 490 570 660 740 820 900 980<br />

4) 360 465 550 630 730 810 930 1010 1090<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 52 65 78 91 104 116 129 142 155<br />

2) 52 65 78 91 104 116 129 142 155<br />

3) 52 65 78 91 104 116 129 137 150<br />

Jacket water cooler<br />

4) 52 65 78 91 104 116 129 142 155<br />

Heat dissipation approx. kW 1) 700 880 1060 1230 1410 1650 1760 1940 2110<br />

2) 700 880 1060 1230 1410 1580 1760 1940 2110<br />

3) 750 920 1100 1300 1470 1650 1850 2020 2200<br />

4) 700 880 1060 1230 1410 1580 1760 1940 2110<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 2750 3420 4110 4770 5440 6150 6830 7550 8210<br />

2) 2750 3430 4100 4760 5460 6120 6840 7520 8190<br />

3) 2730 3390 4060 4750 5420 6090 6780 7450 8120<br />

4) 2710 3410 4080 4740 5430 6090 6800 7480 8140<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 58 68 76 92 100 115 130 150 165<br />

Exhaust gas flow at 260 °C** kg/h 37200 46500 55800 65000 74300 83600 92900 102200 111500<br />

Air consumption of engine kg/s 10.1 12.6 15.2 17.7 20.2 22.7 25.2 27.8 30.3<br />

Fig. 6.04u: List of capacities, S42<strong>MC</strong> with central cooling system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

178 42 75-3.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

Pumps<br />

Coolers<br />

**<br />

***<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 176 r/min kW 3980 4975 5970 6965 7960 8955 9950 10945 11940<br />

Fuel oil circulating pump m 3 /h 2.2 2.6 2.9 3.5 3.9 4.3 5.0 5.7 6.3<br />

Fuel oil supply pump m 3 /h 1.0 1.3 1.6 1.8 2.1 2.3 2.6 2.8 3.1<br />

Jacket cooling water pump m 3 /h 1) 32 40 48 56 64 76 80 88 96<br />

2) 32 40 48 56 64 72 80 88 96<br />

3) 34 42 50 58 68 76 85 93 100<br />

4) 32 40 48 56 64 72 80 88 96<br />

Seawater cooling pump* m 3 /h 1) 120 150 180 205 235 265 295 325 355<br />

2) 120 150 175 205 235 265 300 325 355<br />

3) 120 145 175 205 235 265 295 325 355<br />

4) 115 145 175 205 235 265 295 325 355<br />

Lubricating oil pump* m 3 /h 1) 95 110 130 145 160 180 205 220 235<br />

2) 95 115 130 145 160 180 205 220 235<br />

3) 91 105 120 135 150 175 195 210 225<br />

4) 94 110 125 140 155 180 200 220 235<br />

Booster pump f. exh. valve actuator*** m 3 /h<br />

Scavenge air cooler<br />

1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0<br />

Heat dissipation approx. kW 1410 1760 2120 2470 2820 3170 3530 3880 4230<br />

Seawater m 3 Lubricating oil cooler<br />

/h 75 94 113 132 151 170 189 208 227<br />

Heat dissipation approx.* kW 1) 335 410 495 560 630 670 820 890 990<br />

2) 340 415 485 550 620 720 830 900 970<br />

3) 270 340 410 475 540 610 680 750 820<br />

4) 305 375 460 530 600 680 750 850 920<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 45 56 67 73 84 95 106 117 128<br />

2) 45 56 62 73 84 95 111 117 128<br />

3) 45 51 62 73 84 95 106 117 128<br />

Jacket water cooler<br />

4) 40 51 62 73 84 95 106 117 128<br />

Heat dissipation approx. kW 1) 580 720 860 1010 1150 1360 1440 1590 1730<br />

2) 580 720 860 1010 1150 1300 1440 1590 1730<br />

3) 620 760 910 1050 1220 1360 1530 1670 1820<br />

4) 580 720 860 1010 1150 1300 1440 1590 1730<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 58 68 76 92 100 115 130 150 165<br />

Exhaust gas flow at 255 °C** kg/h 33800 42300 50700 59200 67600 76100 84500 93000 101400<br />

Air consumption of engine kg/s 9.2 11.5 13.8 16.1 18.4 20.7 23.0 25.3 27.6<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

No booster pumps are required for engines produced according to Plant Specifications ordered after January 2000<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03v: List of capacities, L42<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.44<br />

L42<strong>MC</strong><br />

178 42 51-3.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

430 200 025 198 22 41<br />

6.01.45<br />

L42<strong>MC</strong><br />

Nominal <strong>MC</strong>R at 176 r/min kW 3980 4975 5970 6965 7960 8955 9950 10945 11940<br />

Fuel oil circulating pump m 3 /h 2.2 2.6 2.9 3.5 3.9 4.3 5.0 5.7 6.3<br />

Fuel oil supply pump m 3 /h 1.0 1.3 1.6 1.8 2.1 2.3 2.6 2.8 3.1<br />

Jacket cooling water pump m 3 /h 1) 32 40 48 56 64 76 80 88 96<br />

2) 32 40 48 56 64 72 80 88 96<br />

3) 34 42 50 58 68 76 85 93 100<br />

4) 32 40 48 56 64 72 80 88 96<br />

Central cooling water pump* m 3 /h 1) 120 150 180 205 235 265 295 325 355<br />

2) 120 150 175 205 235 265 300 325 355<br />

3) 120 145 175 205 235 265 295 325 355<br />

4) 115 145 175 205 235 265 295 325 355<br />

Seawater pump* m 3 /h 1) 110 140 165 190 220 250 275 305 330<br />

2) 110 140 165 190 220 245 275 305 330<br />

3) 110 135 165 190 220 245 275 300 325<br />

4) 110 135 165 190 220 245 270 300 330<br />

Lubricating oil pump* m 3 /h 1) 95 110 130 145 160 180 205 220 235<br />

2) 95 115 130 145 160 180 205 220 235<br />

3) 91 105 120 135 150 175 195 210 225<br />

4) 94 110 125 140 155 180 200 220 235<br />

Booster pump f. exh. valve actuator*** m 3 /h 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.0<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

1400 1750 2100 2450 2800 3150 3500 3850 4200<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 75 94 113 132 151 170 189 208 227<br />

Heat dissipation approx.* kW 1) 335 410 495 560 630 670 820 890 990<br />

2) 340 415 485 550 620 720 830 900 970<br />

3) 270 340 410 475 540 610 680 750 820<br />

4) 305 375 460 530 600 680 750 850 920<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 45 56 67 73 84 95 106 117 128<br />

2) 45 56 62 73 84 95 111 117 128<br />

3) 45 51 62 73 84 95 106 117 128<br />

Jacket water cooler<br />

4) 40 51 62 73 84 95 106 117 128<br />

Heat dissipation approx. kW 1) 580 720 860 1010 1150 1360 1440 1590 1730<br />

2) 580 720 860 1010 1150 1300 1440 1590 1730<br />

3) 620 760 910 1050 1220 1360 1530 1670 1820<br />

4) 580 720 860 1010 1150 1300 1440 1590 1730<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 2320 2880 3460 4020 4580 5180 5760 6330 6920<br />

2) 2320 2890 3450 4010 4570 5170 5770 6340 6900<br />

3) 2290 2850 3420 3980 4560 5120 5710 6270 6840<br />

4) 2290 2850 3420 3990 4550 5130 5690 6290 6850<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 58 68 76 92 100 115 130 150 165<br />

Exhaust gas flow at 255 °C** kg/h 33800 42300 50700 59200 67600 76100 84500 93000 101400<br />

Air consumption of engine kg/s 9.2 11.5 13.8 16.1 18.4 20.7 23.0 25.3 27.6<br />

Fig. 6.04v: List of capacities, L42<strong>MC</strong> with central cooling system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

178 42 52-5.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

Pumps<br />

Coolers<br />

**<br />

***<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 173 r/min kW 2960 3700 4440 5180 5920 6660 7400 8140 8880<br />

Fuel oil circulating pump m 3 /h 1.5 1.8 2.0 2.4 2.7 3.0 3.3 3.6 3.9<br />

Fuel oil supply pump m 3 /h 0.8 1.0 1.2 1.4 1.5 1.7 1.9 2.1 2.3<br />

Jacket cooling water pump m 3 /h 1) 28 36 43 50 57 64 71 78 85<br />

2) 28 36 43 50 57 64 71 78 85<br />

3) 30 37 45 52 59 66 74 83 90<br />

4) 28 36 43 50 57 64 71 78 85<br />

Seawater cooling pump* m 3 /h 1) 89 110 130 155 175 195 220 240 265<br />

2) 88 110 130 155 175 195 220 240 265<br />

3) 87 110 130 150 175 195 215 240 260<br />

4) 87 110 130 155 175 195 220 240 260<br />

Lubricating oil pump* m 3 /h 1) 65 80 96 110 130 145 160 175 190<br />

2) 64 80 95 115 130 145 160 175 190<br />

3) 61 76 91 105 120 135 150 165 180<br />

4) 63 79 94 110 125 140 160 175 190<br />

Booster pump f. exh. valve actuator*** m 3 /h<br />

Scavenge air cooler<br />

1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.0<br />

Heat dissipation approx. kW 1100 1370 1640 1920 2190 2470 2740 3010 3290<br />

Seawater m 3 Lubricating oil cooler<br />

/h 53 66 79 92 105 118 131 144 158<br />

Heat dissipation approx.* kW 1) 290 345 415 475 550 600 690 770 830<br />

2) 280 355 410 475 530 590 710 760 820<br />

3) 230 285 345 400 460 510 570 630 690<br />

4) 250 320 375 455 510 570 640 700 750<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 37 44 51 63 70 77 89 96 107<br />

2) 37 44 51 63 70 77 89 96 107<br />

3) 37 44 51 58 70 77 84 96 102<br />

Jacket water cooler<br />

4) 37 44 51 63 70 77 89 96 102<br />

Heat dissipation approx. kW 1) 465 580 700 820 930 1050 1170 1280 1400<br />

2) 465 580 700 820 930 1050 1170 1280 1400<br />

3) 495 610 740 860 980 1090 1230 1370 1490<br />

4) 465 580 700 820 930 1050 1170 1280 1400<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 39 47 52 63 71 79 87 94 100<br />

Exhaust gas flow at 270 °C** kg/h 25200 31500 37800 44100 50400 56700 63000 69300 75600<br />

Air consumption of engine kg/s 6.8 8.6 10.3 12.0 13.7 15.4 17.1 18.8 20.5<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

No booster pumps are required for engines produced according to Plant Specifications ordered after January 2000<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03x: List of capacities, S35<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.46<br />

S35<strong>MC</strong><br />

178 42 72-8.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

430 200 025 198 22 41<br />

6.01.47<br />

S35<strong>MC</strong><br />

Nominal <strong>MC</strong>R at 173 r/min kW 2960 3700 4440 5180 5920 6660 7400 8140 8880<br />

Fuel oil circulating pump m 3 /h 1.5 1.8 2.0 2.4 2.7 3.0 3.3 3.6 3.9<br />

Fuel oil supply pump m 3 /h 0.8 1.0 1.2 1.4 1.5 1.7 1.9 2.1 2.3<br />

Jacket cooling water pump m 3 /h 1) 28 36 43 50 57 64 71 78 85<br />

2) 28 36 43 50 57 64 71 78 85<br />

3) 30 37 45 52 59 66 74 83 90<br />

4) 28 36 43 50 57 64 71 78 85<br />

Central cooling water pump* m 3 /h 1) 89 110 130 155 175 195 220 240 265<br />

2) 88 110 130 155 175 195 220 240 265<br />

3) 87 110 130 150 175 195 215 240 260<br />

4) 87 110 130 155 175 195 220 240 260<br />

Seawater pump* m 3 /h 1) 88 110 130 155 175 195 220 240 260<br />

2) 88 110 130 155 175 195 220 240 260<br />

3) 87 110 130 150 175 195 215 240 260<br />

4) 86 110 130 150 175 195 215 235 260<br />

Lubricating oil pump* m 3 /h 1) 65 80 96 110 130 145 160 175 190<br />

2) 64 80 95 115 130 145 160 175 190<br />

3) 61 76 91 105 120 135 150 165 180<br />

4) 63 79 94 110 125 140 160 175 190<br />

Booster pump f. exh. valve actuator*** m 3 /h 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.0<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

1080 1350 1630 1900 2170 2440 2710 2980 3250<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 53 66 79 92 105 118 131 144 158<br />

Heat dissipation approx.* kW 1) 290 345 415 475 550 600 690 770 830<br />

2) 280 355 410 475 530 590 710 760 820<br />

3) 230 285 345 400 460 510 570 630 690<br />

4) 250 320 375 455 510 570 640 700 750<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 37 44 51 63 70 77 89 96 107<br />

2) 37 44 51 63 70 77 89 96 107<br />

3) 37 44 51 58 70 77 84 96 102<br />

Jacket water cooler<br />

4) 37 44 51 63 70 77 89 96 102<br />

Heat dissipation approx. kW 1) 465 580 700 820 930 1050 1170 1280 1400<br />

2) 465 580 700 820 930 1050 1170 1280 1400<br />

3) 495 610 740 860 980 1090 1230 1370 1490<br />

4) 465 580 700 820 930 1050 1170 1280 1400<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 1840 2280 2750 3200 3650 4090 4570 5030 5480<br />

2) 1830 2290 2740 3200 3630 4080 4590 5020 5470<br />

3) 1810 2250 2720 3160 3610 4040 4510 4980 5430<br />

4) 1800 2250 2710 3180 3610 4060 4520 4960 5400<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 39 47 52 63 71 79 87 94 100<br />

Exhaust gas flow at 270 °C** kg/h 25200 31500 37800 44100 50400 56700 63000 69300 75600<br />

Air consumption of engine kg/s 6.8 8.6 10.3 12.0 13.7 15.4 17.1 18.8 20.5<br />

Fig. 6.04x: List of capacities, S35<strong>MC</strong> with central cooling system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

178 42 76-5.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

*<br />

Pumps<br />

Coolers<br />

**<br />

***<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 210 r/min kW 2600 3250 3900 4550 5200 5850 6500 7150 7800<br />

Fuel oil circulating pump m 3 /h 1.5 1.8 2.0 2.4 2.7 3.0 3.3 3.6 3.9<br />

Fuel oil supply pump m 3 /h 0.7 0.8 1.0 1.2 1.4 1.5 1.7 1.9 2.0<br />

Jacket cooling water pump m 3 /h 1) 23 28 34 39 45 51 56 62 68<br />

2) 23 28 34 39 45 51 56 62 68<br />

3) 24 30 36 42 47 53 60 65 72<br />

4) 23 28 34 39 45 51 56 62 68<br />

Seawater cooling pump* m 3 /h 1) 79 98 115 135 155 175 195 215 235<br />

2) 79 98 120 135 155 175 195 215 235<br />

3) 78 97 115 135 155 175 195 215 235<br />

4) 77 97 115 135 155 175 195 215 230<br />

Lubricating oil pump* m 3 /h 1) 63 75 90 105 115 125 145 155 160<br />

2) 64 74 90 105 120 130 145 155 160<br />

3) 61 71 86 100 110 120 135 145 150<br />

4) 63 73 89 105 115 125 140 155 160<br />

Booster pump f. exh. valve actuator*** m 3 /h<br />

Scavenge air cooler<br />

1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.0<br />

Heat dissipation approx. kW 940 1170 1410 1640 1880 2110 2350 2580 2820<br />

Seawater m 3 Lubricating oil cooler<br />

/h 48 60 72 84 96 108 120 132 144<br />

Heat dissipation approx.* kW 1) 240 300 350 410 455 500 600 650 700<br />

2) 240 290 355 405 460 510 580 630 710<br />

3) 190 240 290 335 385 430 480 530 580<br />

4) 215 265 320 370 420 485 530 600 640<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 32 40 43 51 59 67 75 83 91<br />

2) 32 40 48 51 59 67 75 83 91<br />

3) 32 40 43 51 59 67 75 83 91<br />

Jacket water cooler<br />

4) 32 40 43 51 59 67 75 83 86<br />

Heat dissipation approx. kW 1) 400 500 600 700 800 900 1000 1100 1200<br />

2) 400 500 600 700 800 900 1000 1100 1200<br />

3) 430 530 640 750 850 950 1060 1160 1290<br />

4) 400 500 600 700 800 900 1000 1100 1200<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 39 47 52 63 71 79 87 94 100<br />

Exhaust gas flow at 265 °C** kg/h 21600 27000 32400 37800 43200 48600 54000 59400 64800<br />

Air consumption of engine kg/s 5.9 7.3 8.8 10.3 11.7 13.2 14.7 16.1 17.6<br />

For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

No booster pumps are required for engines produced according to Plant Specifications ordered after January 2000<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03y: List of capacities, L35<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.48<br />

L35<strong>MC</strong><br />

178 87 92-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

430 200 025 198 22 41<br />

6.01.49<br />

L35<strong>MC</strong><br />

Nominal <strong>MC</strong>R at 210 r/min kW 2600 3250 3900 4550 5200 5850 6500 7150 7800<br />

Fuel oil circulating pump m 3 /h 1.5 1.8 2.0 2.4 2.7 3.0 3.3 3.6 3.9<br />

Fuel oil supply pump m 3 /h 0.7 0.8 1.0 1.2 1.4 1.5 1.7 1.9 2.0<br />

Jacket cooling water pump m 3 /h 1) 23 28 34 39 45 51 56 62 68<br />

2) 23 28 34 39 45 51 56 62 68<br />

3) 24 30 36 42 47 53 60 65 72<br />

4) 23 28 34 39 45 51 56 62 68<br />

Central cooling water pump* m 3 /h 1) 79 98 115 135 155 175 195 215 235<br />

2) 79 98 120 135 155 175 195 215 235<br />

3) 78 97 115 135 155 175 195 215 235<br />

4) 77 97 115 135 155 175 195 215 230<br />

Seawater pump* m 3 /h 1) 75 94 110 130 150 165 190 205 225<br />

2) 75 93 115 130 150 170 185 205 225<br />

3) 74 92 110 130 150 165 185 205 225<br />

4) 74 92 110 130 145 165 185 205 220<br />

Lubricating oil pump* m 3 /h 1) 63 75 90 105 115 125 145 155 160<br />

2) 64 74 90 105 120 130 145 155 160<br />

3) 61 71 86 100 110 120 135 145 150<br />

4) 63 73 89 105 115 125 140 155 160<br />

Booster pump f. exh. valve actuator*** m 3 /h 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.0<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

930 1160 1400 1630 1860 2100 2330 2560 2800<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 48 60 72 84 96 108 120 132 144<br />

Heat dissipation approx.* kW 1) 240 300 350 410 455 500 600 650 700<br />

2) 240 290 355 405 460 510 580 630 710<br />

3) 190 240 290 335 385 430 480 530 580<br />

4) 215 265 320 370 420 485 530 600 640<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 32 40 43 51 59 67 75 83 91<br />

2) 32 40 48 51 59 67 75 83 91<br />

3) 32 40 43 51 59 67 75 83 91<br />

Jacket water cooler<br />

4) 32 40 43 51 59 67 75 83 86<br />

Heat dissipation approx. kW 1) 400 500 600 700 800 900 1000 1100 1200<br />

2) 400 500 600 700 800 900 1000 1100 1200<br />

3) 430 530 640 750 850 950 1060 1160 1290<br />

4) 400 500 600 700 800 900 1000 1100 1200<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 1570 1960 2350 2740 3120 3500 3930 4310 4700<br />

2) 1570 1950 2360 2740 3120 3510 3910 4290 4710<br />

3) 1550 1930 2330 2720 3100 3480 3870 4250 4670<br />

4) 1550 1930 2320 2700 3080 3490 3860 4260 4640<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 39 47 52 63 71 79 87 94 100<br />

Exhaust gas flow at 265 °C** kg/h 21600 27000 32400 37800 43200 48600 54000 59400 64800<br />

Air consumption of engine kg/s 5.9 7.3 8.8 10.3 11.7 13.2 14.7 16.1 17.6<br />

Fig. 6.04y: List of capacities, L35<strong>MC</strong> with central cooling system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

178 87 93-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

Nominal <strong>MC</strong>R at 250 r/min kW 1600 2000 2400 2800 3200 3600 4000 4400 4800<br />

Fuel oil circulating pump m 3 /h 1.5 1.8 2.0 2.4 2.7 3.0 3.3 3.6 3.9<br />

Fuel oil supply pump m 3 /h 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3<br />

Jacket cooling water pump m 3 /h 1) 16 20 24 28 32 36 40 44 48<br />

2) 16 20 24 28 32 36 40 44 48<br />

3) 24 28 25 29 34 38 55 47 51<br />

4) 16 20 24 28 32 36 40 44 48<br />

Seawater cooling pump* m 3 /h 1) 70 88 105 125 140 160 175 190 210<br />

2) 71 88 105 125 140 160 175 195 210<br />

3) 73 90 105 125 140 155 180 190 210<br />

4) 71 88 105 125 140 155 175 190 210<br />

Lubricating oil pump* m 3 /h 1) 49 57 65 72 84 94 99 105 115<br />

2) 51 58 66 73 83 93 100 105 115<br />

3) 48 55 63 70 80 90 95 100 110<br />

4) 50 57 65 72 82 92 99 105 115<br />

Booster pump f. exh. valve actuator m 3 Scavenge air cooler<br />

/h n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Heat dissipation approx. kW 570 710 850 990 1140 1280 1420 1560 1700<br />

Seawater m 3 Lubricating oil cooler<br />

/h 45 56 68 79 90 101 112 123 134<br />

Heat dissipation approx.* kW 1) 220 275 350 400 460 510 550 600 700<br />

2) 230 280 340 390 450 500 580 630 680<br />

3) 200 250 300 350 400 450 500 550 600<br />

4) 225 275 325 375 425 475 550 600 650<br />

Lubricating oil* m 3 /h See above "Main lubricating oil pump"<br />

Seawater m 3 /h 1) 25 34 37 46 50 59 63 67 76<br />

2) 25 34 37 46 50 59 63 72 76<br />

3) 25 34 37 46 50 54 68 67 76<br />

Jacket water cooler<br />

4) 25 34 37 46 50 54 63 67 76<br />

Heat dissipation approx. kW 1) 310 385 460 540 620 690 770 850 920<br />

2) 310 385 460 540 620 690 770 850 920<br />

3) 395 470 485 560 650 720 940 890 970<br />

4) 310 385 460 540 620 690 770 850 920<br />

Jacket cooling water m 3 /h See above "Jacket cooling water pump"<br />

Seawater m 3 /h See above "Seawater quantity" for lube oil cooler<br />

Fuel oil heater kW 39 47 52 63 71 79 87 94 100<br />

Exhaust gas flow at 260 °C** kg/h 12400 15600 18700 21800 24900 28000 31100 34200 37300<br />

Air consumption of engine kg/s 3.4 4.2 5.1 5.9 6.8 7.6 8.4 9.3 10.1<br />

* For main engine arrangements with built-on power take off (PTO) of an MAN B&W recommended type and/or torsional<br />

vibration damper the engine’s capacities must be increased by those stated for the actual system<br />

** The exhaust gas amount and temperature must be adjusted according to the actual plant specification<br />

n.a. Not applicable<br />

1) <strong>Engine</strong>s with MAN B&W turbochargers 3) <strong>Engine</strong>s with ABB turbochargers, type VTR<br />

2) <strong>Engine</strong>s with ABB turbochargers, type TPL 4) <strong>Engine</strong>s with Mitsubishi turbochargers<br />

Fig. 6.03z: List of capacities, S26<strong>MC</strong> with seawater system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

430 200 025 198 22 41<br />

6.01.50<br />

S26<strong>MC</strong><br />

178 42 72-8.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pumps<br />

Coolers<br />

Cyl. 4 5 6 7 8 9 10 11 12<br />

430 200 025 198 22 41<br />

6.01.51<br />

S26<strong>MC</strong><br />

Nominal <strong>MC</strong>R at 250 r/min kW 1600 2000 2400 2800 3200 3600 4000 4400 4800<br />

Fuel oil circulating pump m 3 /h 1.5 1.8 2.0 2.4 2.7 3.0 3.3 3.6 3.9<br />

Fuel oil supply pump m 3 /h 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3<br />

Jacket cooling water pump m 3 /h 1) 16 20 24 28 32 36 40 44 48<br />

2) 16 20 24 28 32 36 40 44 48<br />

3) 24 28 25 29 34 38 55 47 51<br />

4) 16 20 24 28 32 36 40 44 48<br />

Central cooling water pump* m 3 /h 1) 70 88 105 125 140 160 175 190 210<br />

2) 71 88 105 125 140 160 175 195 210<br />

3) 73 90 105 125 140 155 180 190 210<br />

4) 71 88 105 125 140 155 175 190 210<br />

Seawater pump* m 3 /h 1) 52 66 79 92 105 120 130 145 160<br />

2) 53 66 79 92 105 120 130 145 155<br />

3) 56 68 78 91 105 115 135 145 155<br />

4) 53 66 78 91 105 115 130 145 155<br />

Lubricating oil pump* m 3 /h 1) 49 57 65 72 84 94 99 105 115<br />

2) 51 58 66 73 83 93 100 105 115<br />

3) 48 55 63 70 80 90 95 100 110<br />

4) 50 57 65 72 82 92 99 105 115<br />

Booster pump f. exh. valve actator m 3 /h n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.<br />

Scavenge air cooler<br />

Heat dissipation approx.<br />

kW<br />

560 710 850 990 1130 1270 1410 1550 1690<br />

Central cooling water m 3 Lubricating oil cooler<br />

/h 45 56 68 79 90 101 112 123 134<br />

Heat dissipation approx.* kW 1) 220 275 350 400 460 510 550 600 700<br />

2) 230 280 340 390 450 500 580 630 680<br />

3) 200 250 300 350 400 450 500 550 600<br />

4) 225 275 325 375 425 475 550 600 650<br />

Lubricating oil* m 3 /h See above "Lubricating oil pump"<br />

Central cooling water m 3 /h 1) 25 34 37 46 50 59 63 67 76<br />

2) 25 34 37 46 50 59 63 72 76<br />

3) 25 34 37 46 50 54 68 67 76<br />

Jacket water cooler<br />

4) 25 34 37 46 50 54 63 67 76<br />

Heat dissipation approx. kW 1) 310 385 460 540 620 690 770 850 920<br />

2) 310 385 460 540 620 690 770 850 920<br />

3) 395 470 485 560 650 720 940 890 970<br />

4) 310 385 460 540 620 690 770 850 920<br />

Jacket cooling water m 3 /h See above "Jacket cooling water"<br />

Central cooling water m 3 Central cooler<br />

/h See above "Central cooling water quantity" for lube oil cooler<br />

Heat dissipation approx.* kW 1) 1090 1370 1660 1930 2210 2470 2730 3000 3310<br />

2) 1100 1380 1650 1920 2200 2460 2760 3030 3290<br />

3) 1160 1430 1640 1900 2180 2440 2850 2990 3260<br />

4) 1100 1370 1640 1910 2180 2440 2730 3000 3260<br />

Central cooling water* m 3 /h See above "Central cooling water pump"<br />

Seawater* m 3 /h See above "Seawater cooling pump"<br />

Fuel oil heater kW 39 47 52 63 71 79 87 94 100<br />

Exhaust gas flow at 260 °C** kg/h 12400 15600 18700 21800 24900 28000 31100 34200 37300<br />

Air consumption of engine kg/s 3.4 4.2 5.1 5.9 6.8 7.6 8.4 9.3 10.1<br />

Fig. 6.04z: List of capacities, S26<strong>MC</strong> with central cooling system stated at the nominal <strong>MC</strong>R power (L1)<br />

for engines complying with IMO's NOx emission limitations<br />

178 42 76-5.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Starting air system: 30 bar (gauge)<br />

Cylinder No. 4 5 6 7 8 9 10 11 12<br />

K98<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 14.5 2 x 15.0 2 x 15.5 2 x 15.5 2 x 15.5 2 x 16.0 2 x 16.0<br />

3 /h 870 900 930 930 930 960 960<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 8.0 2 x 8.0 2 x 8.0 2 x 8.0 2 x 8.0 2 x 8.5 2 x 8.5<br />

3 /h 480 480 480 480 480 510 510<br />

K98<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 13.5 2 x 13.5 2 x 13.5 2 x 13.5 2 x 13.5 2 x 13.5 2 x 14.0<br />

3 /h 810 810 810 810 810 810 840<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 7.0 2 x 7.0 2 x 7.0 2 x 7.0 2 x 7.0 2 x 7.0 2 x 7.5<br />

3 /h 420 420 420 420 420 420 450<br />

S90<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 15.0 2 x 15.0 2 x 15.5 2 x 15.5<br />

3 /h 900 900 930 930<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 8.0 2 x 8.0 2 x 8.0 2 x 8.0<br />

3 /h 480 480 480 480<br />

L90<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 13.5 2 x 14.0 2 x 14.0 2 x 14.5 2 x 14.5 2 x 14.5 2 x 15.0<br />

3 /h 810 840 840 870 870 870 900<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 7.0 2 x 7.5 2 x 7.5 2 x 7.5 2 x 7.5 2 x 7.5 2 x 8.0<br />

3 /h 420 450 450 450 450 450 480<br />

K90<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x10.0 2 x 11.0 2 x 11.5 2 x 12.0 2 x 12.0 2 x 12.5 2 x 12.5 2 x 12.5 2 x 12.5<br />

3 /h 600 660 690 720 720 750 750 750 750<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 5.5 2 x 6.0 2 x 6.0 2 x 6.5 2 x 6.5 2 x 6.5 2 x 6.5 2 x 6.5 2 x 7.0<br />

3 /h 330 360 360 390 390 390 390 390 420<br />

K90<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 12.0 2 x 12.0 2 x 12.5 2 x 12.5 2 x 12.5 2 x 13.0 2 x 13.0<br />

3 /h 720 720 750 750 750 780 780<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 6.0 2 x 6.5 2 x 6.5 2 x 6.5 2 x 6.5 2 x 6.5 2 x 7.0<br />

3 /h 360 390 390 390 390 390 420<br />

Fig. 6.01.05a: Capacities of starting air receivers and compressors for main engine<br />

430 200 025 198 22 41<br />

6.01.52<br />

178 87 96-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Starting air system: 30 bar (gauge)<br />

Cylinder No. 4 5 6 7 8 9 10 11 12<br />

S80<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 12.0 2 x 12.0 2 x 12.5<br />

3 /h 720 720 750<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 6.5 2 x 6.5 2 x 6.5<br />

3 /h 390 390 390<br />

S80<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 9.5 2 x 10.5 2 x 11.5 2 x 11.5 2 x 12.0 2 x 12.0<br />

3 /h 570 630 690 690 720 720<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 5.0 2 x 5.5 2 x 6.0 2 x 6.0 2 x 6.5 2 x 6.5<br />

3 /h 300 330 360 360 390 390<br />

L80<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 8.5 2 x 9.0 2 x 9.5 2 x 10.0 2 x 10.0 2 x 10.0 2 x 10.0 2 x 10.5 2 x 10.5<br />

3 /h 510 540 570 600 600 600 600 630 630<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 4.5 2 x 5.0 2 x 5.0 2 x 5.5 2 x 5.5 2 x 5.5 2 x 5.5 2 x 6.0 2 x 6.5<br />

3 /h 270 300 300 330 330 330 330 360 360<br />

K80<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 8.5 2 x 8.5 2 x 9.0 2 x 9.0 2 x 9.0 2 x 9.0 2 x 9.5<br />

3 /h 510 510 540 540 540 540 570<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 4.5 2 x 4.5 2 x 4.5 2 x 4.5 2 x 5.0 2 x 5.0 2 x 5.0<br />

3 /h 270 270 270 270 300 300 300<br />

S70<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 7.0 2 x 7.5 2 x 8.0 2 x 8.0 2 x 8.0<br />

3 /h 420 450 480 480 480<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 3.5 2 x 4.0 2 x 4.5 2 x 4.5 2 x 4.5<br />

3 /h 210 240 270 270 270<br />

S70<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 7.0 2 x 7.0 2 x 8.0 2 x 8.0 2 x 8.0<br />

3 /h 420 420 480 480 480<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 4.0 2 x 4.0 2 x 4.0 2 x 4.0 2 x 4.0<br />

3 /h 240 240 240 240 240<br />

L70<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 5.5 2 x 6.0 2 x 6.5 2 x 6.5 2 x 7.0<br />

3 /h 330 360 390 390 420<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 3.0 2 x 3.5 2 x 3.5 2 x 3.5 2 x 4.0<br />

3 /h 180 210 210 210 240<br />

Fig. 6.01.05b: Capacities of starting air receivers and compressors for main engine<br />

430 200 025 198 22 41<br />

6.01.53<br />

178 87 96-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Starting air system: 30 bar (gauge)<br />

Cylinder No. 4 5 6 7 8 9 10 11 12<br />

S60<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 4.5 2 x 5.0 2 x 5.0 2 x 5.5 2 x 5.5<br />

3 /h 270 300 300 330 330<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.5 2 x 2.5 2 x 3.0 2 x 3.0 2 x 3.0<br />

3 /h 150 150 180 180 180<br />

S60<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 4.0 2 x 4.5 2 x 5.0 2 x 5.0 2 x 5.0<br />

3 /h 240 270 300 300 300<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.5 2 x 2.5 2 x 2.5 2 x 2.5 2 x 3.0<br />

3 /h 150 150 150 150 180<br />

L60<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 3.5 2 x 4.0 2 x 4.0 2 x 4.5 2 x 4.5<br />

3 /h 210 240 240 270 270<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.0 2 x 2.0 2 x 2.5 2 x 2.5 2 x 2.5<br />

3 /h 120 120 150 150 150<br />

S50<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 4.0 2 x 4.5 2 x 4.5 2 x 4.5 2 x 4.5<br />

3 /h 240 270 270 270 270<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.0 2 x 2.5 2 x 2.5 2 x 2.5 2 x 3.0<br />

3 /h 120 150 150 150 180<br />

S50<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 3.5 2 x 3.5 2 x 3.5 2 x 4.0 2 x 4.5<br />

3 /h 210 210 210 240 270<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.0 2 x 2.5 2 x 2.5 2 x 2.5 2 x 3.0<br />

3 /h 120 150 150 150 180<br />

L50<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 3.5 2 x 3.5 2 x 3.5 2 x 3.5 2 x 4.0<br />

3 /h 210 210 210 210 240<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.0 2 x 2.0 2 x 2.0 2 x 2.0 2 x 2.0<br />

3 /h 120 120 120 120 120<br />

S46<strong>MC</strong>-C<br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 3.5 2 x 3.5 2 x 3.5 2 x 4.0 2 x 4.0<br />

3 /h 210 210 210 240 240<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.0 2 x 2.0 2 x 2.0 2 x 2.0 2 x 2.0<br />

3 /h 120 120 120 120 120<br />

Fig. 6.01.05c: Capacities of starting air receivers and compressors for main engine<br />

430 200 025 198 22 41<br />

6.01.54<br />

178 87 96-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Starting air system: 30 bar (gauge)<br />

Cylinder No. 4 5 6 7 8 9 10 11 12<br />

S42<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 3.0 2 x 3.0 2 x 3.0 2 x 3.0 2 x 3.5 2 x 3.5 2 x 3.5 2 x 3.5 2 x 3.5<br />

3 /h 180 180 180 180 210 210 210 210 210<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.0 2 x 2.0 2 x 2.0 2 x 2.0 2 x 2.5 2 x 2.5 2 x 2.5 2 x 2.5 2 x 2.5<br />

3 /h 120 120 120 120 150 150 150 150 150<br />

L42<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 2.0 2 x 2.0 2 x 2.0 2 x 2.0 2 x 2.5 2 x 2.5 2 x 2.5 2 x 2.5 2 x 2.5<br />

3 /h 120 120 120 120 150 150 150 150 150<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5<br />

3 /h 90 90 90 90 90 90 90 90 90<br />

S35<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5<br />

3 /h 60 60 60 60 90 90 90 90 90<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 0.5 2 x 0.5 2 x 0.5 2 x 0.5 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0<br />

3 /h 30 30 30 30 60 60 60 60 60<br />

L35<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5 2 x 1.5<br />

3 /h 60 60 60 60 90 90 90 90 90<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 0.5 2 x 0.5 2 x 0.5 2 x 0.5 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0<br />

3 /h 30 30 30 30 60 60 60 60 60<br />

S26<strong>MC</strong><br />

Reversible engine<br />

Receiver volume (12 starts) m 3<br />

Compressor capacity, total m<br />

2 x 0.9 2 x 0.9 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0 2 x 1.0<br />

3 /h 54 54 60 60 60 60 60 60 60<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3<br />

Compressor capacity, total m<br />

2 x 0.4 2 x 0.4 2 x 0.4 2 x 0.4 2 x 0.5 2 x 0.5 2 x 0.5 2 x 0.5 2 x 0.5<br />

3 /h 24 24 24 24 30 30 30 30 30<br />

Fig. 6.01.05d: Capacities of starting air receivers and compressors for main engine<br />

430 200 025 198 22 41<br />

6.01.55<br />

178 87 96-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Auxiliary System Capacities for<br />

Derated <strong>Engine</strong>s<br />

The dimensioning of heat exchangers (coolers) and<br />

pumps for derated engines can be calculated on the<br />

basis of the heat dissipation values found by using<br />

the following description and diagrams. Those for<br />

the nominal <strong>MC</strong>R (L1), see Figs. 6.01.03 and<br />

6.01.04, may also be used if wanted.<br />

The examples represent the engines which have the<br />

largest layout diagrams. The layout diagram sizes<br />

for all engine types can be found in section 2.<br />

Cooler heat dissipations<br />

For the specified <strong>MC</strong>R (M) the diagrams in Figs.<br />

6.01.06, 6.01.07 and 6.01.08 show reduction factors<br />

for the corresponding heat dissipations for<br />

the coolers, relative to the values stated in the<br />

“List of Capacities” valid for nominal <strong>MC</strong>R (L1).<br />

Fig. 6.01.06: Scavenge air cooler, heat dissipation<br />

qair% in%ofL1 value<br />

178 06 55-6.1<br />

The percentage power (P%) and speed (n%) of L1<br />

for specified <strong>MC</strong>R (M) of the derated engine is used<br />

as input in the above-mentioned diagrams, giving<br />

the % heat dissipation figures relative to those in the<br />

“List of Capacities”, Figs. 6.01.03 and 6.01.04.<br />

430 200 025 198 22 41<br />

6.01.56<br />

Fig. 6.01.07: Jacket water cooler, heat dissipation<br />

qjw% in%ofL1 value<br />

Fig. 6.01.08: Lubricating oil cooler, heat dissipation<br />

qlub% in%ofL1 value<br />

178 06 56-6.1<br />

178 08 07-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Pump capacities<br />

The pump capacities given in the “List of Capacities”<br />

refer to engines rated at nominal <strong>MC</strong>R (L1).<br />

For lower rated engines, only a marginal saving in<br />

the pump capacities is obtainable.<br />

To ensure proper lubrication, the lubricating oil<br />

pump and the booster pump for camshaft and/or<br />

exhaust valve actuator must remain unchanged.<br />

Exhaust valve<br />

actuator<br />

Booster pumps for<br />

Camshaft and<br />

exhaust valve<br />

actuator<br />

None<br />

K98<strong>MC</strong> X<br />

K98<strong>MC</strong>-C X<br />

S90<strong>MC</strong>-C X<br />

L90<strong>MC</strong> X<br />

K90<strong>MC</strong> X<br />

K90<strong>MC</strong>-C X<br />

S80<strong>MC</strong>-C X<br />

S80<strong>MC</strong> X<br />

L80<strong>MC</strong> X<br />

K80<strong>MC</strong>-C X<br />

S70<strong>MC</strong>-C X<br />

S70<strong>MC</strong> X<br />

L70<strong>MC</strong> X<br />

S60<strong>MC</strong>-C X<br />

S60<strong>MC</strong> X<br />

L60<strong>MC</strong> X<br />

S50<strong>MC</strong>-C X<br />

S50<strong>MC</strong> X<br />

L50<strong>MC</strong> X<br />

S46<strong>MC</strong>-C X<br />

S42<strong>MC</strong> X<br />

L42<strong>MC</strong> X<br />

S35<strong>MC</strong> X<br />

L35<strong>MC</strong> X<br />

S26<strong>MC</strong> X<br />

Also the fuel oil circulating and supply pumps and<br />

the fuel oil heater should remain unchanged,<br />

In order to ensure a proper starting ability, the<br />

starting air compressors and the starting air receivers<br />

must also remain unchanged.<br />

The jacket cooling water pump capacity is relatively<br />

low, and practically no saving is possible, it is therefore<br />

kept unchanged.<br />

The seawater flow capacity for each of the scavenge<br />

air, lube oil and jacket water coolers can be<br />

reduced proportionally to the reduced heat dissipations<br />

found in Figs. 6.01.06, 6.01.07 and 6.01.08,<br />

respectively.<br />

However, regarding the scavenge air cooler(s), the engine<br />

maker has to approve this reduction in order to<br />

avoid too low a water velocity in the scavenge air<br />

cooler pipes.<br />

As the jacket water cooler is connected in series<br />

with the lubricating oil cooler, the water flow capacity<br />

for the latter is used also for the jacket water<br />

cooler.<br />

If a central cooler is used, the above still applies, but<br />

the central cooling water capacities are used instead<br />

of the above seawater capacities. The seawater<br />

flow capacity for the central cooler can be reduced<br />

in proportion to the reduction of the total<br />

cooler heat dissipation.<br />

Pump pressures<br />

Irrespective of the capacities selected as per the<br />

above guidelines, the below-mentioned pump<br />

heads at the mentioned maximum working temperatures<br />

for each system shall be kept:<br />

Pump<br />

head<br />

bar<br />

Max.<br />

working<br />

temp. °C<br />

Fuel oil supply pump 4.0 100<br />

Fuel oil circulating pump 6.0 150<br />

Lubricating oil pump<br />

K98, K98-C<br />

S90-C, L90, S80-C, S80<br />

K90-C, K90<br />

K80-C, L80, S70-C, S70<br />

L70, S60-C, S60, L60, S50-C,<br />

S50, L50, S46-C, S42, L42,<br />

S35, L35, S26<br />

Booster pump for camshaft<br />

and/or exhaust valve actuator<br />

5.0<br />

4.6<br />

4.5<br />

4.3<br />

4.0<br />

60<br />

60<br />

60<br />

60<br />

60<br />

3.0 60<br />

Seawater pump 2.5 50<br />

Central cooling water pump 2.5 60<br />

Jacket water pump 3.0 100<br />

Flow velocities<br />

For external pipe connections, we prescribe the<br />

following maximum velocities:<br />

Marine diesel oil . . . . . . . . . . . . . . . . . . . . . 1.0 m/s<br />

Heavy fuel oil. . . . . . . . . . . . . . . . . . . . . . . . 0.6 m/s<br />

Lubricating oil . . . . . . . . . . . . . . . . . . . . . . . 1.8 m/s<br />

Cooling water . . . . . . . . . . . . . . . . . . . . . . . 3.0 m/s<br />

430 200 025 198 22 41<br />

6.01.57


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 1:<br />

Derated 6S70<strong>MC</strong>-C with high efficiency MAN B&W turbocharger with fixed pitch propeller, seawater<br />

cooling system and without VIT fuel pumps.<br />

The calculation is made for the service rating (S) of the diesel engine being 80% of the specified <strong>MC</strong>R.<br />

As the engine is without VIT fuel pumps the specified <strong>MC</strong>R (M) is identical to the optimised power (O)<br />

Nominal <strong>MC</strong>R, (L1) PL1: 18,630 kW = 25,320 BHP (100.0%) 91 r/min (100.0%)<br />

Specified <strong>MC</strong>R, (M) PM: 14,904 kW = 20,256 BHP (80.0%) 81.9 r/min (90.0%)<br />

Optimised power, (O) PO: 14,904 kW = 20,256 BHP (80.0%) 81.9 r/min (88.0%)<br />

Example 1:<br />

The method of calculating the reduced capacities<br />

for point M is shown below.<br />

The values valid for the nominal rated engine are<br />

found in the “List of Capacities” Fig. 6.01.03a, and<br />

are listed together with the result in Fig. 6.01.09.<br />

Heat dissipation of scavenge air cooler<br />

Fig. 6.01.05 which is approximate indicates a 73%<br />

heat dissipation:<br />

7600 x 0.73 = 5548 kW<br />

Heat dissipation of jacket water cooler<br />

Fig. 6.01.07 indicates a 84% heat dissipation:<br />

2830 x 0.84 = 2377 kW<br />

Heat dissipation of lube. oil cooler<br />

Fig. 6.01.08 indicates a 91% heat dissipation:<br />

1440 x 0.91 = 1310 kW<br />

Seawater pump<br />

Scavenge air cooler:<br />

Lubricating oil cooler:<br />

Total:<br />

404 x 0.73 = 294.9 m 3 /h<br />

206 x 0.91 = 187.5 m 3 /h<br />

482.4 m 3 /h<br />

If the engine were fitted with VIT fuel pumps, the<br />

M would not coincide with O, and in the figure the<br />

data for the specified <strong>MC</strong>R (M) should be used.<br />

430 200 025 198 22 41<br />

6.01.58


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Nominal rated engine (L1)<br />

high efficiency<br />

turbocharger<br />

Shaft power at <strong>MC</strong>R 18,630 kW<br />

at 91 r/min<br />

Example 1<br />

Specified <strong>MC</strong>R (M)<br />

14,904 kW<br />

at 81.9 r/min<br />

Pumps:<br />

Fuel oil circulating pump m 3/h 8.3 8.3<br />

Fuel oil supply pump m 3/h 4.6 4.6<br />

Jacket cooling water pump m 3/h 165 165<br />

Seawater pump* m 3/h 610 482.4<br />

Lubricating oil pump* m 3/h 390 390<br />

Booster pump for camshaft and exhaust valves m 3/h 3.0 3.0<br />

Coolers:<br />

Scavenge air cooler<br />

Heat dissipation kW 7600 5548<br />

Seawater quantity m 3/h 404 294.9<br />

Lub. oil cooler<br />

Heat dissipation* kW 1440 1310<br />

Lubricating oil quantity* m 3/h 390 390<br />

Seawater quantity m 3/h 206 187.5<br />

Jacket water cooler<br />

Heat dissipation kW 2830 2377<br />

Jacket cooling water quantity m 3/h 165 165<br />

Seawater quantity m 3/h 206 187.5<br />

Fuel oil preheater: kW 220 220<br />

Gases at ISO ambient conditions*<br />

Exhaust gas amount kg/h 176400 138200<br />

Exhaust gas temperature °C 235 226<br />

Air consumption kg/sec. 48.1 37.6<br />

Starting air system: 30 bar (gauge)<br />

Reversible engine<br />

Receiver volume (12 starts) m 3 2 x 8.0 2 x 8.0<br />

Compressor capacity, total m 3/h 480 480<br />

Non-reversible engine<br />

Receiver volume (6 starts) m 3 2 x 4.5 2 x 4.5<br />

Compressor capacity, total m 3/h 270 270<br />

Exhaust gas tolerances: temperature -/+ 15 °C and amount +/- 5%<br />

The air consumption and exhaust gas figures are expected and refer to 100% specified <strong>MC</strong>R, ISO ambient<br />

reference conditions and the exhaust gas back pressure 300 mm WC<br />

The exhaust gas temperatures refer to after turbocharger<br />

* Calculated in example 3, in this chapter<br />

Fig. 6.01.09: Example 1 – Capacities of derated 6S70<strong>MC</strong>-C with high efficiency MAN B&W turbocharger and seawater<br />

cooling system.<br />

178 45 72-4.0<br />

430 200 025 198 22 41<br />

6.01.59


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Freshwater Generator<br />

If a freshwater generator is installed and is utilising<br />

the heat in the jacket water cooling system, it should<br />

be noted that the actual available heat in the jacket<br />

cooling water system is lower than indicated by the<br />

heat dissipation figures valid for nominal <strong>MC</strong>R (L1)<br />

given in the List of Capacities. This is because the<br />

latter figures are used for dimensioning the jacket<br />

water cooler and hence incorporate a safety margin<br />

which can be needed when the engine is operating<br />

under conditions such as, e.g. overload. Normally,<br />

this margin is 10% at nominal <strong>MC</strong>R.<br />

For a derated diesel engine, i.e. an engine having a<br />

specified <strong>MC</strong>R (M) and/or an optimising point (O)<br />

different from L1, the relative jacket water heat dissipation<br />

for point M and O may be found, as previously<br />

described, by means of Fig. 6.01.07.<br />

At part load operation, lower than optimised power,<br />

the actual jacket water heat dissipation will be reduced<br />

according to the curves for fixed pitch pro-<br />

Fig. 6.01.10: Correction factor “kp” for jacket cooling<br />

water heat dissipation at part load, relative to heat<br />

dissipation at optimised power<br />

178 06 64-3.0<br />

peller (FPP) or for constant speed, controllable pitch<br />

propeller (CPP), respectively, in Fig. 6.01.10.<br />

With reference to the above, the heat actually available<br />

for a derated diesel engine may then be found<br />

as follows:<br />

1. <strong>Engine</strong> power between optimised and specified<br />

power.<br />

For powers between specified <strong>MC</strong>R (M) and optimised<br />

power (O), the diagram Fig. 6.01.07 is to<br />

be used,i.e. giving the percentage correction<br />

factor “qjw%” and hence<br />

Qjw = QL1 x q jw%<br />

x 0.9 (0.87) [1]<br />

100<br />

2. <strong>Engine</strong> power lower than optimised power.<br />

where<br />

For powers lower than the optimised power, the<br />

value Qjw,O found for point O by means of the<br />

above equation [1] is to be multiplied by the correction<br />

factor kp found in Fig. 6.01.10 and hence<br />

Qjw =Qjw,O xkp<br />

Qjw = jacket water heat dissipation<br />

QL1 = jacket water heat dissipation at nominal<br />

<strong>MC</strong>R (L1)<br />

qjw%= percentage correction factor from Fig.<br />

6.01.07<br />

Qjw,O= jacket water heat dissipation at optimised<br />

power (O), found by means of equation [1]<br />

kp = correction factor from Fig. 6.01.10<br />

0.9 = factor for overload margin, tropical<br />

ambient conditions<br />

The heat dissipation is assumed to be more or less<br />

independent of the ambient temperature conditions,<br />

yet the overload factor of about 0.87 instead<br />

of 0.90 will be more accurate for ambient conditions<br />

corresponding to ISO temperatures or lower.<br />

If necessary, all the actually available jacket cooling<br />

water heat may be used provided that a special temperature<br />

control system ensures that the jacket<br />

cooling water temperature at the outlet from the engine<br />

does not fall below a certain level. Such a tem-<br />

430 200 025 198 22 41<br />

6.01.60<br />

[2]


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Freshwater generator system Jacket cooling water system<br />

Valve A: ensures that Tjw 80–5°C=75°C<br />

Valve B and the corresponding by-pass may be omitted if, for example, the freshwater generator is equipped with an<br />

automatic start/stop function for too low jacket cooling water temperature<br />

If necessary, all the actually available jacket cooling water heat may be utilised provided that a special temperature control<br />

system ensures that the jacket cooling water temperature at the outlet from the engine does not fall below a certain level<br />

Fig. 6.01.11: Freshwater generators. Jacket cooling water heat recovery flow diagram<br />

perature control system may consist, e.g., of a special<br />

by-pass pipe installed in the jacket cooling<br />

water system, see Fig. 6.01.11, or a special built-in<br />

temperature control in the freshwater generator,<br />

e.g., an automatic start/stop function, or similar. If<br />

such a special temperature control is not applied,<br />

we recommend limiting the heat utilised to maximum<br />

50% of the heat actually available at specified<br />

<strong>MC</strong>R, and only using the freshwater generator at engine<br />

loads above 50%.<br />

When using a normal freshwater generator of the<br />

single-effect vacuum evaporator type, the freshwater<br />

production may, for guidance, be estimated as<br />

0.03 t/24h per 1 kW heat, i.e.:<br />

Mfw =0.03xQjw t/24h [3]<br />

where<br />

Mfw is the freshwater production in tons per 24<br />

hours<br />

and<br />

Qjw is to be stated in kW<br />

178 16 79-9.2<br />

430 200 025 198 22 41<br />

6.01.61


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 2:<br />

Freshwater production from a derated 6S70<strong>MC</strong>-C with high efficiency MAN B&W turbocharger, without<br />

VIT fuel pumps and with fixed pitch propeller.<br />

Based on the engine ratings below, this example will show how to calculate the expected available jacket<br />

cooling water heat removed from the diesel engine, together with the corresponding freshwater<br />

production from a freshwater generator.<br />

The calculation is made for the service rating (S) of the diesel engine being 80% of the specified <strong>MC</strong>R.<br />

As the engine is without VIT fuel pumps the specified <strong>MC</strong>R (M) is identical to the optimised power (O)<br />

Nominal <strong>MC</strong>R, (L1) PL1: 18,630 kW = 25,320 BHP (100.0%) 91.0 r/min (100.0%)<br />

Specified <strong>MC</strong>R, (M) PM: 14,904 kW = 20,256 BHP (80.0%) 81.9 r/min (90.0%)<br />

Optimised power, (O) PO: 14,904 kW = 20,256 BHP (80.0%) 81.9 r/min (90.0%)<br />

Service rating, (S) PS: 11,923 kW = 16,205 BHP (64.0%) 76.0 r/min (83.5%)<br />

The expected available jacket cooling water heat at<br />

service rating is found as follows:<br />

QL1 = 2830 kW from “List of Capacities”<br />

qjw% = 84.0% using 80.0% power and 90.0%<br />

speed for M=O (as no VIT fuel pumps are<br />

used) in Fig. 6.01.07<br />

By means of equation [1], and using factor 0.87 for<br />

actual ambient condition the heat dissipation in the<br />

optimising point (O) is found:<br />

Qjw,O = QL1 x q jw%<br />

x 0.87<br />

100<br />

= 2830 x 84.0<br />

x 0.87 = 2068 kW<br />

100<br />

If the engine were fitted with VIT fuel pumps, M would<br />

not coincide with O, and the data for the optimising<br />

point should be used, as shown in Fig. 6.01.07.<br />

By means of equation [2], the heat dissipation in the<br />

service point (S) is found:<br />

Qjw = Qjw,O xkp = 2068 x 0.85 = 1760 kW<br />

kp<br />

= 0.85 using Ps% = 80% in Fig. 6.01.10<br />

For the service point the corresponding expected<br />

obtainable freshwater production from a freshwater<br />

generator of the single-effect vacuum evaporator<br />

type is then found from equation [3]:<br />

Mfw =0.03xQjw = 0.03 x 1760 = 52.7 t/24h<br />

Calculation of Exhaust Gas Amount and<br />

Temperature<br />

Influencing factors<br />

The exhaust gas data to be expected in practice depends,<br />

primarily, on the following three factors:<br />

a) The optimising point of the engine (point O):<br />

430 200 025 198 22 41<br />

6.01.62<br />

PO:<br />

nO:<br />

power in kW (BHP) at optimising point<br />

speed in r/min at optimising point<br />

b) The ambient conditions, and exhaust gas<br />

back-pressure:<br />

Tair: actual ambient air temperature, in °C<br />

pbar: actual barometric pressure, in mbar<br />

TCW: actual scavenge air coolant temperature, in °C<br />

DpO: exhaust gas back-pressure in mm WC at<br />

optimising point<br />

c) The continuous service rating of the engine<br />

(point S), valid for fixed pitch propeller or<br />

controllable pitch propeller (constant engine<br />

speed)<br />

PS: continuous service rating of engine,<br />

in kW (BHP)


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Calculation Method<br />

To enable the project engineer to estimate the actual<br />

exhaust gas data at an arbitrary service rating,<br />

the following method of calculation may be used.<br />

Mexh:<br />

Texh:<br />

exhaust gas amount in kg/h, to be found<br />

exhaust gas temperature in °C, to be found<br />

The partial calculations based on the above influencing<br />

factors have been summarised in equations<br />

[4] and [5], see Fig. 6.01.12.<br />

The partial calculations based on the influencing<br />

factors are described in the following:<br />

Mexh =ML1 x P<br />

P<br />

O<br />

L1<br />

x mo%<br />

DMamb%<br />

Dms%<br />

PS%<br />

x(1+ )x(1+ ) x<br />

100 100 100 100<br />

a) Correction for choice of optimising point<br />

When choosing an optimising point “O” other than<br />

the nominal <strong>MC</strong>R point “L1”, the resulting changes<br />

in specific exhaust gas amount and temperature are<br />

found by using as input in diagrams 6.01.13 and<br />

6.01.14 the corresponding percentage values (of L1)<br />

for optimised power PO% and speed nO%.<br />

mo%: specific exhaust gas amount, in % of specific<br />

gas amount at nominal <strong>MC</strong>R (L1), see Fig.<br />

6.01.13.<br />

DTo: change in exhaust gas temperature after<br />

turbocharger relative to the L1 value, in °C,<br />

see Fig. 6.01.14.<br />

kg/h [4]<br />

Texh = TL1 +DTo +DTamb +DTS °C [5]<br />

where, according to “List of capacities”, i.e. referring to ISO ambient conditions and 300 mm WC<br />

back-pressure and optimised in L1:<br />

ML1: exhaust gas amount in kg/h at nominal <strong>MC</strong>R (L1)<br />

TL1: exhaust gas temperatures after turbocharger in °C at nominal <strong>MC</strong>R (L1)<br />

Fig. 6.01.12: Summarising equations for exhaust gas amounts and temperatures<br />

Fig. 6.01.13: Specific exhaust gas amount, mo% in%<br />

of L1 value<br />

178 30 58-0.0<br />

178 06 59-1.1 178 06 60-1.1<br />

Fig. 6.01.14: Change of exhaust gas temperature, DTo in<br />

°C after turbocharger relative to L1 value<br />

430 200 025 198 22 41<br />

6.01.63


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

b) Correction for actual ambient conditions and<br />

back-pressure<br />

For ambient conditions other than ISO 3046/1-<br />

1986, and back-pressure other than 300 mm WC at<br />

optimising point (O), the correction factors stated in<br />

the table in Fig. 6.01.15 may be used as a guide, and<br />

the corresponding relative change in the exhaust<br />

gas data may be found from equations [6] and [7],<br />

shown in Fig. 6.01.16.<br />

Parameter Change Change of exhaust<br />

gas temperature<br />

Blower inlet temperature<br />

+10°C<br />

+ 16.0 °C<br />

Blower inlet pressure (barometric pressure)<br />

Charge air coolant temperature<br />

(seawater temperature)<br />

Exhaust gas back pressure at the optimising point<br />

+ 10 mbar<br />

+10°C<br />

+ 100 mm WC<br />

– 0.1 °C<br />

+ 1.0 °C<br />

+ 5.0 °C<br />

Fig. 6.01.15: Correction of exhaust gas data for ambient conditions and exhaust gas back pressure<br />

Change of exhaust<br />

gas amount<br />

– 4.1%<br />

+ 0.3%<br />

+ 1.9%<br />

– 1.1%<br />

DMamb% = -0.41 x (Tair –25)+0.03x(pbar – 1000) + 0.19 x (TCW – 25 ) - 0.011 x (DpO – 300) % [6]<br />

DTamb =1.6x(Tair –25)–0.01x(pbar – 1000) +0.1 x (TCW – 25) + 0.05 x (DpO– 300) °C [7]<br />

where the following nomenclature is used:<br />

DMamb%: change in exhaust gas amount, in % of amount at ISO conditions<br />

DTamb: change in exhaust gas temperature, in °C<br />

The back-pressure at the optimising point can, as an approximation, be calculated by:<br />

DpO<br />

=DpM x(PO/PM) 2<br />

where,<br />

PM: power in kW (BHP) at specified <strong>MC</strong>R<br />

DpM: exhaust gas back-pressure prescribed at specified <strong>MC</strong>R, in mm WC<br />

Fig. 6.01.16: Exhaust gas correction formula for ambient conditions and exhaust gas back-pressure<br />

430 200 025 198 22 41<br />

6.01.64<br />

178 30 59-2.1<br />

[8]<br />

178 30 60-2.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.01.17: Change of specific exhaust gas amount,<br />

ms% in % at part load<br />

c) Correction for engine load<br />

Figs. 6.01.17 and 6.01.18 may be used, as guidance,<br />

to determine the relative changes in the specific<br />

exhaust gas data when running at part load,<br />

compared to the values in the optimising point, i.e.<br />

using as input PS% =(PS/PO) x 100%:<br />

Dms%: change in specific exhaust gas amount, in<br />

% of specific amount at optimising point,<br />

see Fig. 6.01.17.<br />

DTs: change in exhaust gas temperature, in<br />

°C, see Fig. 6.01.18.<br />

178 06 74-5.0 178 06 73-3.0<br />

Fig. 6.01.18: Change of exhaust gas temperature,<br />

Ts in °C at part load<br />

430 200 025 198 22 41<br />

6.01.65


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Example 3:<br />

Expected exhaust data for a derated 6S70<strong>MC</strong>-C with high efficiency MAN B&W turbocharger, with fixed pitch<br />

propeller and with VIT fuel pumps.<br />

In order to show the calculation in “worst case” we have chosen an engine with VIT fuel pump.<br />

Based on the engine ratings below, and by means of an example, this chapter will show how to calculate the<br />

expected exhaust gas amount and temperature at service rating , and corrected to ISO conditions<br />

The calculation is made for the service rating (S) being 80% of the optimised power of the diesel engine.<br />

Nominal <strong>MC</strong>R, (L1) PL1: 18,630 kW = 25,320 BHP (100.0%) 91.0 r/min (100.0%)<br />

Specified <strong>MC</strong>R, (M) PM: 14,904 kW = 20,256 BHP (80.0%) 81.9 r/min (90.0%)<br />

Optimised power, (O) PO: 13,935 kW = 18393 BHP (74.8%) 80.1 r/min (88.0%)<br />

Service rating, (S) PS: 11,923 kW = 16,205 BHP (59.8%) 74.3 r/min (81.7%)<br />

Reference conditions:<br />

Air temperature Tair . . . . . . . . . . . . . . . . . . . . 20 °C<br />

Scavenge air coolant temperature TCW. . . . . 18 °C<br />

Barometric pressure pbar. . . . . . . . . . . . 1013 mbar<br />

Exhaust gas back-pressure<br />

at specified <strong>MC</strong>R pM . . . . . . . . . . . . 300 mm WC<br />

a) Correction for choice of optimising point:<br />

PO% = 13935<br />

x 100 = 74.8%<br />

18630<br />

nO% = 80.1<br />

x 100 = 88.0%<br />

91<br />

By means of Figs. 6.01.13 and 6.01.14:<br />

mO% = 97.6 %<br />

TO<br />

= - 8.9 °C<br />

b) Correction for ambient conditions and<br />

back-pressure:<br />

The back-pressure at the optimising point is found<br />

by means of equation [8]:<br />

pO<br />

= 300 x 13935<br />

2<br />

<br />

= 262 mm WC<br />

14904<br />

By means of equations [6] and [7]:<br />

Mamb% = - 0.41 x (20-25) – 0.03 x (1013-1000)<br />

+ 0.19 x (18-25) – 0.011 x (262-300) %<br />

Mamb% = + 0.75%<br />

Tamb = 1.6 x (20- 25) + 0.01 x (1013-1000)<br />

+ 0.1 x (18-25) + 0.05 x (262-300) °C<br />

Tamb = - 10.5 °C<br />

c) Correction for the engine load:<br />

Service rating = 80% of optimised power<br />

By means of Figs. 6.01.17 and 6.01.18:<br />

mS% = + 3.2%<br />

TS<br />

= - 3.6 °C<br />

By means of equations [4] and [5], the final result is<br />

found taking the exhaust gas flow ML1 and temperature<br />

TL1 from the “List of Capacities”:<br />

ML1 = 176400 kg/h<br />

Mexh<br />

Mexh<br />

= 176400 x 13935 97.6<br />

x<br />

18630 100 x(1+0.75<br />

100 )x<br />

(1 + 3.2 80<br />

)x = 107117 kg/h<br />

100 100<br />

= 107000 kg/h +/- 5%<br />

430 200 025 198 22 41<br />

6.01.66


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

The exhaust gas temperature:<br />

TL1 = 235 °C<br />

Texh<br />

Texh<br />

= 235 – 8.9 – 10.5 – 3.6 = 212 °C<br />

= 212 °C -/+15 °C<br />

Exhaust gas data at specified <strong>MC</strong>R (ISO)<br />

At specified <strong>MC</strong>R (M), the running point may be considered<br />

as a service point where:<br />

PS%<br />

= P<br />

P<br />

M<br />

O<br />

x 100% = 14904<br />

x 100% = 107.0%<br />

13935<br />

and for ISO ambient reference conditions, the corresponding<br />

calculations will be as follows:<br />

Mexh,M = 176400 x 13935 97.6<br />

x<br />

18630 100 x(1<br />

(1<br />

-0.1<br />

)x<br />

100<br />

Mexh,M = 138200 kg/h<br />

107. 0<br />

= 138233 kg/h<br />

100<br />

042 .<br />

)x<br />

100<br />

Texh,M = 235 – 8.9 – 1.9 + 2.2 = 226.4 °C<br />

Texh,M= 226 °C<br />

The air consumption will be:<br />

138200 x 0.98 kg/h = 37.6 kg/sec<br />

430 200 025 198 22 41<br />

6.01.67


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. Symbol Symbol designation No. Symbol Symbol designation<br />

1 General conventional symbols 2.17 Pipe going upwards<br />

1.1 Pipe 2.18 Pipe going downwards<br />

1.2 Pipe with indication of direction of flow 2.19 Orifice<br />

1.3 Valves, gate valves, cocks and flaps 3 Valves, gate valves, cocks and flaps<br />

1.4 Appliances 3.1 Valve, straight through<br />

1.5 Indicating and measuring instruments 3.2 Valves, angle<br />

2 Pipes and pipe joints 3.3 Valves, three way<br />

2.1 Crossing pipes, not connected 3.4 Non-return valve (flap), straight<br />

2.2 Crossing pipes, connected 3.5 Non-return valve (flap), angle<br />

2.3 Tee pipe 3.6 Non-return valve (flap), straight, screw down<br />

2.4 Flexible pipe 3.7 Non-return valve (flap), angle, screw down<br />

2.5 Expansion pipe (corrugated) general 3.8 Flap, straight through<br />

2.6 Joint, screwed 3.9 Flap, angle<br />

2.7 Joint, flanged 3.10 Reduction valve<br />

2.8 Joint, sleeve 3.11 Safety valve<br />

2.9 Joint, quick-releasing 3.12 Angle safety valve<br />

2.10 Expansion joint with gland 3.13 Self-closing valve<br />

2.11 Expansion pipe 3.14 Quick-opening valve<br />

2.12 Cap nut 3.15 Quick-closing valve<br />

2.13 Blank flange 3.16 Regulating valve<br />

2.14 Spectacle flange 3.17 Kingston valve<br />

2.15 Bulkhead fitting water tight, flange 3.18 Ballvalve (cock)<br />

2.16 Bulkhead crossing, non-watertight<br />

Fig. 6.01.19a: Basic symbols for piping 178 30 61-4.0<br />

430 200 025 198 22 41<br />

6.01.68


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. Symbol Symbol designation No. Symbol Symbol designation<br />

3.19 Butterfly valve 4.6 Piston<br />

3.20 Gate valve 4.7 Membrane<br />

3.21 Double-seated changeover valve 4.8 Electric motor<br />

3.22 Suction valve chest 4.9 Electro-magnetic<br />

3.23 Suction valve chest with non-return valves 5 Appliances<br />

3.24 Double-seated changeover valve, straight 5.1 Mudbox<br />

3.25 Double-seated changeover valve, angle 5.2 Filter or strainer<br />

3.26 Cock, straight through 5.3 Magnetic filter<br />

3.27 Cock, angle 5.4 Separator<br />

2.28 Cock, three-way, L-port in plug 5.5 Steam trap<br />

3.29 Cock, three-way, T-port in plug 5.6 Centrifugal pump<br />

3.30 Cock, four-way, straight through in plug 5.7 Gear or screw pump<br />

3.31 Cock with bottom connection 5.8 Hand pump (bucket)<br />

3.32 Cock, straight through, with bottom conn. 5.9 Ejector<br />

3.33 Cock, angle, with bottom connection 5.10 Various accessories (text to be added)<br />

3.34 Cock, three-way, with bottom connection 5.11 Piston pump<br />

4 Control and regulation parts 6 Fittings<br />

4.1 Hand-operated 6.1 Funnel<br />

4.2 Remote control 6.2 Bell-mounted pipe end<br />

4.3 Spring 6.3 Air pipe<br />

4.4 Mass 6.4 Air pipe with net<br />

4.5 Float 6.5 Air pipe with cover<br />

Fig. 6.01.19b: Basic symbols for piping<br />

430 200 025 198 22 41<br />

6.01.69<br />

178 30 61-4.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. Symbol Symbol designation No. Symbol Symbol designation<br />

6.6 Air pipe with cover and net 7 Indicating instruments with ordinary symbol designations<br />

6.7 Air pipe with pressure vacuum valve 7.1 Sight flow indicator<br />

6.8 Air pipe with pressure vacuum valve with net 7.2 Observation glass<br />

6.9 Deck fittings for sounding or filling pipe 7.3 Level indicator<br />

6.10 Short sounding pipe with selfclosing cock 7.4 Distance level indicator<br />

6.11 Stop for sounding rod 7.5 Counter (indicate function)<br />

430 200 025 198 22 41<br />

6.01.70<br />

7.6 Recorder<br />

The symbols used are in accordance with ISO/R 538-1967, except symbol No. 2.19<br />

Fig. 6.01.19c: Basic symbols for piping<br />

178 30 61-4.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.02 Fuel Oil System<br />

Pressurised Fuel Oil System<br />

The system is so arranged that both diesel oil and<br />

heavy fuel oil can be used, see Fig. 6.02.01.<br />

From the service tank the fuel is led to an electrically<br />

driven supply pump by means of which a pressure<br />

of approximately 4 bar can be maintained in the low<br />

pressure part of the fuel circulating system, thus<br />

avoiding gasification of the fuel in the venting box in<br />

the temperature ranges applied.<br />

The venting box is connected to the service tank via<br />

an automatic deaerating valve, which will release<br />

any gases present, but will retain liquids.<br />

From the low pressure part of the fuel system the<br />

fuel oil is led to an electrically-driven circulating<br />

pump, which pumps the fuel oil through a heater<br />

and a full flow filter situated immediately before the<br />

inlet to the engine.<br />

To ensure ample filling of the fuel pumps, the capacity<br />

of the electrically-driven circulating pump is<br />

higher than the amount of fuel consumed by the diesel<br />

engine. Surplus fuel oil is recirculated from the<br />

engine through the venting box.<br />

To ensure a constant fuel pressure to the fuel injection<br />

pumps during all engine loads, a spring loaded<br />

overflow valve is inserted in the fuel oil system on<br />

the engine.<br />

The fuel oil pressure measured on the engine (at fuel<br />

pump level) should be 7-8 bar, equivalent to a circulating<br />

pump pressure of 10 bar.<br />

When the engine is stopped, the circulating pump will<br />

continue to circulate heated heavy fuel through the<br />

fuel oil system on the engine, thereby keeping the<br />

fuel pumps heated and the fuel valves deaerated.<br />

This automatic circulation of preheated fuel during<br />

engine standstill is the background for our recommendation:<br />

constant operation on heavy fuel<br />

In addition, if this recommendation was not followed,<br />

there would be a latent risk of diesel oil and<br />

heavy fuels of marginal quality forming incompatible<br />

blends during fuel change over. Therefore, we<br />

strongly advise against the use of diesel oil for operation<br />

of the engine – this applies to all loads.<br />

In special circumstances a change-over to diesel oil<br />

may become necessary – and this can be performed<br />

at any time, even when the engine is not running.<br />

Such a change-over may become necessary if, for<br />

instance, the vessel is expected to be inactive for a<br />

prolonged period with cold engine e.g. due to:<br />

docking<br />

stop for more than five days’<br />

major repairs of the fuel system, etc.<br />

environmental requirements<br />

The built-on overflow valves, if any, at the supply<br />

pumps are to be adjusted to 5 bar, whereas the external<br />

bypass valve is adjusted to 4 bar. The pipes<br />

between the tanks and the supply pumps shall have<br />

minimum 50% larger passage area than the pipe<br />

between the supply pump and the circulating pump.<br />

The remote controlled quick-closing valve at inlet<br />

“X” to the engine (Fig. 6.02.01) is required by MAN<br />

B&W in order to be able to stop the engine immediately,<br />

especially during quay and sea trials, in the<br />

event that the other shut-down systems should fail.<br />

This valve is yard’s supply and is to be situated as<br />

close as possible to the engine. If the fuel oil pipe “X”<br />

at inlet to engine is made as a straight line immediately<br />

at the end of the engine, it will be necessary to<br />

mount an expansion joint. If the connection is<br />

made as indicated, with a bend immediately at the<br />

end of the engine, no expansion joint is required.<br />

402 600 025 198 22 42<br />

6.02.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

–––––– Diesel oil<br />

––––––––– Heavy fuel oil<br />

Heated pipe with insulation<br />

a)<br />

b)<br />

Tracing fuel oil lines of max. 150 °C<br />

Tracing of fuel oil drain lines: maximum<br />

90 °C, min. 50 °C f. Inst. By jacket cooling<br />

water<br />

Fig. 6.02.01: Fuel oil system commen for main engine and Holeby GenSets<br />

402 600 025 198 22 42<br />

6.02.02<br />

Number of auxiliary engines, pumps, coolers, etc. Subject<br />

to alterations according to the actual plants specification<br />

The letters refer to the “List of flanges”<br />

D shall have min. 50% larger area than d.<br />

178 46 91-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

The introduction of the pump sealing arrangement,<br />

the so-called “umbrella” type, has made it possible<br />

to omit the separate camshaft lubricating oil system.<br />

The umbrella type fuel oil pump has an additional<br />

external leakage rate of clean fuel oil through AD.<br />

The flow rate in litres is approximately:<br />

0.10 l/cyl. h S26<strong>MC</strong>, L35<strong>MC</strong><br />

0.15 l/cyl. h S35<strong>MC</strong><br />

0.20 l/cyl. h S42<strong>MC</strong>, L42<strong>MC</strong><br />

0.30 l/cyl. h S46<strong>MC</strong>-C, S50<strong>MC</strong>-C<br />

0.45 l/cyl. h S50<strong>MC</strong>, L50<strong>MC</strong><br />

0.50 l/cyl. h L60<strong>MC</strong><br />

0.60 l/cyl. h S60<strong>MC</strong>, S60<strong>MC</strong>-C, L70<strong>MC</strong><br />

0.75 l/cyl. h S70<strong>MC</strong>, S70<strong>MC</strong>-C, L80<strong>MC</strong>, K80<strong>MC</strong>-C,<br />

K90<strong>MC</strong>-C, K90<strong>MC</strong>, L90<strong>MC</strong>-C<br />

1.00 l/cyl. h S80<strong>MC</strong>, S80<strong>MC</strong>-C<br />

1.25 l/cyl. h K98<strong>MC</strong>-C, K98<strong>MC</strong>, S90<strong>MC</strong>-C<br />

The purpose of the drain “AF” is to collect the unintentional<br />

leakage from the high pressure pipes. The<br />

drain oil is lead to a fuel oil sludge tank. The “AF”<br />

drain can be provided with a box for giving alarm in<br />

case of leakage in a high pressure pipes.<br />

Owing to the relatively high viscosity of the heavy<br />

fuel oil, it is recommended that the drain pipe and<br />

the tank are heated to min. 50 °C.<br />

The drain pipe between engine and tank can be<br />

heated by the jacket water, as shown in Fig. 6.02.01.<br />

Flange “BD”.<br />

Operation at sea<br />

The flexibility of the common fuel oil system for main<br />

engine and GenSets makes it possible, if necessary,<br />

to operate the GenSet engines on different fuels, –<br />

diesel oil or heavy fuel oil, – simultaneously by<br />

means of remote controlled 3-way valves, which are<br />

located close to the engines.<br />

A separate booster pump, supplies diesel oil from<br />

the MDO tank to the GenSet engines and returns<br />

any excess oil to the tank. In order to ensure operation<br />

of the booster pump, in the event of a<br />

black-out, the booster pump must have an immediate<br />

possibility of being powered by compressed air<br />

or by power supplied from the emergency generator.<br />

A 3-way valve is installed immediately before each<br />

GenSet for change-over between the pressurised<br />

and the open MDO (Marine Diesel Oil) supply system.<br />

In the event of a black-out, the 3-way valve at each<br />

GenSet will automatically change over to the MDO<br />

supply system. The internal piping on the GenSets<br />

will then, within a few seconds, be flushed with MDO<br />

and be ready for start up.<br />

Operation in port<br />

During operation in port, when the main engine is<br />

stopped but power from one or more GenSet is still<br />

required, the supply pump, should be runnning. One<br />

circulating pump should always be kept running<br />

when there is heavy oil in the piping.<br />

The by-pass line with overflow valve, item 1, between<br />

the inlet and outlet of the main engine, serves<br />

the purpose of by-passing the main engine if, for<br />

instance, a major overhaul is required on the main<br />

engine fuel oil system. During this by-pass, the<br />

overflow valve takes over the function of the internal<br />

overflow valve of the main engine.<br />

402 600 025 198 22 42<br />

6.02.03


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fuel oils<br />

Marine diesel oil:<br />

Marine diesel oil ISO 8217, Class DMB<br />

British Standard 6843, Class DMB<br />

Similar oils may also be used<br />

Heavy Fuel Oil (HFO)<br />

Most commercially available HFO with a viscosity<br />

below 700 cSt at 50 °C (7000 sec. Redwood I at<br />

100 °F) can be used.<br />

The data refers to the fuel as supplied i.e. before any<br />

on board cleaning.<br />

Property Units Value<br />

Density at 15 °C kg/m 3<br />

Kinematic viscosity<br />

< 991*<br />

at 100 °C<br />

cSt > 55<br />

at 50 °C<br />

cSt > 700<br />

Flash point °C > 60<br />

Pour point °C > 30<br />

Carbon residue % mass > 22<br />

Ash % mass > 0.15<br />

Total sediment after ageing % mass > 0.10<br />

Water % volume > 1.0<br />

Sulphur % mass > 5.0<br />

Vanadium mg/kg > 600<br />

Aluminum + Silicon mg/kg > 80<br />

*) May be increased to 1.010 provided adequate<br />

cleaning equipment is installed, i.e. modern type of<br />

centrifuges.<br />

For external pipe connections, we prescribe the<br />

following maximum flow velocities:<br />

Marine diesel oil . . . . . . . . . . . . . . . . . . . . . 1.0 m/s<br />

Heavy fuel oil. . . . . . . . . . . . . . . . . . . . . . . . 0.6 m/s<br />

402 600 025 198 22 42<br />

6.02.04


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.03 Uni-lubricating Oil System<br />

The letters refer to “List of flanges”<br />

* Venting for MAN B&W or Mitsubishi turbochargers<br />

Fig. 6.03.01: Lubricating and cooling oil system<br />

Since mid 1995 we have introduced as standard,<br />

the so called “umbrella” type of fuel pump for which<br />

reason a separate camshaft lube oil system is no<br />

longer necessary.<br />

As a consequence the uni-lubricating oil system is<br />

fitted with two small booster pumps for exhaust<br />

valve actuators lube oil supply “Y” and/or the camshaft<br />

for engine of the 50 type and larger, depending<br />

on the specific engine type, see Fig. 6.03.01.<br />

Please note that no booster pumps are required on<br />

S46<strong>MC</strong>-C, S42<strong>MC</strong>, L42<strong>MC</strong>, S35<strong>MC</strong>, L35<strong>MC</strong> and<br />

S26<strong>MC</strong> produced according to plant specifications<br />

orderd after January 2000.<br />

The system supplies lubricating oil through inlet “R”,<br />

to the engine bearings and through “U” to cooling oil<br />

to the pistons etc.<br />

For some engine types the “R” and “U” inlet can be<br />

combined in “RU” as shown in Fig. 6.03.01.<br />

Turbochargers with slide bearings are normally<br />

lubricated from the main engine system .<br />

Separate inlet “AA” and outlet “AB” can be fitted for<br />

the lubrication of the turbocharger(s) on the 98 to<br />

60-types, and the venting is through "E" directly to<br />

the deck<br />

.<br />

440 600 025 198 22 43<br />

6.03.01<br />

178 46 92-2.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

The engine crankcase is vented through “AR” by a<br />

pipe which extends directly to the deck. This pipe has<br />

a drain arrangement so that oil condensed in the pipe<br />

can be led to a drain tank.<br />

Drains from the engine bedplate “AE” are fitted on<br />

both sides.<br />

Lubricating oil is pumped from a bottom tank, by<br />

means of the main lubricating oil pump, to the lubricating<br />

oil cooler, a thermostatic valve and, through<br />

a full-flow filter, to the engine, where it is distributed<br />

to pistons and bearings.<br />

The major part of the oil is divided between piston<br />

cooling and crosshead lubrication.<br />

From the engine, the oil collects in the oil pan, from<br />

where it is drained off to the bottom tank.<br />

For external pipe connections, we prescribe a maximum<br />

oil velocity of 1.8 m/s.<br />

Flushing of lube oil system<br />

Before starting the engine for the first time, the lubricating<br />

oil system on board has to be cleaned in accordance<br />

with MAN B&W’s recommendations:<br />

“Flushing of Main Lubricating Oil System”, which is<br />

available on request.<br />

440 600 025 198 22 43<br />

6.03.02<br />

Lubricating oil centrifuges<br />

Manual cleaning centrifuges can only be used for attended<br />

machinery spaces (AMS). For unattended<br />

machinery spaces (UMS), automatic centrifuges with<br />

total discharge or partial discharge are to be used.<br />

The nominal capacity of the centrifuge is to be according<br />

to the supplier’s recommendation for lubricating<br />

oil, based on the figures:<br />

0.136 l/kWh = 0.1 l/BHPh<br />

The Nominal <strong>MC</strong>R is used as the total installed effect.<br />

List of lubricating oils<br />

The circulating oil (Lubricating and cooling oil) must<br />

be a rust and oxidation inhibited engine oil, of SAE<br />

30 viscosity grade.<br />

In order to keep the crankcase and piston cooling<br />

space clean of deposits, the oils should have adequate<br />

dispersion and detergent properties.<br />

Alkaline circulating oils are generally superior in this<br />

respect.<br />

Company<br />

Elf-Lub.<br />

BP<br />

Castrol<br />

Chevron<br />

Exxon<br />

Fina<br />

Mobil<br />

Shell<br />

Texaco<br />

Circulating oil<br />

SAE 30/TBN 5-10<br />

Atlanta Marine D3005<br />

Energol OE-HT-30<br />

Marine CDX-30<br />

Veritas 800 Marine<br />

Exxmar XA<br />

Alcano 308<br />

Mobilgard 300<br />

Melina 30/30S<br />

Doro AR 30<br />

The oils listed have all given satisfactory service in<br />

MAN B&W engine installations. Also other brands<br />

have been used with satisfactory results.


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.04 Cylinder Lubricating Oil System<br />

The letters refer to “List of flanges”<br />

Fig. 6.04.01: Cylinder lubricating oil system<br />

The cylinder lubricators are supplied with oil from a<br />

gravity-feed cylinder oil service tank, and they are<br />

equipped with built-in floats, which keep the oil level<br />

constant in the lubricators, Fig. 6.04.01.<br />

The size of the cylinder oil service tank depends on<br />

the owner’s and yard’s requirements, and it is normally<br />

dimensioned for minimum two days’ consumption.<br />

Cylinder Oils<br />

178 06 14-7.2<br />

Cylinder oils should, preferably, be of the SAE 50<br />

viscosity grade.<br />

Modern high rated two-<strong>stroke</strong> engines have a relatively<br />

great demand for the detergency in the cylinder<br />

oil. Due to the traditional link between high<br />

detergency and high TBN in cylinder oils, we recommend<br />

the use of a TBN 70 cylinder oil in combination<br />

with all fuel types within our guiding specification regardless<br />

of the sulphur content.<br />

Consequently, TBN 70 cylinder oil should also be<br />

used on testbed and at seatrial. However, cylinder<br />

oils with higher alkalinity, such as TBN 80, may be<br />

beneficial, especially in combination with high sulphur<br />

fuels.<br />

The cylinder oils listed below have all given satisfactory<br />

service during heavy fuel operation in MAN<br />

B&W engine installations:<br />

Company Cylinder oil<br />

SAE 50/TBN 70<br />

Elf-Lub.<br />

BP<br />

Castrol<br />

Chevron<br />

Exxon<br />

Fina<br />

Mobil<br />

Shell<br />

Texaco<br />

Talusia HR 70<br />

CLO 50-M<br />

S/DZ 70 cyl.<br />

Delo Cyloil Special<br />

Exxmar X 70<br />

Vegano 570<br />

Mobilgard 570<br />

Alexia 50<br />

Taro Special<br />

Also other brands have been used with satisfactory<br />

results.<br />

Cylinder Lubrication<br />

Each cylinder liner has a number of lubricating orifices<br />

(quills), through which the cylinder oil is introduced<br />

into the cylinders. The oil is delivered into the<br />

cylinder via non-return valves, when the piston rings<br />

pass the lubricating orifices, during the upward<br />

<strong>stroke</strong>.<br />

The cylinder lubricators can be either of the mechanical<br />

type or the electronic Alpha lubricator.<br />

Cylinder Oil Feed Rate<br />

The nominal cylinder oil feed rate at nominal <strong>MC</strong>R is<br />

for all S-<strong>MC</strong> types<br />

0.95-1.5 g/kWh (0.7-1.1 g/BHPh)<br />

and for L-<strong>MC</strong> types and K-<strong>MC</strong> types<br />

0.8-1.2 g/kWh (0.6-0.9 g/BHPh)<br />

442 600 025 198 22 44<br />

6.04.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.04.02: Electronic Alpha cylinder lubricating oil system<br />

Electronic Alpha Cylinder<br />

Lubrication System<br />

The electronic Alpha cylinder lubrication system,<br />

Fig. 6.04.02, is an alternative to the mechanical engine-driven<br />

lubrication system.<br />

The system is designed to supply cylinder oil intermittently,<br />

e.g. every four engine revolutions, at a<br />

constant pressure and with electronically controlled<br />

timing and dosage at a defined position.<br />

Cylinder lubricating oil is fed to the engine by means<br />

of a pump station which can be mounted either on<br />

the engine or in the engine room.<br />

The oil fed to the injectors is pressurised by means<br />

of lubricator(s) on each cylinder, equipped with<br />

small multi-piston pumps. The amount of oil fed to<br />

the injectors can be finely tuned with an adjusting<br />

screw, which limits the length of the piston <strong>stroke</strong>.<br />

178 47 15-2.0<br />

The whole system is controlled by the Master Control<br />

Unit (<strong>MC</strong>U) which calculates the injection frequency<br />

on the basis of the engine-speed signal<br />

given by the tacho signal and the fuel index.<br />

The <strong>MC</strong>U is equipped with a Backup Control Unit<br />

which, if the <strong>MC</strong>U malfunctions, activates an alarm<br />

and takes control automatically or manually, via a<br />

switchboard unit.<br />

The electronic lubricating system incorporates all<br />

the lubricating oil functions of the mechanical system,<br />

such as “speed dependent, mep dependent,<br />

and load change dependent”.<br />

Prior to start up, the cylinders can be pre-lubricated<br />

and, during the running-in period, the operator can<br />

choose to increase the lube oil feed rate by 25%,<br />

50% or 100%.<br />

442 600 025 198 22 44<br />

6.04.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.05 Stuffing Box Drain Oil System<br />

For engines running on heavy fuel, it is important<br />

that the oil drained from the piston rod stuffing<br />

boxes is not led directly into the system oil, as the oil<br />

drained from the stuffing box is mixed with sludge<br />

from the scavenge air space.<br />

The performance of the piston rod stuffing box on<br />

the <strong>MC</strong> engines has proved to be very efficient, primarily<br />

because the hardened piston rod allows a<br />

higher scraper ring pressure.<br />

The amount of drain oil from the stuffing boxes is<br />

about 5 - 10 litres/24 hours per cylinder during normal<br />

service. In the running-in period, it can be<br />

higher.<br />

The letters refer to “List of flanges”<br />

Fig. 6.05.01: Optional stuffing box drain oil system<br />

We therefore consider the piston rod stuffing box<br />

drain oil cleaning system as an option, and recommend<br />

that this relatively small amount of drain oil is<br />

used for other purposes or is burnt in the incinerator.<br />

If the drain oil is to be re-used as lubricating oil, it will<br />

be necessary to install the stuffing box drain oil<br />

cleaning system shown below.<br />

As an alternative to the tank arrangement shown,<br />

the drain tank (001) can, if required, be designed as<br />

a bottom tank, and the circulating tank (002) can be<br />

installed at a suitable place in the engine room.<br />

The above mentoned cleaning system for stuffing<br />

box drain oil is not applicable for the S26<strong>MC</strong>.<br />

178 47 09-3.0<br />

443 800 003 198 22 45<br />

6.05.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Piston rod lube oil pump and filter unit<br />

The filter unit consisting of a pump and a fine filter<br />

could be of make C.C. Jensen A/S, Denmark. The<br />

fine filter cartridge is made of cellulose fibres and<br />

will retain small carbon particles etc. with relatively<br />

low density, which are not removed by centrifuging.<br />

Lube oil flow . . . . . . . . . . . see table in Fig. 6.05.02<br />

Working pressure . . . . . . . . . . . . . . . . . 0.6-1.8 bar<br />

Filtration fineness . . . . . . . . . . . . . . . . . . . . . . 1 m<br />

Working temperature . . . . . . . . . . . . . . . . . . . 50 °C<br />

Oil viscosity at working temperature . . . . . . 75 cSt<br />

Pressure drop at clean filter . . . . maximum 0.6 bar<br />

Filter cartridge . . . maximum pressure drop 1.8 bar<br />

No. of cylinders<br />

C.J.C. Filter<br />

004<br />

Minimum capacity of tanks Capacity of pump<br />

Tank 001<br />

m 3<br />

Tank 002<br />

m 3<br />

option 4 43 640<br />

at 2 bar<br />

m 3 /h<br />

4 - 9 1 x HDU 427/54 0.6 0.7 0.2<br />

10 – 12 1 x HDU 427/54 0.9 1.0 0.3<br />

Fig. 6.05.02: Capacities of cleaning system, stuffing box drain<br />

178 34 72-4.1<br />

443 800 003 198 22 45<br />

6.05.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.06 Cooling Water Systems<br />

The water cooling can be arranged in several configurations,<br />

the most common system choice being:<br />

•Aseawater cooling system<br />

and a jacket cooling water system<br />

The advantages of the seawater cooling system are<br />

mainly related to first cost, viz:<br />

• Only two sets of cooling water pumps<br />

(seawater and jacket water)<br />

• Simple installation with few piping systems.<br />

Whereas the disadvantages are:<br />

• Seawater to all coolers and thereby higher maintenance<br />

cost<br />

• Expensive seawater piping of non-corrosive materials<br />

such as galvanised steel pipes or Cu-Ni<br />

pipes.<br />

•Acentral cooling water system,<br />

with three circuits:<br />

a seawater system<br />

a low temperature freshwater system<br />

a jacket cooling water system<br />

The advantages of the central coling system are:<br />

• Only one heat exchanger cooled by seawater,<br />

and thus, only one exchanger to be overhauled<br />

• All other heat exchangers are freshwater cooled<br />

and can, therefore, be made of a less expensive<br />

material<br />

• Few non-corrosive pipes to be installed<br />

• Reduced maintenance of coolers and components<br />

• Increased heat utilisation.<br />

whereas the disadvantages are:<br />

• Three sets of cooling water pumps (seawater,<br />

freshwater low temperature, and jacket water<br />

high temperature)<br />

• Higher first cost.<br />

An arrangement common for the main engine and<br />

MAN B&W Holeby auxiliary engines is shown in<br />

Figs. 6.06.01. and 6.06.02.<br />

445 600 025 198 22 46<br />

6.06.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.06.01 : Seawater cooling system common for main engine and Holeby GenSets<br />

445 600 025 198 22 46<br />

6.06.02<br />

178 46 93-4.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Seawater Cooling System<br />

The seawater cooling system is used for cooling, the<br />

main engine lubricating oil cooler, the jacket water<br />

cooler and the scavenge air cooler, and the camshaft<br />

lube oil cooler, if fitted.<br />

The lubricating oil cooler for a PTO step-up gear should<br />

be connected in parallel with the other coolers. The<br />

capacity of the SW pump is based on the outlet<br />

temperature of the SW being maximum 50 °C after<br />

passing through the coolers – with an inlet temperature<br />

of maximum 32 °C (tropical conditions), i.e. a<br />

maximum temperature increase of 18 °C.<br />

The valves located in the system fitted to adjust the<br />

distribution of cooling water flow are to be provided<br />

with graduated scales.<br />

The inter-related positioning of the coolers in the<br />

system serves to achieve:<br />

• The lowest possible cooling water inlet temperature<br />

to the lubricating oil cooler in order to obtain<br />

the cheapest cooler. On the other hand, in<br />

order to prevent the lubricating oil from stiffening<br />

in cold services, the inlet cooling water temperature<br />

should not be lower than 10 °C<br />

• The lowest possible cooling water inlet temperature<br />

to the scavenge air cooler, in order to keep<br />

the fuel oil consumption as low as possible.<br />

Operation at sea<br />

Seawater is drawn by the seawater pump, through<br />

two separate inlets or “sea chests”, and pumped<br />

through the various coolers for both the main engine<br />

and the GenSets.<br />

The coolers incorporated in the system are the lubricating<br />

oil cooler, the scavenge air cooler(s), and a<br />

common jacket water cooler.<br />

The camshaft lubricating oil cooler, is omitted if a unilubricating<br />

oil system is applied for the main engine.<br />

The air cooler(s) are supplied directly by the seawater<br />

pumps and are therefore cooled by the coldest water<br />

available in the system. This ensures the lowest possi-<br />

ble scavenge air temperature, and thus optimum<br />

cooling is obtained with a view to the highest possible<br />

thermal efficiency of the engines.<br />

Since the system is seawater cooled, all components<br />

are to be made of seawater resistant materials.<br />

With both the main engine and one or more auxiliary<br />

engines in service, the seawater pump, supplies<br />

cooling water to all the coolers and, through<br />

non-return valve, item A, to the auxiliary engines.<br />

The port service pump is inactive.<br />

Operation in port<br />

During operation in port, when the main engine is<br />

stopped but one or more auxiliary engines are<br />

running, a port service seawater pump is started<br />

up, instead of the large pump. The seawater is led<br />

from the pump to the auxiliary engine(s), through<br />

the common jacket water cooler, and is divided<br />

into two strings by the thermostatic valve, either<br />

for recirculation or for discharge to the sea.<br />

445 600 025 198 22 46<br />

6.06.03


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.06.02 : Jacket cooling water system common for main engine and Holeby GenSets<br />

178 46 94-6.0<br />

445 600 025 198 22 46<br />

6.06.04


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Jacket Cooling Water System<br />

The jacket cooling water system, shown in Fig.<br />

6.06.02, is used for cooling the cylinder liners, cylinder<br />

covers and exhaust valves of the main engine and<br />

heating of the fuel oil drain pipes.<br />

The jacket water pump draws water from the jacket<br />

water cooler outlet and delivers it to the engine.<br />

At the inlet to the jacket water cooler there is a thermostatically<br />

controlled regulating valve, with a sensor<br />

at the engine cooling water outlet, which keeps<br />

the main engine cooling water outlet at a temperature<br />

of 80 °C.<br />

The engine jacket water must be carefully treated,<br />

maintained and monitored so as to avoid corrosion,<br />

corrosion fatigue, cavitation and scale formation. It<br />

is recommended to install a preheater if preheating<br />

is not available from the auxiliary engines jacket<br />

cooling water system.<br />

The venting pipe in the expansion tank should end<br />

just below the lowest water level, and the expansion<br />

tank must be located at least 5 m above the engine<br />

cooling water outlet pipe.<br />

MAN B&W’s recommendations about the freshwater<br />

system de-greasing, descaling and treatment<br />

by inhibitors are available on request.<br />

The freshwater generator, if installed, may be connected<br />

to the seawater system if the generator does<br />

not have a separate cooling water pump. The generator<br />

must be coupled in and out slowly over a period<br />

of at least 3 minutes.<br />

For external pipe connections, we prescribe the 3<br />

following maximum water velocities:<br />

Jacket water . . . . . . . . . . . . . . . . . . . . . . . . 3.0 m/s<br />

Seawater. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0 m/s<br />

Operation at sea<br />

An integrated loop in the GenSets ensures a constant<br />

temperature of 80 °C at the outlet of the<br />

GenSets.<br />

There is one common expansion tank, for the main<br />

engine and the GenSets.<br />

To prevent the accumulation of air in the jacket water<br />

system, a deaerating tank, is to be installed.<br />

An alarm device is inserted between the deaerating<br />

tank and the expansion tank, so that the operating<br />

crew can be warned if excess air or gas is released,<br />

as this signals a malfunction of engine components.<br />

Operation in port<br />

The main engine is preheated by utilising hot water<br />

from the GenSets. Depending on the size of main<br />

engine and GenSets, an extra preheater may be<br />

necessary.<br />

This preheating is activated by closing valves A and<br />

opening valve B.<br />

Activating valves A and B will change the direction<br />

of flow, and the water will now be circulated by the<br />

auxiliary engine-driven pumps.<br />

From the GenSets, the water flows through valve B<br />

directly to the main engine jacket outlet. When the<br />

water leaves the main engine, through the jacket inlet,<br />

it flows to the thermostatically controlled 3-way<br />

valve.<br />

As the temperature sensor for the valve in this operating<br />

mode is measuring in a non-flow, low temperature<br />

piping, the valve will lead most of the cooling<br />

water to the jacket water cooler.<br />

The integrated loop in the GenSets will ensure a<br />

constant temperature of 80 °C at the GenSets outlet,<br />

the main engine will be preheated, and GenSets<br />

on stand-by can also be preheated by operating<br />

valves F3 and F1.<br />

Fresh water treatment<br />

The MAN B&W Diesel recommendations for treatment<br />

of the jacket water/freshwater are available<br />

on request.<br />

445 600 025 198 22 46<br />

6.06.05


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.07 Central Cooling Water System<br />

Letters refer to “List of flanges”<br />

Fig. 6.07.01: Central cooling system<br />

The central cooling water system is characterised<br />

by having only one heat exchanger cooled by seawater,<br />

and by the other coolers, including the jacket<br />

water cooler, being cooled by the freshwater low<br />

temperature (FW-LT) system.<br />

In order to prevent too high a scavenge air temperature,<br />

the cooling water design temperature in the<br />

FW-LT system is normally 36 °C, corresponding to a<br />

maximum seawater temperature of 32 °C.<br />

Our recommendation of keeping the cooling water<br />

inlet temperature to the main engine scavenge air<br />

cooler as low as possible also applies to the central<br />

cooling system. This means that the temperature<br />

control valve in the FW-LT circuit is to be set to minimum<br />

10 °C, whereby the temperature follows the<br />

outboard seawater temperature when this exceeds<br />

10 °C.<br />

For external pipe connections, we prescribe the following<br />

maximum water velocities:<br />

Jacket water . . . . . . . . . . . . . . . . . . . . . . . . 3.0 m/s<br />

Central cooling water (FW-LT) . . . . . . . . . . 3.0 m/s<br />

Seawater. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.0 m/s<br />

445 550 002 198 22 47<br />

6.07.01<br />

178 47 05-6.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Central Cooling System, common for<br />

Main <strong>Engine</strong> and Holeby GenSets<br />

Design features and working principle<br />

The camshaft lubricating oil cooler, is omitted in<br />

plants using the uni-lubricating oil system for the<br />

main engine.<br />

The low and high temperature systems are directly<br />

connected to gain the advantage of preheating the<br />

main engine and GenSets during standstill.<br />

As all fresh cooling water is inhibited and common<br />

for the central cooling system, only one common<br />

expansion tank, is necessary for deaeration of both<br />

the low and high temperature cooling systems. This<br />

tank accommodates the difference in water volume<br />

caused by changes in the temperature.<br />

To prevent the accumulation of air in the cooling water<br />

system, a deaerating tank, is located below the<br />

expansion tank.<br />

An alarm device is inserted between the deaerating<br />

tank and the expansion tank so that the operating<br />

crew can be warned if excess air or gas is released,<br />

as this signals a malfunction of engine components.<br />

Operation at sea<br />

The seawater cooling pump, supplies seawater<br />

from the sea chests through the central cooler, and<br />

overboard. Alternatively, some shipyards use a<br />

pumpless scoop system.<br />

On the freshwater side, the central cooling water<br />

pump, circulates the low-temperature fresh water, in a<br />

cooling circuit, directly through the lubricating oil<br />

cooler of the main engine, the GenSets and the scavenge<br />

air cooler(s).<br />

The jacket water cooling system for the GenSets is<br />

equipped with engine-driven pumps and a bypass<br />

system integrated in the low-temperature<br />

system.<br />

The main engine jacket system has an independent<br />

pump circuit with a jacket water pump, circulating<br />

the cooling water through the main engine to the<br />

fresh water generator, and the jacket water cooler.<br />

A thermostatically controlled 3-way valve, at the jacket<br />

cooler outlet mixes cooled and uncooled water to<br />

maintain an outlet water temperature of 80-85 °C from<br />

the main engine.<br />

Operation in port<br />

During operation in port, when the main engine is<br />

stopped but one or more GenSets are running,<br />

valves A are closed and valves B are opened.<br />

A small central water pump, will circulate the necessary<br />

flow of water for the air cooler, the lubricating<br />

oil cooler, and the jacket cooler of the GenSets. The<br />

auxiliary engines-driven pumps and the previously<br />

mentioned integrated loop ensure a satisfactory<br />

jacket cooling water temperature at the GenSets<br />

outlet.<br />

The main engine and the stopped GenSets are<br />

preheated as described for the jacket water system.<br />

445 550 002 198 22 47<br />

6.07.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.07.02 Central cooling system common for main engine and Holeby GenSets<br />

445 550 002 198 22 47<br />

6.07.03<br />

178 46 95-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.08 Starting and Control Air Systems<br />

A: Valve “A” is supplied with the engine<br />

AP: Air inlet for dry cleaning of turbocharger<br />

The letters refer to “List of flanges”<br />

Fig. 6.08.01: Starting and control air systems<br />

The starting air of 30 bar is supplied by the starting<br />

air compressors in Fig. 6.08.01 to the starting air receivers<br />

and from these to the main engine inlet “A”.<br />

Through a reducing station, compressed air at 7 bar<br />

is supplied to the engine as:<br />

• Control air for manoeuvring system, and for<br />

exhaust valve air springs, through “B”<br />

• Safety air for emergency stop through “C”<br />

• Through a reducing valve is supplied compressed<br />

air at 10 bar to “AP” for turbocharger cleaning<br />

(soft blast) , and a minor volume used for the fuel<br />

valve testing unit.<br />

178 47 04-4.0<br />

Please note that the air consumption for control air,<br />

safety air, turbocharger cleaning, sealing air for exhaust<br />

valve and for fuel valve testing unit are momentary<br />

requirements of the consumers.The capacities<br />

stated for the air receivers and compressors in the<br />

“List of Capacities” cover the main engine requirements<br />

and starting of GenSets.<br />

The main starting valve “A” on the engine is combined<br />

with the manoeuvring system, which controls the start<br />

of the engine.<br />

Slow turning before start of engine is an option recommended<br />

by MAN B&W Diesel.<br />

450 600 025 198 22 48<br />

6.08.01<br />

* The diameter depends on the pipe length and the<br />

engine size


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.07.02: Starting air system common for main engine and Holeby GenSets<br />

Starting Air System common for Main<br />

<strong>Engine</strong> and Holeby GenSets<br />

Starting air and control air for the GenSets is supplied<br />

from the same starting air receivers, as for the<br />

main engine via reducing valves, see Fig. 6.07.02,<br />

item 4, that lower the pressure to the values specified<br />

for the relevant type of MAN B&W four-<strong>stroke</strong><br />

GenSets.<br />

An emergency air compressor and a starting air bottle<br />

are installed for emergency start of GenSets.<br />

178 46-97-1.1<br />

If high-humidity air is sucked in by the air compressors,<br />

the oil and water separator, will remove drops<br />

of moisture form the 30 bar compressed air. When<br />

the pressure is subsequently reduced to 7 bar, e.g.<br />

for use in the main engine manouvering system, the<br />

relative humidity remaining in the compressed air<br />

will be very slight. Cosequently, further air drying will<br />

be unnecessary.<br />

450 600 025 198 22 48<br />

6.08.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.09 Scavenge Air System<br />

Fig. 6.09.01: Scavenge air system<br />

The engines are supplied with scavenge air from<br />

one or more turbochargers either located on the<br />

exhaust side of the engine or on the aft end of the<br />

engine, if only one turbocharger is applied.<br />

Location of turbochargers<br />

The locations are as follows:<br />

•Onexhaust side:<br />

98, 90, 80, 70, 60-types<br />

10-12-cylinder 42, 35, 26-types<br />

Optionally on 50-46-types<br />

•Onaft on end<br />

50, 46-types<br />

4-9-cylinder 42, 35 and 26-types<br />

Optionally on 60-types.<br />

178 07 27-4.1<br />

The compressor of the turbocharger sucks air from<br />

the engine room, through an air filter, and the compressed<br />

air is cooled by the scavenge air cooler, one<br />

per turbocharger. The scavenge air cooler is provided<br />

with a water mist catcher, which prevents<br />

condensate water from being carried with the air<br />

into the scavenge air receiver and to the combustion<br />

chamber.<br />

455 600 025 198 22 49<br />

6.09.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

The scavenge air system, Fig. 6.09.01 is an integrated<br />

part of the main engine.<br />

The heat dissipation and cooling water quantities<br />

stated in the 'List of capacities' in section 6.01 are<br />

based on <strong>MC</strong>R at tropical conditions, i.e. a SW temperature<br />

of 32 °C, or a FW temperature of 36 °C, and<br />

an ambient air inlet temperature of 45 °C.<br />

Auxiliary Blowers<br />

The engine is provided with two or more electrically<br />

driven auxiliary blowers. Between the scavenge air<br />

cooler and the scavenge air receiver, non-return<br />

valves are fitted which close automatically when the<br />

auxiliary blowers start supplying the scavenge air.<br />

The auxiliary blowers start operating consecutively<br />

before the engine is started and will ensure complete<br />

scavenging of the cylinders in the starting<br />

phase, thus providing the best conditions for a safe<br />

start.<br />

During operation of the engine, the auxiliary blowers<br />

will start automatically whenever the engine load is<br />

reduced to about 30-40%, and will continue operating<br />

until the load again exceeds approximately<br />

40-50%.<br />

Emergency running<br />

If one of the auxiliary blowers is out of action, the<br />

other auxiliary blower will function in the system,<br />

without any manual readjustment of the valves being<br />

necessary.<br />

For further information please refer to the respective<br />

project guides and our publication:<br />

P.311 Influence of Ambient Temperature Conditions<br />

on Main <strong>Engine</strong> Operation<br />

Air cooler cleaning<br />

The air side of the scavenge air cooler can be<br />

cleaned by injecting a grease dissolvent through<br />

“AK”, see Fig. 6.09.02 to a spray pipe arrangement<br />

fitted to the air chamber above the air cooler element.<br />

Sludge is drained through “AL” to the bilge tank, and<br />

the polluted grease dissolvent returns from “AM”,<br />

through a filter, to the chemical cleaning tank. The<br />

cleaning must be carried out while the engine is at<br />

standstill.<br />

Scavenge air box drain system<br />

The scavenge air box is continuously drained<br />

through “AV”, see Fig. 6.09.03, to a small “pressurised<br />

drain tank”, from where the sludge is led to the<br />

sludge tank. Steam can be applied through “BV”, if<br />

required, to facilitate the draining.<br />

The continuous drain from the scavenge air box<br />

must not be directly connected to the sludge tank<br />

owing to the scavenge air pressure. The “pressurised<br />

drain tank” must be designed to withstand full<br />

scavenge air pressure and, if steam is applied, to<br />

withstand the steam pressure available.<br />

Drain from water mist catcher<br />

The drain line for the air cooler system is, during running,<br />

used as a permanent drain from the air cooler<br />

water mist catcher. The water is led though an orifice<br />

to prevent major losses of scavenge air. The<br />

system is equipped with a drain box, where a level<br />

switch is mounted, indicating any excessive water<br />

level.<br />

455 600 025 198 22 49<br />

6.09.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.09.02: Air cooler cleaning system, option: 4 55 655<br />

Fig. 6.09.03: Scavenge box drain system<br />

455 600 025 198 22 49<br />

6.09.03<br />

The letters refer to “List of flanges”<br />

178 47 10-3.0<br />

178 06 16-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fire Extinguishing System for Scavenge<br />

Air Space<br />

Fire in the scavenge air space can be extinguished<br />

by steam, being the standard version, or, optionally,<br />

by water mist or CO2, see Fig. 6.09.04.<br />

The alternative external systems are using:<br />

• Steam pressure: 3-10 bar<br />

• Freshwater pressure: min. 3.5 bar<br />

•CO2 test pressure: 150 bar<br />

The letters refer to “List of flanges<br />

178 06 17-2.0<br />

Fig. 6.09.04 Fire extinguishing system for scavenge air<br />

space<br />

455 600 025 198 22 49<br />

6.09.04


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.10 Exhaust Gas System<br />

Fig. 6.10.01: Exhaust gas system on engine<br />

Exhaust Gas System on <strong>Engine</strong><br />

The exhaust gas is led from the cylinders to the exhaust<br />

gas receiver where the fluctuating pressures<br />

from the cylinders are equalised and from where the<br />

gas is led further on to the turbocharger at a constant<br />

pressure, see Fig. 6.10.01.<br />

Compensators are fitted between the exhaust<br />

valves and the exhaust gas receiver and between<br />

the receiver and the turbocharger. A protective grating<br />

is placed between the exhaust gas receiver and<br />

the turbocharger. The turbocharger is fitted with a<br />

pick-up for remote indication of the turbocharger<br />

speed.<br />

The exhaust gas receiver and the exhaust pipes are<br />

provided with insulation, covered by steel plating.<br />

Turbocharger arrangement and<br />

cleaning systems<br />

The turbocharger is, in the basic design, arranged on<br />

the exhaust side of the engine types 98-60 and on the<br />

aft end on the 50-26 types, but can, as an option, be<br />

arranged on the aft end of the engine, on the 60 types<br />

and on the exhaust side on the 50 and 46 types.<br />

The 10,11 and 12 cylinder engines of the S46<strong>MC</strong>-C,<br />

S35<strong>MC</strong>, L35<strong>MC</strong> and S26<strong>MC</strong> types are equipped<br />

with two turbochargers on the exhaust side.<br />

The engines are designed for the installation of either<br />

MAN B&W turbochargers type NA, ABB turbochargers<br />

type VTR or TPL, or MHI turbochargers type MET.<br />

All makes of turbochargers are fitted with an arrangement<br />

for water washing of the compressor<br />

side, and soft blast cleaning of the turbine. Washing<br />

of the turbine side is only applicable on MAN B&W<br />

and ABB turbochargers.<br />

460 600 025 198 22 50<br />

6.10.01<br />

178 07 27-4.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.10.02: Exhaust gas system<br />

Exhaust Gas System for main engine<br />

178 33 46-7.1<br />

At specified <strong>MC</strong>R (M), the total back-pressure in the<br />

exhaust gas system after the turbocharger – indicated<br />

by the static pressure measured in the round<br />

piping after the turbocharger – must not exceed 350<br />

mm WC (0.035 bar).<br />

In order to have a back-pressure margin for the final<br />

system, it is recommended at the design stage to<br />

initially use about 300 mm WC (0.030 bar).<br />

For dimensioning of the external exhaust gas piping,<br />

the recommended maximum exhaust gas velocity is<br />

50 m/s at specified <strong>MC</strong>R (M).<br />

The actual back-pressure in the exhaust gas system<br />

at <strong>MC</strong>R depends on the gas velocity, i.e. it is proportional<br />

to the square of the exhaust gas velocity, and<br />

hence inversely proportional to the pipe diameter to<br />

the 4th power. It has by now become normal practice<br />

in order to avoid too much pressure loss in the<br />

piping, to have an exhaust gas velocity of about 35<br />

m/sec at specified <strong>MC</strong>R.<br />

As long as the total back-pressure of the exhaust gas<br />

system – incorporating all resistance losses from pipes<br />

and components – complies with the above-mentioned<br />

requirements, the pressure losses across each<br />

component may be chosen independently.<br />

Exhaust gas piping system for main engine<br />

The exhaust gas piping system conveys the gas<br />

from the outlet of the turbocharger(s) to the atmosphere.<br />

The exhaust piping is shown schematically on Fig.<br />

6.10.02.<br />

The exhaust piping system for the main engine comprises:<br />

• Exhaust gas pipes<br />

• Exhaust gas boiler<br />

• Silencer<br />

• Spark arrester (compensators)<br />

• Expansion joints<br />

• Pipe bracings.<br />

460 600 025 198 22 50<br />

6.10.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

In connection with dimensioning the exhaust gas<br />

piping system, the following parameters must be<br />

observed:<br />

• Exhaust gas flow rate<br />

• Exhaust gas temperature at turbocharger outlet<br />

• Maximum pressure drop through exhaust gas<br />

system<br />

• Maximum noise level at gas outlet to atmosphere<br />

• Maximum force from exhaust piping on<br />

turbocharger(s)<br />

• Sufficient axial and lateral elongation abitity of<br />

expansion joints<br />

• Utilisation of the heat energy of the exhaust gas.<br />

Items that are to be calculated or read from tables<br />

are:<br />

Exhaust gas mass flow rate, temperature and maximum<br />

back pressure at turbocharger gas outlet<br />

• Diameter of exhaust gas pipes<br />

• Utilising the exhaust gas energy<br />

• Attenuation of noise from the exhaust pipe outlet<br />

• Pressure drop across the exhaust gas system<br />

• Expansion joints.<br />

Exhaust gas compensator after turbocharger<br />

When dimensioning the compensator for the expansion<br />

joint on the turbocharger gas outlet transition<br />

pipe, the exhaust gas pipe and components, are to be<br />

so arranged that the thermal expansions are absorbed<br />

by expansion joints. The heat expansion of the pipes<br />

and the components is to be calculated based on a<br />

temperature increase from 20 °C to 250 °C. The vertical<br />

and horizontal thermal expansion of the engine<br />

measured at the top of the exhaust gas transition<br />

piece of the turbocharger outlet are indicated in the<br />

respective Project <strong>Guide</strong>s as DA and DR.<br />

The movements stated are related to the engine<br />

seating. The figures indicate the axial and the lateral<br />

movements related to the orientation of the expansion<br />

joints.<br />

The expansion joints are to be chosen with an elasticity<br />

that limit the forces and the moments of the exhaust<br />

gas outlet flange of the turbocharger as stated<br />

for each of the turbocharger makers in the corresponding<br />

Project <strong>Guide</strong>.<br />

Exhaust gas boiler<br />

<strong>Engine</strong> plants are usually designed for utilisation of<br />

the heat energy of the exhaust gas for steam production<br />

(or for heating of thermal oil system.)<br />

The exhaust gas passes an exhaust gas boiler<br />

which is usually placed near the engine top or in<br />

the funnel.<br />

It should be noted that the exhaust gas temperature<br />

and flow rate are influenced by the ambient conditions,<br />

for which reason this should be considered<br />

when the exhaust gas boiler is planned.<br />

At specified <strong>MC</strong>R, the maximum recommended<br />

pressure loss across the exhaust gas boiler is normally<br />

150 mm WC.<br />

This pressure loss depends on the pressure losses<br />

in the rest of the system as mentioned above. Therefore,<br />

if an exhaust gas silencer/spark arrester is not<br />

installed, the acceptable pressure loss across the<br />

boiler may be somewhat higher than the max. of 150<br />

mm WC, whereas, if an exhaust gas silencer/spark<br />

arrester is installed, it may be necessary to reduce<br />

the maximum pressure loss.<br />

The above-mentioned pressure loss across the silencer<br />

and/or spark arrester shall include the pressure<br />

losses from the inlet and outlet transition<br />

pieces.<br />

460 600 025 198 22 50<br />

6.10.03


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Exhaust gas silencer<br />

The typical octave band sound pressure levels from<br />

the diesel engine’s exhaust gas system – related to<br />

the distance of one metre from the top of the exhaust<br />

gas uptake – are shown in the respective Project<br />

<strong>Guide</strong>.<br />

The need for an exhaust gas silencer can be decided<br />

based on the requirement of a maximum<br />

noise level at a certain place.<br />

The exhaust gas noise data is valid for an exhaust<br />

gas system without boiler and silencer, etc.<br />

The noise level in the Project <strong>Guide</strong>s refers to nominal<br />

<strong>MC</strong>R at a distance of one metre from the exhaust<br />

gas pipe outlet edge at an angle of 30° to the gas<br />

flow direction.<br />

For each doubling of the distance, the noise level<br />

will be reduced by about 6 dB (far-field law).<br />

Spark arrester<br />

To prevent sparks from the exhaust gas from being<br />

spread over deck houses, a spark arrester can be<br />

fitted as the last component in the exhaust gas system.<br />

It should be noted that a spark arrester contributes<br />

with a considerable pressure drop, which is often a<br />

disadvantage.<br />

It is recommended that the combined pressure<br />

loss across the silencer and/or spark arrester<br />

should not be allowed to exceed 100 mm WC at<br />

specified <strong>MC</strong>R – depending, of course, on the<br />

pressure loss in the remaining part of the system,<br />

thus if no exhaust gas boiler is installed, 200mm<br />

WC could be possible.<br />

460 600 025 198 22 50<br />

6.10.04


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

6.11 Manoeuvring System<br />

Manoeuvring System on <strong>Engine</strong><br />

The basic diagram is applicable for reversible engines,<br />

i.e. those with fixed pitch propeller (FPP).<br />

The layout of the manoeuvring system depends on<br />

the engine type chosen, but generally can be stated<br />

that:<br />

• The 98-80-types have electronic governors with<br />

remote control and electronic speed setting, according<br />

to Fig. 6.11.01.<br />

• The 70-50-types have also electronic governors<br />

with remote control and electronic speed setting,<br />

according to Fig. 6.11.02.<br />

• The 46-26-types have normally mechanical/hydraulic<br />

governors from Woodward, with pneumatic<br />

speed setting and electronic start, stop and<br />

reversing according to Fig. 6.11.03, but they can<br />

optionally be fitted with an electronic governor.<br />

The lever on the “<strong>Engine</strong> side manoeuvring console”<br />

can be set to either Manual or Remote position.<br />

In the ‘Manual’ position the engine is controlled from<br />

the engine side manoeuvring console by the push<br />

buttons START, STOP, and the AHEAD/ASTERN.<br />

The load is controlled by the “<strong>Engine</strong> side speed setting”<br />

handwheel.<br />

In the ‘Remote’ position all signals to the engine are<br />

electronic or pneumatic for 50-26-types, the<br />

START, STOP, AHEAD and ASTERN signals activate<br />

the solenoid valves EV684, EV682, EV683 and<br />

EV685, respectively.<br />

Shutdown system<br />

The engine is stopped by activating the puncture<br />

valves located in the fuel pumps either at normal<br />

stopping or at shutdown by activating solenoid<br />

valve EV658.<br />

Slow turning<br />

The standard manoeuvring system does not feature<br />

slow turning before starting, but for Unattended Machinery<br />

Space (UMS) we strongly recommend the<br />

addition of the slow turning device shown in Figs.<br />

6.11.01, 6.11.02 and 6.11.03, option 4 50 140.<br />

The slow turning valve allows the starting air to partially<br />

bypass the main starting valve. During slow<br />

turning the engine will rotate so slowly that, in the<br />

event that liquids have accumulated on the piston<br />

top, the engine will stop before any harm occurs.<br />

Governor<br />

When selecting the governor, the complexity of the<br />

installation has to be considered. We normally distinguish<br />

between “conventional” and “advanced”<br />

marine installations.<br />

The electronic governor consists of the following<br />

elements:<br />

• Actuator<br />

• Revolution transmitter (pick-ups)<br />

• Electronic governor panel<br />

• Power supply unit<br />

• Pressure transmitter for scavenge air.<br />

The actuator, revolution transmitter and the pressure<br />

transmitter are mounted on the engine.<br />

The electronic governors must be tailor-made, and<br />

the specific layout of the system must be mutually<br />

agreed upon by the customer, the governor supplier<br />

and the engine builder.<br />

It should be noted that the shutdown system, the<br />

governor and the remote control system must be<br />

compatible if an integrated solution is to be obtained.<br />

465 100 010 198 22 52<br />

6.11.01


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

“Conventional” plants<br />

A typical example of a “conventional” marine installation<br />

is:<br />

• An engine directly coupled to a fixed pitch propeller<br />

• An engine directly coupled to a controllable pitch<br />

propeller, without clutch and without extreme demands<br />

on the propeller pitch change<br />

• Plants with controllable pitch propeller with a<br />

shaft generator of less than 15% of the engine’s<br />

<strong>MC</strong>R output.<br />

With a view to such an installation, the engine can be<br />

equipped with a Woodward governor on the<br />

46-26-types or with a “conventional” electronic<br />

governor approved by MAN B&W, e.g.:<br />

• Lyngsø Marine A/S electronic governor system,<br />

type EGS 2000 or EGS 2100<br />

• Kongsberg Norcontrol Automation A/S digital<br />

governor system, type DGS 8800e<br />

• Siemens digital governor system, type SIMOS<br />

SPC 55.<br />

“Advanced” plants<br />

The “advanced” marine installations, are for example:<br />

• Plants with flexible coupling in the shafting system<br />

• Geared installations<br />

• Plants with disengageable clutch for disconnecting<br />

the propeller<br />

• Plants with shaft generator requiring great frequency<br />

accuracy.<br />

For these plants the electronic governors have to be<br />

tailor-made.<br />

Fixed Pitch Propeller (FPP)<br />

Plants equipped with a fixed pitch propeller require<br />

no modifications to the basic diagrams for the reversible<br />

engine shown in Figs. 6.11.01, 6.11.02 and<br />

6.11.03.<br />

Controllable Pitch Propeller (CPP)<br />

For plants with CPP, two alternatives are available:<br />

• Non-reversible engine<br />

If a controllable pitch propeller is coupled to the<br />

engine, the manoeuvring system diagram has to<br />

be simplified as the reversing is to be omitted.<br />

The fuel pump roller guides are provided with<br />

non-displaceable rollers.<br />

• <strong>Engine</strong> with emergency reversing<br />

The manoeuvring system on the engine is identical<br />

to that for reversible engines, as the interlocking<br />

of the reversing is to be made in the electronic<br />

remote control system.<br />

From the engine side manoeuvring console it is<br />

possible to start, stop and reverse the engine,as<br />

well as from the engine control room console, but<br />

not from the bridge.<br />

<strong>Engine</strong> Side Manoeuvring Console<br />

The layout of the engine side mounted manoeuvring<br />

console is located on the camshaft side of the engine.<br />

Control Room Console<br />

The manoeuvring handle for the <strong>Engine</strong> Control<br />

Room console is delivered as a separate item with<br />

the engine.<br />

465 100 010 198 22 52<br />

6.11.02


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.11.01: Diagram of manoeuvring system for reversible engine with FPP, with remote control<br />

178 46 65-9.0<br />

465 100 010 198 22 52<br />

6.11.03<br />

98-90-80-types


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 6.11.02: Diagram of manoeuvring system for reversible engine with FPP, with remote control<br />

465 100 010 198 22 52<br />

6.11.04<br />

70-60-types<br />

178 44 39-6.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

50-46-42-35-26-types<br />

A, B, C refer to ‘List of flanges’.<br />

Fig. 6.11.03: Diagram of manoeuvring system, reversible engine with FPP and mechanical-hydraulic governor prepared for<br />

remote control<br />

465 100 010 198 22 52<br />

6.11.05<br />

178 39 96-1.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

7 Vibration Aspects<br />

The vibration characteristics of the two-<strong>stroke</strong> low<br />

speed diesel engines can for practical purposes be,<br />

split up into four categories, and if the adequate<br />

countermeasures are considered from the early<br />

project stage, the influence of the excitation sources<br />

can be minimised or fully compensated.<br />

In general, the marine diesel engine may influence<br />

the hull with the following:<br />

• External unbalanced moments<br />

These can be classified as unbalanced 1st, 2nd<br />

and may be 4th order external moments, which<br />

need to be considered only for certain cylinder<br />

numbers<br />

• <strong>Guide</strong> force moments<br />

• Axial vibrations in the shaft system<br />

• Torsional vibrations in the shaft system.<br />

The external unbalanced moments and guide<br />

force moments are illustrated in Fig. 7.01.<br />

In the following, a brief description is given of their<br />

origin and of the proper countermeasures needed to<br />

render them harmless.<br />

External unbalanced moments<br />

The inertia forces originating from the unbalanced<br />

rotating and reciprocating masses of the engine<br />

create unbalanced external moments although the<br />

external forces are zero.<br />

Of these moments, only the 1st order (one cycle per<br />

revolution) and the 2nd order (two cycles per<br />

revo-lution) need to be considered, and then only for<br />

engines with a low number of cylinders. On some<br />

large bore engines the 4th external order moment<br />

may also have to be examined. When application on<br />

container vessel is considered. The inertia forces on<br />

engines with more than 6 cylinders tend, more or<br />

less, to neutralise themselves.<br />

Countermeasures have to be taken if hull resonance<br />

occurs in the operating speed range, and if the vibration<br />

level leads to higher accelerations and/or velocities<br />

than the guidance values given by international<br />

standards or recommendations (for instance related<br />

to special agreement between shipowner and shipyard).<br />

The natural frequency of the hull depends on the<br />

hull’s rigidity and distribution of masses, whereas<br />

the vibration level at resonance depends mainly on<br />

the magnitude of the external moment and the engine’s<br />

position in relation to the vibration nodes of<br />

the ship.<br />

C C<br />

407 000 100 198 22 53<br />

7.01<br />

A–<br />

B–<br />

C–<br />

D–<br />

Combustion pressure<br />

<strong>Guide</strong> force<br />

Staybolt force<br />

Main bearing force<br />

1st order moment, vertical 1 cycle/rev<br />

2nd order moment, vertical 2 cycle/rev<br />

1st order moment, horizontal 1<br />

cycle/rev<br />

<strong>Guide</strong> force moment,<br />

H transverse Z cycle/rev.<br />

Z is 1 or 2 times number<br />

of cylinder<br />

<strong>Guide</strong> force moment,<br />

X transverse Z cycles/rev.<br />

Z = 1,2...12<br />

Fig. 7.01: External unbalanced moments and<br />

guide force moments<br />

B<br />

D<br />

A<br />

178 06 82-8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

1st order moments on 4-cylinder engines<br />

1st order moments act in both vertical and horizontal<br />

direction. For our two-<strong>stroke</strong> engines with standard<br />

balancing these are of the same magnitudes.<br />

For engines with five cylinders or more, the 1st order<br />

moment is rarely of any significance to the ship. It<br />

can, however, be of a disturbing magnitude in<br />

four-cylinder engines.<br />

Resonance with a 1st order moment may occur for<br />

hull vibrations with 2 and/or 3 nodes. This resonance<br />

can be calculated with reasonable accuracy,<br />

and the calculation will show whether a compensator<br />

is necessary or not on four-cylinder engines.<br />

A resonance with the vertical moment for the 2 node<br />

hull vibration can often be critical, whereas the resonance<br />

with the horizontal moment occurs at a higher<br />

speed than the nominal because of the higher natural<br />

frequency of horizontal hull vibrations.<br />

As standard, four-cylinder engines are fitted with<br />

adjustable counterweights, as illustrated in Fig.<br />

7.02. These can reduce the vertical moment to an insignificant<br />

value (although, increasing correspondingly<br />

the horizontal moment), so this resonance is<br />

easily dealt with. A solution with zero horizontal moment<br />

is also available.<br />

407 000 100 198 22 53<br />

7.02<br />

Adjustable<br />

counterweights<br />

Aft<br />

Fixed<br />

counterweights<br />

Fig 7.02: Adjustable counterweights<br />

Fore<br />

Adjustable<br />

counterweights<br />

Fixed<br />

counterweights<br />

178 16 87-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 7.03: 1st order moment compensator<br />

In rare cases, where the 1st order moment will cause<br />

resonance with both the vertical and the horizontal<br />

hull vibration mode in the normal speed range of the<br />

engine, a 1st order compensator, as shown in Fig.<br />

7.03, can be introduced as an option, in the chain<br />

tightener wheel, reducing the 1st order moment to a<br />

harmless value. The compensator comprises two<br />

counter-rotating masses running at the same speed<br />

as the crankshaft.<br />

With a 1st order moment compensator fitted aft, the<br />

horizontal moment will decrease to between 0 and<br />

30% of the value stated in the last table of this<br />

section, depending on the position of the node. The<br />

1st order vertical moment will decrease to about<br />

30% of the value stated in the table.<br />

Since resonance with both the vertical and the horizontal<br />

hull vibration mode is rare, the standard engine<br />

is not prepared for the fitting of such compensators.<br />

178 06 76-9.0<br />

407 000 100 198 22 53<br />

7.03


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

2nd order moments on 4, 5 and 6-cylinder engines<br />

The 2nd order moment acts only in the vertical direction.<br />

Precautions need only to be considered for<br />

four, five and six cylinder engines in general.<br />

Resonance with the 2nd order moment may occur<br />

at hull vibrations with more than three nodes. Contrary<br />

to the calculation of natural frequency with 2<br />

and 3 nodes, the calculation of the 4 and 5 node<br />

naural frequencies for the hull is a rather comprehensive<br />

procedure and, despite advanced calculation<br />

methods, is often not very accurate.<br />

A 2nd order moment compensator comprises two<br />

counter-rotating masses running at twice the engine<br />

speed. 2nd order moment compensators are<br />

not included in the basic extent of delivery.<br />

Several solutions, as shown in Fig. 7.04, are available<br />

to cope with the 2nd order moment, out of<br />

which the most cost efficient one can be chosen in<br />

the individual case, e.g.<br />

1) No compensators, if considered unnecessary<br />

on the basis of natural frequency, nodal point<br />

and size of the 2nd order moment<br />

2) A compensator mounted on the aft end of the<br />

engine, driven by the main chain drive<br />

3) A compensator mounted on the front end,<br />

driven from the crankshaft through a separate<br />

chain drive<br />

4) Compensators on both aft and fore end, completely<br />

eliminating the external 2nd order moment.<br />

Briefly, it can be stated that compensators positioned<br />

in a node or close to it, will be inefficient. In<br />

such a case, solution (4) should be considered.<br />

A decision regarding the vibrational aspects and the<br />

possible use of compensators must be taken at the<br />

contract stage. If no experience is available from sister<br />

ships, which would be the best basis for deciding<br />

whether compensators are necessary or not, it is advisable<br />

to make calculations to determine which of<br />

the solutions (1), (2), (3) or (4) should be applied.<br />

Experience with our two-<strong>stroke</strong> slow speed engines<br />

has shown that propulsion plants with small bore<br />

engines (S/L42<strong>MC</strong>, S/L35<strong>MC</strong> and S26<strong>MC</strong>) are less<br />

sensitive regarding hull vibrations exited by 2nd order<br />

moments than the lager bore engines. Therefore,<br />

these engines do not have engine driven 2nd<br />

order moment compensators.<br />

If compensator(s) are omitted, the engine can be delivered<br />

prepared for the fitting of compensators later<br />

on. The decision for preparation must also be taken<br />

at the contract stage. Measurements taken during<br />

the sea trial, or later in service and with fully loaded<br />

ship, will be able to show whether compensator(s)<br />

have to be fitted or not.<br />

If no calculations are available at the contract stage,<br />

we advise to order the engine with a 2nd order moment<br />

compensator on the aft end and to make preparations<br />

for the fitting of a compensator on the front<br />

end.<br />

If it is decided not to use compensators and, furthermore,<br />

not to prepare the main engine for later fitting,<br />

another solution can be used, if annoying vibrations<br />

should occur:<br />

An electrically driven compensator synchronised<br />

to the correct phase relative to the external force or<br />

moment can neutralise the excitation. This type of<br />

compensator needs an extra seating fitted, preferably,<br />

in the steering gear room where deflections are<br />

largest and the effect of the compensator will therefore<br />

be greatest.<br />

The electrically driven compensator will not give rise<br />

to distorting stresses in the hull, but it is more expensive<br />

than the engine-mounted compensators<br />

(2), (3) and (4).<br />

407 000 100 198 22 53<br />

7.04


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 7.04: Optional 2nd order moment compensators<br />

407 000 100 198 22 53<br />

7.05<br />

178 47 06 -8.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig 7.05: Power Related Unbalance (PRU) values in Nm/kW for S-<strong>MC</strong>/<strong>MC</strong>-C engines<br />

Power Related Unbalance (PRU)<br />

To evaluate if there is a risk that 1st and 2nd order<br />

external moments will excite disturbing hull vibrations,<br />

the concept Power Related Unbalance can be<br />

used as a guidance.<br />

External moment<br />

PRU =<br />

<strong>Engine</strong>power<br />

Nm/kW<br />

With the PRU-value, stating the external moment<br />

relative to the engine power, it is possible to give an<br />

estimate of the risk of hull vibrations for a specific<br />

engine. Based on service experience from a greater<br />

number of large ships with engines of different types<br />

and cylinder numbers, the PRU-values have been<br />

classified in four groups as follows:<br />

PRU Nm/kWNeed for compensaor<br />

from 0 to 60 . . . . . . . . . . . . . . . . . . . . . not relevant<br />

from 60 to 120 . . . . . . . . . . . . . . . . . . . . . . unlikely<br />

from 120 to 220 . . . . . . . . . . . . . . . . . . . . . . . likely<br />

above 220 . . . . . . . . . . . . . . . . . . . . . . . most likely<br />

The actual values for the <strong>MC</strong>-engines are shown in<br />

Figs. 7.05, 7.06 and 7.07.<br />

In the table at the end of this chapter, the external<br />

moments (M1) are stated at the speed (n1) and <strong>MC</strong>R<br />

rating in point L1 of the layout diagram. For other<br />

speeds , the corresponding external moments are<br />

calculated by means of the formula:<br />

M M x n<br />

2<br />

<br />

A<br />

A 1 kNm<br />

n1<br />

<br />

(The tolerance on the calculated values is 2.5%).<br />

407 000 100 198 22 53<br />

7.06<br />

178 46 98-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 7.06: Power Realted Unbalance (PRU) values in Nm/kW for L-<strong>MC</strong>/<strong>MC</strong>-C engines<br />

407 000 100 198 22 53<br />

7.07<br />

178 46 99-5.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 7.07: Power Related Unbalance (PRU) value in Nm/kW for K-<strong>MC</strong>/<strong>MC</strong>-C engines<br />

407 000 100 198 22 53<br />

7.08<br />

178 47 00-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Fig. 7.08: H-type and X-type force moments<br />

<strong>Guide</strong> Force Moments<br />

The so-called guide force moments are caused by<br />

the transverse reaction forces acting on the crossheads<br />

due to the connecting rod/crankshaft mechanism.<br />

These moments may excite engine vibrations,<br />

moving the engine top athwartships and causing a<br />

rocking (excited by H-moment) or twisting (excited<br />

by X-moment) movement of the engine as illustrated<br />

in Fig. 7.08.<br />

The guide force moments corresponding to the<br />

<strong>MC</strong>R rating (L1) are stated in the tables.<br />

Top bracings<br />

The guide force moments are harmless except<br />

when resonance vibrations occur in the engine/double<br />

bottom system.<br />

As this system is very difficult to calculate with the<br />

necessary accuracy, MAN B&W Diesel strongly<br />

recommend that a top bracing is installed between<br />

the engine's upper platform brackets and<br />

the casing side. The only exception is the S26<strong>MC</strong><br />

which is so small that we consider guide force moments<br />

to be insignificant.<br />

The mechanical top bracing comprises stiff connections<br />

(links) with friction plates and alternatively a<br />

hydraulic top bracing, which allow adjustment to<br />

the loading conditions of the ship. With both types<br />

of top bracing above-mentioned natural frequency<br />

will increase to a level where resonance will<br />

occur above the normal engine speed. Details of<br />

the top bracings are shown in section 5.<br />

407 000 100 198 22 53<br />

7.09<br />

178 47 14-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Definition of <strong>Guide</strong> Force Moments<br />

During the years the definition of guide force moment<br />

has been discussed. Especially nowadays<br />

where complete FEM-models are made to predict<br />

hull/engine interaction this definition has become<br />

important.<br />

H-type <strong>Guide</strong> Force Moment (MH)<br />

Each cylinder unit produces a force couple consisting<br />

of:<br />

1: A force at level of crankshaft centreline.<br />

2: Another force at level of the guide plane. The<br />

position of the force changes over one revolution,<br />

as the guide shoe reciprocates on the<br />

guide plane.<br />

As the deflection shape for the H-type is equal for<br />

each cylinder the N th order H-type guide force moment<br />

for an N-cylinder engine with regular firing order<br />

is: N • MH(one cylinder).<br />

For modelling purpose the size of the forces in the<br />

force couple is:<br />

Force = MH /L kN<br />

where L is the distance between crankshaft level<br />

and the middle position of the guide plane (i.e. the<br />

length of the connecting rod).<br />

As the interaction between engine and hull is at the<br />

engine seating and the top bracing positions, this<br />

force couple may alternatively be applied in those<br />

positions with a vertical distance of (LZ). Then the<br />

force can be calculated as:<br />

ForceZ =MH /LZ<br />

kN<br />

Any other vertical distance may be applied, so as to<br />

accommodate the actual hull (FEM) model.<br />

The force couple may be distributed at any number<br />

of points in longitudinal direction. A reasonable way<br />

of dividing the couple is by the number of top bracing,<br />

and then apply the forces in those points.<br />

ForceZ,one point = ForceZ,total /Ntop bracing, total kN<br />

X-type <strong>Guide</strong> Force Moment (MX)<br />

The X-type guide force moment is calculated based<br />

on the same force couple as described above. However<br />

as the deflection shape is twisting the engine<br />

each cylinder unit does not contribute with equal<br />

amount. The centre units do not contribute very<br />

much whereas the units at each end contributes<br />

much.<br />

A so-called ”Bi-moment” can be calculated (fig. 7.08):<br />

”Bi-moment” = S [force-couple(cyl.X) • distX]<br />

in kNm 2<br />

The X-type guide force moment is then defined as:<br />

MX = ”Bi-Moment”/ L kNm<br />

For modelling purpose the size of the four (4) forces<br />

(see fig. 7.08) can be calculated:<br />

Force = MX /LX<br />

where:<br />

kN<br />

LX: is horizontal length between ”force points” (fig. 7.08)<br />

Similar to the situation for the H-type guide force<br />

moment, the forces may be applied in positions<br />

suitable for the FEM model of the hull. Thus the<br />

forces may be referred to another vertical level LZ<br />

above crankshaft centreline.These forces can be<br />

calculated as follows:<br />

Mx•L ForceZ,one point = kN<br />

Lz•Lx 407 000 100 198 22 53<br />

7.10


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Axial Vibrations<br />

When the crank throw is loaded by the gas pressure<br />

through the connecting rod mechanism, the arms of<br />

the crank throw deflect in the axial direction of the<br />

crankshaft, exciting axial vibrations. Through the<br />

thrust bearing, the system is connected to the ship`s<br />

hull.<br />

Generally, only zero-node axial vibrations are of interest.<br />

Thus the effect of the additional bending<br />

stresses in the crankshaft and possible vibrations of<br />

the ship`s structure due to the reaction force in the<br />

thrust bearing are to be considered.<br />

An axial damper is fitted as standard to all <strong>MC</strong> engines<br />

minimising the effects of the axial vibrations.<br />

For an extremely long shaft line in certain large size<br />

container vessels, a second axial vibration damper<br />

positioned on the intermediate shaft, designed to<br />

control the on-node axial vibrations can be applied.<br />

Torsional Vibrations<br />

The reciprocating and rotating masses of the engine<br />

including the crankshaft, the thrust shaft, the<br />

intermediate shaft(s), the propeller shaft and the<br />

propeller are for calculation purposes considered<br />

as a system of rotating masses (inertias) interconnected<br />

by torsional springs. The gas pressure of<br />

the engine acts through the connecting rod mechanism<br />

with a varying torque on each crank throw, exciting<br />

torsional vibration in the system with different<br />

frequencies.<br />

In general, only torsional vibrations with one and<br />

two nodes need to be considered. The main critical<br />

order, causing the largest extra stresses in the shaft<br />

line, is normally the vibration with order equal to the<br />

number of cylinders, i.e., five cycles per revolution<br />

on a five cylinder engine. This resonance is positioned<br />

at the engine speed corresponding to the<br />

natural torsional frequency divided by the number<br />

of cylinders.<br />

The torsional vibration conditions may, for certain<br />

installations require a torsional vibration damper.<br />

407 000 100 198 22 53<br />

7.11<br />

Based on our statistics, this need may arise for the<br />

following types of installation:<br />

• Plants with controllable pitch propeller<br />

• Plants with unusual shafting layout and for special<br />

owner/yard requirements<br />

• Plants with 8, 11 or 12-cylinder engines.<br />

The so-called QPT (Quick Passage of a barred<br />

speed range Technique), is an alternative option to a<br />

torsional vibration damper, on a plant equipped with<br />

a controllable pitch propeller. The QPT could be implemented<br />

in the governor in order to limit the vibratory<br />

stresses during the passage of the barred<br />

speed range.<br />

The application of the QPT has to be decided by the<br />

engine maker and MAN B&W Diesel A/S based on final<br />

torsional vibration calculations.<br />

Four, five and six-cylinder engines, require special<br />

attention. On account of the heavy excitation, the<br />

natural frequency of the system with one-node vibration<br />

should be situated away from the normal operating<br />

speed range, to avoid its effect. This can be<br />

achieved by changing the masses and/or the stiffness<br />

of the system so as to give a much higher, or<br />

much lower, natural frequency, called undercritical<br />

or overcritical running, respectively.<br />

Owing to the very large variety of possible shafting<br />

arrangements that may be used in combination with<br />

a specific engine, only detailed torsional vibration<br />

calculations of the specific plant can determine<br />

whether or not a torsional vibration damper is necessary.


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

Undercritical running<br />

The natural frequency of the one-node vibration is<br />

so adjusted that resonance with the main critical order<br />

occurs about 35-45% above the engine speed<br />

at specified <strong>MC</strong>R.<br />

Such undercritical conditions can be realised by<br />

choosing a rigid shaft system, leading to a relatively<br />

high natural frequency.<br />

The characteristics of an undercritical system are<br />

normally:<br />

• Relatively short shafting system<br />

• Probably no tuning wheel<br />

• Turning wheel with relatively low inertia<br />

• Large diameters of shafting, enabling the use of<br />

shafting material with a moderate ultimate tensile<br />

strength, but requiring careful shaft alignment,<br />

(due to relatively high bending stiffness)<br />

• Without barred speed range<br />

When running undercritical, significant varying<br />

torque at <strong>MC</strong>R conditions of about 100-150% of the<br />

mean torque is to be expected.<br />

This torque (propeller torsional amplitude) induces a<br />

significant varying propeller thrust which, under adverse<br />

conditions, might excite annoying longitudinal<br />

vibrations on engine/double bottom and/or deck<br />

house.<br />

The yard should be aware of this and ensure that the<br />

complete aft body structure of the ship, including<br />

the double bottom in the engine room, is designed<br />

to be able to cope with the described phenomena.<br />

Overcritical running<br />

The natural frequency of the one-node vibration is<br />

so adjusted that resonance with the main critical order<br />

occurs about 30-70% below the engine speed<br />

at specified <strong>MC</strong>R. Such overcritical conditions can<br />

be realised by choosing an elastic shaft system,<br />

leading to a relatively low natural frequency.<br />

The characteristics of overcritical conditions are:<br />

• Tuning wheel may be necessary on crankshaft<br />

fore end<br />

• Turning wheel with relatively high inertia<br />

• Shafts with relatively small diameters, requiring<br />

shafting material with a relatively high ultimate<br />

tensile strength<br />

• With barred speed range of about ±10% with<br />

respect to the critical engine speed.<br />

Torsional vibrations in overcritical conditions may,<br />

in special cases, have to be eliminated by the use of<br />

a torsional vibration damper.<br />

Overcritical layout is normally applied for engines<br />

with more than four cylinders.<br />

Please note:<br />

We do not include any tuning wheel, or torsional vibration<br />

damper, in the standard scope of supply, as<br />

the proper countermeasure has to be found after<br />

torsional vibration calculations for the specific plant,<br />

and after the decision has been taken if and where a<br />

barred speed range might be acceptable.<br />

For further information about vibration aspects<br />

please refer to our publications:<br />

P.222 “An introduction to Vibration Aspects of<br />

<strong>Two</strong>-<strong>stroke</strong> Diesel <strong>Engine</strong>s in Ships”<br />

P.268 “Vibration Characteristics of <strong>Two</strong>-<strong>stroke</strong><br />

Low Speed Diesel <strong>Engine</strong>s”<br />

407 000 100 198 22 53<br />

7.12


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

407 000 100 198 22 53<br />

7.13<br />

K98<strong>MC</strong><br />

Uneven Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0 0 0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 0 545 214 987 180 76 0<br />

2nd 6108 c 1773 0 813 123 126 0<br />

4th 285 809 329 403 565 727 210<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0<br />

3rd 0 0 0 141 1008 476 0<br />

4th 0 0 0 1034 1307 1066 0<br />

5th 0 0 0 1006 427 530 0<br />

6th 2234 0 0 264 129 540 0<br />

7th 0 1662 0 72 871 763 0<br />

8th 0 0 1130 99 221 581 0<br />

9th 0 0 0 542 120 49 0<br />

10th 0 0 0 38 138 79 0<br />

11th 0 0 0 11 67 203 0<br />

12th 160 0 0 28 28 62 320<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 0 282 111 511 93 39 0<br />

2nd 306 89 0 41 6 6 0<br />

3rd 1846 2019 2980 3519 3937 5125 6143<br />

4th 1473 4187 1701 2086 2924 3759 2946<br />

5th 0 336 4854 1792 643 3095 0<br />

6th 0 54 0 3464 2307 251 0<br />

7th 0 0 14 609 2670 266 0<br />

8th 266 21 0 406 293 1563 532<br />

9th 336 38 4 59 111 203 1168<br />

10th 73 208 0 96 231 149 0<br />

11th 0 159 235 92 200 266 0<br />

12th 0 15 58 203 101 117 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

c 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09a: External forces and moments in layout point L1 for K98<strong>MC</strong><br />

178 33 22-7.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

1-8-3-4<br />

7-2-5-6<br />

407 000 100 198 22 53<br />

7.14<br />

Uneven Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0<br />

1st a 0 581 228 1052 192 81 0<br />

2nd 6283 c 1824 0 836 126 130 0<br />

4th 273 776 315 387 542 697 546<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0<br />

3rd 0 0 0 119 851 401 0<br />

4th 0 0 0 910 1151 939 0<br />

5th 0 0 0 891 378 469 0<br />

6th 1933 0 0 229 111 467 0<br />

7th 0 1409 0 61 739 647 0<br />

8th 0 0 985 86 192 507 0<br />

9th 0 0 0 467 103 42 0<br />

10th 0 0 0 31 112 62 0<br />

11th 0 0 0 10 55 168 0<br />

12th 137 0 0 24 24 53 275<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 0 278 109 503 92 39 0<br />

2nd 154 45 0 21 3 3 0<br />

3rd 1671 1828 2698 3186 3564 4640 5806<br />

4th 1392 3955 1607 1971 2763 3551 2784<br />

5th 0 319 4611 1702 610 2940 0<br />

6th 0 50 0 3217 2142 233 0<br />

7th 0 0 12 554 2429 242 0<br />

8th 249 19 0 380 274 1463 498<br />

9th 310 35 4 54 102 187 1078<br />

10th 64 181 0 83 201 130 0<br />

11th 0 142 209 82 178 237 0<br />

12th 0 13 53 187 93 108 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

c 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09b: External forces and moments in layout point L1 for K98<strong>MC</strong>-C<br />

K98<strong>MC</strong>-C<br />

178 86 03-5.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 6 7 8 9<br />

Firing order<br />

External forces in kN<br />

1-5-3-4-2-6 1-7-2-5-4-3-6 1-8-3-4<br />

7-2-5-6<br />

407 000 100 198 22 53<br />

7.15<br />

1-9-2-7-3<br />

6-5-4-8<br />

0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 0 1006 173 1045<br />

2nd 5336 c 967 0 556<br />

4th<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

359 1234 415 1939<br />

1st 0 0 0 0<br />

2nd 0 0 0 0<br />

3rd 0 0 0 0<br />

4th 0 0 0 0<br />

5th 0 0 0 0<br />

6th 2676 0 0 0<br />

7th 0 2057 0 0<br />

8th 0 0 1435 0<br />

9th 0 0 0 861<br />

10th 0 0 0 0<br />

11th 0 0 0 0<br />

12th<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

208 0 0 0<br />

1st 0 679 117 706<br />

2nd 563 102 0 59<br />

3rd 1663 2200 2784 658<br />

4th 1442 4954 1665 7782<br />

5th 0 216 5176 6426<br />

6th 0 149 0 778<br />

7th 0 67 17 52<br />

8th 304 60 0 62<br />

9th 422 29 5 22<br />

10th 98 337 0 20<br />

11th 0 244 309 7<br />

12th 0 11 68 61<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

c 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09c: External forces and moments in layout point L1 for S90<strong>MC</strong>-C<br />

S90<strong>MC</strong>-C<br />

178 36 71-3.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

407 000 100 198 22 53<br />

7.16<br />

Uneven Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0 0 0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 0 1056 182 726 256 177 0<br />

2nd 4841 c 878 0 630 36 213 0<br />

4th 244 839 282 342 501 640 488<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0<br />

3rd 0 0 0 131 941 144 0<br />

4th 0 0 0 1023 1293 1055 0<br />

5th 0 0 0 1075 456 566 0<br />

6th 2255 0 0 279 136 569 0<br />

7th 0 1738 0 75 911 798 0<br />

8th 0 0 1187 104 232 611 0<br />

9th 0 0 0 587 130 53 0<br />

10th 0 0 0 41 149 85 0<br />

11th 0 0 0 9 54 166 0<br />

12th 105 0 0 19 18 41 211<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 0 681 117 468 165 114 0<br />

2nd 514 93 0 67 4 23 0<br />

3rd 1490 1971 2495 2937 3267 4250 5310<br />

4th 1261 4334 1456 1767 2588 3307 2522<br />

5th 0 194 4653 1676 633 2902 0<br />

6th 0 125 0 3246 2170 247 0<br />

7th 0 55 14 570 2484 256 0<br />

8th 242 47 0 384 260 1457 484<br />

9th 315 22 4 63 104 191 1123<br />

10th 69 236 0 92 222 142 0<br />

11th 0 136 172 67 146 193 0<br />

12th 0 5 33 120 60 69 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

c 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09d: External forces and moments in layout point L1 for L90<strong>MC</strong>-C<br />

L90<strong>MC</strong>-C<br />

178 86 05-9.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

K90<strong>MC</strong><br />

No. of cyl. 4 5 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-3-2-4 1-4-3-2-5 1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

1-8-3-4<br />

7-2-5-6<br />

1-6-7-3-<br />

5-8-2-4-9<br />

Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0 0 0<br />

1st a 2502 b 794 0 473 207 1630 291 202 0<br />

2nd 5322 c 6625 c 4609 c 1338 0 1504 34 203 0<br />

4th 0 21 163 463 188 234 334 427 326<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0 0 0<br />

3rd 0 0 0 0 0 0 747 352 0<br />

4th 2437 0 0 0 0 0 1018 830 0<br />

5th 0 2342 0 0 0 0 325 403 0<br />

6th 0 0 1680 0 0 0 97 406 0<br />

7th 0 0 0 1257 0 0 659 577 0<br />

8th 426 0 0 0 852 0 167 439 0<br />

9th 0 0 0 0 0 460 89 37 0<br />

10th 0 145 0 0 0 0 103 59 0<br />

11th 0 0 0 0 0 0 43 131 0<br />

12th 59 0 88 0 0 0 15 34 176<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 997 317 0 188 82 650 116 80 0<br />

2nd 132 164 114 33 0 37 1 5 0<br />

3rd 180 635 1148 1256 1922 2306 2517 3274 4091<br />

4th 0 125 963 2738 1112 1387 1977 2526 1927<br />

5th 302 0 0 215 3220 1066 438 2009 0<br />

6th 511 57 0 34 0 2310 1503 171 0<br />

7th 116 408 0 0 10<br />

93<br />

1743 180 0<br />

8th 0 242 168 13 0<br />

45<br />

181 1015 337<br />

9th 33 10 210 23 3 33<br />

69<br />

127 748<br />

10th 53 0 46 131 0 12 149 95 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09e: External forces and moments in layout point L1 for K90<strong>MC</strong><br />

407 000 100 198 22 53<br />

7.17<br />

178 87 58-1.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 6 7 8 9 10 11 12<br />

Firing order 1-5-3<br />

-4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

1-8-3-4<br />

7-2-5-6<br />

Uneven Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0<br />

1st a 0 497 1669 890 81 35 0<br />

2nd 4859 c 1411 0 641 56 28 0<br />

4th 172 490 199 243 346 444 345<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0<br />

3rd 0 0 0 89 640 302 0<br />

4th 0 0 0 713 901 735 0<br />

5th 0 0 0 688 292 362 0<br />

6th 1468 0 0 174 85 355 0<br />

7th 0 1063 0 46 557 488 0<br />

8th 0 0 745 65 146 383 0<br />

9th 0 0 0 346 76 31 0<br />

10th 0 0 0 22 80 46 0<br />

11th 0 0 0 6 35 106 0<br />

12th 81 0 0 14 14 31 162<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 0 196 657 350 32 14 0<br />

2nd 163 47 0 22 2 1 0<br />

3rd 1092 1195 1531 2106 2351 3060 3827<br />

4th 947 2692 1094 1337 1901 2439 1894<br />

5th 0 214 2689 1147 419 1984 0<br />

6th 0 33 0 2143 1429 158 0<br />

7th 0 0 69 368 1608 162 0<br />

8th 164 13 0 253 129 970 327<br />

9th 200 22 20 37 66 121 702<br />

10th 40 113 0 52 126 81 0<br />

11th 0 78 100 45 99 131 0<br />

12th 0 7 27 97 49 56 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

c 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09f: External forces and moments in layout point L1 for K90<strong>MC</strong>-C<br />

K90<strong>MC</strong>-C<br />

407 000 100 198 22 53<br />

7.18<br />

178 87 59-3.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 0 252 847<br />

2nd 3405 c 988 0<br />

4th<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

230 652 265<br />

1st 0 0 0<br />

2nd 0 0 0<br />

3rd 0 0 0<br />

4th 0 0 0<br />

5th 0 0 0<br />

6th 2118 0 0<br />

7th 0 1628 0<br />

8th 0 0 1122<br />

9th 0 0 0<br />

10th 0 0 0<br />

11th 0 0 0<br />

12th<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

117 0 0<br />

1st 0 182 610<br />

2nd 517 150 0<br />

3rd 1395 1526 1956<br />

4th 1023 2906 1181<br />

5th 0 241 3025<br />

6th 0 41 0<br />

7th 0 0 91<br />

8th 211 16 0<br />

9th 289 32 29<br />

10th 63 180 0<br />

11th 0 107 137<br />

12th 0 9 34<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

c 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment<br />

.<br />

Fig. 7.09g: External forces and moments in layout point L1 for S80<strong>MC</strong> -C<br />

S80<strong>MC</strong>-C<br />

178 36 72-5.1<br />

407 000 100 198 22 53<br />

7.19


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

S80<strong>MC</strong><br />

No. of cyl. 4 5 6 7 8 9<br />

Firing order 1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-4-3-6 1-8-3-4-7-2-5-6 Uneven<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 429<br />

1st a 1289 b 409 0 244 817 429<br />

2nd 3346 c 4166 c 2898 c 841 0 378<br />

4th 0 20 152 433 176 214<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0<br />

3rd 0 0 0 0 0 143<br />

4th 2558 0 0 0 0 845<br />

5th 0 2490 0 0 0 815<br />

6th 0 0 1927 0 0 228<br />

7th 0 0 0 1502 0 65<br />

8th 515 0 0 0 1029 90<br />

9th 0 0 0 0 0 570<br />

10th 0 223 0 0 0 43<br />

11th 0 0 0 0 0 10<br />

12th 71 0 107 0 0 19<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 822 261 0 155 521 274<br />

2nd 497 619 431 125 0 56<br />

3rd 220 775 1400 1531 1963 2743<br />

4th 0 117 900 2558 1039 1264<br />

5th 286 0 0 204 2554 1096<br />

6th 522 59 0 35 0 2283<br />

7th 123 434 0 0 78 423<br />

8th 0 260 181 14 0 285<br />

9th 41 13 264 29 26 52<br />

10th 72 0 63 178 0 84<br />

11th 15 5 0 103 132 61<br />

12th 0 36 0 7 29 104<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09h: External forces and moments in layout point L1 for S80<strong>MC</strong><br />

407 000 100 198 22 53<br />

7.20<br />

178 35 07-4.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-3-2-4 1-4-3-2-5 1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

1-8-2-6-<br />

4-5-3-7<br />

Uneven Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0 0 0<br />

1st a 1470 b 467 0 278 466 489 128 620 90<br />

2nd 3616 c 4501 c 3131 c 909 0 409 12 599 122<br />

4th 0 19 148 420 683 208 301 654 386<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0 0 0<br />

3rd 0 0 0 0 0 88 630 297 0<br />

4th 1936 0 0 0 0 640 809 660 0<br />

5th 0 1904 0 0 0 623 265 328 0<br />

6th 0 0 1425 0 0 169 82 344 0<br />

7th 0 0 0 1106 0 48 580 508 0<br />

8th 384 0 0 0 767 67 150 395 0<br />

9th 0 0 0 0 0 405 89 37 0<br />

10th 0 159 0 0 0 31 113 64 0<br />

11th 0 0 0 0 0 7 43 130 0<br />

12th 48 0 73 0 0 13 13 28 145<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 768 244 0 145 244 256 67 47 0<br />

2nd 178 222 154 45 0 20 1 5 0<br />

3rd 152 536 968 1059 679 1897 2112 2748 3434<br />

4th 0 99 765 2175 3535 1075 1561 1997 1531<br />

5th 246 0 0 175 1096 941 352 1629 0<br />

6th 434 49 0 29 0 1897 1267 143 0<br />

7th 102 359 0 0 32 350 1525 156 0<br />

8th 0 218 152 12 0 239 164 910 303<br />

9th 33 11 211 24 10 41 70 128 747<br />

10th 58 0 50 143 0 67 162 104 0<br />

11th 12 4 0 85 55 50 110 146 0<br />

12th 0 28 0 6 88 80 40 46 0<br />

1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09i: External forces and moments in layout point L1 for L80<strong>MC</strong><br />

L80<strong>MC</strong><br />

178 35 08-6.1<br />

407 000 100 198 22 53<br />

7.21


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 6 7 8 9 10 11 12<br />

Firing order 1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

Uneven Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0<br />

1st a 0 321 1078 574 54 28 0<br />

2nd 3418 c 992 0 451 36 23 0<br />

4th 144 408 166 203 289 370 287<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0<br />

3rd 0 0 0 74 527 248 0<br />

4th 0 0 0 578 730 596 0<br />

5th 0 0 0 565 240 297 0<br />

6th 1224 0 0 145 70 296 0<br />

7th 0 889 0 38 466 408 0<br />

8th 0 0 623 55 122 321 0<br />

9th 0 0 0 293 65 27 0<br />

10th 0 0 0 19 68 39 0<br />

11th 0 0 0 6 32 98 0<br />

12th 77 0 0 14 13 30 154<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 0 148 497 265 25 13 0<br />

2nd 47 14 0 6 0 0 0<br />

3rd 865 946 1213 670 1864 2425 3033<br />

4th 739 2099 853 1042 1484 1904 1477<br />

5th 0 169 2124 907 332 1568 0<br />

6th 0 27 0 1720 1147 127 0<br />

7th 0 0 56 296 1294 131 0<br />

8th 132 10 0 204 144 781 263<br />

9th 163 18 16 30 54 99 572<br />

10th 32 92 0 43 103 66 0<br />

11th 0 69 88 40 87 116 0<br />

12th 0 6 25 89 45 52 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

c 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09j: External forces and moments in layout point L1 for K80<strong>MC</strong>-C<br />

K80<strong>MC</strong>-C<br />

178 87 60-3.0<br />

407 000 100 198 22 53<br />

7.22


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 854 b 271 0 161 542<br />

2nd 2515 c 3131 c 2178 c 632 0<br />

4th 0 19 147 417 170<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 1771 1805 1387 1802 766<br />

2 x No. of cyl. 383 160 67<br />

3 x No. of cyl. 44<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 612 194 0 116 388<br />

2nd 365 455 316 92 0<br />

3rd 133 469 847 927 1188<br />

4th 0 82 636 1807 734<br />

5th 212 0 0 151 1889<br />

6th 383 43 0 26 0<br />

7th 91 319 0 0 57<br />

8th 0 198 138 11 0<br />

9th 31 10 198 22 20<br />

10th 53 0 46 131 0<br />

11th 11 3 0 75 96<br />

12th 0 23 0 5 18<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4.5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09k: External forces and moments in layout point L1 for S70<strong>MC</strong>-C<br />

S70<strong>MC</strong>-C<br />

178 44 37-2.0<br />

407 000 100 198 22 53<br />

7.23


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 944 b 300 0 178 599<br />

2nd 2452 c 3052 c 2123 c 343 0<br />

4th 0 14 111 317 129<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 1503 1488 1124 876 602<br />

2 x No. of cyl. 301 129 50<br />

3 x No. of cyl. 34<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 533 169 0 101 338<br />

2nd 149 186 129 37 0<br />

3rd 101 355 642 702 899<br />

4th 0 69 529 1503 611<br />

5th 171 0 0 122 1526<br />

6th 304 34 0 20 0<br />

7th 72 253 0 0 46<br />

8th 0 152 106 8 0<br />

9th 24 7 150 17 15<br />

10th 42 0 36 103 0<br />

11th 8 3 0 58 74<br />

12th 0 17 0 3 14<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment<br />

Fig. 7.09l: External forces and moments in layout point L1 for S70<strong>MC</strong><br />

S70<strong>MC</strong><br />

178 87 68-8.0<br />

407 000 100 198 22 53<br />

7.24


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

1-8-2-6-<br />

4-5-3-7<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 1094 b 347 0 207 347<br />

2nd 269 c 3350 c 2330 c 676 0<br />

4th 0 14 110 313 508<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 1274 1275 954 741 514<br />

2 x No. of cyl. 257 107 49<br />

3 x No. of cyl. 33<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 523 166 0 99 166<br />

2nd 23 28 20 6 0<br />

3rd 82 289 522 571 366<br />

4th 0 65 503 1431 2325<br />

5th 165 0 0 117 734<br />

6th 290 33 0 19 0<br />

7th 68 241 0 0 22<br />

8th 0 146 102 8 0<br />

9th 22 7 141 16 7<br />

10th 39 0 34 96 0<br />

11th 8 3 0 57 37<br />

12th 0 18 0 4 59<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09m: External forces and moments in layout point L1 for L70<strong>MC</strong><br />

L70<strong>MC</strong><br />

178 87 61-5.0<br />

407 000 100 198 22 53<br />

7.25


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 533 b 169 0 101 338<br />

2nd 1570 c 1954 c 1360 c 395 0<br />

4th 0 12 92 261 106<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 1116 1136 873 681 482<br />

2 x No. of cyl. 241 101 42<br />

3 x No. of cyl. 28<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 385 122 0 73 244<br />

2nd 236 294 204 59 0<br />

3rd 85 300 542 593 759<br />

4th 0 52 401 1139 463<br />

5th 133 0 0 95 1189<br />

6th 241 27 0 16 0<br />

7th 57 201 0 0 36<br />

8th 0 124 87 7 0<br />

9th 20 6 124 14 12<br />

10th 34 0 29 83 0<br />

11th 7 2 0 47 60<br />

12th 0 14 0 3 12<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09n: External forces and moments in layout point L1 for S60<strong>MC</strong>-C<br />

S60<strong>MC</strong>-C<br />

178 44 38-4.0<br />

407 000 100 198 22 53<br />

7.26


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.27<br />

1-8-3-4-<br />

7-2-5-6<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 582 b 185 0 110 369<br />

2nd 1510 c 1880 c 1308 c 380 0<br />

4th 0 9 69 195 74<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 949 937 708 552 380<br />

2 x No. of cyl. 190 82 32<br />

3 x No. of cyl. 21<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 334 106 0 63 212<br />

2nd 109 136 94 27 0<br />

3rd 66 233 421 460 590<br />

4th 0 43 334 949 386<br />

5th 108 0 0 77 961<br />

6th 192 22 0 13 0<br />

7th 45 160 0 0 29<br />

8th 0 96 67 5 0<br />

9th 15 5 95 11 9<br />

10th 27 0 23 65 0<br />

11th 5 2 0 37 47<br />

12th 0 11 0 2 9<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09o: External forces and moments in layout point L1 for S60<strong>MC</strong><br />

S60<strong>MC</strong><br />

178 87 62-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.28<br />

1-8-2-6-<br />

4-5-3-7<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 656 b 208 0 124 208<br />

2nd 1615 c 2010 c 1398 c 406 0<br />

4th 0 9 66 188 305<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 782 783 606 481 335<br />

2 x No. of cyl. 168 78 27<br />

3 x No. of cyl. 18<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 312 99 0 59 99<br />

2nd 12 15 10 3 0<br />

3rd 49 171 309 339 217<br />

4th 0 40 309 878 1428<br />

5th 101 0 0 72 451<br />

6th 184 21 0 12 0<br />

7th 44 156 0 0 14<br />

8th 0 95 66 5 0<br />

9th 16 5 99 11 5<br />

10th 29 0 25 70 0<br />

11th 5 2 0 38 24<br />

12th 0 10 0 2 32<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09p: External forces and moments in layout point L1 for L60<strong>MC</strong><br />

L60<strong>MC</strong><br />

178 87 63-9.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.29<br />

1-8-3-4-<br />

7-2-5-6<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 302 b 96 0 57 192<br />

2nd 891 c 1109 c 771 c 224 0<br />

4th 0 7 52 148 60<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 649 658 506 394 279<br />

2 x No. of cyl. 140 58 24<br />

3 x No. of cyl. 16<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 222 71 0 42 141<br />

2nd 146 181 126 37 0<br />

3rd 51 180 326 357 457<br />

4th 0 30 233 662 269<br />

5th 77 0 0 55 689<br />

6th 140 16 0 9 0<br />

7th 33 116 0 0 21<br />

8th 0 72 50 4 0<br />

9th 11 4 72 8 7<br />

10th 19 0 17 48 0<br />

11th 4 1 0 27 35<br />

12th 0 8 0 2 7<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09q: External forces and moments in layout point L1 for S50<strong>MC</strong>-C<br />

S50<strong>MC</strong>-C<br />

178 38 95-4.2


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.30<br />

1-8-3-4-<br />

7-2-5-6<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 343 b 109 0 65 218<br />

2nd 891 c 1109 c 772 c 224 0<br />

4th 0 5 41 115 47<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 548 543 410 319 219<br />

2 x No. of cyl. 110 47 18<br />

3 x No. of cyl. 12<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 194 62 0 37 123<br />

2nd 56 70 48 14 0<br />

3rd 37 130 236 258 330<br />

4th 0 25 293 548 223<br />

5th 62 0 0 44 556<br />

6th 111 12 0 7 0<br />

7th 26 92 0 0 17<br />

8th 0 56 39 3 0<br />

9th 9 3 54 6 5<br />

10th 15 0 13 38 0<br />

11th 3 1 0 21 27<br />

12th 0 6 0 1 5<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09r: External forces and moments in layout point L1 for S50<strong>MC</strong><br />

S50<strong>MC</strong><br />

178 87 64-0.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.31<br />

1-8-2-6-<br />

4-5-3-7<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 383 b 122 0 72 122<br />

2nd 943 c 1174 c 817 c 237 0<br />

4th 0 5 39 110 178<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 449 451 350 278 195<br />

2 x No. of cyl. 97 46 16<br />

3 x No. of cyl. 11<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 180 57 0 34 57<br />

2nd 14 17 12 3 0<br />

3rd 27 94 171 187 120<br />

4th 0 23 177 504 820<br />

5th 58 0 0 41 260<br />

6th 106 12 0 7 0<br />

7th 26 90 0 0 8<br />

8th 0 55 39 3 0<br />

9th 9 3 58 6 3<br />

10th 17 0 15 42 0<br />

11th 3 1 0 22 14<br />

12th 0 6 0 1 20<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09s: External forces and moments in layout point L1 for L50<strong>MC</strong><br />

L50<strong>MC</strong><br />

178 87 65-2.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8<br />

Firing order<br />

External forces in kN<br />

1-3-2-4 1-4-3-2-5 1-5-3-4-2-6 1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

0 0 0 0 0<br />

External moments in kNm<br />

Order:<br />

1st a 238 b 76 0 45 151<br />

2nd 702 c 874 c 608 c 177 0<br />

4th 0 5 41 117 47<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1 x No. of cyl. 530 537 411 318 224<br />

2 x No. of cyl. 112 47 27<br />

3 x No. of cyl. 18<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 173 55 0 33 110<br />

2nd 110 137 95 28 0<br />

3rd 39 137 247 271 347<br />

4th 0 23 181 515 209<br />

5th 60 0 0 43 536<br />

6th 108 12 0 7 0<br />

7th 25 89 0 0 16<br />

8th 0 55 38 3 0<br />

9th 8 3 54 6 5<br />

10th 15 0 13 37 0<br />

11th 4 1 0 24 31<br />

12th 0 9 0 2 7<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

c 4,5 and 6-cylinder engines can be fitted with 2nd order moment compensators on the aft and fore end,<br />

eliminating the 2nd order external moment.<br />

Fig. 7.09t: External forces and moments in layout point L1 for S46<strong>MC</strong>-C<br />

S46<strong>MC</strong>-C<br />

178 87 66-4.0<br />

407 000 100 198 22 53<br />

7.32


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-3-2-4 1-4-3-2-5 1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.33<br />

1-8-3-4-<br />

7-2-5-6<br />

1-6-7-3-<br />

5-8-2-4-9<br />

Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0 0 0<br />

1st a 151 b 48 0 29 96 99 13 9 0<br />

2nd 392 488 340 99 0 111 1 11 0<br />

4th 0 2 18 51 21 26 36 46 36<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0 0 0<br />

3rd 0 0 0 0 0 0 211 122 0<br />

4th 408 0 0 0 0 0 171 155 0<br />

5th 0 384 0 0 0 0 53 72 0<br />

6th 0 0 286 0 0 0 16 74 0<br />

7th 0 0 0 219 0 0 115 106 0<br />

8th 75 0 0 0 150 0 29 78 0<br />

9th 0 0 0 0 0 87 17 7 0<br />

10th 0 30 0 0 0 0 22 11 0<br />

11th 0 0 0 0 0 0 10 25 0<br />

12th 14 0 21 0 0 0 4 8 39<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 119 38 0 23 76 78 10 8 0<br />

2nd 122 152 106 31 0 35 0 4 0<br />

3rd 41 145 262 287 368 455 572 913 1141<br />

4th 0 17 131 371 151 188 266 379 291<br />

5th 40 0 0 29 358 141 57 289 0<br />

6th 70 8 0 5 0 274 206 25 0<br />

7th 16 58 0 0 10 13 244 26 0<br />

8th 0 35 24 2 0 6 26 146 49<br />

9th 5 2 32 4 3 0 11 18 108<br />

10th 9 0 8 24 0 2 25 14 0<br />

11th 2 1 0 16 21 2 21 23 0<br />

12th 0 7 0 1 5 20 10 10 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

Fig. 7.09u: External forces and moments in layout point L1 for S42<strong>MC</strong><br />

S42<strong>MC</strong><br />

178 41 24-4.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-3-2-4 1-4-3-2-5 1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.34<br />

1-8-2-6-<br />

4-5-3-7<br />

1-6-7-3-<br />

5-8-2-4-9<br />

Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0 0 0<br />

1st a 229 b 73 0 43 73 149 20 14 0<br />

2nd 562 700 487 141 0 159 2 16 0<br />

4th 0 3 23 65 106 33 47 60 46<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0 0 0<br />

3rd 0 0 0 0 0 0 84 40 0<br />

4th 288 0 0 0 0 0 120 98 0<br />

5th 0 285 0 0 0 0 40 49 0<br />

6th 0 0 213 0 0 0 12 51 0<br />

7th 0 0 0 164 0 0 86 75 0<br />

8th 57 0 0 0 114 0 22 59 0<br />

9th 0 0 0 0 0 68 13 5 0<br />

10th 0 24 0 0 0 0 17 10 0<br />

11th 0 0 0 0 0 0 7 20 0<br />

12th 8 0 12 0 0 0 2 5 24<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 115 37 0 22 37 75 10 7 0<br />

2nd 18 20 14 4 0 5 0 0 0<br />

3rd 20 71 129 141 91 258 282 367 458<br />

4th 0 15 114 324 526 164 232 297 228<br />

5th 37 0 0 26 164 130 53 244 0<br />

6th 65 7 0 4 0 291 190 21 0<br />

7th 15 53 0 0 5 12 227 23 0<br />

8th 0 32 23 2 0 6 24 135 45<br />

9th 5 2 31 3 2 5 10 19 111<br />

10th 9 0 7 21 0 2 24 15 0<br />

11th 2 1 0 13 9 2 17 23 0<br />

12th 0 5 0 1 15 16 7 8 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

Fig. 7.09v: External forces and moments in layout point L1 for L42<strong>MC</strong><br />

L42<strong>MC</strong><br />

178 41 25-6.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-3-2-4 1-4-3-2-5 1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.35<br />

1-8-3-4-<br />

7-2-5-6<br />

1-6-7-3-5-<br />

8-2-4-9<br />

Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0 0 0<br />

1st a 89 b 28 0 17 56 58 15 10 0<br />

2nd 231 287 200 58 0 65 3 13 0<br />

4th 0 1 11 30 12 15 22 28 21<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0 0 0<br />

3rd 0 0 0 0 0 0 111 53 0<br />

4th 224 0 0 0 0 0 94 76 0<br />

5th 0 212 0 0 0 0 30 37 0<br />

6th 0 0 155 0 0 0 9 38 0<br />

7th 0 0 0 117 0 0 62 54 0<br />

8th 41 0 0 0 82 0 16 42 0<br />

9th 0 0 0 0 0 47 9 4 0<br />

10th 0 16 0 0 0 0 11 6 0<br />

11th 0 0 0 0 0 0 6 17 0<br />

12th 8 0 21 0 0 0 2 5 25<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 68 22 0 13 43 45 11 8 0<br />

2nd 67 83 58 17 0 19 1 4 0<br />

3rd 22 78 141 154 197 244 311 405 505<br />

4th 0 9 73 207 84 105 151 192 145<br />

5th 23 0 0 16 201 79 33 150 0<br />

6th 39 4 0 3 0 151 115 13 0<br />

7th 9 31 0 0 6 7 135 14 0<br />

8th 0 19 13 1 0 4 14 81 27<br />

9th 3 1 18 2 2 0 6 11 63<br />

10th 5 0 4 12 0 1 14 8 0<br />

11th 1 0 0 9 12 1 12 16 0<br />

12th 0 4 0 1 3 12 6 7 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

Fig. 7.09x: External forces and moments in layout point L1 for S35<strong>MC</strong><br />

S35<strong>MC</strong><br />

178 41 26-8.1


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-3-2-4 1-4-3-2-5 1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

407 000 100 198 22 53<br />

7.36<br />

1-8-3-4-<br />

7-2-5-6<br />

1-9-2-5-7-<br />

3-6-4-8<br />

Uneven Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0 0 0<br />

1st a 94 b 30 0 18 60 56 16 11 0<br />

2nd 232 289 201 58 0 86 3 13 0<br />

4th 0 1 10 27 11 40 20 25 19<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0 0 0<br />

3rd 0 0 0 0 0 0 77 36 0<br />

4th 160 0 0 0 0 0 67 55 0<br />

5th 0 153 0 0 0 0 21 26 0<br />

6th 0 0 111 0 0 0 6 27 0<br />

7th 0 0 0 84 0 0 44 39 0<br />

8th 30 0 0 0 61 0 12 31 0<br />

9th 0 0 0 0 0 36 7 3 0<br />

10th 0 12 0 0 0 0 8 5 0<br />

11th 0 0 0 0 0 0 4 11 0<br />

12th 5 0 7 0 0 0 1 3 14<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 64 20 0 12 40 38 11 7 0<br />

2nd 53 66 46 13 0 20 1 3 0<br />

3rd 19 68 123 135 172 103 272 354 442<br />

4th 0 9 66 188 76 276 137 175 132<br />

5th 21 0 0 15 183 211 30 137 0<br />

6th 35 4 0 2 0 67 105 12 0<br />

7th 8 29 0 0 5 9 123 13 0<br />

8th 0 18 12 1 0 3 13 76 25<br />

9th 3 1 17 2 2 0 6 10 61<br />

10th 4 0 4 11 0 1 13 8 0<br />

11th 1 0 0 8 10 1 10 13 0<br />

12th 0 3 0 1 2 4 4 5 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

Fig. 7.09y: External forces and moments in layout point L1 for L35<strong>MC</strong><br />

L35<strong>MC</strong><br />

178 87 67-7.0


MAN B&W Diesel A/S <strong>Engine</strong> <strong>Selection</strong> <strong>Guide</strong><br />

No. of cyl. 4 5 6 7 8 9 10 11 12<br />

Firing<br />

order<br />

1-3-2-4 1-4-3-2-5 1-5-3-<br />

4-2-6<br />

1-7-2-5-<br />

4-3-6<br />

1-8-3-4-<br />

7-2-5-6<br />

1-9-2-5-7-<br />

3-6-4-8<br />

1-8-5-7-<br />

2-9-4-6-<br />

3-10<br />

Uneven 1-8-12-4-<br />

2-9-10-5-<br />

3-7-11-6<br />

External forces in kN<br />

0<br />

External moments in kNm<br />

Order:<br />

0 0 0 0 0 0 0 0<br />

1st a 57 b 18 0 11 36 34 21 23 0<br />

2nd 147 183 127 37 0 54 27 31 0<br />

4th 0 1 7 19 8 28 6 15 13<br />

<strong>Guide</strong> force H-moments in kNm<br />

Order:<br />

1st 0 0 0 0 0 0 0 0 0<br />

2nd 0 0 0 0 0 0 0 0 0<br />

3rd 0 0 0 0 0 0 0 12 0<br />

4th 87 0 0 0 0 0 0 29 0<br />

5th 0 89 0 0 0 0 0 15 0<br />

6th 0 0 70 0 0 0 0 17 0<br />

7th 0 0 0 57 0 0 0 26 0<br />

8th 21 0 0 0 42 0 0 21 0<br />

9th 0 0 0 0 0 28 0 2 0<br />

10th 0 10 0 0 0 0 21 4 0<br />

11th 0 0 0 0 0 0 0 8 0<br />

12th 3 0 4 0 0 0 0 2 8<br />

<strong>Guide</strong> force X-moments in kNm<br />

Order:<br />

1st 31 10 0 6 19 18 11 12 0<br />

2nd 7 8 6 2 0 2 1 1 0<br />

3rd 6 20 36 40 51 30 38 91 114<br />

4th 0 4 33 93 38 137 29 75 65<br />

5th 11 0 0 8 97 112 193 68 0<br />

6th 20 2 0 1 0 39 16 6 0<br />

7th 5 18 0 0 3 5 33 6 0<br />

8th 0 11 8 1 0 2 2 42 16<br />

9th 2 1 12 1 1 0 1 7 39<br />

10th 4 0 3 9 0 1 0 6 0<br />

11th 1 0 0 5 7 1 0 8 0<br />

12th 0 1 0 0 1 2 0 2 0<br />

a 1st order moments are, as standard, balanced so as to obtain equal values for horizontal and vertical moments<br />

for all cylinder numbers.<br />

b By means of the adjustable counterweights on 4-cylinder engines, 70% of the 1st order moment can be moved<br />

from horizontal to vertical direction or vice versa, if required.<br />

Fig. 7.09z: External forces and moments in layout point L1 for S26<strong>MC</strong><br />

S26<strong>MC</strong><br />

178 41 28-1.1<br />

407 000 100 198 22 53<br />

7.37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!