15.12.2016 Views

INTERPRAEVENT 2016

IP16_CP_digital

IP16_CP_digital

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

13 th Congress<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong><br />

30 May to 2 June <strong>2016</strong><br />

Lucerne, Switzerland<br />

Conference Proceedings<br />

www.interpraevent.at<br />

Living<br />

with natural<br />

risks


Published by the International Research Society <strong>INTERPRAEVENT</strong>, Klagenfurt, Austria<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings © <strong>2016</strong> International Research Society <strong>INTERPRAEVENT</strong><br />

The authors bear full responsibility for the contents of their contributions.<br />

Edited by Gernot Koboltschnig<br />

Designed by duoo - visuelle kommunikation, luzern<br />

All rights reserved; no parts of this publication may be reproduced, stored or retrieved<br />

in any form or by any means without the prior written permission of the authors.<br />

The International Research Society <strong>INTERPRAEVENT</strong> received the right for online and<br />

printed publishing. Printed in Switzerland.


13 th Congress<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong><br />

30 May to 2 June <strong>2016</strong><br />

Lucerne, Switzerland<br />

Conference Proceedings<br />

www.interpraevent.at<br />

Living<br />

with natural<br />

risks


13 TH <strong>INTERPRAEVENT</strong> CONGRESS<br />

The Science and Technology Advisory Board<br />

The internationally staffed Science and Technology Advisory Board (STAB) of Interpraevent<br />

already starts in an early stage of preparation to specify the orientation of the congress.<br />

The main topic of this congress is “living with natural hazards”. Therefore the STAB intended<br />

that the call for papers should cover all sectors of the risk cycle including all alpine natural<br />

hazards processes. And: scientists as well as practitioners should be attracted equally. Finally<br />

oral presentations were selected out of all submitted contributions based on their quality.<br />

In this matter quality is determined in an independent assessment process involving several<br />

experts. So, although the frame can be set in the beginning the final content and orientation<br />

of the congress is a result of the contribution of each single author.<br />

Besides their special function in the preparation of the congress, all STAB members served<br />

with their special expertise as reviewers and therefore had to read most of the written<br />

contributions. For all of them an Interpraevent Congress is always a gain in knowledge and<br />

a query of the actual state of the art in natural hazards prevention.<br />

Niki Beyer Portner (Switzerland)<br />

Florian Rudolf-Miklau (Austria)<br />

Ulrik Domaas (Norway)<br />

Dominique Laigle (France)<br />

Paolo Simonini (Italy)<br />

Markus Stoffel (Switzerland)<br />

Andreas von Poschinger (Germany)<br />

Matjaz Mikos (Slovenia)<br />

Yoshiharu Ishikawa (Japan)<br />

Hans Kienholz (Switzerland)<br />

Josef Schneider (Austria)<br />

Johannes Hübl (Austria)<br />

Bruno Mazzorana (Italy)<br />

Didier Richard (France)<br />

Fritz Zollinger (Switzerland)<br />

Head of STAB<br />

Editor of Section 1, Risk governance and policies<br />

2 nd editor of Section 1, Risk governance and policies<br />

Editor of Section 2, Data acquisition and modelling<br />

2 nd editor of Section 2, Data acquisition and modelling<br />

Editor of Section 3, Hazard and risk assessment,<br />

organization of post excursion<br />

2 nd editor of Section 3, Hazard and risk assessment<br />

Editor of Section 4, Hazard and risk mitigation<br />

2 nd editor of Section 4, Hazard and risk mitigation<br />

Editor of Section 5, Emergency management,<br />

organization of field trip<br />

2 nd editor of Section 5, Emergency management<br />

Member of STAB and design of<br />

IP <strong>2016</strong> Editorial Manager<br />

Member and secretary of STAB<br />

Member of STAB<br />

Member of STAB, organization of field trip<br />

4 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Preface<br />

Interpraevent is considered to be “the expert network for the protection from natural<br />

hazards”. In this frame we always tried to attract the experts from science and from<br />

en gin eering and administration as well. Therefore the call for papers was spread out<br />

to this huge community to let the experts participate already in the preparation of the<br />

13th Congress in Lucerne, Switzerland. To cover the entire risk circle the call comprised<br />

five main topics:<br />

Section 1: Risk governance and policies (objectives, strategies, communication)<br />

Section 2: Data acquisition and modelling (monitoring, processes, technologies, models)<br />

Section 3: Hazard and risk assessment (analysis, evaluation)<br />

Section 4: Hazard and risk mitigation (structural, nonstructural measures, insurance)<br />

Section 5: Emergency management (emergency planning, early warning, intervention,<br />

recovery)<br />

At none of the earlier Interpraevent congresses we received as many as 370 Extended<br />

Abstracts. All Extended Abstracts were double reviewed. Out of all acceptable Extended<br />

Abstracts 147 authors were invited to submit a Full Paper, whereas the decision for<br />

an invitation was primarily based on the quality of the submitted Extended Abstract.<br />

The country-wise distribution of Full Papers was adequate to the country-wise distribution<br />

of submitted Extended Abstracts. 116 authors followed the invitation and finally 108 Full<br />

Papers that were in line with the congress topics were accepted for publication. Furthermore<br />

the editorial board decided that only Full Papers can be published if at least one of<br />

the authors attends the congress. The Full Papers are well distributed over the five sections<br />

(from section 1 to 5: 18%, 25%, 25%, 17% and 15%) with a higher interest in sections<br />

2 and 3. Concerning natural hazards processes we are very glad to say that we were able to<br />

cover all typical alpine natural hazards processes: 19 Full Papers are dealing with avalanches,<br />

33 with debris flow, 60 with floods, 18 with landslides and 21 with rock fall (as the total<br />

number is higher than the number of published Full Papers, there are several Full Papers<br />

dealing with more than one natural hazards process). Similar to all published Extended<br />

Abstracts 50% of all Full Papers contents are case studies, which means the Interpraevent<br />

is still able to attract practitioners.<br />

Concerning the country-wise distribution we have a clearly focus and main interest from<br />

the country hosting the 13th Congress, because out of all 108 published Full Papers 60 come<br />

from Switzerland followed by 23 from Austria, 9 from Italy, 5 from France, 4 from Germany,<br />

3 from Japan, 2 from Taiwan, 1 from Norway and 1 from Slovenia.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 5


For sure, it is hard work for an author to do an investigation, to prepare and finally to write<br />

a paper. But after submission editors need to select potential reviewers and to convince them<br />

to do a review. All 108 Full Papers have been carefully and critically read. Therefore we are<br />

grateful to all reviewers and would like to especially name those who did at least 4 reviews.<br />

Many, many thanks to: Franziska Schmid, Hans Romang, Helmut Knoblauch, Andreas<br />

Zischg, Richard Koschuch, Daniel Trappmann, Matjaž Četina, Catrin Promper, Roland Kaitna,<br />

Andreas Rimböck and Klaus Pukall.<br />

Many thanks to all authors, reviewers, editors and the designing team duoo!<br />

Niki Beyer Portner<br />

Chair of the Interpraevent Science & Technology Advisory Board (STAB)<br />

Gernot Koboltschnig<br />

Managing Editor of the IP<strong>2016</strong> congress<br />

Business Manager of the International Research Society Interpraevent<br />

6 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CONTENTS<br />

RISK GOVERNANCE AND POLICIES<br />

Integrated Risk Management – Identify, Evaluate and Manage Natural Risks 18<br />

Gian Reto Bezzola; Roberto Loat<br />

Evaluating the Effectiveness and the Efficiency of Mitigation Measures against Natural Hazards 27<br />

Michael Bründl; Reto Baumann; André Burkard; Fabian Dolf; André Gauderon; Eva Gertsch; Peter Gutwein; Bernhard Krummenacher;<br />

Bernard Loup; Adrian Schertenleib; Nicole Oggier; Linda Zaugg-Ettlin<br />

From the restoration of French mountainous areas to their global management: historical overview<br />

of the Water and Forestry Administration actions in public forests 34<br />

Simon Carladous; Guillaume Piton; Jean-Marc Tacnet; Félix Philippe; Régis Nepote-Vesino; Yann Quefféléan; Olivier Marco<br />

A Gender-sensitive Analysis of Natural Disasters - The Case of St. Lorenzen in Austria 43<br />

Doris Damyanovic; Karin Weber; Britta Fuchs; Christiane Brandenburg<br />

Audit „Flood – how prepared are we" – a method for local authorities to improve local<br />

risk management 52<br />

Paul Geisenhofer<br />

Risk-Dialogue – a challenge 61<br />

Rene Graf<br />

Examples of urban Flood Risk Management in Styria 70<br />

Rudolf Hornich; Tanja Schriebl<br />

Flood Risk Reduction through Object Protection Measures - Benefit Analysis on Catchment<br />

Scale in Upper Austria 79<br />

Matthias Huttenlau; Stefan Achleitner; Benjamin Winter; Manuel Plörer; Michael Hofer; Felix Weingartner<br />

Risk-based spatial planning - findings from two case studies 87<br />

Roberto Loat; Reto Camenzind; Esther Casanova; Eva Frick<br />

Public prevention of natural hazards in Swiss law: responsibilities and fields of action<br />

in legislative and executive bodies 96<br />

Roland Norer; Mark Govoni; Gregor Kost; Cornel Quinto; Barbara Schielein; Lukas Widmer; Christian Wulz<br />

Gender mainstreaming in disaster risk reduction – a step towards the visibility of women in DRR 104<br />

Catrin Promper; Maria Patek<br />

The central challenge of climate change adaptation for Alpine natural hazard management:<br />

Incorporation of future change of the damage potential 112<br />

Klaus Pukall; Sylvia Kruse<br />

Local Conditions and the Quality of Expert Networks: A Case Study of Avalanche<br />

Risk Prevention Practices 121<br />

Renate Renner; Gerhard Lieb<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 7


CONTENTS<br />

Dealing with gravitational natural hazards: challenges for risk management and<br />

development planning 131<br />

Florian Rudolf-Miklau; Kanonier Arthur; Thomas Glade; Stix Elisabeth<br />

Water management as a part of civil engineering sector in Slovenia 141<br />

Jošt Sodnik; Blaž Kogovšek; Matjaž Mikoš<br />

Method for a risk based and transparent allocation formula of the remaining costs applied<br />

to the protection measures project "Laui Sörenberg", municipality of Flühli, Switzerland. 150<br />

Roland Stalder; Karl Grunder; Guido Küng<br />

What makes a successful flood control project? - An evaluation of project procedure<br />

and risk based on the perspectives of Swiss communes. 159<br />

Hannes Suter; Luzius Thomi; Raoul Kern; Matthias Künzler; Conny Gusterer; Andreas Zischg; Rolf Weingartner;<br />

Olivia Martius; Margreth Keiler<br />

The Zurich flood resilience alliance. A new approach for partnership to effective<br />

disaster risk reduction 168<br />

Michael Szoenyi; Linda Freiner<br />

Chances and Challenges in the Field of Residual Flood-Risk and Risk Communication:<br />

Ideas from Bavaria 176<br />

Ronja Wolter-Krautblatter; Andreas Rimböck; Tobias Hafner; Christian Wanger; Christoph Oberacker<br />

Practical Management of Debris-flow-prone Torrents in Taiwan 186<br />

Hsiao-Yuan Yin; Chen-Yang Lee; Chyan-Deng Jan; Meei-Ling Lin<br />

DATA ACQUISITION AND MODELLING<br />

Deciphering dynamics and magnitude of a recent debris-flow disaster in Vratna Dolina 196<br />

Juan Antonio Ballesteros Canovas; Milan Lehotsky; Karel Silhan; Sladek Jan; Anna Kidova; Radek Tichavsky; Pavel Stastny; Markus Stoffel<br />

Modeling rockfall trajectories with non-smooth contact/impact mechanics 203<br />

Perry Bartelt; Werner Gerber; Marc Christen; Yves Bühler<br />

A comparison of physical and computer-based debris flow modelling of a deflection<br />

structure at Illgraben, Switzerland 212<br />

Catherine Berger; Marc Christen; Jürg Speerli; Guido Lauber; Melanie Ulrich; Brian W. McArdell<br />

Exploiting damage claim records of public insurance companies for buildings to<br />

Increase knowledge about the occurrence of overland flow in Switzerland 221<br />

Daniel Benjamin Bernet; Rolf Weingartner; Volker Prasuhn<br />

8 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Distributed acoustic monitoring to secure transport infrastructure against<br />

natural hazards - requirements and new developments 231<br />

Michael Brauner; Arnold Kogelnig; Ulrich Koenig; Günther Neunteufel; Hanna Schilcher<br />

Terrestrial radar interferometry for snow glide activity monitoring and its potential<br />

as precursor of wet snow avalanches. 239<br />

Rafael Caduff; Andreas Wiesmann; Yves Bühler; Claudia Bieler; Philippe Limpach<br />

Earthquake-triggered landslides in Switzerland: from historical observations to the actual hazard 249<br />

Donat Fäh; Jan Burjanek; Carlo Cauzzi; Remo Grolimund; Stefan Fritsche; Ulrike Kleinbrod<br />

Modelling of individual debris flows using Flow-R: A case study in four Swiss torrents 257<br />

Florian von Fischer; Margreth Keiler; Markus Zimmermann<br />

Slide-induced impulse waves in mountainous regions 265<br />

Helge Fuchs; Robert M. Boes<br />

Monitoring and management of a huge landslide in a built-up area induced by the<br />

excavation of deep highway tunnels 274<br />

Guido Gottardi; Giuseppe Ricceri; Alberto Selleri; Paolo Simonini; Daniela Salucci; Paola Torsello<br />

Adaption and further development of the numerical solution in the avalanche<br />

simulation model SamosAT 284<br />

Matthias Granig; Peter Sampl; Andreas Kofler; Jan-Thomas Fischer; Philipp Jörg<br />

An Effective Camera Based Water level recording Technology for Flood Monitoring 290<br />

Issa Hasan; Thomas Hies; Ebi Jose; Rudolf Duester; Marcus Sattler; Matthias Satzger<br />

Flood protection at Zurich main station: physical model experiments 296<br />

Florian Hinkelammert; Volker Weitbrecht; Robert M. Boes<br />

Characteristics of debris flow vibration signals in Shenmu, Taiwan 306<br />

Yi-Min Huang; Chung-Ray Chu; Yao-Min Fang; Ming-Chang Tsai; Bing-Jean Lee; Tien-Yin Chou;<br />

Chen-Yang Lee; Chen-Yu Chen; Hsiao-Yuan Yin<br />

Analysis of flood related processes at confluences of steep tributary channels and<br />

their receiving streams – 2d numerical modelling application 319<br />

Johannes Kammerlander; Bernhard Gems; Michael Sturm; Markus Aufleger<br />

Analysis and classification of bedload transport events with variable process characteristics 327<br />

Andrea Kreisler; Markus Moser; Johann Aigner; Rolf Rindler; Michael Tritthart; Helmut Habersack<br />

Integration of remote and terrestrial monitoring data for analysing alpine<br />

geomorphic processes – examples from Switzerland and Italy 336<br />

Volkmar Mair; David Mosna; Robert Kenner; Giulia Chinellato; Marcia Phillips; Claudia Strada; Benni Thiebes<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 9


CONTENTS<br />

Nationwide assessment of the climate sensitivity of natural hazard processes in Switzerland<br />

A fuzzy logic approach 345<br />

Peter Mani; Stéphane Losey<br />

Defining sample size and strategy for dendrogeomorphic rockfall reconstructions 356<br />

Pauline Morel; Daniel Trappmann; Christophe Corona; Markus Stoffel<br />

Critical Rainfall Conditions Triggering Shallow Landslides or Debris Flows in Torrents –<br />

Analysis of Debris Flow events 2012, 2013 and 2014 in Austria 370<br />

Markus Moser; Stefan Janu; Susanne Mehlhorn<br />

Experimental Study on Effect of Houses on Debris-Flow Flooding and Deposition in<br />

Debris Flow Fan Areas 378<br />

Kana Nakatani; Megumi Kosugi; Yuji Hasegawa; Yoshifumi Satofuka; Takahisa Mizuyama<br />

Bedload transport simulation with the model sedFlow: application to mountain rivers in Switzerland 387<br />

Dieter Rickenmann; Martin Böckli; Florian U.M. Heimann; Alexandre Badoux; Jens M. Turowski<br />

Determining future evolution of landslides from the past: the historical evolution<br />

of shallow landslides in the upper Cassarate catchment (Southern Swiss Alps) 396<br />

Christian Ambrosi; Samuel Arrigo; Claudio Castelletti; Cristian Scapozza<br />

A specially developed side weir in the framework of an integral flood protection<br />

concept including a hydrological monitoring system 406<br />

Josef Schneider; Rudolf Schmidt; Matthias Redtenbacher; Franz Brenner<br />

Powder Snow Avalanche Engineering: New Methods to Calculate Air-Blast Pressures<br />

for Hazard Mapping 416<br />

Lukas Stoffel; Stefan Margreth; Mark Schaer; Marc Christen; Yves Bühler; Perry Bartelt<br />

Monitoring sediment fluxes in alpine rivers: the AQUASED project 426<br />

Gianluca Vignoli; Silvia Simoni; Francesco Comiti; Andrea Dell'Agnese; Walter Bertoldi; Roberto Dinale; Rudi Nadalet;<br />

Pierpaolo Macconi; Julius Staffler; Rudolf Pollinger<br />

Monitoring unstable parts in the ice-covered Weissmies northwest face 434<br />

Lukas E Preiswerk; Fabian Walter; Sridhar Anandakrishnan; Giulia Barfucci; Jan Beutel; Peter G Burkett; Pierre Dalban Canassy;<br />

Martin Funk; Philippe Limpach; Emanuele Marchetti; Lorenz Meier; Fabian Neyer<br />

M-AARE - Coupling atmospheric, hydrological, hydrodynamic and damage models<br />

in the Aare river basin, Switzerland 444<br />

Andreas Paul Zischg; Guido Felder; Rolf Weingartner; Juan José Gómez-Navarro; Veronika Röthlisberger; Daniel Bernet; Ole Rössler;<br />

Christoph Raible; Margreth Keiler; Olivia Martius<br />

10 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT<br />

Understanding the impact of climate change on debris-flow risk in a managed torrent:<br />

expected future damage versus maintenance costs 454<br />

Juan Antonio Ballesteros Canovas; Markus Stoffel; Klaus Schraml; Christophe Corona; Andreas Gobiet; Satyanarayana Tani;<br />

Sven Fuchs; Franz Sinabell; Roland Kaitina<br />

Unraveling the spatio-temporal debris-flow activity on a forested cone in the Kyrgyz Range:<br />

implications for hazard assessment 461<br />

Juan Antonio Ballesteros Canovas; Vitalii Zaginaev; Markus Stoffel; Sergei Erokhin<br />

Flood volume estimation in Switzerland using synthetic design hydrographs – a multivariate<br />

statistical approach 468<br />

Manuela Irene Brunner; Olivier Vannier; Anne-Catherine Favre; Daniel Viviroli; Paul Meylan; Anna Sikorska; Jan Seibert,<br />

Channel widening during extreme floods: how to integrate it within river corridor planning ? 477<br />

Francesco Comiti; Margherita Righini; Laura Nardi; Ana Lucìa; William Amponsah; Marco Cavalli; Nicola Surian; Lorenzo Marchi;<br />

Massimo Rinaldi; Marco Borga<br />

Key results of the Swiss wide natural hazard risk assessment on national roads 487<br />

Luuk Dorren; Philippe Arnold<br />

Investigation of the flood hazard of the Nuclear Power Plant KKG by earthquake induced<br />

dam breaks waves at the River Aare 494<br />

Davood Farshi; Michael Ballmer; Donat Job; Brigitte Faust<br />

Spatial and temporal exposure of elements at risk in Austria 503<br />

Sven Fuchs; Andreas Zischg; Margreth Keiler<br />

Event-based rapid landslide mapping including estimation of potential human impacts<br />

on landslide occurrence: a case study in Lower Austria 513<br />

Karin Gokesch; Thomas Glade; Joachim Schweigl<br />

Integral protection concept "Bielzug" 525<br />

Nicole Oggier; Christoph Graf; Reynald Delaloye; André Burkard<br />

Integrated natural hazards protection concept Vitznau LU – Case study Plattenbach 535<br />

Benjamin Hohermuth; Christoph Graf; Jörn Heilig<br />

Unveiling the avalanche activity in the Upper Goms Valley (Switzerland) over the<br />

past 400 years using tree-ring records 544<br />

Sébastien Guillet; Markus Stoffel; Christophe Corona<br />

Management of glacier floods in the Bernese Oberland 553<br />

Nils Hählen; Oliver Hitz; Damian Stoffel<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 11


CONTENTS<br />

New recommendations for the assessment of river bank erosion hazards 561<br />

Lukas Hunzinger; Annette Bachmann; Ralph Brändle; Paul Dändliker; David Jud; Mario Koksch<br />

Human induced risk dynamics - a quantitative analysis of debris flow risks in Sörenberg,<br />

Switzerland (1950 to 2014) 571<br />

Margreth Keiler; Benjamin Fischer<br />

Maps of pluvial floods and their consequences: a case study 580<br />

Martin Mergili; Andreas Tader; Thomas Glade; Stefan Jäger; Clemens Neuhold; Heinz Stiefelmeyer<br />

Rockfall Susceptibility Maps in Styria considering the protective effect of forest 592<br />

Herwig Proske; Christian Bauer<br />

Sediment input from debris flows into mountain rivers: an event-based perspective 601<br />

Dieter Rickenmann; Markus Gerber; Martin Böckli<br />

Potential large wood-related hazards at bridges: the Długopole bridge in the<br />

Czarny Dunajec River, Polish Carpathians 610<br />

Virginia Ruiz-Villanueva; Bartłomiej Wyżga; Pawel Mikuś; Maciej Hajdukiewiczd; Markus Stoffel<br />

ProtectBio - Evaluation of the effects of protection forests on natural hazards due to gravity 619<br />

Arthur Sandri; Benjamin Lange; Stéphane Losey; Bernhard Perren<br />

Backwater rise due to driftwood accumulation 628<br />

Isabella Schalko; Dieter Brändli; Lukas Schmocker; Volker Weitbrecht; Robert Michael Boes<br />

Natural hazard induced risk: a dynamic individualised approach for calculating hit<br />

probability on networks 638<br />

Esther Schönthal; Margreth Keiler<br />

Flood Risk Map for the Canton of Zurich 647<br />

Christian Schuler; Thomas Egli; Mirco Heidemann; Manuela Häni<br />

A probabilistic approach to flood hazard assessment and risk management in floodplains<br />

considering levee failures 657<br />

Silvia Simoni; Gianluca Vignoli; Bruno Mazzorana; Claudio Volcan; Francesco Maria Cesari<br />

Landslide, flood and snow avalanche risk assessment for the safety management system<br />

of the railway Trento - Malè - Marilleva 670<br />

Gherardo Sonzio; Fulvio Bassetti; Ezio Facchin; Ettore Salgemma; Lucia Simeoni<br />

Efficient risk assessment of Norwegian railways combining GIS and field studies 678<br />

Heidi Hefre; Kjetil Sverdrup-Thygeson; Unni Eidsvig; Øyvind Armand Høydal<br />

Periglazial Hazard Indication Map: A Basic Instrument in Prospective Hazard Management 688<br />

Daniel Tobler; Peter Mani; Rachel Riner; Serena Liener; Nils Hählen; Ricarda Bender-Gàl<br />

12 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The case study of Badouzih rockfall in northern Taiwan: mechanism, numerical simulation<br />

and hazard assessment 698<br />

Ching-Fang Lee; Ting-Chi Tsao; Lun-Wei Wei; Wei-Kai Huang<br />

HAZARD AND RISK MITIGATION<br />

Integrated bed-load and driftwood retention in Kien - Findings from model-based testing and<br />

the 2011 flood 708<br />

Warin Bertschi; Guido Lauber; Jürg Speerli; Armin Hemmi<br />

Freeboard computation of near critical flows 718<br />

Niki Antonina Beyer Portner; Patrick Fellay; Karim Laribi; Jean-Louis Boillat<br />

Planning of risk-based rockfall mitigation measures using 3D rockfall simulations 726<br />

Thomas Bickel; Markus Hodel<br />

Protection structures against natural hazards: from failure analysis to effectiveness assessment 735<br />

Simon Carladous; Jean-Marc Tacnet; Mireille Batton-Hubert<br />

Study of landslide run-out and impact on protection structures with the Material Point Method 744<br />

Francesca Ceccato; Paolo Simonini<br />

Property protection against flooding shown on a complex practical example 753<br />

Thomas Egli; Daniel Sturzenegger; Pierre Vanomsen<br />

Flood corridors to handle residual risk 763<br />

Markus W. Klauser; Christian Willi; Werner Fessler; Josef L.A. Eberli<br />

Flood protection concept against enourmous debris flow scenarios 771<br />

Rolf Künzi; Martin Amacher; Oliver Markus Hitz; Serena Liener; Christian Tognacca; Markus Zimmermann<br />

The impact of debris flows on structures: practice revisited in light of new scientific results 782<br />

Dominique Laigle; Mathieu Labbé<br />

People and buildings vulnerability to floods in mountain areas 791<br />

Luca Milanesi; Marco Pilotti; Roberto Ranzi<br />

Modern flood protection and rehabilitation concepts at pre-alpine alluvial rivers 799<br />

Michael Mueller; Peter Billeter; Matthias Mende; Manuel Zahno; Adrian Fahrni<br />

Bedload trapping in open check dam basins - measurements of flow velocities<br />

and depositions patterns 809<br />

Guillaume Piton; Ségolène Mejean; Costanza Carbonari; Jules Le Guern; Hervé Bellot; Alain Recking<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 13


CONTENTS<br />

Sediment Management in Alpine Catchments: Area of conflicts between protection needs,<br />

complexity of waste law and quality goals for water bodies 818<br />

Florian Rudolf-Miklau; Susanne Mehlhorn<br />

Physical modelling optimization of a filter check dam in Switzerland 828<br />

Sebastian Schwindt; Giovanni De Cesare; Jean-Louis Boillat; Philippe Bianco; Anton J. Schleiss<br />

Settlement dynamics in floodplains: from assessing future flood hazard exposure<br />

to developing spatial adaptation measures 837<br />

Walter Seher; Lukas Löschner<br />

Flood losses in Switzerland compared with hazard maps 845<br />

Luzius Thomi, PhD; Matthias Künzler; Raoul Kern<br />

Controlled and efficient bed load management by means of variable drain locks embedded<br />

in a crownclosed large drain sediment control dam 853<br />

Arthur Vogl; Mathias H. Luxner; Hubert Agerer<br />

Actions for the Maintenance and Lifespan prolongation of SABO Facilities 862<br />

Hisashi Watanabe; Toshio Mori<br />

EMERGENCY MANAGEMENT<br />

Outflow forecast on a mountain river! (Emergency Management in the Canton of Nidwalden) 872<br />

Werner Fessler; Markus Klauser; Peter Seitz; Josef Eberli<br />

Intervention planning as a preventive tool for integral natural hazard management<br />

in South Tyrol/Italy 882<br />

Willigis Gallmetzer; Martin Eschgfäller; Roland Fasolo; Peter Egger<br />

Multiple early warning system on rock walls above a railway line in the Bernese Oberland<br />

(Switzerland) 891<br />

Ueli Gruner; Hans-Heini Utelli<br />

Applied flood-risk-management in the Machland-Nord, Upper Austria 900<br />

Raimund Heidrich<br />

Flood forecasting system for the Tyrolean Inn River (Austria): current state and<br />

furtherenhancements of a modular forecasting system for alpine catchments 909<br />

Matthias Huttenlau; Johannes Bellinger; Paul Schattan; Kristian Förster; Felix Oesterle; Katrin Schneider; Stefan Achleitner;<br />

Johannes Schöber; Georg Raffeiner; Robert Kirnbauer<br />

Advanced Flood Forecasting for Switzerland 917<br />

Karsten Jasper; Martin Ebel<br />

14 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Can Twitter catch precursory phenomena before sediment disasters? 927<br />

Masaru Kunitomo; Joko Kamiyama; Kazuki Matsushita; Yuzuru Yamakage; Kunihiro Takeda; Cheng Qiu; Akiko Ito; Takeru Araki<br />

The flood warning service of the Austrian Federal Railways 935<br />

Günther Kundela; Ines Fordinal; Florian Mühlböck; Christian Rachoy<br />

Early Flood Warning for the City of Zurich: Evaluation of real-time Operations since 2010 944<br />

Katharina Liechti; Matthias Oplatka; Natascha Eisenhut; Massimiliano Zappa<br />

A new data management infrastructure for improved analysis and real-time publication<br />

of flood events in the Canton of Aargau 952<br />

Christophe Lienert<br />

Radar-based Warning and Alarm Systems for Alpine Mass Movements 960<br />

Lorenz Meier; Mylène Jacquemart; Bernhard Blattmann; Sam Wyssen; Bernhard Arnold; Martin Funk<br />

Practical experience with the Flood scenario catalogue Carinthia, a handbook for flood<br />

forecast and warning. 969<br />

Johannes Moser; Christian Kopeinig; Kurt Rohner<br />

Avalanche detection systems: A state-of-the art overview on selected operational radar<br />

and infrasound systems 978<br />

Walter Steinkogler; Lorenz Meier; Stian Langeland; Sam Wyssen<br />

Integrated risk management of natural hazards by the railway Company BLS Netz AG 988<br />

Hans-Heini Utelli; Christian Pfammatter; Franz Kuster<br />

Storm and Flood Warnings issued by Switzerland's Specialist Federal Agencies 997<br />

David Volken; Coralie Amiguet; Therese Buergi; Daniel Murer; Christoph Schmutz;<br />

Strategies for the reduction of natural hazards damages by optimized warning, alarming<br />

and intervention in Switzerland 1005<br />

Lilith Wernli-Schärer; Roland Bialek; Martin Buser; Christoph Flury; Bruno Gerber; Florian Haslinger; Christoph Hegg; Birgit Ottmer;<br />

Olivier Overney; Hans Romang; Christoph Schmutz; Jürg Schweizer<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 15


16 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES<br />

(OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 17


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Integrated Risk Management – Identify, Evaluate and<br />

Manage Natural Risks<br />

Integrales Risikomanagement – Naturrisiken erfassen,<br />

bewerten und steuern<br />

Gian Reto Bezzola, Dipl. Bauing. ETH¹; Roberto Loat, dipl. phil. nat. Geograph²<br />

ABSTRACT<br />

In Switzerland about 20 % of all inhabitants live in areas prone to natural hazards. Since 1972,<br />

on the average 2.5 persons per year lost their lives due to floods, debris flows, landslides and<br />

rockfalls. The mean annual damage arising from these processes is around CHF 310 million.<br />

In the past decades there has been a shift from technical defense measures towards an<br />

integrated risk management. Though, all prevailing natural hazards are considered, preparedness,<br />

response and recovery measures are combined in an optimal way, all responsible actors<br />

and those directly affected are involved and all dimensions of sustainability are respected.<br />

An ongoing communication about risks among all actors is a precondition for successful risk<br />

management. The main aim is to achieve and maintain a comparable security level for all<br />

natural hazards throughout Switzerland. The evaluation of actual security, the identification<br />

of need for action and the definition of priorities must therefore rely on country wide<br />

standardised risk overviews. A concept for such overviews is presented.<br />

ZUSAMMENFASSUNG<br />

In der Schweiz leben rund 20% der Bevölkerung in potentiellen Gefahrengebieten. Durch<br />

Hochwasser, Murgänge, Rutschungen und Sturzprozesse kamen seit 1972 im Mittel jedes<br />

Jahr 2.5 Menschen zu Tode und es entstanden Schäden von durchschnittlich 310 Mio. CHF<br />

pro Jahr. Die früher übliche technische Gefahrenabwehr ist durch das integrale Risikomanagement<br />

(IRM) abgelöst worden. Integral bedeutet, dass alle Naturgefahren betrachtet<br />

werden, alle Massnahmen aus den Bereichen Vorbeugung, Intervention und Regeneration<br />

optimal kombiniert werden, alle Akteure und die direkt Betroffenen beteiligt sowie alle<br />

Aspekte der Nachhaltigkeit berücksichtigt werden. Nicht mehr die Reduktion der Gefahr<br />

allein steht im Fokus, sondern vielmehr die Erfassung, Bewertung und Steuerung der<br />

Risiken, begleitet von einem aktiven Risikodialog. Angestrebt wird ein schweizweit vergleichbares<br />

Sicherheitsniveau für alle Naturgefahren. Die Beurteilung der aktuellen Sicherheit,<br />

des Handlungsbedarfs sowie die Definition von Prioritäten müssen sich deshalb auf<br />

schweizweit standardisierten Risikoübersichten stützen. Ein Konzept für die Erarbeitung<br />

solcher übergeordneter Risikoübersichten wird im vorliegenden Artikel präsentiert.<br />

1 Bundesamt für Umwelt BAFU, Bern, SWITZERLAND, gianreto.bezzola@bafu.admin.ch<br />

2 Bundesamt für Umwelt BAFU<br />

18 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP104


KEYWORDS<br />

risk governance; integrated risk management; risk overview; natural hazards<br />

EINFÜHRUNG<br />

Naturereignisse und der Umgang mit den damit verbundenen Gefahren und Risiken haben<br />

im Alpenland Schweiz eine grosse Bedeutung und Tradition. Naturereignisse verursachen<br />

immer wieder Schäden und fordern Menschenleben. Der Umgang mit Naturgefahren be -<br />

dingt bedeutende Investitionen und durch die Intensivierung der Raumnutzung sowie die<br />

Folgen des Klimawandels nehmen die Risiken zu. Die mittleren jährlichen Schäden seit 1972<br />

durch Hochwasser, Murgänge, Rutschungen und Sturzprozesse betragen rund 310 Mio. CHF.<br />

Im gleichen Zeitraum kamen durch die genannten Prozesse im Durchschnitt jedes Jahr<br />

2.5 Menschen zu Tode. Allein durch Hochwasser waren seit 1972 vier von fünf Schweizer<br />

Gemeinden ein- oder mehrmals betroffen und rund 20 % der Menschen in der Schweiz<br />

leben in potenziellen Überflutungsgebieten.<br />

PARADIGMENWECHSEL NACH DEM HOCHWASSER 1987<br />

Die Entwicklung im Umgang mit Naturgefahren und Risiken ist stark durch einzelne Grossereignisse<br />

geprägt. Ein verantwortungsvoller Umgang verlangt, dass Ereignisse analysiert und<br />

daraus Lehren gezogen werden. Denn Ereignisanalysen bieten die Möglichkeit, die Wirksamkeit<br />

von Massnahmen im konkreten Fall zu überprüfen. Solche Analysen haben in der<br />

Schweiz Tradition.<br />

Das Jahr 1987 gilt im schweizerischen Hochwasserschutz als Wendepunkt. Nach den<br />

schweren Unwettern im zentralen Alpenraum mit hohen Sachschäden und 8 Toten setzte<br />

sich die Einsicht durch, dass Schutzbauten allein nicht genügen, um Schäden durch Hochwasser<br />

zu verhindern. Die Ereignisse führten die Grenzen der damaligen Hochwasserschutzphilosophie,<br />

die auf bauliche Eingriffe an den Gewässern fokussiert war, vor Augen.<br />

Die Erkenntnisse aus der Ereignisanalyse (BWW, LHG 1991) flossen in das Bundesgesetz über<br />

den Wasserbau (Wasserbaugesetz, WBG) von 1991 ein und leiteten einen Paradigmenwechsel<br />

ein. Das Motto lautet: „von der Gefahrenabwehr zur Risikokultur“.<br />

GRUNDSÄTZE DES INTEGRALEN RISIKOMANAGEMENTS (IRM)<br />

Das Wasserbaugesetz gibt der Gefahrenanalyse, der<br />

Differenzierung der Schutzziele, den raumplanerischen<br />

Massnahmen, der zweckmässigen Massnahmenplanung<br />

und dem Umgang mit dem verbleibenden Risiko<br />

(Notfallplanung) eine umfassende gesetzliche Grundlage.<br />

Mit der von der Nationalen Plattform Naturgefahren<br />

erarbeiteten und vom Schweizerischen Bundesrat<br />

genehmigten Strategie Naturgefahren Schweiz (PLANAT<br />

Abbildung 1: Tätigkeiten im IRM, in<br />

Anlehnung an die Norm ISO 31000.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 19


2004) wurde der Weg zu einem integralen Risikomanagement vorgegeben. Integral bedeutet,<br />

dass alle Naturgefahren betrachtet werden, sich alle Verantwortlichen an der Planung und<br />

Umsetzung beteiligen, alle Betroffen einbezogen werden, alle Arten von Massnahmen<br />

(planerische, technische, biologische, organisatorische) zu beachten und alle Aspekte der<br />

Nachhaltigkeit zu berücksichtigen sind. Das integrale Risikomanagement stützt sich auf<br />

umfassende und aktuelle Gefahren- und Risikogrundlagen und ist begleitet von einem<br />

aktiven Dialog zu Risiken, Chancen und Handlungsoptionen mit den betroffenen Akteuren.<br />

Das Vorgehen bei der Umsetzung des integralen Risikomanagements lehnt sich an die allgemein<br />

gültigen Standards der ISO-Norm 31000 an (Abb. 1).<br />

ENTWICKLUNG DES IRM<br />

Der Wechsel von der Gefahrenabwehr zum integralen Risikomanagement erfolgte in der<br />

Schweiz hauptsächlich im Rahmen der Projektierung von Schutzmassnahmen. Durch die<br />

Identifizierung vorhandener Defizite, gestützt auf Gefahrenkarten und Schutzziele sowie<br />

mittels detaillierter Ausweisung der Risiken bei Nutzen-Kostenbetrachtung werden einerseits<br />

ein vergleichbarer Sicherheitsstandard und andererseits ein effizienter Mitteleinsatz gewährleistet.<br />

Die integrale Massnahmenplanung reduziert sich jedoch nicht auf eine rein ökonomische<br />

Betrachtung, sondern ist ein Optimierungsprozess (Abb. 2). Dabei werden die Auswirkungen<br />

beurteilt, Risiken und Chancen abgewogen, die Verhältnismässigkeit bezüglich<br />

aller Aspekte der Nachhaltigkeit beurteilt und entschieden in welchem Umfang die Risiken<br />

gemieden, gemindert und getragen werden. Möglichst früh müssen dabei auch Massnahmen<br />

der risikobasierten Raumplanung zur Vermeidung neuer inakzeptabler Risiken geplant und<br />

ergriffen werden um die erreichte Sicherheit zu halten.<br />

Abbildung 2: Vorgehen, um das angestrebte Sicherheitsniveau zu erreichen und zu halten (ergänzt nach PLANAT 2013).<br />

20 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Der risikobasierte Ansatz bei Schutzprojekten ist im Naturgefahrenbereich heute weitgehend<br />

Standard. Einerseits stehen geeignete Methoden zur quantitativen Erfassung der Risiken und<br />

zur Beurteilung des Nutzen-Kostenverhältnisses risikomindernder Massnahmen im Bereich<br />

Naturgefahren zur Verfügung (Borter 1999a, 1999b; Bründl 2009). Andererseits bestehen mit<br />

den seit 2008 mit der Neugestaltung des Finanzausgleichs und der Aufgabenteilung zwischen<br />

Bund und Kantonen eingeführten Leistungsvereinbarungen mit messbaren Zielen zur<br />

Verbesserung der Sicherheit entsprechende Anreize und Verpflichtungen. Risikoorientierung<br />

und Nachhaltigkeit von grösseren Einzelprojekten werden über ein Anreizmodell gefördert.<br />

Kantone können zusätzliche Bundesmittel beantragen, wenn sie in den Bereichen „Integrales<br />

Risikomanagement“, „Technische Aspekte“ und „Partizipative Planung“ den Nachweis von<br />

bestimmten Mehrleistungen erbringen (BAFU 2015a). Spätestens auf Stufe Bauprojekt<br />

müssen die Kantone den Nachweis der Wirkung (Risikoreduktion) und der Wirtschaftlichkeit<br />

des Projektes (Nutzen-Kostenverhältnis) erbringen. Das BAFU hat dazu das Berechnungsprogramm<br />

EconoMe (BAFU 2015b) entwickelt.<br />

LÜCKEN<br />

Eine aktuelle Standortbestimmung im Bereich Naturgefahren zeigt, dass bezüglich der Umsetzung<br />

des integralen Risikomanagements noch Lücken bestehen (BAFU <strong>2016</strong>). Diese<br />

betreffen sowohl die Massnahmenplanung als auch die Grundlagen für das übergeordnete<br />

Management.<br />

Auf der Ebene der Massnahmenplanung besteht bezüglich raumplanerischer Massnahmen<br />

ein grosses Potenzial, da die Risiken wesentlich durch die Nutzungen geprägt sind. Die<br />

zu nehmend intensivere Raumnutzung darf nicht dazu führen, dass die Risiken unkontrolliert<br />

zunehmen. Planerische Massnahmen zur Vermeidung neuer inakzeptabler Risiken müssen<br />

deshalb stärker beachtet werden. Um diese Lücke zu schliessen, laufen momentan verschiedene<br />

Arbeiten zum Thema der risikobasierten Raumplanung (Camenzind und Loat 2014).<br />

Weiter müssen im Rahmen der Massnahmenplanung die Risikoträger zur Beurteilung der<br />

Tragbarkeit der verbleibenden Risiken verstärkt mit einbezogen werden.<br />

Auf der Ebene des übergeordneten Managements sind heute erst ansatzweise Grundlagen für<br />

die risikobasierte Ausweisung des Handlungsbedarfs und Prioritätensetzung im räumlichen<br />

Gesamtkontext der Naturrisiken vorhanden. Auch Instrumente und Grundlagen für einen<br />

risikoorientierten Mitteleinsatz fehlen heute noch weitgehend.<br />

LÖSUNGSANSÄTZE<br />

Die Erfassung und Bewertung der Risiken hat sich auf Stufe Projekt grundsätzlich etabliert.<br />

Es bedarf jedoch einer Ergänzung dieses „bottom-up“-Ansatzes durch übergeordnete<br />

„top-down“-Betrachtungen, um innerhalb grösserer räumlicher Systeme und für übergreifende<br />

Massnahmen den Handlungsbedarf beurteilen und Prioritäten festlegen zu können.<br />

Bezüglich eines risikobasierten Mitteleinsatzes, einer risikobasierten Raumentwicklung oder<br />

überregionaler Grossprojekte gilt dies gleichermassen für Bund und Kantone. Sowohl beim<br />

Bund als auch bei den Kantonen sind deshalb bereits Bestrebungen im Gange Risikoübersich-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 21


ten zu erarbeiten (siehe beispielsweise: Elsener Metz et al. 2013; Kanton Bern 2014; Kanton<br />

Zürich 2015).<br />

Mit der Strategie Naturgefahren Schweiz wird ein schweizweit vergleichbares Sicherheitsniveau<br />

für alle Naturgefahren angestrebt (PLANAT 2004; 2013, 2015). Das angestrebte Sicher -<br />

heitsniveau entspricht dem von allen Verantwortungsträgern gemeinsam angestrebten<br />

Zustand. Schutzziele beschreiben dabei in quantitativer Form den Beitrag einzelner Verantwortungsträgers<br />

an das angestrebte Sicherheitsniveau und dienen auch als Überprüfungskriterien.<br />

Um eine optimale Wirkung zu erzielen, müssen die Schutzziele der einzelnen<br />

Akteure aufeinander abgestimmt sein. Gemäss der Departementsstrategie des Eidgenössischen<br />

Departements für Umwelt, Verkehr, Energie und Kommunikation UVEK ist ein<br />

Optimum zwischen den Ansprüchen an das Sicherheitsniveau und der finanziellen Tragbarkeit<br />

anzustreben (UVEK 2012). Die Beurteilung der Sicherheit, der vorhandenen Defizite<br />

und des Handlungsbedarfs sowie die Definition von Prioritäten müssen sich aus Gründen<br />

der Vergleichbarkeit auf schweizweit einheitliche Risikogrundlagen stützen.<br />

Diese für die übergeordneten Betrachtungen benötigten Risikogrundlagen, nachfolgend<br />

als „Risikoübersichten“ bezeichnet, müssen verschiedenen Anforderungen erfüllen:<br />

– Aus Gründen der Übersicht und des Aufwands dürfen sie nicht zu detailliert sein;<br />

– Aus Gründen der Aussagekraft dürfen sie nicht zu sehr generalisiert sein und müssen<br />

eine Unterscheidung nach Prozess und Art der betroffenen Schutzgüter erlauben;<br />

– Aus Gründen der Vergleichbarkeit müssen sie sich auf schweizweit verfügbare, homogene<br />

Daten stützen;<br />

– Schutzziele (ARE et al. 2005) sollen für eine erste Überprüfung hinsichtlich Defiziten in<br />

die Betrachtung einfliessen.<br />

KONZEPT ÜBERGEORDNETE RISIKOÜBERSICHT<br />

Das nachfolgend präsentierte Konzept für die Erarbeitung solcher übergeordneter Risikoübersichten<br />

ist ein Versuch, die bisherigen Überlegungen des Bundes sowie die ersten<br />

Erfahrungen der Kantone in diesem Bereich zusammenzufassen. Es gliedert sich in die<br />

nachfolgend beschriebenen 4 Schritte (Abb. 3).<br />

1. Verschnitt der Grundlagen zu Gefahren und Nutzungen<br />

Der Verschnitt der Grundlagen zu Gefahren und Nutzungen liefert eine Übersicht der potenziell<br />

betroffenen Schutzgüter (Schadenpotenzialübersicht).<br />

Bezüglich Gefahren stehen heute Grundlagen mit unterschiedlichem Detaillierungsgrad und<br />

Flächendeckung zur Verfügung. Eine umfassende Übersicht der Risiken bedingt, dass die<br />

Gefahrengrundlagen alle Prozesse abdecken, flächendeckend vorliegen, nach einheitlichen<br />

Standards erarbeitet sind, für Szenarien unterschiedlicher Wahrscheinlichkeit vorliegen und<br />

die auftretenden Intensitäten (z.B. Wassertiefe, Fliessgeschwindigkeit, Staudruck) aufzeigen.<br />

Diesen Forderungen am nächsten kommen die Intensitätskarten, die heute primär für<br />

Siedlungsgebiete und Hauptverkehrswege (Bahn, Strasse) vorliegen.<br />

22 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 3: Konzept und Schritte zur Erarbeitung übergeordneter Risikoübersichten.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 23


Schweizweit homogene Daten zur Raumnutzung werden durch verschiedene Bundesstellen<br />

bereitgestellt, z.B. durch das Bundesamt für Statistik BFS, das Bundesamt für Landestopografie<br />

swisstopo, das Bundesamt für Raumentwicklung ARE oder das Bundesamt für<br />

Bevölkerungsschutz BABS. Für Risikoübersichten werden diese Nutzungsinformationen<br />

sinnvollerweise entsprechend den Schutzgut-Kategorien (ARE et al. 2005; PLANAT 2013)<br />

gegliedert, indem z.B. unterschieden wird nach:<br />

– Personen (z.B. am Ort wohnend bzw. am Ort arbeitend)<br />

– Gebäuden (z.B. Wohnzonen, Industrieareale)<br />

– Infrastrukturen (z.B. Bahn, Strasse, Anlagen zur Ver- und Entsorgung)<br />

– natürliche Lebensgrundlagen (z.B. Wald, Landwirtschaftsland)<br />

– Kulturgütern<br />

– Sonderobjekten (z.B. Spitäler und Schulen)<br />

Die Schadenpotenzialübersicht gibt Auskunft darüber, wo welche Schutzgüter bei welchen<br />

Szenarien mit welchen Intensitäten betroffen sind.<br />

Da Risikomanagement zukunftsgerichtet ist, sind in diesem Schritt nicht nur die bestehenden<br />

Nutzungen sondern auch – als weitere Szenarien – geplante Nutzungen und zukünftigen<br />

Entwicklungen zu berücksichtigen. Informationen zur zukünftigen Entwicklung liefern<br />

kommunale Nutzungspläne, regionale Entwicklungskonzepte, kantonale Richtpläne sowie<br />

nationale Sachpläne.<br />

2. Bewertung des Schadenpotenzials<br />

Mit Hilfe der Schutzziele (ARE et al. 2005) erfolgt eine erste Überprüfung hinsichtlich Schutz -<br />

defiziten. Bei dieser Bewertung der Schadenpotenzialübersicht wird z.B. berücksichtigt:<br />

– wie viele potenziell betroffene Personen<br />

– schwachen Intensitäten ausgesetzt sind (in der Regel kein Schutzdefizit vorhanden);<br />

– mittleren oder starken Intensitäten ausgesetzt sind (in der Regel ein Schutzdefizit<br />

vorhanden).<br />

– für wie viele potenziell betroffene Sachwerte<br />

– kein Schutzdefizit vorhanden ist;<br />

– ein Schutzdefizit vorhanden ist.<br />

– wie viele Sonderobjekte welcher Art potenziell betroffen sind.<br />

Das Ergebnis ist eine bewertete Schadenpotenzialübersicht.<br />

3. Aggregierung zu räumlichen Risikoübersichten<br />

Aus Gründen der Übersichtlichkeit wird die bewertete Schadenpotenzialübersicht über<br />

geeignete räumliche Einheiten und durch Aggregierung einzelner Objektkategorien zu einem<br />

Index zusammengefasst. Zur Sicherstellung der Vergleichbarkeit, sollten dabei jeweils<br />

mindestens die Indices für die Hauptkategorien Personen, Sachwerte und Sonderobjekte<br />

ausgewiesen werden:<br />

– Index Personen<br />

Summe der bei Ereignissen mit sehr geringer Wahrscheinlichkeit betroffenen Personen;<br />

24 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


mit Unterscheidung des Anteils der durch schwache, mittlere und starke Intensitäten<br />

betroffenen Personen.<br />

– Index Sachwerte<br />

Abschätzung des Schadenerwartungswerts anhand der Wahrscheinlichkeit und standardisierten<br />

Werten für die betroffenen Objektkategorien (ohne Berücksichtigung von Exposition<br />

und Verletzlichkeit); mit Unterscheidung des Anteils der Objekte im Bereich ohne bzw.<br />

mit Schutzdefizit.<br />

– Index Sonderobjekte<br />

Summe der bei Ereignissen mit sehr geringer Wahrscheinlichkeit betroffenen Sonderobjekte;<br />

inklusive Angabe über deren Typ.<br />

4. Ableitung von Handlungsbedarf und Prioritäten<br />

Die Übersicht der Risikoindices für verschiedene Prozesse bzw. für verschiedene räumliche<br />

Einheiten bildet als Risikoübersicht eine weitere und nachvollziehbare Grundlage zum<br />

Aufzeigen des Handlungsbedarfs sowie zur Definition von Prioritäten in Raum und Zeit.<br />

Die Betrachtung der Gesamtrisiken (nicht nur des Anteils im Bereich der Schutzdefizite)<br />

ist notwendig, denn Handlungsbedarf ist grundsätzlich dort gegeben,<br />

– wo Schutzdefizite vorhanden sind;<br />

– wo grosse Gesamtrisiken vorhanden sind.<br />

Die höchste Priorität besteht dort, wo<br />

– bestehende hohe Risiken rasch und kostengünstig gemindert werden können;<br />

– neue inakzeptable Risiken gemieden werden können.<br />

Weitere Kriterien, die auf die Definition von Prioritäten Einfluss haben können:<br />

– die erzielbare Risikominderung;<br />

– die zeitliche Realisierbarkeit der möglichen Massnahmen;<br />

– die Umsetzbarkeit der möglichen Massnahmen (Akzeptanz, Finanzierbarkeit);<br />

– bereits laufende Planungen (Nutzung von Synergien);<br />

– eine erste grobe Abschätzung von Nutzen und Kosten.<br />

Risiken sind immer vorhanden – Handlungsbedarf im Umgang mit Naturrisiken ist<br />

deshalb grundsätzlich immer gegeben.<br />

FAZIT<br />

Ein effektives Risikomanagement im Bereich Naturgefahren bedingt eine umfassende<br />

Gesamtsicht der Risiken auf Stufe Gemeinde, Kanton und Bund. Entsprechende Übersichten<br />

sind einerseits notwendig zur Ausweisung des Handlungsbedarfs und zur Definition von<br />

Prioritäten und andererseits Voraussetzung für den Risikodialog. Solche Gesamtsichten<br />

basieren aus Gründen des Aufwands und der Übersichtlichkeit sinnvollerweise auf Indices.<br />

Das hier vorgestellte Konzept stützt sich auf schweizweit verfügbare Gefahren- und Nutzungsdaten<br />

sowie auf erste Erfahrungen in einzelnen Kantonen. Es gilt nun, die vorhandenen<br />

Ansätze gemeinsam zu einem Standard und zu einem über die verschiedenen Staatsebenen<br />

hinweg durchgängigen System weiter zu entwickeln.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 25


LITERATUR<br />

- ARE, BWG, BUWAL (Hrsg.) (2005): Empfehlung Raumplanung und Naturgefahren.<br />

Bundesamt für Raumentwicklung (ARE), Bundesamt für Wasser und Geologie (BWG),<br />

Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern. 48 S.<br />

- BAFU (Hrsg.) (2015a): Handbuch Programmvereinbarungen im Umweltbereich <strong>2016</strong>–2019.<br />

Umwelt-Vollzug Nr. 1501, Bundesamt für Umwelt BAFU, Bern. 266 S.<br />

- BAFU (2015b): Wirtschaftlichkeit von Schutzmassnahmen gegen Naturgefahren: EconoMe<br />

3.0, Bundesamt für Umwelt BAFU, http://www.econome.admin.ch (abgefragt 6.9.2015)<br />

- BAFU (<strong>2016</strong>): Umgang mit Naturgefahren in der Schweiz: Bericht des Bundesrats in<br />

Erfüllung des Postulats 12.4271 Darbellay vom 14.12.2012, Bundesamt für Umwelt BAFU,<br />

Bern (in Vorbereitung)<br />

- Borter P. (1999a): Risikoanalyse bei gravitativen Naturgefahren: Methode. Umwelt-<br />

Materialien Nr. 107/I, Bundesamt für Umwelt, Wald und Landschaft BUWAL, Bern. 115 S.<br />

- Borter P. (1999b): Risikoanalyse bei gravitativen Naturgefahren: Fallbeispiele und Daten.<br />

Umwelt-Materialien Nr. 107/II, Bundesamt für Umwelt, Wald und Landschaft BUWAL, Bern.<br />

129 S.<br />

- Bründl M. (Ed.) (2009): Risikokonzept für Naturgefahren. Nationale Plattform Naturgefahren<br />

PLANAT, Bern. 420 S.<br />

- BWW, LHG (Hrsg.) (1991): Ursachenanalyse der Hochwasser 1987: Ergebnisse der Untersuchungen.<br />

Mitteilung des Bundesamtes für Wasserwirtschaft BWW Nr. 4, Mitteilung der<br />

Landeshydrologie und –geologie LHG Nr. 14, Bern. 184 S.<br />

- Camenzind R., Loat R. (2014): Risikobasierte Raumplanung – Synthesebericht zu zwei<br />

Testplanungen auf Stufe kommunaler Nutzungsplanung. Nationale Plattform Naturgefahren<br />

PLANAT, Bundesamt für Raumentwicklung ARE, Bundesamt für Umwelt BAFU, Bern. 21 S.<br />

- Elsener Metz J., Schulthess J., Schneider A., Willi C., Stocker S., Rauber M. (2013):<br />

Hochwasser-Risikokarten für den Risikodialog in den Gemeinden - Risikoübersicht für den<br />

kommunalen Risikodialog im Kanton Schaffhausen. «Wasser Energie Luft» 105(2),<br />

S. 111-116.<br />

- Kanton Bern (2014): Naturgefahren im Kanton Bern - Eine Analyse der gefährdeten<br />

Gebiete und Schadenpotenziale sowie der daraus abgeleiteten Risiken. Arbeitsgruppe<br />

Naturgefahren des Kantons Bern, Interlaken. 41 S.<br />

- Kanton Zürich (2015): Risikokarte Hochwasser Kanton Zürich. Amt für Abfall, Wasser,<br />

Energie und Luft AWEL, http://www.awel.zh.ch/internet/baudirektion/awel/de/wasser/<br />

hochwasserschutz/risikokarte.html (abgefragt 6.9.2015)<br />

- PLANAT (2004): Sicherheit vor Naturgefahren: Vision und Strategie. PLANAT-Reihe 1/2004,<br />

Nationale Plattform Naturgefahren PLANAT, Bern. 40 S.<br />

- PLANAT (2013): Sicherheitsniveau für Naturgefahren. Nationale Plattform Naturgefahren<br />

PLANAT, Bern. 15 S.<br />

- PLANAT (2015): Sicherheitsniveau für Naturgefahren – Materialien. Nationale Plattform<br />

Naturgefahren PLANAT, Bern. 68 S.<br />

- UVEK (2012): Departementsstrategie UVEK 2012, Bern, 31 S.<br />

26 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Evaluating the Effectiveness and the Efficiency of<br />

Mitigation Measures against Natural Hazards<br />

Michael Bründl¹; Reto Baumann²; André Burkard³; Fabian Dolf 4 ; André Gauderon 4 ; Eva Gertsch²; Peter Gutwein 5 ;<br />

Bernhard Krummenacher 4 ; Bernard Loup²; Adrian Schertenleib²; Nicole Oggier³; Linda Zaugg-Ettlin 6<br />

ABSTRACT<br />

The Federal Office for the Environment in Switzerland (FOEN) introduced EconoMe in 2008<br />

to compare and prioritize mitigation projects against natural hazards. Mitigation projects have<br />

to be assessed regarding their effectiveness and economic efficiency with EconoMe in order<br />

to apply for financial subsidies. Experiences and user comments from practitioners have led<br />

to continuous improvement and the introduction of additional modules. As such, EconoMe-<br />

Light was introduced in 2015 for assessing projects with low investment costs and for a first,<br />

rapid estimation of the benefit-cost-ratio of a mitigation project. Analyses of 104 projects<br />

show that annual risk reduction of most projects exceeds the annual mitigation cost of<br />

mitigation measures by a factor two. The optimization of the effectiveness and the efficiency<br />

of mitigation measures is illustrated by the case study Rubi-/Chienbach in the Canton of<br />

Lucerne. In the next years, the performance and the data basis for risk calculations such as<br />

vulnerability and lethality curves will be improved and further tests on the robustness of<br />

the system for decision-making will be conducted.<br />

KEYWORDS<br />

risk assessment; Risk concept; Cost-Benefit-Analysis; Optimization; Decision-Making<br />

INTRODUCTION<br />

In 2008, the Federal Office for the Environment (FOEN) introduced the Online-Tool<br />

EconoMe (hereafter EconoMe) for a comparable evaluation of the effectiveness and the<br />

economic efficiency of mitigation measures against gravitational natural hazards. The legal<br />

background was a change of the subsidization practice, which requires that mitigation<br />

projects submitted to FOEN have to be assessed with comparable criteria of economic<br />

efficiency all over Switzerland. EconoMe is based on the general risk concept for natural<br />

hazards (Bründl, 2009; Bründl et al., 2009; Tobler and Krummenacher, 2013) and the<br />

up-to-date version 4.0 (release in April <strong>2016</strong>) is available as Online and Offline-Version.<br />

It guides the user step-by-step through a complete risk assessment to compare the calculated<br />

risk with protection goals in order to check whether protection measures are needed (Dolf et<br />

1 WSL-Institute for Snow and Avalanche Research SLF, Davos Dorf, SWITZERLAND, bruendl@slf.ch<br />

2 Federal Office for the Environment<br />

3 wasser/schnee/lawinen. Ingenieurbüro Burkard AG<br />

4 GEOTEST AG<br />

5 Gutwein IT-Service<br />

6 WSL Institute for Snow and Avalanche Research SLF<br />

IP_<strong>2016</strong>_FP099<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 27


al., 2014) and finally through the evaluation of an analyzed mitigation project by its benefitcost-ratio<br />

(Fig. 1; Bründl, 2009). EconoMe is well established with cantonal authorities and<br />

private engineering companies and additional tools with specific purposes were integrated<br />

in the EconoMe software platform during the last years (Bründl et al., 2012; Bründl, 2012).<br />

Recently, the overall framework of EconoMe served as a basis for the development of<br />

Prevent-Building, a tool to evaluate the efficiency of local structural protection measures<br />

(Bründl and Ettlin, 2014). In the following sections, we present recent developments of<br />

EconoMe by the example of EconoMe-Light before we show experiences gained with<br />

EconoMe in the last years and benefits of this tool with a case study. We conclude with an<br />

outlook on future developments.<br />

Figure 1: Screenshot EconoMe 3.0 (release version 4.0 in April <strong>2016</strong>) showing the working step “consequence analysis”. On the left side,<br />

links to other tools of the “EconoMe-Family” are shown (1); in this step, the results of considered scenarios could be analyzed in detail<br />

(2), showing all parameters of a calculation (3). Source: www.econome.admin.ch.<br />

28 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ECONOME-LIGHT – EXAMPLE OF RECENT DEVELOPMENTS IN ECONOME<br />

The application of EconoMe requires a sound analysis of the local hazard situation using<br />

intensity maps for all selected scenarios and an assessment of objects at risk regarding<br />

location, type and value. Damage susceptibility values for all categories of objects at risk are<br />

integrated as average values in the software (Bründl, 2009; Bründl et al., 2009). Comments<br />

of practitioners indicate that the effort for a full benefit-cost-analysis with EconoMe is not<br />

always appropriate for situations with a low damage potential and low mitigation costs;<br />

thus, practitioners asked for a simple tool for a quick assessment. In response to this, the<br />

tool EconoMe-Light was developed; it allows a rapid, simplified risk analysis and a simplified<br />

benefit-cost-estimation for a given risk situation following the steps (Fig. 2):<br />

– selecting the hazard process (e.g. debris flow); denoting the mitigation measure and its<br />

annual costs;<br />

– selecting one or several hazard scenarios with return periods of 30-, 100-, 300-years<br />

and/or two scenarios with adjustable return periods;<br />

– selecting categories (e.g. building) and types (e.g. residential house) for objects at risk;<br />

– attributing the number of objects at risk to an intensity class in all selected scenarios<br />

without and with consideration of mitigation measures;<br />

– interpretation of results: collective (societal) and individual risk to persons is calculated<br />

automatically; a benefit-cost-ratio greater than one indicates that the selected mitigation<br />

measure might provide an economically efficient solution; results can be either exported<br />

as XML-File or printed as pdf-document.<br />

EconoMe-Light was developed as a tool for a first, rough estimation and not for proofing<br />

the validity of subsidy payments. Basics like standard values of objects adapted for Switzerland<br />

(e.g. 650’000 CHF for a one-family residential building) or damage susceptibility values<br />

are identical to those in EconoMe. First experiences of practitioners indicate that EconoMe-Light<br />

is applied either for small projects with low damage potential and low costs of<br />

mitigation measure or as a first hint whether a detailed benefit-cost-analysis with EconoMe<br />

is justified. EconoMe-Light is available as Online- (with Internet access) or Offline-Tool<br />

(no Internet access). Registered EconoMe users have access to the tool since April 2015<br />

via the EconoMe-Platform (www.econome.admin.ch).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 29


Figure 2: Screenshot of an assessment with EconoMe-Light. (1) input of description, process type, mitigation measure and annual costs;<br />

(2) definition of scenarios; (3) definition of objects at risk; (4) selection of scenarios for consequence analysis; (5) results; (6) individual<br />

risk to persons. Source: www.econome-admin.ch.<br />

EXPERIENCES AND BENEFIT OF ECONOME-TOOLS<br />

For FOEN, EconoMe has become an indispensable tool in everyday operations concerning<br />

project steering and financing. Additionally to judging a project‘s general cost-effectiveness,<br />

various alternatives of protection measures can be compared to each other, which improves<br />

decision-making. Moreover, EconoMe allows calculating separately the risks and benefits for<br />

each stakeholder in a project and each process area and thereby cost-splitting among these<br />

stakeholders. Finally, EconoMe supports the FOEN in an efficient, transparent use of subsidies<br />

in context of technical protection measures against natural hazards.<br />

Communities and cantons which apply for subsidies for mitigation projects from the federal<br />

state (i.e. the FOEN as responsible authority) are required to analyze the effectiveness and the<br />

economic efficiency of measures using EconoMe. In a recent study, FOEN analyzed projects,<br />

which received financial support according to Swiss legal regulations (i.e. they were decreed),<br />

as is the Forestry Act (in German Waldgesetz, FA hereafter) and the Hydraulic Engineering<br />

Act (in German Wasserbaugesetz, HEA hereafter) for the years 2011-2013. Projects subsidized<br />

by FA include measures against avalanches, rock fall, and landslides; measures against<br />

hydrological driven processes like floods and debris flow are subsidized according to the HEA.<br />

In total, 104 projects were decreed and analysed with EconoMe, as of which 65 projects<br />

according to the HEA and 39 projects according to the FA.<br />

30 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Table 1 shows, that 75% of the federal subsidies are invested in projects with a benefitcost-factor<br />

higher than 1.3 and 50% in projects with a benefit-cost-factor of at least 2.1.<br />

The mean value of the benefit-cost-factors is 3.6. The benefit-cost-factors of FA-projects are<br />

slightly higher, because these projects reduce more risks to persons, which are monetized<br />

with 5 million CHF (app. 4.6 million Euro) per averted fatality (Rheinberger, 2011; Leiter<br />

et al., 2013).<br />

Table 1: Benefit-Cost-Factors of mitigation projects decreed by FOEN in the years 2011-2013.<br />

benefit-cost-<br />

Projects decreed<br />

Projects decreed<br />

Projects decreed<br />

ratio<br />

according to Hydraulic<br />

according to Forestry<br />

according to HEA and FA<br />

Engineering Act (HEA)<br />

Act (FA)<br />

mean 3.3 4.1 3.6<br />

25% quantile 1.3 1.4 1.3<br />

median 1.9 2.4 2.1<br />

75% quantile 3.3 4.0 3.7<br />

Figure 3 shows the distribution of classified benefit-cost-ratios and the sum of investment<br />

costs. It can be seen that:<br />

– investment costs for projects subsidized according to HEA are in average higher than those<br />

subsidized by FA;<br />

– investment costs are highest for projects with a benefit-cost-factor between 1 and 2; this<br />

distribution of investment costs also correlates to the number of projects (not shown in<br />

the figure);<br />

– the range of benefit-cost-factors is high (minimum class 0.5 – 1, maximum class > 15);<br />

– projects with benefit-cost-factors lower than one were also decreed, as a result of a<br />

weighting of the social, political or ecological interests of the public.<br />

CASE STUDY RUBI-/CHIENBACH<br />

With EconoMe it is possible, to optimize a protection project during the planning process in<br />

order to achieve a better cost-effectiveness of a protection project, which can be illustrated<br />

with the flood protection project Rubi-/Chienbach in the community of Weggis, Canton<br />

Lucerne. After the flood in 2005, a set of different technical protection measures including<br />

a retention basin, dikes, a flood bypass channel as well as additional technical measures for<br />

managing the over load case was planned. During the participatory planning process with the<br />

community of Weggis, the Canton of Lucerne and FOEN, a detailed cost-effectiveness study<br />

for each part of the protection concept was conducted with EconoMe. It showed that the<br />

combination of a retention basin, dikes and a flood bypass channel with investment costs of<br />

CHF 6’000’000 would reduce risk by 96%, resulting in a benefit-cost factor of 4.9. The study<br />

also showed impressively that the additionally planned measures to manage over load case<br />

with costs of CHF 4’500’000 would reduce the risk by only additional 1%, resulting in a total<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 31


140'000'000<br />

Sum of investment cost for decreed projects [CHF]<br />

120'000'000<br />

100'000'000<br />

80'000'000<br />

60'000'000<br />

40'000'000<br />

HEA + FA<br />

HEA<br />

FA<br />

20'000'000<br />

0<br />

0-0.5<br />

0.5-1<br />

1-1.5<br />

1.5-2<br />

2-2.5<br />

2.5-3<br />

3-3.5<br />

3.5-4<br />

4-4.5<br />

Classes of Benefit-Cost-Factor<br />

4.5-5<br />

5-5.5<br />

5.5-6<br />

6-15<br />

>15<br />

Figure 3: Distribution of sum of investment costs for decreed projects in 2011-2013 in classes of benefit-cost-factors. Projects with a<br />

benefit-cost-factor between 1 and 2 show the highest sum of investment costs. The range of benefit-cost-factors lies between 0.5 and<br />

larger than 15. The vertical line marks a change of the class range.<br />

risk reduction of 97%. Consequently, the community of Weggis decided to renounce these<br />

additional, non cost-effective technical measures. Instead, remaining risks were planned to be<br />

reduced with an early warning system and a professional emergency planning. In summary,<br />

this case study shows that EconoMe can assist planners in financially optimizing a whole<br />

project in the sense of cost-effectiveness, for the community, the Canton Lucerne and FOEN.<br />

However, cost-effectiveness is not the only element in the assessment of appropriate,<br />

sustainable and effective mitigation projects. Other criteria, like incidental costs, ecological<br />

worth, other superior interests and the acceptance by the involved population and authorities<br />

in charge are also decisive for the realization of mitigation projects. Therefore, every project<br />

has to be assessed individually by considering all influencing factors.<br />

CONCLUSIONS AND OUTLOOK<br />

Since its introduction in 2008, EconoMe served as a tool for prioritizing mitigation projects<br />

against gravitational natural hazards by benefit-cost criteria. An analysis of 104 projects<br />

decreed in 2011-2013 revealed that reduced annual risks overpass annual mitigation costs.<br />

The largest investments are made with projects with a benefit-cost-factor ranging between<br />

1 and 2; overall, the benefit-cost-factor varies from 0.5 to larger than 15 with at least 50%<br />

of the projects exceeding 2.1.<br />

32 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


In spring 2015, EconoMe 3.0 was released and introduced to practitioners in a workshop.<br />

In this workshop, EconoMe-Light was introduced for a simplified analysis of mitigation<br />

measures. Experiences over the last years have shown that regular knowledge exchange with<br />

practitioners in workshops generates valuable feedback helping to streamline the tool to<br />

users’ needs and thereby strengthens the commitment of users. We recommend to take the<br />

continuous maintenance of a tool and the education and exchange with users into account<br />

before the development of such a tool is considered.<br />

In <strong>2016</strong>, version 4.0 was introduced, with enhancements in the performance and the user<br />

interface. However, a key issue in the next years will remain the improvement of the data<br />

basis for risk calculations such as vulnerability and lethality curves and further tests on the<br />

robustness of the system for decision-making.<br />

REFERENCES<br />

- Bründl M. (Ed.) (2009). Risikokonzept für Naturgefahren. Einzelprojekt A1.1: Leitfaden.<br />

Nationale Plattform Naturgefahren PLANAT, Bern: 420 p.<br />

- Bründl M., Romang H.E., Bischof N., Rheinberger C.M. (2009). The risk concept and its<br />

application in natural hazard risk management in Switzerland. Nat. Hazards Earth Syst.<br />

Sci., 9(3): 801-813.<br />

- Bründl M., Winkler C., Baumann R. (2012). “EconoMe-Railway”. A new calculation<br />

method and tool for comparing the effectiveness and the cost-efficiency of protective<br />

measures along railways. In: G. Koboltschnig J., Hübl J., Braun (eds), 12th Congress<br />

<strong>INTERPRAEVENT</strong>. International Research Society <strong>INTERPRAEVENT</strong>, Grenoble: 933-943.<br />

- Bründl M. (2012). EconoMe-Develop – a software tool for assessing natural hazard risk<br />

and economic optimisation of mitigation measures, Proceedings International Snow Science<br />

Workshop “a merging of theory and practice”. ISSW, Anchorage, Alaska: 639-643.<br />

- Bründl M., Ettlin L. (2014). Assessing the Economic Efficiency of Local Structural Protection<br />

Measures – Prevent-Building – A Tool for Building Insurances. In: M. Fujita et al. (Editors),<br />

Interpraevent 2014. International Research Society Interpraevent, Nara, Japan.<br />

- Dolf F., Krummenacher B., Aller D., Kuhn B., Gauderon A., Schwab S. (2014). Risikoanalyse<br />

für ein Sihl-Hochwasser in der Stadt Zürich. Wasser Energie Luft 105(4): 23-27.<br />

- Leiter A. M., Rheinberger C., Bründl, M. (2013). Zur Bewertung von Personenschäden -<br />

Grundsätze, Methoden und Anwendungen. Zeitschrift für Wildbach-, Lawinen-, Erosionsund<br />

Steinschlagschutz 77(172): 136-144.<br />

- Rheinberger C. M. (2011). A Mixed Logit Approach to Study Preferences for Safety on<br />

Alpine Roads. Environmental Resource Economics 49(1): 121-146.<br />

- Tobler D., Krummenacher B. (2013). Risk concept Switzerland hazard analysis, risk<br />

evaluation and protection measures. In: C. Margottini et al. (eds), The second world landslide<br />

forum, Rome 2011 (WLFF2-2011-0287), Landslide Science and Practice, Vol.7, DOI 10<br />

1007/978-3-642-31313-4_2, Springer-Verlag, Berlin, Heidelberg.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 33


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

From the restoration of French mountainous areas to<br />

their global management: historical overview of the<br />

Water and Forestry Administration actions in public<br />

forests<br />

Simon Carladous, PhD Student, Eng.¹; Guillaume Piton, PhD Student, Eng.²; Jean-Marc Tacnet, Dr, Eng.²; Félix Philippe, M.D.²;<br />

Régis Nepote-Vesino, Eng.³; Yann Quefféléan, Eng.³; Olivier Marco, Dr, Eng.³<br />

ABSTRACT<br />

To protect against natural hazards in mountainous areas, the French government has implemented<br />

a number of forestry and civil engineering works such as check dams in public forests<br />

since the 19th century. Specifying each dam's objective and protective functions is the first<br />

requirement for their continued maintenance. The potential technical functions of check<br />

dams have been clarified in a recent publication (Piton et al. <strong>2016</strong>). In the first part of a series<br />

of papers on the analysis of the context and objectives, this paper focuses on how they were<br />

implemented in public areas by the Water and Forestry Administration from the end of the<br />

19th century to the 1960s. We detail the objectives over time and the geographical locations.<br />

This national overview will help managers consider their present local protection structure<br />

management problems within an historical perspective.<br />

KEYWORDS<br />

Rehabilitation of mountainous areas; mitigation objectives; historical policy analysis; decision<br />

context<br />

INTRODUCTION<br />

In mountainous areas, natural phenomena put people and buildings at risk. Protection systems<br />

aim at mitigating this risk. In the French mountainous areas, a large number of protective<br />

structures and forestry works have been implemented since the 19th century.<br />

As a consequence, more than 21,000 civil protection structures are presently registered in<br />

approximatively 3,800 km² of protective public forests.<br />

The Water and Forestry Administration (WFA) carried out afforestation works and built these<br />

structures in public-owned areas from 1860 to 1964, focusing on torrential phenomena.<br />

The National Forestry Office (ONF) has managed existing public forests, whereas the national<br />

government has been responsible for maintaining civil structures since 1964. These decision-makers<br />

must decide on actions to implement on protective systems. With its expertise,<br />

the present Rehabilitation of Mountainous Lands department (RTM) of the ONF assists them.<br />

1 Irstea - ETGR, Univ. Grenoble Alpes, Ecole Nationale des Mines de Saint-Etienne, AgroParisTech, Saint-Martin-d'Hères, FRANCE,<br />

simon.carladous@irstea.fr<br />

2 Irstea-ETGR, Univ. Grenoble Alpes, FRANCE<br />

3 ONF-DTRTM, Grenoble, FRANCE<br />

34 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP102


Such decisions depend on the decision context, which includes regulatory obligations,<br />

technical limitations and the budget available that impose limitations and changes over time<br />

in relation to the sociopolitical context and technical knowledge. Making these decisions<br />

requires choosing the appropriate actions to implement. Protective actions on mountainous<br />

systems are compared based on several criteria such as the objective of the system, its<br />

effectiveness in achieving the objective, and its cost, all of which change over space and time.<br />

The objective of existing protection systems should be specified to decide on maintenance<br />

actions, but this also depends on the context in which it has been implemented. It can be<br />

difficult to understand it without overall knowledge of the changes in the decision context<br />

over time and space. To assist practitioners, we have undertaken an historical and geographical<br />

analysis to describe these changes examining several aspects at the French scale.<br />

– Historical and sociopolitical contexts have already been thoroughly analyzed (Fesquet<br />

1997).<br />

– Scientific and technical knowledge on protection works has been reviewed in recent<br />

scientific papers and technical guidelines. For torrents, this knowledge has been operationally<br />

developed in France since the 19th century, but there was no summary of how it had<br />

evolved over time. Therefore, we analyzed the archives in detail to summarize the potential<br />

functions of check dams in torrential streams (Piton et al. <strong>2016</strong>).<br />

– Actual implementations of RTM laws provide a factual background for the decisions that<br />

have already been made. Analyzing these examples can help to describe decision contexts<br />

over time and space using several criteria: public-owned and afforestation areas as well as<br />

number and cost of civil protection structures. Up to the 1970s, three reports had summarized<br />

these aspects (Direction générale des eaux et forêts 1911; Messines du Sourbier 1964;<br />

Mougin 1931). There was, so far, no chronological comparison.<br />

The present paper focuses on implementations of RTM actions by the WFA from the 19th<br />

century to the 1960s. In the Methods section, we detail the organization of the database. In<br />

the Results section, we briefly review the main elements concerning scientific, technical, and<br />

regulatory changes. We then provide an analysis of the implementations in public-owned<br />

areas. Overall, this analysis reminds the historical evolution of the RTM actions in France and<br />

helps to better understand some regional specificities or similarities.<br />

METHODS<br />

National archives reports were examined following three axes: i) local decision contexts<br />

within general, regulatory, and management contexts, ii) technical functions of protection<br />

structures such as check dams, and iii) the main implementations and resource distribution<br />

over time including the building of a database registered in a Geographic Information System<br />

(GIS). The data can be listed as follow:<br />

works implemented by the WFA in public-owned areas<br />

– technical aspects:<br />

– area (ha): public-owned, to be acquired, artificially afforested, naturally forested,<br />

impossible to afforest, to be afforested;<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 35


– structures (against torrential floods): types, number of civil engineering and rustic<br />

check dams, channels (km), wattlings and fascines (km), drainage networks (km);<br />

– structures (against avalanches): types, supporting walls (m), benches (m), diversion<br />

dams (m);<br />

– cost in current monetary value:<br />

– cost of public acquisition;<br />

– cost of works (against torrential floods): forestry, correction (civil engineering and<br />

rustic check dams), auxiliary (surveillance paths, fences, etc.) and others (studies);<br />

– cost of works (against avalanches): new, maintenance;<br />

– contextual aspects:<br />

– exposed elements: type and number;<br />

– specified objectives of works;<br />

– natural phenomena involved;<br />

forestry works implemented by local municipalities or by private owners, funded<br />

by the WFA<br />

– Technical aspects:<br />

– area (ha): artificially afforested;<br />

– Cost in current monetary value:<br />

– local municipality subsidies;<br />

– department subsidies;<br />

– WFA subsidies;<br />

– WFA subsidies to improve pastures and develop dairy cooperatives.<br />

These aspects have been registered at the RTM perimeter scale (independent geographical<br />

entity where afforestation and civil engineering works have been carried out according to the<br />

laws), and they have been clustered within the administrative departments and the mountainous<br />

massifs. The data come from three sources (Direction générale des eaux et forêts<br />

1911, Mougin 1931, Messines du Sourbier 1964) which summarized the WFA actions from<br />

1860 to their publication (Fig. 1, 2a & 3a), at the national scale for the first and the third<br />

sources, and at the French Alps scale for the second. A chronological view can be extracted<br />

(Fig. 2b) that is completed by a new analysis of the existing RTM database. Overall, it<br />

describes the present protection systems that are now managed in the French RTM public-owned<br />

areas (Fig. 3b) and how we inherited these thousands of structures with their<br />

regionally specific types, locations and objectives.<br />

RESULTS<br />

Scientific and technical changes and debates<br />

During the first part of the 19th century, the civil engineers Fabre (1748–1834) in 1797 and<br />

Surell (1813–1887) in 1841 advocated mountain afforestation as a national concern to<br />

control soil erosion in the mountains and limit solid transport in rivers and torrents. To<br />

reforest the headwater areas, Surell proposed using check dams, if needed, to stabilize the<br />

36 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


stream bed before planting trees and bushes on their banks. Even if he also considered<br />

afforestation as an effective long-term solution, the mining engineer Gras (1806–1873),<br />

followed by Breton (1811–1892), first theorized specific check dam functions in 1850 and<br />

1857: to curtail sediment recruitment from the bed and banks within a short-term objective,<br />

to consolidate cliffs and highly unstable areas, to definitively trap sediments upstream of<br />

dams, and to regulate sediment transport in torrent beds (Piton et al. <strong>2016</strong>).<br />

Everywhere the government owned the areas to reforest after 1860, works were tested. First<br />

check dams were built to support afforestation, stabilizing the stream-bed at its current level,<br />

applying Surell’s theory. They were mainly local construction initiatives, rustic, lower than<br />

2 m in height, and made of diverse materials: dry stones, wattlings and fascines, brush<br />

mattresses, sods with or without stones, and wood. Larger check dams in masonry or cut<br />

stones were also built in fewer numbers, e.g., since 1868 in the Saint-Marthe torrent<br />

(Hautes-Alpes) under the management of Demontzey (1831–1898), a renowned forestry<br />

engineer (Direction générale des eaux et forêts 1911).<br />

Based on the aforementioned preliminary theoretical books and empirical implementations,<br />

in 1882 and 1897 the forestry engineers Demontzey and Thiéry (1841–1918) published<br />

technical guidelines. They distinguished forestry works, correction works (civil engineering<br />

and rustic check dams), auxiliary works, and others (studies) (Fig. 1). For torrents, higher<br />

check dams (more than 2 m high) were needed in addition to rustic dams. They generally<br />

were less than 4 m high and made of dry stones when sufficiently large stones were available.<br />

Masonry was used when stones were too small and for higher check dams. Other restoration<br />

works were also newly implemented, e.g., temporary retention dams, groynes, and embankments<br />

to center flow, diversion channels to bypass unstable banks, or dry stone drainage<br />

systems in landslide areas. For avalanches, techniques were limited to cut-stone walls and<br />

benches.<br />

After the period of intense WFA actions (1886–1914), their utility, notably afforestation, was<br />

debated during the 1920s. This issue was explained in the scientific discourse between the<br />

geographer Lenoble and forestry engineers (Mougin 1931). Since the 1950s, technical<br />

developments have broadened actions. Steel and reinforced concrete have helped to develop<br />

sediment traps and higher check dams as well as new avalanche and rock-fall protection<br />

structures (snow bridges, netting fences).<br />

Decisions concerning the management of protection systems in public areas have been<br />

progressively integrated into a new global natural hazard prevention policy since the 1970s,<br />

notably including land-use plans (Brugnot & Cassayre 2002). At the global watershed scale,<br />

current management must also take into account sediment continuity problems and sediment<br />

starving of valley fluvial systems, even though the initial objective was to curtail sediment<br />

production.<br />

Regulatory context and management organization<br />

The first law on afforestation (1860) aimed at extensively reforesting land to curtail sediment<br />

production in headwater areas and to limit flood peaks. Overly ambitious, it raised pastoralists’<br />

ire, leading to local armed revolts in some regions, such as in the Southern Alps. The law<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 37


on afforestation and grass seeding (1864) attempted to reconcile pastoral activities and soil<br />

protection using grass’s stabilizing effect. They introduced public management in mountainous<br />

areas (Fesquet 1997). Afforestation and grass-seeding works were decreed to be in the<br />

public interest within designated perimeters. Within these areas, private owners and local<br />

municipalities had to build the structures on their land or the government would impose<br />

their construction. Moreover, private and local municipalities could carry out voluntary<br />

afforestation works with state subsidies out of the nationally defined afforestation perimeters.<br />

In 11 mountainous forestry districts, a specific afforestation department was associated with<br />

the local WFA administration.<br />

The law on mountain area conservation and restoration (1882), also called the RTM law,<br />

reduced the afforestation ambition: the torrent control measures were concentrated in active<br />

areas (torrents, erosion, and avalanche release zones). The objective was to stop destructive<br />

events through restoration works. In these areas, the law attempted to reconcile mountain<br />

agriculture and sustainable behavior. Restoration works were declared of public utility within<br />

a given perimeter through a specific law. Previously treated areas could be integrated if<br />

restoration was needed: 703 km² in 1886 (Fig. 2B). Restoration actions could be implemented<br />

by: (i) the WFA in perimeters acquired by the French national government, (ii) local<br />

municipalities, or (iii) private owners through subsidized works, which were implemented<br />

mainly in the Cevennes and in the Northern Alps. Simultaneously, grants were awarded to<br />

support and improve land, pastures, and cheese cooperatives, mainly in the Pyrenees and the<br />

Northern Alps.<br />

The law on the regulation of the water regime (1913) made it possible to declare new<br />

perimeters of public utility to protect areas from erosion processes even if they were not<br />

active. This had been partially anticipated in some regions (Cevennes, Southern Alps).<br />

Since 1966, the WFA has been divided into local agricultural services and the ONF, which<br />

implemented actions according to the RTM laws in 25 departments (Fig. 2A). Ten specialized<br />

RTM departments within the ONF were created in 1971 (Fig. 3B).<br />

Afforestation and civil engineering as technical tools to implement RTM laws<br />

The 1860 and 1864 laws were applied to limited reforested and grass-seeded areas. The 1882<br />

law aimed at controlling active areas subjected to erosion, landslides, avalanches, etc. Its<br />

implementation had different objectives depending on the areas’ geography (Direction<br />

générale des eaux et forêts 1911).<br />

– On slopes, stopping the loss of pastoral lands aimed at limiting rural exodus. Curtailing<br />

sediment production in the headwaters also aimed at limiting distant sedimentation<br />

damage such as in the Bordeaux harbor receiving sediments from the Mont-Aigoual massif<br />

(Lozère - 48). Notably in the Southern Alps and the Cevennes, forestry works were favored<br />

(Fig. 1) in extensive areas that had already been acquired (Fig. 2A), mainly using rustic<br />

correction works to stabilize torrents and gullies (Fig. 3A).<br />

– Curtailing sediment production in the headwaters aimed at limiting increases in riverbed<br />

deposits and bed-shifting of torrential rivers, which aggravated floods and damaged fertile<br />

38 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


agricultural lands, roads, and housing such as on the Var River’s banks (Alpes-<br />

Maritimes - 06).<br />

– In local torrent valleys, stabilizing materials or snow in the headwater areas aimed at<br />

limiting direct damage on productive agricultural lands, housing, industrial areas, roads,<br />

and railroads such as on the Arc River’s watershed (Savoie - 73). In the Northern Alps,<br />

the dairy industry purchased limited afforestation areas (Fig. 2A) and favored civil<br />

structures such as check dams (Fig. 3A).<br />

Figure 1: Cost distribution of works implemented in public forests in application of RTM laws between 1860 and 1909 depending<br />

on the administrative department. Correction structures were the priority in the Northern Alps. Forestry works were mainly used in<br />

the Cevennes. Correction and forestry works were more evenly distributed in the Southern Alps and the Pyrenees.<br />

Since World War I, the number of new projects has decreased even if land acquisitions were<br />

not discontinued (Fig. 2B). Following World War II, the decrease in funding to maintain<br />

structures continued. Messines du Sourbier (1900–1989) provided a detailed national survey<br />

of implementations in 1964 (Fig. 2, Fig. 3A). Acquired areas at the national scale reached<br />

approximately 3,700 km², mainly in the Southern Alps and the Cevennes (Fig. 2) (Messines<br />

du Sourbier 1964).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 39


Figure 2: Distribution of RTM-acquired lands in 1965, their afforestation rate (A) and their evolution in the 25 RTM departments and the<br />

mountain massifs (B).<br />

40 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


In application of the RTM laws in publically owned areas, more than 100,000 check dams,<br />

mainly rustic dams made of dry stones (Fig. 3A), 28 km of channels and tunnels (exclusively<br />

in the Northern Alps), 663 km of drains, and 68 km of avalanche protection structures<br />

(mainly in the Alps) were registered (Messines du Sourbier 1964).<br />

Figure 3: Geographical distribution of (A) works in 1964 and (B) managed works in 2014. The present distribution of managed avalanche<br />

structures (B) is explained by the historical preferential implementation of these works in the Northern Alps and the Pyrenees (A). The<br />

RTM civil engineering actions have been mainly implemented in headwater areas and in the Alps (B). In 1965, more than 100,000 check<br />

dams were registered, but they were mainly rustic dams. The proportion of usual dams was higher in the Northern Alps (A). In April<br />

2014, more than 14,000 check dams were registered in the RTM database, covering 10 departments. Around 50% of them are lower<br />

than 2 m in height (B).<br />

Many rustic check dams built before 1914 have not been maintained as planned in initial<br />

guidelines (Demontzey 1882), due to the lack of grants but also for multiple reasons such as<br />

technical evolutions (e.g. open check dams advent), decrease in expectations concerning the<br />

hydrological role of forests, artificial and spontaneous afforestation, rural depopulation and<br />

changes in the decision makers' priorities. Even if they were registered in 1964, the new<br />

organization of the RTM reduced the number of managed structures, focusing on the most<br />

relevant ones in the current decision context and technical comprehension of natural hazards<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 41


(Fig. 3). Today, as a result of all the past implementations, 85% of managed structures in the<br />

public forests maintained by the 10 RTM departments are located in headwaters and seek to<br />

limit the impact of torrents, including erosion processes. Eighty-five percent of torrential<br />

protection structures are check dams (Fig. 3B).<br />

CONCLUSIONS<br />

This paper overviews the changes in WFA actions according to the RTM laws from the 19th<br />

century to the 1960s. Several objectives have been assigned to protection systems within their<br />

geographical contexts: from extended afforestation in headwater areas to local protection.<br />

Protection structures have specific functions designed to meet their objectives. Forestry works<br />

and check dams have been the most widely implemented.<br />

Presently, RTM experts are expected to manage protection structures, mainly check dams,<br />

both technically and strategically. For the former, the local functions of the existing check<br />

dams must be specified with their objective in mind. For the latter, the objectives should be<br />

reviewed. Maintenance decisions are taken according to the present context and protection<br />

objectives but must optimally be aware of the past historical decisions.<br />

In the second part of this historical analysis (in preparation), we will describe the development<br />

of the overall management of mountainous areas since the 1970s, highlighting several<br />

key points such as the role played by avalanches, the public finance policy in favor of<br />

municipally-managed structures and of land-use plans, as well as the need for forest renewal.<br />

REFERENCES<br />

- Brugnot G., Cassayre, Y. (2002). De la politique française de restauration des terrains en<br />

montagne à la prévention des risques naturels. In FAO, ed. XII World Forestry Congress<br />

Conference proceedings.<br />

- Demontzey P. (1882). Traité pratique du reboisement et du gazonnement des montagnes.<br />

- Direction générale des eaux et forêts (1911). Restauration et conservation des terrains en<br />

montagne. Trois parties.<br />

- Fesquet F. (1997). Un corps quasi-militaire dans l’aménagement du territoire : le corps<br />

forestier et le reboisement des montagnes méditerranéennes en France et en Italie aux XIX et<br />

XXèmes siècles. PhD Thesis, Université Paul Valéry, Montpellier III.<br />

- Messines du Sourbier J., (1964). Enquête sur la conservation et la restauration des terrains<br />

en montagne.<br />

- Mougin M.P. (1931). La restauration des Alpes.<br />

- Piton, G. et al. (<strong>2016</strong>). Why do we build check dams? An historical perspective from the<br />

French experience. Earth Surface Processes and Landforms.<br />

42 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

A Gender-sensitive Analysis of Natural Disasters -<br />

The Case of St. Lorenzen in Austria<br />

Karin Weber, DI¹; Doris Damyanovic, Ass.Prof. Dipl.-Ing. Dr.¹; Britta Fuchs, DI Dr.¹; Christiane Brandenburg, Ao. Prof. DI. Dr.²<br />

ABSTRACT<br />

In this paper, we present a gender-sensitive analysis of a natural disaster from a planning<br />

perspective, illustrated by a debris flow in Styria, Austria, in 2012. The introduced findings<br />

were based on twenty semi-structured interviews with the residents considering the cycle of<br />

integrated risk management. The gender-sensitive research design identified various aspects<br />

that can enhance or decrease the capacity and vulnerability on the individual level. The<br />

gender-sensitive analysis showed that the vulnerabilities and capacities of people vary during<br />

the different phases of the risk cycle (prevention, coping, recovery). The ability to cope with<br />

natural hazards and risks varies highly, and this variability can only be revealed and be<br />

understood differentiated by a gender+ approach. At the same time, socio-economic factors<br />

and age of the community members have to be taken into account. Further research is<br />

needed to analyse and integrate gender+ specific needs and capacities in the field of disaster<br />

risk management effectively.<br />

KEYWORDS<br />

gender-specific approaches; natural hazard; capacities; Disaster Risk Management;<br />

vulnerability<br />

INTRODUCTION<br />

Social vulnerability can be defined as “the characteristics of a person or group and their<br />

situation that influence their capacity to anticipate, cope with, resist and recover from the<br />

impact of a natural hazard” (Wisner et al., 2004, p. 11). These social aspects are paramount<br />

for understanding different behaviour in dealing with natural hazards and include the<br />

socio-economic status of a given community and their members, as well as age structure, and<br />

- often neglected - aspects of gender. Surveys in the context of development cooperation<br />

(Bradshaw, 2015; JERA & eS4W, 2012; UNISDR et al., 2009) and recent research (e.g.<br />

Bacanovic, 2015; Chávez Rodríguez, 2013; Damyanovic et al., 2014; LeMasson, 2013)<br />

demonstrate that the consequences of natural disasters are not gender-neutral and need to<br />

be considered to reduce vulnerability effectively.<br />

In the context of natural hazards in alpine regions, the gender+ approach has so far only been<br />

applied in the research project GIAClim (Damyanovic et al., 2014) and in a Master’s thesis<br />

(Weber, 2015). Both analyses dealt with the major debris flow of 2012 in St. Lorenzen/<br />

Austria. They indicate further discussions and research questions for a deeper understanding<br />

1 Universität für Bodenkultur Wien, Institut für Landschaftsplanung, Vienna, AUSTRIA, doris.damyanovic@boku.ac.at<br />

2 Universität für Bodenkultur Wien, Institut für Naturschutz, Erholungsplanung und Landschaftsentwicklung, Vienna, AUSTRIA<br />

IP_<strong>2016</strong>_FP116<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 43


of gender+ aspects in the disaster risk management in a European context. Damyanovic et al.<br />

(2014) and Weber (2015) designed their research as a case study. That entails that they<br />

provide insight into people’s experience with natural hazards and challenges in daily life from<br />

a particular area. However, case studies allow for collecting and investigating “contemporary<br />

phenomena in depth with real-life context” (Yin, 2009, p. 240) and contribute to the<br />

cumulative development of knowledge.<br />

The main research question of this paper is:<br />

How does the social context, including aspects of gender+ (gender, age, socioeconomic<br />

status) influence the individual behaviour of people within the cycle<br />

of integrated risk management?<br />

The authors embarked on answering this research question through a case study on the debris<br />

flow in July 2012 in St. Lorenzen in Paltental (district Trieben, provincial state of Styria in<br />

Austria), a village of ca. 300 permanent residents. St. Lorenzen is situated on an alluvial fan<br />

that was formed by the river Lorenzerbach. The Lorenzerbach is defined as a bedload carrying<br />

torrent. The actual hazard zone map (adopted in 2009) indicates that most of the residential<br />

zones of St. Lorenzen are situated in hazard-prone areas, which were also flooded during this<br />

event (see Figure 1). Intense precipitation events between June and August 2012 triggered<br />

the debris flow in St. Lorenzen. Numerous buildings were destroyed. The debris flow, was<br />

rated as an extreme event due to its magnitude and high amount and level of debris.<br />

Figure 1: Location of the case study, the hazard zone map of 2009 and the debris flow 2012, source: BEV (2014), Weber (2015).<br />

44 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


THEORETICAL FRAMEWORK<br />

GENDER+ AND VULNERABILITY<br />

The equation Disaster Risk = Hazard x Vulnerability underlines the duality of a natural (or<br />

human-induced) phenomenon and the concept of vulnerability (LeMasson, 2013). This<br />

structural view, which is regarded as a dominant view in vulnerability research (Hufschmidt,<br />

2011), reflects the social, economic, cultural, and political context people live in and their<br />

everyday living conditions, which are embedded in socially constructed modes of living<br />

(Fordham, 1999). A gender-specific conception of “risk” includes the assumption that<br />

“gender-based differences and inequalities have a strong negative or positive effect on the<br />

vulnerability and capacities of people exposed to hazards” (UNISDR et al., 2009). Consequently,<br />

the research design of this case study is based on the premise that specific sets of<br />

inequalities (class, race/ethnicity, sexual orientation and gender) need to be addressed to<br />

highlight the differentiated character and dynamics of inequalities, as indicated in Verloo<br />

(2006). The concept of intersectionality aims to reveal how gender-inequalities are connected<br />

to other structural inequalities. These structural inequalities have an impact on livelihoods<br />

of people and affect their everyday lives and capacities to cope with natural hazards.<br />

A livelihood consists of different bundles of resources or assets (both material and social<br />

resources) that are needed to support everyday lives. This perspective suggests that households<br />

with a larger bundle of assets will be more resilient to a hazard than a relatively<br />

asset-less household (FAO, 2008). In the context of livelihoods, gender+ is understood as a<br />

structural category which effects the everyday life situation and the power-relations between<br />

women and men (Hofmeister et al., 2013). In this research it is used as an analytic tool to<br />

understand the gender dimension in the risk perception of natural hazards.<br />

METHODOLOGICAL APPROACH TO THE CASE STUDY<br />

The diversity of methods applied in this case study reflects this concept of vulnerability and<br />

the interdisciplinary approach that has become standard in studies on disaster (e.g. Mercer<br />

et al., 2010). A set of methods was used to evaluate coping capacities and vulnerabilities of<br />

affected community members, following the aim to propose the implementation of gender+<br />

in planning strategies. The research design consisted of spatial surveys, semi-structured<br />

interviews and document analyses.<br />

The method of semi-structured interviews was chosen in order to allow new ideas and individual<br />

points of view to be brought up during the interview as a result of what the interviewee<br />

says. The interview guideline (Damyanovic et al., 2014; Weber, 2015) was structured along<br />

the cycle of integrated risk management (BABS, 2013). This framework is used frequently in<br />

hazard and risk assessments to describe an ideal sequence of phases in dealing with natural<br />

hazards. The interview guideline included questions concerning knowledge and information<br />

about emergency provisions and prevention before, and after the hazard event. The affected<br />

community members were asked how they experienced the event and how they prepared for<br />

intervention. In addition, they were asked how they commu ni cated after the debris flow and<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 45


organised reconstruction work in terms of the assignment of roles between women and men.<br />

The interviewees were contacted mainly through door-to-door requests or word-of-mouth<br />

recommendations (snowball sampling). To ensure anonymity, the interviewees were grouped<br />

according their age in ten annual steps (30-39 years; here 30+). The sample of 20 residents<br />

(men 60%: 3x 30+, 1x 40+, 3x 50+,4x 60+, 1x 80+; women 40%: 1x 30+, 3x 50+, 3x 60+, 1x<br />

70+) (Weber, 2015) was selected with the aim of high variability concerning socio-economic<br />

characteristics and severity of losses due to the debris flow, respectively location in the hazard<br />

zone. The interviews (duration: 1 to 2 hours average) were analysed chronologically along<br />

the cycle of integrated risk management using qualitative content analysis (Mayring, 2007).<br />

FINDINGS OF THE CASE STUDY<br />

The findings of the case study are structured along the risk cycle: preparedness, response,<br />

recovery.<br />

PHASE OF PREPAREDNESS<br />

St. Lorenzen and its surroundings have been affected by hazard events in the past. Before<br />

the debris flow occurred in 2012, five interviewees (25%) had own experiences in coping<br />

with hazard events, gained within their paid and voluntary work (3 men 2x 30+, 60+) and<br />

own experience (2 women 50+, 70+). For men, this experience within work offers them basic<br />

knowledge of how to respond during emergencies, rescue and evacuation. Furthermore,<br />

close ties to the local fire brigade offered them advantages in getting information at first hand<br />

(during the entire risk cycle).<br />

Almost all interviewee know the existence of the hazard zone plan which is provided by<br />

the Austrian Service for Torrent and Avalanche Control, a federal institution of the Federal<br />

Republic of Austria. More in-depth knowledge of the specific location and type of hazard<br />

zones was available concerning their own property. But still, four interviewees (20%)<br />

(3 men 30+, 40+, 60+; woman 60+) were not aware that their property was located in a<br />

hazard zone before the purchase of land or moving into the house, although a hazard zone<br />

plan existed since 1978.<br />

There is no specific knowledge of an emergency plan for St. Lorenzen. Two persons (10%,<br />

2 men 30+, 40+) mentioned that they know about risk management in general, like the<br />

planning of an evacuation and organisations responsible, as they are active members of<br />

the local fire brigade.<br />

PHASE OF RESPONSE<br />

Women initiated individual preparations for themselves and other family members, like<br />

sleeping in the upper floor, packing of belongings and documents needed in case of evac u-<br />

ation measurements in advance (3 women 30+, 50+, 60+). During the phase of response,<br />

women (4 women 2x 30+, 60+, 70+) were responsible for preparing the evacuation (coordinating<br />

children and family, assembling goods). Undertaking preparations for intervention,<br />

46 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


men were exposed to risky situations. Men (belonging to every age group) reported of<br />

clearing the channel from woody debris and stones to enable the runoff or installing<br />

protection measures on private property. These results show similarities to e.g. Pfister (2009)<br />

where a gender-specific division of tasks was observed too.<br />

The elderly (70+, 80+) were vulnerable at the phase of evacuation, because they were<br />

dependent on external help (local fire brigade and Red Cross) due to constricted agility and<br />

mobility. These results confirm similar findings of Birkmann et al. (2012) and Bacanovic<br />

(2015). More than half of the interviewed women (63%) described the evacuation in detail,<br />

as it affected them emotionally (similar to findings of Paech, 2013). One woman (50+)<br />

described the risky self-evacuation as traumatising.<br />

Similar to the phase of prevention, men (all age groups) and one woman (50+) were exposed<br />

to hazardous situations, as they went out to maintain protective measures (similar as in<br />

Bacanovic, 2015) or to help family members living in the neighbourhood. This high exposure<br />

lasted, because 20% of the interviewed men (30+, 2x 50+, 60+) refused to follow evacuation<br />

orders and stayed in the destroyed area to guard their devastated homes and care for the<br />

animals.<br />

Women (5 out of 8 - 63%) were seeking information at the evacuation centre, whereas men<br />

were told to be actively communicating (8 out of 12 – 66%) with the rescue service (similar<br />

to Bacanovic, 2015) and the local fire brigade.<br />

PHASE OF RECOVERY<br />

In this study, the elderly (60+, 70+, 80+) had minor problems financing reconstruction<br />

measures. Still, some households had to use most of their savings (men 50+, 80+), severance<br />

indemnity (man 50+), or even take out a loan (man, woman 50+) to finance building<br />

materials in advance. Financial support was organised for most of the persons affected. Not<br />

every interviewee could deal with the end of the application deadline. Elderly women (70+)<br />

and men (80+) needed help to fill in the applications. One young family (30+) was confronted<br />

with other vicissitudes of lives that slowed down their decision whether to stay in St.<br />

Lorenzen or not and applying for financial support, leading to lack of financial support.<br />

Answering questions about the division of labour during the phase of recovery, 25% (3 men<br />

2x 30+, 80+; women 50+, 60+) mentioned a stereotypical division of labour (similar to<br />

Chávez Rodríguez, 2013) where men did physical and women did care and subsistence work<br />

(IRP et al., 2010).<br />

Women followed up paid work sooner than men (with one exception, man 30+ – who felt<br />

the need to earn money) (similar findings in JERA & eS4W, 2012). Either they took a few<br />

days off (woman 60+), couldn´t get any unpaid leave (50+) or worked in own business (60+).<br />

This increased pressure added to the wearing situation of recovery, e.g. for a woman (50+)<br />

who was traumatised, suffered from insomnia, but had to go to work. On the contrast, men<br />

applied for leave of absence (either paid or unpaid) from their occupation to help with<br />

reconstruction works.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 47


PHASE OF PREPAREDNESS (AFTER THE HAZARD EVENT)<br />

Women (5 out of 8-63%) said they were concerned about possible risks, although edificial<br />

preventive structures had been built soon after the debris flow occurred. Whereas men<br />

(8 out of 12-66%) said they felt save. Only women (3 out of 8: 30+, 50+, 80+) are prepared<br />

for (eventually) recurring events, e.g. emergency package of belongings in the upper floor.<br />

Private protective measures include reinforced concrete walls to protect the property of the<br />

inundated area from future damages, expressing security needs. There were no gender-specific<br />

differences found concerning the degree or realization of protective measurements, which<br />

was rather determined by legal allowances.<br />

DISCUSSION<br />

The results highlight that a gender+-sensitive approach leads to a more differentiated and<br />

detailed knowledge about risk perception, coping capacities and vulnerability. First of all<br />

the results of the interviews show that women and men, according to their age and socioeconomic<br />

situation have different abilities to cope with and deal with natural hazards.<br />

Along the phases of the cycle of integrated risk management (see Figure 2). The findings<br />

indicate that the characteristics of local social relations, relationships with emergency services,<br />

and the type of housing and age profile of residents are playing an important role in terms of<br />

the capacities (Walker et al., 2006, p. 778). The findings highlight the need for a gender- and<br />

group-specific approach in the analysis of risk perception (Fleischhauer et al., 2012) as the<br />

survey revealed that men and women, young and old behaved and reacted differently according<br />

to their role and responsibilities in the family and community. It also revealed group- and<br />

gender-specific capacities that should be taken into account in DRR.<br />

Some studies (JERA & eS4W, 2012; Paech, 2013; Bacanovic, 2015) deal with gender-specific<br />

aspects of natural hazards within industrialised countries, but especially in the Alpine regions<br />

empirical studies are rare (Weber 2015). The gender-specific approach as discussed and<br />

applied in the planning disciplines and in sustainability science since the 1970ties (Hofmeister<br />

et al., 2013) can be taken as an example for integrating gender as an analytic category in<br />

DRR. Furthermore, gender understood as epistemological category contributes to a critical<br />

discussion of (feminist) methodologies and methods in sciences, engineering sciences and<br />

planning sciences (e.g. Fox Keller, 1986; Althoff et al., 2001; Hofmeister et al., 2013).<br />

CONCLUSION<br />

In the conclusion, we summarize aspects of a gender-sensitive approach in DRR that need to<br />

be developed further, especially in the context of Alpine regions.<br />

To support people´s livelihoods and strengthen their capacities through a gender-sensitive<br />

planning processes and natural hazards management, the entire risk cycle has to be taken<br />

into account. The integration of more comprehensive gender-sensitive surveys and sex and<br />

gender disaggregated data (see also in JERA & eS4W, 2012) would be necessary to gain<br />

deeper knowledge about gender-specific needs. However, the results of this case study<br />

indicate possible hinges for a gender-sensitive DRR and management of natural hazards:<br />

48 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Findings from the semi-structured interviews, organised along the phases of the risk cycle.<br />

The members of the community have local knowledge, their specific experience and<br />

competences with regard to hazards, which are of great value for an efficient and fair DRR.<br />

Gender+ aspects need to be considered in all phases and at all scales of planning and<br />

communication processes concerning natural hazards (Damyanovic et al., 2014; Fuchs et al.,<br />

forthcoming). The findings of this paper highlight starting points for supporting coping<br />

capacities. First of all, gender-specific data (on a local level) should be integrated in emergency<br />

plans in order to identify high priority areas in case of emergency (Weber, 2015).<br />

The identified lack of information about emergency provisions and prevention measures<br />

(hazard map included), should be tackled, using gender-specific information materials and<br />

participation on all levels and in all phases (Fleischhauer et al., 2012). As women do not have<br />

as much experience with emergency situations as man, due to rare participation in the local<br />

fire brigade, increased participation of women in trainings should be encouraged (also<br />

suggested in Bacanovic, 2015).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 49


REFERENCES<br />

- Althoff, M., Bereswill, M., Riegraf, B. (2001). Feministische Methodologien und Methoden.<br />

Wiesbaden: VS Verlag für Sozialwissenschaften.<br />

- Bacanovic, V. (2015). Gender Analysis of the Impact of the 2014 Floods in Serbia. Organization<br />

for Security and Co-operation in Europe - OSCE (publisher).<br />

- Birkmann, J., Bach, C., Vollmer, M. (2012). Tools for Resilience Building and Adaptive<br />

Spatial Governance Challenges for Spatial and Urban Planning in Dealing with Vulnerability.<br />

Raumforschung Raumordnung, 70, pp. 293–308.<br />

- Bradshaw, S. (2015). Engendering development and disasters. Disasters, 39, pp. 54–75.<br />

Retrieved December 8, 2015,<br />

- Bundesamt für Bevölkerungsschutz (BABS) (Ed.). (2013). Leitfaden KATAPLAN. Grundlage<br />

für kantonale Gefährungsanalysen und Massnahmenplanungen. Bern.<br />

- Chávez Rodríguez, L. (2013). Klimawandel und Gender: Untersuchung der Bedeutung von<br />

Geschlecht für die soziale Vulnerabilität in überflutungsgefährdeten Gebieten.<br />

- Damyanovic, D., Fuchs, B., Reinwald, F., Pircher, E. M., Eisl, J., Allex, B., Brandenburg, C.,<br />

Hübl, J. (2014). GIAKlim - Gender Impact Assessment im Kontext der Klimawandelanpassung<br />

und Naturgefahren. Auftraggeber: BMLFUW, BMWFW, ÖBF, Land Oberösterreich.<br />

- FAO - Food and Agriculture Organization of the United Nations (Ed.) (2008). Disaster risk<br />

management systems analysis: a guide book. Rome.<br />

- Fleischhauer, M., Greiving, S., Flex, F., Scheibel, M., Stickler, T., Sereinig, N., Koboltschnig,<br />

G., Malvati, P., Vitale, V., Grifoni, P., Firus, K. (2012). Improving the active involvement of<br />

stakeholders and the public in flood risk management. Tools of an involvement strategy and<br />

case study results from Austria, Germany and Italy. Natural Hazards and Earth System<br />

Science, 12(9), pp. 2785–2798.<br />

- Fordham, M. (1999).The intersection of gender and social class in disaster: balancing<br />

resilience and vulnerability. International Journal of Mass Emergencies and Disasters. 17(1).<br />

pp 15-36.<br />

- Fox Keller, E. (1986). Liebe, Macht und Erkenntnis: männliche oder weibliche Wissenschaft?.<br />

München: Hanser.<br />

- Fuchs, B., Damyanovic, D., & Reinwald, F. (forthcoming). A Gender-sensitive Analysis of<br />

Spatial Planning Instruments Related to The Management of Natural Hazards in Austria., In:<br />

Buckingham, S., LeMasson, V. (Eds.), Understanding Climate Change through Gender<br />

Relations. Routledge.<br />

- Hofmeister, S., Katz, C., Mölders, T. (Eds.) (2013). Geschlechterverhältnisse und Nachhaltigkeit:<br />

die Kategorie Geschlecht in den Nachhaltigkeitswissenschaften. Opladen: Budrich.<br />

- Hufschmidt, G. (2011). A comparative analysis of several vulnerability concepts.<br />

Natural Hazards.58(2). pp. 621–643.<br />

- IRP, UNISDR, UNDP (Eds.) (2010). Guidance note on recovery: Gender.<br />

- Justice Equality Rights Access International (JERA), Economic Security4Women (eS4W)<br />

(2012). Women´s Voices From The Flood Plains. An economic gender lens on responses in<br />

disaster affected areas in Queensland and Victoria. North Sydney, NSW.<br />

50 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- LeMasson, V. (2013). Exploring Disaster Risk Reduction and Climate Change Adaption<br />

from a gender perspective. Insights from Ladakh, India.<br />

- Mayring, P. (2007). Qualitative Inhaltsanalyse: Grundlagen und Techniken. Weinheim:<br />

Beltz.<br />

- Mercer, J., Kelman, I., Taranis, L., Suchet-Pearson, S. (2010). Framework for integrating<br />

indigenous and scientific knowledge for disaster risk reduction. Disasters, 34(1), pp. 214–239.<br />

- Paech, F. (2013). Eine Naturkatastrophe gendern?! Erzählungen über die Hamburger<br />

Sturmflut von 1962. ARIADNE: Forum für Frauen- und Geschlechtergeschichte, 64, pp.<br />

58–65.<br />

- Pfister, C. (2009). Learning from Nature-induced Disasters. Considerations from Historical<br />

Case Studies in Western Europe. In: C. Mauch & C. Pfister (Eds.), Natural Disasters, Cultural<br />

Responses. Case Studies Toward a Global Environmental History, pp. 17–40. Lanham:<br />

Lexington Books.<br />

- UNISDR, UNDP, & IUCN. (2009). Making Disaster Risk Reduction Gender-Sensitive.<br />

Policy and Practical Guidelines. Genf. Swiss: United Nations.<br />

- Verloo, M. (2006). Multiple Inequalities, Intersectionality and the European Union.<br />

European Journal of Women’s Studies, 13(3), pp. 211–228.<br />

- Walker, G. P., Great Britain, & Environment Agency. (2006). Addressing environmental<br />

inequalities: flood risk. Bristol: Environment Agency.<br />

- Weber, K. (2015). Landschaftsplanerische Betrachtung des Umgangsmit Naturgefahren<br />

aus genderspezifischer Perspektive am Fallbeispiel des Murenabganges in St. Lorenzen im<br />

Paltental 2012. Masterarbeit, Universität für Bodenkultur, Wien.<br />

- Yin, R. K. (2009). Case Study Research. Design and Methods. Sage Publications,<br />

Thousand Oaks, (4th ed.).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 51


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Audit „Flood – how prepared are we" – a method for<br />

local authorities to improve local risk management<br />

Das Audit „Hochwasser – wie gut sind wir vorbereitet“<br />

– ein strukturiertes Verfahren für Kommunen zur<br />

Verbesserung des kommunalen Risikomanagements<br />

Paul Geisenhofer, Dipl.-Ing.¹<br />

ABSTRACT<br />

"Flood-Audit" is a service provided by the German Association for Water, Wastewater and<br />

Waste (DWA) to help local authorities achieve improvements in local flood precaution.<br />

"Flood-Audit" is a tool to raise local awareness and systematical knowledge about different<br />

aspects of risk management. It's not about "checking up" on people it's about giving advice.<br />

The assessment regards 35 indicators in seven fields of action. The ranges of action have to<br />

be assessed separately for river floods and flash floods and the three flood scenarios according<br />

to the European Floods Directive. To gain an overview, the indicators are summarized and<br />

visualized in two "precaution traffic lights". Each shows four sectors: spatial prevention,<br />

constructive prevention, precautionary behavior and risk prevention. This way the strengths<br />

and weaknesses of "flood preparedness" become powerfully visible for citizens and especially<br />

the elected municipal officers. This provides a solid basis for future precaution actions.<br />

So far about 30 audits were successfully carried out in different landscapes. Individual results<br />

are presented using the example of one Bavarian alpine municipality.<br />

ZUSAMMENFASSUNG<br />

Das Hochwasser-Audit ist ein Angebot der Deutschen Vereinigung für Wasserwirtschaft, Abwasser<br />

und Abfall (DWA) für Gemeinden zur nachhaltigen Verbesserung der lokalen Hochwasservorsorge.<br />

Ziel des Audits ist es, in einem vertrauensvollen Beratungsprozess (nicht<br />

Prüf-Prozess) unabhängig von aktuellen Schadensereignissen den Status der Hochwasservorsorge<br />

allumfassend zu erheben, das Risikobewusstsein zu schärfen und die Risikomanagementplanung<br />

systematisch zu vertiefen. Bewertet werden insgesamt 35 Indikatoren in sieben<br />

Handlungsbereichen der nicht-baulichen Hochwasservorsorge (non-structural Meassures),<br />

getrennt für Flusshochwasser und Sturzfluten und jeweils für die drei Hochwasserszenarien<br />

HQ häufig<br />

, HQ 100<br />

und HQ extrem<br />

. Um eine plakative Gesamtübersicht über den umfangreichen<br />

Ergebnisbericht zu erhalten, werden die Indikatoren zu zwei Hochwasservorsorge-Ampeln<br />

zusammengefasst. Jede Ampel bildet vier Bewertungssektoren ab: Flächenwirksame Vorsorge,<br />

Bauvorsorge, Verhaltenswirksame Vorsorge und Risikovorsorge. Stärken und Schwächen in<br />

1 Watermanagement Office Rosenheim, Rosenheim, Bavaria GERMANY, paul.geisenhofer@wwa-ro.bayern.de;<br />

paul.geisenhofer@web.de<br />

52 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP097


der Hochwasservorsorge werden so für die Bürgerschaft und vor allem die politischen<br />

Mandatsträgern eindringlich sichtbar und bilden die Basis für weiteres ziel gerichtetes<br />

Vorsorgehandeln. Bisher wurden rund 30 Audits in unterschiedlichen Naturräumen<br />

durchgeführt. Die Ergebnisse werden von den Gemeinden durchwegs positiv bewertet.<br />

Einzelne Ergebnisse werden am Beispiel einer bayerischen Alpengemeinde vorgestellt.<br />

KEYWORDS<br />

flood-audit; risk management; municipalities; non-structural meassures<br />

EINFÜHRUNG<br />

Seit Jahrzehnten wurden in Mitteleuropa größte Anstrengungen und Investitionen unternommen,<br />

um Siedlungen und Infrastruktur durch technische Maßnahmen vor Hochwasser<br />

zu schützen. Dennoch entstehen nach wie vor bei Hochwasser häufig immense Schäden und<br />

noch während des Hochwasserereignisses beginnt in den Medien die Suche, wer schuld daran<br />

sei, dass der (vielleicht sogar neu gebaute) Deich überströmt wurde. Trotz der Warnungen<br />

der Fachleute herrscht in der Öffentlichkeit nach wie vor die Illusion vor, dass Hochwasser<br />

beherrschbar sei und Schutzanlagen absolute Sicherheit schaffen. Gleichwohl hat schon 1995<br />

die Deutsche Länder-Arbeitsgemeinschaft Wasser (LAWA) mit ihren "Hochwasser-Leitlinien"<br />

für Klarheit gesorgt und dem technischen Hochwasserschutz als nur einer Komponente eines<br />

umfassenden Risikomanagements den angemessenen Stellenwert zugewiesen, der ihm<br />

gebührt. Mit Erlass der EU-Hochwasserrisikomanagement-Richtlinie wurde auch die Rechtsgrundlage<br />

für den Paradigmenwechsel vom Hochwasserschutz (mit Absolutheitsanspruch)<br />

zum Risikomanagement geschaffen.<br />

Risikomanagement ist nicht mehr in erster Linie die Aufgabe der Wasserwirtschaftsverwaltung<br />

Hochwasser fernzuhalten bzw. zu reduzieren, sondern vielmehr Aufgabe der Gesellschaft<br />

Hochwasserschäden gering zu halten. Dabei sind Extremabflüsse, die den technischen<br />

Hochwasserschutz überlasten können, regelmäßig mit zu betrachten. Schäden können in<br />

diesen Fällen nur noch in der überschwemmungsgefährdeten Fläche hinter den Schutzanlagen<br />

reduziert werden. Damit haben Kommunen mit ihrer Planungshoheit eine hohe<br />

Verantwortung aber auch vielfältige Handlungsmöglichkeiten. An dieser Stelle entsteht der<br />

Ruf nach einem Instrument, das Kommunen hilft, dieser Verantwortung gerecht zu werden<br />

und ihren individuellen Handlungsbedarf zu erkennen.<br />

Mit dem "Audit Hochwasser – wie gut sind wir vorbereitet" hat die deutsche Vereinigung für<br />

Wasserwirtschaft Abwasser und Abfall (DWA) ein solches Instrument zur Verfügung gestellt.<br />

WESEN UND INHALT DES AUDITS<br />

Allgemeines<br />

Das Audit „Hochwasser – wie gut sind wir vorbereitet“ ist ein Angebot speziell für kommunale<br />

Gebietskörperschaften zur nachhaltigen Verbesserung der lokalen Hochwasservorsorge.<br />

Es bietet der Gemeinde unabhängig von aktuellen Schadensereignissen eine Plattform, den<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 53


Status ihrer Hochwasservorsorge ohne Zeitdruck umfassend zu erheben und in breitem<br />

Konsens zu begründeten und priorisierten Handlungskonzepten zu kommen.<br />

Das Hochwasser-Audit versteht sich als Hilfsmittel in einem Beratungsprozess (nicht Prüf-<br />

Prozess), der das Ziel hat, das lokale Risikobewusstsein zu schärfen und die Themen der<br />

Risikomanagementplanung systematisch zu vertiefen. Wesentliche Grundlage ist das gegen -<br />

seitige Vertrauen zwischen Auditor und Gemeinde. Als Auditoren werden von der DWA<br />

speziell geschulte Fachkräfte der Wasserwirtschaft beauftragt.<br />

Mit dem Audit schafft die Gemeinde auch eine hervorragende Grundlage für die von der<br />

EU geforderte öffentliche Kommunikation von Hochwasserrisiken.<br />

Inhalte des Hochwasser-Audits<br />

Allgemeines und Bezugsraum<br />

Das Hochwasser-Audit stellt die Informationslage aller Beteiligten über die Risiken und die<br />

möglichen Maßnahmen zu ihrer Verminderung in den Mittelpunkt. Bewertet wird in erster<br />

Linie die Güte der Information über die Risiken, nicht das Risiko selbst. Hintergrund dieser<br />

Schwerpunktsetzung ist die Erwartung, dass gut informierte Verwaltungen und Bürger sich<br />

richtiger verhalten werden, wenn ihnen aussagekräftige Informationen und praktikable<br />

Lösungen zur Risikoreduktion zur Verfügung stehen.<br />

Bezugsraum des Audits ist die Risiko- und Verantwortungsgemeinschaft einer Kommune im<br />

gesamten Gemeindegebiet ungeachtet tatsächlicher Sach- und Fachzuständigkeiten anderer<br />

Stellen. Das Audit konzentriert sich dabei auf die Bewertung lokal zu verantwortender<br />

Maßnahmen der nicht technischen Hochwasservorsorge (non-structural measures). Maßnahmen<br />

des technischen Hochwasserschutzes (Deiche, Rückhaltebecken etc.), werden als<br />

gegebene Randbedingungen z.B. für die Beschreibung von Risiken berücksichtigt, sind aber<br />

nicht Gegenstand der Bewertung des Audits.<br />

Szenarien<br />

Das Audit thematisiert neben den Risiken aus Flusshochwasser auch das Risiko von lokalen<br />

Sturzfluten, die häufig und insbesondere im alpinen Raum von mindestens ebenso großer<br />

Bedeutung sind. Gleichwohl steht eine konsequente planerische bzw. logistische Auseinandersetzung<br />

mit Sturzfluten bei Gemeinden oft noch im Hintergrund. Aufgrund der unterschiedlichen<br />

Randbedingungen und auch Handlungsinstrumente werden die Szenarien<br />

Flusshochwasser und Sturzfluten im Audit getrennt betrachtet.<br />

Entsprechend der EU-Hochwasserrichtlinie werden alle Betrachtungen jeweils für den Lastfall<br />

häufiges Hochwasser (HQ häufig<br />

), Hochwasser mit mittlerer Wahrscheinlichkeit (HQ 100<br />

) und<br />

außerordentlich seltenes Hochwasser (HQ extrem<br />

) durchgeführt. Somit ergeben sich insgesamt<br />

6 Szenarien.<br />

Bewertungsfelder, Handlungsbereiche, Indikatoren<br />

Auch die Struktur des Hochwasseraudits orientiert sich wiederum an den anerkannten<br />

Strukturen der LAWA-Leitlinie bzw. der EU-HWRM-RL. So werden zunächst die vier<br />

Bewertungsfelder<br />

54 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– Flächenwirksame Vorsorge<br />

– Bauvorsorge<br />

– Verhaltenswirksame Vorsorge und<br />

– Risikovorsorge<br />

definiert. Diesen werden sieben Handlungsbereiche der nicht-baulichen Hochwasservorsorge<br />

zugeordnet, die dem im Bereich der Naturgefahren allg. anerkannten Risikokreislauf<br />

entnommen sind.<br />

Abbildung 1: Das Arbeitsfeld des Hochwasser-Audits im Risikokreislauf sind die nicht-technischen Handlungsfelder der Hochwasservorsorge<br />

(DWA)<br />

Den Handlungsbereichen wiederum werden die der Auditierung zugrundeliegenden<br />

Indikatoren zugeordnet. Bei Bedarf wird ein Indikator durch mehrere Merkmale beschrieben.<br />

Insgesamt ergeben sich 35 konkrete Fragestellungen.<br />

Bewertungsmethoden<br />

Die Bewertung zielt darauf ab, den Vorsorge-Status der Gemeinde übersichtlich und kompakt<br />

aber dennoch ausreichend differenziert und aussagekräftig darzustellen. Gegenstand der<br />

Bewertung sind die 35 Einzelmerkmale in den sieben Handlungsbereichen. Für jedes<br />

Merkmal werden getrennt für Flusshochwasser und Sturzfluten die drei Hochwasserszenarien<br />

untersucht.<br />

Die Einzelmerkmale werden formalisiert mit Punkten bewertet und für die vier Bewertungsfelder<br />

für jedes Szenario zu einem Gesamtergebnis aggregiert. Im Sinne einer einheitlichen<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 55


Handhabung stehen dafür jeweils maximal 250 Punkte zur Verfügung, die mit einer vorgegebenen<br />

Gewichtung auf die Handlungsbereiche innerhalb des Feldes verteilt werden.<br />

Einzelmerkmale innerhalb eines Handlungsbereiches erhalten jeweils die gleiche Maximalpunktzahl.<br />

Eine stärkere Differenzierung würde sicherlich zu keinem aussagekräftigeren<br />

Ergebnis führen. Dieses pragmatische Bewertungssystem ist insbesondere deshalb vertretbar,<br />

weil die 4 Bewertungsfelder getrennt betrachtet werden und keine Gesamtsumme gebildet<br />

wird.<br />

Die Bewertungskriterien für alle Einzelmerkmale sind in einem Handbuch beschrieben, das<br />

von den Auditoren verbindlich anzuwenden ist. Dem Charakter des Audits als einem von<br />

Vertrauen getragenem Beratungsprozess innerhalb einer Kommune entsprechend ist eine<br />

Weitergabe und ein Vergleich von Auditergebnissen generell nicht vorgesehen.<br />

Eine Besonderheit des Bewertungssystems ist noch erwähnenswert: Von der Gemeinde<br />

konkret geplante aber zum Zeitpunkt des Audits noch nicht durchgeführte Maßnahmen<br />

werden vorab mit der halben Punktzahl gewertet. Damit soll nicht nur ein gewisser Handlungsanreiz<br />

geschaffen, es soll auch deutlich werden, dass das Audit der Einstieg in einen auf<br />

Dauer angelegten Prozess des Risikomanagements ist und eben nicht nur eine Bewertung<br />

zu einem bestimmten Stichtag im Sinne von „bestanden“ oder „durchgefallen“. Werden die<br />

geplanten Maßnahmen durchgeführt, erhält die Gemeinde beim Folgeaudit die volle Punktzahl,<br />

andernfalls keine Punkte.<br />

Darstellung der Ergebnisse - Dokumentation<br />

Im Rahmen eines Audits wird von der Gemeinde eine Vielzahl von Informationen zusammengetragen<br />

und dem Auditor präsentiert. Dessen Aufgabe ist es, die Bewertung durchzuführen<br />

und die Ergebnisse für unterschiedliche Zwecke geeignet darzustellen. Er fertigt dazu<br />

einen Bericht, in dem der Status aller Einzelmerkmale im Detail beschrieben und für alle<br />

Szenarien bewertet wird. Die Bewertungen werden außerdem tabellarisch zusammengefasst.<br />

Der Bericht hebt auch die von der Gemeinde geplanten Maßnahmen hervor. Diese können<br />

in der Gemeinde anschließend als Maßnahmenkatalog mit Terminen und Verantwortlichen<br />

in Eigenregie weiter bearbeitet werden.<br />

Eine weitere besonders plakative Ergebnisdarstellung sind die sog. Hochwasserampeln. Es<br />

handelt sich um Kreisdiagramme mit vier Quadranten entsprechend der Bewertungsfelder.<br />

Die drei Hochwasserlastfälle werden als konzentrische Ringe dargestellt. Die jeweils erreichte<br />

Punktzahl wird einem Farbsystem zugeordnet, das von grün („alle Hausaufgaben sind<br />

gemacht“) über orange und gelb nach rot („Vorsorgewüste, noch keine tragenden Ansätze<br />

erkennbar“) reicht. Weil die Ergebnisse für Flusshochwasser und für Sturzfluten oft sehr<br />

unterschiedlich sind, werden zwei Ampeln erstellt.<br />

Während der ausführliche Bericht vor allem für die Verwaltungsebene der Gemeinde wertvoll<br />

ist, bietet das Ampelsystem der Verwaltungsspitze, den politischen Mandatsträgern und der<br />

Öffentlichkeit die gewünschte Übersicht mit einer allgemein verständlichen Symbolik. Die<br />

Ampeln machen Stärken und Schwächen in der Hochwasservorsorge sichtbar und können<br />

so der Ausgangspunkt für weiteres zielgerichtetes Vorsorgehandeln sein.<br />

56 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 2: Hochwasserampeln – eine Stärken-Schwächenanalyse auf einen Blick für Bürgermeister, politische Mandatsträger und<br />

Öffentlichkeit (DWA)<br />

ABLAUF DES AUDITS<br />

Anfrage, Beauftragung<br />

Ein Hochwasser-Audit wird von der interessierten Gemeinde bei der DWA zunächst formlos<br />

angefragt. Die DWA übermittelt daraufhin ein Angebot über die im Audit angebotenen<br />

Dienstleistungen. Wird der Auftrag erteilt, beauftragt die DWA einen federführenden Auditor<br />

und falls erforderlich einen Co-Auditor.<br />

Vorbereitung<br />

Der Auditor stimmt mit der Gemeinde die zu beteiligenden Verwaltungseinheiten und den<br />

Audit-Termin vor Ort ab. Durch ein Vorgespräch kann sich die Kommune sachgerecht auf<br />

das Audit vorbereiten. Hierzu ist es hilfreich, wenn die Kommune Informationen zu den<br />

Indikatoren anhand einer Check-Liste zusammenstellt und – soweit vorhanden – Planmaterial<br />

und insb. Hochwassergefahrenkarten bereithält.<br />

Notwendige Unterlagen<br />

Im Rahmen eines Erst-Audits werden keinerlei spezifische Unterlagen zur Einsicht gefordert<br />

oder gar überprüft. Das heißt, dass die Gemeinde ihr individuelles Auditergebnis allein<br />

aufgrund ihrer eigenen Informationen generiert – je zutreffender und realistischer diese<br />

Informationen sind, desto zutreffender und „wertvoller“ wird auch das Auditergebnis sein.<br />

Bei Folge-Audits werden dann die maßnahmenbezogenen Unterlagen und Dokumentationen<br />

des Erstaudits als Nachweis erforderlich sein, ob geplante Maßnahmen tatsächlich durchgeführt<br />

wurden.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 57


Ablauf des Audits vor Ort<br />

Das Audit wird in der Regel an zwei Tagen vor Ort durchgeführt und protokolliert. Es läuft als<br />

Gespräch der Auditoren mit den Vertretern des Auftraggebers ab, die für die verschiedenen<br />

Aufgabenfelder der Hochwasservorsorge verantwortlich sind. Als Teilnehmer des Auftraggebers<br />

kommen Entscheider und Fachkräfte der folgenden Bereiche in Frage:<br />

– Ordnungsamt, Verwaltungsspitze;<br />

– Hochbau, Tiefbau, Bauverwaltung, Bauordnung, Baurecht, Liegenschaftsverwaltung;<br />

– Umweltverwaltung, Wasserwirtschaftsverwaltung, Grün- und Freiflächenverwaltung,<br />

Forstbehörde;<br />

– Wirtschaftsförderung, Gewerbeordnung;<br />

– Gesundheitsbehörden;<br />

– Katastrophenschutz, Feuerwehr, Rotes Kreuz;<br />

– Denkmalschutzverwaltung;<br />

– Weitere nach Einschätzung des Auftraggebers<br />

Protokoll, Urkunde, Folgeaudit<br />

Eine erste Erfassung der Bewertungspunkte wird den Teilnehmern bereits am Ende des Vor-<br />

Ort-Termins vorgestellt. Die ausführliche Dokumentation wird der Gemeinde vom Auditor<br />

zur Schlussabstimmung zugeschickt. Zum Abschluss des Audits erhält die Kommune von der<br />

DWA-Bundesgeschäftsstelle die Reinschrift der Dokumentation des gesamten Auditprozesses<br />

und eine Urkunde. Dem prozessunterstützenden Charakter des Audits folgend sollte<br />

spätestens nach 6 Jahren ein Folgeaudit durchgeführt werden, um den Fortschritt in der<br />

Hochwasservorsorge zu dokumentieren.<br />

Das Audit selbst gibt keine konkreten Maßnahmenempfehlungen. Die DWA wird die Weiterentwicklung<br />

der Hochwasservorsorge jedoch durch eine Liste von Maßnahmen unterstützten,<br />

die sich in der Praxis besonders bewährt haben.<br />

PRAXISERFAHRUNGEN<br />

Bisher wurden ca. 30 Audits in unterschiedlichsten Naturräumen Deutschlands (Flachland,<br />

Mittelgebirge, alpiner Raum) durchgeführt. Dabei wurden Kommunen zwischen ca. 1500<br />

und 1 Mio. Einwohner auditiert. Die Erfahrung in der Abwicklung zeigte, dass der Aufwand<br />

sowohl auf der Seite der Auditoren als auch der Kreis der beteiligten Mitarbeiter der<br />

Gemeinde mit der Gemeindegröße zunimmt. Vor Ort sind i.d.R. zwei Tage ausreichend.<br />

Generell war festzustellen, dass die Ergebnisse beim Szenario Flusshochwasser meist besser<br />

sind als beim Szenario Sturzfluten, das erst in der jüngeren Vergangenheit (vielleicht auch<br />

bedingt durch die Klimadiskussion?) an Bedeutung gewonnen hat.<br />

Die größten Vorsorgedefizite sind erwartungsgemäß beim Szenario HQ extrem<br />

festzustellen.<br />

Hier spiegelt sich noch eindrucksvoll wieder, dass das Denken im Hochwasserschutz früher<br />

regelmäßig beim HQ 100<br />

endete.<br />

58 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Regelmäßig kündigen die Gemeinden angesichts der im Audit erkannten Defizite zahlreiche<br />

Vorsorgemaßnahmen an, die der Bewertungssystematik folgend mit der halben Punktzahl ins<br />

Ergebnis eingehen. Die Zukunft wird zeigen, was aus den guten Vorsätzen geworden ist.<br />

Häufige Einschätzung der Gemeinden war, dass allein schon die Durchführung des Audits vor<br />

Ort bereits erheblich zur Sensibilisierung der Verantwortlichen beigetragen habe. Außerdem<br />

werden vor allem in den Bereichen Informationsgewinnung und Informationswege aufgrund<br />

der vollständigen Betrachtungsweise von 35 Indikatoren wertvolle neue Erkenntnisse<br />

gewonnen. In den Bereichen Bauordnungs- und Bauplanungsrecht werden vielfach<br />

Vorsorgemöglichkeiten erst erkannt.<br />

Nachfolgend einige Ergebnisse einer alpinen Gemeinde mit 4500 Einwohnern, die durch das<br />

Hochwasser eines Sees sowie durch Wildbäche bedroht ist. Es hat sich dort als zweckmäßig<br />

erwiesen, die Wildbachgefahren dem Szenario Sturzfluten zuzuordnen. Originalzitate aus<br />

dem Auditbericht werden kursiv wiedergegeben:<br />

– In der Gemeinde gibt es zwar bereits eine Beratung der Bauherren, die Gemeinde hat aber<br />

erkannt, dass weit mehr Informationsmaterial zum Thema Bauvorsorge verfügbar ist und<br />

wird „auf der Homepage einen separaten Informationsbereich zum Thema Hochwasserangepasste<br />

Nutzung / Objektschutzmaßnahmen einrichten und dort die einschlägigen<br />

Broschüren gebündelt bereitstellen. Sie wird ihr Beratungsangebot entsprechend<br />

auswei ten.“ Allgemeine Informationen und eine spezielle Bauherrenberatung sind auch<br />

zum Thema Sturzfluten geplant.<br />

– Die Gemeinde erkannte, dass über die HQ 100<br />

-Linie hinaus die Betroffenheit von Gewerbeund<br />

Kurbetrieben nicht bekannt ist. „Die Kommune wird daher prüfen, ob für den Fall von<br />

HQ extrem<br />

weitere Betriebsstätten betroffen sein könnten und deren Notfallpläne anzu passen<br />

wären.“<br />

– Gefahrenbereiche von Sturzfluten sind in der Gemeinde bisher nicht bekannt. Eine<br />

Grundlage im Sinne von Fließwegeplänen und Flächenausweisungen, die potentielle<br />

Gefahrenbereiche aufzeigen, gibt es noch nicht. „Die Kommune wird solche Planungsgrundlagen<br />

(Fließwegepläne) für die 3 Wildbäche erarbeiten (lassen) und Auswertungen<br />

vornehmen, in welchen Bereichen die menschliche Gesundheit akut gefährdet sein kann.“<br />

– Die Gefahrenbereiche der Wildbäche konnten – da nicht bekannt – bisher nicht in<br />

Bauleitplänen dargestellt werden. „Für das Szenario HQ häufig<br />

ist dies voraussichtlich<br />

verzichtbar. Für HQ 100<br />

und HQ extrem<br />

wird die Verwertung der Erkenntnisse in der Bauleitplanung<br />

von der Kommune eingeplant.“<br />

– Die Gemeinde hat außerdem erkannt, dass aufgrund der kleinräumigen Wildbachereignisse<br />

und der sehr kurzen Vorwarnzeiten weder eine zutreffende Hochwasservorhersage noch<br />

eine gegenüber dem derzeitigen Zustand verbesserte Vorwarnung der Bürgerschaft möglich<br />

ist. „In der Kommune wird … die Auswertung von Unwetterwarnungen des Deutschen<br />

Wetterdienstes bereits verfolgt; die Feuerwehr erhält entsprechende Unwetterwarnungen.<br />

Hier besteht ein Vorlauf von etwa 1 Stunde, die verfügbare Zeit ist also nicht ausreichend,<br />

um auch Bürger zu erreichen. Von der Kommune sollte deshalb in allgemeiner Form auf die<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 59


Starkniederschlagsthematik und auch auf die Eigenverantwortung hingewiesen werden<br />

insbesondere in der Form, dass die Bürger die bestehenden Unwetterwarnsysteme<br />

beispielsweise der Versicherer nutzen.“ Da bei diesen Merkmalen keine weitergehende<br />

Vorsorge möglich ist, wurde die volle Punktzahl vergeben, damit nicht der Eindruck<br />

entsteht, dass es Handlungsbedarf geben könnte.<br />

FAZIT<br />

Das Hochwasser-Audit der DWA kann als eine der ersten vorbereitenden Maßnahmen einer<br />

wirkungsvollen Hochwasserrisikomanagementplanung eingesetzt werden. Die Gemeinde<br />

erhält eine individuelle, sorgfältig dokumentierte und strukturierte Defizitanalyse über<br />

35 Indikatoren, bei der auch die individuelle Verwaltungsstruktur berücksichtigt wird. Darin<br />

enthalten ist auch eine Dokumentation aller geplanten Maßnahmen einschließlich eines<br />

Handlungszeitraums und der in der Gemeinde zuständigen Akteure. Analyse und Maßnahmen<br />

befassen sich nicht nur mit Flusshochwasserereignissen sondern auch mit Starkregenereignissen,<br />

die in besiedelten Bereichen immer mehr in den Vordergrund treten.<br />

Die in der Gemeinde geplanten Maßnahmen können nach dem Audit in einem kontinuierlichen<br />

Prozess weiter bearbeitet werden. Die Durchführung des Audits ist ein Beratungsprozess<br />

bei dem die Gemeinde auf neue Handlungsfelder und geeignete Maßnahmen aufmerksam<br />

gemacht wird, über deren Zweckmäßigkeit entscheiden und diese an die individuelle<br />

Situation der Gemeinde anpassen kann. Mit den sog. „Hochwasserampeln“ erhält der<br />

Bürgermeister einen plakativen, aber trotzdem aussagekräftigen Überblick über die Stärken<br />

und Schwächen der Gemeinde beim Risikomanagement und somit auch über die vordringlichsten<br />

Handlungsfelder.<br />

Das „Audit Hochwasser – wie gut sind wir vorbereitet?“ leistet somit auf kommunaler Ebene<br />

einen entscheidenden Beitrag zu einer nachhaltigen Vorsorge.<br />

LITERATUR<br />

- LAWA (1999): Leitlinien für einen zukunftsweisenden Hochwasserschutz<br />

- EU (2007): Richtlinie über die Bewertung und das Management von Hochwasserrisiken<br />

(2007/60/EG)<br />

- DWA (2010): Merkblatt M 551 Audit „Hochwasser – wie gut sind wir vorbereitet“<br />

- DWA (2014 – 2015): Div. Mitteilungen aus dem DWA-Arbeitskreis 4.6 Audit-Hochwasser<br />

60 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Risk-Dialogue – a challenge<br />

Risiko-Dialog als Herausforderung<br />

Rene Graf, Dipl. Ing. ETH¹<br />

ABSTRACT<br />

A successful Risk-Dialogue between experts and persons at risk fosters the quality of decisions<br />

and raises their acceptance. This article contributes to successful dialogues by combining<br />

observations from practice with findings from social sciences. The focus concentrates on<br />

a diverging notion of risk and a tension felt between science and subjective perception.<br />

Risk-experts try to mitigate loss whereas people at risk tend to optimise nature risks and<br />

integral life-opportunities. Their behaviour is influenced by external reasons like change<br />

and their individual risk-mentality. They can't always be convinced by "objective", scientific<br />

findings<br />

as on the one hand these results represent simplifications, on the other hand they don't<br />

correspond to the constructivist perception of the dialogue-partners. The chance for experts<br />

to approve their communication is not to perfect their scientific argumentation. It's the<br />

interest for the actors and their decision-making structure. Empathy cannot be acquired<br />

but in courses: It is necessary to get to know unconversant ways of living directly. Concrete<br />

suggestions can be found at the end of this article.<br />

ZUSAMMENFASSUNG<br />

Ein erfolgreicher Risiko-Dialog zwischen Fachleuten und Betroffenen trägt zur Qualität von<br />

Entscheidungen bei und erhöht deren Akzeptanz. Dieser Beitrag liefert Anregungen zur<br />

erfolgreichen Gestaltung von Dialogen, indem er Beobachtungen aus der Praxis mit Erkenntnissen<br />

aus den Sozialwissenschaften verknüpft. Im Mittelpunkt stehen Überlegungen zu<br />

einem divergierenden Risiko-Begriff und zum Spannungsfeld Wissenschaftlichkeit versus<br />

subjektive Wahrnehmung. Risiko-Experten wollen primär Schäden abwehren, Betroffene<br />

streben nach einer Optimierung von Risiken aus Naturgefahren und Chancen für ihr<br />

integrales Leben. Ihr Verhalten unterliegt äusseren Einflüssen wie dem Wandel sowie einer<br />

persönlichkeitsimmanenten Risikomentalität. "Objektive", wissenschaftliche Erkenntnisse<br />

vermögen nicht immer zu überzeugen, da diese einerseits Vereinfachungen darstellen,<br />

andererseits nicht der konstruktivistischen Wahrnehmung der Gesprächspartner entsprechen.<br />

Das Potenzial für Experten, ihre Chancen im Dialog zu verbessern, liegt somit nicht in der<br />

Perfektionierung ihrer wissenschaftlichen Argumentation, sondern in ihrem Interesse für die<br />

Akteure und deren Entscheidungssituation. Empathie kann aber nicht nur in Kursen erlernt<br />

werden, sondern erfordert auch, sich "live" mit Lebensweisen zu befassen, die einem nicht<br />

vertraut sind. Konkrete Empfehlungen, wie dies geschehen kann, finden sich am Schluss des<br />

Beitrags.<br />

1 Verkehr und Infrastruktur Kanton Luzern, Kriens 2 Sternmatt, SWITZERLAND, rene.graf@lu.ch;rene.graf@riskcoach.ch<br />

IP_<strong>2016</strong>_FP106<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 61


KEYWORDS<br />

riskmanagement; communication; risk perception; social sciences<br />

EINLEITUNG<br />

Fachkräfte für Naturgefahren erarbeiten Grundlagen und Projekte von hoher Qualität. Trotzdem<br />

stossen diese bei Betroffenen zuweilen auf Ablehnung. Bei der Umsetzung fällt deshalb<br />

dem Dialog eine Schlüsselrolle zu. Viele Fachleute meistern diese Klippe gut, anderen bereitet<br />

sie Mühe. In Diskussionen mit Ingenieuren und Naturwissenschaftlern erhielt der Autor den<br />

Eindruck, Erkenntnisse aus den Sozialwissenschaften würden zuwenig wahrgenommen. Oft<br />

ging es dabei um den Begriff "Risiko" oder um den Umgang mit Unschärfen und Unsicherheiten.<br />

In diesem Praxisbeitrag werden alte und neue Erkenntnisse in einen Zusammenhang<br />

gestellt, der einen anregenden Blick über den Zaun der eigenen Kernkompetenzen ermöglicht.<br />

Er soll Naturgefahren-Fachleuten helfen, Gespräche noch erfolgreicher zu gestalten.<br />

BEDEUTUNG DES RISIKO-DIALOGS<br />

Risikomanagement "umfasst die laufende systematische Erfassung und Bewertung von<br />

Risiken sowie die Planung und Realisierung von Massnahmen" (PLANAT 2015).<br />

Die Erfassung von Risiken ist eine Domäne der Fachleute: Die auftraggebende Instanz grenzt<br />

das System ab. Innerhalb dieser inhaltlichen und räumlichen Grenzen folgen Identifikation<br />

und Analyse der Risiken aber fachtechnischen Fragestellungen. Anders die Bewertung der<br />

Risiken: Das Aushandeln der Grenzen kollektiver Akzeptanz - was darf passieren, was nicht?<br />

- ist nicht ein fachtechnischer, sondern ein politischer Vorgang: Individuen und Gruppen<br />

suchen einen Konsens, der die gesellschaftspolitischen Realitäten spiegelt. Bei der Wahl der<br />

Massnahmen kommt den Experten wieder eine stärkere Bedeutung zu: Sie schlagen<br />

mögliche Lösungen vor und liefern Aussagen zu deren Wirkungsgrad, Umweltverträglichkeit,<br />

Kosteneffizienz usw.<br />

Ein fruchtbarer Dialog zwischen Fachleuten und Betroffenen trägt einerseits zur Qualität der<br />

Entscheidungen bei, andererseits erhöht er deren Akzeptanz. In der Schweiz gewährt der<br />

Bund höhere Beiträge an die Erstellung von Schutzbauten, wenn die Bauherrschaft Mehrleistungen<br />

für ein partizipatives Vorgehen nachweisen kann (BAFU 2012).<br />

DIVERGENTE RISIKOBEGRIFFE<br />

Das Bundesamt für Umwelt definiert Risiko als "Grösse und Wahrscheinlichkeit eines<br />

möglichen Schadens" (BAFU 2015). Naturgefahren-Experten sind dafür ausgebildet und<br />

angestellt, Risiken zu vermindern. Aus dieser Optik erscheint Risiko als etwas Unerwünschtes.<br />

Aber Risiko ist auch etwas Essentielles, für das menschliche Leben Unverzichtbares: Was<br />

immer ein Mensch unternimmt kann in einen Erfolg münden oder eben mit einem Schaden<br />

enden. So betrachtet gleicht Risiko einer Währung, die ein Mensch investieren muss, wenn er<br />

etwas erreichen will. Walter Munter, Risikoforscher und Lawinenexperte, sagt, das Risiko sei<br />

dazu da, dass der Mensch seine Fähigkeiten überhaupt entwickeln könne (KNECHT 2015).<br />

Lessing bestätigt: „Es wäre wenig in der Welt unternommen worden, wenn man immer nur<br />

62 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


auf den Ausgang gesehen hätte.“ (LESSING zit. 2014) Diese intuitive Wahrnehmung von<br />

Risiko durch Betroffene erzeugt eine Spannung zum Grundauftrag von Naturgefahren-Fachleuten,<br />

Risiken zu vermindern: Die Betroffenen gehen - oft unbewusst - Wagnisse ein mit<br />

dem Ziel, im Leben zu reussieren.<br />

Zu Wagemut ruft bereits die Bibel auf: Ein Mann geht auf Reisen. Sein Vermögen vertraut<br />

er seinen Dienern an. Nach seiner Rückkehr lobt er die beiden Diener, die etwas gewagt und<br />

sein Geld vermehrt haben. Den dritten Diener jedoch lässt er hart bestrafen, weil dieser kein<br />

Risiko eingehen wollte und das ihm anvertraute Geld vergraben hatte. Zaudern gilt bis heute<br />

als unattraktiv: „Don’t be a Maybe!“ lautet ein Werbespruch für Zigaretten. Ein Gerichts -<br />

urteil bestätigt, dass ein gewisses Risiko "sozialadäquat" sei: Eine Frau war in einem Selbstbedienungsrestaurant<br />

auf einer Kartoffel ausgeglitten war und hatte sich dabei den Arm<br />

gebrochen. Das Gericht wertete den Nutzen einer effizienten Verpflegungsmöglichkeit höher<br />

als das Risiko, sich dabei zu verletzen. (OBERGERICHT KT. ZÜRICH 2014)<br />

Die divergierenden Prämissen wirken sich im Risiko-Dialog aus: Experten tendieren darauf,<br />

den "Preis" möglichst tief zu halten. Betroffene dagegen versuchen, den "richtigen Preis" zu<br />

finden, um Chancen und Risiken über das diskutierte Naturgefahren-Problem hinaus in der<br />

Balance zu halten. Dieses "Optimierungsprogramm" läuft im Hintergrund immer mit - unbewusst,<br />

aber mit einer dem Leben verbundenen Kraft.<br />

EINFLÜSSE AUFS RISIKOVERHALTEN<br />

Ein Individuum verhält sich nicht in jeder Situation gleich risikofreudig. Wissenschaftler<br />

weisen aber auf Einflüsse hin, die die Risikofreudigkeit grundsätzlich beeinflussen können:<br />

Einen möglichen Einfluss von aussen benennt der Historiker Philipp Blom: Wandel kann<br />

dazu führen, dass das Leben mit einer neuen, existenziellen Unsicherheit verbunden wird.<br />

Blom erklärt dies am Beispiel eines südfranzösischen Bauern anfangs des 20. Jahrhunderts:<br />

Dieser hat den gleichen Beruf wie sein Vater und sein Grossvater. Er heisst gleich, wohnt im<br />

selben Haus, gehört derselben Konfession an und hört auf die gleichen Respektpersonen.<br />

Die wirtschaftliche Lage zwingt ihn, nach Paris zu ziehen und Fabrikarbeiter zu werden.<br />

Damit verliert er den vertrauten Boden unter seinen Füssen. Jeder Entscheid wird damit<br />

zu einem Wagnis (BLOM 2014).<br />

Auf persönlichkeitsimmanente Einflüsse verweist Michael Hampe. In Anlehnung an den<br />

Philosophen Nicholas Rescher beschreibt er drei Mentalitäten, die bereits mit einfachen<br />

psychologischen Tests unterscheidbar seien (ARNSWALD/SCHÜTT 2011):<br />

– Risiko-Vermeider betrachten Risiken als Gefahren, die man neutralisieren muss.<br />

Diese Haltung deckt sich oft mit dem Berufsverständnis von Naturgefahren-Experten.<br />

– Risiko-Kalkulierer versuchen, Gefahren gegen Nutzen abzugleichen.<br />

– Risiko-Sucher sehen im Unvorhersehbaren Chancen für wünschenswerte Veränderungen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 63


"Der springende Punkt bei Hampes Überlegungen ist, dass jede der drei Mentalitäten für sich<br />

vernünftig ist, dass sie einander aber irrational erscheinen, wenn man sie (…) miteinander<br />

konfrontiert." (TOBLER 2014)<br />

Daraus folgert für den Dialog:<br />

– Kommt z.B. die Information, in einem gefährdeten Gebiet zu leben, überraschend, können<br />

die Betroffenen dies als Wandel ihrer Lebensbedingungen empfinden. Ihr Verhalten kann<br />

von einer Verunsicherung geprägt werden, die über das formale Thema eines Gesprächs<br />

hinaus reicht.<br />

– Treten Differenzen auf, sind diese möglicherweise nicht (nur) sachlich bedingt, sondern<br />

auch durch Persönlichkeitsmerkmale oder das Berufsverständnis von Experten.<br />

Im Gespräch ist es deshalb wichtig, auf Hinweise zu achten, wonach das Verhalten der<br />

Betroffenen möglicherweise nicht primär von Sachfragen geprägt ist sondern durch andere,<br />

der kognitiv-rationalen Wahrnehmung schwer zugängliche Einflüsse.<br />

WISSENSCHAFTLICHKEIT VS. ERLEBEN<br />

In langjähriger Berufstätigkeit traf der Autor immer wieder Fachleute, die Mühe hatten,<br />

natur- und ingenieurwissenschaftlich hergeleitete, aber mit Unschärfe behaftete Erkenntnisse<br />

so umzusetzen, dass sie als Diskussionsbasis taugten. So weigerte sich ein Experte, die Pixel<br />

einer Murgangmodellierung zu Wirkungsräumen zu arrondieren: Eine derart vereinfachte<br />

Intensitätskarte würde die gewonnenen Erkenntnisse nicht genau genug wiedergeben.<br />

Verwandt damit ist das Festhalten an hochexakten hydrologischen Kennziffern oder<br />

metergenau abgegrenzten Gefahrengebieten. Ein solches berufliches Selbstverständnis deckt<br />

sich mit der Ansicht von Nobelpreisträger Francis Crick, wonach die naturwissenschaftlich-experimentelle<br />

Methodik „die einzig sinnvolle Herangehensweise an das Bewusstsein“<br />

sei. Die Naturwissenschaft habe noch immer Recht behalten. (BECKER 2009) Naturwissenschaftlich-mathematische<br />

Methoden sind unverzichtbar, Statistik etwa zur Auswertung von<br />

Messreihen, Algorithmen für Modellierungen. So gewonnene Erkenntnisse müssen aber<br />

immer kritisch gewürdigt werden. Internetpionier Jaron Lanier: „Wir Menschen sind Genies<br />

darin, uns durch den Gebrauch von Computern verwirren zu lassen. Das beste Beispiel dafür<br />

ist, dass Computer so tun, als wäre Statistik eine adäquate Beschreibung der Realität. (…)<br />

Es gibt eine allgemeine statistische Vorhersehbarkeit, aber sie gilt nur für begrenzte Zeitabschnitte,<br />

und ihre Beschränkungen lassen sich nicht universell vorhersagen.“ (LANIER 2014)<br />

Mathematisch-naturwissenschaftliche Methoden helfen, eine Problematik besser zu verstehen.<br />

„Damit wird zwar immer feiner berechenbar, was berechenbar ist. Aber dem Erleben des<br />

Einzelnen kommt man damit nicht wirklich näher“ betont Psychiatrieprofessor Daniel Hell<br />

(HELL 2014). Ein Beispiel: 1999 hatten Murgänge in Sörenberg markante Schäden verursacht.<br />

An einer Versammlung wurde den Betroffenen erläutert, was über die Entstehung der<br />

Murgänge bekannt war, wie Fachleute die weiteren Risiken einschätzten und was dagegen<br />

unternommen werden könnte. Unmittelbar danach sprachen zwei Teilnehmer den Autor an.<br />

64 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Der eine bezeichnete die Einschätzung der Risiken als völlig übertrieben, der andere die<br />

Bedrohung als riesig. Beide hatten zuvor die identischen, wissenschaftlich untermauerten<br />

Informationen erhalten. Es zeigt sich ein „Spannungsfeld zwischen der räumlichen Konkretheit<br />

von Gefahrenzonen oder Katastrophenorten, und andererseits der Ortlosigkeit des<br />

«gefühlten» Risikos.“ (Müller-Mahn 2009)<br />

Verstehen und Erleben prägen ein Gespräch mit. Das Erleben lässt sich aber viel schwieriger<br />

in Worte fassen oder darstellen als Ergebnisse wissenschaftlicher Analysen. Im Dialog muss<br />

auf beides geachtet werden, gleichzeitig und gleichwertig.<br />

UNUMGÄNGLICHE VEREINFACHUNGEN<br />

Crick betont, um zu (richtigen) Erkenntnissen zu gelangen müsse reduktionistisch gearbeitet<br />

werden (BECKER 2009). Reduktionisten glaubten aber, „dass auch die komplexesten<br />

Systeme aus atomaren und subatomaren Entsprechungen von Federn, Zahnrädchen und<br />

Hebeln bestehen, die die Natur auf unendliche, vielfältige, geniale Art kombiniere“, so der<br />

Psychologe John Briggs und der Physiker David Peat. (Briggs/Peat 1993) Wer ein System<br />

vereinfacht, verzichtet auf Teile desselben: Ein Bohrkern gibt Auskunft über einen Punkt,<br />

aber nicht über eine Fläche. Karten und Modelle stellen reduzierte Abbilder einer komplexen<br />

Wirklichkeit dar. Reduktionistische Methoden sind unverzichtbar. Die Vereinfachungen<br />

können aber dazu führen, einem Argument mehr Gewicht beizumessen als ihm bei einer<br />

ganzheitlichen Betrachtung zufallen würde. Reduktionistisch erarbeitete Erkenntnisse<br />

müssen entsprechend achtsam vorgelegt werden. Eine hilfreiche Grundhaltung beschreibt<br />

der Ökonom Thomas Piketty: „Ökonomen verfügen nicht über unfehlbares Wissen. Aber sie<br />

haben mehr Zeit als andere Bürger, über wirtschaftliche Probleme nachzudenken. (…) Mein<br />

wichtigstes Ziel ist es, einen nützlichen Diskussionsbeitrag zu leisten." (BINSWANGER 2014)<br />

OBJEKTIVITÄT VS. KONSTRUKTIVISMUS<br />

Gemäss dem Geographen Müller-Mahn stehen sich „in der Vielfalt von Auffassungen über<br />

den Bedeutungsgehalt von Risiko (…) zwei erkenntnistheoretische Grundpositionen"<br />

diametral gegenüber, "die objektivistische und die konstruktivistische" (Müller-Mahn 2009).<br />

Objektivistische Ansätze lägen der gesamten natur- und ingenieurwissenschaftlichen<br />

Risikoforschung zu Grunde. "Risiko bezieht sich demnach auf ein von aussen (aus der Natur)<br />

über die betroffenen Menschen oder Gesellschaften hereinbrechendes Ereignis, das über den<br />

damit verbundenen Schaden gesellschaftlich relevant wird. An dieser Stelle wird der<br />

diametrale Gegensatz der sozialwissenschaftlichen Perspektiven erkennbar, die Risiko als<br />

etwas sehen, das nicht von aussen bzw. aus «der Natur» heraus den Menschen überfällt,<br />

sondern das letztlich von ihm selbst durch seine Wahrnehmung und sein Handeln hergestellt<br />

wird." (MÜLLER-MAHN 2009)<br />

Die Neurobiologen Humberto Maturana und Francisco Varela zeigen auf, dass Menschen,<br />

die dasselbe anschauen, unterschiedliche „Wirklichkeiten“ wahrnehmen. Was das Auge sieht<br />

führt nicht zu einer 1:1-Abbildung im Hirn. Die Projektion eines Bildes auf die Netzhaut<br />

„wirkt vielmehr wie eine Stimme (Perturbation), welche zu den vielen Stimmen bei einer<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 65


heftigen Diskussion in einer grossen Familie hinzukommt.“ (MATURANA/VARELA 1987)<br />

Die anderen Stimmen sind all die Assoziationen, Hoffnungen, Ängste usw., die sich bereits<br />

im Hirn tummeln, „wobei der schliesslich erreichte Konsens (…) nicht Ausdruck dessen ist,<br />

was die Familienmitglieder im einzelnen vorgebracht haben.“ Die beiden Neurobiologen<br />

schliessen daraus: „Das Phänomen der Kommunikation hängt nicht von dem ab, was<br />

übermittelt wird, sondern von dem, was im Empfänger geschieht. Und dies hat wenig zu tun<br />

mit «übertragener Information».“<br />

Auch die Psychologen Arist von Schlippe und Jochen Schweitzer halten „Wirklichkeit als<br />

nicht loslösbar vom Beobachter“. Wenn aber „ein Sachverhalt aus unterschiedlichen<br />

Perspektiven unterschiedlich gesehen werden kann und [dies] zu unterschiedlichen Konsequenzen,<br />

Urteilen, Entscheidungen führt, dann verliert die Sache (selber) zunehmend an<br />

Bedeutung. (…) Statt dessen verlagert sich das Interesse auf die Art und Weise, wie soziale<br />

Gruppen die Sache sehen, benennen und kategorisieren.“ (VON SCHLIPPE/SCHWEITZER<br />

1998)<br />

Müller-Mahn folgert für den Dialog: "Von einem solchen konstruktivistischen Risikoverständnis<br />

ausgehend muss sich das (…) Interesse auf die Akteure und ihre Entscheidungssituation<br />

richten, d.h. auf die der Entscheidung zugrunde liegenden Kenntnisse, Erfahrungen, Wert -<br />

massstäbe und Bedürfnisse (…) Ziel dieser subjekt- und handlungszentrierten Ansätze muss<br />

es daher sein, die Handlungslogiken der Akteure im Kontext ihrer konkreten Handlungs- und<br />

Lebensbedingungen zu verstehen.“ (MÜLLER-MAHN 2009)<br />

EMPATHIE IST LERNBAR<br />

Matthias Haller, Gründer der Stiftung Risiko-Dialog, hält fest, Risiko bürge „für ein Spannungsfeld,<br />

in dem objektive Daten, aber auch emotionale Reaktionen angelegt sind.“<br />

Der Risiko-Dialog werde so zu einer „Auseinandersetzung um mögliche Zukünfte, von den<br />

einen als Chance, von den anderen ebenso sehr als Gefahr wahrgenommen. Damit ist<br />

Risikodialog schon im Ursprung Konfliktmanagement und Mediation.“ (HALLER 2014)<br />

Naturwissenschaftler Matthias Holenstein ergänzt: „Auch die Empathie spielt in der Auseinandersetzung<br />

eine wichtige Rolle.“ (HOLENSTEIN 2008)<br />

Empathie bezeichnet die Fähigkeit, sich in Lebensentwürfe, Empfindungen und Verhaltensweisen<br />

einzufühlen. Jede Fachperson führt ihr eigenes, vielseitiges Leben und lernt dabei<br />

vieles über das Mensch-Sein. Eine besondere Herausforderung stellt dabei das dar, was einem<br />

nicht à priori vertraut ist. Es macht deshalb Sinn, sich in Felder zu begeben, in denen man<br />

mehr erfährt über Bedingungen, Gefühle und Denkweisen, die einem auf Grund der eigenen<br />

Lebensführung fremd sind. Die Philosophin Susan Neiman empfiehlt Reisen, um sich und<br />

andere besser kennenzulernen. Vom Blumenbinder zu lernen unten auf dem Markt.<br />

Oder schlicht Orte zu meiden, wo man die schlauste Person im Raum ist. (SCHMID 2015)<br />

Auch ein Blick auf das eigene Leseverhalten mag sich lohnen. Gut belegt sind Unterschiede<br />

zwischen den Geschlechtern: So seien männliche Jugendliche "eher an sachbezogener<br />

66 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Information interessiert, während die Mädchen (…) fiktionale Geschichten bevorzugen.<br />

Den Mädchen fällt es leichter, sich lesend in die Erfahrung anderer Menschen einzuleben."<br />

(HURRELMANN 1994) Der erwachsene Mann meide "die Lektüre dessen, was die Leseforschung<br />

«human interest stories» nennt und was Frauenlektüre ist. Er wendet sich stattdessen<br />

Fachzeitschriften und Tageszeitungen zu, die sich mit seiner Berufswirklichkeit beschäftigen."<br />

Die literarische Autorität des erwachsenen Mannes sei der Geschichts- und Naturwissenschafter<br />

(SCHLAFFER 2010). Und "Mädchen bevorzugen Belletristik (…) sowie Problemliteratur.<br />

Jungen dagegen lesen am liebsten Sachbücher" (KATZ 1994)<br />

Diesen allgemeinen Aussagen steht die Streubreite des individuellen Verhaltens gegenüber.<br />

Zwei Aussagen sind dennoch bedenkenswert:<br />

– Mit der Lektüre von Belletristik verbinden Fachleute Begriffe wie "human interest stories"<br />

und "sich in die Erfahrung anderer Menschen einleben". Romane ermöglichen es demnach,<br />

sich in das Wesen von Menschen einzufühlen, die den Lesenden grundsätzlich fremd<br />

sind.<br />

– Frauen wenden sich diesem Genre häufiger zu als Männer. In den Ingenieurwissenschaften<br />

sind sie aber in der Unterzahl. In einem schweizerischen Forschungsprogramms wurde<br />

festgestellt: "So werden zum Beispiel (…) nur wenige Frauen Ingenieurinnen.“ (Maihofer<br />

2013)<br />

EMPATHIE IN DER PRAXIS<br />

2010-13 erarbeiteten alle 61 Feuerwehren des Kantons Luzern eine Notfallplanung.<br />

Dabei wurden sie von Naturgefahren-Fachleuten unterstützt. Bewerber für diese Mandate<br />

mussten sich ausweisen über persönliche Erfahrungen im Sozialen Feld Feuerwehr oder<br />

einem vergleichbaren Sozialen Feld. Die Ausschreibung verwies auf das Konzept von Habitus<br />

und Sozialen Feldern des Soziologen Pierre Bourdieu. Vom Experten, der angab, er sei<br />

Spielführer eines Eishockeyvereins der 3. Liga, durfte angenommen werden, dass er mit<br />

dem Habitus typischer Feuerwehrleute vertraut war und es ihm leicht fallen würde, sich<br />

mit diesen zu verständigen. Ein anderer jedoch empfahl sich für die Zusammenarbeit mit<br />

der Feuerwehr mit der Referenz, dem Komitee des Rotary Clubs anzugehören… Das Projekt<br />

„Notfallplanungen“ wurde ein voller Erfolg. Die Feuerwehren nannten dafür zwei Gründe:<br />

– die Bereitschaft, den Erfahrungen der Feuerwehr aus deren Einsätzen das gleiche Gewicht<br />

beizumessen wie den Gefahrenkarten<br />

– das "unakademische" Auftreten der Experten<br />

FOLGERUNGEN<br />

Natur- und ingenieurwissenschaftliche Methoden ermöglichen es, einen Dialog mit Hilfe<br />

analytisch zugänglicher Grundlagen anzustossen. Betroffene werden darauf aber nicht immer<br />

"rational" reagieren:<br />

– Ihre Wahrnehmung ist konstruktivistisch. Damit entzieht sie sich zumindest teilweise<br />

einem reduktionistisch-logischen Zugriff.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 67


– Ihre Haltung gegenüber dem Risiko ist zwiespältig: Im Fokus steht nicht nur ein möglicher<br />

Schaden, sondern auch eine "Währung", mit der im Leben wichtige Ziele "erkauft" werden<br />

können.<br />

– Ihr Verhalten wird von schlecht erkennbaren Einflüssen mitgeprägt - externen, aber auch<br />

persönlichen.<br />

Das Potenzial für Experten, ihre Chancen im Dialog zu verbessern, liegt somit nicht in der<br />

Perfektionierung ihrer hochwertigen wissenschaftlichen Argumentation. Gefragt ist vielmehr<br />

ein wirkungsvoller Einsatz derselben im Gespräch mit Menschen, deren Haltungen und<br />

Verhalten einem nicht immer vertraut sind.<br />

EMPFEHLUNGEN FÜR DEN RISIKO-DIALOG<br />

Ein Weg, Erkenntnisse klar darzulegen und gleichzeitig Unsicherheiten zu benennen,<br />

besteht darin, die Aussagen entlang der folgenden Fragen zu kategorisieren:<br />

1. Was "wissen" wir? Worauf basiert dieses Wissen?<br />

2. Worüber bestehen Vermutungen? Worauf stützen sich diese?<br />

3. Wo tappen wir im Dunkeln?<br />

4. Was wird unternommen, um Erkenntnislücken zu schliessen?<br />

Schwieriger ist es - entsprechend der ganzheitlichen Art der Herausforderung - Empfehlungen<br />

abzugeben, wie die Empathie gegenüber Dialogpartnern verbessert werden kann: Deren<br />

Verhalten wird beeinflusst wird von einer "unwissenschaftlichen", aber stark lebensverbundenen<br />

Wahrnehmung von Risiko, von sich wandelnden Lebensbedingungen und einer<br />

persönlichen Risiko-Mentalität. Einerseits bietet sich der Besuch entsprechender Kurse an.<br />

Die Herausforderung besteht aber nicht primär darin, mehr über das Funktionieren von<br />

Menschen zu wissen, sondern sich noch besser in diese einfühlen zu können. Ein Weg dazu<br />

kann sein, dorthin zu gehen, wo es uns nicht in erster Linie hinzieht: Physisch, z.B. auf<br />

Reisen oder an Anlässe, die ausserhalb des eigenen Erfahrungsbereichs liegen. Oder virtuell<br />

durch ein entsprechendes Leseverhaltens oder die Auswahl von Filmen, die bisher nicht zu<br />

den Favoriten zählten.<br />

Institutionen können sich verbessern, indem sie vermehrt sozialwissenschaftliche Kompetenzen<br />

aufbauen, theoretische und anwendungsbezogene. Mögliche Wege sind:<br />

– das Weiterbildungskonzept anpassen<br />

– den Mitarbeitenden die nötigen Ressourcen zur Verfügung stellen<br />

– den Anteil an Sozialwissenschaftlern und Frauen erhöhen<br />

REFERENCES<br />

- Arnswald, U./Schütt H.-P. (Hg. 2011): Rationalität und Irrationalität in den Wissenschaften<br />

- BAFU, Bundesamt für Umwelt (2011). Fachspezifische Erläuterungen zur Programmvereinbarung<br />

im Bereich Schutzbauten und Gefahrengrundlagen.<br />

68 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- BAFU, Bundesamt für Umwelt (2015): Glossar zu EconoMe 3.0.<br />

http://www.econome.admin.ch/glossar.php<br />

- Becker, P. (2009). In der Bewusstseinsfalle?<br />

- Binswanger, D. (2014). Triumph des Faktenhubers. Das Magazin 18/2014<br />

- Blom P. (2014). Was hat 1914 mit unserer Zeit zu tun? Interview Das Magazin 1-2/2014<br />

- Briggs, J., Peat F.D. (1993): Die Entdeckung des Chaos<br />

- Haller, M. (2014). Fokus Risiko: Gefahr oder Chance? riskBRIEF 1/2014<br />

- Hell, D. (2014). Nicht das Gehirn ist bedrückt, sondern der Mensch. Tages-Anzeiger<br />

15.3.2014 (Hervorhebung durch den Autor)<br />

- Holenstein, M. (2008). Reden, wie darüber geredet wird. Interview Schweizerische<br />

Technische Zeitschrift Nr.10/2008<br />

- Hurrelmann, B. (1994):Leseförderung. Praxis Deutsch, H 127<br />

- Katz, D. (1994). Leseverhalten von Berufsschülern.<br />

- Knecht, N. (2015). Risiko ist ein Menschenrecht. Tages-Anzeiger 29.1.2015<br />

- Lanier, J. (2014). Wir geben die Verantwortung ab. Tages-Anzeiger 13.10.2014<br />

- Lessing, G.E. (zit. 2014): zitiert in riskBRIEF 1/2014<br />

- Maihofer A. et al (2013): Kontinuität und Wandel von Geschlechterungleichheiten<br />

in Ausbildungs- und Berufsverläufen junger Erwachsener in der Schweiz.<br />

- Maturana, H. R., Varela F. J. (1987): Der Baum der Erkenntnis.<br />

- Müller-Mahn, D. (2007): Perspektiven der geografischen Risikoforschung. Geographische<br />

Rundschau 59/10<br />

- Obergericht Kt. Zürich (2014): Beschluss vom 8.8.2014<br />

- PLANAT, Nationale Plattform Naturgefahren (2015). Zyklus: Risikomanagement.<br />

http://www.planat.ch/de/fachleute/risikomanagement/<br />

- Schlaffer, H. (2010): Lektüre und Geschlecht. Neue Zürcher Zeitung 31.7. 2010<br />

- Schmid, B. (2015). Werdet erwachsen! Das Magazin Nr. 7/2015<br />

- Tobler, A. (2014). Unser Risiko gib uns heute. Tages-Anzeiger 8.5.2014<br />

- Von Schlippe, A., Schweitzer, J. (1998). Lehrbuch der systemischen Therapie und Beratung<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 69


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Examples of urban Flood Risk Management in Styria<br />

Hochwasserrisikomanagement in städtischen<br />

Bereichen – Beispiele aus der Steiermark<br />

Rudolf Hornich, Dipl.-Ing.¹; Tanja Schriebl, Dipl.-Ing.²<br />

ABSTRACT<br />

Under the pressure of demographic, infrastructural and spatial problems the issue of flood risk<br />

has often been dodged in urban areas; therefore the damage potential has risen enormously<br />

in some cities. The flooding of many streams in the last years caused great damage in urban<br />

areas. Beside technical flood protection measures non-structural measures are to be adopted<br />

directly at the site of the structures and further detailed alert and intervention plans are to be<br />

worked out for civil defence forces. Particular attention is being devoted to public relations.<br />

Watercourses were straightened, narrowed or forced into canals and the urgently-needed<br />

retention spaces were sacrificed for the sake of other uses. The room required to safely receive<br />

the incoming floodwaters is, therefore, no longer there. The number and intensity of flash<br />

and pluvial floods as consequences of heavy rain events is increasing. This means a need for<br />

new tools and adaptation measures. Using the example of 4 cities the strategy in urban flood<br />

risk management in Styria shall be illustrated.<br />

ZUSAMMENFASSUNG<br />

Siedlungsdruck, Infrastruktur- und Standortprobleme führten dazu, dass man in urbanen<br />

Lebensräumen der Thematik Hochwassergefährdung vielfach ausgewichen ist. Dadurch ist<br />

das Schadenspotential in einigen Städten enorm gestiegen. Hochwasserereignis an mehreren<br />

Bächen haben in den letzten Jahren enorme Schäden in städtischen Bereichen verursacht.<br />

Neben technischen Schutzmaßnahmen sind verstärkt nicht technische Maßnahmen<br />

anzuwenden und darüber hinaus detaillierte Alarm- und Einsatzpläne auszuarbeiten.<br />

Besonderes Augenmerk ist der Öffentlichkeitsarbeit zu widmen. Bachläufe wurden begradigt,<br />

eingeengt und in Kanäle eingeleitet und die erforderlichen Retentionsräume wurden für<br />

andere Zwecke geopfert. Die erforderlichen Räume zur gesicherten Abfuhr von Hochwässern<br />

sind nicht mehr vorhanden. Die Anzahl und die Intensität der Starkregenereignisse ist<br />

zunehmend, diese bedeutet die Notwendigkeit für neuen Strategien und Anpassungsmassnahmen.<br />

Anhand der Beispiele von 4 Städten wird die Strategie des urbanen Hochwasserrisikomanagements<br />

in der Steiermark dargestellt.<br />

KEYWORDS<br />

flood risk management, flood protection, river restoration, public relations, urban ares<br />

1 Office of the Styrian Government, Graz, AUSTRIA, rudolf.hornich@stmk.gv.at<br />

2 Office of the Styrian Government, Department 14<br />

70 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP093


EINLEITUNG<br />

Siedlungsdruck, Infrastruktur- und Standortprobleme in Verbindung mit langen Perioden<br />

ohne markante Hochwasserereignisse Ende des letzten Jahrhunderts und das Fehlen von<br />

entsprechenden Unterlagen über Hochwasserabflussbereiche führten dazu, dass bei städtebaulichen<br />

Planungen die Thematik Hochwassergefährdung vielfach vernachlässigt wurde.<br />

Versäumnisse auf diesem Gebiet haben im Ereignisfall verheerende Folgen nach sich gezogen.<br />

Das Schadenspotential ist in einigen dicht besiedelten Gemeinden in den letzten Jahren<br />

enorm gestiegen. In der Steiermark sind davon exemplarisch die Städte Feldbach, Voitsberg<br />

und Bad Radkersburg, besonders aber die Hauptstadt Graz betroffen. Anhand dieser Beispiele<br />

sollen die Schwierigkeiten und Probleme und mögliche Lösungen zur Thematik „Hochwassermanagement<br />

im städtischen Bereich“ unter Berücksichtigung der Anforderungen der<br />

Hochwasserrichtlinie (RL 2007/60/EG) und der Wasserrahmenrichtlinie (2000/60/EG)<br />

dargestellt werden.<br />

Abbildung 1: Projektgebiete - Übersichtskarte<br />

PROBLEMSTELLUNG<br />

Starkregenereignisse verursachten in den letzten Jahren Überflutungen und große Schäden<br />

in urbanen Bereichen. Durch das immer weitere Heranrücken von Bebauungen und<br />

höherwertigen Nutzungen an die Fließgewässer sind oft in den dicht bebauten Unterlaufabschnitten<br />

erforderliche Abflussräume für Hochwasser kaum mehr vorhanden. Die Abflussquerschnitte<br />

nehmen eher ab als zu. Der für die schadlose Abfuhr von Hochwässern<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 71


enötigte Platz ist zumeist bebaut und somit nicht mehr verfügbar. Verrohrungen, Überdeckungen<br />

und das Verlegen von Gerinnen aus der Tiefenlinie haben zusätzlich dazu geführt,<br />

dass der Hochwasserabfluss vom Bachbett völlig abgetrennt ist. Die Wassermassen fließen<br />

unkontrolliert innerhalb des Siedlungsgebietes ab und verursachen große Schäden. Technische<br />

Schutzmaßnahmen sind auf Grund beengter Platzverhältnisse und fehlender Räume<br />

oft nicht ausreichend, um einen adäquaten Hochwasserschutz herzustellen.<br />

STADT GRAZ, SACHPROGRAMM HOCHWASSER GRAZER BÄCHE<br />

Im Stadtgebiet von Graz findet man über 50 Bäche vor, wobei 10 davon als Wildbäche<br />

ausgewiesen sind. Zahllose historische Hochwasserereignisse sind in Graz überliefert.<br />

Nach der Hochwasserkatastrophe 1975 wurden erste konkrete Hochwasserschutzkonzepte<br />

erarbeitet. Eine Hochwasserabflussuntersuchung im Jahre 1997 mit Ausweisung der<br />

Überflutungsflächen für das 30- und 100-jährliche Hochwasser für die Stadtbäche hat<br />

ergeben, dass rund 1000 Objekte hochwassergefährdet sind.<br />

Beim Hochwasser am 21. August 2005 haben die Überflutungen an fast allen Grazer Bächen<br />

ein derartiges Ausmaß erreicht, dass für das Stadtgebiet Katastrophenalarm ausgelöst wurde.<br />

Hunderte Keller und Erdgeschoße sowie mehrere Tiefgaragen wurden unter Wasser gesetzt.<br />

Die Schäden betrugen rund 5 Millionen Euro. Im Sommer 2009 musste wiederum zweimal,<br />

im Juli und im August, Hochwasserkatastrophenalarm ausgerufen werden.<br />

In enger Kooperation zwischen der Stadt Graz, dem Land Steiermark und Bundesministerium<br />

für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft wurde im Jahr 2006 ein<br />

gemeinsames Strategiepapier „Sachprogramm Grazer Bäche“ ausgearbeitet. Unter Berücksichtigung<br />

der Erfordernisse der Fachbereiche Raumordnung, Stadtentwicklung, Gewässerökologie,<br />

Siedlungswasserwirtschaft und Katastrophenschutz wurde das vordringliche Ziel<br />

mit dem „Erreichen eines nachhaltigen Hochwasserschutzes für die gefährdeten Objekte<br />

und Infrastruktureinrichtungen innerhalb der Stadt Graz“ formuliert.<br />

Der vorgeschlagene Maßnahmenkatalog beinhaltet:<br />

– die Freihaltung und zusätzliche Schaffung von Überflutungsräumen<br />

– die Verbesserung der Abflussleistungen durch Querschnittserweiterungen und Aufweitungen<br />

– die Errichtung von 29 Hochwasserrückhaltebecken<br />

– die Erreichung des guten morphologischen Zustandes bzw. des guten ökologischen<br />

Potentials.<br />

Trotz optimaler Ausnutzung der örtlichen Möglichkeiten und umfangreichen Ankauf von<br />

Grundflächen, ist es nicht möglich, für alle gefährdeten Siedlungen einen Hochwasserschutz<br />

bis zu einem HQ 100<br />

zu erreichen. Im Vergleich zum Ist-Zustand wird jedoch überall eine<br />

deutliche Verbesserung erzielt. Für jene Abschnitte, wo mit technischen Schutzmaßnahmen<br />

kein ausreichender Hochwasserschutz zu erzielen ist, sind ergänzend Objektschutzmaßnahmen<br />

vorzusehen und zusätzlich detaillierte Alarm- und Einsatzpläne für die Einsatzkräfte<br />

auszuarbeiten.<br />

72 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 2: Petersbach Stadt Graz, Mittellauf nach Umsetzung der Hochwasserschutzmaßnahmen<br />

Bei der Umsetzung von Hochwasserschutzmaßnahmen im Stadtgebiet ist man mit einer<br />

Unzahl von Problemen konfrontiert. Neben der Koordination verschiedener Leitungsträger<br />

oder der Aufrechterhaltung der Verkehrsströme stellen die Verhandlungen für die Bereitstellung<br />

der erforderlichen Grundflächen die größte Herausforderung dar. Ein besonderes<br />

Augenmerk wird daher der Information und der Beteiligung der Öffentlichkeit gewidmet.<br />

Durch Informationsveranstaltungen, Webseiten (z.B. www.wasser.graz.at) und Broschüren<br />

soll der Bevölkerung aufgezeigt werden, dass in Ergänzung zu den Schutzmaßnahmen durch<br />

die Öffentliche Hand auch jeder Betroffene in Eigenverantwortung seinen Beitrag leisten<br />

kann (muss), indem er an passive Schutzmaßnahmen wie hochwasserangepasstes Bauen,<br />

Leben und Wohnen, Einsatz mobiler Elemente, Hochwasserschadensversicherungen und<br />

persönliche Notfallpläne denkt und dafür auch die notwendigen Vorbereitungen trifft.<br />

Die Gesamtkosten für die Umsetzung im Rahmen eines Zehnjahres-Bauprogrammes (2006<br />

– 2015) wurden auf der Preisbasis August 2006 mit € 65,0 Millionen geschätzt. Die Finanzierung<br />

wird vom Bund, dem Land Steiermark und der Stadt Graz getragen.<br />

Bisher wurden rund 75% der geplanten Maßnahmen (Hochwasserrückhaltebecken und<br />

Linearausbau) umgesetzt. Diese haben sich bereits bei einigen Hochwasserereignissen positiv<br />

bewährt und größere Schäden verhindert. Bei allen Projekten konnten auch ökologische<br />

Verbesserungen erzielt werden. An mehreren Stellen wurden Zugänge zum Gewässer<br />

ermöglicht, um der Bevölkerung auch neue Freizeit- und Erholungsräume zu erschließen.<br />

Für die potentiell signifikanten Hochwasserrisikogebiete im Stadtgebiet von Graz wurden<br />

2014 in Entsprechung der EU-Hochwasserrichtlinie 2007/60/EG Hochwasserrisikomanagementpläne<br />

erstellt.<br />

Neben den strukturellen Maßnahmen, die im Sachprogramm bereits definiert wurden, liegen<br />

Schwerpunkte auch auf nichtstrukturellen Maßnahmen. Als Teil der Öffentlichkeitsarbeit<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 73


wurde gemeinsam mit Vertretern der Bürgerinitiativen eine Broschüre mit dem Titel<br />

„Hochwasser – ich sorge vor“ (www.katastrophenschutz.graz.at) erstellt. Die Feuerwehr der<br />

Stadt Graz hat ein eigenes Hochwasser App entwickelt und neue „Katastrophenschutzpläne<br />

Hochwasser“ ausgearbeitet.<br />

STADT FELDBACH, HOCHWASSERSCHUTZ RAAB - STÄDTEBAULICHE AKZENTE<br />

Die Ergebnisse einer Hochwasserabflussuntersuchung an der Raab im Jahre 2008 haben<br />

gezeigt, dass der bestehende Hochwasserschutz in der Stadt Feldbach auf Grund von<br />

geänderten Hydrodaten und geänderten topografischen Verhältnissen für ein 100-jährliches<br />

Ereignis - mit einer Abflussmenge von 260m³/s - nicht mehr ausreichend war. Daher waren<br />

neue Ufermauern zu errichten und die vorhandenen Dämme zu erhöhen bzw. an den Stand<br />

der Technik anzupassen. Zur Verbesserung der Standsicherheit und zur Minimierung der<br />

Durchströmung im Hochwasserfall wurden Stahlspundwänden in die Dämme eingerammt.<br />

In Verbindung mit der Optimierung des Hochwasserschutzes war es aber auch ein Ziel des<br />

Projektes, den Fluss im Stadtgebiet von Feldbach mit Freizeit- und Erholungsbereichen<br />

auszustatten und aufzuwerten. Die alte Raabregulierung mit monotonen und befestigten<br />

Trapezprofilen war nur auf die Hochwasserabflussleistung ausgelegt – eine Naherholungsfunktion<br />

war nicht gegeben. Flussmorphologische und ökologische Verbesserungen wurden<br />

durch Auflösung der Profilmonotonie in Form von lokalen Aufweitungen, Einbringung von<br />

Totholz und Strukturierung der Böschungsbereiche sowie dem Umbau der vorhandenen<br />

Sohlstufen erreicht.<br />

Hauptziel des Projektes war die Erschließung des Flussraumes für die Bevölkerung und<br />

Verbesserung der Wahrnehmung des Flusses als attraktives städtisches Element. Dazu wurde<br />

das Gehwege- und Radwegenetz an den Fluss und in die Böschungsbereiche der Raab verlegt<br />

und Furten aus Betonelementen errichtet, die an zwei Stellen im Stadtgebiet eine Querung<br />

des Flusses, aber auch eine Aufenthaltsmöglichkeit am Fluss bieten. Ab dem HQ 1<br />

werden die<br />

Abgänge zum Fluss durch die Feuerwehr gesperrt. Eine Plattform, die im Bereich eines Cafés<br />

oberhalb des Hochwasserabflussraumes in das Flussprofil ragt, soll den Aufenthalt am Fluss<br />

attraktivieren.<br />

Als Beitrag zur Öffentlichkeitsarbeit und zur Information der Bevölkerung wurde im<br />

Stadtgebiet am Raabufer direkt neben dem Geh- und Radweg ein „gläserner Pegel“ mit<br />

entsprechenden Erläuterungen errichtet.<br />

Die Zugangsmöglichkeiten zum Fluss und die Nutzung des Flussraumes für Freizeit- und<br />

Erholungsaktivitäten wurden sofort nach Fertigstellung des Projektes von der Bevölkerung<br />

sehr gut angenommen. Vor allem Kinder und Jugendliche haben diese neuen Räume<br />

entdeckt und erobert.<br />

74 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 3: Raab Stadt Feldbach, erlebbarer städtischer Flussraum nach dem Ausbau<br />

STADT VOITSBERG, HOCHWASSERSCHUTZ KAINACH – ANPASSUNG AN BESTEHENDE STRUKTUREN<br />

Die Kainach weist bis zur Stadt Voitsberg ein Einzugsgebiet von 210 km² auf. Das HQ 100<br />

beträgt 190 m³/s, bereits bei einem HQ 30<br />

gibt es Ausuferungen im Stadtgebiet.<br />

Erste Dokumente über eine Regulierung der Kainach stammen aus dem Jahr 1803. Diese<br />

diente damals noch dem Zweck, die landwirtschaftlichen Kulturen rund um Voitsberg vor<br />

wiederkehrenden Hochwässern zu schützen und die Bewirtschaftung durch eine Begradigung<br />

des Flusses zu erleichtern. Erst ab der 2. Hälfte des 20. Jahrhundert diente ein Ausbau der<br />

Kainach dem Schutz von Siedlungsstrukturen. Die Ausbauwassermenge lag bei 160 m³/s.<br />

In den Jahren 1996-1998 wurde an der Kainach eine Abflussuntersuchung durchgeführt und<br />

die Hochwasserüberflutungsflächen für das HQ 30<br />

und das HQ 100<br />

ausgewiesen. Dabei kristallisierte<br />

sich heraus, dass Teile des Stadtgebiets im Hochwasserabflussbereich der Kainach<br />

liegen. Im HQ 100<br />

Ereignisfall sind rund 108 Objekte und Infrastruktureinrichtungen betroffen.<br />

Somit bestand erneut die Notwendigkeit zur Umsetzung von Hochwasserschutzmaßnahmen<br />

im Stadtbereich.<br />

Von der Planung bis zur Umsetzung der Hochwasserschutzmaßnahmen war es ein weiter<br />

Weg. Dabei spielten viele Faktoren wie z.B. kein Auftreten eines HQ 30<br />

Ereignisses an der<br />

Kainach seit dem letzten Ausbau, kaum freie Flächen für Hochwasserschutzmaßnahmen<br />

sowie keine Wahrnehmung mehr des Gewässers durch die Stadtbevölkerung eine große<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 75


Rolle. Dadurch dauerten die Grundverhandlungen beinahe 7 Jahre. Im Jahr 2006 konnte der<br />

wasser- und naturschutzrechtliche Bescheid für die Hochwasserschutzmaßnahmen erlangt<br />

werden.<br />

Derzeit werden die Maßnahmen zur Erzielung eines 100-jährlichen Hochwasserschutzes<br />

realisiert. Aufgrund der beengten Platzverhältnisse handelt es sich bei den Hochwasserschutzmaßnahmen<br />

in erster Linie um einen linearen Ausbau mit einem Freibord von 50 cm,<br />

möglichst wenigen Eingriffen direkt am Gewässer und der Errichtung von Mauern nur in<br />

Bereichen, in denen aus Platzgründen keine Dämme errichtet werden können. Dennoch ist<br />

es notwendig die Kainach auf einer Länge von mehreren hundert Metern einzutiefen, um<br />

einen geeigneten Hochwasserschutz zu erreichen.<br />

Abbildung 4: Kainach Stadt Voitsberg, Strukturierungen der Flusssohle<br />

Des Weiteren werden auch Maßnahmen zur Verbesserung der Gewässerökologie umgesetzt.<br />

Dazu gehören die Auflösung von 3 Sohlstufen in Form der Errichtung von Sohlrampen, die<br />

Strukturierung der Gewässersohle an geeigneten Stellen und der Umbau der Mündung des<br />

Tregistbaches in eine stufenlosen Anbindung. Durch die Umwandlung der Sohlstufen in<br />

Sohlrampen und der damit verbundenen Entfernung von riesigen Kolken, ist es auch<br />

notwendig, durch Sohlstrukturen wieder die Möglichkeit von Wintereinständen für die<br />

Fische zu schaffen.<br />

Eine neue, an den Stand der Technik angepasste, 2D-Abflussuntersuchung bestätigte im Jahr<br />

2011 die bestehenden Abflussflächen aus der 1D- Untersuchung Ende der 90-iger Jahre, doch<br />

auch neue, bis dahin unbekannte Überflutungsflächen kamen hinzu.<br />

Es wurde festgestellt, dass die Kainach flussauf bereits in der Nachbargemeinde Bärnbach<br />

ausufert und in das Stadtzentrum abfließt. Demnach besteht die Gefahr, dass das Hochwasser<br />

76 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


aufgrund der nun errichteten Linearmaßnahmen, die zum Großteil aus Dämmen und<br />

Mauern bestehen, nicht mehr in die Kainach zurückfließen kann. Daher sind die Planungsarbeiten<br />

zu erweitern und anzupassen. Die Umsetzung der entsprechenden Hochwasserschutzmaßnahmen<br />

erfolgt in einem 3. Bauabschnitt, wobei zusätzlich Aufweitungen des Flussbettes<br />

vorgesehen sind.<br />

Da es sich beim Stadtbereich Voitsberg um ein potentiell signifikantes Hochwasserrisikogebiet<br />

gemäß der Europäischen Hochwasserrichtlinie 2007/60/EG handelt, wurde im Jahr 2014<br />

der zu erstellende Hochwasserrisikomanagementplan gemeinsam mit der Stadtgemeinde<br />

Voitsberg und allen betroffenen öffentlichen Stellen erarbeitet.<br />

STADT BAD RADKERSBURG, HOCHWASSERSCHUTZ MUR – GRENZÜBERSCHREITENDER ANSATZ<br />

Im Auftrag der ständigen Österreichisch-Slowenischen Kommission für die Mur wurde im<br />

Jahr 2000 eine aktuelle Hochwasserabflussuntersuchung für die Mur-Grenzstrecke erstellt.<br />

Dabei hat sich herausgestellt, dass der im Jahre 1972 errichtete Hochwasserschutz für die<br />

Stadt Bad Radkersburg mit einem Schutzgrad für ein 100-jährliches Hochwasserereignis nicht<br />

mehr gegeben war. Darüber hinaus entsprechen die vor mehr als 40 Jahren errichteten<br />

Dämme nicht mehr den heutigen technischen Anforderungen. Neben der Herstellung der<br />

erforderlichen Damm-Nivellette ist daher auch die Standsicherheit der bestehenden Dämme<br />

zu gewährleisten. Als Kerndichtung des Dammes wurde im Projekt eine Schmalwand<br />

gewählt, die bis 6 m in den Untergrund einbindet, um die Unterströmung des Dammes zu<br />

verringern.<br />

Der Hochwasserrisikomanagementplan für diesen Abschnitt sieht neben den strukturellen<br />

Maßnahmen auch ein Bündel an nicht strukturellen Maßnahmen wie Verbesserung des<br />

bestehenden Hochwasserprognosemodells, Ausarbeitung von Katastrophenschutzplänen<br />

Hochwasser und eine intensive Öffentlichkeitsarbeit zur Verbesserung des Hochwasser-Bewusstseins<br />

in der Bevölkerung vor.<br />

Neben der Hochwassersicherheit sind beim Projekt in Bad Radkersburg auch städtebauliche<br />

Aspekte von hoher Bedeutung. Im Bereich des Thermenareals werden landschaftsökologische<br />

Maßnahmen bei der Gestaltung des Hochwasserschutzdammes berücksichtigt. Bei der<br />

Murbrücke wurden auf österreichischer Seite Abgänge und eine Plattform in den Fluss<br />

errichtet, wodurch ein Zugang zur Mur und direkte „Flusseindrücke“ ermöglicht werden.<br />

Auf slowenischer Seite wurden zwei Flussplattformen und eine „Murtribüne“ in Form von<br />

Betonstufen im Böschungsbereich errichtet. Beide Projekte wurden im Rahmen des Projektes<br />

Europäische territoriale Zusammenarbeit (ETZ) mit finanziellen Mitteln der EU kofinanziert.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 77


FAZIT<br />

Die Hochwasserkatastrophen der letzten Jahre haben ganz klar aufgezeigt, dass künftig vor<br />

allem im urbanen Bereich einem gezielten Hochwasserrisikomanagement wesentlich mehr<br />

Augenmerk geschenkt werden muss, als dies bisher der Fall war. Neben den rein technischen,<br />

baulichen Hochwasserschutzmaßnahmen sind daher verstärkt nicht technische Maßnahmen<br />

wie zum Beispiel optimierte Einsatz- und Alarmplänen und Prognosemodelle für kleine,<br />

städtische Einzugsgebiete auszuarbeiten. Ein besonderer Schwerpunkt ist auch auf eine<br />

intensive Öffentlichkeitsarbeit mit gezielten Informationen und auf die Einbindung und<br />

Beteiligung der Öffentlichkeit zu legen. Die Ergebnisse der „vorläufigen Bewertung des<br />

Hochwasserrisikos“ gemäß Richtlinie 2007/60/EG zeigten auch sehr deutlich auf, dass in den<br />

nächsten Jahren der Schwerpunkt eindeutig in den Bereichen mit dichter Besiedelung, also<br />

in den städtischen Bereichen, liegt. Ein integraler Ansatz und eine intensive interdisziplinäre<br />

Zusammenarbeit bei Hochwasserschutzprojekten in städtischen Bereichen führen zu einer<br />

erheblichen Reduktion des Hochwasserrisikos und des Schadenspotentials. Gutes Hochwasserrisikomanagement<br />

wird in Zukunft noch mehr als bisher die Lebensqualität urbaner<br />

Räume mitbestimmen.<br />

LITERATUR<br />

- Amt der Steiermärkischen Landesregierung, Fachabteilung 19B, Forsttechnischer Dienst für<br />

Wildbach- und Lawinenverbauung, Sektion Steiermark, Magistrat Graz, A 10/5 – Abteilung<br />

für Grünraum und Gewässer (2007). Sachprogramm Grazer Bäche, Maßnahmenprogramm.<br />

78 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Flood Risk Reduction through Object Protection<br />

Measures - Benefit Analysis on Catchment Scale<br />

in Upper Austria<br />

Reduzierung des Hochwasserrisikos durch Objektschutzmaßnahmen<br />

– Nutzenanalyse auf Einzugsgebietsskala<br />

in Oberösterreich<br />

Matthias Huttenlau¹; Stefan Achleitner²; Benjamin Winter³; Manuel Plörer²; Michael Hofer 4 ; Felix Weingartner 5<br />

ABSTRACT<br />

Object-specific protective measures can play a vital role in the framework of flood risk<br />

management to reduce flood risk. From a technical point of view, those measures can be<br />

divided into waterproof and elevated construction technics. The temporal development of<br />

flood risk and the potential benefit of two types of technical protection measures to reduce<br />

damages was analysed and assessed within a case study conducted in Upper Austria on<br />

mesoscale. The study frameworks applies on the one side the common scenario-based<br />

approach considering events with certain return periods and on the other side a stochastic<br />

approach. It is shown, that both types of object protection measures are an efficient instrument<br />

until the protection goal is reached. If intensities exceed the protection goal of inundation<br />

depths with a recurrence interval of 100 years plus 20cm, a significant and swift decrease<br />

of the protective effect can be identified, especially with waterproof construction technics.<br />

In contrast, the protective effect of elevated construction technics persists significantly longer.<br />

ZUSAMMENFASSUNG<br />

Objektschutzmaßnahmen können bei der Umsetzung von Maßnahmen zur Reduzierung des<br />

Hochwasserrisikos im Rahmen des integrierten Hochwasserrisiko-Managements einen<br />

effizienten Beitrag leisten. Dabei stehen unterschiedliche Objektschutzmaßnahmen der<br />

wasserdichten Bauweise und der erhöhten Bauweise zur Verfügung. Im vorliegenden Beitrag<br />

wurde in einem mesoskaligen Einzugsgebiet in Oberösterreich der Frage nachgegangen, wie<br />

sich das Hochwasserrisiko über die Zeit möglicherweise verändert und welcher monetäre<br />

schadenreduzierende Nutzen von Objektschutzmaßnahmen im Rahmen der baurechtlichen<br />

Genehmigungsverfahren zu erwarten ist. Hierbei wurde zum einen der in der Praxis gängige<br />

1 alpS Centre for Climate Change Adaptation, Innsbruck, AUSTRIA, huttenlau@alps-gmbh.com<br />

2 Arbeitsbereich Wasserbau, Institut für Infrastruktur, Universität Innsbruck, AUSTRIA<br />

3 alpS GmbH, Innsbruck und Institut für Geographie, Universität Innsbruck, AUSTRIA<br />

4 Ingenieurbüro Dipl.-Ing. Günter Humer GmbH, Geboltskirchen, AUSTRIA<br />

5 Abteilung Oberflächengewässerwirtschaft, Gruppe Schutzwasserwirtschaft, Amt der Oberösterreichischen Landesregierung, Linz,<br />

AUSTRIA<br />

IP_<strong>2016</strong>_FP088<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 79


szenarien-basierte Ansatz über Ereignisse mit bestimmten Eintretenswahrscheinlichkeiten<br />

gewählt, zum anderen kam ein stochastischer Ansatz zur Anwendung. Es kann mit der<br />

Untersuchung gezeigt werden, dass beide Arten von Objektschutzmaßnahmen ein effizientes<br />

Instrument bis zur Erreichung des Schutzzieles (Hochwasserabflussbereich eines 100-jährlichen<br />

Ereignisses plus 20cm) darstellen. Ab dem Überschreiten des Schutzzieles ist eine rasche<br />

und deutliche Abnahme der Schutzwirkung bis hin zur Unwirksamkeit bei Maßnahmen der<br />

wasserdichten Bauweise erkennbar, wohingegen erhöhte Bauweisen ihre positive Schutzwirkung<br />

deutlich länger aufrechterhalten und damit generell eine effizientere Maßnahme<br />

darstellen.<br />

KEYWORDS<br />

flood risk; risk management; object-specific protective measure<br />

EINFÜHRUNG<br />

Risikoanalysen und –bewertungen sind eine wesentliche Entscheidungsgrundlage bei der<br />

Entwicklung und Umsetzung von Maßnahmen zur Reduzierung des Hochwasserrisikos. Die<br />

EU Richtlinie 2007/60/EG über die Bewertung und das Management von Hochwasserrisiken<br />

(ABI L 288/27) stellt dabei den rechtlichen Rahmen zu einer langfristigen Reduzierung des<br />

Hochwasserrisikos dar. In diesem Zusammenhang können Objektschutzmaßnahmen (OSM)<br />

– neben Maßnahmen zur Abflussreduzierung, technischen sowie planerischen Maßnahmen<br />

und Bewältigungsmaßnahmen – einen effektiven Beitrag zur Reduzierung von potenziellen<br />

Schäden beitragen (z.B. Holub et al., 2012). Dieser Beitrag stellt die Ergebnisse einer<br />

risikobasierten Fallstudie dar, bei der die zeitliche Entwicklung des Schadenpotenzials und der<br />

schadenmindernde Effekt von strukturellen Objektschutzmaßnahmen (erhöhte Bauweise<br />

und wasserdichte Bauweise) exemplarisch in einem mesoskaligen Einzugsgebiet untersucht<br />

wurde.<br />

Das Untersuchungsgebiet umfasst das hydrologische Einzugsgebiet des sogenannten Ottnanger<br />

Redls in Oberösterreich (A). Die Siedlungsgebiete der acht in diesem Einzugsgebiet<br />

liegenden Gemeinden mit ca. 18.500 Einwohnern sind in regelmäßigen Abständen von<br />

Hochwasser betroffen, wobei das Hochwasser im Jahr 2002 den bisher größten Schaden<br />

verursachte. Das Einzugsgebiet umfasst eine Fläche von ca. 60 km² in Höhenlagen zwischen<br />

400 und 720 m ü. Adria.<br />

Das Oberösterreichische Bautechnikgesetz 2013 (Oö. BauTG 2013) (LBGl. Nr. 35/2013) sieht<br />

in § 47 Hochwassergeschützte Gestaltung von Gebäuden vor, dass Neu-, Zu- und Umbauten<br />

von Gebäuden im 100-jährlichen Hochwasserabflussbereich hochwassergeschützt zu planen<br />

und auszuführen sind. Unter hochwassergestützter Gestaltung sind insbesondere folgenden<br />

Maßnahmen zu sehen: (i) gegenüber dem Untergrund abgedichtete oder aufgeständerte<br />

Bauweise, (ii) Abdichtungs- und Schutzmaßnahmen gegen einen Wassereintritt, (iii)<br />

auftriebssichere Ausführung aus wasserbeständigen Materialien, (iv) die Fußbodenoberkante<br />

von Wohnräumen, Stallungen, Wirtschaftsräumen, etc. muss mindestens 20cm über dem<br />

Niveau des 100-jährlichen Hochwasserabflussbereiches liegen. Durch die mit 01.01.2015 in<br />

80 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Kraft getretene Novelle des Oö- BauTG 2013 wurde dieser Grenzwert von 20cm auf 50cm<br />

erhöht. Die Auswirkungen dieser Novelle wurde in der vorliegende Studie nicht mehr<br />

berücksichtigt.<br />

Auf dem Hintergrund der vorliegenden baurechtlichen Rahmenbedingungen wurden<br />

folgende Fragen verfolgt: Welche Schadenpotentiale sind durch Siedlungsentwicklung im<br />

Untersuchungsgebiet ausgehend von den 1990er Jahren über 2012 bis 2030 denkbar und<br />

wie hoch ist die potenzielle schadenmindernde Wirkung von strukturellen OSM.<br />

METHODEN<br />

Das generelle Untersuchungskonzept folgt dem risikobasierten Ansatz, bei dem sich das<br />

Risiko aus der Eintretenswahrscheinlichkeit eines gefährlichen Ereignisses und dem Schadenausmaß<br />

zusammensetzt. Der Analyseablauf untergliedert sich in mehrere, aufeinander<br />

aufbauende Schritte, basierend auf der grundlegenden Gliederung in Gefahrenanalyse,<br />

Expositionsanalyse und Folgenanalyse (z.B. Kienholz, 2005). Ein Überblick über den<br />

gesamten Analyseablauf ist in Abbildung 1 gegeben, für weiterführende Sensitivitätsanalysen<br />

zu den einzelnen Analysekomponenten wird auf Achleitner et al. (in press) verwiesen.<br />

Abbildung 1: Analysekonzept und Ablaufdiagramm der Bearbeitung.<br />

Aufbauend auf der aktuellen Siedlungsstruktur (Szenario Sz2012) wurde die Siedlungsstruktur<br />

Ende der 1990er Jahre (Szenario Sz1999) v.a. durch Fernerkundungsdaten rekonstruiert<br />

und zwei Szenarien für das Jahr 2030 (Szenarien Sz_mod und Sz_max) mit einem partizipativen<br />

Ansatz erarbeitet (Abbildung 1, (2)). Die aktuelle Siedlungsstruktur wurde durch die<br />

Kombination einer Vielzahl an Geodaten (Adressdaten inkl. genauer Gebäudeattributierung,<br />

Gebäudegrundrisse, Kataster, Flächenwidmungspläne, Geländemodelle DGM/DOM, etc.) und<br />

weiterführenden Kartierungen erfasst. Somit konnte neben der Verortung der Gebäude auch<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 81


deren Funktionalität und Größe (Bruttogeschoßfläche sowie Bruttokubatur) zur weiterführenden<br />

monetären Bewertung detailliert erfasst werden. Das Siedlungsszenario Sz_mod stellt<br />

ein mittleres, aus heutiger Sicht moderates Entwicklungsszenario dar. Hierzu wurde die<br />

statistische Entwicklung in den einzelnen Gemeinden (Statistik Austria), Szenarien der<br />

Raumentwicklung Österreichs bis in das Jahr 2030 (ÖROK, 2009), kleinräumige Bevölkerungsprognosen<br />

für Österreich bis 2030 (Hainka, 2010), überörtliche Raumentwicklungskonzepte<br />

(Land Oberösterreich) bzw. örtliche Entwicklungskonzepte der einzelnen Gemeinden<br />

sowie Ausschlusskriterien durch unterschiedliche Zonierungen analysiert und aufbereitet.<br />

Die Szenarienentwicklung erfolgte in einem zweistufigen Verfahren unter Einbeziehung<br />

lokaler Expertenmeinungen (Gemeindeamtsleiter und Raumplaner). Das Siedlungsszenario<br />

Sz_max geht dagegen von einer vollständigen Bebauung der ausreichend vorhandenen<br />

Baulandreserven unter Berücksichtigung von Bebauungsverbotskriterien aus, wobei auf ein<br />

einheitliches Ortsbild durch Nachbarschaftskriterien geachtet wurde.<br />

Die berücksichtigten hydrologischen Szenarien basierend auf dem rekonstruierten Niederschlagsfeld<br />

des Ereignisses 2002, welches zur Generierung weiterer Ereignisse skaliert wurde.<br />

Hierbei wurde die räumlich-zeitliche Niederschlagsverteilung beibehalten und die Niederschlagssumme<br />

mit einem Faktor variiert (Abbildung 1, (1.2)). Die Kalibrierung des hydrologischen<br />

Modells (HEC-HMS) erfolgte für das Ereignis 2002 mit einem neuntägigen Zeitraum<br />

(Abbildung 1, (1.1)). Die berücksichtigten Gefahrenkarten (Überflutungstiefen mit einem<br />

Meter Auflösung) wurde mit einer 2d-hydraulischen Modellierung (Hydra_AS_2d) berechnet,<br />

wobei für alle verwendeten Siedlungsszenarien separate hydraulische Netze erstellt<br />

wurden (Abbildung 1, (1.3)).<br />

Die monetäre Bewertung der Siedlungsstruktur erfolgte anhand der zur Verfügung gestellten<br />

Richtlinien der Oberösterreichischen Landesversicherung zur Gebäude und Inventarbewertung<br />

für das Jahr 2012; Werte für das Jahr 2012 stellen allgemein die Referenzwerte für die<br />

Untersuchung dar. Die vorhandenen Gebäudeinformationen wurden durch Kartierungen<br />

vervollständigt, sodass die Anwendung der versicherungsinternen Richtlinien für private<br />

Wohngebäude, für landwirtschaftliche Anwesen sowie für Gewerbe und Industrie durchgeführt<br />

werden konnte (Abbildung 1, (3)). Zur Berechnung der potenziellen Schäden wurden<br />

die Schadenfunktionen nach BUWAL (Borter et al., 1999) berücksichtigt. Um die Wirkung<br />

der OSM (i) wasserdichte Bauweise (bzw. mobile Maßnahmen zur Erreichung der Wasserdichtigkeit)<br />

(folgend OSM 1) und (ii) erhöhte Bauweise (folgend OSM 2) zu berücksichtigen,<br />

erfolgte ein Modifikation der verwendeten Schadenfunktionen (Abbildung 1, (4) bzw.<br />

Abbildung 2). Als Referenzmarke bis zu der die OSM ihre volle Wirksamkeit erfüllen, wurde<br />

der in der Gefahrenzonenplanung ermittelte Wasserstand des 100-jährlichen Hochwasserabflussbereiches<br />

plus 20 cm herangezogen.<br />

Die abschließende Schadenmodellierung und Risikoanalyse sowie die vergleichende Gegen -<br />

überstellung der (i) zeitlichen Entwicklung und (ii) Wirksamkeit von OSM, erfolgte mit zwei<br />

Ansätzen. Zum einen mit dem gängigen Ansatz unter Berücksichtigung von Szenarien mit<br />

unterschiedlichen Eintretenswahrscheinlichkeiten, zum anderen mit einem stochastischen<br />

Ansatz. Für den stochastischen Ansatz wird (i) eine 10.000-jährliche Zeitreihe des jährlichen<br />

82 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Maximalabflusses (AMS) für den Abflusspegel mit einer Monte-Carlo-Simulation generiert,<br />

(ii) den jährlichen Maximalabflüssen potenzielle Schäden aus einer Schaden-Wahrscheinlichkeit-Beziehung<br />

(Regression aus skalierten Events mit zugeordneten Eintretenswahrscheinlichkeiten<br />

und den analysierten Schäden) zugewiesen und (iii) diese Zeitreihe mit einem<br />

gleitenden Zeitfenster von 20 Jahren statistisch kumulativ ausgewertet.<br />

Abbildung 2: Schematische Darstellung der berücksichtigten Objektschutzmaßnahmen (a) wasserdichte Bauweise und (b) erhöhte<br />

Bauweise sowie die daraus resultierenden Modifikationen von Schadenfunktionen. Unter erhöhter Bauweise sind sowohl Aufschüttungen<br />

als auch aufgeständerte Bauweisen zu verstehen.<br />

ERGEBNISSE<br />

Im Rahmen der Gefahrenanalyse wurden ausgehend vom räumlich differenzierten Niederschlagsereignisses<br />

2002 (Skalierungsfaktor 1,0) fünf weitere synthetische Niederschlagsereignisse<br />

skaliert. Die Skalierungsfaktoren erstreckten sich von 0,4 bis 1,4, wobei der Skalierungsfaktor<br />

0,4 in etwa einem 1-jährlichen Abflussereignis und der Skalierungsfaktor 1,4 einem<br />

fast 400-jährlichen Abflussereignis entspricht. Aus den daraus abgeleiteten hydrologischen<br />

Szenarien wurden 24 hochaufgelöste Hochwassergefahrenkarten erstellt, je sechs Gefahrenkarten<br />

für die vier unterschiedlichen Siedlungsszenarien Sz1999, Sz2012, Sz_mod und<br />

Sz_max.<br />

Die Ergebnisse zeigen, dass es im Untersuchungsgebiet ohne OSM, oder weiteren Maßnahmen<br />

des Hochwasserrisikomanagements, zu einer Zunahme der Schäden über die Zeit<br />

kommen wird. Mit den zugrunde gelegten Analyseannahmen treten bei der Analyse eines<br />

100-jährlichen Ereignisses kaum abweichende Schäden zwischen Sz1999 und Sz2012 in<br />

Höhe von etwa EUR 8,8 Mio. auf, diese steigen bis ins Jahr 2030 auf EUR 10,1 Mio. (Sz_mod)<br />

bzw. EUR 14,4 Mio. (SZ_max) an. Dies entspricht einer Zunahme zwischen 2012 und 2030<br />

von 15 % bei Sz_mod und 64 % bei Sz_max. Für ein Ereignis mit einer Eintretenswahrscheinlichkeit<br />

von beinahe 400 Jahren steigt der analysierte Schaden von EUR 22,9 Mio. im<br />

Jahr 2012 auf (i) EUR 26 Mio. im Jahr 2030 bei Sz_mod und (ii) EUR 34 Mio. bei Sz_max an.<br />

Dies entspricht einer Zunahme von 13 % bzw. 48 % (siehe auch Abbildung 3, Ergebnisdarstellung<br />

OSM0).<br />

Da erst seit dem Jahr 2006 Gefahrenzonenpläne vorliegen, wurden in der weiterführenden<br />

Auswertung OSM auch erst ab 2006 berücksichtigt. Die Ergebnisse der szenarien-basierten<br />

Auswertung (Einzelereignisse definiert über Eintretenswahrscheinlichkeiten) sind in<br />

Abbildung 3 dargestellt. Die signifikantesten Nutzeneffekte sind bis zur Erreichung des<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 83


Abbildung 3: Darstellung der Analyseergebnisse für den szenarien-basierten Ansatz für die Siedlungsszenarien (a) Sz1999, (b) Sz2012,<br />

(c) Sz_mod und (d) Sz_max unter Berücksichtigung von Objektschutzmaßnahmen.<br />

Schutzzieles (HQ 100<br />

+20 cm) zu verzeichnen. Wie zu erwarten, kommt es ab dem Zeitpunkt<br />

der Umsetzung von OSM zu keiner weiteren Erhöhung der Schäden unabhängig der Sied -<br />

lungsentwicklung bei Ereignissen mit einer Eintretenswahrscheinlichkeit bis zu 100 Jahren.<br />

Bei intensiveren aber selteneren Ereignissen (größer HQ 100<br />

) wird die Ausführung der OSM<br />

immer ausschlaggebender. Je intensiver ein Ereignis (ab HQ 100<br />

), desto geringer wird die<br />

potenzielle Wirkung der OSM1 (wasserdichte Bauweise), bei Ereignissen von beinahe HQ 400<br />

kann diese Wirkung nur noch als sehr gering eingestuft werden. Dahingegen behält die<br />

OSM2 (erhöhte Bauweise) ihre positive Wirkung relativ zu Bautätigkeiten ohne OSM auch<br />

bei Ereignissen größer HQ 100<br />

bei. Der potenzielle Nutzen unterschiedlicher OSM ab der<br />

Überschreitung des Schutzzieles ist somit verschieden. Beispielsweise sind die analysierten<br />

Schäden bei einem Ereignis von beinahe HQ 400<br />

(i) für das Szenario Sz_max, keine OSM,<br />

EUR 33,9 Mio hoch, (ii) für das Szenario SZ_max, OSM1, EUR 31,8. Mio. hoch und (iii) für<br />

das Szenario SZ_max, OSM2, EUR 24,6 Mio. hoch. Die kumulativen Schäden der stochastischen<br />

Auswertung an der aktuellen Siedlungsstruktur (Sz2012) zeigen eine große Bandbreite<br />

mit einer Standardabweichung von ± EUR 5 Mio. auf (siehe Abbildung 4), ein Ausdruck<br />

des zeitlich stochastischen Auftretens von Hochwasserereignissen. Ohne OSM ist mit einer<br />

84 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


entsprechenden Zunahme der Schäden über die Zeit bzw. in Abhängigkeit der betrachteten<br />

Siedlungsszenarien zu rechnen. Neben der Berücksichtigung von OSM ab 2006 (Abbildung 4<br />

(a)) wurde auch der (theoretische) Effekt von OSM im gesamten Gebäudebestand (Abbildung<br />

4 (b)) ausgewertet. Unabhängig von der Zunahme des Schadenpotenzials über die Zeit, ist ein<br />

konstanter Median der potenziellen Schäden bei Berücksichtigung der beiden betrachteten<br />

Varianten von OSM erkennbar. Dies begründet sich in der statistischen Auswirkung von<br />

vielen Ereignissen mit geringen Schäden im Vergleich zu wenigen Ereignisse mit sehr hohen<br />

Schäden. Die schadenmindernde Wirkung der beiden OSM-Varianten (OSM1 und OSM2) ist<br />

in der stochastischen Auswertung (Abbildung 4), ähnlich der Auswertung von Einzelszenarien<br />

(Abbildung 3), nachweisbar, der unterschiedliche Effekt jedoch nicht so deutlich akzentuiert.<br />

Abbildung 4: Darstellung der Analyseergebnisse für den stochastischen Ansatz mit einem Betrachtungszeitraum von 20 Jahren unter<br />

Berücksichtigung von Objektschutzmaßnahmen (a) ab 2006 bzw. (b) bei allen Gebäuden.<br />

FAZIT<br />

Mit der vorliegenden Arbeit kann aufgezeigt werden, dass OSM bis zu einem Grenzwert der<br />

Bemessung als sehr effiziente Hochwasserschutzmaßnahmen angesehen werden können.<br />

Ähnliche Schlussfolgerungen wurden bereits für das Risikomanagement alpiner Naturgefahren<br />

gezogen (z.B. Holub et al. 2012). Bei seltenen Extremereignissen ist die Ausführung<br />

entscheidend, wobei eine erhöhte Bauweise gegenüber einer wasserdichten Bauweise zu<br />

einer deutlich höheren Schadenminderung beiträgt. Bei der erhöhten Bauweise durch Aufschüttung<br />

ist jedoch zu beachten, dass es durch diese Maßnahme zu keiner Verschlechterung<br />

der Hochwasserabflusssituation für weitere Grundstücke kommen darf. Einschränkungen in<br />

der Aussagegüte der vorgestellten Ergebnisse ergeben sich aus dem vereinfachten Ansatz bei<br />

der Entwicklung von Siedlungsszenarien, den Unsicherheiten betreffend der Analysekomponenten<br />

und der Annahme, das sich hydro-meteorologische Erkenntnisse aus der Vergangenheit<br />

in die Zukunft übertragen lassen. Die Unsicherheiten umfassen vor allem (i) statistische<br />

Unsicherheiten in der hydrologischen Bearbeitung (Zeitreihen, statistische Methoden) sowie<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 85


die den Siedlungsszenarien zugrunde gelegten Prognosen, (ii) Unsicherheiten im Hinblick auf<br />

das angewandte Gebäudebewertungsverfahren und (iii) Unsicherheiten in Bezug zu den<br />

berücksichtigten Schadenfunktionen. Die vorgestellten absoluten monetären Summen sind<br />

deshalb mit nicht-quantifizierten Unsicherheiten behaftet sind, ein relativer Vergleich und die<br />

Bewertung von Maßnahmen ist jedoch unabhängig davon möglich.<br />

Allgemein ist anzumerken, dass ausschließlich OSM nicht geeignet sind, um das Hochwasserrisiko<br />

bei gleichzeitiger Zunahme des Schadenpotenzials auf einem konstanten Niveau zu<br />

halten oder zur Minderung des Hochwasserrisikos beitragen zu können. Schäden können<br />

jedoch relativ zur Siedlungsentwicklung reduziert werden. Jegliche Siedlungsentwicklung in<br />

potenziell hochwassergefährdeten Gebiet trägt zuerst einmal zu einer Erhöhung des Risikos<br />

bei. Eine nachhaltige Reduzierung des Hochwasserrisikos kann nur im Rahmen des integralen<br />

Hochwasserrisikomanagements erfolgen, in einem Bündel aus Maßnahmen und<br />

politischen Instrumenten (Abflussminderung, Schutzmaßnahmen, Minderung/Reduzierung<br />

des Schadenpotenzials und der Vulnerabilität) (siehe z.B. Klijn et al. 2015).<br />

LITERATUR<br />

- ABI L288/27 (Amtsblatt der Europäischen Union): Richtlinie 2007/60/EG des Europäischen<br />

Parlaments und des Rates über die Bewertung und das Management von Hochwasserrisiken.<br />

- Achleitner, S., Huttenlau, M., Winter, B., Reiss, J., Plörer, M., Hofer, M. (in press): Temporal<br />

development of flood risk considering settlement dynamics and local flood protection<br />

measures on catchemnt scale: An Austrian case study, in: International Journal of River<br />

Basin Management.<br />

- Bundesamt für Umwelt, Wald und Landschaften BUWAL (Hrsg.) (1999): Risikoanalyse bei<br />

gravitativen Naturgefahren – Fallbeispiele und Daten, Umwelt-Materialien Nr. 107/II, Bern.<br />

- Hainka, A. (2010): Kleinräumige Bevölkerungsprognosen für Österreich2010 bis 2030 mit<br />

Ausblick bis 2050, Endbericht zur Bevölkerungsprognose, Österreichische Raumordnungs -<br />

konferenz (ÖROK), Wien.<br />

- Holub, M., Suda, J., Fuchs, S. (2012): Mountain hazards: reducing vulnerability by adapted<br />

building design, in: Environmental Earth Sciences, Volume 66, Issue 7, 1853-1870.<br />

- Kienholz, H. (2005). Analyse und Bewertung alpiner Naturgefahren – eine Daueraufgabe<br />

im Rahmen des integralen Risikomanagements, in: Geographica Helvetica, Issue 1/2005,<br />

3-15.<br />

- Klijn, F., Kreibich, H., de Moel, H., Penning-Rowsell, E. (2015): Adaptive flood risk<br />

management planning based on a comprehensive flood risk conceptualisation, in: Mitigation<br />

and Adaptation Strategies for Global Change, Volume 20, Issue 6, 845-864.<br />

- LBGL Nr. 35/2013: Landesgesetz über die bautechnischen Anforderungen an Bauwerke und<br />

Bauprodukte (Oö. Bautechnikgesetz 2013 - Oö. BauTG 2013).<br />

- Österreichische Raumordnungskonferenz ÖROK (2009): Szenarien der Raumentwicklung<br />

Österreichs 2030. Regionale Herausforderungen & Handlungsstrategien, Schriftenreihe<br />

Nr. 176/II, Wien.<br />

86 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Risk-based spatial planning - findings from two<br />

case studies<br />

Roberto Loat¹; Reto Camenzind²; Esther Casanova³; Eva Frick 4<br />

ABSTRACT<br />

Event analysis shows that damages can be reduced by considering the risks involved with<br />

natural hazard zones, in particularly those exposed to lower levels of hazard. The purpose<br />

of risk-based spatial planning is to guide settlement development such that any risks are<br />

contained at an acceptable level to society in the long term. Current risks should be known<br />

and new, unacceptable risks should be avoided. It is possible to avoid hazardous areas when<br />

authorising new building zones or infrastructures, but there are great challenges in dealing<br />

with existing settlements. In such cases, greater care and attention must be paid to present<br />

and future risks. The earlier the stage at which risk-based spatial planning is incorporated into<br />

the planning process, the greater the potential for effective negotiations within the project,<br />

and the sooner effective counter-measures can be taken. However, the rationale behind<br />

risk-based spatial planning can only be applied successfully in practice through close col laboration<br />

between all of the parties involved, such as spatial planners, land-owners, natural<br />

hazard specialists and insurers.<br />

KEYWORDS<br />

risk governance; spatial planning; risk based spatial planning; natural hazards; natural hazards<br />

zones<br />

INTRODUCTION<br />

The risks associated with natural hazards are on the increase<br />

In Switzerland, a series of devastating floods has resulted in extensive damage in recent years.<br />

Other factors have also contributed to the increase in recorded damage. These include<br />

substantial population growth, the more intensive use of space as well as the increase in the<br />

value of buildings and infrastructures. Often, the greater risk and thus greater damage is to<br />

be found not in regions exposed to substantial and medium hazard levels, but in regions of<br />

intensive land use which face only low or residual hazard levels (marked in yellow and<br />

yellow-white hatched on hazard maps). In Switzerland, around one fifth of building zones<br />

are in at-risk areas. Approaches to handling these risks therefore play a key role in sustainable<br />

spatial development.<br />

1 Federal Office for the Environment FOEN, Bern, SWITZERLAND, roberto.loat@bafu.admin.ch<br />

2 Federal Office for Spatial Development ARE, Bern, SWITZERLAND<br />

3 Esther Casanova Raumplanung, Chur, SWITZERLAND<br />

4 tur gmbh, Davos Dorf, SWITZERLAND<br />

IP_<strong>2016</strong>_FP092<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 87


Implementing hazard maps demands risk awareness<br />

Hazard maps are available for 95% of the settled areas of Switzerland. They have been produced<br />

according to unified standards issued by the Federal Office for the Environment FOEN.<br />

Hazard maps display four hazard levels: red and blue areas denote a substantial or medium<br />

hazard respectively, while yellow illustrates a low hazard and yellow-white hatched areas a<br />

residual hazard. The hazard maps and the associated regulations must be implemented by the<br />

responsible authorities. In spatial planning, hazard maps offer a key instrument enabling<br />

communes to manage natural hazards and land use. In zones which are subject to a substantial<br />

hazard, it is standard practice to forbid the construction of new and the extension of<br />

existing buildings. Specific construction regulations are in place for zones facing a medium<br />

hazard. In zones with either a low or residual hazard, there is still no obligation to provide<br />

protection measures, although they could remain at considerable risk should a large-scale<br />

hazard event occur in densely populated areas, causing extensive and costly damage.<br />

Risk-based spatial planning therefore goes a step further. Alongside an assessment of hazard<br />

levels, this approach is designed to take current and future land use, and the associated risks,<br />

into consideration in spatial planning decision-making. The goal is to avoid any new,<br />

intolerable risks. This in turn means that protection measures in yellow and yellow-white<br />

zones should also be considered and implemented. The risk-based approach discussed herein<br />

is based on the ‘Security Level for Natural Hazards’ report (PLANAT, 2013). The report calls<br />

for the recommended security level to be achieved primarily by land use management, and<br />

demands in particular that new, unacceptable risks are avoided (Fig. 1).<br />

Figure 1: Method by which to achieve and maintain the recommended security level (PLANAT, 2013).<br />

88 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Identifying conflict early and managing the development of risk<br />

Risk-based spatial planning does not stringently impose risk avoidance, but focuses on developing<br />

risk-awareness. The aim is not to block land use entirely, but to manage risk in<br />

a way that is transparent to those affected. In doing so it is possible to find meaningful and<br />

reasonable solutions to mitigate risk (Fig. 2). These solutions are specific to each case and<br />

may differ. In this respect, spatial planning plays a crucial role in providing solutions. Where<br />

new land use is concerned, alternative locations can be planned at a sufficiently early stage.<br />

In the case of established settlements, the existing risks can be identified and the relevant<br />

land use restrictions can be defined in partnership with those affected.<br />

Figure 2: Land use analysis: appropriate action to control the development of risk is determined by the initial conditions presented<br />

for spatial planning, land use potential and the specific natural hazard situation.<br />

Risk-based spatial planning relies not only on identifying the existing hazards in a given area,<br />

but also on pinpointing the risks that may arise from new or more intensive land use.<br />

When balancing interests, spatial planning should ensure that the frequency and impact of<br />

natural disasters affecting the people and property of the future are minimised. In this<br />

instance the role of spatial planning is to ensure that the demand for land use is balanced<br />

with the appropriate protection requirements. This requires all stakeholders to play an active<br />

part in the process.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 89


LAND USE PLANNING CASE STUDIES<br />

Evaluation of a broad spectrum of solutions<br />

In order to consolidate the concept of risk-based planning, the Federal Office for the Environment<br />

FOEN and the Federal Office for Spatial Development ARE commissioned two land use<br />

planning case studies to be carried out collaboratively by spatial planning and natural hazard<br />

experts, Casanova and tur gmbh (Casanova Raumplanung/tur gmbh, 2013), and Strittmatter<br />

and Partner AG (Strittmatter und Partner AG, 2012). Two communes which are affected by<br />

different hazard processes and hazard levels, and have a broad range of land uses, were<br />

selected for the case studies. To ensure that a wide range of solutions could be explored,<br />

fictitious but realistic examples of land use demands were adopted (Tables 1 and 2).<br />

The following questions were formulated by the FOEN and the ARE to be investigated in the<br />

case studies:<br />

– How can spatial planning tools be applied to achieve risk-appropriate land use in accordance<br />

with the hazard process and level in a given case?<br />

– What spatial planning tools are available to the selected communes, and how can they<br />

be deployed to ensure that known risks are respected in the planning process?<br />

What synergies exist between protection strategies and other tools of risk prevention?<br />

Table 1: The comparative case studies for each canton, investigating both natural hazards and given types of land use.<br />

Case studies Commune in Canton St. Gallen Commune in Canton Graubünden<br />

Hazard process <br />

Process intensity <br />

Advance warning time <br />

Current land use ‐ <br />

Decision-making tree facilitates a systematic approach<br />

To ensure a systematic approach during the process of spatial planning, the experts executing<br />

the case studies developed a decision-making tree featuring the relevant decision-making<br />

criteria and options for action (Fig. 3). The complete decision tree can be found in the<br />

summary publication issued by the bodies involved in the case studies (PLANAT/BAFU/ARE<br />

(2014). This report also sets out key information on the principal concepts of risk-based<br />

spatial planning, decision-making criteria, and the appropriate courses of action.<br />

Certain aspects of a planning project must be assessed before the decision-making tree is<br />

applied. These are whether a planned land use encroaches on a hazard zone, whether<br />

necessary information about hazard processes (hazard maps, intensity maps) is available and<br />

up to date, and finally whether this information contains sufficient detail, or must be<br />

supplemented. Current and planned land use must be examined in the context of land use<br />

demand although, depending on the project, this information may not be available until the<br />

(special) land use planning process or the building permit procedure. The only effective<br />

means of assessing potential damage and risks is to overlay project plans with hazard maps<br />

and detailed hazard assessments.<br />

90 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Table 2: The comparative case studies with their respective spatial planning procedures applied, points of conflict and suggested<br />

solutions.<br />

<br />

<br />

<br />

<br />

‐ <br />

<br />

<br />

<br />

<br />

<br />

<br />

‐<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

‐<br />

<br />

<br />

<br />

<br />

<br />

<br />

‐<br />

‐<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

‐<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

‐<br />

<br />

<br />

<br />

Following this situation analysis, the decision-making tree guides the user through all of the<br />

necessary decisions. In addition to questions concerning risk analysis, it is essential to balance<br />

different spatial planning interests. It may be that a protection measure is technically feasible<br />

and cost-effective, but it must still meet design and acceptance criteria. Aspects of land use<br />

such as water protection, as well as landscape and nature conservation, must also be considered.<br />

The spectrum of possible implications for spatial planning is very broad, ranging from<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 91


Figure 3: Schematic representation of the most relevant decision-making criteria and options for action of the decision-making tree<br />

(extract from PLANAT/BAFU/ARE, 2014).<br />

92 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


providing information to the landowner, without further action on the part of the authorities,<br />

through to a full ban on land use.<br />

Generally speaking, the sooner in the planning process that risk-based spatial planning is<br />

applied, the greater the leeway for negotiation within the project as a whole. For example,<br />

the following steps can still be taken in the early planning stages:<br />

– New zoning in at-risk areas can be avoided;<br />

– Risks can be assessed and alternative locations considered;<br />

– Land use can be adapted in the best way to the prevailing risks and land use restrictions;<br />

– There can be an early discussion of residual risks and their acceptability. This is particularly<br />

important for land use entailing high risks to individuals or other special risks.<br />

At a later stage in the process, such as when a building permit has already been issued, the<br />

room for manoeuvre is often significantly smaller. This is mainly because changes to the<br />

planned project can involve a disproportionate amount of effort. It is true, however, that in<br />

some cases it is only at this time that the true land use is known in detail. Ultimately, it is the<br />

type of land use that dictates the measures required to mitigate risks. Risk-based spatial<br />

planning may still be of value in such situations. Those affected may be made aware of the<br />

associated risks and will thus be able to take meaningful action. The decision-making tree<br />

was designed to offer specific, practicable recommendations for different situations. The three<br />

examples described below show possible counter-measures that can be implemented in<br />

different phases of spatial planning:<br />

– Single property protection: protection measures applied directly to a property can reduce its<br />

vulnerability, and thus the damage caused during an event (e.g. reinforced construction);<br />

– Multiple-property protection: if protection measures can be applied to multiple objects<br />

simultaneously (e.g. a diversion dam installed along several buildings), there may be<br />

advantages in terms of both design and cost-effectiveness. Special land use planning is a<br />

tool that allows binding measures to be imposed on land-owners;<br />

– Emergency planning: with sufficient advance warning time, clearly defined intervention<br />

measures taken by emergency personnel or local residents can minimise property damage.<br />

FINDINGS FROM THE CASE STUDIES<br />

The case studies have shown that the scope for negotiation in spatial planning depends<br />

heavily upon whether the case involves new building zones, or the intensification or<br />

modification of existing land use. For new land use projects, it may be possible to negotiate<br />

an alternative local or regional location, for example. There is less opportunity to influence<br />

the situation where land use is to be intensified within an existing land use zone.<br />

It is essential that current and complete hazard maps and information are available to facilitate<br />

an adequate assessment of the risks involved. Furthermore, since risk-based planning should<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 93


factor in a variety of information in addition to hazard maps, the process also requires further<br />

data such as scaled intensity maps and risk maps.<br />

To ensure that risk-based planning is executed effectively, close cooperation between spatial<br />

planners and natural hazard experts must be established at an early stage. This is crucial both<br />

at this planning stage, and in the later implementation process.<br />

The action which should be taken in a particular situation depends on various factors.<br />

The specific hazard process plays an important role of course. Where this is gradual, there is<br />

usually sufficient advance warning time to evacuate persons and, if possible, property.<br />

Furthermore, intervention measures can reduce the extent of damage should an event occur.<br />

In the case of sudden events, there is little or no advance warning time. Here, it is important<br />

to consider the effectiveness of protection measures to cope with the intensity of such events.<br />

The key factor to remember is that protection measures must always be selected according to<br />

how the land is used.<br />

CONCLUSIONS<br />

The two land use planning case studies have been used to take initial development steps<br />

towards a systematic approach to risk-based spatial planning. The new method facilitates the<br />

effective implementation of measures designed to reduce risk at both the level of local land<br />

use planning, and as part of the building permit procedure.<br />

At the same time, interest in risk-based spatial planning must be generated. The need for<br />

greater awareness in handling hazards and risks must be demonstrated to representatives of<br />

communal and cantonal authorities, planning and engineering offices and insurance<br />

companies. Furthermore, greater support must be given for close cooperation between spatial<br />

planners and natural hazard experts, with the inclusion of those who are affected.<br />

The concept of risk-based spatial planning should not be applied to land use planning alone,<br />

but to every stage of the spatial planning process, i.e. cantonal structural plans, land use<br />

planning and the building permit procedure.<br />

The next step is to take the findings from this and other ongoing risk-based spatial planning<br />

projects and use them as input into a new working guide or the revision of the ‘Spatial<br />

Planning and Natural Hazards’ recommendation (ARE / BWG / BUWAL, 2005). First of all,<br />

however, any outstanding issues should be examined in more depth, and the current<br />

methodology should be applied and tested in further practical examples.<br />

94 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


REFERENCES<br />

- ARE/BWG/BUWAL (2005). Recommendation. Spatial Planning and Natural Hazards.<br />

Federal Office for Spatial Development ARE / Federal Office for Water and Geology BWG /<br />

Swiss Agency for the Environment, Forests and Landscape BUWAL, Bern.<br />

- Bundesgesetz vom 21. Juni 1991 über den Wasserbau (Wasserbaugesetz, WBG 1991,<br />

SR 721.100)<br />

- Casanova Raumplanung/tur gmbh (2013). Risikobasierte Raumplanung in der kommunalen<br />

Nutzungsplanung. Testplanung 2 (PLANAT Project A6)<br />

- PLANAT (2013). Security Level for Natural Hazards. National Platform for Natural Hazards<br />

PLANAT, Bern.<br />

- PLANAT/BAFU/ARE (2014). Risikobasierte Raumplanung. National Platform for Natural<br />

Hazards. PLANAT, Federal Office for the Environment FOEN, Federal Office for Spatial<br />

Planning ARE, Bern.<br />

- Strittmatter und Partner AG (2012). Risikobasierte Raumplanung in der kommunalen<br />

Nutzungsplanung. Testplanung 1 (PLANAT Project A6)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 95


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Public prevention of natural hazards in Swiss law:<br />

responsibilities and fields of action in legislative and<br />

executive bodies<br />

Staatliche Naturgefahrenprävention im Schweizer<br />

Recht: Verantwortlichkeiten, legislative und<br />

verwaltungsorganisatorische Handlungsfelder in<br />

rechtlicher Perspektive<br />

Roland Norer, Prof. Dr. iur.¹; Mark Govoni, lic. iur.²; Gregor Kost, Attorny at Law; Cornel Quinto, Attorney at Law, LLM³;<br />

Barbara Schielein, MLaw 1 ; Lukas Widmer, Attorney at Law; Christian Wulz, MLaw<br />

ABSTRACT<br />

The presented research project at hand on natural hazards law deals with the manifold legal<br />

aspects in context with the handling of risks of natural hazards. The questions of law to be<br />

answered focus on the grounds and the extent of state responsibility based on the legal<br />

doctrine on the duty to protect derived from the fundamental rights at the one hand, and on<br />

the margin of action of the state when it comes to legislation and implementation with<br />

particular regard to integrated risk management and aspects of insurance law at the other<br />

hand.<br />

ZUSAMMENFASSUNG<br />

Das hier vorgestellte Forschungsprojekt zum Naturgefahrenrecht beschäftigt sich mit den<br />

vielfältigen rechtlichen Aspekten des Umgangs mit Naturgefahrenrisiken. Die zu klärenden<br />

Rechtsfragen fokussieren zum einen auf Begründung und Umfang staatlicher Verantwortlichkeit<br />

aus der Schutzpflichtendogmatik zu den Grundrechten, zum anderen auf die staatlichen<br />

Handlungsfelder in Gesetzgebung und Vollzug unter besonderer Berücksichtigung des<br />

integralen Risikomanagements und versicherungsrechtlichen Aspekten.<br />

KEYWORDS<br />

government liability; doctrine on the duty to protect; Integrated risk management; division of<br />

competences; building insurance<br />

1 University of Lucerne, SWITZERLAND, roland.norer@unilu.ch<br />

2 Federal Office for the Environment FOEN, SWITZERLAND<br />

3 Lustenberger Attorneys at Law, Zurich, SWITZERLAND<br />

96 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP098


EINFÜHRUNG<br />

Das durch den Schweizerischen Nationalfonds geförderte Forschungsprojekt „Naturgefahrenrecht.<br />

Grundlagen für Rechtshomogenität und -effizienz im Naturgefahrenmanagement“<br />

an der Rechtswissenschaftlichen Fakultät der Universität Luzern beschäftigt sich mit den<br />

rechtlichen Aspekten des Umgangs mit Naturgefahrenrisiken in der Schweiz. Der Schwerpunkt<br />

liegt dabei auf der Frage nach den juristischen Handlungsfeldern staatlicher Gefahrenund<br />

Risikoprävention bzw. -reduktion.<br />

METHODEN<br />

Innerhalb des Forschungsprojektes kommen verschiedene juristische Auslegungsmethoden<br />

[wie die grammatikalische (nach dem Wortlaut), systematische (nach dem Regelungszusammenhang)<br />

und historische (nach dem Willen des Gesetzgebers)] zur Anwendung, mit denen<br />

zugrundeliegenden Rechtsprinzipien und möglichen Interpretationen unbestimmter<br />

Rechtsbegriffe nachgespürt wird. Einen besonderen Stellenwert nimmt der (kantonale)<br />

Rechtsvergleich ein.<br />

1. Umfang staatlicher Verantwortlichkeit<br />

In einem ersten Schritt wird nach den Aufgaben des Staates gefragt und inwieweit er für den<br />

Schutz vor Naturgefahren verantwortlich gemacht werden kann. Die Grenze zwischen der<br />

staatsrechtlichen Verpflichtung [EGMR Budayeva u.a. gegen Russland, Urteil vom 20.3.2008,<br />

Kolyadenko u.a. gegen Russland, Urteil vom 28.2.2012] und der legitimen Eigenvorsorge der<br />

Bürger ist schwierig zu bestimmen.<br />

Weitgehend unbestritten ist, dass Grundrechte nicht nur als Abwehrrechte fungieren,<br />

sondern darüber hinaus den Staat dazu verpflichten, seiner grundrechtlichen Schutzpflicht<br />

aktiv nachzukommen. Es ist herrschende Lehre, dass prinzipiell alle Grundrechte für die<br />

Schutzpflichtendogmatik fruchtbar gemacht werden können. Für Naturgefahren relevant<br />

sind insbesondere das Recht auf Leben und körperliche Unversehrtheit und die Eigentumsgarantie<br />

[Art. 10 und Art. 26 der Schweizerischen Bundesverfassung].<br />

Fraglich ist dagegen, wie die Schutzpflichten umzusetzen sind und wo deren Grenzen liegen.<br />

Klärungsbedarf besteht zudem beim Schutzbereich und dessen Tragweite. Leitet man – wie<br />

dies überwiegend getan wird – die Schutzpflichten objektiv-rechtlich her, ist der Schutz<br />

kommender Generationen innerhalb der Schutzpflichtendogmatik. Dies ist insbesondere für<br />

die Problematik des Klimawandels eine wichtige Feststellung.<br />

Die deutsche Rechtsprechung, die die Schutzpflichtendogmatik neben dem EGMR maßgeblich<br />

geprägt hat, spricht wiederholt davon, dass die Schutzpflichten „vor allem“ und „insbesondere“<br />

vor Übergriffen Dritter gelten [BVerfGE 39, 1 (42); 53, 30 (57)]. Folgerichtig sind<br />

menschverursachte Naturgefahren wie Hochwasser – durch den Klimawandel oder die<br />

Verbauung von Retentionsräumen bedingt – von den Schutzpflichten erfasst. Weniger klar<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 97


ist, ob natürliche Gefahren [also die, die nicht vom Menschen verursacht oder beeinflusst<br />

werden wie z.B. Erdbeben] innerhalb der Schutzpflichtendogmatik liegen. Diejenigen, die<br />

dies verneinen [Krings, S. 219], sehen darin eine faktische Überforderung des Staates, der<br />

ohnehin nichts gegen Naturgewalten ausrichten könne. Die Gegenmeinung [Schmitz,<br />

S. 109f.] fokussiert zu Recht auf die Tatsache, dass es nicht darum gehe, die Natur zu be herr -<br />

schen, sondern darum, die möglichen Schadensauswirkungen mit entsprechenden Maßnahmen<br />

abzuschwächen oder zu verhindern.<br />

Auch zur Frage, ob die grundrechtlichen Schutzpflichten uneingeschränkt gelten, teilen sich<br />

die Meinungen [zum Ganzen: Dietlein, S. 108, 118f.]. Die Befürworter sehen ausgehend von<br />

der Struktur der Schutzpflichten als Optimierungsgebote einen umfassenden Geltungsbereich<br />

und relativieren diesen an anderer Stelle. Der Gegenmeinung nach bedarf es bereits im<br />

Schutzbereich gewisser Voraussetzungen, um die Schutzpflichten aktivieren zu können.<br />

Das entscheidende Kriterium für die Anerkennung grundrechtlicher Schutzpflichten liegt<br />

gemäß schweizerischem Bundesgericht [BGE 119 Ia 28 E. 2 S. 31 Rue des Eaux-Vives] in der<br />

Intensität der Betroffenheit. Der EGMR bewertet Schutzpflichten dort als umfassend, wo mit<br />

besonders schweren Verletzungen zu rechnen ist; dies ist regelmäßig dann der Fall, wenn das<br />

Recht auf Leben tangiert ist. Kriterium ist das potentielle Schadensausmaß und die Wahrscheinlichkeit<br />

des Schadenseintritts. Je gefährdeter ein gewichtiges Rechtsgut ist, desto<br />

weniger wahrscheinlich muss der Schadenseintritt sein. Für die Naturgefahrenprävention<br />

bedeutet dies, dass bereits bei der Möglichkeit, dass Gefahr für Leib und Leben besteht, auch<br />

wenn diese äußerst unwahrscheinlich ist, die Schutzpflichten greifen.<br />

Staatliche Präventionsleistungen bemessen sich daher nach Art und Qualität des Schutzgutes<br />

und müssen im Rahmen des rechtlich und tatsächlich Möglichen liegen. Ein Anspruch auf<br />

einen bestimmten Schutz existiert nicht. Bezüglich der Umsetzung der Schutzpflichten<br />

besteht vielmehr ein weiter Gestaltungsspielraum. Beispielsweise ist die Bevölkerung über<br />

Naturgefahren zu informieren, was auch einen erheblichen Beitrag zur Stärkung der Eigenvorsorge<br />

bedeutet. Was vom Staat genau als Schutzleistung zu erbringen ist, ist letztlich in<br />

einem politischen Diskurs zu ermitteln.<br />

2. Staatliche Handlungsfelder<br />

In einem zweiten Schritt sind die staatlichen Handlungsfelder und damit die Kompetenzen<br />

und Rechtsmaterien zu definieren. Die vorhandenen hauptsächlichen Instrumente werden<br />

im Wesentlichen im Raumplanungsrecht, Baurecht, Wasserrecht, Forstrecht, Infrastrukturrecht<br />

und Katastrophenrecht geregelt.<br />

2.1. Integrales Risikomanagement<br />

Als übergeordnetes Konzept wird das moderne Naturgefahrenrecht insbesondere an seiner<br />

Kompatibilität mit staatlichen Rechtsetzungs- und Vollzugsaktivitäten mittels des für die<br />

Verwaltungsrechtswissenschaft neuartigen Instruments des Integralen Risikomanagements<br />

[IRM] zu prüfen sein. Dieser risikobasierte Ansatz, der treffend mit dem Leitsatz „Von der<br />

98 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Gefahrenabwehr zur Risikokultur“ umschrieben wird, beschäftigt sich neben der grundlegenden<br />

Frage der Effizienz von ordnungsrechtlichen und freiwilligen Handlungsformen mit<br />

Maßnahmen der Prävention, Intervention und Regeneration.<br />

Befasst man sich mit den rechtlichen Aspekten der IRM-Strategie, fällt auf, dass das Begriffspaar<br />

Gefahr und Risiko bzw. deren Abgrenzung voneinander im Rahmen des IRM nicht mit<br />

dem klassischen polizeirechtlichen Begriffsverständnis, das auf die „hinreichende Wahrscheinlichkeit”<br />

eines Schadenseintritts abstellt, übereinstimmt. Während dort der Unterschied<br />

zwischen Gefahr und Risiko ein quantitativer ist, kommt im Rahmen der IRM-Strategie ein<br />

qualitativer hinzu. Das Risiko setzt sich demnach aus der Gefahr einerseits und der Verletzlichkeit<br />

andererseits zusammen. Im Unterschied zum Risiko sagt die Gefahr somit nichts über<br />

die Verletzlichkeit bzw. das Schadensausmaß aus. Von praktischer Bedeutung ist dieses<br />

Begriffsverständnis insbesondere im Zusammenhang mit der Erstellung von Gefahren- und<br />

Risikokarten, auf deren Grundlage die Schutzmaßnahmen geplant und umgesetzt werden<br />

sollen. Während sich die Gefahrenkarten auf die Darstellung von Ausmaß und Intensität der<br />

Prozesse beschränken, machen die Risikokarten auch Aussagen über das Schadenspotenzial<br />

[vgl. dazu Art. 6 EU-Hochwasserschutzrichtlinie 2007/60/EG]. Damit spricht vieles dafür, im<br />

Naturgefahrenrecht ein von der polizeirechtlichen Dogmatik abweichendes Verständnis der<br />

Begriffe „Gefahr“ und „Risiko“ einzuführen. Voraussetzung dafür ist jedoch, dass die<br />

betreffenden Begriffe im Naturgefahrenrecht definiert und in den Materialien zu den<br />

betreffenden Gesetzesanpassungen erläutert werden.<br />

2.2. Rechtsetzung<br />

Was die Rechtsetzung betrifft, ist auch im Schweizer Recht eine Rechtszersplitterung zu<br />

konstatieren. Da eine zentrale Kompetenznorm für Naturgefahren fehlt, sind Rechtsmaterien<br />

unterschiedlicher Zielsetzung und Struktur zum Teil gemeinsam anzuwenden. Dazu kommt<br />

noch die Verteilung der relevanten Rechtsetzung auf bis zu drei Ebenen [Bund – Kantone<br />

– Gemeinden]. Das Projekt identifiziert das System dieser Bestimmungen, fragt nach<br />

Normenhierarchien und -derogationen, verbindenden Elementen [z.B. Berücksichtigung<br />

kantonaler Gefahrenkarten in kommunalen Raumplänen] und erarbeitet Legislativvorschläge.<br />

Im Ergebnis kann auf eine zentrale bundesverfassungsrechtliche Norm und ein Naturgefahrengesetz<br />

verzichtet werden, wenn die Rechtsbereiche sich klar voneinander abgrenzen<br />

lassen und ein homogenes legislatives Gesamtsystem im Mehrebenensystem mit der<br />

Respektierung regionaler und kommunaler eigenständiger Lösungen gelingt.<br />

Dabei richtet sich die Kompetenzverteilung nach dem Grundsatz der Subsidiarität.<br />

Die Rechtsetzungskompetenzen des Bundes beschränken sich somit grundsätzlich auf den<br />

Schutz vor denjenigen Gefahren, vor denen sich die Kantone nicht alleine schützen können.<br />

Das sind insbesondere die Gefahren des Wassers [Art. 76 Abs. 1 BV] und die Gefahren,<br />

welche über die Schutzfunktion des Waldes abgewehrt werden können [Art. 77 Abs. 1 BV].<br />

Was den Schutz vor Erdbeben und Hagel sowie allfälligen weiteren Naturgefahren betrifft,<br />

hat der Bund jedoch keine Rechtsetzungskompetenzen. Allfällige Schutzmaßnahmen gegen<br />

diese Gefahren entziehen sich somit grundsätzlich einer einheitlichen Bundesregelung.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 99


Stufe BV<br />

Art. 61<br />

(Zivilschutz)<br />

Art. 75<br />

(Raumplanung)<br />

Art. 76<br />

(Wasser)<br />

Art. 77<br />

(Wald)<br />

Stufe Bund<br />

BG<br />

Bevölkerungs- und<br />

Zivilschutz<br />

BG<br />

Raumplanung + VO<br />

BG<br />

Wasserbau + VO<br />

BG<br />

BG<br />

Wald<br />

Gewschutz + VO<br />

Stufe Kanton<br />

Kant.<br />

Bevölkerungsschutz<br />

gesetz<br />

Kant.<br />

Planungs- und<br />

Baugesetz<br />

Kant.<br />

Wasserbau- und<br />

Gewässerschutz-<br />

Kant.<br />

Waldgesetz<br />

gesetz<br />

Abbildung 1: Diese Abbildung zeigt die wesentlichen Rechtsgrundlagen auf den tangierten Rechtsetzungsebenen auf<br />

Wichtig erscheint eine Abkehr vom gefahrenabwehrbasierten Sicherheitsansatz hin zu einem<br />

legislativen Risikokonzept, wie das die EU-Hochwasserschutzrichtlinie 2007/60/EG vorexerziert<br />

hat. Der risikobasierte und probabilistische Regelungsansatz beschränkt sich im<br />

Gegensatz zum präskriptiven und deterministischen Ansatz darauf, ein maximal zulässiges<br />

Risiko in quantitativer Form [Schutzziel] festzulegen. Die Normadressaten sind grundsätzlich<br />

frei, mit welchen Mitteln sie diese Vorgaben einhalten. Im Gegensatz zum deterministischen<br />

Ansatz geht er davon aus, dass Risiken nie völlig eliminiert, wohl aber optimiert werden<br />

können und nimmt gewisse Risiken deshalb bewusst in Kauf, versucht diese aber nach<br />

rationalen Kriterien zu begrenzen. Mit dem im Rahmen der Neugestaltung des Finanzausgleichs<br />

und der Aufgabenteilung zwischen Bund und Kantonen [NFA] auch im Umweltschutzbereich<br />

eingeführten Instrument der Programmvereinbarung [Art. 20a Subventionsgesetz],<br />

wurde die Grundlage geschaffen, aufgrund welcher der Bund, die Schutzmaßnahmen<br />

der Kantone anhand ziel- und risikobasierter Kriterien subventionieren kann. Die rechtliche<br />

Verankerung der IRM-Strategie wurde vom Gesetzgeber demnach bereits teilweise vorgespurt.<br />

Letztlich ermöglicht erst der Übergang zum Paradigma des Risikomanagements eine kontinuierliche<br />

und ganzheitliche gesellschaftliche Analyse, Bewertung und Verringerung der<br />

Risiken.<br />

2.3. Vollzug<br />

Was den Vollzug anbelangt, untersucht das Forschungsprojekt verschiedene organisatorische<br />

und verwaltungsverfahrensrechtliche Modelle auf ihren Beitrag zu einer effizienten Umsetzung.<br />

Der Schutz vor Naturgefahren ist eine Verbundaufgabe, d.h., dass sich regelmäßig<br />

zahlreiche Akteure aller drei Staatsebenen, weitere öffentlich-rechtliche Körperschaften des<br />

100 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


kantonalen Rechts, Werk-, Anlage- und Konzessionsinhaber sowie weitere Privatpersonen<br />

[z.B. Grundeigentümer und Anstößer] mit dieser Thematik befassen und bestimmte Aufgaben<br />

wahrnehmen. Es ist somit zwingend erforderlich, dass Organisation bzw. Zusammenwirken<br />

der verschiedenen Akteure im Rahmen der Aufgabenerfüllung so gut wie möglich optimiert<br />

werden.<br />

Der eigentliche Vollzug des Naturgefahrenrechts erfolgt schwergewichtig auf kantonaler<br />

Ebene. Dabei präsentiert sich das kantonale Organisations- und Verfahrensrecht im Bereich<br />

der Naturgefahrenprävention sehr heterogen. Es bestehen in der Schweiz in diesem Bereich<br />

daher 26 unterschiedliche Zuständigkeitsordnungen und völlig verschiedene Verfahrensabläufe.<br />

Dabei können einerseits die horizontale [Organisation und Kompetenzverteilung auf<br />

kantonaler Ebene] und andererseits die vertikale Aufgabenverteilung [Nebeneinander von<br />

kantonalen, kommunalen Kompetenzen sowie von Kompetenzen von weiteren Personen des<br />

öffentlichen und privaten Rechts] unterschieden werden. Daneben spielen auch die Verfahren,<br />

in welche die Maßnahmen der Naturgefahrenabwehr eingebettet sind, sowie die<br />

bestehenden Koordinationsinstrumente für die Umsetzung des materiellen Naturgefahrenrechts<br />

eine zentrale Rolle. Sie sollen praktikabel, transparent und nicht unnötig kompliziert<br />

sein, eine umfassende Interessenabwägung und Koordination ermöglichen sowie die<br />

Bevölkerung möglichst frühzeitig mittels entsprechender Mitwirkungsrechte in die Entscheidfindung<br />

involvieren. Des Weiteren ist der Rechtsschutz umfassend sicherzustellen.<br />

Grundsätzlich ist eine erhebliche Vielzahl unterschiedlicher organisationsrechtlicher Möglichkeiten<br />

denkbar. So besteht die Möglichkeit, das kantonale Organisationsrecht im Bereich der<br />

Naturgefahrenprävention und somit namentlich in den vier Teilbereichen Gefahrengrundlagen<br />

[inklusive Berücksichtigung in der Raumplanung sowie im Baubereich (I)], baulicher<br />

Hochwasserschutz und Gewässerunterhalt (II), bauliche Schutzmaßnahmen gemäß Waldgesetz<br />

(III) und Gewässerräume (IV) „zentralistisch“ (1) auszugestalten und sämtliche oder die<br />

Mehrheit der entsprechenden Kompetenzen dem Kanton selber bzw. kantonalen Behörden<br />

zuzuweisen. Ferner ist es auch denkbar, den Gemeinden die größtmögliche Autonomie zu<br />

gewähren und ihnen einen Großteil der Aufgaben auf dem Gebiet der Naturgefahrenabwehr<br />

zuzuweisen [sog. „gemeindebezogener Ansatz“ (2)]. Als weitere Möglichkeit fällt die<br />

Zuweisung diverser Aufgaben im Bereich des Naturgefahrenrechts an die unmittelbaren<br />

Nutznießer von Maßnahmen gegen Naturgefahren, die Grundeigentümer und Werk-,<br />

Anlage- oder Konzessionsinhaber (sog. „nutznießerbezogener Ansatz“ (3)]. Diesfalls würde<br />

die einhellige Auffassung, dass die Naturgefahrenabwehr eine Staatsaufgabe darstellt,<br />

bedeutend relativiert. Ein „differenziertes“ Organisationsmodell (4) ist zudem die Verteilung<br />

der Kompetenzen an verschiedene Träger entsprechend deren Eignung für die betreffende<br />

Aufgabe.<br />

Je nach Größe sowie Topografie des Gebiets sowie aufgrund der dort vorhandenen Gefahren<br />

vor Naturgewalten legen die Kantone die Organisation im Bereich der Naturgefahrenabwehr<br />

fest. Des Weiteren spielen oftmals historische Entwicklungen eine bedeutende Rolle für die<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 101


Ausgestaltung der Zuständigkeiten. Zudem kann auch die politische Grundhaltung im Kanton<br />

ein maßgebender Faktor sein [z.B. Haltung, dass der Staat umfassende Schutzpflichten inne<br />

hat oder die gegenteilige Auffassung, dass die Privaten selber für ihre Sicherheit zu sorgen<br />

haben]. Es ist mehr als fraglich, ob es ein „richtiges“ Organisationsmodell im Bereich der<br />

Naturgefahrenabwehr gibt. Vielmehr kann je nach den kantonalen Verhältnissen das eine<br />

oder das andere Modell als sachgerecht bezeichnet werden. Übergeordneten Grundsätzen<br />

[Subsidiaritätsprinzip, effizientes Staatshandeln, Koordinationsprinzip etc.] ist stets Rechnung<br />

zu tragen.<br />

Die Koordination zwischen den verschiedenen involvierten Trägerschaften kann jedenfalls<br />

insbesondere durch behördenverbindliche Grundlagen in der kantonalen Richtplanung,<br />

andere übergeordnete Planungen, kantonale Nutzungspläne, spezifische gesetzliche Vorschriften,<br />

konzentrierte Bewilligungsverfahren oder kantonale Prüfungs- und Genehmigungserfordernisse<br />

optimiert werden. Einen Schwerpunkt des Projekts bildet dabei auch die Frage,<br />

inwieweit die obere Ebene [also Bund im Verhältnis zu den Kantonen oder Kantone im<br />

Verhältnis zu den Gemeinden] vollzugslenkende Instrumente einsetzt. Hier ist zu bemerken,<br />

dass sehr oft nicht zu rechtlich verbindlichen Vorgaben gegriffen wird sondern untergesetzliche<br />

Elementen wie Richtlinien, Empfehlungen, Merkblätter oder technischen Normen zum<br />

Einsatz kommen. Den unbestreitbaren Vorteilen solcher Instrumente im Bereich der<br />

Aktualität und Flexibilität stehen aber grundlegende rechtliche Bedenken gegenüber.<br />

2.4. Versicherung<br />

In der Schweiz wird die Gebäudeversicherung gegen Elementarschäden durch zwei Systeme<br />

sichergestellt. In 19 Kantonen bei den kantonalen Gebäudeversicherern KGV, die selbständige,<br />

öffentlich-rechtliche kantonale Anstalten sind, welche über ein rechtliches Monopol<br />

verfügen und in kantonalen Gesetzen, teilweise zusätzlich in Kantonsverfassungen verankert<br />

sind. In 7 Kantonen mittels des GUSTAVO-Systems [Akronym der Anfangsbuchstaben der<br />

jeweiligen Kantone], welches den Schutz mittels Privatversicherungen erbringt und bezüglich<br />

Elementarschäden im Versicherungsaufsichtsgesetz des Bundes und der Aufsichtsverordnung<br />

verankert ist.<br />

Volkswirtschaftlich sowie sozial- und ordnungspolitisch ist die Gebäudeversicherung von<br />

großer Bedeutung, denn sie sichert den raschen Wiederaufbau, die Erhaltung der Wirtschaftsleistung<br />

[Gewerbe- und Industriebauten], wesentliche wenn nicht sogar existentielle<br />

Vermögensteile [v.a. Einfamilienhäuser Privater] sowie geeignete bauliche Maßnahmen in<br />

Risikogebieten.<br />

Ein Versicherungssystem ist der ad-hoc Staatshilfe im Katastrophenfall entschieden vorzuziehen.<br />

Neben den obigen Vorteilen schont es auch den allgemeinen Staatshaushalt, da nicht auf<br />

allgemeine Steuermittel zur Entschädigung von beispielsweise Hochwasseropfern zurückge-<br />

102 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


griffen werden muss. Diese haben zudem einen Rechtsanspruch auf Versicherungsleistung<br />

und nicht bloß eine vage und letztlich unsichere Aussicht auf staatliche Hilfeleistung.<br />

Für die Zukunft ist eine weitere Stärkung der Prävention wünschbar und nötig, um die<br />

Versicherbarkeit auch angesichts der Herausforderung Klimawandel langfristig sicherzustellen.<br />

So muss der Naturgefahr Starkregen in Zusammenhang mit dem Oberflächenabfluss<br />

vermehrt Beachtung geschenkt werden. Weiter sollten den KGV weitere Instrumente in die<br />

Hand gegeben werden wie der Einfluss auf Baubewilligungen oder konkrete Auflagen bei<br />

solchen [was heute nur in vereinzelten Kantonen möglich ist].<br />

ERGEBNISSE<br />

Den Staat treffen unter gewissen Umständen zum Schutz vor Naturgefahren Handlungspflichten,<br />

wobei verschiedene Parameter wie Intensität der Betroffenheit, potentielles<br />

Schadensausmaß oder Wahrscheinlichkeit des Schadenseintritts zu berücksichtigen sind.<br />

In der Rechtsetzung wird angesichts der Rechtszersplitterung ein homogenes legislatives<br />

Gesamtsystem sowie ein vollständiger Paradigmenwechsel vom bisher vorherrschenden<br />

Sicherheitsansatz zum Risikoansatz zu fordern sein. Schließlich werden exemplarisch diverse<br />

Modelle aus der verwaltungsorganisatorischen Praxis untersucht, die tendenziell nicht<br />

zwingend für eine zentrale Behörde, in der alle Vollzugskompetenzen gebündelt werden,<br />

sondern zumindest für eine überschaubare kleinere Zahl an fachlich spezialisierten oder<br />

regional strukturierten Behördeneinrichtungen sprechen, die sich nach klaren Regeln selbst<br />

koordinieren oder von einer Koordinationsbehörde gesteuert werden. Das schweizerische<br />

System der Gebäudeversicherung ist nicht einforderbaren staatlichen Unterstützungen<br />

vorzuziehen.<br />

FAZIT<br />

Die Behandlung grundlegender juristischer Fragestellungen in Bezug auf staatliche Handlungspflichten,<br />

Legislative und Exekutive sowie Versicherungsrecht kann einen entscheidenden<br />

Beitrag zu einem effizienten Naturgefahrenmanagement leisten.<br />

LITERATUR<br />

- Dietlein J. (2005), Die Lehre von den grundrechtlichen Schutzpflichten<br />

- Fuchs S./Khakzadeh L./Weber K. (Hrsg.) (2006), Recht im Naturgefahrenmanagement<br />

- Hess J. (2011), Schutzziele im Umgang mit Naturrisiken in der Schweiz<br />

- Jaeckel L./Janssen G. (Hrsg.) (2012), Risikodogmatik im Umwelt- und Technikrecht<br />

- Krings G. (2003), Grund und Grenzen grundrechtlicher Schutzansprüche<br />

- PLANAT (2013), Sicherheitsniveau für Naturgefahren<br />

- Quinto C. (2010), Versicherungssysteme in Zeiten des Klimawandels<br />

- Rudolf-Miklau F. (2009), Naturgefahren-Management in Österreich<br />

- Schmitz S. C. (2010), Grundrechtliche Schutzpflichten<br />

- Seiler H. (2000), Risikobasiertes Recht. Wieviel Sicherheit wollen wir?<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 103


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Gender mainstreaming in disaster risk reduction –<br />

a step towards the visibility of women in DRR<br />

Catrin Promper, Dr. 1,2 ; Maria PatekPatek 1<br />

ABSTRACT<br />

Women and men perceive risks differently and therefore gender is an important part of<br />

disaster risk reduction requiring further consideration. Experiences of large disasters have<br />

shown that the role of women is significantly different from the one of men in the phases of<br />

prevention and disaster response. To further enhance resilience it is important to proactively<br />

include women in socio-political decision-making processes and to ensure the inclusion of<br />

women and youth-specific issues in disaster risk management plans. Therefore, the platform<br />

on Natural Hazards of the Alpine Convention - PLANALP - has included this topic in the<br />

current mandate 2015-<strong>2016</strong>. The focus is to raise awareness of gender issues in disaster risk<br />

reduction and to foster women's engagement by enhancing the visibility of female experts in<br />

this area of work.<br />

KEYWORDS<br />

disaster risk reduction;gender mainstreaming; policy; PLANALP<br />

INTRODUCTION<br />

Natural hazard risk is perceived differently by women and men and, consequently, differences<br />

of gender are a significant part of disaster risk reduction. This is also underlined by the<br />

recently adopted Sendai Framework for Disaster Risk Reduction 2015-2030 (UN 2015).<br />

With respect to natural hazards, often women are more vulnerable compared to men because<br />

of socially constructed roles and prerequisites; biological or biophysical factors; and existing<br />

patterns of discrimination, such as domestic violence against women, that become more<br />

evident in extreme situations, thus emphasizing the importance of this topic. This subsequently<br />

also affects children and elderlies who are frequently dependent on women, especially in<br />

developing countries where women often are responsible for the subsistence of the family<br />

members.<br />

Experiences from large disasters have shown that the role of women is significantly different<br />

from men in the phases of prevention and disaster response. In the case of the 2004 tsunami,<br />

it was discovered that more women and children than men died in the worst affected areas<br />

(OXFAM 2005). Reasons are, for example, that in the disaster-affected areas men were more<br />

capable of swimming or climbing trees than women (OXFAM 2005). Furthermore, a study<br />

1 Austrian Federal Ministry for Agriculture, Forestry, Environment and Water Management, Vienna, AUSTRIA,<br />

catrin.promper@bmlfuw.gv.at<br />

2 Food and Agricultural Organization of the United Nations, Rome, ITALY<br />

104 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP090


carried out in Serbia following the flood of 2014 (Baćanović 2015) indicated that elderly<br />

women and women living alone were more inclined to have suffered damages from the<br />

calamity.<br />

To further enhance resilience it is important to proactively include women in socio-political<br />

decision processes and to ensure the inclusion of women- and youth-specific topics in disaster<br />

risk management plans. Therefore, the empowerment of women at local levels is crucial for<br />

influencing local protection and response. However, it is important to highlight not only the<br />

need to strengthen the training on gender issues for political representatives and institutions<br />

that deal with disaster risk reduction and reconstruction, but also the need for increased<br />

representation of women in decision-making processes in these institutions (Damyanovic et<br />

al. 2014, UNISDR 2010). Based on this, the platform on Natural Hazards of the Alpine<br />

Convention – PLANALP – included this topic in the current mandate 2015-<strong>2016</strong>. The focus<br />

of the mandate is to enhance the visibility and foster the engagement of women in decisionmaking<br />

processes and to raise awareness on gender issues in the field of disaster risk<br />

reduction.<br />

DIMENSIONS OF DISASTER PERCEPTION<br />

One of the guiding principles of the recently adopted Sendai Framework for Disaster Risk<br />

Reduction 2015-2030 (UN 2015) is an all-of-society engagement and partnership which<br />

includes a gender perspective in all policies and practices. Social interactions between men<br />

and women result in socially constructed roles, responsibilities and identities that are<br />

reflected in a combination of physical and behavioural characteristics – gendered identities<br />

(Madhavi 2010). These gendered identities comprise: perception, attitudes, and status<br />

separating boys from girls and men from women. Perceptions are the subsequent views<br />

resulting from these gender identities, and the attitudes differ as these are guided by their<br />

respective perception (Madhavi 2010). Another reflection on social interactions of men and<br />

women is the resulting positions in family, community, or society (Madhavi 2010). These<br />

relations come into effect in all spheres of life including disasters, which is highlighted in<br />

various studies conducted in different regions of the world. To detail with these differences,<br />

the approach of Neumayer and Plümper (2007), distinguishing three causes for gender<br />

differences in mortality resulting from natural disasters, is applied in the following paragraphs.<br />

The first dimension can be summarized as a physiological or biological dimension (Neumayer<br />

& Plümper 2007) that incorporates limitations, such as the ability to run away from a wave<br />

or withstand a storm. The 2004 tsunami that affected Southeast Asia, South Asia, and East<br />

Africa is a good example. In this event more women and children died than men. One reason<br />

for that was missing the physical strength necessary to hold on or float, which subsequently<br />

also applies to men that were not strong enough.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 105


In terms of recovery, including rebuilding infrastructure and health risks, there is also<br />

evidence of physiological differences between men and women. A big issue in the recovery<br />

phase is that women often do not have the strength to help clear debris, but engage in<br />

cleaning after the heavy-duty jobs were done (Baćanović 2015). Therefore, they are sometimes<br />

not as proactive as men when it comes to returning to their homes. In addition, single<br />

women or families without a male family member are not able to carry out post-disaster<br />

recovery work (Baćanović 2015). Subsequently, these women and families have to pay<br />

somebody to assist them with their return and rebuilding of their homes. Another issue<br />

where differences between men and women is evident: men and women have different<br />

propensities to die from various diseases. This in combination with discriminated access to<br />

resources after disasters, like food and hygiene products, can have tremendous impact on<br />

women. For example, women in less-developed countries are often more likely to suffer from<br />

malnutrition (IUCN 2009), which constitutes to their vulnerability to diseases. However,<br />

the implications for gender-specific disaster mortality are ambiguous (Neumayer & Plümper<br />

2007).<br />

The second aspect comprises behaviours and social prerequisites, meaning that the role one<br />

has in society can have an impact on vulnerability (OXFAM 2005, Neumayer & Plümper<br />

2007). These preconditions range from clothing that might hinder protecting oneself or from<br />

escaping, to the obligation or duty of providing protection or care for children or the elderly.<br />

An example is given in the case of the 2004 tsunami where women stayed behind with<br />

children or elderly, and consequently were not able to save themselves (OXFAM 2005).<br />

This hints at another important aspect with respect to social constraints: time and location of<br />

a disastrous event. Again, examples are provided by the 2004 tsunami where women in India<br />

were waiting at the sea shore for the fish to be processed when the tsunami struck, whereas<br />

in Sri Lanka the tsunami hit in the hour the local women usually take their bath (OXFAM<br />

2005). Additionally, in Indonesia the men tended to work away from their homes in bigger<br />

cities resulting in proportionally more deaths among women (OXFAM 2005).<br />

Another aspect that is related to social structures are long term impacts on the economic<br />

situation. A study that was carried out after the Great Hanshin Earthquake in 1995 details the<br />

impacts that disasters can have on women. It was shown that companies let go of part time<br />

workers first, most of whom were women (Masai et al. 2010), who often take care of the<br />

children and, therefore, were not able to work full time. Another long term effect of disasters<br />

can be a changed situation after the disaster, when men have to, for example, fend for<br />

themselves or take over unfamiliar tasks as they have to take care of their remaining family<br />

(OXFAM 2005).<br />

The third dimension focusses on the recovery phase where Neumayer and Plümper (2007)<br />

underline that existing gender patterns, depending on the respective societal context, become<br />

106 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


exacerbated through increased competition of individuals resulting from the breakdown of<br />

social order and limited access to resources.<br />

A transfer of existing gender patterns was also highlighted by Baćanović (2015), indicating<br />

that in the displacement centres after the flood in Serbia, men took over leadership and<br />

organizational roles and stepped out into the public sphere, whereas women were more<br />

isolated and passive, often looked after the children and did not always get the psychological<br />

support needed. Another example from St. Lorenzen in Austria, in 2012 indicated a continuation<br />

of traditional gender roles after a debris flow event. Women took over the supply and<br />

provision roles such as cooking, whereas men were more active in reconstruction works<br />

(Damyanovic et al. 2014). Nevertheless, in this case the degree to which individuals were<br />

affected was not based solely on their gender, but more on the individual situation and the<br />

subsequent social network within the municipality (Damyanovic et al. 2014).<br />

Differences between men and women are also evident in the context of early warning and<br />

evacuation, depending on their specific social context. A study from the Save flood (Baćanović<br />

2015) showed a difference in response and actions after warnings. In this case, women<br />

preferred official warnings, whereas men were prepared to obtain informal information.<br />

Another example, from Japan, showed that women often were talking to and then evacuating<br />

with people around them, whereas men more often evacuated alone (Gender Equality<br />

Bureau 2014). The example of Hurricane Katrina showed that women were often the<br />

decision-makers when it came to preparedness and evacuation: deciding if, when, where,<br />

and how long a family would evacuate (Peek L. & Fothergill 2010). The reason was that<br />

approximately 40 percent of the households before the storm were headed by females, due to<br />

the absence of husbands, and therefore they were also responsible for evacuation (Willinger<br />

2008, Barber & Deitz 2015). However, the fact that a large proportion of these female-headed<br />

households lived in poverty exacerbated this situation because of difficult preconditions like<br />

limited access to transportation and other necessities for evacuation, or insecure employment<br />

(IWPR 2006, Barber & Deitz 2015).<br />

Another aspect is the increased health and security risk for women after an event. Violence<br />

against women is commonly observed. This is especially referred to after big events, e.g. after<br />

the tsunami in Sri Lanka where threats of rape and sexual assault increased (OXFAM 2005).<br />

However, domestic violence can also increase due to such extreme situations. For example,<br />

in New Zealand following the Whakatane Flood 2004, a doubling to tripling in domestic<br />

violence was observed by several agencies (Houghton 2010). Another example is the Great<br />

East Japan earthquake of 2011, where the evacuation operation of the centres was mainly<br />

carried out by men without considering the women's point of view, thus causing women<br />

inconveniences and discomforts (Gender Equality Bureau 2014). Examples would be special<br />

health needs or security issues due to poorly light areas.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 107


GENDER MAINSTREAMING IN DISASTER RISK REDUCTION<br />

The above examples clearly indicate several gender differences in the context of natural<br />

disasters and this is especially evident in the response phase. The different roles and perception<br />

of men and women in situations such as preparation, early warnings, or decisions on<br />

evacuation, underline the importance of meeting the different needs in all phases of a<br />

disaster. Gender mainstreaming involves ensuring that gender perspectives and attention to<br />

the goal of gender equality are central to all activities – policy development, research,<br />

advocacy/dialogue, legislation, resource allocation, planning, implementation and monitoring<br />

of programs and projects (UN Women). The focus therefore is on the differences in perception<br />

of men and women in all phases of the disaster risk cycle and how to address these differences.<br />

The all-of-society engagement should also account for age, disability, and cultural perspective<br />

in all policies and practices (UN 2015) related to disaster risk reduction at all levels.<br />

This further increases the preparedness and coping capacity among all groups of society.<br />

In order to increase the resilience of women, it is important to ensure that women are<br />

specifically addressed in disaster risk management plans and that they are also included in<br />

socio-political decision-making processes. The United Nations Development Programme<br />

(UNDP) also aims to ensure women’s participation in all dialogues and in solution-generation<br />

for disaster risk reduction (UNISDR & GDN 2009). This subsequently requires empowerment<br />

of women, which also means ensuring opportunities for women in science and technology;<br />

building capacity in women’s groups and community based organizations; and including<br />

gender mainstreaming in communication, training, and education, etc. (UNISDR & GDN<br />

2009). This is also underlined by Damyanovic et al. (2014) and UNISDR (2010) who<br />

emphasize that in addition to strengthening the training on gender issues for political<br />

representatives and institutions in disaster risk management, it is also key to set up trainings<br />

for representatives from institutions dealing with disaster relief or reconstruction.<br />

The examples in the previous sections show that in the context of a disaster the differences<br />

between men and women are highly evident in developing countries, especially when<br />

referring to impact, death rates, etc., but are also evident in developed countries. Gender<br />

mainstreaming therefore might enhance success rates of disaster risk reduction and, considering<br />

knowledge transfer via best practice examples, influence community resilience in<br />

developing countries. Especially in disaster risk reduction, among other issues, alpine<br />

countries have strong expertise and, therefore, have a significant influence on methods and<br />

policies adopted in other mountainous areas of the world. The examples above show that<br />

vulnerability and resilience are highly dependent on the social structure, however, it also<br />

underlines the need for taking responsibility and acting as a role model to enhance gender<br />

mainstreaming in the disaster risk context.<br />

Raising the awareness of experts and stakeholders, acting as multipliers in society, and<br />

tailoring information concepts for women, youth and men are examples towards main-<br />

108 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


streaming gender in disaster risk reduction. The inclusion of women in different levels of the<br />

disaster risk reduction processes – from expert to stakeholder levels in participatory processes<br />

– increases perspectives, and subsequently accounts for different groups of society. In the long<br />

term this aims at an overall increase of resilience for all levels of society. Women have a<br />

different perspective on disaster risk reduction and therefore it is important to add this to the<br />

discourse, both at a decision-making and societal level. As a transnational body, PLANALP<br />

takes on this responsibility and has started by raising awareness for gender mainstreaming by<br />

featuring female experts in the field of disaster risk reduction.<br />

INCREASING THE VISIBILITY OF WOMEN IN DISASTER RISK REDUCTION<br />

PLANALP integrated the aspect of gender in the context of natural hazard and disaster risk<br />

management in its mandate for 2015-<strong>2016</strong> with the item: “The role of women in natural<br />

hazard management focusing on the Alpine region”. The objective is to raise awareness and<br />

increase the visibility of women in the field of disaster risk reduction and to show their<br />

vocational diversity. To implement this, PLANALP took the opportunity to contribute to an<br />

exhibition in the frauenmuseum Hittisau, Austria: “Ich, am Gipfel. Eine Frauenalpingeschichte”.<br />

This exhibition on women and alpinism was therefore complemented with<br />

“talking-heads”, showcasing the potential careers for young women in the field, thereby<br />

fostering mixed teams in disaster risk reduction in the long run.<br />

To highlight the different options and career paths, as well as challenges and opportunities<br />

of female experts in disaster risk reduction, structured interviews were conducted and filmed.<br />

These interviews were displayed as “talking-heads” – showing the head and upper body of<br />

the person interviewed – on a screen in the exhibition. The questions in these structured<br />

interviews ranged from personal motivation for the job, daily business to observable<br />

differences between men and women in disaster situations. The women interviewed had a<br />

broad range of obligations in the field of natural hazard management: cross-cutting functions<br />

such as spatial planning, or the management of prevention and protection of hydro-meteorological<br />

hazards like floods or avalanches. A geologist and engineer in the field of torrent and<br />

avalanche control represented some of the women who contributed to this “talking-head”<br />

project. To integrate this element in an exhibition on women and alpinism was beneficial for<br />

two reasons: 1) the exhibition raised awareness for gender in similar contexts and 2) it<br />

reached out to different levels of society including experts, but also the general public and<br />

youth.<br />

CONCLUSION<br />

In conclusion, gender mainstreaming is an important part of disaster risk reduction for<br />

increased resilience at all levels of society to natural hazards. This entails higher awareness,<br />

better understanding and further implementation and replication of tailored disaster risk<br />

reduction concepts that are gender-inclusive. The exhibition of PLANALP in the frauenmuseum<br />

was one step towards higher awareness among the general public but also among experts<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 109


which act as multipliers within society. Increased awareness among experts further contributes<br />

to tailored concepts for natural hazard risk management mainstreaming the gender<br />

element. To design these concepts, as indicated above, open questions like in-depth knowledge<br />

on the interrelationship of gender and social factors and related consequences in disaster<br />

situations have to be investigated. Further, regional differences have to be explored as shown<br />

by the examples of Serbia and Japan, where the reaction to formal versus informal warning<br />

was very different. Overall, evaluation of existing disaster risk reduction plans, documenting<br />

best practices and further research on the questions posed above are concrete steps towards<br />

a successful accomplishment of gender mainstreaming in all phases of the disaster risk cycle.<br />

ACKNOWLEDGEMENTS<br />

The authors like to thank PLANALP and the frauenmuseum Hittisau for the good cooperation<br />

and the female experts from Austria, Germany, Italy and Switzerland for their contribution<br />

as “talking-heads”. Further the authors thank the reviewers for their valuable and extensive<br />

comments on the first version of this paper. The exhibition “Ich, am Gipfel. Eine Frauenalpingeschichte”<br />

is running from 14 June 2015 to 26 October <strong>2016</strong> in the frauenmuseum<br />

Hittisau, Austria.<br />

REFERENCES:<br />

- Baćanović V. (2015). Gender Analysis of the Impact of the 2014 Floods in Serbia. Organization<br />

for Security and Co-operation in Europe.<br />

- Barber K. and Deitz S. (2015). Missing in the Storm: The Gender Gap in Hurricane Katrina<br />

Reserach and Disaster Management Efforts. In: Haubert J. (edt.), 2015, Rethinking Disaster<br />

Recovery A Hurricane Katrina Perspective. Lexington Books.<br />

- Damyanovic, D., Fuchs B., Reinwald F., Pircher E., Allex, B., Eisl J. Brandenburg, C., Hübl,<br />

C. (2014): GIAKlim - Gender Impact Assessment im Kontext der Klimawandelanpassung und<br />

Naturgefahren. Endbericht von StartClim2013.F in StartClim2013: Anpassung an den<br />

Klimawandel in Österreich - Themenfeld Wasser, Auftraggeber: BMLFUW, BMWF, ÖBF, Land<br />

Oberösterreich.<br />

- Gender Equality Bureau (2014). Natural Disasters and Gender Statistics: Lessons from the<br />

Great East Japan Earthquake and Tsunami, From the “White Paper on Gender Equality<br />

2012”. Cabinet Office, Government of Japan.<br />

- Houghton R. (2010). Sex, Gender and Gender Relations in Disasters. In: Enarson E. and<br />

Dhar Chakrabarti P G, 2015 Women, Gender and Disaster Global Issues and Initiatives.<br />

Sage Publications.<br />

- IUCN (2009). Disaster and gender statistics.<br />

- Madhavi Malalgoda Ariyabandu (2010). "Everything Became a Struggle, Absolute Struggle":<br />

Post-flood Increases in Domestic Violence in New Zealand. In: Enarson E. and Dhar<br />

Chakrabarti P G, 2010 Women, Gender and Disaster Global Issues and Initiatives. Sage<br />

Publications.<br />

110 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Masai R., Kuzunishi L. and Kondo T. (2010). Women in the Great Hanshin Earthquake.<br />

In: Enarson E. and Dhar Chakrabarti P G, 2010 Women, Gender and Disaster Global Issues<br />

and Initiatives. Sage Publications.<br />

- Neumayer E. & Plümper T. (2007). The Gendered Nature of Natural Disasters: The Impact<br />

of Catastrophic Events on the Gender Gap in Life Expectancy, 1981–2002. Annals of the<br />

Association of American Geographers, 97:3, 551-566.<br />

- OXFAM International (2005). The tsunami's impact on women. Ofxam Briefing Note.<br />

- Peek L. and Fothergill A. (2010). Parenting in the Wake of Disaster: Mothers and Fathers<br />

Respond to Hurricane. In: Enarson E. and Dhar Chakrabarti P G, 2010, Women, Gender and<br />

Disaster Global Issues and Initiatives. Sage Publications.<br />

- UN (2015). Sendai Framework for Disaster Risk Reduction 2015-2030.<br />

- UNISDR (2010). Guidance note on recovery: gender<br />

- UNISDR and Gender and Disasters Network (2009). The Disaster Risk Reduction Process:<br />

A Gender Perspective A Contribution to the 2009 ISDR Global Assessment Report on Disaster<br />

Risk Reduction.<br />

- UN Women, www.unwomen.org. accessed 25.03.2015.<br />

- Willinger B. (edt.) (2008). Katrina and the Women of New Orleans – Executive report and<br />

summary of findings. Tulane Univeristy.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 111


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

The central challenge of climate change adaptation<br />

for Alpine natural hazard management: Incorporation<br />

of future change of the damage potential<br />

Die zentrale Herausforderung der Klimawandelanpassung<br />

für das Naturgefahrenmanagement im<br />

Alpenraum: Berücksichtigung des zukünftigen<br />

Wandels des Schadenpotentials<br />

Klaus Pukall, Dr.¹; Sylvia Kruse, Dr.²<br />

ABSTRACT<br />

Climate change adaptation within the field of alpine hazards management is not sufficiently<br />

taking future changes of the damage potential into account. Climatic and societal changes are<br />

expected to influence hazard exposure and social vulnerability considerably. Feedback mechanism<br />

between hazard management, settlement development and climate change adaptation<br />

need to be incorporated. The Safe-Development-Paradox proofs also to apply for the<br />

Alpine Space, i.e. that protection measures often lead to building activities and thus increases<br />

societal and financial values in areas potentially at risk. Because hazard zones can grow due<br />

to climatic changes, these interconnections between realized and planned protection and<br />

climate adaptation measures as well as future societal changes should be considered in hazard<br />

management and planning already today. Starting points for alpine hazard management are<br />

therefore first, to link climate and societal scenarios on local and supraregional scale; second,<br />

to include stakeholders from natural hazard management when negotiating future settlement<br />

development and spatial uses; and third, to account for uncertainty of future development<br />

by implementing flexible and adaptive measures.<br />

ZUSAMMENFASSUNG<br />

Die Klimaanpassungsstrategien für den Bereich des Naturgefahrenmanagement im Alpenraum<br />

berücksichtigen bisher unzureichend die zukünftigen Veränderungen des Schadenspotentials.<br />

Es ist jedoch davon auszugehen, dass sowohl der Klimawandel die naturwissenschaftlich<br />

beschreibbaren Gefahrenprozesse als auch gesellschaftliche Veränderungen die<br />

Verwundbarkeit der Bevölkerung beeinflussen werden. Rückkopplungsmechanismen<br />

zwischen Naturgefahrenmanagement, Siedlungsentwicklung und Klimaanpassung sind hier<br />

zu berücksichtigen. Das Safe-Development-Paradox zeigt auch im Alpenraum, dass gerade<br />

technische Schutzbauwerke zu einer stärkeren Siedlungsentwicklung in potenziellen<br />

1 Technische Universität München, Freising, GERMANY, klaus.pukall@tum.de<br />

2 Chair of Forest and Environmental Policy, University of Freiburg, GERMANY<br />

112 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP100


Gefahrenbereichen führen und damit das Schadenspotential zunimmt. Da sich diese Gefahrenbereiche<br />

durch den Klimawandel noch ausweiten können, sollten diese Zusammenhänge<br />

zwischen bereits umgesetzten und geplanten Schutz- und Klimaanpassungsmaßnahmen<br />

sowie der zukünftigen gesellschaftlichen Entwicklung bereits heute bei der Planung berücksichtig<br />

werden. Ansatzpunkte für das alpine Naturgefahrenmanagement bilden daher erstens<br />

die Verknüpfung von Klima- und Gesellschaftsszenarien auf lokaler und überregionaler<br />

Ebene, zweitens der Einbezug von Akteuren des Naturgefahrenmanagements in die Aushandlung<br />

der Siedlungsentwicklung und der Raumnutzungen, und drittens die systematische<br />

Berücksichtigung von Unsicherheit in Form von flexiblen und damit anpassungsfähigen<br />

Maßnahmen.<br />

KEYWORDS<br />

Climate change adaptation; spatial planning; safe development paradox; uncertainty<br />

EINLEITUNG<br />

Anpassung an den Klimawandel ist ein wichtiges Thema für das Naturgefahrenmanagement<br />

(NGM) im Alpenraum. Entsprechende Konzepte wurden ab 2000 in Klimaanpassungsstrategien<br />

(KAS) in Bayern (deutscher Anteil am Alpenraum), Österreich und der Schweiz<br />

erarbeitet. In diesem Beitrag vertreten wir die These, dass die zentrale Herausforderung der<br />

Klimaanpassung (KA) für das NGM die Berücksichtigung des zukünftigen Wandels nicht nur<br />

der Klimaparameter sondern vor allem des gesellschaftlichen Systems darstellt. Genauso<br />

wie bei den Klimaprojektionen des IPCC müssen soziale Zukünfte berücksichtigt und in das<br />

heutige Management von alpinen Naturgefahren integriert werden.<br />

Ziel dieses Artikels ist es die Notwendigkeit für ein zukunftsgerichtetes NGM herauszuarbeiten<br />

und mögliche Ansatzpunkte für die systematische Berücksichtigung des gesellschaftlichen<br />

und klimatischen Wandels im NGM zu benennen.<br />

Basierend auf einer Analyse der bestehenden KAS diskutieren wir, inwieweit zukünftige<br />

Veränderungen in natürlichen und sozialen Systemen berücksichtigt werden und identifizieren<br />

„blinde Flecken“, die bisher keine Berücksichtigung in der KA im NGM finden. Darauf<br />

aufbauend entwickeln wir Vorschläge für ein zukunftsgerichtetes NGM, das besonders die<br />

Steigerung des Schadenspotentials berücksichtigt.<br />

METHODIK<br />

Innerhalb des BMBF-Projekts „Alpine Naturgefahren im Klimawandel“ (Vertrag 01UV1004B,<br />

Deutsches Bundesministerium für Bildung und Forschung) wurden auf nationaler und<br />

sub-nationaler Ebene (Bayern, Graubünden, Tirol) die bis Ende 2013 erarbeiteten KAS sowie<br />

vorbereitende Dokumente (Gesetzestexte, in den Ländern aufgelegte Forschungsprogramme<br />

zur Klimafolgenabschätzung, sektorale Programme des NGM) mit Methoden der qualitativen<br />

Inhaltsanalyse untersucht. Außerdem wurden Leitfadeninterviews mit 41 Experten des NGM<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 113


aus Österreich, Deutschland und der Schweiz über die KA im NGM geführt und ein internationaler<br />

Experten-Workshops durchgeführt, im dem Lösungsansätze für die Herausforderungen<br />

der KA erarbeitet wurden.<br />

STAND DER KLIMAANPASSUNG IN DEN UNTERSUCHUNGSLÄNDERN<br />

Die KAS, die in den untersuchten Ländern in den Jahren 2000-2014 erstmals erstellt wurden,<br />

basieren überwiegend auf länderspezifischen Forschungsprojekten, die sowohl historische<br />

klimabezogene Datenreihen analysierten als auch die globalen Klimamodelle durch unterschiedliche<br />

Downscaling-Mechanismen auf regionaler Ebene auswerteten. Die Ergebnisse<br />

dieser Forschungsprojekte flossen als Informationsgrundlage in die nationalen und regionalen<br />

Anpassungsstrategien ein.<br />

Eine vergleichende Analyse der KAS zeigt, dass KA in den Strategien der untersuchten<br />

Länder primär als eine Anpassung an ein verändertes regionales Klima verstanden wird.<br />

Eine Anpassung an sich verändernde gesellschaftliche Gegebenheiten (z. B. Siedlungs- und<br />

Wirtschaftsentwicklung, demographische Struktur etc.) findet bisher nicht statt. Anpassung<br />

wird zudem als routinierte Veränderung der etablierten Handlungsstrategien bzw. Maßnahmen<br />

empfunden, wie stellvertretend dieses Zitat aus der Schweiz zeigt: „Die zusätzlichen<br />

Herausforderungen infolge des Klimawandels können deshalb durch eine konsequente<br />

Umsetzung der PLANAT-Strategie und des integralen Risikomanagements gemeistert werden“<br />

(Schweiz. Bundesrat 2012: 3808)<br />

BLINDE FLECKEN DER KA: FEHLENDE ZUKUNFTSORIENTIERUNG BEZÜGLICH SOZIALER PROZESSE<br />

Das derzeitige NGM ist vergangenheits- bzw. gegenwartsorientiert. Das für die meisten Maßnahmen<br />

des NGM zentrale Konzept der Jährlichkeit ist auf eine Betrachtung möglichst langer<br />

historischer Zeitreihen ausgelegt. Je länger die Beobachtung zurückreicht, desto besser kann<br />

das Magnitude-Frequenz-Verhältnis der betrachteten Gefahren bestimmt werden. Maßnahmenplanungen,<br />

die das Schadenspotential berücksichtigen, gehen vom aktuellen Zustand aus<br />

und vergleichen somit z. B. durch Kosten-Nutzen-Abwägungen die Reduktion des aktuellen<br />

Schadenspotentials durch unterschiedliche Maßnahmen.<br />

Dieser Vergangenheitsbezug wird innerhalb der KA durch Szenarien über die zukünftigen<br />

Auswirkungen der Klimaveränderung auf die Gefahrensituationen ergänzt. Die Einführung<br />

eines einheitlichen Klimaänderungsfaktors von 15% (d.h. das aus historischen Daten<br />

errechnete Bemessungsereignis wird um den Faktor 1,15 erhöht) für Hochwasserschutzbauten<br />

in Bayern im Jahr 2004 oder der 2003 fertig gestellte Lawinen- und Murgangschutzdamm<br />

in Pontresina (Graubünden) sind ein Beispiel dafür, dass bereits vereinzelt heutige Maßnahmen<br />

zukünftige Veränderungen antizipieren.<br />

Wie bereits in der Einleitung ausgeführt, basiert die Arbeit der Klimawandelforschung auf der<br />

Verwendung von Emissionsszenarien, die Annahmen über gesellschaftliche Entwicklungen<br />

114 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


einhalten. Die KAS berücksichtigen diese gesellschaftlichen Szenarien aber häufig nicht, um<br />

Maßnahmen der KA zu formulieren. KA sollte daher nicht nur die Projektionen zur Klimaentwicklung<br />

berücksichtigen sondern besonders bei der Formulierung der KA-Maßnahmen<br />

auch systematisch die unterschiedlichen möglichen Gesellschaftszukünfte berücksichtigen.<br />

Für das NGM müssten explizit folgende Themen beachtet werden.<br />

Rückkopplungsmechanismen aufgrund durchgeführter Schutzmaßnahmen:<br />

Das Safe-Development-Paradox<br />

Burby (2006) erklärt einen Großteil der Schäden in New Orleans, die nach Hurrikan Katrina<br />

entstanden sind, auf Basis des von ihm so benannten „Safe Development Paradox“: Jede<br />

Schutzmaßnahme, die zu einem Gefühl 100%iger Sicherheit führt, verursacht langfristig ein<br />

erhöhtes Schadenspotential. Burby (2006) erweitert damit das Verständnis für den sog.<br />

„levee effect”, den zuerst Segoe (1937) beschrieb. Falls ein Deich gebaut wird, empfinden<br />

die Bewohner des durch den Deich geschützten Gebiets als auch die lokalen Behörden dieses<br />

Gebiet als „sicher“. Die Siedlungsentwicklung findet in dem durch den Deich geschützten<br />

Gebiet so statt, als wäre das Hochwasser vollkommen gebannt – der besonders in Bayern<br />

verwendete Begriff der Hochwasserfreilegung unterstützt z.B. diese Fehlwahrnehmung.<br />

Dieser Prozess führt zu einer deutlichen Steigerung des Schadenspotentials im Vergleich zu<br />

nicht geschützten Flächen. Burby (2006) betont, dass besonders solche Maßnahmen, die<br />

neue Entwicklungsmöglichkeiten eröffnen und nicht bestehende Bebauung schützen, zum<br />

„Safe Development Paradox“ beitragen.<br />

Auch die Gefahrenzonenplanung im Alpenraum kann zu einem falschen Gefühl der Sicherheit<br />

führen. Keiler (2004) und Fuchs et al. (2004) wiesen für die Gemeinden Galtür und<br />

Davos nach, dass die höchsten Steigerungsraten der Schadenspotentialentwicklung (besonders<br />

durch die Erweiterung bzw. den Ausbau bestehender Bebauung) an der Grenze der<br />

Bauverbotszone stattfanden, da ja der Plan die relative Sicherheit des Bauplatzes darstellte.<br />

Die Gefahrenzonenpläne können die graduelle Abnahme der Gefährdung nicht angemessen<br />

wiedergeben (siehe dazu auch Kap. 5.3). Falls es durch den Klimawandel nun zu einer<br />

Verschärfung der natürlichen Prozesse kommt, wäre das Schadenspotential durch die<br />

Siedlungsentwicklung in den vermeintlich sicheren Bereichen deutlich erhöht.<br />

Wie Merz et al. (2009) darstellen, ist die empirische Evidenz für die quantitativen Auswirkungen<br />

des Safe Development Paradox derzeit noch relativ gering. Sie selbst gehen auf Basis<br />

ihrer Literaturauswertung von 5-10% Erhöhung des Schadenspotentials bei Flusshochwasser<br />

aufgrund des Safe Development Paradoxes aus. Für die Niederlande kommen Jongmann et<br />

al. (2014) zu deutlich höheren Steigerungsraten. Eine Analyse von Fuchs et al. (2015), die<br />

die Entwicklung des Gebäudebestands in Österreich seit 1919 untersuchten, zeigt dagegen<br />

für Flusshochwasser, Wildbach- und Lawinengefahren keine klaren Hinweise für ein Safe<br />

Development Paradox. Dies liegt auch daran, dass die Studie nicht darauf ausgelegt war, das<br />

Safe Development Paradox zu beschreiben.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 115


Interaktionen zwischen Raumordnung, Klimaschutz- sowie Klimaanpassungsmaßnahmen<br />

und dem NGM<br />

Die Raumordnung ist bezüglich des NGM durch das Top-Down-Instrument der Gefahrenzonenplanung<br />

bzw. in Deutschland der festgesetzten Überschwemmungsgebiete geprägt.<br />

Auf der Basis einer nationalen Risikoabwägung (siehe Kap. 5.3) werden pauschale Baubeschränkungen<br />

ausgesprochen, von denen im Einzelfall nur marginal abgewichen werden<br />

kann (vgl. Höferl 2013, Pukall 2014). Der Raumplanung stehen (im Vergleich zur forstlichen<br />

und wasserwirtschaftlichen Fachplanung des NGM) wenig personelle und finanzielle<br />

Ressourcen zur Verfügung (Kruse und Pütz 2013). Eine aktive Auseinandersetzung über<br />

die Entwicklung des zukünftigen Schadenspotentials findet daher kaum statt. Gerade im<br />

inneralpinen Gebiet mit seinem beschränkten Siedlungsraum wären Planungen notwendig,<br />

wie der verbliebene Siedlungsbereich optimal genutzt wird, damit bei einer Berücksichtigung<br />

von Extremereignissen ein möglichst geringes Schadenspotential entsteht. Hierbei müssen<br />

neben der allgemeinen wirtschaftlichen und räumlichen Entwicklung auch die Interaktionen<br />

mit dem Klimaschutz und der KA berücksichtigt werden, durch deren Maßnahmen zusätzliches<br />

Schadenspotential entsteht (Pukall und Kruse 2014). Für das NGM wären daher vor<br />

allem unterschiedliche Szenarien für die Siedlungs- und Infrastrukturentwicklung notwendig.<br />

Diese Themen werden nicht ausreichend im derzeitigen NGM und den KAS behandelt.<br />

Eine gewisse Problemwahrnehmung ist in den KAS erkennbar: „Vermehrte raumwirksame<br />

Klimafolgenrisiken und gleichzeitig zunehmende Raumansprüche der Gesellschaft führen<br />

insbesondere in den alpin geprägten Teilräumen Österreichs mit naturbedingt knappem<br />

Dauersiedlungsraum zu zunehmender Flächenverknappung und damit zur Einengung<br />

zukünftiger wirtschaftlicher Entwicklungsmöglichkeiten“ (BMLFUW 2012, 302).<br />

SCHLUSSFOLGERUNGEN: ANKNÜPFUNGSPUNKTE FÜR EIN ZUKUNFTSORIENTIERTES NATUR-<br />

GEFAHREN MANAGEMENT<br />

Aus unserer Sicht gibt es drei zentrale Anknüpfungspunkte, um die Zukunftsorientierung<br />

des NGM und den Einbezug von sowohl klimatischen als auch gesellschaftlichen Zukünften<br />

zu unterstützen.<br />

Berücksichtigung der zukünftigen Klima- und Gesellschaftsentwicklung bei<br />

Maßnahmen des NGM<br />

Die Bewertung unterschiedlicher Vorsorgestrategien muss unter Berücksichtigung der zukünftigen<br />

Klima- und Gesellschaftsentwicklung erfolgen. Wie in der Klimaforschung sollten<br />

hier gesellschaftliche Szenarien erstellt und räumlich modelliert werden. Das österreichische<br />

Projekt RiskAdapt hat hierfür am Beispiel Hochwasser eine geeignete Methodik erarbeitet.<br />

Neben einer landesweiten Verknüpfung von Klima- und Bevölkerungsszenarien bedarf es<br />

insbesondere auf lokaler Ebene Aushandlungsprozesse, welche Entwicklungsszenarien in<br />

einer Gemeinde erwünscht sind und welche Schutzstrategien dafür die beste Lösung darstellen<br />

(RiskAdapt 2015).<br />

116 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Kosten-Nutzen-Analysen von geplanten Schutzmaßnahmen, wie z.B. das in der Schweiz für<br />

alle Naturgefahren vorgeschrieben Werkzeug “EconoMe“ oder die in Bayern und Österreich<br />

bestehenden verwaltungsinternen Wirtschaftlichkeitsrichtlinien, sollten Annahmen über die<br />

erwartete Veränderungen von Siedlungsentwicklung und Klimafolgen beinhalten. Hierbei<br />

wäre eine enge Zusammenarbeit mit Raumordnungsakteuren notwendig. Entscheidend ist<br />

dabei auch, ob der Faktor der Risikoaversion, d.h. das gesellschaftliche Bedürfnis besonders<br />

seltene Großschadenereignissen zu vermeiden, berücksichtigt wird. Merz et al. (2009)<br />

konnten z.B. an drei Fallstudien in Deutschland zeigen, dass bei einer starken Ausprägung<br />

der Risikoaversion, Warnungskonzepte gegenüber technischen Schutzmaßnahmen mit<br />

Deichen das Gesamtrisiko am stärksten minimieren würden. Ohne den Faktor Risikoaversion<br />

wären trotz angenommener Effekte des Safe Development Paradoxes, die wie oben dargestellt<br />

zur Entstehung der seltenen Großschadensereignisse beitragen, die Deiche die beste<br />

Risikominimierungsmethode gewesen.<br />

Aktive Beeinflussung der Siedlungs- und Infrastrukturentwicklung durch Akteure<br />

des NGM<br />

Aushandlungsprozesse über die zukünftige lokale und regionale Raumnutzung, Tourismuskonzepte<br />

und auch die notwendigen Maßnahmen zur KA laufen häufig informal ab und<br />

binden staatliche Träger öffentlicher Belange, wie z. B. die mit dem NGM betrauten Forstund<br />

Wasserbauverwaltungen, nicht bereits in der Vorplanung, sondern erst später in den<br />

formalen Planungs- oder Genehmigungsprozessen ein. So können die staatlichen Träger<br />

öffentlicher Belange erst spät mit ihren Vorstellungen zum Schutz vor Naturgefahren die<br />

Prozesse der Raumentwicklung beeinflussen. Sie finden sich daher häufig in der Rolle des<br />

Verhinderers von Entwicklungsideen wieder oder es wird Druck ausgeübt, regionalwirtschaftliche<br />

Entwicklungsprojekte mit Hilfe von technischen Schutzmaßnahmen zu ermöglichen.<br />

Aus unserer Sicht sollten alle Akteure des NGM daran mitwirken, sich aktiv in lokale<br />

Raumentwicklungsprozesse einzubringen. Für ein zukunftsgerichtetes NGM ist es nicht nur<br />

wichtig, die Siedlungs- und Infrastrukturentwicklung mit Hilfe der Gefahrenzonenplanung<br />

in den hoch gefährdeten Gebieten zu verhindern, sondern die Raumentwicklung so zu<br />

beeinflussen, dass hoch vulnerable Infrastrukturen (z.B. Tourismuseinrichtungen, die viele<br />

Personen anziehen) in besonders sichere Gebiete gelenkt werden.<br />

Entscheidend hierbei ist, dass die Akteure gut in lokale Netzwerke eingebunden sind und<br />

somit frühzeitig mit neuen Entwicklungsideen in Kontakt kommen. Sie könnten auf der<br />

einen Seite versuchen, dem Naturgefahrenthema eine gewichtige Stimme in den lokalen<br />

Aushandlungen zu geben. Auf der anderen Seite könnten sie eine Mittlerposition zu den<br />

staatlichen Behörden einnehmen, so dass sich im Bedarfsfall die Behörden frühzeitig mit<br />

ihrer fachlichen Kompetenz in informelle Planungen einbringen können.<br />

Hierbei kann zwischen zwei Personengruppen differenziert werden:<br />

– Personen, die keinen unmittelbaren Bezug zu staatlichen Verwaltungen haben, wie<br />

z.B. Mitglieder der Lawinenkommissionen, der Feuerwehren sowie die in der Schweiz<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 117


geschaffenen Naturgefahrenberater. Alle diese Personen sollten in ihrer Aus- und Fortbildung<br />

für diese, eigentlich nicht zu ihrem Aufgabengebiet gehörende Rolle sensibilisiert<br />

werden.<br />

– Personen, die Teil der staatlichen Verwaltungen sind. Hierbei dürfen nicht nur für die<br />

Raumplanung formal zuständigen Mitarbeiter betrachtet werden, sondern insbesondere<br />

Mitarbeiter wie z.B. die Arbeiter der Flussmeisterstellen der bayerischen Wasserwirtschaftsverwaltung<br />

oder die Waldaufseher in Tirol. Diese sind bei den Gemeinden angestellt,<br />

fachlich werden sie aber von der Forstverwaltung betreut. Die oben erwähnte Mittlerposition<br />

würde hier durch eine gute behördeninterne Kommunikation ausgefüllt.<br />

Dieser Vorschlag hat natürlich auch seine Beschränkungen, da die betrachteten Personengruppen<br />

Eigeninteressen haben können, die dazu führen, dass sie die ihnen zugedachte Rolle<br />

nicht ausfüllen. Z.B. kann ein Mitglied der Lawinenkommission gleichzeitig Hotelbesitzer<br />

sein, der somit eine geplante Erweiterung des Skigebiets eher fördern als verhindern möchte.<br />

Flexibler Umgang mit Unsicherheit<br />

Einigkeit herrscht in der KA-Literatur darüber, dass flexibel und adaptiv auf den Klimawandel<br />

und die damit einhergehende Unsicherheit reagiert werden sollte (z.B. Etkin et al. 2012).<br />

Aufgrund der zunehmenden Unsicherheit, wenn sowohl die Folgen des Klimawandels als<br />

auch Annahmen über gesellschaftliche Zukünfte in die Planungen des NGM einfließen sollen,<br />

kommt somit ein ausschließlich auf errechenbaren Wahrscheinlichkeiten basierendes<br />

Risikomanagement an seine Grenzen. Etkin et al. (2012) argumentieren, dass der Umgang<br />

mit Unsicherheit im Zuge von klimatischen und gesellschaftlichen Veränderungen eine große<br />

Bedeutung im Risikomanagement erhalten müsste. Dies bedeutet, dass die etablierten<br />

Routinen des Risikomanagements, die von wohldefinierten und wenig veränderlichen<br />

Systemen ausgehen, mit dem Vorsorgeprinzip, das besonders bei Unsicherheit angewendet<br />

wird, sinnvoll verknüpft werden müssen (Etkin et al. 2012: 588; vgl. auch Kuhlicke und<br />

Kruse 2009). Beispielsweise wird aufgrund des Vorsorgeprinzips in der Gefahrenzonenplanung<br />

in Hochrisikogebieten, den roten Gefahrenzonen, jegliche Bebauung untersagt.<br />

Im Sinne des Vorsorgeprinzips sollte die Bauentwicklung nicht nur in Gebieten hoher<br />

Gefährdung beschränkt werden, deren Grenzen aufgrund des Klimawandels nur mit größerer<br />

Unsicherheit bestimmt werden können, sondern in besonders sichere Gebiete gelenkt<br />

werden. Dies gilt insbesondere für teure Infrastrukturprojekte und Gefahren, die Menschenleben<br />

bedrohen (z.B. Steinschlag, Lawinen).<br />

Bereits im bestehenden NGM besteht für die Gefahrenzonenplanung die Problematik, dass<br />

der fließende Übergang von hoher zur niedriger Gefährdung in den rechtlich normierten<br />

Gefahrenzonenplänen nicht abgebildet werden kann, da Grenzen zwischen unterschiedlichen<br />

Gefährdungsstufen nicht graduell dargestellt werden. Während in der Schweiz und in Österreich<br />

zumindest 2-3 Zonen mit höherer Gefährdung ausgeschieden werden, ist die diskrete<br />

Logik bei den festgesetzten Überschwemmungsgebieten in Deutschland besonders stark<br />

118 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ausgeprägt. Es gibt nur Gebiete innerhalb der Überschwemmungsgebiete, in denen ein<br />

Bauverbot gilt und Gebiete außerhalb, in denen keinerlei Baubeschränkungen bestehen.<br />

Im Zuge eines zukunftsgerichteten NGM sollten die staatlichen Mindeststandards, die auf<br />

Basis des Vorsorgeprinzips gerechtfertigt sind, um flexible Anpassungsmöglichkeiten der<br />

Gemeinden ergänzt werden. So könnte sich selbst eine Bebauung in einer roten Lawinenzone<br />

als sinnvoll herausstellen, wenn ausschließlich eine Nutzung in den Sommermonaten<br />

stattfindet und der Investor z.B. aufgrund einer kurzen Amortisationzeit seiner Investition<br />

bereit ist, das Risiko zu tragen. Es böte sich zudem der Einsatz finanzieller Instrumente<br />

(e.g. Versicherungspflicht, risiko-abhängige Grundsteuer usw.) an, die wie die Gefährdungslage<br />

graduell steigen und flexibel an die bestehende bzw. sich verändernde Gefährdungslage<br />

angepasst werden könnten (Filatova 2014). Die Berücksichtigung aktueller und zukünftiger<br />

Gefährdungslagen könnten so in Markt- und Bodenpreise integriert werden und damit die<br />

Schadenspotentialentwicklung steuern.<br />

LITERATUR<br />

- BMLFUW (Bundesministerium für für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft,<br />

2012): Die österreichische Strategie zur Anpassung an den Klimawandel:<br />

Teil 2 – Aktionsplan Handlungsempfehlungen für die Umsetzung, Wien.<br />

- Burby R.J. (2006): Hurricane Katrina and the Paradoxes of Government Disaster Policy:<br />

Bringing about Wise Governmental Decisions for Hazardous Areas, in: Ann Am Acad<br />

Political Social Sci 604, p. 171-191.<br />

- Etkin D., Medalye J., Higuchi, K. (2012): Climate warming and natural disaster management:<br />

An exploration of the issues, in: Climatic Change 112, p. 585-599.<br />

- Filatova T. (2014): Market-based instruments for flood risk management: A review of<br />

theory, practice and perspectives for climate adaptation policy, in: Environ Sci & Policy 37,<br />

p. 227-242.<br />

- Fuchs S., Bründl M., Stötter J. (2004): Development of Avalanche Risk between 1950 and<br />

2000 in the Municipality of Davos, Switzerland, in: Nat Hazards Earth Syst Sci 4, p. 263-275.<br />

- Fuchs S., Keiler M., Zischg A. (2015): A spatiotemporal multi-hazard exposure assessment<br />

based on property data, in: Nat Hazards Earth Syst Sci 15, p. 2127-2142.<br />

- Höferl K. (2010): ‚Von der Gefahrenabwehr zur Risikokultur’ - Diskurse zum raumplanerischen<br />

Umgang mit Hochwasser in (Nieder-)Österreich, Dissertation an der Universität<br />

für Bodenkultur, Wien.<br />

- Jongman B., Koks E.E., Husby T.G., Ward P.J. (2014): Increasing flood exposure in the<br />

Netherlands: implications for risk financing, in: Nat Hazards Earth Syst Sci 14, p. 1245-1255.<br />

- Keiler M. (2004): Development of the Damage Potential resulting from Avalanche Risk in<br />

the period 1950–2000, Case Study Galtür, in: Nat Hazards Earth Syst Sci 4, p. 249-256.<br />

- Kuhlicke C., Kruse S. (2009): Nichtwissen und Resilienz in der lokalen Klimaanpassung-<br />

Widersprüche zwischen theoriegeleiteten Handlungsempfehlungen und empirischen<br />

Befunden am Beispiel des Sommerhochwassers 2002, in: Gaia 18, p. 247-254.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 119


- Merz B., Elmer F., Thieken A.H. (2009): Significance of “high probability/low damage”<br />

versus “low probability/high damage” flood events, in: Nat Hazards Earth Syst Sci 9, p.<br />

1033–1046.<br />

- Pukall K. (2014): Von Top-Down zu Bottom-Up: Berücksichtigung von regionalen<br />

Entwicklungsprozessen im staatlichen Naturgefahrenmanagement, in: Böschen S., Gill B.,<br />

Kropp C., Vogel K. (Hrsg.): Klima von unten – Regionale Governance und gesellschaftlicher<br />

Wandel, Frankfurt / New York, p. 287-308.<br />

- Pukall K., Kruse S. (2014): Entwicklungslinien für das Management alpiner Naturgefahren<br />

im Klimawandel (Essay), in: Schweiz Z Forstwes 165, p. 37-42.<br />

- RiskAdapt (2015): https://riskadapt.boku.ac.at/home.htm (überprüft 3.7.2015)<br />

- Schweizerischer Bundesrat (2012): Anpassung an den Klimawandel in der Schweiz – Ziele,<br />

Herausforderungen und Handlungsfelder: Erster Teil der Strategie des Bundesrates vom<br />

2. März 2012, in: BBl 2012: p. 3777- 3858.<br />

- Segoe L. (1937): Flood control and the cities, in: American City 52, p. 55-56.<br />

120 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Local Conditions and the Quality of Expert Networks:<br />

A Case Study of Avalanche Risk Prevention Practices<br />

Renate Renner, Ph.D¹; Gerhard Lieb¹<br />

ABSTRACT<br />

As natural hazards and risk always represent an interaction of natural and social systems,<br />

avalanche risk prevention is especially important in heavily-touristed alpine regions. This<br />

research compares the local risk prevention practices of Nordkette, Tirol and Planneralm,<br />

Styria by considering the influence of local conditions and the quality of expert networks.<br />

This in-depth analysis demonstrates that local conditions influence the intensity and<br />

frequency of necessary prevention measurements and the level of pressure on the decision<br />

makers. Local conditions influence the level of professionalization, the incorporation of<br />

systematic data analysis and personnel competence. This study aligns with general findings<br />

about the role of social capital, emphasizing that trust within the avalanche commission team<br />

and between the avalanche commission and external experts increases the quality of local<br />

risk prevention. Although the study provides important insight into the scope of risk<br />

prevention practices, further research is necessary to understand how coping capacity could<br />

be improved through optimizing the use of social networks.<br />

KEYWORDS<br />

Local conditions; quality of networks; avalanche risk prevention; risk communication<br />

INTRODUCTION<br />

It is commonly assumed that due to climate change, the number of extreme weather events<br />

resulting in gravitational processes is increasing (e.g. IPCC, 2014), although some critics<br />

emphasise the missing observational records for that assumption (Stoffel and Huggel, 2012).<br />

What is certain, however, is that the Austrian economy relies heavily on tourism and is<br />

vulnerable to climate change, especially in alpine regions (e.g. OECD, 2007). Nowadays<br />

winter sport regions are facing the challenge of ensuring the safety of local and visiting<br />

populations, safeguarding infrastructure, and at the same time, gaining economic profit.<br />

Therefore, efficient and professional avalanche risk prevention in Austria is a topic of great<br />

importance and leads us to focus on internal risk communication (Renn, 2008) and risk<br />

prevention practices in this paper. Höppner et al. (2012) assume that through risk communication,<br />

the social capacity –competence to cope with hazard events - can be increased at<br />

individual, communal and organisational (the risk managing) level. Social networks are<br />

considered to be a key social capacity because of their role in transmitting other capacity<br />

types like motivation, knowledge or financial resources (Kuhlicke and Steinführer, 2010).<br />

1 Institute of Geography and Regional Science, University of Graz, AUSTRIA, renate.renner@uni-graz.at<br />

IP_<strong>2016</strong>_FP096<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 121


Based on Höppner’s insights into social capacity, we first seek to shed light on the local expert<br />

network in order to consider its role on the network’s quality. This is important because<br />

permanent protection measures cannot replace human services and temporary protection<br />

measures. Therefore, local avalanche risk prevention significantly depends on the engagement<br />

and know-how of local avalanche commissions. Second, we assume an interaction<br />

between local conditions and the way risk prevention is practiced.<br />

In brief summary, the case study aims to deepen the limited understanding of the nature of<br />

local avalanche risk prevention practices. Through explorative case studies in Tirol and Styria,<br />

we consider local and network internal conditions and aim to address a set of interrelated<br />

questions: 1.) How do communication and decision processes between the study sites differ?<br />

2.) How are the practices of avalanche risk prevention influenced by local conditions? 3.)<br />

How do local conditions and the quality of networks support or hinder local risk prevention?<br />

RESEARCH DESIGN<br />

The theory of structuration (Giddens, 1995) serves as a meta-theory to consider the context<br />

dependence of social action, as local risk prevention can never be understood isolated from<br />

where it takes place. Giddens explains the relation between “action” and “structure” as<br />

interdependent. “Structure” includes rules and resources and is a spatiotemporal phenomenon.<br />

While in our research “action” is represented by communication and decision processes<br />

within the experts network, “structure” includes local conditions. The latter refers to, for<br />

instance, legal requirements for avalanche commissions, personnel and financial resources<br />

and the economic relevance of risk management in the respective areas.<br />

In order to consider the interaction between local conditions and the way risk prevention is<br />

practiced, we applied maximum variation sampling (Quinn Patton, 2002). The two selected<br />

study sites in Austria differ in terms of geographical characteristics (see Table 1) such as snow<br />

climate, population and economic activity and therefore offer different local conditions for<br />

avalanche risk prevention.<br />

Study sites<br />

The case of the Nordkette in Tirol represents a densely populated central region that is<br />

threatened by avalanches. The mountain range in question is the main ski-area for the<br />

approximately 120,000 inhabitants of the city of Innsbruck, located at the foot of the<br />

Nordkette. Economically, the region is strongly diversified and characterised by agriculture<br />

and moderate tourism. In contrast, the second study site, Planneralm, is a sparsely populated<br />

peripheral area; permanent settlements are not at risk of avalanches. Nevertheless, the only<br />

access road to the Planneralm is jeopardised by 12 avalanche paths, which significantly<br />

influences the competitiveness of the Planneralm as a tourist destination. The mountain<br />

pasture forms part of the municipality of Irdning Donnersbachtal with a population of about<br />

4000.<br />

122 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Table 1: Comparison of selected geographical characteristics of our study sites.<br />

Data material<br />

In accordance with the interpretative paradigm (Wilson, 1973) we developed problem-centered<br />

interviews (Witzel, 1982) to identify the core communication and decision-making<br />

process, and to better understand supporting and hindering factors of risk prevention.<br />

As a conceptional framework we applied the qualitative social network approach that allows<br />

understanding both who is connected to whom, and what quality of the relation exists<br />

(Hollstein, 2006). We focus on the intensity of risk communication (Renn, 2006), also asking<br />

interviewees from whom they use documents, whose information is of importance and who<br />

is involved in the discussion and decision-making process.<br />

As we are considering the local level, our analysis is derived from the viewpoint of local<br />

avalanche commissions. Besides considering their reflections on their own work we also use<br />

those sequences from interviews with other avalanche experts that consider their quality of<br />

relations to the local avalanche service. We interviewed members of the avalanche warning<br />

service, the avalanche commission, external consultants and members of the Wildbach- und<br />

Lawinenverbauung (WLV) which is the service for torrent and avalanche control in Austria.<br />

All together, 12 face-to-face interviews ranging from 50 to 90 minutes were conducted and<br />

analysed applying Mayrings (2010) content analysis. We inductively analysed indications of<br />

local conditions that influence avalanche risk prevention practice. In addition, the data are<br />

analysed deductively with the above mentioned focus on networks.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 123


RESULTS<br />

While in Tirol, rights and obligations of local avalanche commissions are regulated by law<br />

(LGBl. Nr. 104/1991), there are only official recommendations in Styria. Despite a different<br />

regulatory intensity, the composition and appointment of the members, the areas of responsibility<br />

and the avalanche commissions’ duties are to a great extend identical in content. The<br />

mayor of a region exposed to avalanches is primarily responsible for founding an avalanche<br />

commission in his/her municipality. Commission members need to have professional<br />

experience and must be available on-site during the winter season. The area of responsibility<br />

is the organized ski area (cross country skiing trails, ski slopes), traffic routes and the<br />

settlement area of the respective municipality. Local avalanche commissions exercise an<br />

advisory role; hence they are responsible for continuous evaluation of avalanche risk.<br />

Communication and decision processes of local avalanche commissions in the<br />

two study sites<br />

The assessment process at Nordkette in Tirol takes place daily in the winter season in the form<br />

of a meeting between at least 3 commission members. On ordinary days, this team is composed<br />

of 3 rotating employees from the lift operating company of the Nordkette.<br />

In dangerous situations, more members of the avalanche commission are involved, primarily<br />

forestry employees and members of the city government. Members of the avalanche<br />

commission exchange their private phone number so that everyone is reachable day and<br />

night, even on days off. Every commission member (altogether about 9) has e-mail access<br />

and receives the avalanche report daily. Those who are at work are in radio contact for a<br />

rapid assessment: “within minutes, we review the situation” (avalanche commission<br />

member). Through a logging software (LWD-KIP), not only the sequence of data research is<br />

documented, but also assessments, decisions and recommended measurements are documented<br />

digitally. Through LWD-KIP, avalanche commissions have access to all relevant snow<br />

and weather data of the respective region. Decision-making is based on a variety of different<br />

data (see figure 1). The data sources include: a meteorological station located at the summit<br />

lift station of the Nordkette, the analysis of snow and weather conditions through LWD-KIP,<br />

personal observations made by on-site assessment, and snow-profiles in early winter before<br />

many sections receive human traffic. Existing data is analysed daily, based on both practical<br />

knowledge and a discursive process of avalanche danger.<br />

In general, an unanimous decision is preferred regarding how to act in response to avalanche<br />

risk. The dominant attitude favors closing the skiing area as opposed to disagreement within<br />

the commission and an awkward feeling between commission members: “we think if one of<br />

us names a good argument to not open the ski-slope than it makes sense to keep it closed”<br />

(avalanche commission member). Numerous statements of the commission members refer to<br />

professional competence and a huge pool of experience (e.g. the ability to assess similar slope<br />

exposures and to transfer this knowledge to the area of responsibility, or to know where<br />

snow transporting can be expected if south or north wind picks up). The know-how of other<br />

informants (avalanche warning service etc.) is considered even though the commissions own<br />

124 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 1: Communication and decision-making process of the local avalanche commission Nordkette, Tirol. Networks used and content<br />

of relation from the avalanche commissions` perspective.<br />

daily and seasonal observations receive the greatest attention. Despite levels of professionalism<br />

and objective data, the commission members emphasise that the final decision remains<br />

a question of “gut feeling.” Members of WLV and the avalanche warning service in Tirol<br />

perceive the avalanche commission of the Nordkette to be very professional and independently<br />

working. The commission itself explains their relationship to the avalanche<br />

warning service to be good. They meet regularly and their relationship is open to constructive<br />

criticism. Once a year, all members of the commission and the local authority meet and<br />

discuss optimisation possibilities.<br />

At the Planneralm in Styria, the assessment process takes place on demand: “if it becomes<br />

dangerous, we meet each other” (chairman and his deputy). Consultations are rare and<br />

happen only between the chairman and his deputy, though occasionally third person is<br />

involved in the discussion. “We have a small frame that allows us to work effectively. It is<br />

never good if there are too many” (chairman). Primarily the avalanche danger is assessed by<br />

the chairman: “I say that’s how it looks like. Or my deputy informs me about his observations<br />

and asks me how I assess the situation and I say how it is.“ (chairman) The decision is<br />

made through one authoritative voice, and often without a discussion process between<br />

members. The fundamental attitude prioritizes rapid decision-making, whereas reflection and<br />

critical discussion are subordinated. Different statements from the chairman and his deputy<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 125


efer to their professional experience and local knowledge (long term observations over many<br />

seasons, responsible for ski slopes preparation in the past, etc.). However, subjective perceptions<br />

are rarely verified or supplemented by standardized weather and snow data analysis.<br />

The latter are partly considered, but not systematically. Since the sports hostel of the University<br />

of Graz has been closed at the Planneralm, the avalanche commission has to proceed<br />

without observations and snow profiles from mountain guides who visited the alpine terrain<br />

daily. Currently, the chairman works instead with imagined snow profiles (“and I make a<br />

picture in my head about the existing snow profile, I am able to do that, I feel that”) and<br />

observes mountain slopes with field glasses only. Above all, subjective perception, personal<br />

experience and instinct determine risk assessment at the Planneralm.<br />

Figure 2: Communication and decision-making process of the local avalanche commission Planneralm, Styria. Networks used and<br />

content of relation from the avalanche commissions` perspective.<br />

A closer look at the quality of relations within the avalanche commission shows a variety of<br />

contradictory statements and disputes between the chairman and other official members of<br />

the commission. On the one hand, the chairman and his deputy emphasise having a good<br />

working relationship within the avalanche commission; on the other hand, conflicts within<br />

the team are mentioned in interviews from different sites. As a consequence, the organized<br />

ski area at the Planneralm is more or less excluded from the evaluation of the avalanche commissions<br />

chairman and his deputy. They see the manager of the cable cars as soley responsible<br />

for evaluating avalanche danger. Although the manager is an official member of the<br />

126 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


avalanche commission, he is not involved in regularly consultations between the chairman<br />

and his deputy. Statements from the chairman as well as from externals refer to the strained<br />

relationship between the chairman and the manager of the cable cars. Besides, the official<br />

recording clerk of the commission even refused the interview and mentioned that he was not<br />

actively involved in the avalanche commissions’ work. All together, of the 8 official avalanche<br />

commission members, only two regularly meet each other and represent the active avalanche<br />

commission of the Planneralm. Occasionally, one additional person is asked to assist in the<br />

case of avalanche dispersion. The others are not actively involved, except through their<br />

participation in a general meeting with the mayor once a year. External people critically stress<br />

that trust is lacking between the chairman and nearly all entrepreneurs at the Planneralm.<br />

While the chairman sees his relationship to the avalanche warning service as quite good, the<br />

contrary is true if considering the statements of the experts concerned.<br />

Influence of local conditions on avalanche risk prevention practices<br />

Table 2: Summary of inductively analysed indications of local conditions that influence risk prevention practice.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 127


Supporting and hindering local risk prevention<br />

The comparison of the study sites in this research has shown that well-functioning and<br />

trusting internal and external relationships improve both data quality and quantity of data<br />

(see figure 1 and 2) used for decision-making. Constructive team work allows critical<br />

reflection of personal opinions and perceptions, thus improving both final decisions and the<br />

quality of risk prevention. This aspect aligns with previous work on social capital in which it<br />

is understood to be embedded in social networks (Lin, 2001) and increases access to social<br />

support and information (Buckland and Rahman, 1999). It also corresponds to the so called<br />

“social and organisational capacities” (Höppner et al. 2012: 1757) or “network capacities”<br />

(Kuhlicke et al. 2011: 806) which emphasizes the importance of skills for communication,<br />

cooperation and building up trustful relationships. A transparent decision-making process can<br />

protect the commission in the case of misjudging avalanche risk, which in the past, has led to<br />

impeachment charges against members. Furthermore, exogenous factors such as a lack of<br />

financial resources and competitive neighboring regions, can significantly increase pressure<br />

on the decision-makers who often have a dual role as risk manager and owner of a tourist<br />

enterprise in the respective area. In avalanche commissions with full-time employees,<br />

personnel recruitment can be selective and attention can be given to professional knowledge<br />

and social competence. To the contrary, however, volunteer associations often have general<br />

difficulties in finding members. The case of the Planneralm has shown that this could<br />

exacerbate risk assessment measures in a context where distrust and conflicting interests<br />

among the avalanche commission team are already present. As a consequence, existing<br />

talents within team members are not tapped as resources, succession planning goes unnoticed,<br />

and risk prevention proceeds in far from optimal conditions. The results of this study<br />

128 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ing us back to the coping capacity discussion (Kuhlicke et al., 2012) and other research in<br />

the context of climate change in which it was shown that local resilience can be fostered by<br />

strong social networks (Ford et al. 2006).<br />

This finding proves even more interesting when we discovered that social competence and<br />

the role of risk communication is neither part of the desired profile of commission members,<br />

nor it is considered in any of the training courses. Furthermore, this research has shown that<br />

professional working practices are not only a question of personnel resources but also of the<br />

culture of innovation. The existence and implementation of LWD-KIP allows systematic data<br />

analysis, logging and rapid risk communication. While at Planneralm not even information<br />

transfer between commission members is guaranteed, the digital logging software automatically<br />

informs all relevant persons, thus reducing human errors.<br />

CONCLUSION<br />

The importance of professional risk prevention in alpine regions highlights the need for more<br />

qualitative research assessing different practices and their influence factors. The main finding<br />

of the case studies in Tirol and Styria is that both local conditions and the quality of social<br />

relations within the expert team influence risk prevention. Although tasks and regulations of<br />

the commission teams are similar, the case studies show a considerable range of local risk<br />

prevention practices and the gap between an officially-presented picture and its practical<br />

reality. This finding points out the need to consider how to assure quality in the future.<br />

Closely linked with the quality assurance is the importance of communication skills and trusting<br />

relationships, which have been proven to be significant but understudied components in<br />

risk assessment. As this study presented only two contrasting examples, a larger study could<br />

provide evidence as to the type and quality of social networks through which reliable and<br />

optimized risk assessment decision-making occurs.<br />

LITERATURE<br />

- Buckland J., Rahman M. (1999): Community-based disaster management during<br />

- the 1997 Red River flood in Canada, in: Disasters 23, 3, 174-191.<br />

- Ford J., Smit B., Wandel J. (2006): Vulnerability to climate change in the Arctic:<br />

A case study from Arctic Bay, Canada, in: Global Environmental Change 16, 2, 145-160.<br />

- Giddens A. (1995): Die Konstitution der Gesellschaft, Frankfurt/ Main [u.a.], Campus.<br />

- Hollstein B. (2006): Qualitative Methoden und Netzwerkanalyse – ein Widerspruch?, in:<br />

B. Hollstein und F. Straus (Hrsg.), Qualitative Netzwerkanalyse. Konzepte, Methoden,<br />

Anwendungen, Wiesbaden, VS Verlag für Sozialwissenschaften, 11-36.<br />

- Höppner C., Whittle R., Bründl M., Buchecker M. (2012) Linking social capacities and risk<br />

communication in Europe: a gap between theory and practice? Nat. Hazards 64, 1753-1778.<br />

- IPCC (2014): Climate Change Synthesis Report, Summary for Policymakers,<br />

URL http://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf.<br />

14.09.2015.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 129


- Kuhlicke C., Steinführer A. (2015): Preface: Building social capacities for natural hazards:<br />

an emerging field for research and practice in Europe. Nat. Hazards Earth Syst. Sci., 15,<br />

2359-2367.<br />

- Kuhlicke C., Steinführer A., Begg C., Bianchizza C., Bründl M., Buchhecker M., De Marchi<br />

D., Di Masso Tarditti M., Höppner C., Komac B., Lemkow L., Luther J, McCarthy S., Pellizzoni<br />

L., Renn O., Scolobig A., Supramaniam M., Tapsell S., Wachinger G., Walker G., Whittle R.,<br />

Zorn M., Faulkner H. (2011): Perspectives on social capacity building for natural hazards:<br />

outlining an emerging field of research and practice in Europe. Environmental Science &<br />

Policy 14, 804-814.<br />

- Lin N. (2001): Building a network theory of social capital, in: Lin N., K.S. Cook, R.S. Burt<br />

(Hrsg.) Social capital: Theory and Research, New Brunswick, NJ, Transaction Press, 3-30.<br />

- Mayring P. (2010): Qualitative Inhaltsanalyse, Grundlagen und Techniken. 11. aktualisierte<br />

und überarbeitete Auflage. Weinheim und Basel, Beltz.<br />

- OECD (2007): Klimawandel in den Alpen. Anpassung des Wintertourismus und des<br />

Naturgefahrenmanagements, Agrawalla S. (Hrsg.), URL http://www.oecd.org/env/<br />

cc/38002265.pdf. 14.09.2015.<br />

- Quinn Patton M. (2002): Qualitative research and evaluation methods, Thousand Oaks,<br />

California, SAGE.<br />

- Renn O. (2006): Risk communication: Consumers between information and irritation, in:<br />

Journal of Risk Research, 9, 8, 833-850.<br />

- Renn O. (2008): Risk Governance. Coping with Uncertainty in a Complex World. London,<br />

New York. Earthscan.<br />

- Stoffel M., Huggel C. (2012): Effects of climate change on mass movements in mountain<br />

environments, Prog Phys Geogr 36, 421-39.<br />

- Wilson T. P. (1973): Theorien der Interaktion und Modelle soziologischer Erklärung, in:<br />

Arbeitsgruppe Bielefelder Soziologen (Hrsg.), Alltagswissen, Interaktion und gesellschaftliche<br />

Wirklichkeit, Bd. 1 Symbolischer Interaktionismus und Ethnomethodologie, Reinbeck bei<br />

Hamburg, Rowohlt, 54-79.<br />

- Witzel A. (1982): Verfahren der qualitativen Sozialforschung. Überblick und Alternativen,<br />

Frankfurt/Main, New York, Campus.<br />

130 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Dealing with gravitational natural hazards: challenges<br />

for risk management and development planning<br />

Umgang mit gravitativen Naturgefahren:<br />

Herausforderungen für das Risikomanagement und<br />

die Raumplanung<br />

Florian Rudolf-Miklau, Priv. Doz. Dr.¹; Kanonier Arthur, Univ.-Prof. Dr.²; Thomas Glade, Univ.-Prof. Dr.³; Stix Elisabeth, Mag. 4<br />

ABSTRACT<br />

In contrast to the flood and avalanche hazards, in Austria there is no comprehensive legal<br />

system of risk management for gravitational natural hazards (rock fall, landslide) existent so<br />

far. Furthermore there are no general standards available for the assessment and mapping of<br />

theses hazards as a basis for decision-making in areal development. However, significant<br />

changes in the Alpine land use have significantly increased the vulnerability of settlements<br />

and traffic routes in endangered areas. The article deals with the backgrounds and the results<br />

of a partnership established in the framework of the Austrian Spatial Development Strategy<br />

2011 (OeREK) which was dedicated to define the principles of hazard mapping and pave the<br />

path for a closer alignment of effective decisions with spatial relevance to the results of hazard<br />

assessment and risk-based protection goals. The OeREK-partnership represents a successful<br />

governance process in order to bridge the deficits of this legally fragmented policy field.<br />

ZUSAMMENFASSUNG<br />

Im Gegensatz zu den Hochwasser- und Lawinengefahren existiert in Österreich bisher kein<br />

geschlossenes Rechtssystem des Risikomanagements für gravitative Naturgefahren (Steinschlag,<br />

Rutschungen) und bestehen auch keine Standards für eine differenzierte Gefahrenanalyse<br />

und -darstellung als Grundlage raumwirksamer Entscheidungen. Bedeutende Veränderungen<br />

in der alpinen Raumnutzung haben jedoch die Verletzlichkeit von Siedlungsraum<br />

und Verkehrswegen in Gefahrenzonen deutlich erhöht. Der Beitrag behandelt die<br />

Hintergründe und Ergebnisse der Partnerschaft im Rahmen des Österreichischen Raumentwicklungskonzepts<br />

(ÖREK) 2011, welche die Grundlagen für Ausarbeitung von Gefahrenhinweiskarten<br />

und Gefahrenzonenplänen definiert hat und so eine stärker Ausrichtung<br />

raumwirksamer Entscheidungen an den Ergebnissen der Gefahrenanalyse und den risikoorientierten<br />

Schutzzielen ermöglicht. Die ÖREK-Partnerschaft stellt einen erfolgreichen<br />

Governance-Prozess zur Überbrückung der Defizite dieses kompetenzrechtlich zersplitterten<br />

und nur fragmentarisch normierten Politikfeldes dar.<br />

1 BMLFUW, Vienna, AUSTRIA, florian.rudolf-miklau@die-wildbach.at<br />

2 Technical University of Vienna, Department for Land Policy and Management, AUSTRIA<br />

3 University of Vienna, Department of Geography and Regional Research, AUSTRIA<br />

4 Austrian Conference on Spatial Planning, AUSTRIA<br />

IP_<strong>2016</strong>_FP108<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 131


KEYWORDS<br />

Gravitational natural hazards; hazard mapping; risk management;development planning;<br />

legal system<br />

EINLEITUNG UND HINTERGRUND<br />

Gravitative Naturgefahren (insb. Steinschlag, Rutschungen, Hangmuren) haben einen maßgeblichen<br />

Einfluss auf die Raumentwicklung in Österreich. Aufgrund der überwiegend gebirgigen<br />

Topografie des Landes sind nur rund 37 Prozent (Tirol: 12 %) des Staatsgebietes als<br />

Dauersiedlungsraum geeignet (BMLFUW, 2011). Zusätzlich entstehen weitere Einschränkungen<br />

durch Naturgefahren über entsprechende Gefahrenzonen; so waren Muren, Felsstürze<br />

und Lawinen viele Jahrhunderte sprichwörtlich die eigentlichen „Raumplaner“ alpiner<br />

Gemeinden (Mattle, 2015) und prägen noch heute die alpine Raumentwicklung. Prominente<br />

Beispiele der letzten Jahre sind die Rutschungen in Gasen und Haslau (Steiermark), die<br />

Hangbewegung in Doren (Vorarlberg) (Abbildung 1) oder der Felssturz Eiblschrofen (Tirol).<br />

Gravitative Gefahrenprozesse sind häufig mit intensiven und sich verändernden Landnutzungen<br />

gekoppelt und lösen gesellschaftliche Anpassungsprozesse aus (Papathoma-Köhle &<br />

Glade 2013; Promper & Rudolf-Miklau, 2015).<br />

Die Gefahrenprozesse können als Einzelereignisse auftreten, können aber auch ausgedehnte<br />

Regionen mit mehreren Hundert, manchmal sogar vielen Tausend Einzelereignisse umfassen.<br />

Im Wirkungsbereich entfalten sie eine meist räumlich begrenzte, jedoch mit hohen Intensitä-<br />

Abbildung 1 : Rutschung Doren (Vorarlberg)<br />

132 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ten verbundene Schadenwirkung für Personen, Baubestand und Verkehrsinfrastruktur und<br />

stehen daher mit den maßgeblichen regionalen Entwicklungstrends (Baumann et al., 2000;<br />

Bätzig, 2003; Psenner, 2006; Rudolf- Miklau et al., 2014; ÖROK-Atlas, 2014) in vielfältiger<br />

Interaktion. Einige der folgenden Wechselwirkungen können bezogen auf gravitative<br />

Naturgefahren stark risikoerhöhend wirken:<br />

Der im Alpenraum ablaufende demografische Wandel weist in Richtung der Konzentration<br />

der Siedlungs- und Wirtschaftsentwicklung in den zentralen Kernstädten und führt zu einer<br />

Suburbanisierung der Talräume (u.a. Inntal, Rheintal). Im Gegensatz dazu weisen strukturell<br />

benachteiligte, ländliche Gebiete negative Entwicklungen (z.B. Landflucht, Entvölkerung<br />

entlegener Bergtäler) auf. Die zunehmende Entkoppelung von Wohn- und Wirtschaftsräumen<br />

erfordert eine steigende Mobilität und verstärkt die Abhängigkeit der Bevölkerung von<br />

der Nutzbarkeit der Verkehrswege und der Funktionsfähigkeit der Versorgungslinien.<br />

Besonders kritisch sind die signifikante Zunahme von Flächennutzung in Hanglagen (Gunstlagen,<br />

Baulandverknappung), die exponentielle Wertzunahme des Gebäudebestandes,<br />

der Flächenverbrauch und die „Versiegelung“ der Landschaft (Hartflächen, touristische<br />

Erschließung in den Alpentälern: Schipisten, Golfplätze), der Wegebau in Hanglagen sowie<br />

der Verlust traditioneller land- und forstwirtschaftlicher Nutzungsformen (De-Agrarisierung)<br />

zu bewerten. Dadurch kommt es zu risikoerhöhende Veränderungen der Geländetopographie<br />

mit Auswirkungen auf das Hangwasserregime bzw. im Falle von Bauland auf die Veränderung<br />

des Baugrundrisikos. Ein für die Raumplanung zentraler Effekt der Veränderungen ist<br />

ein zunehmendes strukturelles Ungleichgewicht zwischen Gebieten mit ausreichend sicherer<br />

Baulandreserve und jenen mit akutem Baulandmangel außerhalb von Gefahrenzonen. Diese<br />

Disparitäten verzerren auch die Verteilung des regionalen Schutzbedarfs und erhöht unter<br />

anderem auch den Siedlungsdruck auf Hanglagen, wo vielfach noch keine Gefahren(hinweis)<br />

karten, Gefahrenzonenpläne oder Risikokarten verfügbar sind (Glade et al., 2013). Ebenso<br />

gravierend ist die saisonale Verlagerung des Personenrisikos von den Wohn- und Arbeitsstätten<br />

hin zu den Freizeit- und Urlaubsgebieten oder auf die Verkehrs- und Transitsachsen<br />

(Promper & Rudolf-Miklau, 2015).<br />

Dem komplexen Zusammenhang zwischen Raumnutzung und den Risiken durch gravitative<br />

Naturgefahren kann am besten mit einem gesamtheitlichen Risikomanagement entsprochen<br />

werden. (PLANAT, 2009; Loat, 2015) Aus semantischer Sicht ist dazu anzumerken, dass der<br />

„Risikobegriff“ in der österreichischen Raumplanung bisher weder in den Rechtsgrundsätzen<br />

noch im Vollzug etabliert ist und daher gegenüber dem eindeutig definierten Gefahrenbegriff<br />

unscharf oder nur abstrakt verwendet wird. Das grundlegende Schutzziel (siehe Begriffsdefinition<br />

in: Promper et al., 2015; abweichend von Schweizer Definition nach Camenzind und<br />

Loat, 2014) des Risikomanagements ist die Reduktion der Verletzlichkeit des Lebensraums für<br />

Naturkatastrophen und die Erhöhung der Resilienz der Gesellschaft (Ammann, 2006; Rudolf-<br />

Miklau, 2009). Die Raumplanung nimmt die Berücksichtigung von Naturgefahren und<br />

Risiken eine zentrale Funktion ein. Dabei geht es nicht nur um die kartografische Darstellung<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 133


der Flächenwirkung von Gefahrenprozessen (Gefahrenplanung) und damit verbundenen<br />

Risiken (Risikoplanung), sondern auch um die Möglichkeit, die resultierenden Risiken durch<br />

planerische Maßnahmen zu verringern (präventive Raumplanung) oder drohenden Schäden<br />

vorzubeugen (Rudolf-Miklau, 2009). Die Raumplanung hat im Zusammenhang mit Naturgefahren<br />

zwei grundlegende Anforderungen zu erfüllen (Kanonier, 2012; 2015):<br />

– Anpassung der Raumnutzung an die Gefahren einschließlich der Beschränkung der<br />

Nutzung in gefährdeten Gebieten;<br />

– Anpassung der Raumnutzung an die Erfordernisse der Gefahrenprävention, z. B. durch<br />

Freihaltung von Ablagerungsräumen oder gezielte Flächenbewirtschaftung.<br />

Grundsätzlich steht im Rahmen einer risikoangepassten Regionalentwicklung eine Palette<br />

von wirkungsvollen Instrumenten zur Verfügung. Dazu zählen die Festlegung von Entwicklungszielen<br />

in Regionalplänen und Raumentwicklungsprogrammen, die Reservierung von<br />

Freiräumen (schutzwirksame Vorbehaltsflächen, Retentionsflächen), die Steuerung der<br />

Siedlungsentwicklung in der örtlichen Raumordnung (Flächenwidmungsplan), rechtsverbindliche<br />

Festlegungen der Planungsbehörde (Widmungsbeschränkungen, Widmungsverbote)<br />

sowie die Risikokommunikation mit dem Ziel der Information und Bewusstseinsbildung<br />

(Rudolf-Miklau, 2009; Kanonier, 2012). Die Anwendung dieser Instrumente ist im Risikomanagement<br />

nur in enger Abstimmung und Kombination mit den Planungen und Maßnahmen<br />

der übrigen Sektoren (Geologie, Wildbach- und Lawinenverbauung, Verkehrswesen,<br />

Katastrophenschutz, Land- und Forstwirtschaft) effektiv möglich.<br />

RECHTSPOLITISCHE RAHMENBEDINGUNGEN UND DEFIZITE<br />

Im Bereich des Schutzes vor gravitativen Naturgefahren besteht in Österreich eine starke<br />

Kompetenzsplitterung, die auf das Fehlen eine konkreten Kompetenztatbestandes in der<br />

Bundesverfassung sowie eines geschlossenen Rechtssystem für das Risikomanagement<br />

zurückzuführen ist (Wagner & Jandl, 2013). Die Kompetenzzersplitterung spiegelt sich auch<br />

auf organisationsrechtlicher Ebene wieder, da zahlreiche Institutionen der Gebietskörperschaften<br />

sowie privater Institutionen Präventions- und Sicherheitsaufgaben erfüllen<br />

(Rudolf-Miklau, 2009). Im Gegensatz zu den Hochwasser- und Lawinengefahren sind<br />

Rechtsgrundlagen und Kompetenzverteilung für das Risikomanagements gravitativer<br />

Naturgefahren wesentlich lückenhafter und diffuser ausgeprägt (Kanonier, 2015). Aus der<br />

Erkenntnis des Europäischen Gerichtshofs für Menschenrechte (EGMR) „Budayeva gegen<br />

Russland“ ist nicht generell zu entnehmen, dass die Staaten konkret zur Setzung präventiver<br />

Schutzmaßnahmen gegen gravitative Naturgefahren verpflichtet wären. Es liegt vielmehr in<br />

deren politischen Ermessen der Staaten, in welchem Umfang sie Präventionsmaßnahmen<br />

durchführen bzw. dafür die entsprechenden rechtlichen und organisatorischen Rahmenbedingungen<br />

schaffen (Wagner, 2008). Mit Ausnahme des Bodenschutzprotokolls der Alpenkonvention<br />

fehlen spezifische rechtliche Bestimmungen für gravitative Naturgefahren auch<br />

im internationalen und europäischen Recht, die staatliche Handlungspflichten begründen<br />

würden (Kanonier, 2015).<br />

134 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Eine allgemein gültige Rechtsnorm für die Prävention gravitativer Naturgefahren (insb. zum<br />

Schutz des Siedlungsraums) besteht somit im nationalen österreichischen Recht nicht.<br />

Gesetzliche Verpflichtungen zur Vornahme von Schutzvorkehrungen ergeben sich lediglich<br />

aus dem Straßenrecht, dem Eisenbahnrecht und dem Seilbahnrecht (Hattenberger, 2004).<br />

Sonstige einschlägige Rechtsnormen finden sich auch in anderen Materiengesetzen, beispielsweise<br />

im Wasserrecht, im Forstrecht, im Raumordnungs- und Baurecht sowie im Katastrophenschutzrecht<br />

(Rudolf-Miklau, 2009). Im Zusammenhang mit der Darstellung und<br />

Bewertung von Naturgefahren sind vor allem die bundesrechtlichen Vorschriften im § 11<br />

ForstG und § 42a WRG anzuwenden. Als wesentliche Grundlagen für kommunale Planungsund<br />

Bauentscheidungen sind Gefahren(hinweis)karten bzw. Gefahrenzonenpläne (GZP)<br />

bedeutend. Von einigen Ausnahmen abgesehen (u.a. für die Gefahrenhinweiskarten für<br />

Niederösterreich: Petschko et al. 2013) erfolgt für den Großteil der gravitativen Gefahren<br />

(Steinschlag, Rutschung) – im Unterschied etwa zur Schweiz (Loat, 2015) und anders als für<br />

Hochwasser- und Lawinengefahren – keine Abstufung nach Gefährdungsgraden (rote/<br />

rot-gelbe und gelbe Gefahrenzonen). Eine abgestufte Berücksichtigung der Gefahren in der<br />

Raumplanung – etwa für bebaubare, bedingt bebaubare und nicht bebaubare Flächen – ist<br />

allein durch die kommunale Flächenwidmungsplanung kaum möglich, zumal „bedingte“<br />

Baulandwidmungen selten sind (Ausnahmen stellen in einzelnen Bundesländern Aufschließungszonen<br />

dar). (Kanonier, 2015) Die Gefahrenzonenpläne der Wildbach- und<br />

Lawinenverbauung (WLV) enthalten allerdings die Darstellungskategorie „Brauner Hinweisbereich“<br />

für Gebiete, die von Steinschlag- und Rutschungsgefahren potenziell betroffen sind,<br />

ohne eine konkrete Aussage über Ausdehnung, Häufigkeit oder Intensität zu geben (Rudolf-Miklau,<br />

2009). Davon abweichend werden im Bundesland Vorarlberg im WLV-GZP<br />

abgestufte Gefahrenbereiche („Braun“, „Braun intensiv“) für Steinschlag und Rutschungen<br />

ausgewiesen. Die Bundesländer Niederösterreich (Abbildung 2) und Oberösterreich haben<br />

jeweils Gefahrenhinweiskarten ausgearbeitet, welche als Grundlage für die einzelfallbezogene<br />

Gefahrenbewertung und die Konkretisierung des erforderlichen geologischen Untersuchungsaufwandes<br />

herangezogen werden (Glade et al. 2013; Bell et al. 2013). Die Gefahrenhinweiskarten<br />

enthalten jedoch keine genauen Angaben über Frequenz oder Magnitude (Prozessintensität)<br />

der gravitativen Massenbewegungen und können daher nicht für die Detailbegutachtung<br />

von Widmungs- und Bauvorhaben herangezogen werden (Glade, 2015).<br />

Kenntnisse über räumliche Abgrenzungen, Häufigkeit und Intensität von Naturgefahren von<br />

gravitativen Naturgefahren stellen zentrale Kriterien für behördliche Widmungs- und Bauentscheidungen<br />

dar. Die meisten Raumordnungsgesetze der Länder enthalten deshalb allgemeine<br />

Verpflichtungen zur Kenntlichmachung von Gefahren in den Flächenwidmungsplänen.<br />

Aufgrund des weitgehenden Fehlens einheitlicher Rechtsnormen über die Art der<br />

Analysemethode und die kartographische Gefahrendarstellung der Analyseergebnisse liegt es<br />

meist im Ermessen der Behörden, welche Informationen im Zusammenhang mit gravitativen<br />

Massenbewegungen bei konkreten Planungs- und Baumaßnahmen verwendet werden. Soweit<br />

nicht vereinzelt detaillierte Gefahrenkarten oder Gefahrenzonenpläne verfügbar sind,<br />

bleibt es also den Gemeinden überlassen, im Rahmen der allgemeinen Verpflichtung zur<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 135


Abbildung 2: Beispiel eine Gefahrenhinweiskarte für Steinschlag der Gemeinde Dürnstein (Niederösterreich)<br />

vollständigen Erhebung der räumlichen Gegebenheiten auch die von Steinschlag und<br />

Rutschungen verursachten Gefahrenbereiche soweit wie möglich zu erfassen (Kanonier,<br />

2012; 2015). Allgemein ist iSd meisten Raumordnungsgesetze eine Baulandwidmung<br />

unzulässig, wenn sich die betreffende Fläche wegen gravitativen Naturgefahren für eine<br />

zweckmäßige Bebauung nicht eignet. Für den Fall, dass gravitative Naturgefahren nicht<br />

räumlich ausgeschlossen werden können, erfordern Widmungs- und Baubewilligungsentscheidungen<br />

daher spezifische Untersuchungen und Erhebungen. Generelle Regelungen<br />

gefahrenangepasster Nutzungen auf der Ebene der Raumplanung erschiene zielführen,<br />

widerspricht allerdings einerseits dem Grundgedanken des „Gefahren meiden“ und wäre<br />

andererseits wohl zu komplex, um auf kommunaler Ebene ohne umfangreich Ausnahmen<br />

und Auslegungsregeln umsetzbar zu sein. Daher gibt es in den einzelnen Raumordnungsund<br />

Baugesetzen dafür unterschiedliche (im Detail dazu: Kanonier, 2015), wobei sich diese<br />

Regelungen meist an den Hochwassergefahren orientieren. Eine Anpassung dieser Regelungen<br />

für die besonderen Eigenschaften der gravitativen Naturgefahren scheint zielführend.<br />

ÖREK-PARTNERSCHAFT „GRAVITATIVE NATURGEFAHREN“: RISIKO GOVERNANCE PROZESS UND<br />

POLITISCHE EMPFEHLUNGEN<br />

ÖREK-Partnerschaften stellen ein wesentliches Umsetzungsinstrument des Österreichischen<br />

Raumentwicklungskonzeptes (ÖREK, 2011) dar. In diesem Rahmen wurde die ÖREK-Partnerschaft<br />

„Risikomanagement für gravitative Naturgefahren in der Raumplanung“ eingerich-<br />

136 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


tet, um für diesen kompetenzrechtlich zersplitterten und fachlich segmentierten Bereich eine<br />

neue Kooperations- und Entwicklungsplattform zu schaffen, die der hohen naturwissenschaftlichen,<br />

technischen und rechtlichen Komplexität der Fragestellungen gerecht wurde<br />

und die Herausforderung einer fachübergreifenden Harmonisierung leisten konnte. Neben<br />

der Schaffung fundierter fachlicher Grundlagen für die Bereiche der geologischen Gefahrenanalyse<br />

und -darstellung, der fachplanerischen Umsetzung und der Berücksichtigung in der<br />

Raumplanung (ÖROK-Schriftenreihe 193) bestand das wichtigste Ziel der Partnerschaft in<br />

der Erstellung von politischen ÖROK-Empfehlungen (ÖROK, 2015).<br />

Als neuer Ansatz wird im Rahmen dieser ÖREK-Partnerschaft „Risiko“ in die Bewertung der<br />

Folgen von gravitativen Naturgefahren für die Raumplanung und andere Sektoren in<br />

Österreich eingeführt. Der Risikobegriff ist jedoch kein traditioneller Rechtsbegriff wie der<br />

Gefahrenbegriff (Kanonier, 2015). In der Logik der Risikoforschung ist ein Risiko raumplanungsrelevant,<br />

wenn mithilfe raumplanerischer Instrumente Eintrittswahrscheinlichkeit oder<br />

Konsequenz eines Ereignisses für bestimmte, hinlänglich sicher identifizierbare Entstehungsund/oder<br />

Gefährdungsräume beeinflussbar sind (Glade, 2015). Risikoabschätzungen sind<br />

jedoch längst nicht Standard in der Raumplanung, sondern werden nur in speziellen Fällen<br />

durchgeführt (Kanonier, 2015). Ziel der Partnerschaft war es daher, durch die Entwicklung<br />

von Grundlagen des Risikomanagements die Basis für einen risikoorientierten und differenzierten<br />

Umgang mit Steinschlag und Rutschungen in der Raumplanung zu legen.<br />

Eine weitere Herausforderung des Prozesses stellten die offensichtlichen Grenzen der<br />

bestehenden bundesstaatlichen Strukturen für eine Festlegung allgemeiner Schutzziele, die<br />

formale Abstimmung von Grundsätzen der kartographischen Gefahrendarstellung (im Detail<br />

siehe: Schwarz et al., 2014) sowie für abgestimmte Anpassungen des Raumordnungs- und<br />

Baurechts dar. Auch wenn in der Partnerschaft direkte Einflussnahme auf kompetenzrechtliche<br />

Tatbestände nicht intendiert war, ist es doch gelungen, durch einen Governance-Prozess<br />

alle relevanten Akteure in Österreich auf freiwilliger Basis einzubinden und nach gemeinsam<br />

festgelegten Regeln zu gemeinsam beschlossenen, fachlichen und politischen Empfehlungen<br />

anzuleiten. Mit Rücksichtnahme auf die föderalen Rahmenbedingungen wurden Empfehlungen<br />

geschaffen, die einerseits ein bundesweite Vergleichbarkeit von Planungen und Sicherheitsentscheidungen<br />

ermöglichen und andererseits auf regionale und bundesländerspezifische<br />

Besonderheiten Rücksicht nehmen. Auch konnten bereits bestehende Pilotprojekte und<br />

Planungen (Glade & Krause, 2015) erfolgreich in die Ergebnisse der ÖREK-Partnerschaft<br />

integriert werden.<br />

Aus den fachlichen Ergebnissen der Partnerschaft wurden von einer Redaktionsgruppe<br />

politische ÖROK-Empfehlungen entwickelt, die von den politischen Partnern der ÖROK<br />

genehmigt und im Februar <strong>2016</strong> publiziert wure (ÖROK, <strong>2016</strong>). Folgende Empfehlungen für<br />

das „Risikomanagement für gravitative Naturgefahren in der Raumplanung“ wurden<br />

vorgeschlagen:<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 137


1. Integriertes Naturgefahrenmanagement: Durch ein integriertes Naturgefahrenmanagement<br />

soll langfristig eine möglichst große Sicherheit vor allen Naturgefahren erzielt werden.<br />

2. Risikoorientierte Raumplanung: Die räumliche Verteilung von Nutzungen und Bautätigkeiten<br />

soll so gesteuert werden, dass Beeinträchtigungen durch gravitative Massenbewegungen<br />

möglichst gering gehalten werden.<br />

3. Präventive Aufgabe der Raumplanung und des Bauwesens: Im Raumordnungs- und<br />

Baurecht sind die spezifischen Gegebenheiten gravitativer Naturgefahren durch Nutzungsbeschränkungen<br />

und Bauverbote verstärkt zu berücksichtigen.<br />

4. Zusammenwirken vielfältiger Fachmaterien: Eine effiziente Verknüpfung der unterschiedlichen<br />

Instrumente, Schutzmaßnahmen und Finanzmittel ist verstärkt anzustreben, wobei<br />

aktuelle Informationen über gravitative Naturgefahren die fachliche Grundlage bilden<br />

sollen.<br />

5. Raumbezogene Daten und Informationen: Informationen über gravitative Gefahrenbereiche<br />

sind möglichst umgehend für den raumrelevanten Bereich zu erheben, in Karten<br />

darzustellen und regelmäßig anzupassen.<br />

6. Generelle Systematik der kartographischen Gefahrendarstellung: Gravitative Naturgefahren<br />

sind systematisch in unterschiedlichen Karten für verschiedene Planungsebenen darzustellen,<br />

wobei auch das Modell der Gefahrenzonenplanung Anwendung finden soll.<br />

7. Definition von Sicherheitsniveaus: Unter Berücksichtigung der raumordnungsrechtlichen<br />

Schutzziele sind einheitliche Sicherheitsniveaus bezüglich gravitativer Naturgefahren<br />

festzulegen.<br />

8. Risikokommunikation und Risk Governance: Eine verbesserte Risikokommunikation soll<br />

über gravitative Naturgefahren, insb. auch über die langfristigen Wirkungszusammenhänge<br />

und das Restrisiko, sowie über die spezifischen Karten und Maßnahmen informieren.<br />

SCHLUSSFOLGERUNGEN UND AUSBLICK<br />

Eine risikoorientierte Raumnutzung soll dazu beitragen, dass keine wesentliche Erhöhung des<br />

Schadenpotentials bzw. eine Reduktion möglicher Schäden durch Naturgefahren erfolgt<br />

sowie durch eine frühzeitige Berücksichtigung von Naturgefahren im Planungsprozess keine<br />

untragbaren Risiken vorhanden sind und sich entwickeln können. In der Raumplanung sind<br />

die spezifischen Gegebenheiten gravitativer Naturgefahren verstärkt zu berücksichtigen,<br />

wobei grundsätzlich Gebiete mit hohem Gefahrenpotential nicht bebaut werden sollen. Für<br />

bestehende Bauwerke und Nutzungen ist auf Basis einer Risikobewertung eine Erhöhung der<br />

Sicherheit (Risikoreduktion) anzustreben. Durch eine risikoorientierte Raumplanung soll<br />

weiters der Ressourcenaufwand für technische Schutz- und allfällige Wiederherstellungsmaßnahmen<br />

nach Ereignissen künftig deutlich reduziert werden, wobei planerische,<br />

nicht-bauliche Maßnahmen technischen Eingriffen vorzuziehen sind.<br />

Auch wenn ÖROK-Empfehlungen aus formaler Sicht unverbindlichen Charakter aufweisen,<br />

so wurden doch im Rahmen der ÖREK-Partnerschaft fachliche Grundlagen geschaffen und<br />

Standards definiert, die eine Umsetzung in der Raumordnungspolitik nahelegen und eine<br />

138 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


stärker Ausrichtung raumwirksamer Entscheidungen an den Ergebnissen der Gefahrenanalyse<br />

und den risikoorientierten Schutzzielen ermöglicht. Jedenfalls konnte im Kielwasser der<br />

ÖROK ein Sektor übergreifendes Fachnetzwerk etabliert werden, welches geeignet ist auf<br />

Basis der Ergebnisse der Partnerschaft einheitliche fachliche Grundsätze und Methoden<br />

voranzutreiben. Eine normative Umsetzung der entsprechenden Empfehlungen insb. im<br />

Raumordnung- und Baurecht würde wesentlich zur Verbesserung des Risikomanagement für<br />

gravitative Naturgefahren beitragen.<br />

LITERATUR<br />

- Ammann W. J. (2006): Risk concept, integral risk management and risk governance.<br />

In: Ammann W. J., Dannenmann S., Vulliet L. (Hrsg.): RISK21 – Coping with Risks due to<br />

Natural Hazards in the 21st Century (Proceedings of the Risk21 Workshop, Ascona, Switzerland),<br />

Taylor & Francis: 3–24.<br />

- Baumann R., Guggisberger C., Loat R., Diethelm I. (2000): Empfehlung Raumplanung und<br />

Naturgefahren. Bundesamt für Raumplanung/BRP, Bundesamt für Wasser und Geologie/<br />

BWG, Bundesamt für Wald/BUWAL, Bern.<br />

- BMLFUW (2011): Grund genug? Flächenmanagement in Österreich - Fortschritte und<br />

Perspektiven. Umweltbundesamt Wien.<br />

- Bätzing W. (2003): Die Alpen: Geschichte und Zukunft einer europäischen Kulturlandschaft.<br />

CH Beck.<br />

- Camenzind R., Loat R. (2014): Risikobasierte Raumplanung - Synthesebericht zu zwei<br />

Testplanungen auf Stufe kommunaler Nutzungsplanung. Bern, Nationale Plattform Naturgefahren<br />

PLANAT, Bundesamt für Raumentwicklung, Bundesamt für Umwelt.<br />

- Glade, T. (2015): Gravitative Naturgefahren: Entstehung, Wirkungen und Risikomanagement.<br />

In: ÖROK (Hrsg.): Risikomanagement für gravitative Naturgefahren in der Raumplanung,<br />

ÖROK-Schriftenreihe Bd. 193.<br />

- Glade T., Krause M. (2015). Gefahrenzonenkarten und Gefahrenhinweiskarten: Erhebungsansätze,<br />

Anwendung und Bedeutung für die Raumplanung. In: ÖROK (Hrsg.): Risikomanagement<br />

für gravitative Naturgefahren in der Raumplanung, ÖROK-Schriftenreihe Bd.<br />

193.<br />

- Glade T., Petschko H., Bell R., Leopold P., Proske H. (2013): Karten zu gravitativen Massenbewegungen:<br />

Möglichkeiten und Grenzen ihrer Aussagekraft.- Raumdialog - Magazin für<br />

Raumplanung und Regionalentwicklung in Niederösterreich 2: 10-13.<br />

- Hattenberger D. (2004): Rechtliche Aspekte betreffend Lawinenschutzbauten (Teil I).<br />

Bau rechtliche Blätter: 221f.<br />

- Kanonier (2012): Umsetzung von Gefahrenkarten und Gefahrenzonenplänen in der<br />

Raumordnung und im Bauwesen. In: Suda J. und Rudolf-Miklau F. (Hrsg.): Bauen und<br />

Naturgefahren, Verlag Ambra (vormals Springer) Wien: 199–225.<br />

- Kanonier A. (2015): Rechtsgrundlagen des Schutzes vor gravitativen Prozessen (Muren,<br />

Lawinen, Steinschlag, Rutschungen) im Bundesrecht sowie Raumordnungs- und Baurecht<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 139


der Länder. In: ÖROK (Hrsg.): Risikomanagement für gravitative Naturgefahren in der<br />

Raumplanung, ÖROK-Schriftenreihe Bd. 193.<br />

- Loat R. (2015): Risikoorientierter Umgang mit gravitativen Naturgefahrenrisiken in der<br />

Raumplanung am Beispiel der Schweiz. In: ÖROK (Hrsg.): Risikomanagement für gravitative<br />

Naturgefahren in der Raumplanung, ÖROK-Schriftenreihe Bd. 193.<br />

- Mattle A. (2015): Gravitative Naturgefahren aus Sicht einer Gemeinde. In: ÖROK (Hrsg.):<br />

Risikomanagement für gravitative Naturgefahren in der Raumplanung, ÖROK-Schriftenreihe<br />

Bd. 193.<br />

- Nationale Plattform Naturgefahren PLANAT (2009): Risikokonzept für Naturgefahren,<br />

Leitfaden. Strategie Naturgefahren Schweiz, Schlussbericht 2. Phase.<br />

- Österreichische Raumordnungskonferenz (2011): Österreichisches Raumentwicklungskonzept<br />

(ÖREK) Österreichische Raumordnungskonferenz (2014): ÖROK-Atlas.<br />

- Österreichische Raumordnungskonferenz (<strong>2016</strong>). ÖROK-Empfehlungen Nr. 54: Risikomanagement<br />

für gravitative Naturgefahren in der Raumplanung. Broschüre, Wien:<br />

http://www.oerok.gv.at/fileadmin/Bilder/2.Reiter-Raum_u._Region/1.OEREK/OEREK_2011/<br />

PS_Risikom/<strong>2016</strong>-02-24-Brosch%C3%BCre_Risikomanagment_FINAL-54_Internetversion.<br />

pdf.<br />

- Papathoma-Köhle M. & Glade T. (2013): The role of vegetation cover change for landslide<br />

hazard and risk. In: Renaud G., Sudmeier-Rieux K. & Estrella M. (Eds.): The Role of Ecosystems<br />

in Disaster Risk Reduction. UNU-Press, Tokyo: 293-320.<br />

- Promper C., Rudolf-Miklau F. (2015): Die ÖREK-Partnerschaft „Risikomanagement für<br />

gravitative Naturgefahren“: Problemstellung und fachpolitische Ziel. In: ÖROK (Hrsg.):<br />

Risikomanagement für gravitative Naturgefahren in der Raumplanung, ÖROK-Schriftenreihe<br />

Bd. 193.<br />

- Promper C., Rudolf-Miklau F., Hinterleitner R. (2015): Begriffe und Definitionen (Anhang).<br />

In: ÖROK (Hrsg.): Risikomanagement für gravitative Naturgefahren in der Raumplanung,<br />

ÖROK-Schriftenreihe Bd. 193.<br />

- Psenner R. (Hrsg.) (2006): Die Alpen im Jahr 2020. IUP Innsbruck University Press.<br />

- Rudolf-Miklau F., Stix E., Mehlhorn S., Sauermoser S. (2014): Strategic Partnership for<br />

“Risk Management in Spatial Planning concerning Gravitational Hazards”. Proceedings of<br />

World Landslide Forum 3, 2-6 June 2014, Beijing.<br />

- Schwarz L., Kociu A., Hagen K., Rudolf-Miklau F. (2014): Landslide assessment for spatial<br />

planning – the new Austrian ACSP-Standards. 13th Congress <strong>INTERPRAEVENT</strong> <strong>2016</strong>, Luzern<br />

(Beitrag eingereicht).<br />

- Wagner E. (2008): Katastrophenprävention: Optionen de lege lataund de lege ferenda.- In:<br />

Kerschner (Hrsg.): Handbuch Naturkatastrophenrecht. Schriftenreihe Recht der Umwelt Bd.<br />

24. Verlag Manz Wien.<br />

- Wagner E., Jandl C. (2013): Zivil- und verwaltungsrechtliche Fragestellungen des Baus und<br />

der Instandhaltung von Steinschlagschutzbauwerken. Schriftenreihe Umweltrecht und<br />

Umwelttechnikrecht Bd. 4, Linz.<br />

140 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Water management as a part of civil engineering<br />

sector in Slovenia<br />

Jošt Sodnik, MSc in Civ. Eng. 1,2 ; Blaž Kogovšek, Univ.Diploma in WMCE²; Matjaž Mikoš, Prof.Dr. MSc in Civ. Eng.²<br />

ABSTRACT<br />

The construction industry including water management sector represents an important part<br />

of the Slovenian economy and during the recession that started in 2009, this industry has<br />

shrunk for ~10-20% annually, and in 2012 it dropped below 50% of the 2008 level.<br />

Compared to Austria, Slovenia invests up to more than three times less into the water<br />

management sector, including regular maintenance. Flood hazard in Slovenia is increasing<br />

rather than decreasing, and organisation of the water management sector was claimed to a<br />

large extent to be one of the major reasons for the present deteriorating situation. In <strong>2016</strong>,<br />

a newly established Directorate for Waters of the Republic of Slovenia should bring fresh air<br />

into the scene. Considering rather poor condition of water infrastructure in Slovenia and<br />

very high flood hazard, water management must become one of the top priorities in years<br />

to come.<br />

KEYWORDS<br />

financial investments; regular maintenance; Slovenia; water infrastructure; water management<br />

INTRODUCTION<br />

A healthy status of the Slovenian construction sector is not only the responsibility of the<br />

sector itself, part of which is also the water management sector, but of the whole society.<br />

The construction industry represents an important part of the Slovenian economy (around<br />

6% GDP) and before the recession that started in 2009, in Slovenian construction sector<br />

there were more than 90.000 employees in 4600 constructional companies, plus 10.000<br />

self-employed workers directly working in construction business. In 2009, the construction<br />

sector started to shrink for about 10-20% annually, and in 2012 it was already well below<br />

50% of the 2008 level. Engineering works (including water management and flood protection<br />

measures) represents 50% of Slovenian construction sector activities (the rest is<br />

construction of buildings). In 2012, five out of ten biggest Slovenian construction companies<br />

were bankrupt and three more were in serious financial problems. Revival of the construction<br />

sector as a part of the industrial sector is crucial for the revival of Slovenian economy in<br />

general to come of the financial and economic crisis started in 2009. In the last two years<br />

construction sector was mainly growing due to realisation of the EU Cohesion Fund projects<br />

for building sewage systems in rural areas. With the end of 2015 the majority of these<br />

1 Water Management Company, Kranj, Kranj, SLOVENIA, jost.sodnik@gmail.com<br />

2 University of Ljubljana, Faculty of Civil and Geodetic Engineering, SLOVENIA<br />

IP_<strong>2016</strong>_FP103<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 141


projects will finish and <strong>2016</strong> will be crucial for many of the construction companies (including<br />

water management sector) in Slovenia since there are no new infrastructural projects in<br />

sight in the near future.<br />

WATER MANAGEMENT IN SLOVENIA<br />

In Slovenia, water management is governed by the Ministry of the environment and spatial<br />

planning that prepares all national legislation (harmonized with EU directives). The operational<br />

body on the national level is Slovenian Environment Agency (ARSO). ARSO is the<br />

water manager on the national level and is in charge for all spatial planning permits,<br />

maintenance works on water infrastructure, water infrastructure cadastre, restoration plans<br />

after natural disasters, supervision, etc. Slovenia is divided into eight river sub-basins<br />

(watersheds). Each watershed has a concessionaire for maintenance works on water<br />

infrastructure and other tasks holding a concession contract with the Ministry. Concessionaires<br />

are local Water management companies which are responsible for carrying out<br />

maintenance works, according to plans, prepared by the Agency.<br />

In the last two decades all these companies have become private firms and the Republic of<br />

Slovenia owns only 25% + 1 share or even less in some cases. In the last strategic plan for<br />

final privatisation of selected state capital investments, the Government of the Republic of<br />

Slovenia recognized Water management companies as strategic property and decided not to<br />

fully privatise them. On the other hand, state owned institutions are not acceptable in<br />

Slovenia since we are still in process of privatisation. Water management “in the field” is<br />

carried out through these companies. Scope of these measures is limited with funding<br />

possibilities of the Agency and the Ministry. Funding of maintenance works was shrinking<br />

and today it represents only about 10-20% of yearly business of Water management<br />

companies. These companies were forced to start building other structures on the free market<br />

(canalization systems, roads, other infrastructure). Two of eight water management companies<br />

went bankrupt due to lack of business. Analysis show that in the period from 1986 to<br />

1998 funding of water management in Slovenia shrank from 0.71% to 0.07% of GDP (Umek<br />

and Banovec, 1998). This trend lead slowed down the education process and gaining<br />

operational experiences of professionals. Civil engineering study programs have become<br />

non-attractive and new engineers have hard time to gain operational experiences.<br />

WATER MANAGEMENT FINANCING IN SLOVENIA AND A COMPARISON WITH AUSTRIA<br />

Slovenia and Austria are comparable in terms of topography, climate, torrents and rivers.<br />

Population density is also comparable (105 p/km 2 ). Austria has 100,000km of waterways with<br />

a density of 1.2km/km 2 (BMLFUW, 2010; 2012a) and Slovenia has 28,000km of rivers with a<br />

density of 1.4 km/km 2 (Bat et al., 2003). Due to low financing of water managements sector<br />

in Slovenia in the last two decades, water infrastructure is in a very poor condition and<br />

therefore the flood hazard level of many densely populated areas is very high. The analysis<br />

of financial investments in the water management sector (water infrastructure for river<br />

engineering and in general for the protection against floods, torrents, landslides, avalanches,<br />

142 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


and erosion) of Austria and Slovenia in the period 2002-2014 was prepared. Given the<br />

differences between the two countries in gross domestic product, population and length of<br />

the hydrographic network, in all cases investments in Slovenia are significantly lagging<br />

behind Austria.<br />

Figure 1: Comparison of “water management investments” as % GDP between Slovenia and Austria.<br />

Slovenia invests in the water management sector for the mentioned purposes annually on<br />

average between 0.02 and 0.03% of GDP, Austria, on average, 0.055% (Fig. 1). Slovenia<br />

invests comparably to Austria only in years with extreme floods that have caused damages of<br />

several 100 million EUR (2008 and 2009 after massive flooding in September 2007).<br />

Figure 2: Comparison of “water management investments” as €/capita between Slovenia and Austria.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 143


With regard to the number of inhabitants, the annual investment into water management in<br />

Slovenia is 5 EUR per capita and in Austria is 17 EUR per capita (Fig. 2). Also the investments<br />

for a kilometre of a watercourse in Slovenia were on average only about 400 EUR per km and<br />

in Austria nearly 1500 EUR per km in the investigated period (Fig. 3).<br />

Figure 3: Comparison of “water management investments” as €/km between Slovenia and Austria.<br />

The ratios for Slovenia are even worse, because we used in the presented analysis for Austria<br />

only data on its state funding. On average, every year the Austrian Federal Government<br />

makes available funds (subsidies are granted subject to the provisions of the Hydraulic<br />

Engineering Assistance Act) from the Disaster Relief Fund of the Federal State to the amount<br />

of € 69.9 million for the torrents, avalanche, and erosion control. Together with contributions<br />

from the Federal Provinces and stake holders (municipalities, water corporations, others)<br />

funds to the amount of almost € 122 million are thus available annually for investments into<br />

active control measures (BMLFUW, 2012a;b). Since the 2002 Floods, Austria invested all<br />

together 2.9 billion EUR into protection against natural hazards. According to an action plan<br />

called „Flood Safe Austria“ that was accepted in Austria after the 2013 Floods, will the<br />

Austrian Federal State invest around 1 billion EUR in the period 2014-2019 into protection<br />

of their citizens (BMLFUW, <strong>2016</strong>).<br />

Water management funding in Slovenia is based only on national funds. Municipalities do<br />

not have their own funds to invest in that sector. There have been some changes in that field,<br />

and some municipalities realized that national funds are not sufficient to ensure a good state<br />

of water infrastructure and they started to ensure their own budget to finance parts of the<br />

maintenance works, mostly parts closely connected with their own infrastructure (municipality<br />

roads, sewage systems, water supply systems). But these cases are rather exceptions and<br />

such funds do not present amounts worth mentioning in the overall statistics. This is also one<br />

of the steps forward that could improve the state in Water management sector in Slovenia.<br />

144 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figures 1-3 show that Slovenia lags behind Austria, except in years 2008 and 2009 when all<br />

the mitigation measures and restoration of water infrastructure after massive flooding in<br />

September 2007 were carried out. After 2007 floods occurred in 2009, 2010, 2012 and 2014.<br />

Damage exceeded 0.05% of national GDP in 2012. GDP data were taken from the World<br />

Bank (data.worldbank.org).<br />

Table 1: Damage on water infrastructure in Slovenia (% of national GDP).<br />

After last large flood events in Slovenia the maintenance funding remained on the same level<br />

as before (8.5 mil € on the national level); instead the Ministry prepared restoration plans and<br />

provided additional financing. None of these restoration programs reached the planned<br />

amount due to lack of financing in the following fiscal years and due to new flood events.<br />

Despite financing problems these restorations programs improved state of water infrastructure<br />

in flooded areas. Numerous check dams and retention dams were built on small<br />

torrential tributaries, since sediment transport and woody debris were one of the most<br />

pressing problems during past flood events. Nevertheless, mostly were these measures rather<br />

a first-aid than actually improving the flood-safety situation.<br />

In the end of 2014, after the fifth massive flood in 8 years, the new government set the flood<br />

protection and good condition of water infrastructure as its top priorities. Government<br />

prepared so called action plans which should improve the state of water infrastructure in<br />

Slovenia (see Fig. 6 for an example of a neglected and therefore damaged check dam) and<br />

reduce flood hazard. This action plan was divided into four major chapters (MOP, 2014):<br />

– The first part was short term measures to compensate lack of maintenance in the past years<br />

with amount of 11.9mil €. In 2015, only 11.1mil€ of the action plan was carried out due to<br />

lack of annual financing. Majority of the financing was used to carry out the restoration<br />

measures in the recently flooded areas. So, the first part of the action plan turned into<br />

another remediation program, as we know them in the past to remediate devastated<br />

flooded areas.<br />

– The second part of the action plan was an increase of the regular maintenance funding for<br />

water management to at least 25 mil€ on the national level per year. Also according to our<br />

interpretation, the annual maintenance budget in Slovenia in the field of water manage-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 145


ment should raise from 8.5 to 25 million € per year – this is ~3% of the estimated value of<br />

water infrastructure in Slovenia of around 800 million €. In 2015 that was not applied and<br />

the maintenance budget stayed the same as in the last few years (7.6 mil €/year). The third<br />

part (the last part related to water management, since the fourth part is related to road<br />

infrastructure damaged in floods) of the action plan was long term measures including<br />

administrative changes, changes of national funding and greater focus on EU funding of<br />

measures to reduce flood hazard.<br />

Figure 4: A degraded check dam on the Belca torrent in NW Slovenia.<br />

On administration level the Parliament of Slovenia in July 2015 accepted an amendment to<br />

the Water Law (ZV-1E, 2015) and established the Directorate for Waters of the Republic of<br />

Slovenia (DRSV) that will start its work in January <strong>2016</strong> as a constitutional part of the<br />

Ministry of the Environment and Spatial Planning. The situation could have been better, if<br />

only we have succeeded to raise more than only 22.5% of the available EU structural funds<br />

to be spent in Slovenia for these purposes in the period of 2007-2013. The Directorate for<br />

Waters will be a stand-alone fiscal user of the ministry budget, and will be in charge for<br />

investments in water management in Slovenia – the staff will be recruited from employees of<br />

the Slovenian Environment Agency (ARSO - http://www.arso.gov.si/en/), Institute for Water<br />

of the Republic of Slovenia (IzVRS - http://www.izvrs.si/?lang=en), and internal units of the<br />

Ministry of the Environment and Spatial Planning (MOP - http://www.mop.gov.si/en/),<br />

146 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


especially the Water and Investments Directorate. The main reason for the directorate<br />

establishment was reaching findings that flood hazard in Slovenia is increasing rather<br />

decreasing (after the last few major floods), and the water management organisation was<br />

claimed to a large extent to be one of the major reasons for the present unsatisfactory<br />

situation. What concerns about new Directorate is that it brings only administrative changes<br />

with existing experts and mostly officers and does not bring necessary professional strengthening<br />

to water management sector.<br />

As a basis for a more effective work of the future WD will be a Water Management Strategy<br />

– to be prepared before the end of 2015 . Part of it is also a Flood Risk Management Plan <strong>2016</strong><br />

– 2021 (MOP, 2015) and Basin Management Plan for the same period, among other documents.<br />

The Flood Risk Management plan (National plan for flood risk reduction) recognizes<br />

61 locations with high flood risk where implementation of mitigation measures should be a<br />

priority. In last 25 years flood caused 1,800 million € of direct damage, only in last 10 years<br />

1,200 million € of damage. On average in Slovenia floods cause 150 million € of damage.<br />

The main question that remains is the scope of funding in the future. No administrative<br />

change can basically ensure reduced flood risk without increased and effectively spent<br />

funding. An important step in the past was done by establishing a web platform called eVode<br />

(http://evode.arso.gov.si/), where stakeholders can find different evidences, studies and other<br />

data on water use and water management. A part of these publically available data are now<br />

also LiDAR data for the whole area of the Republic of Slovenia, which is a very advanced<br />

approach and enables wide usage of high resolution data for flood hazard mapping, spatial<br />

planning etc. Also an important ongoing activity is the determination of water areas.<br />

Based on the Water Act, a water area is an area with permanent or occasional water presence<br />

(stream channels) including flood areas (flood plains) and areas close to watercourses till first<br />

geomorphological change – tough, water areas are not covering full river corridors.<br />

This project includes cooperation of water management and geodetic experts and will provide<br />

very valuable data layer which will be important in the process of spatial planning.<br />

WATER MANAGEMENT AND CONSTRUCTION SECTOR IN SLOVENIA<br />

According to the Standard Classification of Activities (version 2008), water management is<br />

part of F. Construction (in former Yugoslavia, water management was a separate activity<br />

outside construction) – Construction sector is subdivided to:<br />

– F41. Construction of buildings,<br />

– F42. Civil engineering (among others F42.91 Construction of water projects) and<br />

– F.43 Specialised construction activities.<br />

The peak number of employed workers in construction sector in Slovenia was in October<br />

2008 with over 92,000 (more than 11% of all employed persons in Slovenia) and the value<br />

of the executed construction works in 2008 in Slovenia was estimated at 3,551 billion EUR<br />

(1,727 billion EUR for civil engineering) – this dropped down to 1,927 billion EUR in 2014<br />

(1,269 billion EUR for civil engineering). In 2015, Slovenia has already signed first 5 projects<br />

in the field of drinking water supply and collecting and treating of waste water for over<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 147


150 million EUR to be partially co-financed from the European Structural Funds and the<br />

Cohesion Fund in the 2014-2020 programming period. In the field of flood protection<br />

projects, the available funds in this period are estimated to 600 million EUR; an amount to<br />

be of importance to revive the construction sector in Slovenia, where large investments into<br />

highway construction has recently stopped (the value of close to 800 km highways and<br />

motorways in Slovenia is estimated at 6+ billion EUR – for comparison purpose: the value of<br />

close to 10,000 water management structures in Slovenia is estimated to close to 800 million<br />

EUR). The realization of these Cohesion Fund projects still depends on the success of<br />

Slovenian bureaucracy which has prevented the realisation of 2010-2015 period projects for<br />

the first three years and thus the majority of projects started only in the second part of 2013;<br />

a fact that additionally hit the Slovenian construction sector in the past 5 years.<br />

CONCLUSIONS<br />

Considering very poor condition of water infrastructure in Slovenia and very high flood<br />

hazard, water management and flood mitigation measures must become one of the top<br />

priorities in years to come. Previously described administrative changes in Slovenia are a step<br />

forward and rule out the administrative obstacles for efficient water management in Slovenia.<br />

But for now (early <strong>2016</strong>) all these changes still did not bring the necessary changes in<br />

funding. Maintenance is still inadequate and projects for EU funding are still not a top priority<br />

of the Government. Increased funding of water management will reduce flood hazard and<br />

consequently also help to a certain level Slovenian construction sector to recover after<br />

recession in 2009 when the Slovenian national highway project was terminated. The results<br />

of our study were presented on two Slovenian national congresses on water management<br />

and natural disasters in Slovenia and published in the national journal on Civil engineering<br />

(Sodnik and Mikoš, 2013; Sodnik etal., 2015). Authors of the study were actively involved in<br />

the preparation of the administrative changes in water management in Slovenia. The state<br />

of the mind of the authorities and decision makers must change and maintenance works and<br />

flood protection measures must be carried out instead of remediation projects after each<br />

flood event.<br />

REFERENCES<br />

- Bat, M., Dobnikar Tehovnik, M., Mihorko, P., Grbović, J. (2003). Tekoče vode (Running<br />

waters). In: Uhan, J. (Ed.), Bat, M. (Ed.), Vodno bogastvo Slovenije. Agencija Republike<br />

Slovenije za okolje, Ministrstvo za okolje, prostor in energijo Republike Slovenije, Ljubljana,<br />

27-37. http://www.arso.gov.si/vode/publikacije%20in%20poro%c4%8dila/Vodno_bogastvo_2tekoce_vode.pdf<br />

- BMLFUW (2010). Nationaler Gewässerbewirtschaftungsplan 2009 – NGP 2009. Bundesministerium<br />

für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien, 225 p.<br />

- http://www.lebensministerium.at/publikationen/wasser/wasserwirtschaft_wasserpolitik/<br />

nationaler_gewaesserbewirtschaftungsplan_2009.html<br />

148 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- BMLFUW (2012a). Wildbach- und Lawinenverbauung in Österreich. Bundesministerium<br />

für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Sektion Forstwesen, Wien,<br />

Austria, 27p.<br />

- https://www.bmlfuw.gv.at/forst/schutz-naturgefahren/wildbach-lawinen/broschueren/<br />

WildbachundLawinen.html<br />

- BMLFUW (2012b). Schutz vor Naturgefahren in Österreich – 2002 - 2011. Bundesministerium<br />

für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Sektion Forstwesen, Wien,<br />

Austria, 51p.<br />

- http://www.wasseraktiv.at/resources/files/2012/8/13/2798/schutz-vor-naturgefahren-2002-<br />

2011-end-aug2012.pdf<br />

- BMLFUW (<strong>2016</strong>). Investitionen in den Schutz von Naturgefahren. Bundesministerium<br />

für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien, Austria, https://www.<br />

bmlfuw.gv.at/forst/schutz-naturgefahren/wlv2014-2019.html<br />

- MOP (2014). Akcijski načrt interventnih aktivnosti zaradi poplav. Ministrstvo za okolje in<br />

prostor Republike Slovenije, Ljubljana, 81 p.<br />

- http://www.mop.gov.si/fileadmin/mop.gov.si/pageuploads/medijsko_sredisce/2014/11_november/28_AN_poplave/Akcijski_nacrt_poplave_MOP.pdf<br />

- MOP (2015). Načrt zmanjševanja poplavne ogroženosti (NZPO Si) – predlog ver 1.04,<br />

Ministrstvo za okolje in prostor Republike Slovenije, Ljubljana, 357 p.<br />

- http://www.mop.gov.si/fileadmin/mop.gov.si/pageuploads/podrocja/voda/nzpo/NZPO_<br />

SLO_2015_12_08.pdf<br />

- Sodnik J., Mikoš M. (2006). Estimation of magnitudes of debris flows in selected torrential<br />

watersheds in Slovenia. Acta geographica Slovenica 46/1: 93-123.<br />

- Sodnik J., Mikoš M. (2013). Vodarstvo in vzdrževanje vodne infrastrukture v Sloveniji =<br />

Water Management and Maintenance of Water Infrastructure in Slovenia. Gradbeni vestnik<br />

62/8, 166-173.<br />

- Sodnik J., Kogovšek B., Mikoš M. (2015). Vlaganja v vodno infrastrukturo v Sloveniji in v<br />

Avstriji = Investments into Water Infrastructure in Slovenia and in Austria. Gradbeni vestnik<br />

64/1, 3-12.<br />

- Umek, T., Banovec, P. (1998). Trenutna institucionalna ureditev gospodarjenja z vodami<br />

v Republiki Sloveniji in trendi nadaljnjega razvoja, Mišičev vodarski dan 1998, 112-120.<br />

http://mvd20.com/LETO1998/R20.pdf<br />

- ZV-1E (2015). Zakon o spremembah in dopolnitvah Zakona o vodah (ZV-1E).<br />

Official Gazette of the Republic of Slovenia, Nr. 56 (of July 29, 2015), p. 6551<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 149


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Method for a risk based and transparent allocation<br />

formula of the remaining costs applied to the<br />

protection measures project "Laui Sörenberg",<br />

municipality of Flühli, Switzerland.<br />

Methode für einen risikobasierten und transparenten<br />

Restkostenteiler beim Schutzprojekt "Laui Sörenberg",<br />

Gemeinde Flühli, Schweiz.<br />

Roland Stalder, Engineer in forestry¹; Karl Grunder, Engineer in Forestry¹; Guido Küng²<br />

ABSTRACT<br />

The landowners benefiting from the realization of protection measures are required to contribute<br />

to the costs. The allocation of the costs is legally based on the Ordinance on perimeter.<br />

It stipulates an allocation formula assessing the added value for the property after implementing<br />

the protection measures. In the following, a method is presented which equitably<br />

allocates the remaining costs based on official and scientific facts and which is transparent and<br />

comprehensible for the landowners who must contribute. The quantifying of the added value<br />

is derived from the benefit regarding safety and spatial planning. The focus is on the safety<br />

benefit, therefore it is counted double. The benefit is multiplied by the land and building<br />

values for each piece of property. These resulting figures lead to the allocation formula for the<br />

contributions of the remaining costs. This method was developed and successfully applied for<br />

the significant and complex protection project «Laui Sörenberg», municipality of Flühli,<br />

canton of Lucerne. The Federal Supreme Court confirmed the decision of the local authority.<br />

ZUSAMMENFASSUNG<br />

Bei der Realisierung von Schutzmassnahmen gegen gravitative Naturgefahren sind die<br />

profitierenden Grundeigentümer an den Kosten der Massnahmen zu beteiligen. Die Verteilung<br />

der Kosten basiert rechtlich auf der Kantonalen Verordnung über die Grundeigentümer-<br />

Beiträge an öffentliche Werke (Perimeterverordnung). Diese fordert einen Verteilschlüssel,<br />

der sich an den Vorteilen orientiert, die den Grundstücken aus den Schutzmassnahmen<br />

entstehen. Nachfolgend wird eine Methode vorgestellt, die einerseits die Restkosten auf der<br />

Basis von amtlichen und naturwissenschaftlichen Fakten gerecht verteilt und andererseits für<br />

die Beitragspflichtigen transparent und nachvollziehbar ist. Zur Quantifizierung der Vorteile<br />

wird der Nutzen bezüglich Sicherheit und Raumplanung hergeleitet. Der Sicherheitsnutzen<br />

steht dabei im Vordergrund und wird höher gewichtet. Der Nutzen wird mit Grundstück- und<br />

1 oeko-b ag, Schüpfheim, SWITZERLAND, roland.stalder@oeko-b.ch<br />

2 Municipal government Flühli, SWITZERLAND<br />

150 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP094


Gebäudewert zur Gesamtteilerzahl pro Grundstück multipliziert. Diese ermittelten Teilerzahlen<br />

bilden den Verteilschlüssel für die zu leistenden Beiträge an die Baukosten. Diese<br />

Methode wurde für das grosse und komplexe Schutzprojekt Laui Sörenberg, Gemeinde<br />

Flühli, Kanton Luzern, entwickelt und erfolgreich umgesetzt. Die von den Beschwerdeführern<br />

angerufenen Gerichte stützten die Entscheide der lokalen Behörde.<br />

KEYWORDS<br />

protection measures; method; allocation formula; risk based; transparent<br />

EINLEITUNG<br />

Das Gebiet Laui Sörenberg in der Gemeinde Flühli, Kanton Luzern, ist ein prähistorisches<br />

Bergsturzgebiet. Im Jahr 1910 sackte eine grosse Bergmasse um rund vierzig Höhenmeter ab<br />

(Einwohnergemeinde Flühli 2011, S. 1f.). Der Talboden wurde meterhoch mit Schutt und<br />

grossen Steinbrocken übersart und die Waldemme vorübergehend zu einem See aufgestaut.<br />

In den Jahren 1922, 1986 und 1999 ereigneten sich erneut grössere Murgänge, wobei insbesondere<br />

das jüngste Ereignis zu grossen Schäden im Siedlungsgebiet führte. Nur dank<br />

glücklichen Umständen kamen keine Personen zu Schaden.<br />

Das gefährdete Gebiet wurde seit ca. 1960 vorwiegend mit Ferienhäusern überbaut.<br />

Mit der Einführung der Raumplanung wurde es 1973 als provisorisches Gefahrengebiet<br />

ausgeschieden. Auf der Basis der Gefahrenkarte 1996 wurde ein Wasserbauprojekt ausgearbeitet,<br />

welches zwischen 2009 und 2015 realisiert wurde. Die Schutzmassnahmen sollen<br />

die darunterliegenden rund 700 Wohneinheiten mit einem Versicherungswert von<br />

ca. 200 Millionen Franken vor Zerstörung oder grösseren Schäden bewahren. Das Personenrisiko<br />

wird fast vollständig beseitigt und das Sachwertrisiko auf sehr seltene Ereignisse<br />

begrenzt. Die Baukosten betrugen rund 18 Millionen Franken. Der Regierungsrat des<br />

Kantons Luzern hat bei der Projektbewilligung (Regierungsrat des Kantons Luzern 2006,<br />

S. 18) festgelegt, dass die interessierten Grundeigentümer 13% dieser Baukosten selber zu<br />

tragen haben (CHF 2’340’000.-). Diese Kosten wurden basierend auf der kantonalen<br />

Perimeterverordnung mittels Perimeterverfahren auf die Beitragspflichtigen verteilt.<br />

Die übrigen 87% der Baukosten wurden durch die öffentliche Hand finanziert (Bund 43%,<br />

Kanton 30.7% und Gemeinde 13.3%).<br />

Gegen den Perimeterentscheid des Gemeinderats Flühli gingen 38 Einsprachen ein.<br />

Die letzte wurde 2015 durch das Bundesgericht abgewiesen.<br />

KONTEXT<br />

Das Schutzprojekt Laui Sörenberg dauerte von der Vorstudie bis zum Abschluss rund<br />

16 Jahre. Dabei war das Perimeterverfahren eines unter zahlreichen Verfahren. Die Komplexität<br />

des Projekts und die Interaktion der damit verbundenen politischen, projekt- und<br />

verfahrenstechnischen sowie gesellschaftlichen Prozesse forderte vom Perimeterverfahren<br />

weit mehr als eine arithmetische Berechnung der Kostenanteile.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 151


Den rechtlichen Rahmen bildet die Perimeterverordnung, welche auch einige Vorgaben zur<br />

Methodik macht (z.B. Klassenbildung und Grundmass, siehe Kapitel „Methode“). Die Perimeterverordnung<br />

verlangt, dass sich der Verteilschlüssel an den Vorteilen orientiert, die den<br />

Grundstücken aus den Schutzmassnahmen entstehen. Dabei haben das Gerechtigkeits- und<br />

das Zumutbarkeitsprinzip oberste Priorität.<br />

Die Bevölkerung setzte sich intensiv mit dem Schutzprojekt auseinander, bisweilen flossen<br />

emotionale, ideelle und ethische Aspekte in die Diskussion ein. Die Gewährung des rechtlichen<br />

Gehörs erfolgte bereits vorgängig zum Perimeterverfahren im Rahmen der Projektauflage<br />

(mit 60 Einsprachen) und der Auflage des Zonenplans (mit 40 Einsprachen). Dies<br />

veranlasste die Projektgruppe, für den Kostenteiler die bereits vertrauten und anerkannten<br />

Grundlagen „Intensitätskarten“ und „Gefahrenzonenplan“ zu verwenden. Zur Herleitung des<br />

Risikos wurde deshalb eine vereinfachte Methode auf der Basis der schon eingeführten<br />

Grundlagen gewählt (in Anlehnung an Heinimann 1999, S.36; siehe Kapitel „Methode“).<br />

Der Kostenteiler basiert auf Sachrisiken, die Personenrisiken wurden nicht berücksichtigt.<br />

Einerseits verläuft der Gradient der Personenrisiken innerhalb des Perimeters gleichartig wie<br />

derjenige der Sachrisiken, daher ist dieser Analogieschluss für eine Abschätzung der relativen<br />

Risikoverteilung anwendbar. Andererseits befürchtete die Projektgruppe, dass der Dialog mit<br />

der Bevölkerung durch den Einbezug der Personenrisiken emotionaler würde, aufgrund<br />

ethischer Grundsatzfragen (Wie viel ist ein Menschenleben wert?) und wegen zusätzlichen<br />

variablen Parametern (Was ist eine „gerechte“ Aufenthaltsdauer in einem Ferienhaus im<br />

Gegensatz zum Wohnhaus?).<br />

Die Vorteile aus den Schutzmassnahmen wurden sowohl im Hinblick auf die Sicherheit,<br />

wie auch aus raumplanerischer Sicht hergeleitet (Einwohnergemeinde Flühli 2011, S. 4).<br />

Die Basis für den Sicherheitsnutzen bilden die Intensitätskarten, für den raumplanerischen<br />

Nutzen wurde der Gefahrenzonenplan verwendet (siehe Kapitel „Methode“). Der Sicherheitsnutzen<br />

ist mit dem Hauptziel des Schutzprojekts begründet, nämlich dem Schutz des<br />

Dorfes Sörenberg vor gravitativen Naturgefahren. Die Projektgruppe entschied sich für die<br />

zusätzliche Berücksichtigung des raumplanerischen Nutzens, da die Bevölkerung gegenüber<br />

Gefahrenzonen sehr sensibel war und den ideellen Wert von Entwicklungsmöglichkeiten auf<br />

den zu schützenden Parzellen als bedeutend einstufte. Der raumplanerische Nutzen beschreibt<br />

also die Verringerung risikobedingter Eigentumsbeschränkungen durch das Schutzprojekt.<br />

Der raumplanerische Nutzen wurde als sekundärer Aspekt halb so stark gewichtet,<br />

wie der Sicherheitsnutzen.<br />

Die Projektgruppe hat im Perimeterverfahren nach dem Grundsatz „Fakten statt behördliches<br />

Ermessen“ gearbeitet. Die Erarbeitung der naturwissenschaftlichen Fakten (Intensitätskarten<br />

und Gefahrenzonenplan) erfolgte nach Stand des Wissens und wurde durch Gemeinde und<br />

kantonale Fachstelle begleitet. Die amtlichen Fakten lassen ebenfalls keinen Spielraum für<br />

Ermessen. Zu erwähnen ist hierbei, dass die Verkehrswertschätzung des Bodens durch<br />

anerkannte Spezialisten durchgeführt wurde.<br />

152 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Die Projektgruppe war also mit der Herausforderung konfrontiert, die Methode zur Erarbeitung<br />

des Kostenteilers so zu gestalten, dass a) die Perimeterverordnung korrekt umgesetzt<br />

wird, b) der Perimeterentscheid für die Betroffenen nachvollziehbar, transparent, gerecht und<br />

zumutbar ist und c) anstelle behördlichen Ermessens naturwissenschaftliche und amtliche<br />

Fakten verwendet werden. Es galt, diese unterschiedlichen Anforderungen gesamthaft<br />

bestmöglich zu erfüllen.<br />

METHODE ZUR ERARBEITUNG EINES KOSTENTEILERS<br />

Rechtlich basiert das Perimeterverfahren auf dem kantonalen Wasserbaugesetz (SRL 760),<br />

dem kantonalen Planungs- und Baugesetz (SRL 735) sowie der Verordnung über Grundeigentümer-Beiträge<br />

an öffentliche Werke (Perimeterverordnung) des Kantons Luzern (SRL<br />

732). Die Perimeterverordnung (PV) enthält bedeutende methodische Rahmenbedingungen.<br />

Die Grundlagen für die Berechnung der Höhe des einzelnen Beitrags bilden geeignete<br />

Grundmasse sowie die Klassenzahl (gemäss PV §7). Das Grundmass für die Grundstücke wird<br />

mit der Grundstückfläche, der Grundnutzung, dem Bodenwert sowie dem betroffenen Anteil<br />

hergeleitet. Das Grundmass für die Gebäude wird mit dem Gebäudegrundriss, dem Gebäudeversicherungswert<br />

sowie dem betroffenen Anteil hergeleitet (Einwohnergemeinde Flühli<br />

2011, S. 4f). Da den Grundstücken sowie den Gebäuden aus sicherheitsrelevanter wie auch<br />

aus raumplanerischer Sicht unterschiedliche Vorteile erwachsen, werden diese Vorteile<br />

jeweils separat berechnet und in einer Punktzahl ausgedrückt. Dabei stellen der raumplanerische<br />

Nutzen sowie der Sicherheitsnutzen je eine Kostengruppe im Sinne von PV §8 Abs. 2<br />

dar. Für die Kostengruppe „Raumplanerischer Nutzen“ werden die Gefahrenzonen vor und<br />

nach Massnahmen verwendet, für die Kostengruppe „Sicherheit“ die Intensitätskarten vor<br />

und nach Massnahmen (Einwohnergemeinde Flühli 2011, S. 5). Die resultierende Punktzahl<br />

(maximal 24 Punkte) entspricht der Einteilung in 24 Klassen im Sinne von PV §9.<br />

Die Erarbeitung des Kostenteilers erfolgt in 5 Schritten. Eine grafische Übersicht dazu findet<br />

sich in Fig. 1.<br />

Im 1. Schritt werden durch Vergleich der Intensitätskarten sowie der Gefahrenzonenpläne<br />

– jeweils vor und nach Massnahmen - diejenigen Grundstücke identifiziert, welche dank den<br />

Schutzbauten einen Sicherheits- oder raumplanerischen Nutzen erhalten. Nur diese Grundstücke<br />

sind beitragspflichtig.<br />

Im 2. Schritt wird für jedes beitragspflichtige Grundstück der Wert von Boden und Gebäude<br />

ermittelt (vgl. Fig. 1, blau umrahmtes Textfeld). Für die Berechnung des Bodenwerts werden<br />

auf der Basis einer Verkehrswertschatzung die Werte für die Grundnutzungen Bauzone (in<br />

Sörenberg CHF 200.- / m 2 ), Landwirtschaft (CHF 5.- / m 2 ), Grünzone (CHF 40.- / m 2 ) sowie<br />

Wald (CHF 0.50 / m 2 ) ermittelt. Durch Multiplikation mit der Grundstücksfläche wird der<br />

Bodenwert berechnet. Der Gebäudewert wird durch die Gebäudeversicherung Luzern zur<br />

Verfügung gestellt. Hierfür wird ein Stichdatum festgelegt, auf ausserordentliche Schatzungen<br />

wird verzichtet. Die Gebäudefläche lässt sich aus der Amtlichen Vermessung ermitteln.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 153


Fig. 1: Übersicht der Methode zur Erarbeitung eines Kostenteilers.<br />

154 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Im 3. Schritt wird der raumplanerische Nutzen quantifiziert. Zur Herleitung werden die<br />

Gefahrenzonen vor und nach Massnahmen verglichen, sowohl für den Boden, als auch für<br />

die Gebäude (vgl. Fig. 1, grün umrahmtes Textfeld, oben). Das Grundstück erfährt dann einen<br />

Vorteil, wenn es durch die Massnahmen einer schwächeren Gefahrenzone zugeteilt oder<br />

gänzlich aus der Gefahrenzone entlassen wird. Der Nutzen wird in Punkten ausgedrückt.<br />

Der Wertebereich der Gesamtpunktzahl reicht von 0 Punkten (keine Zuteilung in schwächere<br />

Gefahrenzone) bis zu 24 Punkten (vollständige Entlassung aus roter Gefahrenzone) und<br />

entspricht den 24 Klassen im Sinne von Perimeterverordnung §9. Der Gesamtpunktzahl des<br />

raumplanerischen Nutzens wird ein Faktor zugeteilt, damit die Spannweite vom kleinsten<br />

zum grössten Beitragszahler verhältnismässig bleibt (vgl. Fig. 1, grün umrahmtes Textfeld,<br />

links unten). Der Faktor für das Gebäude wird mit dem Gebäudewert (2. Schritt) zur TeilerzahlGebäude,<br />

Raumplanung multipliziert, der Faktor für den Boden mit dem Bodenwert zur<br />

TeilerzahlBoden, Raumplanung. Die Herleitung der Punktetabellen und Faktoren wird am<br />

Ende des Kapitels beschrieben.<br />

Im 4. Schritt wird der Sicherheitsnutzen ermittelt. Zur Herleitung werden für drei Wiederkehrperioden<br />

(häufig, selten und sehr selten) die Intensitätskarten vor und nach Massnahmen<br />

verglichen, sowohl für den Boden, als auch für die Gebäude (vgl. Fig. 1, gelb umrahmtes<br />

Textfeld, links oben). Kann das Grundstück aufgrund der Schutzmassnahmen einer schwächeren<br />

Intensitätsklasse zugeordnet werden, erfährt dieses einen Nutzen bezüglich Sicherheit.<br />

Je grösser die Reduktion der Intensität, desto höher wird der Nutzen und damit die Punktzahl.<br />

Der Wertebereich der Gesamtpunktzahl und die Zuteilung zu einem Faktor sind analog<br />

dem raumplanerischen Nutzen (vgl. Fig. 1, gelb umrahmtes Feld, rechts). Der Faktor für das<br />

Gebäude wird mit dem Gebäudewert (2. Schritt) zur TeilerzahlGebäude, Sicherheit multipliziert,<br />

der Faktor für den Boden mit dem Bodenwert zur TeilerzahlBoden, Sicherheit.<br />

Im 5. Schritt werden die aus dem 3. und 4. Schritt resultierenden Teilerzahlen zur Gesamtteilerzahl<br />

pro Grundstück addiert (vgl. Fig. 1, schwarz umrahmtes Textfeld). Diese wird mit<br />

dem Perimeterentscheid erlassen und nach Erledigung allfälliger Einsprachen rechtskräftig.<br />

Der effektiv geschuldete Beitrag in CHF lässt sich erst anhand der Bauabrechnung ermitteln.<br />

Die verwendeten Tabellen wurden im Rahmen des Perimeterverfahrens erarbeitet. Auf der<br />

Basis einer vereinfachten Risikoanalyse über das ganze Projektgebiet und unter Einbezug der<br />

gefahrentechnischen Grundlagen wurden plausible Punktzahlen für die verschiedenen<br />

Ausprägungen von Nutzen ermittelt (vgl. Fig. 1, grün umrahmtes Textfeld, Punktetabelle).<br />

Grundstücke, die aus der roten Gefahrenzone entlassen werden, haben den grössten<br />

raumplanerischen Nutzen und erhalten somit eine höhere Punktzahl. Beim Sicherheitsnutzen<br />

haben diejenigen Grundstücke mit der grössten Reduktion die höchste Punktzahl. Dabei<br />

erhält eine Reduktion der Intensität bei kürzeren Wiederkehrperioden eine höhere Punktzahl<br />

als bei längeren Wiederkehrperioden (vgl. Fig. 1, gelb umrahmtes Textfeld, Punktetabelle).<br />

Der Faktor wurde zunächst linear dem Wertebereich der Punktetabelle zugeordnet: Faktor 0<br />

für 0 Punkte, Faktor 1 für 24 Punkte. Aus Gründen der Verhältnismässigkeit wurde der<br />

Faktor bei den kleinsten und grössten Punktwerten angepasst. Die Festlegung der reduzierten<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 155


Gewichtung des raumplanerischen Nutzens auf 50% erfolgte nach denselben Grundsätzen.<br />

Alle verwendeten Tabellen wurden in einem iterativen Verfahren mit zahlreichen Plausibilitätschecks<br />

bereinigt, immer gestützt auf das Zumutbarkeits- und Gerechtigkeitsprinzip.<br />

RESULTATE<br />

Für den Kostenteiler Laui Sörenberg resultierte eine Gesamtteilerzahl aller Grundstücke von<br />

202‘129‘908 Teilern. Die Teilerzahl ist für jedes Grundstück absolut, d.h. falls es für ein Grundstück<br />

eine Anpassung der Teilerzahl gibt, hat dies keine Auswirkungen auf die Teilerzahlen<br />

der anderen Grundstücke zur Folge. Im Gegensatz dazu sind der prozentuale Anteil und der<br />

effektive Betrag in Franken eine relative Grösse. Anhand des prozentualen Anteils an der<br />

Gesamtteilerzahl aller Grundstücke und der projektierten Kosten kann sich ein Beitragspflichtiger<br />

beim Erlass des Perimeters über den zu bezahlenden Beitrag informieren.<br />

Prozentualer Anteil und Betrag in Franken sind aber bis zur definitiven Baukostenabrechnung<br />

nur orientierend. Im Perimeterverfahren wird der Kostenteiler pro Grundstück rechtskräftig<br />

veranlagt. Die definitive Festlegung des Frankenbetrages erfolgt in einem zweiten<br />

Verfahren – ebenfalls unter Gewährung des rechtlichen Gehörs.<br />

Fig. 2: Klassierung der Gesamtteilerzahlen pro Grundstück mit Farbabstufungen für den Restkostenteiler Laui Sörenberg.<br />

156 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Für die Schutzmassnahmen Laui Sörenberg bezahlt der überwiegende Anteil der Beitragspflichtigen<br />

deutlich weniger als 1% der zu verteilenden Kosten. Der mit Abstand grösste<br />

Beitrag liegt bei 6.53%. Angesichts der projektierten Baukosten von 18 Millionen Franken<br />

respektive zu verteilenden Kosten von 2.34 Millionen Franken sind Beiträge zwischen<br />

CHF 100.- und CHF 150‘000.- zu erwarten (Fig. 2).<br />

Ändern sich bei einem beitragspflichtigen Grundstück die für die Beitragsberechnung<br />

massgebenden Verhältnisse wesentlich (z.B. durch Neubauten oder bauliche Veränderungen,<br />

Änderungen der Nutzungsvorschriften, etc.), so ist eine nachträgliche Beitragspflicht nach<br />

derselben Methode zu bezahlen. Ein solcher Beitrag vermindert sich für jedes Jahr, das seit<br />

Fertigstellung der Massnahmen vergangen ist, um linear fünf Prozent (PV §12a, Ziff. 3).<br />

Der nachträgliche Beitrag kann auf die bisher beitragspflichtigen Grundeigentümer verteilt<br />

oder für den künftigen Unterhalt der Schutzbauten verwendet werden.<br />

Gegen den Perimeterentscheid des Gemeinderats Flühli gingen 38 Einsprachen ein. Die letzte<br />

wurde 2015 durch das Bundesgericht abgewiesen. Sowohl das Urteil des Kantonsgerichts<br />

Luzern (23. Juni 2014, 7H 13 153) wie auch der Bundesgerichtsentscheid (29. Mai 2015,<br />

BGE 2C_672/2014) fielen zugunsten des Gemeinderats und damit auch der gewählten<br />

Methode zur Herleitung des Kostenteilers aus.<br />

SCHLUSSFOLGERUNGEN<br />

Die Methode hat sich in Sörenberg sehr gut bewährt. Der gewählte Weg im Spannungsfeld<br />

der verschiedenen Anforderungen ist zielführend: der Kostenteiler wird durch die Beitragspflichtigen<br />

– mit vergleichsweise wenigen Ausnahmen – verstanden und akzeptiert, also als<br />

rechtsgleich und verhältnismässig empfunden. Gleichzeitig hielt die vorgestellte Methode<br />

allen Einsprachen stand und wurde von den angerufenen Gerichten (Kantonsgericht und<br />

Bundesgericht) vollumfänglich bestätigt. Hierbei gilt es anzumerken, dass insbesondere das<br />

Kantonsgericht die Methode detailliert auf ihre Rechtsstaatlichkeit geprüft hat.<br />

Aus Sicht der Autoren sind die nachfolgenden Erfolgsfaktoren für ein erfolgreiches Perimeterverfahren<br />

massgeblich:<br />

Fakten statt Erwägungen: Die Berechnung des Kostenteilers muss zwingend auf amtlichen<br />

und naturwissenschaftlichen Fakten basieren. Im Perimeterverfahren darf es keinen<br />

Ermessens- respektive Verhandlungsspielraum geben.<br />

Rechtsstaatlichkeit und Verhältnismässigkeit: Bei der Entwicklung der Methode ist dauernd<br />

ein detaillierter Abgleich mit den gesetzlichen Grundlagen zu machen. Im Kanton Luzern ist<br />

dies die Perimeterverordnung. Denn vor Gericht wird in erster Linie deren Einhaltung<br />

geprüft.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 157


Transparenz: Die Beitragspflichtigen müssen ihren Beitrag nachvollziehen können. Hierfür<br />

wurden Faktenblätter pro Grundstück mit der Berechnung der Gesamtteilerzahl erarbeitet<br />

und im direkten Gespräch erläutert.<br />

Politische Führung: Die Gemeinde Flühli als Projektträgerin hat die politische Führung zu<br />

jeder Zeit vorbildlich wahrgenommen. Ein Gemeinderatsmitglied wurde hierzu während der<br />

intensivsten Phase mit einem 60%-Pensum mandatiert.<br />

Keine Vermischung von Perimeterverfahren und Einschränkungen aus Projekt: Der Kostenteiler<br />

soll ohne Einbezug allfälliger Einschränkungen aus dem Projekt (z.B. Landverlust)<br />

berechnet werden. Entschädigungen für derartige Einschränkungen sind in einem separaten<br />

Verfahren auszuhandeln.<br />

SCHLUSSBEMERKUNGEN<br />

Mit der Beteiligung der interessierten Grundstückbesitzer an den Kosten wird das Schutzprojekt<br />

für diese fassbar und sensibilisiert für weitere Aufgaben wie Unterhalt und Notfallplanung.<br />

In Sörenberg hat dieser transparente Einbezug die Solidarität unter den Betroffenen<br />

gefördert. Es ist unerlässlich, bei einer allfälligen Übertragung der Methode auf andere<br />

Objekte deren Eignung fallweise kritisch zu überprüfen. Insbesondere die Punktetabellen und<br />

die Faktoren müssen sich in erster Linie an den Rechtsgrundsätzen der Rechtsgleichheit und<br />

der Verhältnismässigkeit orientieren.<br />

LITERATUR<br />

- Einwohnergemeinde Flühli (2011): Schutzbauten Wasserbauprojekt Laui Sörenberg,<br />

Perimeter, Entscheid des Gemeinderates Flühli zur Festsetzung der Beitragspflicht der<br />

interessierten Grundeigentümer (Perimeterentscheid), 38 S.<br />

- Heinimann H.R. et al. (1999): Risikoanalyse bei gravitativen Naturgefahren, Umwelt-Materialien<br />

Nr. 107, Teil 1, Bundesamt für Umwelt, Wald und Landschaft BUWAL, 117 S.<br />

- Oeko-B AG, GEOTEST AG, J. Auchli AG, geo7 AG (2003): Integralprojekt Laui Sörenberg,<br />

Genehmigungsprojekt Nr. 431.1-LU-0000/0002, Technischer Bericht mit Beilagen.<br />

- Bundesgericht, II. öffentlich-rechtliche Abteilung (2015): Bundesgerichtsentscheid BGer<br />

2C_672/2014 vom 29.05.2015.<br />

- Kantonsgericht Luzern, 4. Abteilung (2014): Urteil des Kantonsgericht Luzern 7H 13 153<br />

vom 23.06.2015.<br />

- Regierungsrat des Kantons Luzern (2006): Regierungsratsentscheid zum Wasserbauprojekt<br />

Laui Sörenberg, Protokoll Nr. 248 vom 17.02.2006, 20 S.<br />

- Planungs- und Baugesetz des Kantons Luzern (PBG) vom 07.03.1989 (SRL 735).<br />

- Verordnung über Grundeigentümer-Beiträge an öffentliche Werke des Kantons Luzern<br />

(Perimeterverordnung, PV) vom 16.10.1969, Stand 01.01.2014 (SRL 732).<br />

- Wasserbaugesetz des Kantons Luzern (WBG) vom 30.01.1979 (SRL 760).<br />

158 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

What makes a successful flood control project? - An<br />

evaluation of project procedure and risk based on the<br />

perspectives of Swiss communes.<br />

Was macht Hochwasserschutzprojekte erfolgreich?<br />

Eine Evaluation von Projektablauf und Risiko basierend<br />

auf den Perspektiven Schweizer Gemeinden.<br />

Hannes Suter, MSc 1,3 ; Luzius Thomi, Dr. 2 ; Raoul Kern, MSc 2 ; Matthias Künzler, MSc 2 ; Conny Gusterer, BSc 3 ;<br />

Andreas Zischg, Dr. 1,3 ; Rolf Weingartner, Prof. Dr. 1,3 ; Olivia Martius, Prof. Dr. 1,3 ; Margreth Keiler, PD Dr. 3<br />

ABSTRACT<br />

In this study, we evaluate the role of Swiss communes in the process of planning and<br />

implementing flood control projects. We analyzed 71 Swiss flood control projects by<br />

evaluating technical reports, online-surveys and interviews with communal project managers.<br />

Flood control measures are mostly being planned in response to flood events. Generally,<br />

the planning of the structural flood control measures is not linked with organizational or<br />

spatial planning measures. The assessment indicates that flood control measures lead to a<br />

risk reduction in the protected perimeter in the short term. However, the risk evolution in<br />

the long term is uncertain. Due to current socio-economic and climatic developments in<br />

Switzerland flood risk is likely to increase in the future. To be able to move from an eventbased<br />

to a risk-based strategy, an appropriate basis such as a risk monitoring is required.<br />

ZUSAMMENFASSUNG<br />

Die präsentierte Studie untersucht die Rolle Schweizer Gemeinden in der Initiierung, Planung<br />

und Umsetzung von Hochwasserschutzprojekten. Dazu wurden 71 Hochwasserschutzprojekte<br />

durch eine Auswertung der technischen Projektberichte, einer Onlineumfrage und Interviews<br />

mit kommunalen Projektverantwortlichen evaluiert. Hochwasserschutzprojekte werden<br />

mehrheitlich nach Überschwemmungsereignissen initiiert und umgesetzt. Eine systematische<br />

Koordination der zentralen wasserbaulichen Massnahmen mit organisatorischen oder<br />

raumplanerischen Massnahmen zur Risikominimierung findet nicht grundsätzlich statt.<br />

Kurzfristig reduzieren die untersuchten Massnahmen das Risiko nachweislich. Die zukünftige<br />

Risikoentwicklung ist ungewiss. Das Risiko dürfte sich aufgrund der sozio-ökonomischen und<br />

klimatischen Entwicklung langfristig jedoch trotz Schutzmassnahmen erhöhen.<br />

1 University of Bern, Oeschger Center for Climate Change Research, Mobiliar Lab for Natural Risks, Bern, SWITZERLAND,<br />

hannes.suter@gmail.com<br />

2 Swiss Mobiliar Insurance Company, Bern, SWITZERLAND<br />

3 University of Bern, Institute of Geography, Bern, SWITZERLAND<br />

IP_<strong>2016</strong>_FP101<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 159


Um die Notwendigkeit und die Auswirkungen von Hochwasserschutzprojekten abzuschätzen,<br />

braucht es ein Risikomonitoring.<br />

KEYWORDS<br />

Flood control; risk; project procedure; Switzerland<br />

EINFÜHRUNG<br />

Seit dem Hochwasserereignis im August 2005, das in der Schweiz Schäden im Gesamtwert<br />

von rund 3 Mrd. CHF verursacht hatte (Bezzola & Hegg, 2007), unterstützte die Schweizerische<br />

Mobiliar Versicherungsgesellschaft gut 80 Präventionsprojekte zum Schutz vor Naturgefahren.<br />

Das Mobiliar Lab für Naturrisiken der Universität Bern hat 71 dieser Projekte<br />

evaluiert und die Resultate im Bericht „Was macht Hochwasserschutzprojekte erfolgreich“<br />

(Thomi et al., 2015) veröffentlicht. Dieser Artikel greift spezifische Teilaspekte dieser<br />

Forschungsresultate heraus, die im breiteren Kontext des gesellschaftlichen Umgangs mit<br />

Hochwasserrisiken stehen. Die folgenden Fragen stehen im Vordergrund:<br />

1. Wie wird die Notwendigkeit von Hochwasserschutzprojekten erkannt und wer sind die<br />

wichtigsten Akteure für die Erkennung der Notwendigkeit?<br />

2. Wer legt die Schutzziele fest und wie werden diese definiert?<br />

3. Welche Kombination von Massnahmen führt zu einer langfristigen Minderung des Risikos?<br />

4. Wie wird die langfristige Risikoentwicklung im geschützten Perimeter eingeschätzt?<br />

5. Wie können Risiken frühzeitig erkannt werden?<br />

METHODE<br />

Die Evaluation umfasst sechs Phasen, wobei die die ersten vier auf die Gemeindesicht<br />

fokussieren<br />

1. Auswertung der technischen Projektberichte anhand von 151 Indikatoren mit Schwerpunkt<br />

auf die Forschungsfragen 1, 2 und 3 (Anzahl untersuchte Projekte: n=71).<br />

2. Schriftliche Umfrage unter den Projektverantwortlichen der Gemeinden (n=57) mit<br />

Schwerpunkt auf die Forschungsfragen 1, 2, 3 und 4.<br />

3. Halbstandardisierte Experteninterviews mit Projektverantwortlichen der Gemeinden (n=6)<br />

mit Schwerpunkt auf die Forschungsfragen 1, 2 und 4.<br />

4. GIS gestützte Auswertung mit Schwerpunkt auf die Forschungsfrage 5.<br />

In den Phasen 5 und 6 werden die Ergebnisse durch den Einbezug weiterer im Hochwasserschutz<br />

involvierter Akteure erweitert und bieten die Basis für einen Vergleich im Kapitel<br />

„Diskussion”:<br />

5. Halbstandardisierte Experteninterviews mit kantonalen Projektverantwortlichen (n=2) mit<br />

Schwerpunkt auf die Forschungsfragen 3, 4 und 5.<br />

6. Workshop mit zentralen Akteuren im Schweizer Hochwasserschutz (Bund, Kanton,<br />

Gemeinde, Ingenieurbüro, Versicherung, Wissenschaft) (Teilnehmer: 15) mit Schwerpunkt<br />

auf die Forschungsfragen 1, 2, 3, 4 und 5.<br />

160 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ERGEBNISSE<br />

Wer entwickelt Hochwasserschutzprojekte und wie wird deren Notwendigkeit erkannt?<br />

In 48 von 57 Projekten nannten die befragten Projektverantwortlichen, dass ein Hochwasserereignis<br />

Auslöser für das Projekt war. Weitere Gründe für Projektlancierungen sind ein<br />

durch eine Gefahrenkarte aufgezeigtes Schutzdefizit, eine Revitalisierung sowie die Sanierung<br />

bestehender Wasserbauanlagen oder Infrastrukturprojekte (z. B. Strassenbau; vgl. Abbildung<br />

1).<br />

Abbildung 1. Grund für die Lancierung von Hochwasserschutzprojekten (Mehrfachnennungen möglich).<br />

Auf die Frage, wer den Anstoss zum Hochwasserschutzprojekt gab, nannten die Projektverantwortlichen<br />

auf Gemeindeebene in der Umfrage am häufigsten die Gemeinde.<br />

Wer legt die Schutzziele fest und wie werden diese definiert?<br />

Bei der Ausgestaltung der Massnahmen besteht ein gewisser Spielraum, d.h. die Schutzziele<br />

können zwischen den betroffenen Akteuren bis zu einem gewissen Mass ausgehandelt<br />

werden. Allerdings scheint dies in vielen Projekten nicht der Fall gewesen zu sein: In<br />

mehreren Interviews wird darauf verwiesen, dass die Schutzziele nicht grundsätzlich<br />

diskutiert wurden. Auch die Umfrage bei den Projektverantwortlichen auf Gemeindeebene<br />

zeigt, dass nur in wenigen Fällen eine eingehende Schutzzieldiskussion stattfand. In den<br />

meisten Fällen sind die Empfehlungen von Bund und Kanton diskussionslos übernommen<br />

worden.<br />

Welche Kombination von Massnahmen führt zu einer langfristigen Minderung des Risikos?<br />

Die untersuchten Projekte umfassen in erster Linie wasserbauliche Massnahmen zur<br />

Reduktion der Hochwassergefährdung. In 67 von 71 Projekten wurden Massnahmen zur<br />

Verbesserung der Kapazität umgesetzt. Dazu gehören etwa der Gerinneausbau oder der<br />

Wasserrückhalt. Weiter wurden in den technischen Berichten Massnahmen zum Schutz vor<br />

Ufer- und Sohlenerosion, Geschieberückhalt und Rückhalt für Schwemmholz genannt.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 161


In vielen Fällen ergänzen Massnahmen raumplanerischer oder organisatorischer Art sowie<br />

Objektschutzmassnahmen die baulichen Hochwasserschutzmassnahmen. Zwar wird in<br />

einigen technischen Berichten auf diese ergänzenden Massnahmen verwiesen, eine inhaltliche<br />

Verzahnung – oder gar ein Gesamtkonzept – von baulichen und zusätzlichen Massnahmen<br />

konnte jedoch nur selten festgestellt werden.<br />

In 54 % aller untersuchten Projektunterlagen wurde der Überlastfall (Hochwasser übersteigt<br />

die Dimensionierungsgrösse der Schutzmassnahmen) erwähnt, wenn auch oft eher knapp.<br />

In 46 % der Projekte stehen keine Informationen zum Überlastfall zur Verfügung.<br />

Einschätzung der Risikoentwicklung<br />

Kurzfristig senken die umgesetzten Hochwasserschutzmassnahmen das Hochwasserrisiko.<br />

In 18 Fällen fand laut Umfrage nach der Umsetzung der Massnahmen ein weiteres Hochwasserereignis<br />

statt; bei keinem dieser Ereignisse sind ausserhalb des Gerinnes Schäden aufgetreten.<br />

Die Gemeinden setzten sich jedoch mehrheitlich nicht mit den langfristigen Auswirkungen<br />

von Hochwasserschutzprojekten und der langfristigen Risikoentwicklung auseinander.<br />

Dies zeigt sich auch darin, dass in keinem der Projekte ein systematisches Monitoring der<br />

Risikoentwicklung nach Umsetzung der Massnahmen stattfindet. Zudem nimmt die Bautätigkeit<br />

in den durch das Projekt geschützten Zonen nach Fertigstellung der Massnahmen in<br />

einem Drittel aller untersuchten Fälle zu, insbesondere dann, wenn Projekte aufgrund eines<br />

erkannten Schutzdefizits aus der Gefahrenkarte lanciert wurden. In drei Fällen sind nach der<br />

Fertigstellung der Hochwasserprojekte neue Einzonungen im geschützten Perimeter geplant.<br />

Diese Tendenzen bezüglich Bautätigkeit und Einzonungen sind insofern bemerkenswert, als<br />

sie bereits kurze Zeit nach Realisierung der Massnahmen (sämtliche untersuchten Projekte<br />

sind in den letzten zehn Jahren projektiert bzw. umgesetzt worden) festgestellt werden<br />

können.<br />

Abbildung 2 zeigt die Bevölkerungsveränderung (x-Achse) und den Anteil der gefährdeten<br />

Gebiete an den Bauzonen von 1435 Schweizer Gemeinden (y-Achse). Ein starkes Bevölkerungswachstum<br />

wird als Indikator für eine zunehmende Bautätigkeit interpretiert. Es wird<br />

angenommen, dass die Bautätigkeit innerhalb der Bauzonen stattfinden wird. Befinden sich<br />

diese im gefährdeten Gebiet (rot, blau, gelb) ist mit einem zunehmenden Risiko zu rechnen.<br />

Gemeinden im oberen rechten Quadranten zeichnen sich durch ein überdurchschnittliches<br />

Bevölkerungswachstum aus und gleichzeitig sind deren Bauzonen zu einem erheblichen Teil<br />

Wassergefahren ausgesetzt. Das Risiko, definiert nach BUWAL (1998) als „Funktion der<br />

Wahrscheinlichkeit eines Schadensereignisses und des möglichen Schadensausmasses“, wird<br />

in diesen Gemeinden mittelfristig vermutlich zunehmen, sofern die bedrohten Objekte nicht<br />

gegenüber Überschwemmungen geschützt werden bzw. die fraglichen Objekte eine geringe<br />

Verletzlichkeit gegenüber Überschwemmungen aufweisen.<br />

162 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DISKUSSION<br />

Wer entwickelt Hochwasserschutzprojekte und wie wird deren Notwendigkeit erkannt?<br />

Abbildung 2. Gemeinden (n=1435) in Abhängigkeit der Bevölkerungsveränderung 2013 bis 2017 (berechnet durch die Firma bwv its<br />

GmbH auf der Basis von Daten des Bundesamts für Statistik) und des Anteils der Gefahrenzonen gelb, blau und rot an der Bauzone<br />

(IKGEO, 2015). Berücksichtigt sind nur Gemeinden mit einer Bauzone > 1 ha und einer Abdeckung der Bauzonen durch eine<br />

Gefahrenkarte von mindestens 50 %. Dunkelgraue Dreiecke: Gemeinden mit einem untersuchten Hochwasserschutzprojekt. Graue Linien:<br />

Median von Bevölkerungsveränderung und Anteil der Gefahrenzonen an der Bauzone.<br />

In den untersuchten Projekten sind die Gemeinden meist wasserbaupflichtig und nehmen<br />

sich deshalb als zentrale Akteure wahr. Allerdings stossen sie aufgrund der hohen Komplexität<br />

von Hochwasserschutzprojekten häufig an ihre Grenzen. In der Projekterarbeitung kommt<br />

deshalb den Kantonen oft die Schlüsselrolle zu, auch wenn sie das Projekt formell nicht<br />

führen (Thomi, 2005). Die starke Einflussnahme der Kantone – und indirekt des Bundes –<br />

wird von den kommunalen Behörden teilweise als einengend wahrgenommen.<br />

Hochwasserereignisse sind der wichtigste Auslöser für Schutzprojekte. Trotz der grossen<br />

Anstrengungen der letzten zwei Jahrzehnte auf strategischer und konzeptueller Ebene zum<br />

präventiven Umgang mit Naturgefahren (z. B. integrales Risikomanagement, Risikokultur;<br />

vgl. z. B. PLANAT, 2004) sowie der Schaffung von Grundlagen zur Gefahrenerkennung (z. B.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 163


Gefahrenkartierung), sind in vielen Fällen Hochwasserereignisse nötig damit Massnahmen<br />

umgesetzt werden. Überschwemmungen machen Risiken greifbar und bauen so den nötigen<br />

politischen Druck zur Umsetzung auf, wie dies auch Zaugg (2006), Thomi (2010) oder<br />

Scheuchzer et al. (2012) beschrieben haben.<br />

Wer definiert Schutzziele und wie werden diese definiert?<br />

Eine Schutzzieldiskussion kann die Sensibilisierung für Naturgefahren und somit das<br />

Risikobewusstsein stärken (ARE et al., 2005). Schutzziele werden aber auf Gemeindeebene<br />

wenig diskutiert, sondern vom Kanton bzw. Bund übernommen. Diese Aussage trifft auf die<br />

Mehrheit der 71 untersuchten Projekte zu. Demgegenüber wiesen Fachspezialisten am<br />

Workshop darauf hin, dass in gewissen Hochwasserschutzprojekten Schutzziele durchaus<br />

intensiv zwischen Bund, Kanton und Gemeinde diskutiert würden. Woher rührt diese<br />

Diskrepanz? Möglicherweise verstehen nicht alle Akteure dasselbe unter den Begriffen<br />

„Schutzziel“ und „Schutzzieldiskussion“, die gerade für Nicht-Fachspezialisten sehr abstrakt<br />

erscheinen. Hess (2008: 158) bemerkte in einer Analyse eines Fallbeispiels, dass „die<br />

Schutzzieldiskussion die meisten Teilnehmenden überfordert“. Zudem wurde in der Umfrage<br />

gefragt, wer sich an der Schutzzieldiskussion beteiligte und nicht wie stark diese Beteiligung<br />

war. Denkbar ist auch, dass sich die Gemeinden bei der Frage nach den Schutzzielen stark auf<br />

das mandatierte Planungsbüro stützen und dessen Vorschläge nicht hinterfragen.<br />

Welche Kombination von Massnahmen führt zu einer langfristigen Minderung des Risikos?<br />

Wasserbauliche Massnahmen werden oft losgelöst von organisatorischen und raumplanerischen<br />

umgesetzt, im Fokus steht klar der bauliche Hochwasserschutz am Gewässer. In der<br />

Umfrage unter den kommunalen Projektverantwortlichen, welche in vielen Fällen nach<br />

Abschluss der Massnahmen stattfand, werden tendenziell mehr organisatorische und<br />

raumplanerische Massnahmen erwähnt als in den Projektunterlagen. Möglicherweise findet<br />

während des Projekts eine gewisse Sensibilisierung der Gemeindeverantwortlichen betreffend<br />

weiteren Massnahmen statt.<br />

Das Bundesamt für Umwelt (BAFU) prüft anhand bestimmter Kriterien die Umsetzung des<br />

integralen Risikomanagements und fördert dieses mit zusätzlichen 6 % Bundesbeiträgen<br />

(BAFU, 2011, 2015b). Die zusätzlichen Bundesmittel werden allerdings nur bei Einzelprojekten<br />

direkt vom BAFU gesprochen. In den durch das sogenannte Grundangebot abgegoltenen<br />

Projekten (dazu gehören in der Regel Projekte mit Gesamtkosten von max. 1 Mio. CHF bis<br />

2011 bzw. max. 5 Mio. CHF seit 2012; vgl. BAFU, 2011, 2015b) sind die Kriterien der<br />

Kantone massgebend. Ob und in welcher Form die Kantone effektiv Anreize für ein<br />

integrales Risikomanagement schufen, konnte im Rahmen der vorliegenden Untersuchung<br />

nicht geklärt werden. Offensichtlich ist, dass nicht alle Kantone solche Anreize kennen.<br />

Einschätzung der Risikoentwicklung<br />

Aus einer Risikoperspektive wird die durch das Projekt gewonnene Risikoreduktion durch<br />

das anwachsende Schadenpotenzial in vielen Fällen langfristig wieder zunichte gemacht (vgl.<br />

164 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Keiler et al. 2006). Handlungsbedarf entsteht vor allem beim Überlastfall und in der gelben<br />

Gefahrenzone. In beiden Fällen rechnen betroffene Akteure vermutlich kaum mit einer Überschwemmung,<br />

was zu einer unangepassten Landnutzung und somit zu einer erhöhten<br />

Vulnerabilität führen kann, wie dies bereits Tobin (1995) und Zaugg (2006) festgestellt haben.<br />

Lösungsansätze bestehen in einer Reduktion der Verletzlichkeit, z. B. durch Objektschutz<br />

(Egli, 2002), oder der Verminderung des Anstiegs der Sachwerte innerhalb des gefährdeten<br />

Perimeters. Zentral für das Risikomanagement des Überlastfalls ist gemäss Petrasckeck et al.<br />

(2002) eine Notfallplanung. Ein weiterer wichtiger Lösungsansatz stellt die risikobasierte<br />

Raumplanung dar. Der Handlungsbedarf sollte dabei nicht nur gefahrenbasiert geprüft<br />

werden, sondern es sollen stärker die Raumnutzungen und das Schadenpotenzial berücksichtigt<br />

werden (Camenzind & Loat, 2014).<br />

Grundsätzlich muss jedoch beachtet werden, dass eine Abschätzung der langfristigen<br />

Risikoentwicklung aufgrund der kurzen Zeitdauer zwischen Projektrealisierung und der<br />

vorliegenden Untersuchung nur bedingt möglich ist.<br />

Frühzeitige Erkennung von Risiken<br />

Für die frühzeitige Erkennung von Risiken stehen verschiedene Grundlagen zur Verfügung,<br />

wie z. B. Gefahren- und vereinzelt Risiko- oder Schutzdefizitkarten (BAFU, 2015a). Diese<br />

stellen jedoch nur eine Momentaufnahme dar und lassen zukünftige Veränderungen der<br />

Gefährdung (z. B. durch den Klimawandel), der Raumnutzung, der Wertekonzentrationen,<br />

der Verletzlichkeit oder der Bautätigkeit im bedrohten Perimeter in der Regel ausser Acht.<br />

Ein vorausschauendes und systematisches Überwachen der risikorelevanten Parameter<br />

(Risikomonitoring) findet heute kaum statt, wäre aber für einen nachhaltigen Umgang mit<br />

Naturrisiken dringend notwendig (Petrascheck et al., 2002). Das Monitoring müsste die<br />

risikorelevanten Parameter (z. B. Bevölkerungswachstum, Bautätigkeit, gefahrenseitige<br />

Prozessveränderungen) berücksichtigen und zeitlich-räumliche Veränderungen abbilden.<br />

Um punkto Risikoentwicklung stark gefährdete Gemeinden frühzeitig zu eruieren, könnte<br />

das in der Methodenphase 4 beschriebene Vorgehen einen ersten Ansatz bieten.<br />

FAZIT<br />

In den untersuchten Projekten dominiert das Handeln als Reaktion auf Überschwemmungen.<br />

Ein risikobasiertes und proaktives Agieren würde hingegen die Prävention stärken und<br />

Schäden frühzeitig verhindern. Gefahrenkarten alleine sind kein ausreichendes Instrument,<br />

um Risiken langfristig zu senken. Mögliche Ansätze sind eine risikobasierte Raumplanung<br />

(vgl. Camenzind & Loat, 2014) und die Priorisierung von Massnahmen basierend auf einer<br />

Risikoübersicht. Dieses Wissen zum risikobasierten Umgang mit Naturrisiken ist seit längerer<br />

Zeit vorhanden (Egli, 1996). Möglicherweise werden diese Ansätze zur Risikoreduktion aber<br />

schlichtweg vom raschen Anstieg der potentiellen Schäden im gefährdeten Gebiet überholt<br />

(White et al, 2001).<br />

Um eine optimale Risikoreduktion zu erzielen und Fehlinvestitionen zu verhindern, ist eine<br />

frühe Koordination aller Massnahmen auf lokaler (z. B. Gemeinde), aber vor allem auch auf<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 165


egionaler Ebene (z. B. Einzugsgebiet) unabdingbar (vgl. Scheuchzer et al., 2012). Hier<br />

besteht Bedarf für ein Instrument, das erlaubt, die verschiedenen baulichen, organisatorischen<br />

und raumplanerischen Massnahmen besser aufeinander abzustimmen. Dabei ist<br />

wichtig, dass die Massnahmen zeitlich, räumlich sowie in Bezug auf die Gefahr (Intensität,<br />

Frequenz) koordiniert werden und sich gegenseitig ergänzen.<br />

Schliesslich sind es die betroffenen Personen, welche die zukünftige Entwicklung ihrer<br />

Gemeinde bestimmen. Durch einen partizipativen Einbezug dieser Akteure in die strategische<br />

Planung (Hostmann et al., 2005, KOHS, 2004) in das Hochwasserschutzprojekt kann das<br />

Risikobewusstsein einer ganzen Region nachhaltig positiv beeinflusst werden.<br />

LITERATUR<br />

- Bezzola G.R., Hegg C. (Hrsg.) (2007). Ereignisanalyse Hochwasser 2005, Teil 1 – Prozesse,<br />

Schäden und erste Einordnung. Bundesamt für Umwelt, Eidgenössische Forschungsanstalt<br />

WSL. Umwelt-Wissen Nr. 0707. 215 S.<br />

- Bundesamt für Umwelt BAFU (Hrsg.) (2006). Realisierungsgrad pro Kanton, alle<br />

Gefahrenarten, 2006. Show Me. Bern, Bundesamt für Umwelt (BAFU).<br />

- Bundesamt für Umwelt BAFU (Hrsg.) (2011). Handbuch Programmvereinbarungen im<br />

Umweltbereich. Mitteilung des BAFU als Vollzugsbehörde an Gesuchsteller.<br />

Bundesamt für Umwelt, Bern. Umwelt-Vollzug Nr. 1105.<br />

- Bundesamt für Umwelt BAFU (Hrsg.) (2015a). Realisierungsgrad pro Kanton, alle<br />

Gefahrenarten, 2015. Show Me. Bern, Bundesamt für Umwelt (BAFU).<br />

- Bundesamt für Umwelt BAFU (Hrsg.) (2015b). Handbuch Programmvereinbarungen im<br />

Umweltbereich <strong>2016</strong>–2019. Mitteilung des BAFU als Vollzugsbehörde an Gesuchsteller.<br />

Bundesamt für Umwelt, Bern. Umwelt-Vollzug Nr. 1501: 266 S.<br />

- Bundesamt für Umwelt, Wald und Landschaft BUWAL (Hrsg.) (1998). Begriffsdefinitionen<br />

zu den Themen: Geomorphologie, Naturgefahren, Forstwesen, Sicherheit, Risiko. Bundesamt<br />

für Umwelt, Wald und Landschaft, Bern.<br />

- Bundesamt für Raumentwicklung ARE; Bundesamt für Wasser und Geologie BWG;<br />

Bundesamt für Umwelt, Wald und Landschaft BUWAL (Hrsg.) (2005). Empfehlung – Raumplanung<br />

und Naturgefahren. Bern.<br />

- Camenzind R., Loat R. (2014). Risikobasierte Raumplanung – Synthesebericht zu zwei<br />

Testplanungen auf Stufe kommunaler Nutzungsplanung. Nationale Plattform Naturgefahren /<br />

Bundesamt für Raumentwicklung / Bundesamt für Umwelt, Bern. 21 S.<br />

- Egli T. (1996). Hochwasserschutz und Raumplanung. Schutz vor Naturgefahren mit<br />

Instrumenten der Raumplanung — dargestellt am Beispiel von Hochwasser und Murgängen.<br />

ETH Zürich.<br />

- Egli T. (2002). Hochwasserschutz durch nachhaltiges Schadenpotenzialmanagement.<br />

Internationales Symposium 2002 in Zürich: „Moderne Methoden und Konzepte im Wasserbau“.<br />

Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich und dem<br />

Schweizerischen Wasserwirtschaftsbund.<br />

- Hess J.T. (2008). Schutzziele im Umgang mit Naturrisiken in der Schweiz. ETH, Zürich.<br />

166 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Hostmann M., Buchecker M., Ejderyan O., Geiser U., Junker B., Schweizer S., Truffer B.,<br />

Zaugg Stern M. (2005). Wasserbauprojekte gemeinsam planen. Handbuch für die Partizipation<br />

und Entscheidungsfindung bei Wasserbauprojekten. Eawag, WSL, LCH-EPFL,<br />

VAW-ETHZ. 48 pp.<br />

- Interkantonale Koordination in der Geoinformation IKGEO (2015). „Bauzonen Schweiz<br />

(harmonisiert)“, Bundesamt für Raumentwicklung ARE, Stand 1.1.2012). http://www.ikgeo.<br />

ch/dokumentation/geodaten-bauzonen-schweiz.html (Zugriff: 01.07.2015).<br />

- Keiler M., Sailer R., Jörg P., Weber, C., Fuchs S., Zischg A., Sauermoser S. (2006).<br />

Avalanche risk assessment – a multi-temporal approach, results from Galtür, Austria.<br />

Natural Hazards and Earth System Sciences 6 (4), 637-651.<br />

- Kommission für Hochwasserschutz KOHS (2004). Qualitätssicherung bei der Planung von<br />

Hochwasserschutzmassnahmen. Leitfaden für Auftraggeber und -nehmer von Hochwasserschutzprojekten.<br />

Schweizerischer Wasserwirtschaftsverband, Baden.<br />

- Petrascheck, A.; Hegg, C.; Schmid, F. (2002): Zusammenfassung und Schlussfolgerungen.<br />

WSL, Eidgenössische Forschungsanstalt für Wald Schnee und Landschaft & BWG, Bundesamt<br />

für Wasser und Geologie: Hochwasser 2000. Ereignisanalyse/Fallbeispiele. Bern: Bundesamt<br />

für Wasser und Geologie. S. 7-14.<br />

- PLANAT (Hrsg.) (2004). Sicherheit vor Naturgefahren. Vision und Strategie. PLANAT Reihe<br />

1/2004. Biel, Nationale Plattform Naturgefahren (PLANAT).<br />

- Scheuchzer P., Walter F., Truffer B., Balsiger J., Chaix O., Kempter T., Klinke A., Menzel S.,<br />

Wehse H., Zysset A. (2012): Auf dem Weg zu einer integrierten Wasserwirtschaft. Synthese<br />

zum Projekt IWAGO – Integrated Water Governance with Adaptive Capacity in Switzerland<br />

Projekt im Rahmen des NFP 61 „Nachhaltige Wassernutzung“.<br />

- Thomi, L. (2005). La gestion de l'aménagement des cours d'eau dans les cantons suisses<br />

de Glaris, de Berne et du Valais. Geographica Helvetica, 60/1, 35-43.<br />

- Thomi L. (2010). Rôle des paramètres sociopolitiques et des connaissances dans la gestion<br />

des risques hydrologiques. Université de Lausanne, Lausanne<br />

- Thomi L., Zischg A., Suter H. (2015). Was macht Hochwasserschutzprojekte erfolgreich? –<br />

Eine Evaluation der Risikoentwicklung, des Nutzens und der Rolle privater Geldgeber.<br />

Universität Bern Geographisches Institut, Mobiliar Lab.<br />

- Tiefbauamt des Kantons Bern (2010). Grundsätze der Kommunikation im Wasserbau. 2-4.<br />

- Tobin G.A. (1995). The levee love affair: A stormy relationship. Water Resources Bulletin.<br />

JAWRA, 3.<br />

- White G.F., Kates R.W., Burton I. (2001). Knowing better and losing even more: the use of<br />

knowledge. Hazards management Glob. Environ. Change: Part B – Environ. Hazards,<br />

3, pp. 81–92<br />

- Zaugg M. (2006). Philosophiewandel im schweizerischen Wasserbau - Zur Vollzugspraxis<br />

des nachhaltigen Hochwasserschutzes 1. Auflage. Geographisches Institut. Abteilung<br />

Humangeographie. Universität Zürich, Zürich.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 167


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

The Zurich flood resilience alliance: A new approach to<br />

partnership for effective disaster risk reduction<br />

Michael Szoenyi, MAS NatHaz, MSc¹; Linda Freiner²<br />

ABSTRACT<br />

An introduction to the Zurich flood resilience alliance. This paper provides an overview of the<br />

global challenges caused by flooding and how we are tackling them through the work of the<br />

Zurich flood resilience alliance. Risks of floods are increasing because of population growth,<br />

more people living near water and growing prosperity. There are several ways to enhance<br />

flood resilience. We believe preventive action results in benefits far in excess of those<br />

recovery can provide. Flood risks are increasingly interconnected and interdependent.<br />

A holistic approach is needed to address them. We have created a pioneering collaboration<br />

through which we can tackle the challenges communities face. We work as an alliance<br />

bringing together organizations with complementary skills, launched by Zurich Insurance<br />

Group in 2013. The alliance includes two humanitarian organizations - the Red Cross and<br />

Practical Action - and two leading research institutions - Wharton and IIASA. The program<br />

is based on a new approach to cross-sector collaboration. It brings together flood risk<br />

research, community-based programs and risk expertise.<br />

KEYWORDS<br />

flood; resilience; measurement; alliance; partnership<br />

INTRODUCTION<br />

Floods affect more people globally than any other natural hazard. They cause some of the<br />

largest economic, social and humanitarian losses, involving on average some 250 million<br />

people per year (UNISDR 2013). While floods are natural, their disastrous consequences are<br />

not. Often the poorest and least-prepared communities suffer most. Evidence shows that<br />

repeated disasters like floods undermine societies’ and economies’ potential to develop and<br />

trap them in a poverty cycle. We tend to think of these events as happening in other places to<br />

other people, but floods also cause devastation in developed countries. The reasons are<br />

surprisingly similar in both developing and developed countries. To address the need for a<br />

proactive approach to flood risks, Zurich Insurance Group (Zurich) launched a dedicated<br />

flood resilience program in 2013. It includes two humanitarian organizations – the International<br />

Federation of Red Cross and Red Crescent Societies (IFRC), and Practical Action – and<br />

two leading research institutions: the Wharton School of the University of Pennsylvania<br />

(Wharton), and the International Institute of Applied Systems Analysis (IIASA) in Austria.<br />

The program is based on a new approach to cross-sector collaboration. It brings together flood<br />

1 Zurich Insurance Group, Zurich, SWITZERLAND, michael.szoenyi@zurich.com<br />

2 Zurich Insurance Company, SWITZERLAND<br />

168 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP105


isk research, community-based programs and hazard and risk assessment expertise. It looks<br />

for, and shares ways that community flood resilience can be measured and improved.<br />

We define resilience as the ability to continue to thrive in the face of disasters. The program<br />

directly helps about 125,000 people through projects in flood-prone communities in<br />

Bangladesh, Indonesia, Mexico, Nepal, Peru and the U.S.<br />

Risks of floods are increasing. By some estimates, river flooding alone (not counting other<br />

floods such as surface water, ocean flooding, storm surge etc.) could annually affect<br />

54 million people worldwide by 2030, more than double the number currently affected<br />

(Scientific American, 2015). There are several reasons why floods are having a greater<br />

impact:<br />

Growing populations, more people living in cities. The world’s urban population increased<br />

fivefold from 700 million in 1950 to 3.9 billion in 2014 (United Nations, 2014). Urban growth<br />

is particularly strong in developing countries, where cities’ disaster plans and emergency<br />

facilities are often unable to cope with major floods. Constructing buildings on flood plains,<br />

paving over land that provided drainage and lack of waste infrastructure all add to the risks.<br />

More people living near water: Where land is at a premium, developers may ignore warnings<br />

and build in places exposed to river floods and storm surges. Cities in coastal regions on or<br />

near rivers such as Jakarta, Lima, Shanghai, Dhaka, and Manila are highly vulnerable. But<br />

floods can also shut down a metropolis like New York City, as Superstorm Sandy showed in<br />

2012.<br />

Greater prosperity – more to lose: Development of countries depending on agriculture is more<br />

vulnerable to drought, while countries reliant on industrial development for growth suffer<br />

more from floods (Collier et al, 2013). A higher standard of living that brings with it more<br />

manufacturing and production increases the value of property at risk. Such risk might be<br />

alleviated by protection measures (for example, raising buildings). Even so, a catastrophic<br />

flood can threaten not only the economy of a region, but entire global supply chains: severe<br />

flooding in manufacturing sites in Thailand in 2011 led to global shortages of components<br />

needed by major car makers and severely hit electronics production.<br />

Climate change: Flood risk could continue to increase significantly in many parts of the world<br />

due to expected changes in climate patterns. Warmer temperatures affect weather patterns<br />

and sea levels. Tropical cyclones common in the northwest Pacific included Typhoon Haiyan<br />

in 2013, perhaps the strongest tropical cyclone in recorded history to make landfall, which<br />

killed over 7,000 people.<br />

METHODS<br />

We have thus taken the following approach to increasing flood resilience:<br />

Understanding flood resilience<br />

It is hard to change habits or convince people to move out of harm’s way. Improving resilience<br />

is doubly important because it helps people to anticipate and cope with floods. It not only<br />

allows them to reduce the flood exposure to lives and property. Resilience also helps them<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 169


ecover more quickly. It keeps people’s lives intact before, during and after floods. It helps<br />

communities become more prosperous and stable. Resilience is frequently described as a<br />

system or even a system of systems, one that is holistic in nature. ”A system-wide approach<br />

to resilience needs to capture a range of activities, actors and processes that are part of a<br />

resilience building system,” according to a UN study (Winderl, 2014).<br />

Ways resilience can be increased<br />

There are several different ways we can enhance flood resilience: through better assessment<br />

of flood hazards and communicating the risk to residents; taking measures to lessen the<br />

severity of floods and mitigate their impact, including first-aid and health training, community<br />

planning, and setting up emergency shelters; gaining a better understanding of how<br />

decisions are made in the face of risks and uncertainty to make the most effective solutions<br />

easier to find; improving warning systems and helping communities adopt emergency<br />

protocols; supporting efforts to rebuild better, to safer standards, after floods; ensuring people<br />

have opportunities to secure an income during floods, for example, by providing skills<br />

training so farmers have alternative revenues when cropland is under water; developing ways<br />

to safeguard assets exposed to flood risk at an individual or community level; and working<br />

with local officials and other policymakers and the private sector to help make communities<br />

more flood resilient.<br />

Increasing resilience makes economic sense<br />

We believe proactive action, reducing flood risk before an event, brings benefits far in excess<br />

of those recovery can provide. On average, for every dollar spent on targeted flood-risk<br />

reduction measures, five dollars can be saved by avoiding and reducing losses (Mechler et al,<br />

2014). Despite the advantages of acting before floods happen to improve resilience, over the<br />

past two decades, only 13 percent of aid went to reducing and eliminating risks. The<br />

remaining 87 percent were used for emergency response, reconstruction and post-disaster<br />

rehabilitation (Kellett and Caravani 2013). This emphasis on relief as opposed to resilience is<br />

neither logical nor efficient. Psychology plays a major role in flood resilience. By better<br />

understanding how people think, we can address the reasons why, despite its high cost-effectiveness,<br />

some communities and even international donors do not invest enough in pre-flood<br />

mitigation. One common misconception is the ‘it will never happen to us’ syndrome:<br />

decision-makers underestimate flood risk, preferring to see floods as an unlikely event. There<br />

is also the ‘there is nothing we can do, anyway’ syndrome – people become fatalistic when<br />

they feel powerless to control the outcome of events. People also procrastinate: even when<br />

they know that investing in flood protection is necessary, they avoid making decisions. They<br />

might fall into the trap of refusing to invest in flood protection because they assume the<br />

government or donors will step in. There is also a ‘gambler’ mentality: people believe that<br />

because a flood recently occurred, there won’t be another one any time soon, forgetting that<br />

disasters occur independent of one another. There are very real budget constraints that must<br />

be overcome to convince people to take action.<br />

170 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Creating a flood resilience alliance<br />

Flood risks are increasingly interconnected and interdependent. Through our pioneering<br />

collaboration (Figure 1), we can tackle the challenges communities face. This effort works as<br />

an alliance that brings together organizations with complementary skills and expertise. We<br />

are seeing the advantages of a combined approach in community programs where the IFRC<br />

and Practical Action use their extensive experience working with communities to identify and<br />

implement solutions. Programming is an iterative process typically starting by assessing and<br />

analyzing the situation; innovative solutions are devised, and then work begins with<br />

communities to assess, select and implement the best solutions. The impact of the actions<br />

implemented is then evaluated. Research by Wharton and IIASA confirms the advantages of<br />

investing in pre-event mitigation as opposed to post-event relief. The research also provides<br />

objective evidence that can influence policymakers’ decisions. Further, it can create an<br />

environment in which insurance and other risk transfer mechanisms can be part of the<br />

solution. As an insurer, Zurich acts as a catalyst in providing human, technical and financial<br />

resources. The Z Zurich Foundation has made an initial five-year commitment of USD 35.6<br />

million to the alliance. This is in addition to contributions of time, expertise and resources of<br />

Zurich employees around the world.<br />

Figure 1: Overview of the five organizations forming the Zurich flood resilience alliance.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 171


RESULTS<br />

How we improve flood resilience<br />

Buildings can be rebuilt after a flood. It is harder to rebuild many aspects of life, especially<br />

when dealing with repeated floods. With each flood, social bonds are tested, people lose<br />

income, family ties strained. Increasing a community’s resilience to floods is the best way to<br />

counter these destructive forces. We can improve resilience, even when the task is sometimes<br />

difficult. Below, we show some examples of the specific challenges that we face and how<br />

we have addressed them.<br />

We need to invest more in flood resilience<br />

Images of flood disasters in the media resonate with the public. People respond, and at least<br />

for a time, give generously. But such aid, while invaluable for the recovery phase, may fail to<br />

provide long-term solutions. Therefore, we need to direct investments toward increasing<br />

communities’ flood resilience for the long term, not just when disaster strikes. In Mexico, we<br />

provide better facilities and alternative livelihoods: Work led by the IFRC and the Mexican<br />

Red Cross began in 2014 in 11 communities around Jonuta, a municipality in the state of<br />

Tabasco. Tabasco includes one of the world’s largest wetlands through which the Usumacinta<br />

River flows. The river can rise as much as 3 meters during the rainy season. The people in<br />

these communities must live with floods several months out of the year and therefore need<br />

innovative solutions to earn a living, even during periods of high water. Work is underway to<br />

build multi-purpose community buildings that can double as school rooms or medical<br />

facilities if necessary. Work is also being done to train communities on how to catch and<br />

prepare the invasive devil fish, benefiting not only the environment, but possibly also<br />

providing them with a sustainable food source and a new source of income.<br />

In Nepal, we improve early warning systems: Nepal is still recovering from the devastating<br />

earthquake in April 2015. But even as recovery begins, some communities in Nepal face a<br />

new threat: the onset of the monsoon season. Monsoon rains often trigger flash floods and<br />

mudslides, posing significant risks. Timely warnings about imminent floods can save lives and<br />

help people protect their possessions. Under the lead of Practical Action, we are working in<br />

the Karnali River basin which begins in the southern slopes of the Himalayas and flows<br />

through Nepal to India. A major focus is on improving early warning systems implemented in<br />

2010. In particular, this includes improving weather forecasting, keeping live-saving<br />

technology working even under extreme conditions, and training communities to act on the<br />

information received from measuring stations along the Karnali River.<br />

In Indonesia, we are connecting upstream and downstream communities. Bukit Duri in the<br />

southern part of Jakarta city is bordered on one side by the Ciliwung River. When it floods,<br />

garbage and sewage block the river and end up flowing into the community. Much of this<br />

waste comes from upstream communities such as Tugu Utara. The IFRC and the Red Cross<br />

society in Indonesia, PMI, are leading our work with both Bukit Duri and Tugu Utara to<br />

improve waste management practices. By helping remove the waste from the river, the<br />

impact of periodic flooding is reduced. Not only that, but the waste management process<br />

172 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


also provides a valuable chance for these communities to add paying jobs, as the waste can<br />

be converted to compost and sold locally.<br />

How to measure flood resilience<br />

Good data and statistics tell us if an approach works, and also let us know if one approach<br />

works better than another. The information derived from measurements lets us identify<br />

successful actions. It tells us why measures succeed. It allows us to better understand which<br />

particular actions work not just in one community, but in others as well. There is no<br />

one-size-fits-all solution or tool to measure resilience. Any system used to measure resilience<br />

should find answers to specific questions, in our case related to an individual community, and<br />

in the face of a specific peril, in this case flooding. Useful, empirical measures of flood<br />

resilience offer clear, unbiased insights, and eliminate the need to make decisions based solely<br />

on subjective impressions or anecdotal evidence. However, a recent survey conducted for the<br />

United Nations Development Programme concluded that “no general measurement framework<br />

for disaster resilience has been empirically verified yet” (Winderl, 2014). We understand<br />

resilience as an outcome that ensures a community can continue to thrive and develop in<br />

face of a shock. However, resilience can come from many sources. We are developing a<br />

community-based flood resilience measurement tool based on the five categories (financial,<br />

physical, human, social and natural) of sustainable livelihoods (the ‘Five Cs’) framework<br />

established by the UK’s Department for International Development (DFID, 1999), and the<br />

four properties (robustness, redundancy, rapidity and resourcefulness) of resilience (the 4R)<br />

formulated by MCEER (Renschler et al, 2010). We will produce community resilience<br />

measurements based on a set of factors falling into a capital and one or several properties of<br />

the 4R. These sources of resilience allow us to assess the level of resilience, using Zurich Risk<br />

Engineering’s Risk Grading approach to combine them into a joint framework. If resilience<br />

cannot be empirically verified, how do you empirically measure whether a community is<br />

more resilient as a result of your work? The approach brings together quantitative and<br />

qualitative data about the sources contributing to resilience, allowing us not only to assess<br />

them but also to use the measurement results as a support for decision making to identify<br />

actions for enhancing resilience. By combining the expertise of all our members of the Zurich<br />

alliance, this challenge is what we have set out to address.<br />

Enabling communities to control their own future<br />

For communities that must regularly deal with floods, change seems particularly daunting.<br />

Very often these communities struggle to think beyond the immediate present. To keep<br />

people engaged in finding long-term solutions, community members must be part of the<br />

dialogue and the solution. Communities need structures that support dialogue: every member<br />

of a community must be part of discussions when looking for solutions. Following Superstorm<br />

Sandy, a survey of over 1,000 New York City residents showed that people often tend<br />

to misjudge the risks floods pose to their own lives and property. A survey (Botzen et al,<br />

2015) found that homeowners may generally be aware of flood risks, but they often fail to<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 173


ecognize the risks they face as individuals. People tend to underestimate potential losses.<br />

This might explain why 80 percent of residents in the area inundated by Sandy’s storm surge<br />

had no flood insurance, and 90 percent of small business had no flood protection, either<br />

– despite the fact that flood insurance is highly subsidized by the U.S. federal government.<br />

If people had a clearer understanding of what they stood to lose, they would be more likely<br />

to take protective measures. Based on these findings, the alliance has recommended that the<br />

U.S. Federal Emergency Management Agency (FEMA) provide flood maps showing not just<br />

where floods might occur, but also the damage floods could cause.<br />

Policymakers need information and insights<br />

Limiting development in areas with flood hazards is difficult. People want to – or must – live<br />

and work near water. But they can still be alerted to the risks of building on a flood plain.<br />

Policymakers and local officials should encourage better planning. Wherever possible, this<br />

should be done without compromising development that could benefit a community’s<br />

long-term well-being and prosperity. We are engaging with the government in Peru. The El<br />

Niño phenomenon occasionally leads to heavy rains that cause floods in some parts of the<br />

world. Many years may pass between floods, but when they do come, the floods can be<br />

devastating. In communities in the Piura region in northern Peru and in the Rimac River<br />

Basin northeast of Lima, our program is working to make it easier for people to be better<br />

prepared for these types of floods. One factor elevating the risk is that, because floods tend to<br />

be rare in these areas, people forget the danger, as the buildings built in risky areas since the<br />

last flood attest. A big part of the program involves working closely with local authorities.<br />

It is also important to increase confidence in the government’s ability to provide assistance.<br />

CONCLUSIONS<br />

Our flood resilience program offers a platform to advocate learning, share knowledge, and<br />

apply what we learn in individual communities to help others, while serving as a catalyst for<br />

innovation and policy dialogue. A number of activities will support this approach in the<br />

future: We are developing an ‘open-source’ solutions catalogue. This makes it easier to share<br />

knowledge to build flood resilience. The catalogue, drawing on the flood resilience alliance’s<br />

community programs, will provide vulnerable communities with access to information on<br />

flood mitigation measures and solutions. It could also include research, processes and tools<br />

developed by the alliance. We are also testing a tool to understand the flood resilience system.<br />

The flood resilience measurement will help us assess the impact of resilience-building<br />

interventions and the community resilience development over time. We are also developing<br />

a tool to increase the understanding of the interactions between the sources of resilience and<br />

how they are driving flood risk and wellbeing. It will be tested in 2015 in pilot communities<br />

in Nepal and Peru. The tool will make it easier to identify key elements, map risk systems and<br />

sources, and spot potential problems and interdependencies. We are exploring different ways<br />

the alliance could build further resources. This might include establishing a ‘Flood Resilience<br />

Academy’. The Academy would be one way to share our knowledge and support practitioners<br />

174 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


in achieving more sustainable, replicable solutions. It could also be supporting efforts to<br />

identify and develop innovations to address flood risk. We will continue to share our insights<br />

and findings. We acknowledge that there are many different approaches to resilience.<br />

Ours includes flood resilience measurements, testing our risk approaches in different settings<br />

in both low-income and developed economies, in rural and urban settings, to make sure our<br />

approach is replicable and scalable to help enhancing flood resilience beyond our own<br />

activities.<br />

REFERENCES<br />

- Botzen Walter, Kunreuther Howard and Erwann Michel-Kerjan (2015). Divergence<br />

between individual perceptions and objective indicators of tail risks: Evidence from floodplain<br />

residents in New York City. Judgment and Decision Making, 10, 4, 365 – 385.<br />

- Collier Ben, Miranda Mario and Jerry Skees. Natural Disasters and Credit Supply Shocks in<br />

Developing and Emerging Economies. Wharton Working Paper 2013-03.<br />

- DFID. Department for International Development. Sustainable Livelihoods Guidance Sheets.<br />

http://www.eldis.org/vfile/upload/1/document/0901/section2.pdf, last retrieved August 4,<br />

2015.<br />

- Kellett Jan and Alice Caravani. Financing Disaster Risk Reduction. A 20 year story of<br />

international aid. Global Facility for Disaster Reduction and Recovery (GFDRR), 2013.<br />

- Lehmann Evan and Climatewire (2015). Extreme Rain May Flood 54 Million People by<br />

2030. Scientific American, March 5, 2015.<br />

- Mechler Reinhard and the Zurich Flood Resilience Alliance (2014). Making Communities<br />

More Flood Resilient: The Role of Cost Benefit Analysis and Other Decision-Support Tools in<br />

Disaster Risk Reduction. September 9, 2014: http://opim.wharton.upenn.edu/risk/library/<br />

ZAlliance-decisiontools-WP.pdf<br />

- Renschler Chris, Frazier Amy, Arendt Lucy, Cimellaro Gian-Paolo, Reinhorn Anrei and<br />

Michel Bruneau (2010). A Framework for Defining and Measuring Resilience at the<br />

Community Scale. MCEER Technical Report 10-0006.<br />

- United Nations Office for Disaster Risk Reduction, UNISDR (2013). www.unisdr.org/<br />

archive/33693 . Last retrieved Aug 4, 2015.<br />

- United Nations (2014). Department for Economic and Social Affairs. Factsheet: Population<br />

Facts – Our Urbanizing World.<br />

- Winderl, Thomas (2014). Disaster Resilience Measurements: Stocktaking of Ongoing Efforts<br />

in Developing Systems for Measuring Resilience, 59pp. United Nations Development<br />

Programme<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 175


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Chances and Challenges in the Field of Residual Flood-<br />

Risk and Risk Communication: Ideas from Bavaria<br />

Chancen und Herausforderungen im Bereich des Hochwasser-Restrisikos<br />

und der Risikokommunikation:<br />

Ideen aus Bayern<br />

Ronja Wolter-Krautblatter, Dipl.-Geogr.¹; Andreas Rimböck, Dr.-Ing.²; Tobias Hafner, Dr.-Ing.³; Christian Wanger, Dipl.-Ing. ³;<br />

Christoph Oberacker, M.Sc. Geogr.²<br />

ABSTRACT<br />

Every flood-protection system is limited and a residual risk always remains. To reduce these<br />

residual risks, we need responsible citizens and municipalities. But how to motivate them for<br />

measures of personal provision and precautionary land use? The topic of residual flood risks<br />

is often suppressed, underestimated and steps back behind day-to-day lives. This article shows<br />

communication ideas to activate people for measures that reduce the residual risks.<br />

ZUSAMMENFASSUNG<br />

Jedes Hochwasser-Schutzsystem hat seine Grenzen, ein Restrisiko bleibt immer bestehen. Um<br />

dieses Restrisiko zu reduzieren brauchen wir verantwortungsbewusste Bürger und Kommunen.<br />

Wie können wir sie für Maßnahmen der Eigenvorsorge und Flächenvorsorge motivieren?<br />

Das Thema Restrisiko bei Hochwasser wird häufig verdrängt, falsch eingeschätzt und<br />

tritt hinter anderen Alltagsproblemen zurück. Dieser Artikel zeigt Kommunikationsideen auf,<br />

um Menschen für Maßnahmen zur Reduzierung des Restrisikos zu motivieren.<br />

KEYWORDS<br />

residual risks; risk-communication; damage potential.<br />

EINFÜHRUNG<br />

In der Regel werden Siedlungsbereiche in Bayern bis zu einem hundertjährlichen Hochwasser<br />

geschützt. Schutzmaßnahmen können jedoch keinen absoluten Schutz vor Naturgefahren<br />

gewährleisten, ein Restrisiko bleibt immer bestehen: Es kann niemals ausgeschlossen werden,<br />

dass ein Extremereignis den Schutzgrad übersteigt oder technisches Versagen eintritt<br />

(Überlastfall) (BUWAL 1999). Es sind gerade die extremen Naturereignisse mit geringer<br />

Eintrittswahrscheinlichkeit, die als Restrisiko hingenommen werden, die eine Gesellschaft<br />

jedoch vor die größten Herausforderungen stellen und zur Katastrophe führen können. Das<br />

1 Bavarian Environment Agency, Augsburg, GERMANY, Ronja.Wolter-Krautblatter@lfu.bayern.de<br />

2 Bavarian Environment Agency<br />

3 Bavarian State Ministry of the Environment and Consumer Protection<br />

176 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP089


weltweit ansteigende Schadensausmaß im Zusammenhang mit Naturereignissen (Munich Re<br />

2015) zeigt, dass das Thema Restrisiko zukünftig stärker berücksichtigt und ein größeres<br />

Bewusstsein hierfür geschaffen werden muss. Nur so können die potentiell betroffenen<br />

Menschen und Kommunen für Maßnahmen motiviert werden, die mögliche Schäden<br />

begrenzen und das Restrisiko reduzieren.<br />

Auch wenn Restrisiken nicht komplett vermieden werden können, so kann zukünftiger<br />

Schaden sehr wohl begrenzt werden. Restrisiken können mitunter von Privatpersonen (z.B.<br />

mit Eigenvorsorge), aber auch von Kommunen (z.B. mit Flächenvorsorge, Alarm-, Einsatzplanung)<br />

reduziert werden. Der Inhalt dieses Aufsatzes beschränkt sich jedoch darauf, die<br />

Eigenvorsorge von Privatpersonen sowie die erweiterte Flächenvorsorge von Kommunen mit<br />

zielgerichteter Kommunikation nachhaltig zu stärken. Unter Eigenvorsorge werden im<br />

Folgenden Maßnahmen der Bauvorsorge, Verhaltens- und Informationsvorsorge sowie<br />

Risikovorsorge verstanden.<br />

PROBLEMSTELLUNG<br />

An folgenden Faktoren müssen Ideen zur Minimierung des Restrisikos ansetzen.<br />

a) Restrisiko hinter Schutzanlagen<br />

Gewisse sozio-ökonomische Entwicklungen können zu einer Erhöhung des Restrisikos hinter<br />

Schutzanlagen führen (Rother 2014): Mit dem Bau von Schutzanlagen, deren Weiterentwicklung<br />

und technische Verbesserung Sicherheit versprechen, steigt der Wert und die<br />

Attraktivität der geschützten Flächen. Dies führt häufig zu intensiveren Nutzungen, womit<br />

die Schadenspotentiale und damit auch das Restrisiko ansteigen. Beim Eintritt eines Extremhochwassers,<br />

das das Bemessungsereignis übertrifft und zu Überflutungen führt, sind die<br />

Schäden deutlich höher als sie vor der Errichtung der Schutzanlagen und der darauf<br />

folgenden Nutzungsintensivierung gewesen wäre (siehe Abb. 1). Investitionen in den<br />

Hochwasserschutz, die eigentlich eine Absenkung der Hochwasserrisiken bewirken sollten,<br />

können durch die zunehmende Nutzung der Gefahrenbereiche das Gegenteil bewirken<br />

(Seifert 2012).<br />

Daraus sollte jedoch keine grundsätzliche Kritik am Bau von Schutzanlagen abgeleitet<br />

werden, da Schäden bis zum Bemessungsereignis dadurch vermieden werden können. Die<br />

Siedlungsentwicklung hinter Schutzbauwerken sollte aufgrund der Restrisiken nicht komplett<br />

verhindert werden. Doch gilt es, die Nutzung an die vorhandene Gefahr anzupassen und z.B.<br />

auf besonders sensible Einrichtungen (wie z.B. Krankenhäuser, Feuerwehrstationen usw.)<br />

sowie kritische Infrastrukturen auch in Bereichen mit Restgefährdung zu verzichten. Bei<br />

bereits bestehenden Einrichtungen dieser Art sollten über den Schutz vor einem hundertjährlichen<br />

Hochwasser hinaus weitere Maßnahmen realisiert werden. So hat sich zum Beispiel<br />

ein Bankinstitut in Rosenheim freiwillig entschieden, Vorsorgemaßnahmen über die<br />

staatlichen HQ 100<br />

-Schutzmaßnahmen hinaus einzuleiten, um im Katastrophenfall für die<br />

betroffene Rosenheimer Bevölkerung einen voll funktionierenden „Zahlungsverkehr“<br />

aufrechterhalten zu können. Die staatlichen und kommunalen Hochwasserschutzmaßnah-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 177


men wie Deiche und Mauern finden vorrangig beim Flusshochwasser Anwendung. Daneben<br />

können Hochwasserschäden jedoch auch durch Grundwasser, Starkniederschläge, wild<br />

abfließendes Hangwasser oder Rückstau aus der Kanalisation entstehen. Hier liegt die<br />

Verantwortung bei Bauherrn und Hausbesitzern mit einer verantwortungsvollen Bauweise<br />

und dem Abschluss von Elementarversicherungen.<br />

Abbildung 1: Die „ökonomische Wirkungsumkehr“ (nach Seifert 2012).<br />

Problematisch ist die Diskrepanz rechtlicher Ver- und Gebote:<br />

– Bis zum hundertjährlichen Hochwasser besteht grundsätzliches Bauverbot sowie weitere<br />

Auflagen, z.B. die Sicherung von Öltanks in den vorläufig gesicherten und festgesetzten<br />

Überschwemmungsgebieten.<br />

– Darüber hinaus gibt es keinerlei gesetzlichen Vorgaben. Doch gerade hier kann durch<br />

vorausschauendes planerisches Handeln viel erreicht werden.<br />

178 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


) Risikowahrnehmung<br />

Die individuelle Risikowahrnehmung bestimmt darüber, ob Eigenvorsorge für notwendig<br />

erachtet und ergriffen werden oder nicht. Da Menschen gemäß ihrer subjektiven Erfahrung,<br />

Überzeugung und selektiven Wahrnehmung handeln, wird Risiko zu dem, was Menschen für<br />

bedrohlich halten (Zwick & Renn 2008). „As long as men live by what they believe to be so,<br />

their beliefs are real in their consequences” (Bendix in Zwick & Renn 2008). Dass diese<br />

Risiko-Einschätzung der Bevölkerung selten deckungsgleich mit der Einschätzung von<br />

Experten ist, zeigt sich auch beim Hochwasserrisiko. Die Risikowahrnehmung kann durch<br />

verschiedene Faktoren verringert werden (Smith & Patley 2009): Für freiwillig eingegangene<br />

Risiken (z. B. Bebauung überschwemmungsgefährdeter Flächen) ist die Risikobereitschaft in<br />

der Bevölkerung sehr viel größer als bei zugemuteten Risiken. Weiterhin wird Flusshochwasser<br />

als bekannte, kontrollierte Gefahr wahrgenommen. Auch die Berichterstattung in den<br />

Medien (insbesondere das Fernsehen und zunehmend das Internet) beeinflusst die Wahrnehmung<br />

von Risiken und kann zu Verzerrungen führen. Mediale Inszenierung kann auch zur<br />

Resignation oder Abstumpfung des Einzelnen führen. Individuelle Erfahrungen mit einer<br />

Gefahr können ein Anreiz sein, sich mit Eigenvorsorge auseinanderzusetzen. Ob und<br />

inwieweit dies stattfindet, hängt jedoch stark von der jeweiligen Persönlichkeit ab. Manchmal<br />

sind Schadensereignisse aber auch zu lange her, um Teil des Bewusstseins der potentiell<br />

betroffenen Bevölkerung zu sein. Wagner (2004) kommt auf eine „Halbwertszeit“ der<br />

Erinnerung von 14 Jahren.<br />

Im Risikomanagement muss die subjektive Risikowahrnehmung der Bevölkerung Berücksichtigung<br />

finden.<br />

METHODEN UND ERGEBNISSE<br />

Aus dieser Problemstellung heraus ergeben sich für uns einige Kommunikationsziele im<br />

Risikodialog. Insbesondere wollen wir vermitteln, dass:<br />

– Risikomanagement als Gemeinschaftsaufgabe nur optimal funktionieren kann, wenn alle<br />

Akteure ihre Verantwortung wahrnehmen; hier ist jeder Einzelne gefragt,<br />

– jeder Einzelne sein persönliches Risiko beeinflussen kann,<br />

– eine angepasste Nutzung hinter Schutzbauten (Flächenvorsorge) notwendig ist, um den<br />

Schaden zu begrenzen.<br />

Darüber hinaus wollen wir die Grundlagen schaffen, dass<br />

– jeder Wahrscheinlichkeiten realistisch einschätzen kann,<br />

– Naturgefahren und daraus resultierende Risiken objektiv eingeschätzt werden können, z.B.<br />

durch Bereitstellung seriöser Informationsquellen.<br />

Auf dieser Grundlage soll auch die potentiell betroffene Bevölkerung für Maßnahmen der<br />

Eigenvorsorge sensibilisiert und für Maßnahmen im Bereich der Bau-, Verhaltens- und<br />

Risikovorsorge motiviert werden (siehe LAWA 1995).<br />

Die im Folgenden aufgeführten Botschaften sind die ersten Schritte zur Erreichung dieser<br />

Ziele und wurden bereits umgesetzt. Einige davon werden im Internetauftritt und in<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 179


Veröffentlichungen des Bayerischen Landesamtes für Umwelt und des Bayerischen Staatsministeriums<br />

für Umwelt und Verbraucherschutz kommuniziert sowie in öffentlichen Vorträgen<br />

aufgegriffen. Die Erfahrungen daraus sollen in ein umfassendes bayernweites Kommunikationskonzept<br />

einfließen und die Themen weiter ausgearbeitet und verbreitet werden.<br />

a) Jeder “managt” (Alltags-)Risiken<br />

Das Leben ist voller Risiken und der Umgang damit gehört zum Alltag. Menschen betreiben<br />

jeden Tag, oft unbewusst, Risikomanagement und wägen Kosten und Nutzen einer Handlung<br />

ab. Ein Beispiel hierfür ist das Autofahren: Zugunsten der Vorteile, die uns die Mobilität<br />

bietet, nehmen wir die Risiken in Kauf und haben gelernt damit umzugehen. Der Mensch hat<br />

das Risikomanagement im Bereich des Autofahrens nahezu optimiert. Wie auch beim<br />

Hochwasserschutz, wird das Risiko handhabbar, wenn alle Komponenten des Risikokreislaufs<br />

ineinander greifen. Hierzu muss jeder Akteur seine individuelle Verantwortung wahrnehmen:<br />

Von Staat und Kommunen, über den Rettungsdienst und die Wirtschaft, bis hin zu<br />

jedem einzelnen Autofahrer, der sein Risiko, z. B. durch korrektes Verhalten im Straßenverkehr,<br />

beeinflusst (siehe Abb. 2).<br />

Abbildung 2: Risikomanagement am Beispiel des Straßenverkehrs.<br />

Umfangreiche Maßnahmen, die das Risiko auf allen Ebenen des Autofahrens reduzieren,<br />

verdeutlichen auch, dass hier das Risikomanagement gesellschaftlich breit verankert und<br />

akzep- tiert ist. Ein wesentlicher Unterschied zur Kommunikation von Hochwasserrisiken ist<br />

es jedoch, dass das Autofahren grundsätzlich als Teil des Alltags positiv besetzt ist und die<br />

180 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Vorteile der Mobilität klar im Vordergrund stehen. An Hochwasser denkt jedoch kaum einer<br />

gerne.<br />

b) Wahrscheinlichkeiten greifbarer machen: Vergleiche mit bekannten Größen<br />

Der Begriff des hundertjährlichen Hochwassers (HQ 100<br />

) kann für den Laien irreführend sein,<br />

da es sich lediglich um einen statistischen Wert handelt. Die Verwendung des Jährlichkeitsbegriffs<br />

in der Außenkommunikation hat bereits Wagner (2004) und Hagemeier-Klose (2011)<br />

kritisiert. Der Begriff führt häufig zu Fehlassoziationen bei der Bevölkerung ist darüber<br />

hinaus auch wegen der erwarteten Veränderungen aufgrund des Klimawandels problematisch.<br />

Vorgeschlagen wird die Verwendung folgender Begriffe in der Außenkommunikation:<br />

„häufiges Ereignis“ anstelle von HQ 5-20<br />

, „mittleres Ereignis“ anstelle von HQ 100<br />

und „seltenes<br />

Ereignis“ anstelle von HQ extrem<br />

.<br />

Beim Vergleich der Eintrittswahrscheinlichkeit eines Hochwassers mit unterschiedlichen<br />

Alltagsrisiken wird deutlich, dass unsere persönliche Risikowahrnehmung nicht immer dem<br />

tatsächlichen „objektiven“ Risiko entspricht (siehe Tab. 1). Beispielweise ist es wahrscheinlicher,<br />

dass ein Flussanwohner einmal im Leben ein 150-jährliches Hochwasser erlebt, als dass<br />

ein Autofahrer einmal im Leben bei einem Autounfall verunglückt. Während die meisten<br />

Menschen wahrscheinlich wissen, wie sie sich bei einem Autounfall zu verhalten haben,<br />

bleibt fraglich, ob allen potentiell Betroffenen das richtige Verhalten im Hochwasserfall<br />

bekannt ist.<br />

Auch das einfache Beispiel eines Würfelbeispiels verdeutlicht die Bedeutung des Restrisikos:<br />

Die Wahrscheinlichkeit, als Flussanwohner im Laufe eines 80-jährigen Lebens mindestens<br />

einmal ein hundertjährliches oder noch größeres Hochwasserereignis zu erleben, das ein<br />

Schutzbauwerk möglicherweise überströmt, ist höher als die Wahrscheinlichkeit, beim<br />

Würfeln eine 1, 2 oder 3 zu würfeln (siehe Abb. 3). Die tatsächliche Gefhar von einem<br />

seltenen Hochwasser betroffen zu werden wird also von den allermeisten Bedrohten deutlich<br />

unterschätzt mit der fatalen Folge, dass persönliche Vorsorgemaßnahmen unterbleiben.<br />

Wahrscheinlichkeit: 55 %<br />

mit einem Wurf<br />

Erleben eines (mind.)<br />

hundertjährlichen Hochwasserereignisses<br />

innerhalb eines<br />

Menschenlebens von 80 Jahren als<br />

Flussanwohner<br />

oder<br />

würfeln<br />

Abbildung 3: Die Wahrscheinlichkeit in einem Menschenleben von 80 Jahren mindestens ein hundertjährliches Hochwasserereignis zu<br />

erleben, überschreitet die Wahrscheinlichkeit beim Würfeln eine 1, 2 oder 3 zu würfeln.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 181


Tabelle 1: Alltagsrisiken im Vergleich.<br />

c) Schadensentwicklung hinter Schutzbauwerken: Flächenvorsorge für Kommunen<br />

Um die Bedeutung der Flächenvorsorge zu verdeutlichen, soll hier aufgezeigt werden, wie<br />

sich Schadenspotenziale nach der Umsetzung von Schutzmaßnahmen entwickeln können.<br />

Dazu wurden in einem ersten Schritt verschiedene Szenarien in einer Beispiel-Gemeinde in<br />

Bayern betrachtet (siehe Abb. 4). Die Werte in der Grafik beruhen auf Berechnungen, ergänzt<br />

durch Annahmen. Im ersten Fall besitzt die Siedlung lediglich einen Schutzgrad für ein<br />

zehnjähriges Hochwasser (HQ 10<br />

), beim zweiten dagegen einen Schutzgrad für ein achtzigjähriges<br />

Hochwasser (HQ 80<br />

). Das nachfolgende Diagramm zeigt die entsprechenden Schadenseinheiten<br />

[SE] je Hochwasserereignis, welche bis zum HQ 200<br />

zunehmen. Ab dem HQ 200<br />

wird<br />

angenommen, dass die Schadenseinheiten konstant bleiben, also bildlich „bereits alle Häuser<br />

unter Wasser“ stehen. Insgesamt wäre für diese Fälle mit einem durchschnittlichen jährlichen<br />

Schaden von 4,12 SE, bzw. 0,92 SE zu rechnen. Nun wird z. B. ein Hochwasserrückhaltebecken<br />

gebaut, welches die bestehende Siedlung bis zum hundertjährlichen Hochwasser<br />

(HQ 100<br />

) schützt („Vollschutz“). Bei größeren Ereignissen läuft das Becken über. Nachdem<br />

jedoch mit dem Becken ein HQ 100<br />

-Schutz erzielt wurde, entfallen jegliche bauliche Einschränkungen<br />

im geschützten Bereich. Die bestehende Siedlung entwickelt sich weiter und es wird<br />

ein neues Baugebiet realisiert. Es zeigen sich folgende Ergebnisse:<br />

182 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– Eine Verbesserung des Schutzgrads einer Siedlung gegenüber Hochwasser bringt eine<br />

deutliche Verbesserung für den Einzelnen mit sich, da es seltener zum Schaden kommt.<br />

Während der durchschnittliche jährliche Schaden bei einem Schutzgrad für ein HQ 10<br />

4,12 SE/Jahr beträgt, fällt dieser auf 0,92 SE/Jahr bei einer Erhöhung des Schutzgrads auf<br />

ein HQ 80<br />

, bzw. 0,74 SE/Jahr bei einer Erhöhung des Schutzgrads auf ein HQ 100<br />

.<br />

– Für die Gemeinde insgesamt kann der Bau des Rückhaltebeckens mittelfristig möglicherweise<br />

sogar zu höheren mittleren jährlichen Schäden führen. Dies ist in diesem Beispiel der<br />

Fall, wenn einerseits bereits ein hoher Schutzgrad (HQ 80<br />

) bestand und mit der Realisierung<br />

des Hochwassersschutzes (HQ 100<br />

) neue Baugebiete entstehen. In dieser Kombination<br />

nehmen die mittleren jährlichen Schäden von 0,92 SE/Jahr auf 0,98 SE/Jahr zu.<br />

Abbildung 4: Die Schadensentwicklung hinter Schutzbauwerken. Verschiedene Szenarien in einer Beispiel-Gemeinde in Bayern (Werte in<br />

der Grafik beruhen auf Berechnungen, ergänzt durch Annahmen).<br />

Zugleich kann der Bau von Schutzbauwerken als Anstoß genommen werden, bei Bürgern<br />

und Vorteilsziehenden für individuelle Vorsorge zu werben. Hier spielt auch der Solidargedanke<br />

eine entscheidende Rolle: Die Hochwasserschutzanlagen werden von der Gemeinschaft<br />

(Land, Kommune) und somit mit Steuergeldern von Personen, die nicht von Hochwasser<br />

betroffen sind, finanziert. Von den vorteilsziehenden Bürgern kann im Gegenzug verlangt<br />

werden, dass sie sich bezüglich der verbleibenden Restrisiken absichern. Beispielweise<br />

werden Elementarschadensversicherungen deutlich günstiger, wenn die Gefährdungsklasse<br />

sich aufgrund von Schutzanlagen verbessert. Im Überlastfall können über Versicherungen<br />

existenzbedrohende Schäden aufgefangen und die Fluthilfeprogramme der Gemeinschaft<br />

entlastet werden.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 183


AUSBLICK: KOMMUNIKATIONSKONZEPT „HOCHWASSER UND HOCHWASSERRISIKOMANAGEMENT“<br />

Die aufgezeigten Ideen und ersten Schritte sollen künftig verstärkt umgesetzt werden.<br />

Dazu sollen sie in ein umfassendes Kommunikationskonzept zum Thema „ Hochwasser und<br />

Hochwasserrisikomanagement“ einfließen. Ziele dieses Konzeptes sind neben den oben<br />

dargestellten vor allem<br />

– die Förderung der Akzeptanz für staatliche Hochwasserschutzmaßnahmen, u.a. durch die<br />

Verstärkung offener gesellschaftlicher Dialogprozesse und anderer partizipativer Verfahren,<br />

– Steigerung des Risikobewusstseins für Hochwasser innerhalb der kommunalen Verwaltung<br />

und der breiten Öffentlichkeit.<br />

Der Prozess der nachhaltigen Minderung von Hochwasserrisiken ist gemeinsame Aufgabe für<br />

die Wasserwirtschaftsverwaltung, Kommunen, Unternehmen sowie Bürger und wird durch<br />

das neue Kommunikationskonzept begleitend unterstützt werden.<br />

DISKUSSION UND FAZIT<br />

Bei allen Ideen, das Bewusstsein in der Bevölkerung für das Restrisiko zu erhöhen, sehen wir<br />

auch die Grenzen dieser Möglichkeiten. Verdrängungsmechanismen sind nützliche Teile der<br />

menschlichen Natur und ermöglichen einen angstfreien Alltag in einem Leben voller<br />

Gefahren. Unsere Ideen sollen nicht zu einer Verängstigung der Bevölkerung führen, sondern<br />

aufzeigen, dass Maßnahmen der Eigenvorsorge den Einzelnen entlasten: Wenn beispielsweise<br />

der Hochwasserschutz beim Neubau eines Hauses einmal umgesetzt ist oder eine Elementarschadensversicherung<br />

abgeschlossen ist, muss man sich im Alltag weniger Sorgen um das<br />

Hochwasserrisiko machen. Es muss berücksichtigt werden, dass wir in einer Gesellschaft<br />

leben, in der zum Teil Informationsüberfluss herrscht. Unsere Botschaften stehen neben dem<br />

Informations-Input und der Werbung vieler anderer Interessensgruppen. Hinzu kommen<br />

alltägliche Nöte und Sorgen, die oft Priorität vor der Restrisiko-Problematik im Hochwasserfall<br />

haben. Daher kommt es sicherlich auch auf den richtigen Zeitpunkt an, um mit unseren<br />

Botschaften an die Bevölkerung heranzutreten. Die aktuellen Entwicklungen des Schadenspotentials<br />

zeigen einen großen Handlungsbedarf im Hinblick auf die Kommunikation von<br />

(Rest-)Risiken im Bereich Naturgefahren. Mit klaren Botschaften können Menschen für die<br />

Grenzen von Schutzbauten, die Verzerrung menschlicher Risikowahrnehmung, ihre eigene<br />

Verantwortung innerhalb des Risikomanagements und die Vorzüge der Flächenvorsorge<br />

sensibilisiert werden. Risikokommunikation darf nicht dazu führen, dass die Bevölkerung vor<br />

dem Restrisiko resigniert, sondern muss sich zum Ziel setzen, Menschen für das vorhandene<br />

Restrisiko zu sensibilisieren und das Restrisiko durch konkrete Maßnahmen beherrschbar zu<br />

machen, um besser mit möglichen Folgen umgehen und leben zu können.<br />

184 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


LITERATUR<br />

- BUWAL (1999): Risikoanalyse bei gravitativen Naturgefahren, Methode. Umwelt-Materialien<br />

Nr. 107/I, Naturgefahren. Bundesamt für Umwelt, Wald und Landschaft, Bern.<br />

- Hagemeir-Klose, Maria (2011): Hochwasserrisikokommunikation zwischen Wasserwirtschaftsverwaltung<br />

und Öffentlichkeit – eine Evaluation der Wahrnehmung und Wirkung<br />

behördlicher Informationsinstrumente in Bayern (Dissertation). Fakultät für Wirtschaftswissenschaften<br />

der Technischen Universität München (http://mediatum.ub.tum.de/<br />

node?id=1006044, abgerufen am 18.11.2015).<br />

- LAWA (Länderarbeitsgemeinschaft Hochwasser) (1995): Leitlinien für einen zukunftsweisenden<br />

Hochwasserschutz: Hochwasser - Ursachen und Konsequenzen (http://lawa.de/<br />

documents/Leitlinien_d59.pdf, abgerufen am 18.11.2015).<br />

- Munich Re (2015): Topics Geo, Naturkatastrophen 2014. Analysen, Bewertungen, Positionen.<br />

München.<br />

- Rother, K.-H. (2014): Zur Abschätzung des Risikos hinter Hochwasserschutzanlagen unter<br />

sich verändernden gesellschaftlichen Randbedingungen. KW Korrespondenz Wasserwirtschaft<br />

2014 (7), Nr. 11: S 659 – 666.<br />

- Seifert, P. (2012): Mit Sicherheit wächst der Schaden. Geschäftsstelle des Regionalen<br />

Planungsverbandes Oberes Elbtal/Osterzgebirge. Radebeul.<br />

- Smith, K. & D. Patley (2009): Assessing Risk and Reducing Disaster. Routledge.<br />

- Wagner, Klaus (2004): Naturgefahrenbewusstsein und –kommunikation am Beispiel von<br />

Sturzfluten und Rutschungen in vier Gemeinden des bayerischen Alpenraums (Dissertation).<br />

Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt<br />

der Technischen Universität München (http://mediatum.ub.tum.de/node?id=603521,<br />

abgerufen am 18.11.2015).<br />

- Zwick, M. & O. Renn (2008): Risikokonzepte jenseits von Eintrittswahrscheinlichkeit und<br />

Schadenserwartung. In: Felgentreff, C. & T. Glade (Hrsg.): Naturrisiken und Sozialkatastrophen.<br />

Berlin, Heidelberg.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 185


RISK GOVERNANCE AND POLICIES (OBJECTIVES, STRATEGIES, COMMUNICATION)<br />

Practical Management of Debris-flow-prone Torrents<br />

in Taiwan<br />

Hsiao-Yuan Yin, Ph.D.¹; Chen-Yang Lee, Master¹; Chyan-Deng Jan, Ph.D.²; Meei-Ling Lin, Ph.D. 3<br />

ABSTRACT<br />

In Taiwan, owing to steep topography, weak geological structure, frequent earthquakes and<br />

severe rainfalls, especially brought by typhoons, debris flow has become one of the most<br />

serious disasters causing enormous losses of lives and properties. The Soil and Water<br />

Conservation Bureau (SWCB), Council of Agriculture is the national-level department for the<br />

preparedness on the reductions of debris flow disasters. To deal with debris flow hazards, the<br />

first step for mitigation works is to identify the locations of debris-flow-prone torrents (i.e.,<br />

potential debris flow torrents). So far, there are 1,673 potential debris flow torrents in Taiwan,<br />

and about 48-thousand people living in the debris-flow endangered flooding areas. In this<br />

paper, we will introduce the practical management measures of debris flow hazards including<br />

the identification and evaluation of potential debris flow torrents, administrative operation<br />

process, watershed investigation, risk potential assessment, flooding zone mapping and<br />

evacuation route map. Good preparedness and management of potential debris flow torrents<br />

have been proved to be an effective measure in reducing debris flow hazards.<br />

KEYWORDS<br />

debris flow hazards; debris-flow-prone torrent; potential debris flow torrent; evacuation route<br />

map<br />

INTRODUCTION<br />

Debris flows are rapid, gravity-induced flows of mixtures of rocks, mud and water. Due to the<br />

steep topography, young and weak geological formations, earthquakes, erodible soils and<br />

heavy rainfall brought by typhoons, Taiwan is subject to debris flows and other sedimentrelated<br />

disasters, causing enormous losses of lives and properties in mountain areas (Jan and<br />

Chen, 2005). According to the "Disaster Prevention and Protection Act" of Taiwan, the SWCB<br />

is the national-level department for the preparedness and mitigation works of debris flow<br />

hazards. As we know that reliable and accurate debris-flow watches and warnings must be<br />

based on sound identification of areas susceptible to debris flows and recognition of the<br />

conditions that will result in their occurrence. Therefore, the first step for debris-flow hazards<br />

mitigation is to identify the locations of debris-flow-prone torrents. In this paper, we will<br />

introduce our practical experiences of debris-flow managements in Taiwan.<br />

1 Soil and Water Conservation Bureau, Council of Agriculture, Nantou, TAIWAN, sammya@mail.swcb.gov.tw<br />

2 National Cheng Kung University, Taiwan<br />

3 National Taiwan University, Taiwan<br />

186 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP095


POTENTIAL DEBRIS FLOW TORRENTS<br />

Since1990, the SWCB has devoted to establish the inventory of potential debris flow torrents.<br />

Potential debris flow torrents are debris-flow-prone torrents (or gullies) associated with<br />

important targets to be protected, and are identified after comprehensive evaluation of the<br />

natural occurrence conditions and the on-site human activities. A debris-flow-prone torrent<br />

without any residents or infrastructures to be protected will not be classified as a potential<br />

debris flow torrent, because the zoning of potential debris flow torrents is for human-oriented<br />

disaster management. In 1996, there were 485 potential debris flow torrents recognized and<br />

managed. After a catastrophic Chi-Chi earthquake (magnitude 7.3 on the Richter scale) in<br />

1999, the number of potential debris flow torrents increased to 722 due to significant<br />

landslides in mountainous areas. However, the number dramatically increased to 1,673 after<br />

severe actions of rainfalls, especially brought by typhoons during the last 15 years. In order<br />

to mitigate the possible debris flow hazards, it is crucial for the government to update the<br />

inventory database of potential debris flow torrents every year before the flood season from<br />

May to October in Taiwan.<br />

IDENTIFICATION AND EVALUATION OF POTENTIAL DEBRIS FLOW TORRENTS<br />

Lin et al. (2010) suggested that the potential degree of debris-flow-prone torrents can be determined<br />

primarily by watershed area, drainage slope, landslide ratio, and geological structure.<br />

The comprehensive identification and evaluation procedure of potential debris flow torrents<br />

used in Taiwan is summarized in an operation direction, named as "Zoning operation<br />

directions of potential debris flow torrents" published by SWCB in 2013. Two major processes<br />

of the operation direction are presented in detail as follows.<br />

Preliminary identification<br />

In order to identify potential debris flow torrents, two preliminary conditions should be<br />

considered i.e., the existence of protected targets and the characteristics of valley landform.<br />

The possible protected targets contain the residents, buildings, roads and other infrastructures<br />

which are potentially endangered by debris flows, especially in or nearby the downstream<br />

area of debris-flow-prone torrents. The geomorphologic characteristics of valley landform are<br />

identified mainly by using aerial orthophoto base map and/or high resolution DTM (digital<br />

terrian model). It also has a further requirement with the catchment area (only considering<br />

the watershed areas above the 10 degree gradient point in the main channel) is larger than<br />

3 hectares. After satisfying the above-mentioned two prerequisites, if the torrent also has<br />

historic debris flow events or geological disaster potential according to the geological map<br />

from the Central Geological Survey of Taiwan, then the torrent could be classified as the<br />

candidate of potential debris flow torrents.<br />

Potential evaluation<br />

Once a torrent has been considered as a potential debris flow torrent, the next step is to<br />

evaluate its potential level. The protected targets and the debris-flow occurrence potential are<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 187


the two major factors used to evaluate and classify the degrees of potential debris flow<br />

torrents into three categories, i.e., high, medium and low potential debris flow torrents.<br />

Protected targets<br />

The vast majority of loss or damage occurs in the depositional zone of debris flows, which is<br />

referred to as the creek fan. Fans are preferred locations for urban development because they<br />

are well drained, gently sloping, and often provide good aquifers (Jakob 2005). Generally<br />

speaking, a torrent considered as the potential debris flow torrent has its downstream<br />

endangered fan area. From the historic events, people who live in the alluvial fan are<br />

vulnerable by debris flows meaning that the fan area roughly equates to the so-called affected<br />

area. The evaluation of protected targets is to estimate the vulnerability of those residents,<br />

buildings, roads, infrastructures and mitigation measures within the affected area as shown in<br />

Table 1. The mitigation measures mainly depend on the weighting of watershed management<br />

performance especially the levels of engineering constructions and ecological treatments<br />

through the field investigation. Three levels of the weighting values are applied consisting<br />

poor (weighting:1), fair (weighting:0.8) and good or unnecessary (weighting:0.6). The final<br />

score of protected targets evaluation is equal to the weighting times the sum scores of<br />

buildings and transportation facilities. Therefore, the degree of potential damage on protected<br />

targets can be classified into three risk grades as low (≤40 scores), l medium(40~60 ee la scores) Table and Table 1<br />

high(≥60 scores).<br />

Table 1: Potential evaluation of protected targets.<br />

Protected targets<br />

(100 scores)<br />

Buildings (65)<br />

Transportation<br />

facilities (35)<br />

Watershed<br />

management<br />

performance<br />

Final scores<br />

Classifications<br />

Scores<br />

Public infrastructures relating to disaster mitigation<br />

(Schools, hospitals and public shelters)<br />

65<br />

Above 5 houses 60<br />

1-4 houses 30<br />

None 0<br />

Bridges 35<br />

Roads 20<br />

None 0<br />

Weighting<br />

Poor 1.0<br />

Fair 0.8<br />

Good or unnecessary 0.6<br />

Scores of (Buildings+ Transportation facilities)×Weighting<br />

188 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


le 2<br />

Occurrence degree<br />

The occurrence degree is referred to the probability of debris flow events. In this paper, the<br />

major factors relating to the debris flow occurrence comprise the landslide ratio, drainage<br />

slope, sedimentation amount, geological structure and vegetation condition as shown in Table<br />

2. According to the evaluation scores in Table 2, the degree of potential damage on occurrence<br />

degree also can be classified into three risk grades as low (≤46 scores), medium<br />

(46~62 scores) and high(≥62 scores). Among them, the scores of 46 and 62 are the 30% and<br />

70% probability of cumulative distribution diagram during statistic analysis respectively.<br />

By using the potential damage evaluation on inhabitation including both protected targets<br />

and occurrence degree, the identified potential debris flow torrents in Taiwan can be classified<br />

into three risk grades as low, medium and high through the following risk matrix shown in<br />

Table 3. Those high risk torrents have the priority of hazards mitigation measures such as<br />

evacuation propaganda and drills, engineering construction and landuse replaning.<br />

l ee la Table Table 2<br />

Table 2: Potential evaluation of occurrence degree.<br />

Occurrence degree<br />

(100 scores)<br />

Landslides ratio (25)<br />

Drainage slope (25)<br />

Sedimentation (20)<br />

Geology (15)<br />

Vegetation (15)<br />

Classifications<br />

Scores<br />

Obvious large landslide areas<br />

(landslide ratio≧5%)<br />

25<br />

Small scale landslide areas<br />

(1%< landslide ratio


Table 3: Risk matrix used in potential debris flow torrent classification.<br />

Risk Degree<br />

Degree of Hazards<br />

on Protected<br />

Targets<br />

Degree of Occurrence Potential<br />

Low Medium High<br />

Low Low Low Medium<br />

Medium Low Medium High<br />

High Medium High High<br />

PRACTICAL MANAGEMENT FOR DISASTERS MITIGATION<br />

Every year before flood season, the information of potential debris flow torrents especially the<br />

affected areas and the inventory of affected targets will be released to local governments for<br />

proofreading and revision if necessary. So far in Taiwan, the 1,673 potential debris flow<br />

torrents are distributed among 17 cities (counties), 159 townships or 684 villages. The<br />

number of total protected people accumulates to 47,830. Based on the detailed name-list<br />

inventory information, local governments can easily help the residents to establish their own<br />

evacuation route maps as shown in Figure 1. Each map contains a lot of emergency response<br />

information such as important agencies (police station, fire department and hospital) and<br />

contact persons, shelter information (capacity, address, phone numbers), landing area of<br />

helicopter, evacuation directions and routes, and the allocation of potential debris flow<br />

torrents. During the ordinary times, people who live in the affected areas of debris flows will<br />

follow their own evacuation route maps to have drills and training activities. While during<br />

the emergency period of typhoons or torrential rains, they will be evacuated by local<br />

governments according to the debris flow warnings issued by the SWCB. The debris flow<br />

warning model is based on the rainfall criteria including the effective accumulated rainfall<br />

and rainfall intensity (Jan et al., 2013). During Typhoon Morakot in 2009<br />

(caused 665 casualties and 34 missing in Taiwan), 9,100 residents who lived in the affected<br />

areas of potential debris flow torrents were evacuated. Among them, at least 1,046 people<br />

escaped from the possible casualties in terms of the post disaster investigation (Yin et al.<br />

2014). Another successful evacuation example was in Holiu, Fuxing district, Taoyuan city<br />

during Typhoon Soudelor in August, 2015. Figure 2 shows the rainfall hyetograph progress of<br />

debris flow event. At 20:30 on Aug. 6, the Central Weather Bureau issued the Land and Sea<br />

typhoon warnings due to the threat of Typhoon Soudelor. At 12:00 on Aug. 7, the local<br />

government encouraged the residents to carry on autonomous evacuation according to the<br />

evacuation route map as shown in Figure 1. At 17:00, the SWCB issued the debris flow<br />

yellow warning for evacuation advisement and the local residents accomplished the evacuation<br />

of the whole village before 19:00. In the early morning at 5:00 on Aug. 8, the SWCB<br />

again issued the debris flow red warning for enforcement evacuation, two hours and<br />

45 minutes earlier than the occurrence of debris flow at 7:45. The debris flow rushed down<br />

the Holiu village and buried 14 houses as shown in Figure 3. Due to autonomous evacuation<br />

190 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


in advance, all 48 residents were safely in the shelter. The preparedness management of<br />

potential debris flow torrents has been proved to make a good contribution to debris flow<br />

disaster mitigation, especially timely evacuation operation.<br />

Figure 1: Evacuation route map of Holiu village near potential debris flow torrent (blue line, No. TaoyuanDF034). Shelters, moving<br />

directions, helicopter landing area, and other information of hospital, police station, fire department, emergency operation center, and<br />

emergency contact person are all indicated in the map.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 191


Figure 2: Hyetograph and warning time associated with the debris flow event in Holiu during Typhoon Soudelor on August 8, 2015.<br />

Figure 3: Debris flow disasters in Holiu village.<br />

192 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CONCLUSIONS<br />

Identification of potential debris flow torrents and their risk evaluation play important roles<br />

in hazards mitigation. Good management on debris flow torrents can effectively reducing<br />

debris flow hazards. The practical watershed management includes the identification<br />

procedure, evaluation measures, administrative operation process, watershed investigation,<br />

risk potential assessment, downstream fan area zoning, and evacuation route map. Through<br />

good management and annual review of the database of potential debris flow torrents as well<br />

as the real-time information update, protected people inventory, evacuation operation and<br />

public awareness, our government has effectively reduce debris flow hazards. After the<br />

challenges of severe rainfalls brought by tens of typhoon events in the last one and half<br />

decades, the preparedness management of potential debris flow torrents has been proved<br />

to make a good contribution to debris flow hazard mitigation.<br />

REFERENCES<br />

- Jakob M. (2005). Debris-flow hazard analysis, Chapter 17 in the book of Debris-Flow<br />

Hazards and Related Phenomena, edited by M. Jakob and O. Hungr, pp. 411-443, Springer,<br />

published by Praxis Publishing Ltd., UK.<br />

- Jan, C.D., and Chen, C.L. (2005). Debris flow caused by Typhoon Herb in Taiwan, Chapter<br />

21 in the book of Debris-Flow Hazards and Related Phenomena, edited by Matthias Jakob<br />

and Oldrich Hungr, pp. 539-563, Springer, published by Praxis Publishing Ltd., UK.<br />

- Jan, C.D. Kuo, F.H., Wang, J.S. (2013). Early warning criteria for debris flows and their<br />

application in Taiwan, of ICL Landslide Teaching Tools, edited by Kyoji Sassa, Bin He Mauri<br />

McSaveney and Osamu Nagai, TXT-tool 2.886-1.3, published by International Consortium on<br />

Landslides, Japan.<br />

- Lin M.L., Chen T.C. (2010). Zoning procedure modification of potential debris flow torrents,<br />

contract research report of Soil and Water Conservation Bureau, Council of Agriculture, in<br />

Chinese.<br />

- Soil and Water Conservation Bureau, (2013). Zoning operation directions of potential debris<br />

flow torrents, Council of Agriculture, in Chinese.<br />

- Yin H.Y., Lee C.Y., Jan C.D. (2014). A web-based decision support system for debris flow<br />

disaster management in Taiwan, 12th International IAEG Congress, Sep. 15-19, 2014, Torino,<br />

Italy, volume 3, pp. 109-113.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 193


194 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

Living<br />

with natural<br />

risks


Data Acquisition and Modelling<br />

(monitoring, processes, technologies, models)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 195


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Deciphering dynamics and magnitude of a recent<br />

debris-flow disaster in Vratna Dolina<br />

Juan Antonio Ballesteros Canovas, PhD. 1 ; Milan Lehotsky 2 ; Karel Silhan 3 ; Sladek Jan 2 ; Anna Kidova 2 ; Radek Tichavsky 3 ;<br />

Pavel Stastny 4 ; Markus Stoffel 5<br />

ABSTRACT<br />

The capacity to describe extreme debris-flow events responsible of large disasters is clearly<br />

limited by the usual lack of records and direct observations. Post-event field recognition is a<br />

powerful tool to overcome these limitations and to deliver baseline data for a better process<br />

understanding. In this communication, we combine post-event field recognition and<br />

dendrogeomorphic approaches to describe an extreme debris-flow event which took place in<br />

Vratna valley (Slovakia) in 2014 and to quantify its magnitude. Additionally, we analyse the<br />

meteorological triggers of the flow. Results provide insights for an improved characterization<br />

of extreme events in this region, and are thought to be useful to calibrate physically-based<br />

models in order to implement risk reduction strategies.<br />

KEYWORDS<br />

debris flow, post-event field recognition, tree-ring, peak discharge, Vratna dolina<br />

INTRODUCTION<br />

Rainfall-induced landsliding represents one of the most common triggers of massive debris<br />

flow in many mountain environments. Soil moisture saturation commonly results in a<br />

decrease of soil cohesion, which in turn can result in intense sediment transfer into steep<br />

channels. As a result, powerful mass movements can be one of the downstream consequences<br />

(Jakob and Hungr, 2005) with recorded transfers of up to ~109 m³ and intense geomorphic<br />

changes, mostly related with scour erosion and sediment deposition on flatter terrains.<br />

In order to reduce disaster risk, an appropriate description, analysis and interpretation of<br />

extreme debris-flow events will be essential. However, in the Slovakian context, but also in<br />

other mountain regions, limited knowledge still exists on how big such extreme events are<br />

and how they are affected by ongoing and future climatic changes. This question is not trivial,<br />

as limited records generally exist in mountain areas, thus avoiding to draw reliable conclusions<br />

about their expected magnitude, triggers and geomorphic impacts.<br />

Systematic post-event field recognition is a valuable approach to document the affected areas,<br />

magnitude and flow type of recent high-magnitude events (Marchi and Cavalli, 2007). This<br />

1 University of Bern, Bern, SWITZERLAND, juan.ballesteros@dendrolab.ch<br />

2 Slovak Academy of Sciences, Bratislava<br />

3 University of Ostrava, Department of Physical Geography and Geoecology<br />

4 Slovak Hydrometeorological Institute<br />

5 dendrolab.ch - The Swiss Tree-Ring Lab. Institute for Geological Sciences. Baltzerstrasse 1+3, 3012 Bern Climate Change an<br />

Climate Impacts (C3i) Institute for Environmental Sciences 7 route de Drize, 1227 Carouge-Geneva<br />

196 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP044


approach combines several data sources, including fresh botanical or geological evidence,<br />

gauging records, direct observation or technical documents. By carrying out post-field<br />

recognitions, researchers and practitioners will gain new insights about catchment response<br />

as well as about the effectiveness of existing mitigation measures. Beyond these advantages,<br />

outcomes from post-field event recognition and indirect proxies are extremely valuable to<br />

calibrate physically-based models and define scenarios so as to delimit hazard zones.<br />

In this communication, we report observation and measurements from post-event field<br />

recognition where we aimed at quantifying the extraordinary debris-flow event of 21 July<br />

2014 in Vranta Dolina (Malá Fatra National Park, Slovakia) after intense rainfalls. The<br />

extraordinary nature of the July 2014 debris flow in Vratna valley is underlined by its large<br />

geomorphic imprint, and direct economic losses in the order of 6 million US$, mainly due to<br />

fan deposition in a ski resort and erosion processes of transport infrastructures downstream of<br />

the resort. During the event, 122 tourists remained isolated and had to be rescued the next<br />

day.<br />

METHODS<br />

Study site: The Vratna valley is located in the northern part of the Malá Fatra Mts (Slovakia).<br />

The catchment has an area of almost 18.4 km 2 with high relief energy of up to 1000 m. The<br />

siteis characterized by complex geology (limestone, dolomites, sandstones, and quartzite).<br />

The upper slopes (up to 30 – 40°) are covered by alpine meadows, dwarf mountain pines and<br />

rock outcrops. In the central part, the valley is covered with spruce and beech forests. At the<br />

lower part of the valley, the valley bottom is defined by a narrow gorge (ca. 20 m). Gauging<br />

records do not exist for Vrátňanka Brook. The valley belongs to the Malá Fatra National park<br />

and is considered as an important all-season tourist centre.<br />

Methodological steps: Two field surveys were carried out after the debris-flow event. The<br />

first field survey was performed immediately after the event on 23 July 2014, and focused on<br />

the middle and lower sections of the catchment. During this first survey, debris-flow damage,<br />

the extension of debris deposits, and flood stage based on fresh indicators has been analysed<br />

and reported. Eyewitness information related with the event was also recorded. In addition,<br />

we collected aerial pictures taken from a helicopter of the upper part of the catchment to<br />

determine fresh geomorphic imprints of erosion at the hillslopes. The second field survey was<br />

performed during September 2014. During this survey, we (i) described the geomorphic<br />

imprints related with the debris-flow event in the middle and upper parts of the catchment,<br />

(ii) perform a survey for peak discharge estimation and modelling, and (iii) investigated past<br />

debris-flow activity based on tree-ring analyses (Stoffel and Corona, 2014).<br />

For the geomorphic characterization, we delineated the upper failure zones, the middle<br />

transport (and erosion) zone, and the lower deposition zone, as well as the bedload sediment-laden<br />

floodwater zone. Field mapping was combined with free access videos and aerial<br />

imagery, as well as with field measurements using a total station and laser range finder. In the<br />

middle zone affected by both transport and erosion, four channel reaches connected with the<br />

main sediment sources and presenting stable cross-section were surveyed in detail. Two more<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 197


iver reaches located in the bedload sediment-laden floodwater zone was surveyed as well in<br />

order to determine the evolution of peak discharge along the entire catchment. Cross-sections<br />

were characterized by presenting fresh paleostage indicators on trees (PSI) and high water<br />

marks (HWMs; Ballesteros-Cánovas et al., 2015) related with the debris-flow event.<br />

Past debris-flow activity was investigated based on tree-ring analyses of scarred trees growing<br />

on the cone (Stoffel and Corona, 2014). Event detection was based on injuries, tangential<br />

rows of traumatic resin ducts (TRD) and abrupt growth suppression/releases and reaction<br />

wood. For cross dating and the detection of growth anomalies, we also sampled undisturbed<br />

Norway spruce (Picea abies) trees growing in nearby areas.<br />

We then used the continuity equation:<br />

Q=A·V (m 3 s-1)<br />

… to estimate peak discharge of the debris-flow event, where A is the cross-sectional area<br />

(m 2 ) and V is the mean velocity of the flow (m s-1). At the middle transport/erosion zone, the<br />

mean debris flow velocity (VDF) was estimated by the empirical equation as a function of the<br />

flow depth (H, given by HWMs) and channel slope (I in %) (Rickenmann, 1999):<br />

VDF = 4.83 x H0.5 x I0.25<br />

At the sediment-laden floodwater zone, the mean flow velocity (VF) was alternatively<br />

obtained by using the critical-depth method (Webb and Jarret, 2002). This method is specially<br />

recommended to determine peak discharge of paleoflood events in mountain streams up to<br />

7% slope subjected presenting critical cross-section, because the peaks discharge estimation is<br />

independently of roughness. Mathematically, the flow velocity is estimated by equalling the<br />

Froude Number to 1 (F=1):<br />

VF = (g x dh) 0.5<br />

where g is the gravitational acceleration and dh the flow depth provided by the height of<br />

HWMs or PSIs (dh=A/T , with A= cross sectional area of the flow and T= the width of the free<br />

surface).<br />

Finally, we also characterized the meteorological conditions related with the triggering of this<br />

extreme debris-flow event. To this end, we used gridded observation fields from the freely<br />

available E-OBS and TRMM datasets as well as rain gauge records from the Štefanová station<br />

(49o13´57´´, 19o03´41´´, 632 m asl) located 3 km far from the ski resort and 5 km from the<br />

source area of the debris flow at Chleb peak.<br />

RESULTS<br />

Geomorphic imprint of the disaster and debris-flow quantification<br />

The methodology has allowed description of the geomorphic imprint and quantification of<br />

the magnitude of the extreme debris-flow in Vratna valley in 2014.<br />

The failure zone was characterized by 33 patches, ca. 136 000 m 2 in total, on north, northwest<br />

and west-facing slopes with angles between 22 and 33°. Distinct scarps of up to 1.5 m in<br />

198 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


height along the upper and lateral margins of the failure zones distinguish the failure surfaces<br />

from adjacent undisturbed slopes. Their upper margins are usually developed at the contact<br />

with the downslope lines of dwarf mountain pine patches. Undisturbed sediment exposed in<br />

the scarps indicates that failed material consists primarily of a soil body and clast-supported<br />

regolith and that the initial mechanism of failure in these debris flows was sliding.<br />

The transport/erosion zone is composed by nine first- and second-order channels with lengths<br />

between 260 and 950 m, and average gradients of 22° to34°. Debris-flow erosion washed out<br />

the colluvium or exposed fresh outcrops of the bedrock. Downstream, the debris flows<br />

removed most of the forest vegetation along the channels, which supposes an important<br />

input of large woody debris (LWD) to the system. The vertical erosion and transport of debris<br />

flows was intense, mostly manifested on the heads of the original fans as fan head trenches<br />

(example zone 5: analysed channel 100 m long with 10 m wide, an average slope by almost<br />

20° defining between 3-4 m of vertical erosion). A large amount of fresh sediment marks and<br />

scars on trees defines the maximum flow heights were observed in channel reaches where<br />

quartzite outcrops. At these sites, we also estimated peak discharges using the methods<br />

described above (see Figure 1). The total discharge contributing to the main fan was<br />

419.2m³/s.<br />

The sediment zone: The main deposition is located at the junction of four feeder valleys and<br />

fan heads covering the upper and middle parts of the main valley. The 1-3 m thick deposition<br />

covered a surface 500 m in length and 20-50 m in width of an old debris fan, defining a<br />

volume of roughly 75,000m 3 . Clasts do not display impact marks, suggesting that the flow<br />

was laminar. Sand and pebbles occupy the interstices between the boulders and cobbles.<br />

The existing ski resort operated as an obstacle to the flow which led to its deceleration and<br />

mass deposition as well as to flow bifurcation. This infrastructure was seriously damaged by<br />

the flowing mass which penetrated inside and deposited there an up to 1-2 m thick layer. The<br />

fan toe, used as a parking area, was impacted by the mixed gravel-sandy and LWD deposition<br />

up to 0.5 m thick and 39 cars have been removed and damaged by the debris-flow current.<br />

The main very coarse (boulder-cobble) debris-flow mass followed the main, fourth-order<br />

channel and moved downstream. On the fan-toe with an average of 11° gradient, the already<br />

entrenched channel (ca. 3 m) incised again into bedrock (up to 1 m), doubled its width (up to<br />

15 m) and undercut the access road. Several cars from the parking area were thereby<br />

damaged.<br />

Suspended load sediment-laden floodwater zone: This area exhibits a different response to<br />

the debris-flow event in comparison with those previously mentioned. The upper part of this<br />

zone is ca. 1,700 m long with a relatively wide valley floor (100-150 m), unconfined channel,<br />

relatively low banks and low slope (on average 1.5°) inhibited further transport of coarse<br />

mass within the channel. However, the trash lines, avulsions and sandy deposition reflect the<br />

flood demine of the suspended sediment load during the prevailing time of the debris flow<br />

event. Downstream along the ca. 800 m gorge the flow eroded the route at several places so<br />

that it was unpassable for cars. At this level, peak discharge was reconstructed at 103 and<br />

117.5 m³/s for sites 5 and 6, respectively. According to official reports, 20,000 m³ of the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 199


deposited material has been removed, ca. 5 km of the Vrátňanka Brook including the reaches<br />

in Terchová village had to be channelized again after the event resulting in overall costs of<br />

restoration works of 12 M€.<br />

Meteorological context and trigger<br />

Figure 1: Geomorphological sketch of the Vratna Dolina catchment. The cross section 1 to 6 represent the location were the peak<br />

discharges were reconstructed.<br />

From a meteorological perspective, the synoptic situation related with this extreme debrisflow<br />

event is characterized by a shallow trough of low pressure spread from the North Sea<br />

over the Alpine and Carpathian areas on 20 July 2014, which moved over SE Moravian and<br />

W Slovakia the subsequent day (Figure 2). At the same time, warm and humid air masses<br />

crossed Slovakia, and a low pressure system at high atmospheric layers in N Italy left an<br />

unstable vertical distribution of air pressure. The co-occurrence of convergent air circulation,<br />

air humidity, and convection systems left intense and short-lived precipitation over the Malá<br />

Fatra region. According to rainfall data from the local gauge station, the core of the downpour<br />

occurred from 15:30 to 17:00 with 52 mm (daily total 62 mm). The course of the downpour<br />

indicates two rainfall events/waves: a first one 15:30 - 16:05 with 18 mm and a second one<br />

from 16:05 to 17:00 with 34 mm. At short term, the maximum rainfall intensity that took<br />

place during the first wave was between 50–60 mm/h, and during the second wave almost<br />

60–80 mm/h.<br />

200 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Surface field pressure retrieved from E-OBS dataset and daily area-average precipitation at the study site for the entire month<br />

(TRMM dataset).<br />

Past debris flow activity at the study site<br />

Despite of the lack of gauge station records, historical archives suggest that similar large flow<br />

events could have taken place in the catchment in 1848 (Kapasný, 2008). Tree-ring analysis<br />

suggests that in recent decades, at least six events occurred on the two cones located in the<br />

upper ski resort. The oldest event on cone 1 was dated at 1959 (1965 on cone 2) and the<br />

youngest to 1998 (2008 on cone 2). Synchronous process activity on both cones occurred in<br />

1965 and 1991. The event chronologies on both cones are shown in Figure 3. This paleoreconstruction<br />

suggests a recurrence interval of 9.2 years for cone 1, and 7 years for cone 2<br />

over the last ~50 yrs.<br />

Figure 3: The chronologies of past events on both studied cones. Full black line – sure event (Wit ≥ 1 and at least two trees with signal<br />

in tree ring series), dashed black line – probably event (at least two trees with signal but Wit < 1)<br />

CONCLUSIONS<br />

The field surveys carried out after the event coupled with available aerial pictures and<br />

different climatological dataset have allowed to quantify and describe the extreme debris flow<br />

in Vratna Dolina during July 2014. We have described the geomorphic imprint of this event,<br />

and evaluated its erosion, transport and sedimentation capacity. Our observation and<br />

quantification revels that both large amount of sediment and woody debris were transported<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 201


during the event, with a major deposition zone that matches with the location of the ski<br />

resort facilities. The subset of observations here reported can be used to calibrate debris flow<br />

models (i.e. RAMMS model) and provide reliable scenarios for future extreme events, which<br />

could then be used to help the planning and implementation of future infrastructure<br />

development in the region. Moreover, our observation related with climate-linkages and<br />

meteorological triggers could be used to improve our understanding of rainfall threshold for<br />

triggering extreme debris flow events in the region, and consequently useful for early<br />

warning system proposes. Therefore, despite the exceptional weather conditions during the<br />

event, we could report historical and tree-ring records suggesting that debris-flow events<br />

have taken place frequently in the area.<br />

Our observations can be used to provide inputs for the modeling of extreme scenarios which<br />

could then be used to help the planning and implementation of future infrastructure<br />

development in the region. Moreover, our outcomes can be used to improve our understanding<br />

of climate-extreme event linkages in European mountains.<br />

REFERENCES<br />

- Ballesteros-Cánovas, J.A. Stoffel, M. St. George, S. Hirschboeck, K. (2015). A review of<br />

flood records from tree rings. Progress in Phisical Geogrpahy. In press.<br />

- Jakob M., Hungr O., Jakob D.M. (2005). Debris-flow hazards and related phenomena.<br />

Berlin, Springer.<br />

- Marchi, L., Cavalli, M. (2007). Procedures for the documentation of historical debris flows:<br />

application to the Chieppena Torrent (Italian Alps). Environmental management 40(3):<br />

493-503.<br />

- Rickenmann, D. (1999). Empirical relationships for debris flows. Natural hazards 19(1):<br />

47-77.<br />

- Stoffel, M., Corona, C., 2014. Dendroecological dating of geomorphic disturbance in tress.<br />

Tree Ring Res. 70, 3-20.<br />

- Webb RH., Jarrett RD. (2002). One Dimensional Estimation Techniques for Discharges of<br />

Paleofloods and Historical Floods. Ancient Floods, Modern Hazards: 111-125.<br />

202 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Modeling rockfall trajectories with non-smooth<br />

contact/impact mechanics<br />

Perry Bartelt 1 ; Werner Gerber 2 ; Marc Christen 2 ; Yves Bühler 1<br />

ABSTRACT<br />

Rockfall is an increasing problem in many mountainous regions throughout the world.<br />

In Switzerland during the summer of 2015 we observed escalating rockfall activity due to<br />

exceptionally warm temperatures and degradation of permafrost. Consistent and reproducible<br />

calculation methods are urgently required to predict rockfall inundation areas for hazard<br />

mapping and mitigation measure planning. In this paper we examine the use of non-smooth<br />

contact/impact mechanics to model the trajectory of falling rocks. Non-smooth mechanics<br />

parameterize the mechanical resistance of ground with consistent frictional parameters.<br />

These parameters account for rock shape and different rock propagation modes such as<br />

rolling, skipping, jumping and sliding; enabling a the characterization of different ground<br />

types, varying from extra soft to extra hard. We apply the new method to back-calculate a<br />

well-documented rockfall event demonstrating the important role of ground parameterization<br />

and rock shape in rockfall intensity mapping.<br />

KEYWORDS<br />

rockfall dynamics; modeling; hazard assessment<br />

INTRODUCTION<br />

The preparation of rockfall hazard maps and the planning of mitigation measures require<br />

reliable and consistent methods to predict rockfall runout, velocities and energies (Dorren,<br />

2003; Volkwein et al., 2011). To date, rockfall modeling is based primarily on empirical<br />

shadow angle type methods (Glover, 2014) or lumped-mass/rigid-body type approaches<br />

(Schweizer, 2015). Discrete element methods that model the rock impact-rebound process<br />

using elastic-inelastic contact stiffness have also been applied to the rockfall problem (An and<br />

Tannant, 2007; Thoeni et al., 2014). These methods have been calibrated to a significant<br />

degree such that they can be applied to solve many practical problems.<br />

But a significant problem with existing rigid-body rockfall models is that the rock-ground<br />

interaction is based on simple rebound physics. Coefficients of restitution are used to define<br />

the relationship between the incoming rock velocity and the post-impact velocity vector. The<br />

restitution coefficients therefore define the jump direction, height and length. This information<br />

is used directly in the preparation of hazard maps.<br />

1 WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, SWITZERLAND, bartelt@slf.ch<br />

2 Swiss Federal Institute for Forest, Landscape and Snow Research WSL<br />

3 WSL Institute for Snow and Avalanche Research SLF<br />

IP_<strong>2016</strong>_FP026<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 203


The implicit assumption of rebound physics, however, is that rocks jump, a-priori. The entire<br />

rock-ground interaction is condensed to a single time point. Rocks do not slide or roll and<br />

remain in contact with the ground. Some rigid-body models account for rock rotations in the<br />

in-flight phase, but the influence of rock rotations during impact is generally ignored as the<br />

restitution coefficients are defined with respect to the translational velocity. The restitution<br />

coefficients are independent of the impact configuration, which depends on the rock shape<br />

and rock orientation at the time of impact (Glover, 2015).<br />

To overcome this problem, many rockfall models use stochastic methods to describe the<br />

rock-ground interaction. Random number generators that account for the variability of the<br />

impact process essentially produce restitution coefficients. It is argued that the ground is<br />

variable and therefore the restitution coefficients must likewise vary. The variability of the<br />

impact configuration (rock size, shape, orientation, rotation) is not considered. Because rocks<br />

roll and slide before stopping (Fig. 1), many rigid-body approaches must also adopt ad-hoc<br />

stopping procedures to reproduce the observed runout distance.<br />

The use of simple rebound physics coupled with ad-hoc stopping procedures limits the<br />

practical relevance and use of rockfall models. For example, important information from field<br />

observations (rock size, shape, scar length, scar depth, jumping, sliding, rolling motion)<br />

cannot be used to define consistent rockfall model parameters. It is therefore difficult to transfer<br />

modeling results from one geomorphological setting to another.<br />

Figure 1: The rockfall model RAMMS::ROCKFALL applies non-smooth contact impact mechanics to the rockfall problem. Rock trajectories<br />

in three-dimensional terrain are calculated with variable rock shapes. Rock rotations and ground sliding are considered.<br />

204 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


METHODS: NON-SMOOTH CONTACT/IMPACT MECHANICS<br />

To overcome this problem, newly developed methods to treat the contact and impact were<br />

applied to the rockfall problem (Schweizer, 2015). The methods were introduced in the<br />

natural hazard program RAMMS (Christen et al. 2012) and applied to model observed<br />

rockfall events. The components of the model are:<br />

– Rock shape, size and impact configuration. Rocks are described by point clouds that<br />

represent the complex surface topology (Fig. 2). Rocks can therefore have different forms,<br />

varying from equant to plate like. Rock size can vary from 0.5 m 3 (rockfall) up to 100 m 3<br />

(blockfall). Impact forces are applied on the rock surface, depending on the impact<br />

configuration, leading to rock rotations and a natural modeling of lateral dispersion.<br />

– Rock rotations, quaternions and gyroscopic forces. Rock rotations are considered not<br />

only in the in-flight phase, but also during the contact/impact phase. Thus, rolling and<br />

sliding can be modeled. Computationally efficient quaternion algebra is used to define the<br />

orientation of the rock. Gyroscopic forces resulting from the rock rotations will upright<br />

plate-like rock shapes producing dangerous wheel-type trajectories.<br />

– Set-valued contact laws with friction. Set-valued force laws are used to describe<br />

stick-slip type phenomena (Fig. 2). They allow sliding with friction. These laws are essential<br />

to initiate rock-jumping and therefore long rock runout. Set-valued force laws are<br />

non-stochastic and therefore can be transferred to similar terrain. Restitution coefficients<br />

are not used to parameterize the rock-ground interaction, rather the sliding friction<br />

parameters. Soft ground allows more sliding and therefore true rock stopping without<br />

ad-hoc conditions.<br />

PARAMETERIZATION OF GROUND FRICTION<br />

The most significant difference between rebound models and non-smooth contact/impact<br />

models is the parameterization of ground friction. Rebound models simulate ground hardness<br />

with apparent restitution coefficients that describe the bounciness of the terrain for a single<br />

impact and point. In non-smooth models, ground impact is considered over a finite sliding<br />

distance s , which we term the scarring length (Fig. 2). The scarring length s is defined when<br />

any point on the surface of the rock is in contact with the ground. Contact is not defined with<br />

respect to the rock’s center-of-mass, rather with respect to the complex surface geometry of<br />

the rock. Contact forces, including friction, are therefore introduced at the surface of the rock<br />

and cause rock rotations. The magnitude of the rotation at exit (when the rock departs the<br />

scar) are therefore dependent on the orientation of the when it hits the ground. A restitution<br />

coefficient ε is applied at the rock surface to account for energy dissipation in the normal<br />

direction. The model uses ε = 0 (fully plastic) for all terrain types. Bounce heights are purely<br />

a function of the impact orientation and the friction in the tangential direction. Hard ground<br />

does not allow sliding and therefore produces bouncing modes of propagation. The ground<br />

scar is being created at the speed and given by<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 205


⎧ v<br />

s = ⎨<br />

⎩−<br />

βs<br />

if contact<br />

if no contact<br />

Equation 1<br />

where ⎧ v is the sliding speed of the rock and β is a parameter controlling ramping effects,<br />

⎨<br />

created when ground material is being displaced during the scar formation. When the ground<br />

is soft β is small because the ground is softer and the rock remains in contact with the ground<br />

longer (Fig. 2). The scar parameter β serves to extend the time that ground friction, or any<br />

other drag process, operates on the rock. It is therefore a useful parameter to describe<br />

low-lying vegetation layers in forests.<br />

Figure 2: a) The interaction of the rock with the ground interface involves prolonged frictional sliding. This complex process is not<br />

governed by apparent restitution coefficients, rather mechanical properties of the ground under large deformation and strain-rates.<br />

Impulsive rebound forces coupled with frictional torques induce rock rotations leading to skipping/spinning-type propagation modes. b)<br />

Coulomb friction is parameterized as a function of the sliding distance using four parameters: μ min , μ max , κ and β. An additional<br />

velocity dependent drag ν accounts for viscous strain-rate effects during ground penetration/deformation.<br />

When the rock is in contact with the ground friction is described by a combination of<br />

Coulomb friction S N and viscous friction S V . These forces act in the tangential direction; that is,<br />

in the direction opposite to the rock velocity. The Coulomb friction coefficient μ(s) for s > 0 is<br />

given by the transcendental function<br />

2<br />

= .<br />

µ ( s)<br />

µ<br />

min<br />

+ ( µ<br />

max<br />

− µ<br />

min<br />

) arctan( κs)<br />

π<br />

Equation 2<br />

This function contains three parameters: μ min , μ max and κ , see Fig. 2. The parameter μ min<br />

defines the initial friction at the beginning of the ground interaction. Softer ground has lower<br />

μ min values. We then assume that during the ground interaction that the rock penetrates the<br />

ground and because of confining pressures ground material cannot be easily displaced out of<br />

the scar. This leads to an increase of friction, or scar hardening. The maximum friction is<br />

defined by μ max which we regard as a limit friction value, constant for all soils, but very low for<br />

easily deformable and porous ground materials like snow. An important parameter is κ which<br />

defines how a quickly the ground material changes from μ min to μ max which is a function of<br />

how easily a ground material compresses (in the sliding direction) during ground penetration.<br />

206 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


/<br />

/<br />

/<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

compresses (in the sliding direction) during ground penetration. These parameters may well be<br />

seasonally dependent, for example, a function of whether the ground is froen or unfroen, or a<br />

These function parameters of the water content. may well be seasonally dependent, for example, a function of whether the<br />

ground is frozen or unfrozen, or a function of the water content.<br />

The Coulomb friction friction term is supplemented term is supplemented with a viscous, rate-dependent with a viscous, friction, rate-dependent friction<br />

S V<br />

= −νM v<br />

Equation 3<br />

Equation 3<br />

where M is the total mass of the rock and ν is the viscous drag coefficient. The softer the<br />

where M is the total mass of the rock and ν is the viscous drag coefficient. The softer the ground,<br />

ground, the larger is the viscous coefficient.With this five parameter frictional model it is<br />

the larger is the viscous coefficient.<br />

Table TABE 1: 1 Ground categories and associated friction parameters in the RAMMS::ROCKFALL program<br />

Category Picture Description Parameters Category Picture Description Parameters<br />

With this five parameter frictional model it is possible to establish seven general ground<br />

Extra Soft<br />

Very wet ground. µmin: 0.2 Medium<br />

Rocks jump.<br />

µmin: 0.4<br />

Moor categories: Extra Soft, Soft, Cannot edium cross Soft, without edium, µmax: edium 2 Hard, Hard and Extra Hard, see Table Penetration depths are µmax: 2<br />

deep sink-in.<br />

β: 50 Shallow<br />

small. Ground is flat. β: 175<br />

1. These categories differ in the degree of a) sliding<br />

κ:<br />

friction,<br />

1<br />

b) bounciness, Meadow c) ground contact time Rocky debris is present. κ: 2.5<br />

ν: 0.9<br />

Non-paved mountain<br />

and d) viscous drag. epending on the rock-ground impact configuration, different propagation<br />

v: 0.5<br />

roads.<br />

Soft modes can result, varying from Soft ground extreme with braking many in soft µmin: terrain 0.25 (Extra Hard Soft) to extreme umps on Rocks jump over<br />

Moist, deep<br />

deep soil layers. Ground µmax: 2 Rock scree<br />

ground. Mixture of large<br />

Meadow hard ground (Extra Hard). An contains eighth no category, large rock Snow, β: was 100 especially introduced to account for and small rocks.<br />

fragments. Often very κ: 1.25<br />

Usually without<br />

extremely low friction sliding moist. modes. Foot indundations ν: 0.8<br />

vegetation.<br />

/<br />

remain and are visible.<br />

/<br />

The parameter values were determined using a combination of labortory tests, experimental<br />

Medium<br />

Rocks penetrate µmin: 0.3 Extra Hard<br />

Ground is very hard<br />

Soft investigations in the field and meadow application surface on leaving documented µmax: 2 case studies Rockface (Glover, / 2014). Clearly, and is marginally<br />

Deep<br />

impact scars. Soil is β: 125 Bedrock<br />

deformed by rocks.<br />

Meadow more work will be performed deep, in this few direction rock in the near future.<br />

κ: 1.5<br />

Rockface and paved<br />

fragments.<br />

ν: 0.7<br />

roads.<br />

/ /<br />

Medium FIGURE 3<br />

Meadow is deep, but µmin: 0.35 Snow<br />

Rocks slide on snow<br />

Meadow<br />

contains rock fragments. µmax: 2<br />

surface.<br />

As shown in Fig. 3, the different The meadow ground can categories be result β: not 150 only in different runout distances, but<br />

covered with vegetation. κ: 2<br />

also propagation velocities and spreading behavior. v: In this 0.6 example an ideal 30 o slope was used to<br />

compare the different hardness categories. An equant shaped rock was used and started with<br />

different orientations. The large spread in traectories, especially in hard terrain, is therefore<br />

possible obtained by to changing establish the initial seven conditions general and ground not by random categories: rebound coefficients Extra Soft, during Soft, the Medium Soft,<br />

Medium, process modeling. Medium Hard, Hard and Extra Hard, see Table 1. These categories differ in the<br />

degree of a) sliding friction, b) bounciness, c) ground contact time and d) viscous drag.<br />

Depending<br />

Results: The<br />

on<br />

Brien<br />

the rock-ground<br />

(GR) case study<br />

impact configuration, different propagation modes can result,<br />

varying from extreme braking in soft terrain (Extra Soft) to extreme jumps on hard ground<br />

The village of Brien, Canton Grisons (GR), Switerland is the site of much on-going rockfall activity.<br />

(Extra Hard). An eighth category, Snow, was especially introduced to account for extremely<br />

n uly 24, 2014 a 94 ton, 34 m 3 plate-like rock detached from the upper limestone layer (1650 m<br />

low friction sliding modes.<br />

The parameter values were determined using a combination of labortory tests, experimental<br />

investigations in the field and application on documented case studies (Glover, 2014).<br />

Clearly, more work will be performed in this direction in the near future.<br />

As shown in Fig. 3, the different ground categories result not only in different runout<br />

distances, but also propagation velocities and spreading behavior. In this example an ideal 30°<br />

slope was used to compare the different hardness categories. An equant shaped rock was used<br />

and started with different orientations. The large spread in trajectories, especially in hard<br />

terrain, is therefore obtained by changing the initial conditions and not by random rebound<br />

coefficients during the process modeling.<br />

µmin: 0.55<br />

µmax: 2<br />

β: 185<br />

κ: 3<br />

v: 0.4<br />

µmin: 0.8<br />

µmax: 2<br />

β: 200<br />

κ: 4<br />

v: 0.3<br />

µmin: 0.1<br />

µmax: 0.35<br />

β: 150<br />

κ: 2<br />

v: 0.7<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 207


Figure 3: Simulation results using equant shaped rocks for three different ground categories: soft, medium and hard. Runout distances<br />

and calculated velocities. Note that spreading increasing with increasing hardness. The statistics are based on the maximum velocity<br />

in traversed cell.<br />

Figure 4: Disposition of the Brienz case study. On July 24, 2014 a large, plate-shaped limestone rock released and travelled to the<br />

road. Insets: the release zone, destroyed larch forest and toppled rock. The scar width indicated a wheel-like rolling propagation mode.<br />

208 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RESULTS: THE BRIENZ (GR) CASE STUDY<br />

The village of Brienz, Canton Grisons (GR),<br />

Switzerland is the site of much on-going<br />

rockfall activity. On July 24, 2014 a 94 ton,<br />

34 m 3 plate-like rock detached from the<br />

upper limestone layer (1650 m a.s.l.) and<br />

descended down 800 m to the outskirts of<br />

the village (1150 m a. s.l.), barely stopping at<br />

the road connecting Davos and Lenzerheide<br />

(Fig. 4). The instable limestone layer is<br />

located above a deforming Schist stratum of<br />

Bündnerschiefer. The rock accelerated on the<br />

steep, transition zone covered with rock<br />

debris, possibly reaching peak velocities up to<br />

50 m/s. The rock crashed into an old larch<br />

forest, knocking over several trees before<br />

decelerating and stopping on a flat meadow,<br />

located next to the road (Fig. 4).<br />

Immediately after the event, a laser scanning<br />

of the visible portion of the rock was<br />

performed and ground scarring on the<br />

runout meadow documented. The width and<br />

length of the penetration scars indicated a<br />

skipping, rotating wheel-like propagation<br />

mode before the rock lost velocity and<br />

toppled to its final resting place (Fig. 4).<br />

Simulations of the Brienz rockfall event using<br />

RAMMS::ROCKFALL were used to parameterize<br />

ground friction. The laser scanned rock<br />

was used to define the exact shape and<br />

dimensions of the rock (Fig. 5). In the<br />

simulations 500 rocks with different<br />

orientations were released from the point<br />

release zone identified in the field observations.<br />

Figure 5: Role of rock shape on rockfall runout. Equant shaped<br />

rocks have, in general, the farthest runout distances. However, the<br />

real plate-shaped rock can also propagate large distances when it<br />

attains “wheel-rolling” modes.<br />

The simulations revealed that long runout was only possible only if the rock managed to<br />

become upright and rotate around the wheel axis. For the terrain parameterization, category<br />

Hard was used in the release zone (limestone and schist stratums), Medium Hard in the<br />

transition zone (rock debris) and Medium Soft in the runout zone (Meadow). With this<br />

ground parameterization it was possible to model the observed runout, as well as the<br />

skipping propagation mode before the rock stopped. As in reality the simulated rock loses<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 209


otational stability at the end, wobbles and then topples on it side. Although the rock reached<br />

peak velocities of 50 m/s in the transition, mean velocities were considerably lower, approximately<br />

30 m/s. Rotational velocities in the runout zone are only 4 rad/s (approximately half<br />

a rotation per second).<br />

To demonstrate the importance of rock shape, elongated and equant rock shapes were tested<br />

with the same ground parameterization (Fig. 5). Elongated rocks had similar runout<br />

distances, but exhibited larger lateral spreading. Similar to the real (platy) form, many rocks<br />

stopped shortly after transgressing the transition zone. This was not the case for the equant<br />

shaped rocks: almost all rocks reached the runout zone and travelled slightly farther than<br />

both the platy and elongated forms.<br />

CONCLUSIONS<br />

Rockfall dynamics has traditionally relied on restitution coefficients to model rock-ground<br />

interactions. In contrast, non-smooth contact/impact models invoke friction laws to describe<br />

rock penetration and sliding. The frictional forces are applied on the surface of the rock,<br />

allowing the inclusion of rockshape into rockfall analysis. The main consequences of this new<br />

mechanical description are:<br />

Firstly, and most importantly, non-smooth models simulate the complexity of the impact<br />

configuration that lead to the multitude of different rock propagation modes that govern<br />

rockfall: skipping, sliding, jumping and rolling. Rotational speeds and jump heights can<br />

increase or decrease, depending on the impact configuration, a fact supported by numerous<br />

observations (Glover, 2014). Modeling this behavior is required to determine the onset of<br />

stopping, which in stochastic rebound models is based on ad-hoc and user-defined cutoff<br />

criteria to bring to a halt the unlimited process of elastic rock bouncing.<br />

The second consequence of non-smooth contact/impact mechanics is the possibility to model<br />

the mechanical properties of ground with consistent parameters associated with physical<br />

processes such as (1) material strength (μ min ,μ max ), (2) material hardening leading to ramping<br />

and rock ejection (κ), (3) viscous, strain-rate dependent material behavior (ν) and (4)<br />

material weakening/softening at release (β). With these parameters it is possible to characterize<br />

different ground types, varying from extra soft (highly dissipative ground that can stop all<br />

rock shapes) to extra hard (where only rocks of non-equant shapes can be stopped realistically).<br />

Non-smooth contact/impact mechanics offers the possibility of modeling tree and stump<br />

impact with new physical models.<br />

These two features of non-smooth contact/impact mechanics facilitate a realistic modeling<br />

of the variance of rockfall. It is necessary to understand this variance in order to develop<br />

better and more consistent methods of risk based hazard mapping.<br />

The hard contact approach is more computationally demanding that simple rebound<br />

methods. The calculation of a single trajectory requires approximately 1 second on a<br />

standard desk-top computer. However, the computation time can increase when rocks slide<br />

and remain in contact with the ground. In our applications we are finding that the statistical<br />

distributions do not vary after several thousand rocks are used. In fact sometimes only<br />

210 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


500 rocks are needed to obtain stable statistical values. For single slope domains the<br />

computational time is therefore not prohibitative; for large scale hazard mapping shadow<br />

angle methods will continue to provide the best computation times for large area analysis.<br />

The application of non-smooth contact/impact mechanics to the rockfall problem is now in its<br />

initial phase. Even at this stage, however, we believe the future impact on rockfall science,<br />

engineering and practice will be significant. One development that we are observing is an<br />

increased interest in rockfall experiments and examination of rockfall events in the field.<br />

Experimental measurements (e.g.to obtain rotational speed as a function of ground type) and<br />

field observations (e.g. documentation of scar lengths, rock shapes and jump lengths) can be<br />

used directly to calibrate non-smooth model parameters. Key is the modeling of rock<br />

jumping, rolling and sliding in three-dimensional terrain without introducing stochastic and<br />

non-physical rebound coefficients.<br />

REFERENCES<br />

- Dorren, L. K. (2003). A review of rockfall mechanics and modeling approaches.<br />

Progress in Physical Geography, 27(1), 67-87.<br />

- Leine, R. et al. (2015). Simulation of rockfall trajectories with consideration of rock shape,<br />

Multibody Syst Dyn (2014) 32:241–271, DOI 10.1007/s11044-013-9393-4.<br />

- Schweizer, A. (2015). Ein nichtglattes mechanisches Modell für Steinschlag, Dissertation,<br />

ETH Zürich, Switzerland.<br />

- Glover, J. (2014). Rock-shape and its role in rockfall dynamics, Doctoral Thesis,<br />

Durham University.<br />

- Christen, M. et al. (2012). Integral hazard management using a unified software<br />

environment: numerical simulation tool „RAMMS“ for gravitational natural hazards.<br />

In: G. - Koboltschnig, J. Hübl and J. Braun (Editors), Interpraevent, pp. 77 - 86.<br />

Volkwein et al. (2011). Rockfall characterisation and structural protection-a review,<br />

Natural Hazards and Earth System Sciences, 11.<br />

- An, B. and D. Tannant (2007), Discrete element method contact model for dynamic<br />

simulation of inelastic rock impact, Computers & Geosciences 33 (2007) 513–521.<br />

Thoeni, K. et al., (2014), A 3D discrete element modelling approach for rockfall analysis with<br />

drapery systems, International Journal of Rock Mechanics and Mining Sciences, 68, 107-119.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 211


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

A comparison of physical and computer-based debris<br />

flow modelling of a deflection structure at Illgraben,<br />

Switzerland<br />

Catherine Berger, Ph.D. 1 ; Marc Christen, Dipl. Ing. 2 ; Jürg Speerli, Prof. Ph.D. 3 ; Guido Lauber, Ph.D. 4 ; Melanie Ulrich, MSc FHO<br />

in Engineering 5 ; Brian W. McArdell, Ph.D. 6<br />

ABSTRACT<br />

On the fan of the Illgraben (Switzerland), settlements and infrastructure are endangered by<br />

large debris flows. A protection concept was therefore elaborated to partially deflect large<br />

debris flows into a forest for deposition and in order to reduce discharge and flow volume<br />

in the channel on the fan. Because deflection structures for debris flows are uncommon,<br />

a physical model was built at a scale of 1:60 to test functionality and optimize the design.<br />

Afterwards, the computer-based model RAMMS::DEBRIS FLOW was compared with the<br />

physical model results and to further analyze functionality and robustness especially for rare<br />

debris flows. In general, the numerical model runs with RAMMS showed a similar flow<br />

behavior as in the physical experiments, and separation effects of the deflection structure<br />

were confirmed. The standard Voellmy model was not able to reproduce the constant<br />

velocities found in the experiments before the dosing structure. Therefore, a version of the<br />

Voellmy model including cohesion was used and showed good agreement with the physical<br />

modelling.<br />

KEYWORDS<br />

Debris Flow; physical modelling; computer-based modelling; protection measures<br />

INTRODUCTION<br />

The Illgraben (Switzerland) experiences several debris flows per year and is one of the most<br />

active torrents in the Alps. The village Susten located on the Illgraben fan is endangered by<br />

large debris flows and protection measures are required. In the present protection concept,<br />

large debris flows shall be partially deflected into the Pfyn Forest for deposition. Smaller<br />

debris flows, not exceeding the channel capacity on the fan, will continue to flow into the<br />

River Rhone. Due to the complex processes, the functionality and geometry of the deflection<br />

structure were studied in a physical model. Afterwards, the initial and final geometry of the<br />

1 Emch+Berger AG, Spiez, Switzerland, spiez@emchberger.ch; today working for geo7 AG, Bern, Switzerland<br />

2 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland<br />

3 HSR Hochschule für Technik, Rapperswil, Switzerland<br />

4 Emch+Berger AG, Spiez, Switzerland<br />

5 HSR Hochschule für Technik, Rapperswil, Switzerland<br />

6 WSL Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland<br />

212 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP027


deflection structure were evaluated using the computational runout model RAMMS::DEBRIS<br />

FLOW to compare flow behavior and functionality of both model approaches.<br />

Figure 1: Overview of the Illgraben catchment and fan including physical model perimeter, instrumentation of the observation station,<br />

event scenarios and overview on the performed modellings (marked with “x” where the method was applied).<br />

STUDY SITE<br />

The Illgraben catchment (10.3 km 2 , Figure 1) located in southwestern Switzerland in the<br />

community of Leuk extends from 2716 m asl at the Illhorn to the outlet of the Illgraben into<br />

the Rhone River at 610 m asl. The climate is temperate-humid and influenced by the rain<br />

shadow effect within an interalpine valley which generates relatively low annual precipitation.<br />

Several debris flows occur every year and are initiated in the steep sub-catchment<br />

(4.6 km 2 ) on the north face of the Illhorn where abundant sediment is available (Berger et<br />

al., 2011) and annual sediment transport into the Rhone River is about 70,000 m³ (Badoux et<br />

al., 2009). The Illgraben fan has a radius of about 2 km with channel slopes of 6 % to 10 %.<br />

In the catchment and upper third of the fan, the channel is deeply incised and normally has<br />

a double-trapezoidal shape with a low and high water zone. On the lowest part of the fan, a<br />

single trapezoidal-shaped channel is observed and discharge capacity is reduced considerably.<br />

About 30 check dams stabilize the channel on the fan and of the lower trunk channel in the<br />

catchment. The village Susten and a settlement below the fan apex are located on the right<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 213


side of the fan and are partially within the highly (red) and intermediate (blue) danger areas<br />

according to Swiss guidelines for hazard zonation (BUWAL, 1998). The left side of the fan is<br />

covered by the Pfyn Forest which is part of the Federal Inventory of Landscapes and Natural<br />

Monuments of National Importance of Switzerland. A debris flow observation station is run<br />

by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL since 2000 and<br />

a large variety of flow types have been observed (McArdell et al., 2007; Badoux et al., 2009).<br />

DESCRIPTION OF PROTECTION MEASURES<br />

After defining event scenarios (Figure 1), hazard maps and initial protection concepts were<br />

elaborated. Due to very frequent debris flows and large expected volumes, retention of the<br />

debris in the catchment is inappropriate. Conveying very large debris flows into the River<br />

Rhone by enlarging the present channel may cause undesired backwater effects in the Rhone<br />

and stopping of debris flows on the fan, and consequent outbreak and flooding of settlements<br />

and infrastructure could be expected as a consequence. Therefore, we focused on a partial<br />

deflection of large, endangering debris flows at the fan apex in order to reduce peak discharge<br />

in the present channel. Smaller debris flows not exceeding the capacity of the channel on the<br />

fan will remain in the channel and flow into the River Rhone.<br />

Within the protection concept, all debris flows are led to the deflection structure through a<br />

broad channel (discharge area 300 m 2 ) stabilized with check dams (Figure 2). The deflection<br />

structure is located in a tight curve (radius about 30 m) and consists of a crossover duct /<br />

breach joining the channel with the Pfyn Forest and a dosing dam. Because of their inertia<br />

and front height, large debris flows are intended to overshoot the curve and flow into the<br />

crossover duct and are thereby partially deflected into the forest for deposition. Smaller debris<br />

flows pass the dosing structure and are conveyed to the present streambed through a smaller<br />

channel (discharge area 45 m 2 ) stabilized with a slightly steeper block ramp and check dams.<br />

A simplified geometry with trapezoidal channel shapes and channel slopes at 6 % were used<br />

for modelling and initial planning. Minimum channel capacity on the fan and back-calculations<br />

of events where backwater effects in the River Rhone were dominant, were used for<br />

dimensioning and to estimate the activation point of the deflection structure: annual and<br />

frequent debris flows are conveyed back to the present channel and flow into the River<br />

Rhone, whereas for medium events (Figure 1) the deflection is activated. The activation<br />

threshold was set at a discharge area of 45 m 2 and equals the capacity of the lower trapezoid<br />

in the broad channel or of the channel returning to the present streambed.<br />

The volume of debris-flow material deflected into the Pfyn Forest will increase with front<br />

speed and front height. However, it is important that dosage of debris flows is governed by<br />

maximum discharge or wetted area and a direct control on the deflected volume is not<br />

possible. Therefore, debris flows with a comparatively small front or several smaller surges<br />

would not be deflected and could transport large debris volumes into the River Rhone and<br />

backwater effects therefore cannot be excluded.<br />

214 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


PHYSICAL MODELLING OF THE DEFLECTION<br />

Because deflection structures for debris flows are uncommon, a physical model was built at<br />

a scale of 1:60 (Figure 2) to test functionality and optimize the design (Berger et al., 2014).<br />

Due to the large event volumes and physical limitations, modelling was limited to events<br />

within the activation range of the deflection structure and therefore to frequent events<br />

(redirection of the flows to the present channel / no activation) and medium events (deflection<br />

activated, Figure 1). For these events, target values based on event scenarios, derived<br />

from measured events at the observation station and field estimates were defined for model<br />

Figure 2: Initial model (left) and final model (right) of the deflection structure with indication of the structural elements and performance<br />

at medium events. Circle A: impact and surging on the left wall of the dosing structure, circle B: superelevation of the surface in the<br />

curve.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 215


calibration and analysis of the model results. Sediment mixture, volume and discharge were<br />

scaled using Froude similarity, and flow properties (height, velocity, volume deflected) were<br />

measured at several locations. Reduced volumes (Figure 1) were used because the tail of a<br />

debris flow is not controlling the main functionality of the deflection structure, and target<br />

peak discharges were obtained with smaller volumes.<br />

For the initial geometry (Figure 2), the following behavior was observed:<br />

– Smaller debris flows (frequent events) below the activation threshold of the deflection<br />

were reverted to the present channel without overtopping of the banks downstream of the<br />

dosing structure. However, debris material was deposited in the breach by spillover.<br />

– Larger debris flows (medium events) activated the deflection. However, the flow impacted<br />

and surged on the left wall of the dosing structure (Figure 2, circle A).<br />

Improvements were therefore needed, mainly with respect to flow behavior and<br />

separation effects. Consequently, the geometry was optimized iteratively in six model setups<br />

and a total of 40 experiments, to optimize the functionality and robustness of the structure.<br />

In the final geometry, the following features were changed compared to the initial<br />

model (Figure 2):<br />

– The breach was rotated downstream to reduce impact on the dosing structure.<br />

– The leading part of the left side of the dosing structure was designed without banks to<br />

reduce impact and surging.<br />

– The channel bed in the breach was raised by 1 m to account for superelevation and obtain<br />

less deposition in the breach during events below the activation threshold of the deflection.<br />

COMPUTER-BASED MODELLING OF THE DEFLECTION<br />

A computational model was used for comparison with the physical modelling and to analyze<br />

functionality and robustness for rare and extreme debris flows which could not be modelled<br />

in the laboratory. RAMMS::DEBRIS FLOW is a 2D numerical simulation tool developed by<br />

WSL. The core of the program is a second-order numerical solution of the depth-averaged<br />

equations of motion for granular flows (Christen et al., 2012).<br />

The debris rheology was described by an extended Voellmy-model which includes cohesion<br />

(Bartelt et al., 2015). In this model shear stress S is calculated according to the relation,<br />

S N<br />

<br />

N <br />

<br />

N<br />

0 <br />

1<br />

N<br />

exp <br />

0<br />

1<br />

2<br />

U<br />

N<br />

0<br />

g<br />

<br />

where N is the basal normal stress, ║U║ is the norm of the velocity U, ρ the debris flow density,<br />

g the acceleration due to gravity and N 0 is the cohesion. When N 0 =0, the model reduces to<br />

the standard two-parameter (μ, ξ) Voellmy model. When μ=0, the model describes an ideal<br />

plastic material where N 0 acts similar to a yield stress, see Figure 3. Moreover, the stress never<br />

exceeds N 0 for large flow heights.<br />

The model was calibrated using data from the Illgraben observation station and target values<br />

defined for the physical model and 3-point hydrographs were defined at the inlet into the<br />

model perimeter. Model runs were performed at two spatial extents and grid resolutions:<br />

216 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3: Shear vs. normal stress relation used to model debris flow motion in confined and unconfined terrain. In the channel we set N0<br />

= 500 Pa and μ = 0.00. This produces the ideal plastic behavior depicted above. In unconfined flow, wet set μ =0.07. Note the similarity<br />

to actual debris flow measurements shown in McArdell et al. (2007).<br />

a smaller extent (1 m grid) representing the perimeter of the physical model for the initial<br />

and final geometry of the deflection and a larger extent (2 m grid) covering the fan apex at<br />

a grid resolution of 2 m using the final geometry of the deflection and present topography<br />

without deflection. A summary of modelled scenarios and applied spatial extents is listed in<br />

Figure 1. For each model run, maximum flow height, maximum velocity and final deposition<br />

were exported to ESRI ArcGIS for analysis. Furthermore, cross-sections at different locations<br />

were extracted in RAMMS::DEBRIS FLOW to estimate maximum discharge from maximum<br />

values of flow height and velocity (Figure 4) and final deposition was used to estimate the<br />

deflected debris volume.<br />

RESULTS AND DISCUSSION<br />

The standard Voellmy model was not able to reproduce the constant velocities found in the<br />

experiments before the dosing structure. The modified Voellmy model (including cohesion)<br />

predicted both the debris flow velocities and flow heights with the parameter combination<br />

μ = 0.00, ξ = 600 m/s 2 and N0 = 500 Pa. This suggests that in the channel the debris is fluidized<br />

and the flow is well lubricated (μ = 0). The cohesion describes the visco-plastic behavior of the<br />

fluidized debris mixture. This approach could not be applied to model debris motion outside<br />

the channel. To take into account unconfined, open terrain outside the channel it was<br />

necessary to increase the Coulomb friction from μ=0.00 (visco-plastic) to μ = 0.07, thus<br />

introducing a type of plastic hardening into the flow rheology. This allows plausible modeling<br />

of the flow stopping behavior outside the channel.<br />

In general, the simulations with RAMMS showed a similar flow behavior as in the physical<br />

experiments. The reduction of debris-flow discharge due to the diversion structure also<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 217


Figure 4: Maximum flow height and maximum velocity for the initial and final geometry of the deflection using three event scenarios and<br />

indicating maximum discharge at cross-sections (numbers in red). See Figure 5 for the color legend.<br />

provided plausible results for events with discharges > 950 m³/s and the channel capacity<br />

below the deflection structure was not exceeded (Figure 4). The impact of the flow front on<br />

the left wall of the dosing structure was reduced by the improvements from the initial to the<br />

final geometry. As in the laboratory experiments, superelevation of the debris flow surface in<br />

the narrow curve was observed (see Figures 2 and 4) and overtopping into the breach<br />

occurred at frequent events (Q = 250 m³/s). However, discharge at the edge of the breach was<br />

reduced from 45 to 25 m³/s (see Figure 4) due to the raised channel surface in the final<br />

geometry.<br />

With respect to the larger spatial extent (Figure 5), overtopping at the planned location of the<br />

breach and deposition in the Pfyn Forest was observed in the numerical model runs on the<br />

present topography without deflection. This partly corresponds with recent observations of<br />

debris flow deposits and indicates a natural tendency of debris flows to break out at the<br />

channel curve and flow towards Pfyn Forest. However, the magnitude and extend of the<br />

outbreak in the computer model partly is attributed to overtopping, as explained in Berger et<br />

al. (2012). Using the final geometry of the deflection, about 115,000 m³ or about 25 % of the<br />

initial volume were deposited in the Pfyn Forest. The representation of the deflection<br />

structure was good and showed a similar behavior to the results with the 1 m grid.<br />

218 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 5: Maximum flow height on the large model extent with and without the deflection structure for a rare event and indication of<br />

model settings.<br />

CONCLUSIONS AND OUTLOOK<br />

Functionality and geometry of the deflection structure in-planning at the apex of the<br />

Illgraben fan were tested and improved using physical scale-model experiments and afterwards<br />

verified using the debris-flow runout simulation model RAMMS::DEBRIS FLOW.<br />

In general, the functionality of the deflection structure, i.e. reducing peak discharge and the<br />

total volume of large debris flows, could be demonstrated. However, the work also indicates<br />

that maintenance of the structure is essential to minimize separation effects of the deflection<br />

due to overtopping and deposition of debris in the breach during smaller events. This is<br />

important to ensure that the deflection structure only directly controls maximum discharge<br />

of debris flows. Because events with a comparatively small discharge yet a large total volume<br />

could pass the deflection structure and might cause backwater effects and flooding of<br />

settlements and infrastructure on the fan, overall risk management remains an essential part<br />

of the mitigation, including e.g. periodical observation of the catchment and the channel,<br />

land use planning or emergency plans.<br />

Using two different models, further questions arise on the limitations of both approaches,<br />

model artifacts in the results and finally on the representation of nature. However, no direct<br />

comparison with nature is available and corroborating results only can be achieved in a<br />

multi-method approach using different models and estimates.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 219


REFERENCES<br />

- Badoux A., Graf C., Rhyner J., Kuntner R., McArdell, B.W. (2009). A debris-flow alarm<br />

system for the Alpine Illgraben catchment: design and performance. Natural Hazards 49(3):<br />

517-539.<br />

- Bartelt P., Vera Valero C., Feistl T., Christen M., Bühler Y., Buser O. (2015), Modelling<br />

cohesion in snow avalanche flow, Journal of Glaciology, Vol. 61, No. 229, 2015 doi:<br />

10.3189/2015JoG14J126.<br />

- Berger C., McArdell B.W., Schlunegger F. (2011). Sediment transfer patterns at the Illgraben<br />

catchment, Switzerland: Implications for the scales of debris flow activities. Geomorphology<br />

125: 421-432.<br />

- Berger C., McArdell B.W., Lauber G. (2012). Murgangmodellierung im Illgraben, Schweiz,<br />

mit dem numerischen 2D-Modell RAMMS. Interpraevent Conference Proceedings.<br />

- Berger C., Ulrich M., Lauber G., Speerli J. (2014). Hochwasserschutz Illgraben: Ausleitbauwerk<br />

für grosse Murgänge. Tagungsband Internationales Symposium Wasser- und Flussbau<br />

im Alpenraum.<br />

- BWW, BRP, BUWAL (1998). Empfehlungen, Berücksichtigung der Hochwassergefahren bei<br />

raumwirksamen Tätigkeiten. Biel, Switzerland.<br />

- Christen M., Bühler Y., Bartelt P., Leine R., Glover J., Schweizer A., Graf C., McArdell B.W.,<br />

Gerber W., Deubelbeiss Y., Feistl T., Volkwein A. (2012). Integral hazard management using a<br />

unified software environment: numerical simulation tool „RAMMS“ for gravitational natural<br />

hazards. Interpraevent Conference Proceedings.<br />

- McArdell B.W., Bartelt P., Kowalski J. (2007). Field observations of basal forces and<br />

fluid pore pressure in a debris flow. Geophys. Res. Lett. 34, L07406,<br />

doi:10.1029/2006GL029183: 4 pp.<br />

220 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Exploiting damage claim records of public insurance<br />

companies for buildings to increase knowledge about<br />

the occurrence of overland flow in Switzerland<br />

Daniel Benjamin Bernet, MSc 1,2 ; Rolf Weingartner, Prof. Dr. 2 ; Volker Prasuhn, Dr. 3<br />

ABSTRACT<br />

Overland flow is difficult to assess because direct data is missing. As Swiss public insurance<br />

companies for buildings cover overland flow along with other hazards, we exploited their<br />

records to investigate the occurrence of overland flow indirectly. With a novel classification<br />

scheme, it is possible for the first time, to distinguish claims related to overland flow from<br />

inundations caused by watercourses. We analyzed gapless data records from 1991 to 2013 of<br />

the cantons Neuchâtel, Fribourg, Nidwalden and Graubünden, each representing a different<br />

typical Swiss landscape. Altogether, roughly 40-50 % of the damage claims can be associated<br />

with overland flow, which account for 20-30 % of total loss in that period. However, the<br />

inter-cantonal differences are large and reflect the embedment of overland flow in the<br />

landscape’s geographic setting. Finally, looking at averages per km 2 and year, we found that<br />

pre-alpine Fribourg is affected most by overland flow. As an outlook, we are confident that<br />

the presented methodology can be used to start studying overland flow from a more<br />

process-oriented perspective.<br />

KEYWORDS<br />

overland flow; inundation and flooding; damage claims; public insurance companies for<br />

buildings<br />

INTRODUCTION<br />

Post-damage analyses in the field of flood hydrology highlight that not only overtopping<br />

rivers and lakes cause a substantial amount of loss. Reportedly, about fifty percent of all<br />

damages to buildings are caused by overland flow (Bezzola and Hegg, 2008). Overland flow<br />

propagates over the land surface as thin sheet flow or anastomosing braids of rivulets and<br />

trickles, until the flow reaches or is concentrated into recognizable channels (Chow et al.,<br />

1988; Ward and Robinson, 2000). Thus, overland flow is not constrained to a riverbed, but<br />

occurs diffusely in the landscape. Furthermore, overland flow is generally associated with a<br />

short response time and practically no advance warning, which makes it difficult to observe<br />

and study the process directly. Maybe that is the reason why, in spite of the existence of<br />

several practical tools to assess the hazard of overland flow (Kipfer et al., 2012; Rüttimann<br />

1 University of Bern, Bern, SWITZERLAND, daniel.bernet@giub.unibe.ch<br />

2 Institute of Geography & Oeschger Centre for Climate Change Research & Mobiliar Lab for Natural Risks, University of Bern, Bern,<br />

Switzerland<br />

3 Agroscope, Institute for Sustainability Sciences ISS, Zurich, Switzerland<br />

IP_<strong>2016</strong>_FP045<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 221


and Egli, 2010; Bernet, 2013), little is known about where and when overland flow occurred<br />

in the past and will occur in the future.<br />

As there is no direct information about the occurrence of overland flow in space and time,<br />

traces of the flow’s propagation can be found wherever the process has caused detectable<br />

damages, or claims thereof. These can be used as a proxy for the occurrence of overland flow.<br />

Data sources implicitly containing such information are house owners’ damage claims<br />

recorded by Swiss Public Insurance Companies for Buildings (PICB).<br />

Our overarching goal is to improve the process understanding of overland flow. In this paper,<br />

we want to demonstrate that damage claim records can provide very useful, indirect<br />

information about the occurrence of overland flow in space and time. Furthermore, by<br />

looking at the total number of claims as well as total loss related to overland flow and<br />

inundation from watercourses respectively, we want to highlight the relative relevance of<br />

these processes. For these purposes, we have analyzed damage claim records of the PICB<br />

of Neuchâtel (NE), Fribourg (FR), Nidwalden (NW) and Graubünden (GR). These cantons<br />

approved our data enquiry and are chosen for this pilot study, as they cover different<br />

landscape patterns typical for the whole Switzerland.<br />

TERMS AND DEFINITIONS<br />

Terms used by scientists, insurers or practitioners to describe processes that can lead to water<br />

related damages to buildings may differ. Thus, hereafter, some important terms are defined:<br />

– In accordance to the definition above, overland flow is understood as surface runoff that<br />

propagates unchannelled over the land surface until it reaches the next river or lake.<br />

– Damages to buildings caused by water entering the structure at ground level (this excludes<br />

penetrating groundwater, backwater from the sewer system and rainfall directly entering<br />

the building through its envelope) are, hereafter, referred to as water damages.<br />

– For reasons of readability, we abbreviate floods and inundations from rivers and lakes,<br />

explicitly excluding overland flow, by simply referring to inundations from watercourses.<br />

Thus, the term watercourse always refers to both rivers and lakes.<br />

– In this paper, we make use of two different flood hazard maps (Swiss flood hazard maps<br />

and Aquaprotect, see methodology). The former includes assessment perimeters, whereas<br />

the latter does not. Both indicate areas that are at hazard complemented by hazard-free<br />

zones. All hazardous areas, regardless of the hazard level and the map source, are referred<br />

to as flood zones.<br />

DATA<br />

In Switzerland, PICB are present in 19 out of the total 26 cantons, within which they each<br />

hold a monopoly position. In addition, it is (with a few exceptions) mandatory for all house<br />

owners to insure their buildings against natural hazards including avalanches, snow pressure<br />

and -load, hail, storm, land- and rockslides, falling rocks and inundation processes. Concerning<br />

the latter, hazards associated with water entering the building at ground level are covered.<br />

Consequently, all damages caused by overland flow are insured and recorded by one single<br />

222 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


institution. Unfortunately, PICB generally do not distinguish different inundation causes and,<br />

thus, the responsible process for the claimed damages, namely overland flow or inundation<br />

from watercourses, must be identified.<br />

DATA HARMONIZATION<br />

For the present pilot study, we have analyzed records of house owners’ damage claims related<br />

to flood processes of the PICB of Neuchâtel (NE), Fribourg (FR), Nidwalden (NW) and<br />

Graubünden (GR), representing the most typical landscapes of Switzerland. The data<br />

delivered by the different PICB were quite heterogeneous and, thus, needed to be harmonized.<br />

The most important variables used in this study were the address, geocode, total loss,<br />

processing status of the damage claim, as well as the occurrence date of the claimed damage:<br />

– All four PICB provided geocoded damage claims. Claims with missing spatial reference<br />

were geocoded using the provided addresses, whenever possible.<br />

– The loss of each damage claim was calculated by adding the payout and the corresponding<br />

deductible. Then, the losses were indexed to 2014. Note that in case of a covered damage,<br />

all PICB calculate the payout according to the reinstatement costs (value as new), except<br />

Fribourg. In the latter canton, reinstatement costs are determined according to (for us<br />

untraceable) depreciated values.<br />

– The damage dates were checked for plausibility manually. The last year with complete<br />

records is 2013 for all four PICB. The complete records start in 1983 in Fribourg (31 y),<br />

1987 in Nidwalden (27 y), 1988 in Neuchâtel (26 y) and 1991 in Graubünden (23 y),<br />

respectively.<br />

– The status of the damage claims were categorized commonly. For this paper, only completed<br />

damage claims, i.e. claims with an actual payout, are considered. This ensures that only<br />

damage claims of an insured risk (i.e. overland flow and inundation from watercourses)<br />

are analyzed.<br />

Overall, the data comprises 15’200 inundation related damage claims, of which 11’239 are<br />

justified and geocoded. For analyses concerning each canton separately (i.e. the compilation<br />

of percentiles, see methodology), the geocoded, justified claims are used. For the comparison<br />

between the cantons (i.e. number and total loss of the different classes per canton, see<br />

results), only the overlapping period from 1991 to 2013 is considered (23 y), counting a total<br />

of 9’451 damage claims.<br />

METHODOLOGY<br />

To differentiate damage claims that are associated either with overland flow or inundations<br />

from watercourses, we have developed a classification scheme (Figure 1). The scheme is not<br />

directly applicable to single damage claims, as it neglects important influencing factors such as<br />

micro and macro topography, the circumstances of a loss, etc. However, by applying it to a<br />

large dataset and computing summary statistics, the methodology is robust and produces<br />

productive results.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 223


Figure 1: Each geocoded damage claim is categorized according to the displayed classification scheme. The white rhombuses each<br />

represents a yes or no test, checking whether the coordinates of the affected building are within 25 m of the corresponding spatial<br />

object (that takes the uncertainty of the buildings represented as point objects into account). Only coordinates located outside of the<br />

flood zones (hazard map and Aquaprotect) reach either of the green rhombuses. For each of these claims, the distance d between the<br />

claim’s point location and the closest watercourse is compared to the 25th, 50th, 75th and the 99th percentiles of the corresponding<br />

cumulative distribution of the claims within flood zones (Figure 2, blue curve and percentiles). In this way, all claims outside of the<br />

flood zones are classified depending on the percentile range they fall in. All possible paths of the classification scheme are<br />

schematically shown in Figure 3 the colors of the ellipses are used throughout the paper to denote overland flow (A: red and B: orange),<br />

inundation from watercourses (E: dark blue and D: light blue) or damage claims that could not be associated with either process<br />

(C: gray).<br />

The scheme makes use of existing flood hazard maps, as mentioned in the introduction.<br />

The rationale of the scheme is to use these maps directly for claims located within indicated<br />

flood zones. From this claim subset, we can then infer characteristics and use them for the<br />

classification of claims outside of the flood zones. For the latter claims, we make the following<br />

assumption: The distance to the closest watercourse from a flooded building determines how<br />

likely that particular building has been affected by inundation from a watercourse or by<br />

overland flow. Understandably, if the building is located close to a watercourse, the responsible<br />

process has most likely been inundation from that particular watercourse. On contrary,<br />

if the building is located far away from any watercourse, overland flow has most likely caused<br />

the damage.<br />

224 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The Swiss flood hazard maps provide detailed information about hazardous zones related to<br />

inundation from watercourses (Petrascheck and Loat, 1997). However, these maps were<br />

compiled for a predefined perimeter, which is generally constricted to construction zones.<br />

Moreover, the hazard maps were compiled with differing methodologies in each canton.<br />

To smooth out these differences and to increase the spatial coverage, Aquaprotect, a flood<br />

zone map covering the whole Switzerland, provided by the Swiss Federal Office for the<br />

Environment (FOEN), is used in addition to the hazard maps. Assessed with a coarse but<br />

standardized methodology, Aquaprotect indicates flood zones of the larger watercourses<br />

associated with return periods of 50, 100, 250 and 500 years, while neglecting existing flood<br />

control measures. The dataset referring to a return period of 250 years is chosen, as the Swiss<br />

flood hazard maps consider a return period of maximal 300 years. Although it is possible that<br />

overland flow occurs within a mapped flood zone, it can be assumed that the predominant<br />

damage causing process in these areas are inundations from watercourses. Thus, the<br />

distribution of affected buildings located within flood zones in relation to the closest watercourse<br />

is used to classify damage claims located outside of these flood zones. Thereby we<br />

assume, that the patterns of damages caused by inundations from watercourses within the<br />

mapped flood zones are the same for damages located outside of these zones.<br />

Clearly, the zone of influence of a watercourse depends on the geographical and geological<br />

properties of the landscape, as well as on the size of the river. For that reason, we compiled<br />

distance distributions for each canton and river size class separately. The latter is feasible, as<br />

the FOEN provides a dataset (referred to as FLOZ) that can be linked to the Swiss hydrological<br />

network of the product VECTOR25 provided by swisstopo. In that way, each river section is<br />

assigned to the corresponding Strahler Stream Order SSO (Strahler, 1964), which can be used<br />

as a proxy for the river’s size. The SSO takes discrete numbers, which range from 1 to 9 in<br />

Switzerland. According to Weissmann et al. (2009) a SSO of 1 refers to small, 2-3 to medium<br />

and 4-9 to large Swiss rivers.<br />

Figure 2 displays the cumulative distribution of the damage claims within or outside of the<br />

mapped flood zones, depending on the distance to the next river of a certain SSO. The blue<br />

curve, corresponding to the claims within the flood zones, rises sharply within the vicinity of<br />

watercourses but levels off quickly with increasing distance. On the other hand, the green<br />

curve, referring to damage claims outside the flood zones, rises more gradually and levels off<br />

at a much higher distance. We interpret this behavior as the superposition of damages caused<br />

by inundation from watercourses (small distances) and by overland flow (farther away from<br />

the watercourses). To obtain an objective way to disentangle these processes we take the<br />

distance to the next watercourse that correspond to the 25th, 50th, 75th and the 99th<br />

percentiles of the cumulated damage claims located within the flood zones (Figure 2).<br />

As mentioned before, such curves are compiled for each canton and river class separately.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 225


Figure 2: Exemplary cumulative distribution of all damage claims of Graubünden within flood zones that are closest to a medium sized<br />

river (SSO: 2-3), plotted against the distance to the corresponding river (blue curve). As a comparison, the cumulative distribution of all<br />

damages outside of the flood zones are displayed (green curve). Additionally, the corresponding percentiles (25th, 50th, 75th and 99th)<br />

of both curves are indicated (dotted lines). Note that for each of the three SSO classes (1-2: small rivers; 2-3: medium rivers; 4-9: large<br />

rivers) as well as for each canton, the percentiles of the claims within flood zones are computed and applied separately to reflect the<br />

different geographical and hydrological setting of each canton.<br />

The coordinate pair of each damage claim is classified using the scheme shown in Figure 1.<br />

As a depiction thereof, all possible cases are illustrated in Figure 3. We distinguish five classes,<br />

each referring to the dominant process responsible for the claimed water damage with a<br />

qualitative indication of how certain the classification is:<br />

– A: most likely overland flow<br />

– B: likely overland flow<br />

– C: damage causing process uncertain<br />

– D: likely inundation from a watercourse<br />

– E: most likely inundation from a watercourse<br />

RESULTS<br />

Our analyses show that 43 % of all claims are likely and most likely associated with overland<br />

flow and 47 % with inundations from watercourses (Figure 4). The remaining 10 % cannot<br />

be associated with either process. Looking at the numbers from the individual cantons, it<br />

becomes apparent that the fractions differ greatly from canton to canton. In Neuchâtel and<br />

Fribourg, more than half of the damage claims relate to overland flow. However, in Fribourg<br />

the classification is associated with a larger uncertainty, i.e. 18 % could not be classified as<br />

either overland flow or inundation from watercourses.<br />

226 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3: Each displayed point corresponds to a distinct path in the classification scheme (Figure 1) and denotes the corresponding<br />

process responsible for the caused damage (A: most likely overland flow; B: likely overland flow; C: damage causing process uncertain;<br />

D: likely inundation from a watercourse; E: most likely inundation from a watercourse). The arrows show how the percentiles of the<br />

cumulative distribution of damage claims within flood zones to the next watercourse are applied in practice. Furthermore, the display<br />

indicates that the percentiles are computed for each river class formed by the Strahler Stream Orders (SSO; 1-2: small rivers; 2-3:<br />

medium rivers; 4-9: large rivers) as well as for each canton separately.<br />

In Graubünden 59 % of the claims are associated with inundation from watercourses, while<br />

more than every third claim relates to overland flow. The classification in Nidwalden shows a<br />

completely different picture. The vast share of 92 % of all claims is caused most likely by<br />

inundations from watercourses, while the remaining classes each account for only a few<br />

percent of all claims.<br />

Although Nidwalden has the lowest amount of damage claims amongst the cantons in<br />

numbers, the total loss is almost as high as in Graubünden in the same period (Figure 4).<br />

The opposite is the case for Fribourg. It ranks highest amongst the cantons in terms of<br />

number of claims, but has a relatively low associated cumulated loss. Neuchâtel, although<br />

ranking in the same range as Nidwalden and Graubünden in terms of damage claim numbers,<br />

it had to cope with the smallest amount of loss.<br />

To get an idea about the density of these processes in space and time, the numbers can be<br />

related to the size of each canton (Table 1). For this simple assessment, we have neglected<br />

the vulnerability, elements at risk and other possibly relevant factors: In Fribourg, damage<br />

claims are most frequently associated with overland flow and cause a yearly average loss of<br />

CHF 451.00 per km 2 , followed by Neuchâtel. Although in Graubünden overland flow<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 227


accounts for almost 40 % of all damage<br />

claims (Figure 4) the density, both in terms of<br />

occurrence but also in terms of yearly loss per<br />

area, is by far the lowest. Graubünden also<br />

ranks last when looking at inundations from<br />

watercourses, however unlike the average<br />

occurrence of overland flow, the loss density<br />

is in the same order as in Fribourg, and<br />

Neuchâtel. Nidwalden, on the other hand,<br />

clearly stands out. With more than 0.2<br />

damage claims amounting to more than 7000<br />

CHF per km 2 and year, the values are by far<br />

the highest.<br />

Figure 4: Relative distributions of the number of damage claims,<br />

as well as total water damage loss (indexed as per 2014) for each<br />

canton separately and for the cantons in total. Note that the<br />

number of claims (n) as well as the total loss (s) in million Swiss<br />

Francs correspond to the statistics of the overlapping period from<br />

1991 to 2013.<br />

DISCUSSION<br />

Based on several case studies, it is stated that<br />

about half of all (justified) water damage<br />

claims are caused by overland flow (e.g.<br />

Bezzola and Hegg, 2008). Our analyses based<br />

on gapless claim records of the last 23 years<br />

show that with 43 %, less than half of the<br />

claims can be associated clearly with overland<br />

flow. Nevertheless, the share is highly<br />

significant. In terms of loss, it also underlines<br />

previous case studies and assumptions<br />

respectively, revealing that on average, the<br />

loss associated with overland flow is lower<br />

than loss associated with inundation from<br />

watercourses. However, our results also show<br />

that this is not the case for all areas. The<br />

regional differences, as illustrated by Figure<br />

4, can be explained by the different landscapes<br />

of the studied cantons. The geographical<br />

and geological patterns are reflected by<br />

the results:<br />

– In Fribourg, representative for the Pre-Alps, overland flow occurs most frequently<br />

(Table 1), which can also be explained by the geological features, favoring overland flow<br />

(Weingartner, 1999). Further, the prevalence of many underground rivers that go partly<br />

back to extensive melioration in the past century promote overland flow. Inundation from<br />

watercourses are frequent as well, but less intense than in more alpine regions.<br />

228 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– As expected, in Neuchâtel with its typical karstic landscape, damage claims are more<br />

frequently caused by overland flow than by inundations from watercourses.<br />

– Nidwalden, a canton with steep slopes, mostly less permeable soils, resulting in a dense<br />

river network, together with densely populated valley floors, is exposed heavily to<br />

inundation processes from watercourses (Figure 4). Although, overland flow may be<br />

responsible for certain damage claims, the dominant process is inundation from watercourses<br />

by far.<br />

– Graubünden, the largest canton in Switzerland, is mountainous and overall loosely<br />

populated. Thus, the relative occurrence of claims related to inundations from watercourses,<br />

but even more so for overland flow, are very low. However, the associated losses<br />

are very high due to the devastating floods of mountain torrents.<br />

Table 1: Yearly rates at which each canton is affected by overland flow (class A + B + ½ C) or inundation from watercourses (class ½ C<br />

+ D + E, see also Figure 4), obtained by dividing the absolute numbers by the area of the respective canton and the record length of 23<br />

years (1991 -2013). The rows are ordered according to the yearly rate of buildings affected by overland flow.<br />

CONCLUSIONS<br />

Indubitably, overland flow causes frequent damages to buildings in Switzerland. For the first<br />

time, we can support this with a gapless data record covering representative areas of<br />

Switzerland, as we have collected and harmonized damage claim records of four Swiss PICB<br />

each representative for typical Swiss regions and covering the last 23 years. Due to the large<br />

dataset, the numbers are robust. However, it has to be noted that our novel methodology to<br />

disentangle water damages to buildings only works for large numbers and cannot be applied<br />

to single damage claims.<br />

We have demonstrated that it is feasible and worthwhile to analyze damage claim data from<br />

public insurance companies, even more so, as it is, to our best knowledge, the only source<br />

that indicates overland flow over a large part of Switzerland within a longer period. The next<br />

step forward is to use the disentangled dataset, in order to analyze spatial and temporal<br />

patterns of the occurrence of overland flow. In this way, we can move towards more<br />

process-based investigations that are required to better understand and, ultimately predict,<br />

overland flow in the future.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 229


ACKNOWLEDGMENTS<br />

The authors would like to thank the Public Insurance Companies for Buildings of the cantons<br />

Neuchâtel, Fribourg, Nidwalden and Graubünden for their support and for providing the data<br />

used in this study. Moreover, we would like to thank the two anonymous referees for their<br />

valuable comments and suggestions.<br />

REFERENCES<br />

- Bernet, L.: Gebäudeschäden durch Schlammeintrag infolge von Bodenerosion durch Wasser<br />

in der Schweiz: Entwicklung eines GIS-Modells zur Gefahrenabschätzung auf der Basis der<br />

Erosionsrisikokarte, Masterarbeit, Geographisches Institut der Universität Bern, Universität<br />

Bern, Bern, 2013.<br />

- Bezzola, G. R. and Hegg, C. (Eds.): Ereignisanalyse Hochwasser 2005: Teil 2 - Analyse von<br />

Prozessen, Massnahmen und Gefahrengrundlagen, Umweltwissen, Nr. 0825, Bundesamt für<br />

Umwelt (BAFU); Eidgenössische Forschungsanstalt (WSL), Bern, 2008.<br />

- Chow, V. T., Maidment, D. R., and Mays, L. W.: Applied hydrology, McGraw-Hill series in<br />

water resources and environmental engineering, McGraw-Hill, New York, xiii, 572, 1988.<br />

- Kipfer, A., Kienholz, C., and Liener, S.: Ein neuer Ansatz zur Modellierung von Oberflächenabfluss,<br />

in: <strong>INTERPRAEVENT</strong> 2012 - Conference Proceedings, Koboltschnig, G., Hübl,<br />

J., Braun, J. (Eds.), 12th Interpraevent Congress, Grenoble, France, 23-26 April 2012,<br />

International Research Society <strong>INTERPRAEVENT</strong>, Klagenfurt, 179–189, 2012.<br />

- Petrascheck, A. and Loat, R.: Berücksichtigung der Hochwassergefahren bei raumwirksamen<br />

Tätigkeiten: Empfehlungen 1997, Bundesamt für Wasserwirtschaft (BWW); Bundesamt für<br />

Raumplanung (BRP); Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Biel, 1997.<br />

- Rüttimann, D. and Egli, T.: Wegleitung Punktuelle Gefahrenabklärung Oberflächenwasser,<br />

Naturgefahrenkommission des Kantons St. Gallen, 2010.<br />

- Strahler, A. N.: Quantitative geomorphology of drainage basin and channel networks,<br />

Handbook of Applied Hydrology, 1964.<br />

- Ward, R. C. and Robinson, M.: Principles of hydrology, 4th ed, McGraw-Hill, London,<br />

Burr Ridge, Ill., xiv, 450, 2000.<br />

- Weingartner, R.: Regionalhydrologische Analysen–Grundlagen und Anwendungen, Beiträge<br />

zur Hydrologie der Schweiz, Nr. 37, Schweizerische Gesellschaft für Hydrologie und<br />

Limnologie, Bern, 1999.<br />

- Weissmann, H. Z., Könitzer, C., and Bertiller, A.: Strukturen der Fliessgewässer in der<br />

Schweiz: Zustand von Sohle, Ufer und Umland (Ökomorphologie); Ergebnisse der ökomorphologischen<br />

Kartierung. Stand: April 2009, Bundesamt für Umwelt (BAFU), Bern,<br />

Umwelt-Zustand, Nr. 0926, 100 S., 2009.<br />

230 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Distributed acoustic monitoring to secure transport<br />

infrastructure against natural hazards - requirements<br />

and new developments<br />

Michael Brauner, Dr DI 1 ; Arnold Kogelnig, Dr DDI 2 ; Ulrich Koenig, DI 2 ; Günther Neunteufel, Ing 3 ; Hanna Schilcher 2<br />

ABSTRACT<br />

The Austrian Federal Railways (OEBB) rail-network operate several trans-European<br />

connections, thereof approximately 20% are exposed to natural hazards. For trains, obstacles<br />

in the tracks, damage to the track bed and direct train hits are the most relevant hazard<br />

scenarios. Classical permanent protections structures are sometimes hard to realize due to<br />

technical reasons and the limited time windows available for construction work. Therefore<br />

detection technologies gain more importance as an alternative to classical protection<br />

measures. Distributed acoustic sensing (DAS) with fiber optic cables is in use worldwide for<br />

monitoring pipelines or e.g. securing industrial and military facilities. This study evaluates if<br />

reliable detection of hazardous processes in the track area is possible by using existing fiber<br />

optic communication cables. We show that processes such as rock fall or tree-throws can be<br />

detected well, but due to the high sensitivity of the monitoring system, interfering signals still<br />

produce a relative high number of false alarms.<br />

KEYWORDS<br />

railway; rock fall detection; DAS monitoring; OTDR fiber cable; natural hazard<br />

INTRODUCTION<br />

In Austria the Austrian Federal Railways (OEBB) operate several important trans-European<br />

railway routes. Thereof, especially transalpine railway lines show long slope-traverses, which<br />

are often exposed to gravitational processes such as rock falls. Protection nets and frequent<br />

rock wall clearing and track inspection typically cover the resulting protection needs.<br />

However, in implementing these expensive measures, the demand for high track availability<br />

and thus the small number of maintenance windows is becoming a challenge. Therefore, the<br />

future focus must be on cost effective alternatives with low maintenance intervals.<br />

One approach is to directly monitor protection nets or install slider fences. With them rock<br />

fall activity is detected promptly and maintenance work or even track closure can be arranged<br />

in time (Schorno et al 2011). But this monitoring technology is costly and requires the<br />

installation of protection nets or slider fences in advance.<br />

1 OEBB Infrastructure AG, Vienna, AUSTRIA, michael.brauner@oebb.at;michael.brauner@live.at<br />

2 PULSE Engineering GmbH Kajetan Schellmanngasse 8, 2352 Gumpoldskirchen, Austria<br />

3 NBG Fosa GmbH Zweiländerstraße 1 3950 Gmünd<br />

IP_<strong>2016</strong>_FP040<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 231


Here distributed acoustic sensing (DAS) using fiber optic cables might be an alternative.<br />

This technology is frequently used in different professional fields such as pipeline monitoring,<br />

securing industrial facilities or structural health monitoring. Recently it is also applied to<br />

other purposes such as the detection of avalanche activity (Prokop et al 2014) or railway<br />

tracking (Zeni et al 2013).<br />

AIM OF THE STUDY AND MAIN ACTIVITIES<br />

This study was carried out in close cooperation between NBG FOSA GmbH and PULSE<br />

Engineering GmbH on behalf of OEBB Infrastructure AG. It was defined the main goal to<br />

evaluate if the technology of distributed acoustic sensing (DAS) can meet the OEBB standards<br />

for automatic rock fall and tree-throw detection as follows:<br />

– Automatic detection of a minimum rock fall impact of 1.5 kJ on the railway track with a<br />

detection certainty of 97%. 1.5 kJ was defined as the lowest impact level, which may cause<br />

initial damage to track or train material.<br />

– The responsible operators shall receive up to four simple alarm thresholds with clear action<br />

plans following up.<br />

– For maintenance reason no direct installation of fiber cables in track ballast is acceptable.<br />

Standard fiber cable material and standard cable troughs or cable mounting techniques<br />

have to be used.<br />

– For secure operation and easy maintenance the main equipment should be installed in<br />

railway control centers and not wayside of the tracks.<br />

First tests in 2012 were promising and build the basis for the feasibility - study which is<br />

presented in this paper. This study is structured as follows:<br />

As different parameters (meteorology, track bed, cable properties, etc.) may have influence on<br />

the monitoring quality with fiber optic cables, a basic parameter assessment was carried out at<br />

the beginning of the study. Field experiments under laboratory conditions followed. They had<br />

the aim to analyze and understand the rock fall induced signal pattern and its frequency<br />

band. Then full-scale tests on an operating railway track during maintenance windows were<br />

used to gather signals of artificially produced rock falls and tree-throws and to develop<br />

recognition patterns. To test system stability and improve alarm parameters, finally the system<br />

was applied on an operating railway track for four months.<br />

BACKGROUND ON DISTRIBUTED ACOUSTIC MONITORING<br />

A so-called interrogator unit attached to one fiber of the cable induces the pulses of light and<br />

analyses the natural backscatter (e.g. Rayleigh, Brillouin and Raman scattering) of each point<br />

of the fiber (Akkerman et al 2013). Thus it can be interpreted like an array of countless<br />

microphones along the length of the fiber (Inaudi et al 2007).<br />

The detection principle of fiber optic cable is the Optical-Time-Domain-Reflectometry<br />

(ODTR). It is used to determine and analyze travel time and reflection characteristics in the<br />

electromagnetic spectrum of light and hence to define location and kind of disturbance. In<br />

this study the principle of Rayleigh backscattering is applied, using a commercially available<br />

232 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


interrogator unit (iDAS, Silixa Ltd.). Imperfections of the fiber but also movements or<br />

vibrations along the cable (e.g. induced by rock fall activity) result in different backscattering<br />

characteristics. By assessing the attenuation of the pulse, the type of interference can be<br />

characterized and traced with a spatial resolution of approximately 10 m (Fig 1).<br />

Figure 1: System sketch of a distributed acoustic monitoring system using fiber optic cables.<br />

BASIC ASSESSMENT<br />

The first test results clearly showed that for automatic event detection many different factors<br />

need to be considered and investigated along the railway track. The most important ones are<br />

summarized below:<br />

– Natural Hazards and the lack of protection along the railway: To achieve an efficient and<br />

accurate monitoring system the following questions need to be addressed: i.) Where are<br />

the potential risk areas and active protection measures located along the track? ii.)<br />

Where are the boundaries between different hazardous processes and secure area?<br />

– Properties of the fiber optic cable: Especially when operating telecom fiber optic cables<br />

are employed, it is crucial to be aware of their present location and condition. Cables,<br />

earth-buried or located in a cable trough, underground or overhead, show different<br />

sensibility to rock fall events. If multiple cables are installed in a cable trough, their<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 233


placement may influence the sensing quality. Cable crossings and overlaying produce noise<br />

in the data.<br />

– Properties of the track bed: The construction of track and track ballast has substantial<br />

influence on signal attenuation and propagation. The track bed is originally developed to<br />

obtain optimal load transfer and to minimize vibration. Tests revealed that the elastic pads<br />

between the rails and ties and - more importantly - the elasticity of the ties and track<br />

ballast lead to significant signal attenuation and in consequence to different sensing results,<br />

depending on the location of the fiber optic cable. Therefore it has to be answered in<br />

advance: How does the construction of the track and track ballast look like?<br />

– Interfering external signal sources: To eliminate interferences from other transport carriers<br />

(e.g. cars, planes, helicopters, etc.) their influence has to be quantified. Knowing source,<br />

amplitude and distance of possible interfering signals, these signals can be characterized.<br />

Therefore, the following questions need to be addressed: i.) Are there roads or crossings<br />

nearby? ii.) Is there air traffic? iii.) Is construction work going on and can it be registered<br />

in advance?<br />

– Meteorology: The influence of meteorological events such as wind or rain can have severe<br />

impact on the monitored signal. They may induce vibrations in the cable trough or the<br />

cable itself. Consequently, the forecast of gusting wind or rain is crucial in order to prevent<br />

false alarms.<br />

FIELD EXPERIMENTS UNDER LABORATORY CONDITIONS (SPRING 2013)<br />

The objective of these experiments was to analyze the signal and in particular the frequency<br />

band of different kinds of rock fall impacts under known conditions and to evaluate the<br />

performance of different cable placements. Using this information, a preliminary definition of<br />

detection parameters was carried out and preliminary recognition patterns, so called “events”,<br />

were defined. For this purpose a 150 m long privately owned shunting track was adapted.<br />

Both sides of the track were equipped with different cable layout according to OEBB<br />

regulations. One was set up as underground cable, one was placed inside the newly build<br />

cable trough and a third one was directly attached to the rail. Then impacts by objects with<br />

various weights and materials were induced and their different signals were analyzed (Fig.2).<br />

The field experiments lead to the result that the optimal frequency range for rock fall<br />

detection is between 100 Hz and 500 Hz. For these frequencies, a pulse rate of 4 kHz delivers<br />

an optimal relation between detection range and sensitivity. The variable resonance behavior<br />

and frequency domain of rails, ties, ballast and foundation can be utilized for improved event<br />

discrimination along the track. However, with a single cable layout no reliable detection<br />

crosswise to the track axis is possible. That is because at the same distance to the fiber, direct<br />

impacts on the rail may result in higher signals than collisions on foundation or adjacent<br />

ground. Here fiber optic cables directly mounted at the rail may be a promising alternative as<br />

they enable a better discrimination between direct rail-track impact and ballast impact due<br />

to different signal attenuation.<br />

234 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Left: impact on rails with a granite bowl from a predefined drop height. Right: Installation of cable trough according to OEBB<br />

regulations for the field experiments.<br />

TEST SITE HIEFLAU ADMONT – FULL SCALE FIELD TESTS (SPRING AND FALL 2013)<br />

After the field experiments full-scale tests on an operating railway line (Hieflau – Admont,<br />

Styria, Austria) were carried out. This line is a 40 km single track, with approx. 280 trains/<br />

month. This alpine type track is characterized by 4 bridges and 4 tunnels as well as different<br />

types of fiber optic cables and different laying systems (earth-based or overhead). One fiber of<br />

an operating telecom fiber optic cable was connected to the interrogator unit and signals of<br />

artificially produced tree- and rock falls were analyzed. The goal was to gather data on a<br />

railway track in operating state and redefine the preliminary detection patterns under realistic<br />

conditions. Therefore 30 rocks of different size (up to 50 kg) and shape were thrown down<br />

a wall and an excavator was used to simulate around 20 tree-falls (Fig. 3).<br />

Figure 3: Left: Rocks thrown down on railway tracks. Right: Simulation of tree-fall using an excavator.<br />

The full-scale tests showed that rocks of 20 kg or more and a dropping height above 10 m can<br />

be easily identified along the railway axis, but a precise definition of drop height and weight<br />

cannot be achieved. For the tree-throws the characteristic frequency spectrum is similar to<br />

rock fall but has less energy. They can be identified, if the drop height is higher than 4 m.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 235


During the experiment blasting operations were carried out on a construction site close to the<br />

test site, which produced strong interfering signals. It can be concluded that the automatic<br />

detection system must be deactivated in case of nearby blasting or construction works. Similar<br />

the influence of traffic nearer than 10 m becomes dominant and hampers automatic detection<br />

based on defined event patterns. These influences fade out for distances above 50 m.<br />

TEST SITE HIEFLAU ADMONT – LONG-TERM TEST (SPRING 2014)<br />

After the full-scale tests and in-depth analysis of the gathered data the detection parameters<br />

were modified and three recognition patterns were defined. For events with an impact energy<br />

lower than 1.5 kJ, we defined the category “rock fall manual”, meaning interaction of a<br />

specialist is needed to define whether this was a rock fall or an interfering signal. For impact<br />

energy higher than 1.5 kJ we defined the category “rock fall automatic”, meaning that an<br />

automatic alarm will be triggered. The last category was “train” in order to identify trains on<br />

the track.<br />

In a final step a 6 km long section of the railway track Hieflau-Admont (Styria, Austria) was<br />

monitored for four months during operating state. The goal was to test the stability of the<br />

detection parameters and to test the stability of the whole system setup (interrogator unit,<br />

data storage, automatic data analysis) during constant operation over a longer period. The<br />

interrogator unit and the alarm server were installed in the railway control center at the<br />

railway station Hieflau. The server transmitted alarms to a web-interface, enabling the<br />

geographically referenced visualization of train positions, event-location and alarm type.<br />

It also enables email notifications and remote modification of the alarm parameters in case<br />

of malfunction or maintenance windows.<br />

After a few weeks it was clear that the monitoring system itself runs stable, however the<br />

existing cable placement in a concrete trough produced more false alarms than expected and<br />

the alarm parameters therefore needed adaption. Here the remote access to the permanent<br />

data logging enabled quick improvement of the detection parameters. Problems were caused<br />

by several unexpected incidents. For example, a train passing the monitored area can be<br />

easily tracked and identified with less than 0.5% error rate, but e.g. maintenance trains<br />

stopping in the area for several minutes and then starting again were hard to identify.<br />

The Implementation of train detection to differentiate from rock fall, the masking of bridges,<br />

crossings, overhead troughs, or save-guarded track section, improved the recognition quality<br />

tremendously.<br />

Moreover thunderstorms passing the area of our test operation produced a lot of false alarms.<br />

After signal analysis and site investigations we found out that the source of the interfering<br />

signals was not the wind or rain itself, but rather signposts, cable-masts and trough covers<br />

that induced vibrations into the ground, the cable through and the cable itself. To reduce false<br />

alarms they need to be acoustically uncoupled from the fiber cable.<br />

236 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


It can be concluded that within the 4-months period we were able to reduce the false alarms<br />

for rock fall events higher than 1.5 kJ from 35/day down to 5/day, which is still too high, to<br />

meet the error rate of 3%, defined as criterion for automated detection. Up to now our<br />

experiences suggest, that this error rate may be met for rock fall events larger than 15 kJ.<br />

calAt the moment, operator’s expertise is still required for events smaller than 15 kJ to<br />

prevent false alarms.<br />

The long-term test further showed that the system must allow for quick and easy entry of<br />

maintenance action where automatic alarms are disabled, and the integration of the<br />

monitoring system into the OEBB IT architecture can be achieved via TCP/IP interface and<br />

alarm notification can be triggered via SMTP-interface.<br />

CONCLUSIONS AND FUTURE OUTLOOK<br />

With standard telecom fiber optic cables the impact of potentially hazardous processes such as<br />

rock fall on the railway track can be detected. However, for the development of an automatic<br />

detection system still some challenges exist. Above all, the sound installation of existing fiber<br />

optic cables along the track and even the placement of the cable itself in the trough is of high<br />

importance. Harsh meteorological conditions, especially strong wind and rain, can cause<br />

additional noise in the signals and need to be considered. In the long-term test operation false<br />

alarm rates of 35/day could be reduced to 5/day. These values are still too high and far away<br />

from the predefined goal of detecting a rock fall event of 1.5 kJ with a probability of 97 %.<br />

As an alternative to further reduce the false alarms we tested a fiber optic cable mounted<br />

directly to the rails. Thereby, interfering signals caused by variable underground or inhomogeneous<br />

cable installations can be removed. At the moment it is unknown if this setup will<br />

cause other interfering signals. Akkerman et al (2013) tested a similar setup with a cable<br />

installed in the track ballast and reached a minimum false alarm rate of 1/day. Therefore<br />

alternative mounting setups of fiber optic cables seem promising but on the other hand a<br />

reduction of the false alarm rate below 1/day at the moment is not realistic.<br />

The detection of rock fall or other natural hazards along many kilometers of railway tracks<br />

using fiber optic cables has huge potential but also still needs a lot of research work. In this<br />

feasibility study we were able to demonstrate the advantage of a linear acoustic sensing<br />

system providing gapless monitoring of many kilometers of railway tracks but also faced<br />

many challenges with the automatic detection due to interfering signals. We believe that the<br />

potentials of the cable itself, the cable installation and the detection algorithm are not fully<br />

exploited yet. Therefore, a great need for research in this area still exists.<br />

The authors hope that this study will stimulate interest in this field and encourage other<br />

engineers, scientists and supporters to get active in this fascinating work of distributed<br />

acoustic sensing.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 237


REFERENCE<br />

- Akkerman J., Prahl F. (2013). Fiber Optic Sensing for Detecting Rock Falls on Rail Rights<br />

of Way. AREAM annual conference 2013, Indianapolis, USA.<br />

- Inaudi D.,Glisic B. (2007). Distributed fiber-optic sensing for long-range monitoring of<br />

pipelines. The 3rd International Conference on Structural Health Monitoring of Intelligent<br />

Infrastructure, Vancouver, British Columbia, Canada90: 112-124.<br />

- Prokop A., Schön P., Wirbel A. and Jungmayr M. (2014). Monitoring Avalanche Activity<br />

using Distributed Acoustic Fiber Optic Sensing, Proceedings International Snow Science<br />

Workshop 2014, S. 129-133.<br />

- Schorno R., Schmidt C., Nietlispach U., (2011). Zugkontrolleinrichtungen in der Schweiz.<br />

Eb - Elektrische Bahnen. 109 (2011) Heft 9.<br />

- Zeni L., Minardo A., Porcaro G., Giannetta D. and Bernini R. (2013). Monitoring railways<br />

with optical fibers, Applied Optics, Vol. 52, No. 16, S. 3770-3776.<br />

238 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Terrestrial radar interferometry for snow glide activity<br />

monitoring and its potential as precursor of wet snow<br />

avalanches.<br />

Rafael Caduff 1 ; Andreas Wiesmann 2 ; Yves Bühler 3 ; Claudia Bieler 3 ; Philippe Limpach 4<br />

ABSTRACT<br />

Snowpack displacement and resulting full depth gliding snow avalanches are a widespread<br />

problem in alpine regions during springtime after snow-rich winters. This is a major threat for<br />

infrastructures nearby. Today field observers detect gliding snow visually. However, they can<br />

only detect suspicious snowpack displacement after gliding cracks opened. Many wet snow<br />

avalanches release without formation of visible tension cracks in an early stage so that they<br />

appear to happen spontaneously. Terrestrial radar interferometry has recently proven to be an<br />

effective method for the detection and monitoring of snow glide activity on a slope scale.<br />

Movements of the snowpack less than 0.5 mm/h can be detected as validated with a total<br />

station. Detection of snow glide activity is therefore achievable at a very early stage. Continuous<br />

measurements with rates of up to one scene per minute allow the immediate assessment<br />

of snow glide activity on the monitored slope. Therefore this method might be applied in<br />

future to detect precursors for full depth gliding snow avalanches.<br />

KEYWORDS<br />

snow glide monitoring; terrestrial radar interferometry; wet snow avalanche; data validation<br />

INTRODUCTION<br />

Different gravitational deformation processes such as settlement, creep and full depth snow<br />

glide are acting on snow slopes. Once full depth gliding is present, it can have a twofold<br />

impact on infrastructures within the snow slope. The impact is either direct, i.e. through<br />

immediate contact of the gliding snow column with the infrastructure, or the impact is<br />

indirect, i.e. the infrastructure gets impacted by a full depth snow glide avalanche from above.<br />

In both cases infrastructure such as buildings, roads, railways and power lines can be<br />

damaged severely (Bartelt et al., 2012). Gliding snow avalanches are hard to predict because<br />

they depend on surface roughness (Feistl et al., 2014) as well as on the moisture penetration<br />

into the snow pack which can change within very short time (Höller, 2013; Mitterer et al.,<br />

2011). Full depth snow glide is not limited to extraordinary snow glide winters with high<br />

snow columns but is common as well during wet snow conditions with low snow height. Full<br />

depth snow glide is usually identified on a slope by the presence of clearly visible morphologi-<br />

1 GAMMA Remote Sensing AG, Gümligen, SWITZERLAND, caduff@gamma-rs.ch<br />

2 Gamma Remote Sensing, Switzerland<br />

3 WSL Institute for Snow and Avalanche Research SLF, Switzerland<br />

4 ETH Zürich, Institute of Geodesy and Photogrammetry, Switzerland<br />

IP_<strong>2016</strong>_FP004<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 239


cal features such as extensional cracks or compression structures at the toe of a snow glide<br />

area (stauchwall) that can be detected e.g. by time lapse photography (Van Herwijen et<br />

al., 2013). Besides these morphological signs, detection and quantification of very small snow<br />

glide movements was possible only point-wise. All measurements leading to information on<br />

the movement of the snow column had to be instrumented on site (Höller, 2014). Terrestrial<br />

radar interferometry was recently introduced as an innovative method that allows very high<br />

spatio-temporal sampling on a slope-wide scale during day and night, foggy conditions and<br />

independent from the existence of visible deformation related features in the snowpack<br />

(Caduff et al. 2015a; Wiesmann et al. 2015).<br />

Here we shortly summarize the technical preconditions necessary to monitor the snow pack<br />

displacements on a slope wide scale. We then discuss the potential and the limitations of<br />

interferometric measurements of snow to determine the rate of glide movement with a<br />

sensitivity of less than 0.5 mm/h. It was possible for the first time to validate measurements<br />

from the terrestrial radar interferometer with survey data obtained from a total station.<br />

Finally, we compare the snow glide activity with the avalanche activity on the Dorfberg test<br />

site in Davos, Switzerland during the winter 2014/2015.<br />

METHODS<br />

The GAMMA Portable Radar Interferometer (GPRI), operating at 17.2 GHz (Ku-band) was<br />

used for the campaign (Werner et al. 2012). The GPRI was deployed for continuous monitoring<br />

of the Dorfberg area at the valley bottom of Davos Dorf and was protected with a radome<br />

of 2.4 m diameter (Figure 1). From this position, the instrument illuminates the target area<br />

with an azimuthal scan (mechanical rotation of the antennas with 10°/sec). The received<br />

backscatter signal (amplitude and phase) forms a 2-dimensional image of the area with a<br />

pixel resolution of 0.75 m in range and a nominal azimuth resolution of 8m in 1 km distance.<br />

The final georeferenced maps were resampled to a pixel resolution of 1×1 m. The distance to<br />

the scatterer influences the relative phase value, therefore movement towards or away from<br />

the sensor induces phase changes. This effect is used to detect displacement in the target area<br />

in the order of a fraction of the instrument wavelength (1.74 cm). A recent review of the<br />

method with examples in the geoscientific field is given by Caduff et al. (2015b).<br />

It is necessary for the conversion of phase changes to 1-dimensional displacement in<br />

line-of-sight (LOS) that patches show high interferometric coherence. Coherence is a value<br />

that expresses similarity of surrounding raster cells (0: no similarity, 1 high similarity). The<br />

temporal behavior of the scatterers determines the amount of coherence of the interferogram<br />

(Figure 2). There are mechanical changes on the target surface, vegetation movement due to<br />

wind, snow drift or avalanches that lead to almost immediate decorrelation. In our study,<br />

avalanches were detected and mapped using coherence maps as shown in Figure 2. Avalanche<br />

outlines were drawn and verified manually. An operator decision led to a qualitative<br />

classification of the degree of decorrelation as seen in Figure 2 that allows a rough separation<br />

240 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 1: Overview of the monitored slope of the Dorfberg located in Davos Dorf, Switzerland. All detected avalanches during the observation<br />

period are shown in map (A). The radome (B left), containing the GAMMA Portable Radar Interferometer GPRI (B right) is located<br />

at the spot indicated with “GPRI”. The wet snow avalanches of a 48 h period are drawn on the image (C) The total daily sum of the area<br />

of the detected avalanches is shown in D. The corresponding daily mean temperature and snow height measurements from the weather<br />

station located 100 m apart from the GPRI are shown in plot E.<br />

of full depth avalanches (high degree of decorrelation) and superficial impacts on the snow<br />

(low degree of decorrelation).<br />

Changes in the physical state of the snow (dry/wet) lead to changes in the dielectric properties<br />

of the surface and have an influence as well on interferometric coherence especially<br />

during transition times (e.g. immediately after sunrise). In Figure 2 this effect is expressed in<br />

the maps showing the distribution of the coherence after 2 min and after 21 min during wet<br />

snow conditions. Comparisons to dry snow conditions show that the decorrelation time<br />

ranges from several hours during dry snow conditions to less than ten minutes in wet snow<br />

conditions without visible mechanical impact. In conclusion, the sampling interval must be<br />

below the decorrelation time to be able to convert the interferometric phase to displacement<br />

information.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 241


The campaign was performed using acquisitions with 2 or 3 minute intervals to retain high<br />

coherence. After each acquisition an automated processing calculated interferograms,<br />

coherence maps and stacks of temporal averages (30 min) of the displacement to reduce<br />

atmospheric phase noise. A mobile data connection allowed remote access to the instrument<br />

and the data through a web-interface.<br />

Figure 2: Coherence maps with 3 min and 21 min temporal baselines show different effects reducing the coherence on the slope. Snow<br />

surface is completely decorrelated after 21 min during wet snow conditions.<br />

RESULTS<br />

Evaluation of optimal temporal sampling rates<br />

Even though the interferometric coherence can be kept high during wet snow conditions,<br />

transition effects may still be visible in the final displacement diagrams. Figure 3 shows such<br />

effects and the attempt to reduce their impact in order to separate them from the actual snow<br />

displacement. The matrix shows the averaged displacement of stacks with different counts of<br />

observations prior to an avalanche release from point d1. However, since for early warning<br />

purposes, the time for the detection should be as short as possible, different temporal<br />

sampling intervals were tested.<br />

Although the deformation hot-spot d1 is visible already in the 2 min interferograms of 14:02<br />

and 14:14, those scenes suffer from atmospheric effects that impact the entire scene. Small<br />

changes in the physical parameters of the air (temperature, pressure, humidity) can induce<br />

phase delays in the interferogram. The patches, if not detected and filtered properly could<br />

lead to a misinterpretation of atmospheric disturbances as deformation signals. Patches of<br />

atmospheric effects with similar size and shape as snow glide deformation signals show<br />

randomness in time and therefore get reduced significantly with increasing number of<br />

observations (stacking).<br />

242 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3: Effects of different averaging intervals on the displacement maps in a small subset. The used dataset shows the preceding<br />

situation of an avalanche triggered by the release of the snow glide area d1. A second snow glide area is marked as d2. For this area the<br />

validation with the total station was performed (see Figure 5).<br />

For comparison, the single interferogram scenes in Figure 3 were normalized to a stable point<br />

(rock) close to the area since patches of atmospheric influences are present over the entire<br />

scene. In the 12 h stack, the velocity is less visible since both areas d1 and d2 were slower the<br />

days before and during the night. The temporal evolution of d1 and d2 is shown in Figure 4.<br />

The enlarged map in Figure 3 shows that the sensitivity of the measurements can reach less<br />

than 1 mm. Areas with LOS velocities of 0.25 mm/h can clearly be separated. However, such<br />

a precision is achieved only if the snow surface is not disturbed by snowfall or snowdrift.<br />

Another effect that may hinder the detection of snow glide hot-spots is the settlement of<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 243


freshly fallen snow. The deformation in the vertical is partly seen as deformation in LOS.<br />

Since the deformation values are in the same order or even exceed deformation induced by<br />

snow gliding, a clear distinction between both processes is not possible.<br />

The LOS displacement during the transition of dry to wet snow (10:14) is strongly disturbed<br />

by effects described in the method section. During this short time period, a high precision<br />

measurement of snow glide motion is difficult.<br />

Snow glide activity maps<br />

Snow glide activity on the slope was assessed by creating daily average LOS velocity (vLOS)<br />

maps. The maps were spatially filtered (5x5 pixel average) to calculate isotachs. The isotachs<br />

were grouped in 3 classes (1, 2 and 3 mm) for which the total area and number of isolated<br />

snow glide hot-spots were calculated. The results are plotted in Figure 4. Information about<br />

the number of avalanches and the total area affected by the avalanches are plotted for the<br />

same period. The period between the 15th and 29th of March is considered as a wet snow<br />

avalanche period. Here the avalanches are often preceded by snow glide movement. The<br />

displacement diagram of different selected points shows the temporal evolution of the snow<br />

glide displacement. Snow-melt and other snow related effects were corrected for each point<br />

with the subtraction of those signatures using a local non-gliding reference. Point d1 shows<br />

movement on a cm-scale only before the avalanche release, while the release area of d2<br />

showed long term continuous and constant snow glide activity beginning more than 8 days<br />

before the release. A strong acceleration was recorded a few hours before the avalanche<br />

release. Other points (d3, d4, d5) show clear acceleration cycles during day/night.<br />

VALIDATION<br />

A validation of the displacement measurements with the GPRI was performed with a<br />

combined approach of total station and experimental single frequency GPS sensors. The GPS<br />

phase data is processed differentially with respect to a nearby reference station. The field<br />

setup is shown in Figure 5. Reflective foil targets were put on lightweight styrofoam plates<br />

equipped with plastic anchors for fixation on the snow surface. The targets were installed<br />

early in the morning, when a firm snow surface was present on a target area previously<br />

detected with the GPRI.<br />

The survey was started at 10:30. A second measurement was acquired at 14:00. Shortly after<br />

this measurement, a small avalanche was released above the test field and went through the<br />

middle of the field, destroying some targets and sweeping away both GPS boxes. The<br />

avalanche released from point d1 (Figure 3 and Figure 4). It is a very small area with a local<br />

slope angle of 40-45°. It is to mention, that the avalanche from d1 was not able to trigger the<br />

release of the entire area of d2. However, the total station measurements were continued on<br />

the remaining targets. After the campaign, the total deformation of each point was calculated<br />

(small image in Figure 5). To compare the measurements with the GPRI LOS velocity map, it<br />

244 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 4: Synthesis of the results of the wet snow avalanche period in March 2015. Top left: Snow glide activity map. Top right:<br />

avalanche activity map. Bottom left: Line of side snow glide displacement for selected points together with temperature (air and snow<br />

surface 30 min) and reflected short wave radiation (RSWR). Bottom left: Comparison of snow glide activity (number and area) with<br />

avalanche activity (number of avalanches and affected area).<br />

was necessary to convert the total station results to LOS. The LOS fraction was determined by<br />

calculating the angle between the displacement vector and the look vector of the GPRI for<br />

each point. The total displacement was then scaled with the LOS fraction and plotted on top<br />

of the GPRI LOS velocity map using the same color scale. The results of the LOS-corrected<br />

values of both, the GPRI and the total station measurements are in very good agreement<br />

(within 0.5 mm/hour) for the relatively short observation period.<br />

After their installation at around 09:30, the GPS boxes were slowly gliding along the slope<br />

and deforming the snow surface due to their weight, mainly coming from the battery<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 245


included in the boxes. Unfortunately, the GPS boxes were swept away by the avalanche<br />

before they reached an equilibrium that would allow detecting the movement of the snow<br />

pack.<br />

Figure 5: Field setup of the validation with total station and GPS boxes. The total station is located at (782494/188159). The results of<br />

the total station measurements were calculated for the observation period after the avalanche and were converted to LOS velocity. The<br />

results are plotted as color coded points on top of the GPRI LOS velocity map of the same observation period (14:16-17:00 UTC) with the<br />

same color coding. Below the map, the uncorrected total station displacement values and an example of the displacement vector are<br />

given.<br />

CONCLUSIONS<br />

The presented results confirm the feasibility of snow glide displacement measurements using<br />

terrestrial radar interferometry. With proper stacking, determination of the slope wide snow<br />

glide activity with relative sensitivity down to 0.25 mm/h and an absolute accuracy of<br />

0.5 mm is reached during weather conditions without precipitation and with absent strong<br />

winds. This is the case for parts of the observed slope that are free of shrub vegetation that<br />

emerges from the snowpack. The results and the tests performed during the campaign clearly<br />

show that the atmospheric influence is negligible when the data is averaged in periods of<br />

12 min to 4 h. This simplifies the in-situ data processing and allows faster acquisitions.<br />

However, due to the high sensitivity of the instrument, small changes in the snow column<br />

as induced by snow-fall or wind drift can lead to phase changes and exceed the displacement<br />

signatures. During these conditions, signatures seen by the radar could not be clearly<br />

identified as either snow glide or some other processes acting on the snow pack. A careful<br />

246 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


interpretation of the interferometric data is as well necessary during times of transition from<br />

dry to wet snow (e.g. after sunrise). The transition of the liquid water content in the<br />

snowpack may shift the phase center from within the snowpack to the surface (Caduff et al.<br />

2015a) and therefore induce phase changes. Once snow glide hot-spots are located, tracking<br />

of the point displacement is possible in shorter intervals using simple normalization to<br />

suppress atmospheric or snow property induced phase effects. Interpretation of the temporal<br />

evolution of snow glide hot-spots led to the conclusion that most release zones of wet snow<br />

avalanches show signature of movement hours to days before the release and in most of the<br />

cases, strong acceleration of the movement hours before the avalanche release was recorded.<br />

Since many of the released wet snow avalanches show acceleration hours to minutes before<br />

the event, acceleration might be valuable indicator for the timing of the release. However, as<br />

the deformation signature of d1 in Figure 4 shows, additional investigations of the influence<br />

of the local topography are needed since the trigger-acceleration of d1 was apparently lower<br />

due to its steep release zone.<br />

For the first time, an absolute validation of the snow pack displacement measured using<br />

terrestrial radar interferometry was performed using total station measurements. The<br />

resulting LOS velocities show very good agreement within less than 0.5 mm/h. However,<br />

since the validation campaign lasted only a few hours and the temperature conditions did not<br />

allow coverage of a full freeze/thaw cycle of the snow-surface, the quantification of the phase<br />

effects during the transition are not yet fully understood.<br />

The campaign helped to solve major open question regarding the use of terrestrial radar<br />

interferometry rapid detection and quantification on snow glide on a slope. The technique<br />

opens new possibilities in the research on snow gliding and wet-snow avalanches. We also<br />

expect it to prove valuable in the management of high-risk situations during elevated snow<br />

glide and wet-snow avalanche activity.<br />

ACKNOWLEDGEMENTS<br />

Part of the funding for this research has been provided through the Interreg project<br />

STRADA 2.<br />

REFERENCES<br />

- Bartelt, P., Pielmeier, C., Margreth, S., Harvey, S., Stucki, T. (2012). The underestimated role<br />

of the Stauchwall in full-depth avalanche release. Proceedings of the International Snow<br />

Science Workshop, September 16-21, 2012, Anchorage, AK, USA. 127-133.<br />

- Caduff R., Wiesmann A., Bühler Y., Pielmeier C. (2015a). Continuous monitoring of<br />

snowpack displacement at high spatial and temporal resolution with terrestrial radar<br />

interferometry. Snowpack displacement monitoring. Geophysical Research Letters 42(3),<br />

813-820.<br />

- Caduff R., Schlunegger F., Kos A., Wiesmann A. (2015b). A review of terrestrial radar<br />

interferometry for measuring surface change in the geosciences. Earth Surface Processes and<br />

Landforms 40(2), 208-228.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 247


- Feistl T., Bebi P., Dreier L., Hanewinkel M., Bartelt P. (2014). Quantification of basal friction<br />

for technical and silvicultural glide-snow avalanche mitigation measures. Natural Hazards and<br />

Earth System Science 14, 2921-2931.<br />

- Höller P. (2013). Snow gliding and glide avalanches: a review. Natural Hazards 71, 1259-<br />

1288.<br />

- Mitterer C., Hirashima H., and Schweizer J. (2011). Wet-snow instabilities: Comparison of<br />

measured and modelled liquid water content and snow stratigraphy. Annals of Glaciology 52,<br />

201-208.<br />

- Van Herwijen A., Berthod N., Simenhois R., Mitterer C. (2013). Using time-lapse photography<br />

in avalanche research, Proceedings of the International Snow Science Workshop, October<br />

7-11, 2013, Grenoble, F, 950-954.<br />

- Wiesmann A., Caduff R., Mätzler C. (2015). Terrestrial Radar Observations of Dynamic<br />

Changes in Alpine Snow. IEEE Journal of Selected Topics in Applied Earth Observations and<br />

Remote Sensing 8(7), 3665-3671.<br />

- Werner C., Wiesmann A., Strozzi T., Kos A., Caduff R., Wegmüller U. (2012). The GPRI<br />

multi-mode differential interferometric radar for ground-based observations. Proceedings of<br />

the 9th European Conference on Synthetic Aperture Radar, April, 23-26, 2012, Nuremberg,<br />

D, 304-307.<br />

248 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Earthquake-triggered landslides in Switzerland: from<br />

historical observations to the actual hazard<br />

Donat Fäh, Dr. 1 ; Jan Burjanek, Dr. 2 ; Carlo Cauzzi, Dr. 2 ; Remo Grolimund, Msc 2 ; Stefan Fritsche, Dr. 3 ; Ulrike Kleinbrod, Msc 2<br />

ABSTRACT<br />

The building inventory in the Alpine area multiplied over the last century, increasing exposure<br />

to potential earthquake impacts. This is particularly critical in relation to earthquaketriggered<br />

mass movements. In Switzerland, it is possible to assess the spatial extent and<br />

impact of such secondary earthquake effects from historical and paleo-seismological analysis<br />

of past damaging earthquakes. After calibration against observations of these events, scenario<br />

modelling has been recently implemented within ShakeMap, a tool applicable to near<br />

real-time estimates. The spatial resolution could be improved using additional information<br />

like rock-slope hazard maps or detailed studies on particular unstable slopes. In order to<br />

improve our understanding of the dynamic response of unstable rock slopes, an extensive<br />

measurement campaign is presently being performed to determine eigenfrequencies, groundmotion<br />

polarization and amplification features, and to estimate the volume of the instability.<br />

A semi-permanent seismic installation was set up at the Alpe di Roscioro (Preonzo) site,<br />

a slope that is close to collapse, to continuously monitor seasonal variations of its dynamic<br />

behavior and how it changes over time.<br />

KEYWORDS<br />

earthquakes; induced phenomena; landslides; rock fall; tsunamis<br />

INTRODUCTION<br />

Moderate to high seismic risk in Switzerland results from moderate seismicity combined with<br />

high population density, high degree of industrialization and relatively low preparedness level<br />

due to the comparatively high return periods of damaging events. 28 events of moment<br />

magnitude Mw ≥ 5.5 have been identified over the past 700 years, twelve of which caused<br />

severe damage (Intensity of VIII or higher). The epicentral areas of the strongest events<br />

experienced extensive damage from the earthquake ground motion and different induced<br />

phenomena. Such phenomena are liquefaction in the river plains, reactivation of landslides,<br />

extended rock-fall and tsunamis in lakes generated by induced mass movements. Nevertheless,<br />

we expect that smaller but more frequent earthquakes may induce large ground motions<br />

locally, as well as small-scale movements and failures of critically stressed slopes.<br />

Due to engineering progress in the last two centuries, seismically unfavorable sites have<br />

become attractive for the establishment of settlements and industries. Many villages have<br />

1 Swiss Seismological Service ETH Zurich, Zürich, SWITZERLAND, faeh@sed.ethz.ch<br />

2 Swiss Seismological Service ETH Zurich<br />

3 Qatar Reinsurance Company Zurich<br />

IP_<strong>2016</strong>_FP016<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 249


expanded into the river plains and reached the toes of hazardous slopes in the valleys. Future<br />

earthquakes will therefore cause more damage than in the past. Focused studies might<br />

therefore help to identify areas at risk and to develop strategies for the mitigation of possible<br />

impacts.<br />

EARTHQUAKE INDUCED EFFECTS DURING PAST EVENTS IN SWITZERLAND<br />

Several events with significant induced effects have been reassessed in the course of the<br />

historical revision of the Earthquake Catalogue of Switzerland ECOS-09 (Fäh et al., 2011).<br />

A wide variety of historical documents, e.g. chronicles, administration documents, newspaper<br />

articles, diaries and scientific articles, describing such effects have been found and analyzed<br />

(e.g. Fritsche et al., 2012). Events with significant induced effects are the ones of 1584 at<br />

Aigle Mw=5.9 (tsunami and landslides), 1601 in Obwalden Mw=5.9 (landslides and tsunami),<br />

1755 at Brig Mw=5.7 (landslides), 1855 at Visp Mw=6.2 (liquefaction and landslides),<br />

and 1946 at Sierre Mw=5.8 (liquefaction, landslides, and avalanches).<br />

The main shock of the 1584 earthquake series at Aigle on March 11 had an epicentral intensity<br />

of VIII. It triggered subaquatic slope failures resulting in a small tsunami and seiche in Lake<br />

Geneva. The strongest of the aftershocks triggered a destructive rock-fall covering the villages<br />

Corbeyrier and Yvorne, VD, killing about 320 people (e.g. Fritsche et al., 2012). The earthquake<br />

of 1601 in Unterwalden produced several rock-falls in central Switzerland. The<br />

rock-fall at mount Bürgenstock collapsed into the lake and earthquake-triggered subaquatic<br />

landslides produced a high wave and a seiche in Lake Lucerne causing heavy destruction in<br />

the proximity of the shorelines (e.g. Schwarz-Zanetti and Fäh, 2011). The historical accounts<br />

on the destructive wave could be complemented with sedimentological studies that indicated<br />

a number of similar events in the past 15,000 years (e.g. Strasser et al., 2013). Among the<br />

relatively rare reports on earthquake-induced effects of the 1755 Brig event are an earth<br />

slump near Brig and accounts about fissures and cracks in the ground that can be interpreted<br />

as evidences for liquefaction. The event probably also triggered a large rockslide with an<br />

approximate volume of 1.5 million m³ destroying parts of the village of Niedergrächen (Gisler<br />

and Fäh, 2011; Fritsche et al., 2012). A large number of induced effects are documented in<br />

the case of the strongest earthquake of the last 300 years in Switzerland, which occurred in<br />

1855 at Visp. Among them are rock-falls and landslides, as well as liquefaction-related ground<br />

deformations, lateral spreading and ground settlements (Fritsche et al., 2012). Similar effects<br />

are documented for the 1946 earthquake sequence at Sierre (Figure 1). Since the main shock<br />

occurred in wintertime, avalanches are also among the documented effects (Fritsche and Fäh,<br />

2009; Fritsche et al., 2012).<br />

Paleo-seismology provides information about severe events that occurred in pre-historic<br />

times. The available data is mostly related to potentially earthquake-triggered mass movements<br />

in lakes and corresponding induced tsunamis. One of the most significant potentially<br />

earthquake-related event is the Tauredunum rock-fall in AD 563, with a destructive tsunami<br />

250 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


in Lake Geneva. This event is documented in medieval chronicles as well as in the natural<br />

archive of lake sediments (e.g. Kremer et al., 2012). Several coeval slope failures occurring<br />

around 2200 BP in different Swiss lakes, such as Lake Zurich, Lake Lucerne, Lake Geneva and<br />

Lake Neuchâtel suggest another very large seismic event in Switzerland (Strasser et al., 2013;<br />

Kremer, 2014; Reusch et al., 2015). Another potentially earthquake-triggered flooding event<br />

has been dated in Late Iron Age documented by the destruction of a Celtic wooden bridge in<br />

Cornaux, NE (e.g. Grolimund et al., 2015).<br />

While some sedimentary and archaeological evidence in Switzerland could be attributed to<br />

historically documented seismic events, it is a more difficult matter for events prior to 1000<br />

AD. To reduce the uncertainties inherent to paleo-seismological events, e.g. due to dating, it is<br />

indispensable to integrate all available data. Therefore, the Swiss Seismological Service (SED)<br />

is currently collecting the available datasets in a common database with homogeneous quality<br />

criteria (Gassner et al., 2015).<br />

Figure 1: Earthquake-induced effects of the 1946 main shock at Sierre and its largest aftershock (after Fritsche et al., 2009).<br />

EARTHQUAKE-INDUCED EFFECTS IN FUTURE EARTHQUAKES<br />

Quantitative estimates of co-seismic land sliding (distribution patterns, magnitude-frequency<br />

relationships) and subsequent impacts are still difficult today. This is due to many input<br />

parameters they require. We therefore presently follow two different strategies: investigations<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 251


on unstable rock slopes to understand their dynamic behaviour, and the development of<br />

regional models for earthquake triggering of landslides.<br />

At first, estimating the likelihood of potentially catastrophic landslides requires thorough<br />

understanding of the mechanisms driving slope dynamic behaviour. Long-term strength<br />

degradation of brittle rock masses is typically related to progressive failure. This is due to the<br />

propagation of new fractures through intact rock bridges and shearing along pre-existing<br />

discontinuities. A fundamental difficulty lies in experimental quantification of this process<br />

and the strength of fractured rock masses in relationship to the driving forces, i.e. the<br />

assessment of how close a given slope is to failure. This difficulty has major practical<br />

consequences, as the factor of safety of a slope at a given time defines the amplitude of the<br />

short-term disturbance required to trigger failure.<br />

A recent study demonstrated a very specific seismic response of unstable rock slopes. This<br />

might be considered as their unique signature (Burjanek et al., 2012). In particular, recorded<br />

ground motions (earthquakes or ambient vibrations) are highly directional in the unstable<br />

part of the rock slope, and significantly amplified with respect to the stable areas. These<br />

characteristics allow mapping stable and unstable portions of the rock mass. The predominant<br />

directions of ground motion match the past or on-going displacement directions (Burjanek et<br />

al., 2010). These effects are strongest at certain frequencies, which were identified as the<br />

eigenfrequencies of the unstable rock mass. The relative ground-motion amplifications with<br />

respect to the stable part of the slope reach typically peak amplitudes of 7 – 10 (see Figure 2).<br />

These effects are presently being assessed in a project supported by ETHZ on a large number<br />

of unstable rock slopes in Switzerland. On the one hand, such strong amplification levels and<br />

polarized ground motion may directly influence the potential for earthquake-triggered<br />

failure. On the other hand, the seismic response adds additional valuable information to the<br />

characterization of such unstable rock slopes. This will allow to further reduce the uncertainties<br />

related to stability, volume size and hazard assessment.<br />

Semi-permanent installations of seismic stations on unstable sites allow for long-term<br />

monitoring of eigenfrequencies and relative amplifications. It has been shown, that the<br />

fundamental frequency of the unstable slope could change with the time, and even could be<br />

seen as a precursor of the collapse (Levy et al, 2010). Two seismic stations have been recently<br />

installed by SED at the Alpe di Roscioro (Preonzo) site, a slope that is close to collapse.<br />

The relative amplification is monitored in time and shows seasonal variations (Figure 2).<br />

Strong variability is observed in wintertime (especially during freezing-thawing periods),<br />

whereas response is stable during summer. Such analyses are necessary for the correct<br />

interpretation of the dynamic response of instable slopes.<br />

The second research strategy deals with the use of geospatial proxies and rapid earthquake<br />

shaking information through Swiss ShakeMaps (Cauzzi et al., 2014) for the assessment of the<br />

252 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Time variation of the ground-motion amplification (in color) of the rock instability at Alpe di Roscioro (Preonzo, Ticino). Changes<br />

in the amplification are due to seasonal variations affecting the global stiffness of the instability in the frequency band 3.7 - 5 Hz, as<br />

well as the dynamic response of sub-blocks at frequencies above 7 Hz.<br />

likelihood of landslides, rock-falls and liquefaction in near real-time. Our current prototype<br />

implementation relies on the customisation of the global and regional approaches of Nowicki<br />

et al. (2014) and Zhu et al. (2015) to Swiss conditions by comparing the predictions with the<br />

observations of damaging events. Notable amongst the aforementioned historical earthquakes<br />

is the 1946 Sierre event (Mw 5.8) and its strongest aftershock (Mw 5.5) for which observations<br />

of the induced effects are abundant (Fritsche and Fäh, 2009). Our best landslide<br />

prediction model for the Sierre 1946 event is shown in Figure 3. With a few exceptions, the<br />

model can satisfactorily represent the geographic distribution of the observations. The model<br />

seems to work better for rock-falls (where just steepness of the slope and ground shaking<br />

are the dominating factors) than for soil landslides (where the water content can play a<br />

significant role as well). The white diamond close to the epicenter in Figure 3 is the major<br />

(4-5 million cubic meters) Rawylhorn rock-fall (e.g. Fritsche and Fäh, 2009). There are large<br />

areas in Figure 3, N and SW of the epicenter, where mass movements were not observed.<br />

It is not clear if these areas constitute “false positives”. According to Fritsche and Fäh (2009),<br />

the secondary effects are well described in contemporary newspaper articles. However, a<br />

contemporary damage assessment carried out on behalf of the Canton Valais has survived in<br />

fragments implying only partial completeness of the historical dataset. It could be that the<br />

dip and state of the rock layers played a significant role in the distribution of the observed<br />

mass movements in the area. In general, the distribution of historically known earth-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 253


Figure 3: Landslide likelihood scenario for the 1946 Sierre event. The colour on the map from white to red reflects the likelihood from 0 to<br />

1. Symbols indicate the epicentre location (Black star), the observed rock-falls (diamonds), landslides (circles) and avalanches<br />

(triangles) triggered by the main shock (pink symbols) and the largest aftershock (white symbols).<br />

quake-triggered mass movements can be modelled satisfactorily. In a further step, cantonal<br />

hazard maps for landslide and rock-fall hazards could be included in the procedure to improve<br />

the spatial resolution of the prediction model.<br />

254 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CONCLUSIONS<br />

The past earthquakes show impressively, that the Alpine region faces considerable seismic<br />

hazard and risk, in particular related to earthquake-induced phenomena such as landslides,<br />

rock-fall and liquefaction. Research on earthquake-triggered mass movements is addressed<br />

through historical and paleo-seismological analysis of past events, scenario modelling using<br />

ShakeMap, and studies of the dynamic response of a large number of unstable rock slopes.<br />

The ongoing research on the micro-vibrations of rock instabilities includes extensive<br />

measurement campaign to determine eigenfrequencies, ground-motion polarization features,<br />

ground-motion amplification levels, and to estimate the volume of the instabilities. This is<br />

resulting in a worldwide unique database of unstable-slope seismic responses. It is an<br />

investment for the future. It will serve for the monitoring of potential changes in the unstable<br />

rock masses. It is a base for the interpretation of potential future landslides triggered by<br />

earthquakes. For example, it could allow quantifying the slope damage after strong shaking<br />

(if the slope has not collapsed), and it might be used to improve the ShakeMap approach.<br />

For the ShakeMap approach we presently use georeferenced susceptibility proxies and<br />

ground shaking parameters for scenario modelling. However, the primary use of ShakeMaps<br />

is rapid estimates of earthquake impacts immediately after an event. This approach is based<br />

on accessible explanatory variables combined through simple functional forms with coefficients<br />

calibrated against the observations of past events. It is optimized for near real-time<br />

estimates based on USGS-style ShakeMaps implemented at SED since 2007.<br />

The presented research has a high practical relevance to Swiss ShakeMap end-users and<br />

stakeholders managing lifeline systems. Practitioners and cantonal authorities can run<br />

scenarios from which danger zones can be mapped and possible impacts estimated. After<br />

a strong earthquake information about possible landslides and rock-fall will be available<br />

within minutes. Future improvement might include cantonal hazard maps for landslide and<br />

rock-fall. This can be combined with real-time information such as precipitation and temperature,<br />

data from deformation devices or seismic stations located on particular instabilities.<br />

This research additionally facilitates future investigations on earthquake induced lake<br />

tsunamis triggered by subaquatic mass movements.<br />

REFERENCES<br />

- Burjánek J., Stamm G., Poggi V., Moore J.R., Fäh D. (2010): Ambient vibration analysis<br />

of an unstable mountain slope, Geophys. J. Int., 180, 820–828.<br />

- Burjánek J., Moore J.R., Yugsi Molina F.X., Fäh D. (2012): Instrumental evidence of normal<br />

mode rock slope vibration, Geophys. J. Int. 188:559–569.<br />

- Cauzzi C., Edwards B., Fäh D., et al. (2014): New predictive equations and site amplification<br />

estimates for the next-generation Swiss ShakeMaps, Geophys. J. Int. 200:421–438.<br />

- Fäh D. et al. (2011): ECOS-09 Earthquake Catalogue of Switzerland Release 2011 Report<br />

and Database, Public catalogue, 17.4.2011, Swiss Seismological Service ETH Zurich.<br />

- Fritsche S., Fäh D. (2009): The 1946 magnitude 6.1 earthquake in the Valais: site-effects<br />

as contributor to the damage, Swiss Journal of Geosciences, 102(3), 423–439.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 255


- Fritsche S., Fäh D., Schwarz-Zanetti G. (2012): Historical intensity VIII earthquakes along<br />

the Rhone valley (Valais, Switzerland): primary and secondary effects, Swiss Journal of<br />

Geosciences, 105(1), 1–18.<br />

- Gassner G., Fäh D., Strasser M., Grolimund R., Wirth S. (2015): Possible large earthquakes<br />

in prehistorical times: An overview of palaeoseismological data for Switzerland, Swiss Journal<br />

of Geosciences, submitted.<br />

- Gisler M., Fäh D. (2011): Grundlagen des makroseismischen Erdbebenkatalogs der Schweiz,<br />

1681–1878, vdf Hochschulverlag AG an der ETH Zürich, Zürich.<br />

- Grolimund R., Strasser M., Fäh D. (2015): Combining Natural and Historical Archives:<br />

What can we Learn about Large Alpine Earthquakes from the Late Iron Age to the Early<br />

Middle Ages?, Swiss Journal of Geosciences, submitted.<br />

- Kremer K. (2014): Reconstructing 4000 years of event history in deep Lake Geneva<br />

(Switzerland – France): insights from the sedimentary record, University of Geneva.<br />

- Kremer K., Simpson G., Girardclos S. (2012): Giant Lake Geneva tsunami in AD 563,<br />

Nature Geoscience, doi:10.1038/ngeo1618.<br />

- Levy C., Baillet L., Jongmans D., Mourot P., Hantz D. (2010): Dynamic response of the<br />

Chamousset rock column (Western Alps, France), J. geophys. Res., 115, F04043, doi:10.1029/<br />

2009JF001606.<br />

- Nowicki M.A., Wald D.J., Hamburger M.W., et al. (2014): Development of a globally<br />

applicable model for near real-time prediction of seismically induced landslides. Eng Geol<br />

173:54–65.<br />

- Reusch A. et al. (2015): Giant lacustrine pockmarks with subaqueous groundwater<br />

discharge and subsurface sediment mobilization, Geophys. Res. Lett., 42(9), 2015GL064179,<br />

doi:10.1002/2015GL064179.<br />

- Schwarz-Zanetti G., Fäh D. (2011): Grundlagen des makroseismischen Erdbebenkatalogs<br />

der Schweiz, 1300–1680, vdf Hochschulverlag AG an der ETH Zürich, Zürich.<br />

- Strasser M., Monecke K., Schnellmann M., Anselmetti F.S. (2013): Lake sediments as<br />

natural seismographs: A compiled record of Late Quaternary earthquakes in Central<br />

Switzerland and its implication for Alpine deformation, Sedimentology, 60(1), 319–341.<br />

- Zhu J., Daley D., Baise L.G., et al. (2014): A Geospatial Liquefaction Model for Rapid<br />

Response and Loss Estimation. Earthq Spectra 141208072728004. doi:<br />

10.1193/121912EQS353M.<br />

256 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Modelling of individual debris flows using Flow-R:<br />

A case study in four Swiss torrents<br />

Florian von Fischer, MSc 1 ; Margreth Keiler, PD Dr. 2 ; Markus Zimmermann, Dr. 2<br />

ABSTRACT<br />

Recently, an empirical debris flow model called Flow-R has been added to the broad range<br />

of existing debris flow modelling software. While Flow-R’s applicability on regional scale has<br />

been confirmed in several studies, it’s potential in local debris flow modelling has not yet<br />

been evaluated. In this study, Flow-R’s potential in debris flow modelling on local scale is tested<br />

via an application in four debris flow torrents in Switzerland. Obtained results are<br />

validated by comparison to documented debris flow events as well as model results from the<br />

commonly used hydraulic debris flow model RAMMS. Results show that due to the nonhydraulic<br />

model conception, the potential of Flow-R in individual debris flow modelling is<br />

limited. Plausible debris flow patterns are only achieved on torrents showing a low to<br />

moderate channelization, i.e. incision on the fan. Computed process velocities are unreliable<br />

due to the inability of the model to account for debris flow mass. Moreover, modelled debris<br />

flow magnitudes are biased by the compulsory non-volumetric definition of magnitudes.<br />

KEYWORDS<br />

debris flow modelling; Flow-R; susceptibility; debris flow hazard; case study<br />

INTRODUCTION<br />

In order to assess debris flow hazard, a variety of computer based debris flow models have<br />

been developed in the past decades. Recently, the empirical debris flow model Flow-R,<br />

designed for “susceptibility mapping of debris flows at regional scale” (Horton et al. 2013:1)<br />

was published. It allows the identification of potential source areas for debris flows as well as<br />

their propagation extent, essentially based on a DEM. Flow-R has been proved suitable for<br />

the production of regional debris flow “[…] susceptibility maps with satisfying accuracy”<br />

(Horton et al. 2013:870). Although Flow-R is not specifically designed for debris flow<br />

modelling on local scale, it is advisable to “compare the assessed susceptible zone with specific<br />

events in order to evaluate the accuracy of the results“ (Horton et al. 2013: 870). However, a<br />

systematic comparison of individual debris flow events and Flow-R modelling results gained<br />

on a highly resolved DEM (2m) has never been con-ducted. Therefore, the assessment of the<br />

accuracy and the allegedly limited applicability of Flow-R on local scale forms the main<br />

objective of this study. It is hypothesized that when applied on a highly resolved digital<br />

elevation model, Flow-R represents an alternative to sophisticated hydraulic models, such<br />

as RAMMS (Christen et al. 2012), in the modelling of individual debris flow events.<br />

1 Universität Bern, Bern, SWITZERLAND, flo.v.fischer@gmail.com<br />

2 Universität Bern<br />

IP_<strong>2016</strong>_FP017<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 257


This hypothesis is mainly tested with respect to modelled affected areas but also considers<br />

computed process velocities and model output for different event magnitudes.<br />

METHODS<br />

Flow-R’s potential in local debris flow modelling is evaluated by means of a reconstruction of<br />

four well-documented debris flow events in the Swiss Alps. Due to the diverse event<br />

characteristics the four torrents Richleren (UR, 1987 event: ~4’000 m³), Minstigerbach (VS,<br />

1987 event: ~30’000 m³), Glyssibach (BE, 2005 event: ~70’000 m³) and Varuna (GR, 1987<br />

event: ~185’000 m³) are selected for this study. Debris-flow model runs are conducted on the<br />

2m-resolved digital elevation model SwissALTI 3D . The calibration of the debris-flow model is<br />

essentially based on:<br />

– all available information from event documentations (VAW 1992, LLE 2006) comprising<br />

debris flow velocities, maximum discharge rates, event volumes and affected areas<br />

– empirical benchmark calibration values for the model’s friction parameters from literature<br />

(Horton et al. 2013, Gamma 2000, Zimmermann et al. 1997, Rickenmann & Zimmermann<br />

1993, Christen et al. 2012).<br />

In an iterative modelling process, the model’s parameters are adjusted until the obtained<br />

output fits the observed debris flow extent as well as possible (Fig. 1). For reasons of<br />

comparison, the documented debris flows are reconstructed with the hydraulic debris flow<br />

model RAMMS following the same iterative procedure. Among all input variables, the<br />

adjustment of applied friction parameters plays a predominant role in the calibration process<br />

for both debris flow models applied. For a better understanding, the following section shortly<br />

summarizes the basic functional principles of Flow-R and RAMMS based on Horton et al.<br />

(2013) and Christen et al. (2012).<br />

Flow-R calculates debris flows starting from either predefined source cells or from source cells<br />

empirically derived from the DEM. The direction and spreading of the debris flow is computed<br />

with a flow direction algorithm including a spreading exponent, whereas the assessment of<br />

the runout distance is based on one of two simple physical approaches. The model after Perla<br />

et al. (1980) calculates the velocity of the flow including friction parameters (μ) and mass-todrag<br />

ratio (M/D). Alternatively the SFLM, determining the maximum runout distance based<br />

on a minimum travel angle (TA) and maximum velocity (v lim ) can be selected. Flow-R does<br />

not consider debris flow volume but works with a unitary mass of 1. Flow-R model outputs<br />

include raster-data of spatial susceptibility as well as relative kinetic energy.<br />

The RAMMS debris flow model employs a modified Voellmy-fluid friction model, which<br />

includes a dry-Coulomb friction parameter (μ) and a turbulent friction parameter (ξ). In<br />

contrast to Flow-R, RAMMS requires an input debris flow volume. As applied in this study,<br />

debris flow volume and velocity can be included in a user-defined input hydrograph, which<br />

specifies maximum discharge rates and debris flow and velocity over time for given location<br />

in the torrent. The outputs generated with RAMMS comprise maximum flow height, velocity<br />

and impact pressure.<br />

258 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 1: Schematic representation of the research design for the assessment of Flow-R’s applicabil-ity in local debris-flow modelling.<br />

In addition to the event reconstruction, the selected debris flow models are also used to<br />

simulate further debris flow magnitudes, which are based on predefined scenarios. In<br />

RAMMS, additional debris flow magnitudes are defined by means of increasing or decreasing<br />

event volumes. With respect to friction parameters, the best-fit values determined in the prior<br />

event reconstruction are adopted, as rheological properties are assumed constant. Due to<br />

the model conception, this approach is not applicable to Flow-R. Alternatively, debris-flow<br />

magnitudes are defined based on a method applied by Gamma (2000) who defines magnitude<br />

scenarios according to relative travel distances on the fan, assuming longer travel distances<br />

with increasing debris flow magnitude. In Flow-R different magnitudes are thus modelled by<br />

adjusting friction parameters or travel angle, until the model results roughly correspond to<br />

the expected runout distance.<br />

For the appraisal of Flow-R’s performance, model outputs of Flow-R and RAMMS are<br />

compared mutually as well as to the documented debris flow events. This analysis includes<br />

both qualitative and quantitative aspects. The qualitative assessment focuses on the plausibility<br />

of the obtained debris flow pattern from a geomorphologic point of view. In other words,<br />

model output is evaluated with respect to its representativity of natural process behaviour,<br />

especially in connection with outbreaks of the flow from the channel. The quantitative assessment<br />

of model performance is based on the confusion matrix methodology by Beguerìa<br />

(2006). Confusion matrices allow an evaluation of the predictive power of models based on<br />

an overlay of model results and according validation datasets (Begueria 2006:315ff).<br />

The intersection of debris flow model output and documented debris flow extent results in<br />

four different classes of areas, composing the confusion matrix (Fig. 2). The evaluation of<br />

the debris flow models used in this study is based on the three following indices:<br />

– Sensitivity: Proportion of area correctly modelled as affected.<br />

– Specificity: Proportion of area correctly modelled as unaffected (Degree of underestimation<br />

or “cautiousness” of the model).<br />

– Efficiency: Proportion of the sum of all areas correctly predicted by the model (affected<br />

and unaffected).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 259


Figure 2: Subarea classification and model performance indices according to the confusion matrix method by Beguerìa (2006).<br />

RESULTS AND DISCUSSION<br />

Best-fit calibration parameters<br />

For comparability to other studies, the calibration parameters for Flow-R and RAMMS based<br />

on which the best-fit model output was achieved are listed below (Table 1).<br />

Table 1: Employed best-fit calibration values for Flow-R and RAMMS debris flow event modelling.<br />

Debris-flow extents<br />

The areas affected by debris flows as modelled with Flow-R show a respectable agreement<br />

with observed debris flow extents as well as with the results obtained with RAMMS<br />

(c.f. Richleren torrent, Fig. 3). Although not perfectly matching the extent of the calibration<br />

event, the modelled flow paths are certainly plausible. Model outputs from both RAMMS and<br />

Flow-R show a surprisingly high agreement despite the great difference in model conception.<br />

However, this agreement is restricted to sites, where a low degree of channelization i.e.<br />

incision of the torrent can be observed on the debris flow fan. In moderately to strongly<br />

260 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


channelized torrents, the non-hydraulic concep-tion of Flow-R composes an important<br />

disadvantage. Backwater effects occurring due to con-strictions in the channel or due to<br />

a confinement of the flow path cannot be simulated, resulting in a significantly reduced<br />

outbreak from the channel (c.f. Glyssibach, Fig. 4). Compared to RAMMS, Flow-R thus<br />

shows a higher sensitivity towards this “channelization” in the topography.<br />

Figure 3: Best-fit modelling results (Flow-R & RAMMS) for the 1987 event in the Richleren.<br />

The quantitative comparison of debris flow modelling results based on confusion matrices<br />

confirms the good agreement between model output and observed debris flow pattern.<br />

As visible in Fig. 5, both models reach respectable efficiency values in all study areas. Quite<br />

contrarily to what might be expected, the sensitivity index (amount of correctly predicted<br />

affected areas) shows an inverse correlation with achieved efficiency: the model showing a<br />

lower efficiency uniformly achieves the higher sensitivity value. Additionally the variability<br />

in the sensitivity index is generally larger. Other than the efficiency, the sensitivity apparently<br />

depends on the degree of channelization of the tor-rent on the fan. As discussed earlier, this<br />

condition especially applies for Flow-R. The obtained sensitivity values confirm these findings<br />

as low sensitivity indices correspond with a higher degree of channelization.<br />

Since the efficiency values obviously cannot be explained by the sensitivity indices due to<br />

the inverse proportions, an inclusion of the specificity index is required. The specificity, which<br />

can also be referred to as the degree of underestimation or the “cautiousness” of a model,<br />

is higher for RAMMS in larger catchments, while Flow-R shows higher values in smaller<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 261


Figure 4: Best-fit debris flow modelling results (Flow-R & RAMMS) for the 2005 event in the Glyssibach torrent.<br />

catchments. Furthermore, differences between RAMMS and Flow-R are larger in the<br />

Minstigerbach and the Glyssibach. The specificity index thus depends both on the catchment<br />

area as well as on the degree of channel-ization in fan topography.<br />

In each of the four research areas, a lower specificity index goes hand in hand with a higher<br />

sensitivity. In other words, the less cautious a model, the more generously it classifies cells as<br />

affected by the process, which in turn leads to a higher probability of reconstructing areas<br />

actually affected in reality (true positives in the confusion matrix). However, due to this high<br />

generosity, the amount of false positives increases too. Thus, the overall efficiency (percentage<br />

of overall correctly classified cells) does not necessarily increase. Quite contrarily, the<br />

comparison between efficiency and specificity indices in all four catchments shows that<br />

higher efficiency values are achieved by the more cautious, i.e. the more underestimating<br />

model.<br />

Debris-flow velocity<br />

Since Flow-R does not consider debris flow mass, obtained debris-flow velocities may only be<br />

considered relatively. Based on the various model runs conducted in the course of this study<br />

it can be stated that the spatial pattern of modelled velocities is highly sensitive towards local<br />

changes in terrain slope. Even small changes in the slope gradient lead to a pronounced<br />

decline or increase of modelled velocities, which may exceed reasonable ranges. Additionally,<br />

obtained patterns of ve-locities show a regular pattern over the complete width of the flow on<br />

262 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 5: Efficiency, sensitivity and specificity indices for best-fit Flow-R & RAMMS model output.<br />

uniform debris flow fans, while only in pronounced channels, a decrease of velocities towards<br />

the flow margins can be ob-served.<br />

Debris-flow magnitudes<br />

Concerning the modelling of different event magnitudes with Flow-R it needs to be stated<br />

that without a calibration event, a nonbiased modelling of different magnitudes is practically<br />

impossible due to the necessarily non-volumetric definition of event scenarios. A definition<br />

of magnitudes solely based on expected runout distances does not take into account channel<br />

topography (especially incision) on the debris flow fan, which majorly influences debris flow<br />

behaviour. The extent of the modelled debris flows therefore mostly reflects an expected<br />

runout pattern or –distance and does not correspond well with RAMMS model output.<br />

CONCLUSIONS<br />

Based on the obtained results it can be stated that due to the non-hydraulic model conception,<br />

the potential of Flow-R in individual debris flow modelling is limited. Plausible debris<br />

flow patterns are only achieved on torrents showing a low to moderate channelization, i.e.<br />

incision on the fan. Computed process velocities are unusable due to the inability of the<br />

model to account for debris flow mass. Moreover, the modelling output for different debris<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 263


flow magnitudes is biased by the compulsory non-volumetric definition of magnitudes. It<br />

therefore needs to be emphasized that Flow-R is not suitable for hazard mapping in a narrow<br />

sense, but it provides first-hand information on debris-flow runout. Despite the restricted<br />

potential of Flow-R in local debris flow event modelling, an application may thus still provide<br />

valuable preliminary information on debris flow susceptibility. Based on insights achieved<br />

with Flow-R debris-flow modelling, the financial expenses connected with a hydraulic debris<br />

flow simulation may thus be substantially reduced.<br />

REFERENCES<br />

- Beguerìa S. (2006). Validation and Evaluation of Predictive Models in Hazard Assessment<br />

and Risk Management. Natural Hazards 37: 315-329.<br />

- Christen, M.; Bühler, Y.; Bartelt, P.; Leine, R.; Glover, J.; Schweizer, A.; Graf, C.; McArdell,<br />

B. W.; Gerber, W.; Deubelbeiss, Y.; Feistl, T.; Volkwein, A. (2012). Integral Hazard Management<br />

Using a Unified Software Environment. Numerical Simulation Tool “RAMMS” for<br />

Gravitational Natural Hazards. 12th Congress <strong>INTERPRAEVENT</strong> 2012, Grenoble.<br />

- Gamma, P. (2000). dfwalk – Ein Murgang-Simulationsprogramm zur Gefahrenzonierung.<br />

Geographica Bernensia G66. Geographisches Institut der Universität Bern, Bern.<br />

- Horton, P.; Jaboyedoff, M.; Rudaz, B.; Zimmermann, M. (2013). Flow-R, a Model for<br />

Susceptibility Mapping of Debris Flows and Other Gravitational Hazards at Regional Scale.<br />

Natural Hazards and Earth System Sciences 13: 869- 885.<br />

- Jakob, M. & Hungr, O. (2005). Introduction. In: Jakob M. & Hungr O. (Eds.). Debris Flow<br />

Hazard and Related Phenomena. Springer & Praxis Publishing Ltd, Berlin.<br />

- LLE Glyssibach (2006). Lokale lösungsorientierte Ereignisanalyse Glyssibach. Bericht zum<br />

Vorprojekt. NDR Consulting Zimmermann & Niederer + Pozzi Umwelt AG, im Auftrag des<br />

Tiefbauamts des Kantons Bern, Oberingenieurkreis I, Thun.<br />

- Perla, R.; Cheng, T. T.; McClung, D. M. (1980). A Two-Parameter Model of Snow Avalanche<br />

Motion. Journal of Glaciology 26: 197-207.<br />

- Rickenmann, D. & Zimmermann, M. (1993). The 1987 Debris Flows in Switzerland:<br />

Documentation and Analysis. Geomorphology 8: 175-189.<br />

- VAW (1992). Murgänge 1987 – Dokumentation und Analyse. Unveröffentlichter Bericht Nr.<br />

97.6. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), Eidg. Technische<br />

Hochschule ETH Zürich, Zürich.<br />

- Zimmermann, M.; Mani, P.; Gamma, P. (1997). Murganggefahr und Klimaänderung – ein<br />

GIS-Basierter Ansatz. Schlussbericht NFP31. Vdf Hochschulverlag, Zürich.<br />

264 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Slide-induced impulse waves in mountainous regions<br />

Helge Fuchs, Dr. 1 ; Robert M. Boes, Prof. Dr. 2<br />

ABSTRACT<br />

Impulse waves occur as a natural hazard particularly in mountainous regions with lakes<br />

surrounded by a steep shoreline. Landslides, rockslides, glacier calvings or avalanches then<br />

transfer its momentum to the water body thereby generating large tsunamigenic waves.<br />

At lakes, damages are expected for the shore vegetation or possible infrastructure. In presence<br />

of a reservoir, potential dam overtopping could lead to downstream damages due to (a) direct<br />

wave impact, (b) float impact, (c) deposited float and debris or even (d) complete dam failure.<br />

Using physical model tests conducted within various PhD theses at the Laboratory of<br />

Hydraulics, Hydrology and Glaciology (VAW) of ETH Zurich, the impulse wave generation<br />

and the wave-shore interaction were intensively investigated. Based on a computation<br />

guideline published in 2009, the possible hazard potential may be assessed. The present<br />

contribution provides an overview on impulse waves and an evaluation of underwater slide<br />

propagation and deposition features. These data are useful for the calibration of numerical<br />

models or the above mentioned assessment approach.<br />

KEYWORDS<br />

Landslide; Impulse wave; Physical modelling; Wave height; Slide deposition<br />

INTRODUCTION<br />

Impulse waves are considered a severe danger in mountainous regions. They are generated<br />

in lakes or reservoirs following a landslide, rockslide, rockfall, avalanche, or glacier impact.<br />

The usually short propagation distance and the negligible wave attenuation due to the<br />

tsunamigenic long wave behavior lead to a massive damage potential. Damages at the<br />

opposite shore are generated due to (a) direct wave impact on buildings and structures, (b)<br />

driftwood and float, and (c) their deposits after water retreat. Possible dam overtopping may<br />

lead to structural damages or even (d) a total dam failure. The generated dam break wave<br />

may then propagate downstream endangering distant settlements due to widespread flooding.<br />

The proglacial lake at the Lower Grindelwald Glacier in Switzerland was created due to a<br />

combination of glacier melt and glacier retreat. The lake level varies over the year with an<br />

increase starting in spring with rising temperature and thus, glacier melt, a maximum still<br />

water depth of ≈ 34 m and a decrease in autumn up to complete drainage at the end of a year<br />

(Hählen 2010). The steep and unstable rock flanks provoke frequent minor slide events.<br />

A larger 100,000 m³ landslide entered the lake in May 2009 thereby generating impulse<br />

1 ETH Zürich, Zürich, SWITZERLAND, fuchs@vaw.baug.ethz.ch<br />

2 ETH Zürich, Zürich, SWITZERLAND<br />

IP_<strong>2016</strong>_FP087<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 265


waves (Fig. 1). According to video records and photographs, the initial splash height was<br />

determined to ≈ 100 m and wave run-up to ≈ 10 m.<br />

Figure 1. 2010 Grindelwald glacier lake event with (a) slide impact, (b) run-up traces<br />

In 2010 a ≈ 300,000 m³ rock-ice avalanche impacted a glacier lake near Carhuaz, Peru.<br />

Despite a 20 m freeboard the wave overtopped the natural rock-dam with ≈ 1×10 6 m³ of<br />

water (Schneider et al. 2014). The generated flood wave transported an increasing amount of<br />

material with increasing propagation distance and finally caused significant damages to the<br />

village of Carhuaz, located 15 km downstream and 2000 m below the glacier lake (Fig. 2).<br />

In the course of global warming, glacier retreat creates additional glacier lakes thereby<br />

increasing the hazard risk for mountainous regions.<br />

Figure 2. Process scheme of 2010 Carhuaz impulse wave flood event (adapted from Schneider et al. 2014)<br />

During the planning phase of a reservoir, potential impulse wave events may be physically<br />

modelled in a laboratory. This procedure requires certain cost and duration and thus is not<br />

suitable for a quick hazard assessment in case of observed rock or slope instabilities at existing<br />

reservoirs or lakes. The VAW assessment guideline (Heller et al. 2009) summarizing the past<br />

impulse wave research at VAW and accounting for a literature review, allows for a quick and<br />

adequate assessment of slide-induced impulse waves in reservoirs.<br />

The present contribution provides a general overview on impulse waves and details a recent<br />

evaluation of underwater slide propagation and deposition features. These data are particularly<br />

useful for the calibration of numerical models or the above mentioned assessment approach<br />

using generally applicable equations.<br />

266 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RESULTS OF PAST VAW IMPULSE WAVE RESEARCH<br />

Impulse wave events may be modelled either as solid body slides, for which the slide<br />

characteristics are easily controlled and measured (e.g. Russell 1837, Wiegel 1955, or<br />

Kamphuis and Bowering 1972) or using granular material, thereby significantly complicating<br />

the modelling procedure (e.g. Huber 1980, Fritz 2002; Zweifel 2004; Heller 2007; Mohammed<br />

2010; Bregoli et al. 2013; or Evers and Hager 2015). The simplified use of solid bodies has to<br />

be carefully selected depending on the prototype slide granulometry. Given a granular slide<br />

impacts the water with a small slide velocity, a 3-phase flow may be generated, incorporating<br />

the slide material, the water and air, thereby leading to significant energy dissipation.<br />

Investigations may either involve a simple 2D test-setup corresponding to a wave channel,<br />

or a more advanced three-dimensional (3D) setup accounting for complex wave propagation<br />

features, e.g. reflection, refraction or diffraction. Given such a wave basin (3D setup) the slide<br />

protrudes radially below the water surface and waves propagate radially from the slide impact<br />

location. With the wave energy being distributed over an increasing area, the resulting wave<br />

attenuation is larger as compared with the 2D case. The waves observed in laboratory were<br />

mainly of Stokes-type, cnoidal-like or solitary-like types. A more detailed review of the<br />

impulse wave generation process is provided by Heller et al. (2009).<br />

Figure 3. VAW impulse wave channel (Fritz 2002)<br />

Starting in 1998, the PhD research cycle on impulse waves at VAW involved a wave channel<br />

equipped with a pneumatic landslide generator (Fig. 3). This unique setup allowed for the<br />

independent variation of all basic parameters, e.g. the still water depth h, slide thickness s,<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 267


slide impact velocity V s , bulk slide volume V s , bulk slide density ρ s<br />

, and slide impact angle α<br />

(Fig. 4a). The resulting wave height H was then determined for various propagation distances<br />

x.<br />

Figure 4. Parameter definition scheme for (a) slide induced impulse wave generation, (b) underwater slide characteristics<br />

As a result of more than 400 tests, Heller (2007) identified the impulse product parameter P<br />

involving the slide Froude number F = V s /(gh) ½ , the relative slide thickness S = s/h, and the<br />

relative slide mass M = m s<br />

/(ρ w<br />

Bh 2 ) as the governing parameters for impulse wave generation<br />

(1)<br />

with ρ w<br />

as the water density and B as the slide width. The maximum wave height HM<br />

representing the vertical distance between the wave through and the wave crest in the near<br />

field is independent of the propagation direction and results as<br />

(2)<br />

The subsequent wave-shore interaction can be treated either as run-up on a vertical wall for<br />

arch and gravity dams, wave run-up on linearly inclined embankment dams or shore slopes<br />

(e.g. Hall and Watts 1953; Synolaki 1987; Teng et al. 2000; Goseberg 2011; Baldock et al.<br />

2012) or overland flow on a connected horizontal plane (Zelt and Raichlen 1991; Schüttrumpf<br />

and Oumeraci 2005; Sælevik et al. 2013; or Fuchs and Hager 2015). According to the<br />

latter, the maximum solitary wave run-up r on a linearly inclined shore in terms of the<br />

vertical distance between still water level and the maximum onshore water surface elevation<br />

is<br />

(3)<br />

The maximum wave run-up height therefore mainly depends on the wave type, the wave<br />

height H in front of the shore, and the shore slope β. Due to scale limitations in physical<br />

models additional effects e.g. surface roughness in terms of shore vegetation or shore<br />

permeability are hard to address.<br />

268 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


OBJECTIVE AND METHODOLOGY OF CURRENT STUDY<br />

The underwater motion of subaerial granular slides has hardly received any attention in the<br />

past although the slide deposition might be important for infrastructure and dam safety<br />

elements, e.g. a reservoir bottom outlet. In addition, valuable information following a<br />

back-analysis of past slide events is useful to calibrate the calculation procedure or possible<br />

numerical models. Testing in the VAW impulse wave channel mostly involved video recordings<br />

for documentation purposes. Videos of 41 tests selected so that the range of initial basic<br />

parameters is covered best were analyzed regarding the underwater slide dynamics and their<br />

final deposition patterns. Video still images were corrected for distortion and the coordinates<br />

of distinctive slide points, namely the slide front position along bottom f 0<br />

, the maximum slide<br />

front position f 1<br />

, the maximum slide thickness s and s′, respectively, and the rear slide<br />

position b (Fig. 4b) were evaluated over the test duration. The coordinate accuracy of<br />

±30 mm for the largest underwater slide velocities of V s<br />

≈ 7.5 m/s was mainly determined by<br />

the camera exposure time and thus blurry still images (Fig. 5a). For smaller slide velocities<br />

the accuracy was ±5 mm.<br />

RESULTS ON UNDERWATER SLIDE PROPAGATION<br />

Three distinctive tests were selected to demonstrate the variety of underwater slide motion of<br />

impulse wave events (Fig. 5). Test A corresponds to a slide impact angle of α = 45° and<br />

therefore represents a high velocity slide at a typical steep mountain shore. Whereas Test B<br />

corresponds to a vertical slide impact occurring e.g. for rock-fall scenarios, Test C represents<br />

a moderate α = 30° angle in combination with a small slide velocity, i.e. a slide that is initially<br />

located only slightly above the still water surface. The main slide parameters at water surface<br />

contact are listed in Tab. 1.<br />

Table 1. Initial parameters of Tests A, B, and C<br />

Due to the high impact velocity, the slide of Test A is compacted when reaching the water<br />

surface, thereby generating a large splash (Fig. 5 a-b). Subsequently the slide transfers its<br />

momentum to the water body, thereby creating the impulse wave. Note the vertical water<br />

column for Tests A (Fig. 5b) and B (Fig. 5f). The generated water crater collapses in outward<br />

direction (Fig. 5c-d) and the granular slide protrudes underwater and comes to rest at its final<br />

deposition pattern characterized by the maximum deposition length and thickness (Fig. 5d).<br />

With the reduced impact velocity of Test B, the splash at water contact is much reduced<br />

(Fig. 5e) as compared to Test A. Before reaching the channel bottom, the slide is deflected in<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 269


the channel direction (Fig. 5f) and the water crater collapses in inward direction (Fig. 5g-h),<br />

thereby pushing the slide backwards and thus affecting the deposition shape.<br />

Due to the small impact velocity of Test C, the slide front is not compacted and almost no<br />

splash is generated (Fig. 5i). The fluid does not separate from the slide so that no impact<br />

crater is formed but fluid enters the slide pores leading to a disintegrated slide (Fig. 5j-k).<br />

The slide back does not reach the water but deposits on the slide ramp (Fig. 5l).<br />

Figure 5. Still Image sequences for (a-d) Test A, (e-h) Test B, (i-l) Test C; time increment between images is ∆t ≈ 6/25 s<br />

The underwater slide motion therefore shows large differences depending on the slide impact<br />

characteristics. However, given the slide front motion is normalized using values of the final<br />

deposition pattern, i.e. xf0, end as the maximum front position and tend as the time when<br />

the slide comes to rest and the final deposition is reached, the underwater slide trajectory<br />

follows in good agreement by (Fig. 6)<br />

(4)<br />

where T = t/t end<br />

In addition to the underwater slide kinematics, characteristic values for the final deposition<br />

pattern were evaluated. Figure 7 shows the normalized slide front position x′ f0,end<br />

/h, the<br />

duration to reach the final position T end<br />

, and the final deposition thickness s′ end<br />

/h. A good<br />

correlation was found to the impact angle-corrected impulse product parameter<br />

270 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


P s<br />

= P · sin[(6/7)α] (Fig. 7a,c,e) which almost<br />

corresponds to the governing parameter<br />

combination for the impulse wave generation<br />

(Heller et al. 2009). However, a similarly<br />

good correlation was found for the impact<br />

angle-corrected slide mass M s<br />

= M sin[(6/7)α]<br />

(Fig. 7b,d,f) without including a kinematic<br />

parameter in the impact characteristics.<br />

The corresponding equations read<br />

(R 2 = 0.71) (5)<br />

Figure 6. Normalized underwater slide propagation<br />

(R 2 = 0.66) (6)<br />

(R 2 = 0.26) (7)<br />

(R 2 = 0.31) (8)<br />

(R 2 = 0.59) (9)<br />

(R 2 = 0.71) (10)<br />

From these observations follows that the larger the slide impact, the larger is the underwater<br />

slide protrusion, the smaller is the deposition thickness, and the shorter is the duration until<br />

the final deposition pattern is reached. A more detailed analysis of underwater slide features<br />

is presented by Fuchs et al. (2013).<br />

CONCLUSIONS<br />

Impulse waves may constitute a severe danger to the safety of dams or infrastructure in the<br />

surroundings of mountainous lakes. Based on the long and systematic expertise of the<br />

Laboratory of Hydraulics, Hydrology and Glaciology (VAW) including physical model testing<br />

and a literature review, an assessment guideline for landslide generated impulse waves in<br />

reservoirs was published in 2009 (Heller et al. 2009). Recently, video recordings of selected<br />

physical model tests were analyzed to investigate both the underwater slide kinematics and<br />

the resulting deposition characteristics. Based on estimates for specific slide deposit features,<br />

e.g. their length and thickness, it is demonstrated that final deposition patterns can be<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 271


Figure 7. Normalized deposition characteristics of (a+b) slide front position, (c+d) propagation duration, and (e+f) deposition thickness<br />

versus P s<br />

and M s<br />

, respectively (*) tests with h ≤ 0.2 m potentially affected by scale effects; (- -) = ±30%<br />

described using only static input parameters but neglecting the slide kinematics. These results<br />

apply to calibrate a calculation procedure or to validate numerical models. This work thus<br />

contributes to the estimation of the risk assessment and to safety aspects relating to waveshore<br />

interaction mainly in the Alpine environment.<br />

REFERENCES<br />

- Baldock, T. E., Peiris, D., and Hogg, A. J. (2012). “Overtopping of solitary waves and solitary<br />

bores on a plane beach.” Proc. R. Soc. London Ser. A, 468, 3494–3516.<br />

- Bregoli, F., Bateman Pinzón, A., Medina Iglesias, V., and Gómez Cortéz, D. A. (2013).<br />

“Experimental studies on 3D impulse waves generated by rapid landslides and debris flow.”<br />

Ital. J. Eng. Geol. Environ. 6, 115–122.<br />

- Evers, F.M., Hager, W.H. (2015). “Impulse wave generation: Comparison of free granular<br />

with mesh-packed slides”. J. Mar. Sci. Eng., 3(1), 100–110.<br />

- Fuchs, H., Winz, E., and Hager, W. (2013). ”Underwater Landslide Characteristics from<br />

2D Laboratory Modeling.” J. Waterway, Port, Coastal, Ocean Eng., 139(6), 480–488.<br />

- Fuchs, H, Hager, W.H. (2015). ”Solitary impulse wave transformation to overland flow”.<br />

J. Waterway, Port, Coastal, and Ocean Engineering 141(5):04015004 (DOI 10.1061/(ASCE)<br />

WW.1943-5460.0000294).<br />

- Fritz, H.M. (2002). “Initial phase of landslide generated impulse waves”. VAW-Mitteilung<br />

178, H.-E. Minor, ed., ETH Zürich, Zurich, Switzerland.<br />

272 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Goseberg, N. (2011) “The run-up of long waves: Laboratory-scaled geophysical reproduction<br />

and onshore interaction with macro-roughness elements”. Ph.D. thesis, Leibniz Universität<br />

Hannover, Germany.<br />

- Hählen, N. (2010) “Moränenabbruch 22. Mai 2009 – Kurzbericht (Moraine slide May 22,<br />

2009 – Short report)”. Tiefbauamt des Kantons Bern, Thun (unpublished, in German).<br />

- Hall, J.V., Watts, G. M. (1953) “Laboratory investigation of the vertical rise of solitary waves<br />

on impermeable slopes.” Technical Memo Rep. No. 33, U.S. Army Corps of Engineers, Beach<br />

Erosion Board, Washington DC, USA.<br />

- Heller, V. (2007) “Landslide generated impulse waves - Prediction of near field characteristics.”<br />

VAW-Mitteilung 204, H.-E. Minor, ed., ETH Zurich, Zürich, Switzerland.<br />

- Heller, V., Hager, W.H., and Minor H.-E. (2009). “Landslide generated impulse waves in<br />

reservoirs: Basics and computation”. VAW-Mitteilung 211, R. Boes, ed., ETH Zurich, Zürich,<br />

Switzerland.<br />

- Huber, A. (1980) “Schwallwellen in Seen als Folge von Felsstürzen (Impulse waves<br />

following rockfalls)”. VAW-Mitteilung 47, Vischer, D., ed., ETH Zurich, Switzerland<br />

(in German).<br />

- Kamphuis, J. W., Bowering, R. J. (1972). “Impulse waves generated by landslides.”<br />

Proc., 12th Coastal Engineering Conf., ASCE, New York, 575–588.<br />

- Mohammed, F. (2010). “Physical modeling of tsunamis generated by three-dimensional<br />

deformable granular landslides.” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.<br />

- Russell, J.S. (1837) “Report of the committee on waves”. Report of the 7th Meeting of the<br />

British Association for the Advancement of Science Liverpool 7:417–496, Murray, London.<br />

- Sælevik, G., Jensen, A., and Pedersen, G. (2013). “Runup of solitary waves on a straight<br />

and a composite beach.” Coastal Engineering, 77(1): 40–48.<br />

- Schneider, D., Huggel, C., Cochachin, A., Guillén, S., and García, J. (2014). “Mapping<br />

hazards from glacier lake outburst floods based on modelling of process cascades at<br />

Lake 513, Carhuaz, Peru”. Advances of Geosciences 35: 145–155.<br />

- Schüttrumpf, H.F.R., Oumeraci, H. (2005) “Layer thickness and velocities of wave overtopping<br />

flow at seadikes”. Coastal Engineering 52(6): 473–495.<br />

- Synolakis, C.E. (1987) “The run-up of solitary waves“. J. Fluid Mechanics 185: 523–545.<br />

- Teng, M.H., Feng, K., Liao, T.I. (2000). Experimental study on long wave run-up on plane<br />

beaches. Proc. 10th Intl. Offshore and Polar Engineering Conf. 3: 660–664. Chung, J.S.,<br />

Olagnon, M., Kim, C.H. eds. ISOPE: California, USA.<br />

- Wiegel, R.L. (1955) “Laboratory studies of gravity waves generated by the movement of<br />

a submerged body.” Trans. American Geophysical Union 36(5): 759–774.<br />

- Zelt, J.A., Raichlen, F. (1991) “Overland flow from solitary waves”. J. Waterway, Port,<br />

Coastal, and Ocean Engineering 117(3): 247–263.<br />

- Zweifel, A. (2004) “Impulswellen: Effekte der Rutschdichte und der Wassertiefe (Impulse<br />

waves: effect of slide density and still water depth)”. VAW-Mitteilung 186, H.-E. Minor, ed.,<br />

ETH Zurich, Zürich, Switzerland (in German).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 273


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Monitoring and management of a huge landslide in a<br />

built-up area induced by the excavation of deep<br />

highway tunnels<br />

Monitoraggio e gestione di una grande frana in area<br />

urbanizzata indotta dallo scavo di gallerie autostradali<br />

profonde<br />

Guido Gottardi 1 ; Giuseppe Ricceri 2 ; Alberto Selleri 3 ; Paolo Simonini 4 ; Daniela Salucci 2 ; Paola Torsello 2<br />

ABSTRACT<br />

In 2011 a huge quiescent landside was suddenly reactivated by the excavation of two deep<br />

parallel tunnels belonging to the new highway, now completed, connecting Bologna to<br />

Firenze. This involved potentially hazardous situations for the inhabitants of a village lying<br />

on top of the landslide, inducing increasing anxiety in the population, who repeatedly asked<br />

for stopping the excavation and looking for new possible highway paths. Such circumstances<br />

induced the Regional Authorities and the Contractor to install a comprehensive displacement<br />

real-time monitoring system along the slope. In addition, the structural conditions of each<br />

building in the area were carefully checked, establishing suitable thresholds on structural<br />

movements in order to decide about their possible evacuation. At the same time, a group of<br />

experts was especially appointed to manage the evolving situation. The installed instruments<br />

allowed for a careful and constant control of the displacement rates of soil and structures and<br />

of their evolution with time, enabling the construction of both tunnels to proceed, even at<br />

reduced excavation rate, until their successful completion.<br />

RIASSUNTO<br />

Nel 2011 una grande frana quiescente fu improvvisamente riattivata dallo scavo di due<br />

gallerie profonde e parallele, facenti parte del nuovo tratto autostradale – ora completato -<br />

tra Bologna e Firenze, noto come Variante di Valico. Ciò implicò situazioni di potenziale<br />

pericolo e di preoccupazione per gli abitanti del paese soprastante, che chiesero ripetutamente<br />

la sospensione delle operazioni di scavo e l’individuazione di un tracciato alternativo.<br />

Tali circostanze indussero quindi gli enti competenti e le autorità regionali a richiedere<br />

all’impresa appaltatrice la progettazione e l’installazione di un articolato sistema di monitoraggio<br />

in tempo reale degli spostamenti del versante. L’assetto strutturale di ogni edificio<br />

è stato altresì tenuto sotto stretta osservazione, individuando delle soglie di riferimento sui<br />

1 University of Bologna, ITALY, guido.gottardi2@unibo.it<br />

2 Osservatorio Ambientale<br />

3 Autostrade per l‘Italia<br />

4 University of Padova<br />

274 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP113


elativi movimenti al raggiungimento delle quali procedere con la delocalizzazione degli<br />

abitanti. L’attento e costante controllo delle velocità di spostamento e della loro evoluzione<br />

nel tempo ha così consentito alle operazioni di scavo di procedere in sicurezza, anche a<br />

ritmi ridotti, fino al completamento dell’opera.<br />

KEYWORDS<br />

landslide; monitoring; emergency plan<br />

INTRODUZIONE<br />

Nel 2002 la Società Autostrade per l’Italia avviava i lavori di realizzazione della variante<br />

all’autostrada A1 tra Sasso Marconi e Barberino di Mugello, la cosiddetta Variante di Valico<br />

(VAV), il cui tracciato si compone di 23 viadotti e 22 gallerie, per uno sviluppo totale di circa<br />

58 km (Autostrade per l’Italia, 2006). La Variante attraversa per 43 km l’Emilia-Romagna<br />

e per 15 km la Toscana (Figura 1).<br />

Figura 1. Ubicazione del progetto della Variante di Valico e della Galleria Val di Sambro.<br />

Contestualmente all’inizio dei lavori veniva istituito, tramite un accordo ufficiale sottoscritto<br />

dal Ministero dell’Ambiente e dagli Enti locali, un Osservatorio Ambientale (OA) col compito<br />

di controllare l’operatività e l’efficacia del Piano di Monitoraggio Ambientale (PMA) attivato<br />

da Autostrade e di verificare l’impatto prodotto dai cantieri sul contesto ambientale e socioeconomico.<br />

La VAV si inserisce infatti all’interno di un territorio antropizzato, vario ed articolato, carat-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 275


terizzato dalla presenza dei massicci montuosi dell’Appennino tosco-emiliano, separati in<br />

genere da valli strette e solcate da corsi d’acqua a carattere torrentizio. Tale contesto geomorfologico<br />

è contraddistinto dalla presenza di innumerevoli frane, alcune delle quali di<br />

tipo complesso e di notevoli dimensioni (Bertolini et al., 2001). A presidio di questo scenario<br />

il PMA prevedeva dunque il monitoraggio di 10 componenti distribuite tra i settori antropico,<br />

idrico, geotecnico e naturale, con campagne di misura in continuo ovvero a frequenza<br />

variabile, a seconda della matrice monitorata. Dal punto di vista specifico dell’assetto del<br />

territorio, il PMA ha distinto i siti degni di attenzione in: “aree sensibili”, interessate da<br />

fenomeni franosi attivi, inattivi o quiescenti, e “opere sensibili”, ossia gli imbocchi delle<br />

gallerie naturali, gli scavi sui versanti o in adiacenza a strutture e/o infrastrutture<br />

(Barla et al., 2006).<br />

Il presente contributo si propone di presentare, sebbene a grandi linee, il complesso piano di<br />

emergenza messo a punto in occasione della riattivazione di un movimento di versante profondo<br />

indotto dalla realizzazione delle due canne affiancate denominate “galleria Val di<br />

Sambro”, che ha interessato le frazioni soprastanti di Santa Maria Maddalena e di Serrucce,<br />

in Comune di San Benedetto Val di Sambro (BO). Tale piano di emergenza ha preso l’avvio<br />

dall’installazione di un esteso sistema di monitoraggio topografico e geotecnico - costituito<br />

da strumentazione profonda, quali piezometri ed inclinometri - e dalla definizione di predefiniti<br />

valori di soglia in corrispondenza dei quali attivare una specifica procedura mediante<br />

l’azione congiunta di un appositamente costituito Collegio dei Tecnici, Amministratori locali<br />

e Autorità preposte.<br />

INQUADRAMENTO GEOLOGICO DEL SITO E CARATTERISTICHE DELL’OPERA<br />

La galleria Val di Sambro si sviluppa per 3.8 km circa con due corsie di marcia ed una corsia di<br />

emergenza. Lo scavo, avviato nel 2007 e terminato nel novembre 2014, è stato eseguito con<br />

metodo tradizionale. Il tracciato interessa in profondità il versante su cui poggiano i villaggi<br />

di Santa Maria Maddalena e di Serrucce (Figura 2), con coperture medie dell’ordine di 100 m.<br />

L’area di Santa Maria Maddalena è caratterizzata da unità geologiche costituite da depositi di<br />

frana perlopiù quiescenti e dal substrato roccioso costituito dalla formazione del flysch di<br />

Monghidoro. Dai rilevamenti geologici e dai sondaggi geomeccanici eseguiti in fase progettuale,<br />

l’asse della galleria attraversa un substrato costituito da torbiditi arenaceo-pelitiche in strati<br />

da sottili a molto spessi, che nell’area in esame sono prevalentemente arenacee, con granulometrie<br />

da medie o fini passanti localmente a grossolane, di colore grigio chiaro o bruno,<br />

passanti a peliti, spesso siltose, di colore grigio scuro (Autostrade per l’Italia, 2007).<br />

Le Figure 3a e 3b mostrano le sezioni geologiche denominate A-A e B-B, con la posizione<br />

delle due canne della galleria.<br />

Nello stesso tratto le coperture superficiali sono definite, in base alla loro dinamica geomorfologica,<br />

come corpo di frana attiva sovrapposto a un corpo di frana quiescente, precedute da<br />

una zona intensamente tettonizzata.<br />

276 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figura 2. Planimetria dell’area oggetto di monitoraggio.<br />

IMPLEMENTAZIONE DEL PMA<br />

Per la galleria Val di Sambro, il Piano di Monitoraggio Ambientale (PMA) prevedeva, all’inizio<br />

dei lavori di scavo, l’attivazione di strumentazione geotecnica prevalentemente a controllo<br />

dell’imbocco meridionale, dove la galleria attraversa una zona in frana. Per la restante parte<br />

dello scavo, il progetto indicava che la galleria fosse sufficientemente profonda da sottopassare<br />

i movimenti franosi quiescenti presenti lungo il tracciato.<br />

Con l’avanzare dello scavo da nord si evidenziarono però i primi significativi dissesti in alcuni<br />

edifici isolati che sorgevano nella zona denominata come ‘frana attiva’ in Figura 2. A seguito<br />

di questi primi movimenti di versante veniva redatto un piano di monitoraggio geotecnico<br />

specifico per l’abitato di Santa Maria Maddalena, anche in vista dell’approssimarsi al paese<br />

dello scavo della galleria.<br />

In particolare, la strumentazione prevista a più riprese per tale monitoraggio integrativo del<br />

versante comprendeva complessivamente:<br />

– n. 31 verticali inclinometriche con lettura manuale, spinte fino a 120 m di profondità;<br />

– n. 11 verticali inclinometriche strumentate con catene inclinometriche, profonde fino<br />

a 70 m;<br />

– n. 3 verticali multiparametriche tipo “DMS”, profonde 100 m;<br />

– n. 22 piezometri tipo Casagrande più profondi e numerosi piezometri a tubo aperto più<br />

superficiali;<br />

– n. 397 miniprismi installati su edifici e viadotto autostradale esistente e n. 255 pilastrini<br />

sul terreno, per un totale di 652 mire ottiche installate;<br />

– n. 15 stazioni GPS.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 277


Figura 3. Sezioni geologiche trasversali: a) A-A; e b) B-B; in prossimità di Santa Maria Maddalena.<br />

L’ubicazione degli strumenti per il monitoraggio geotecnico è riportato in Figura 2. Le misure,<br />

interpretate in termini di velocità di spostamento medie mensili, venivano costantemente<br />

raffrontate con predefiniti valori di soglia. Il controllo dei superamenti di soglia previsti ai fini<br />

di monitoraggio ambientale veniva attuato, sia per le misure sui fabbricati che per le verticali<br />

inclinometriche e le misure topografiche, mediante un sistema di monitoraggio automatico<br />

in tempo reale. Il raggiungimento od il superamento di tali valori di soglia comportava<br />

l’incremento della frequenza anche delle letture in manuale, fino ad una o più misure alla<br />

settimana, e la convocazione di incontri tecnici aventi il compito di definire eventuali azioni<br />

da intraprendere, quali la modifica delle modalità di avanzamento degli scavi in galleria o<br />

interventi integrativi a partire dalla superficie del versante.<br />

Nel luglio 2011 il fronte di scavo del tunnel nord della galleria Val di Sambro entrava nell’area<br />

di influenza della frazione di Santa Maria Maddalena, in una zona classificata come “frana<br />

in blocco” nella cartografia geologica regionale, caratterizzata da elementi analoghi alle<br />

deformazioni gravitative profonde di versante. L’originario modello geologico di progetto,<br />

revisionato sulla base dei primi risultati del monitoraggio, individuava la presenza di una<br />

paleofrana riattivata dal passaggio dei fronti di scavo della galleria (Autostrade per l’Italia,<br />

2011). Ne conseguiva una stima degli spostamenti attesi inevitabilmente superiori rispetto<br />

278 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


a quelli inizialmente previsti. Il movimento risultava comunque caratterizzato da velocità<br />

di spostamento relativamente modeste, che non facevano presupporre possibili fasi parossistiche.<br />

Con l’avvicinarsi del fronte di scavo al villaggio di Santa Maria Maddalena, le misure<br />

convergevano nel segnalare un movimento, coinvolgente più di 10 milioni di m³ di terreno,<br />

situato perlopiù a grandi profondità (intorno ai 50-60 m ed oltre), dai contorni geometrici<br />

non ancora completamente definiti ed in progressiva evoluzione, caratterizzato da persistenti<br />

velocità di spostamento intorno a pochi mm/mese, in parte chiaramente influenzate dalle<br />

operazioni di scavo in corso. In Figura 4, che mostra una sezione trasversale al tracciato,<br />

è possibile osservare la forma della superficie di scivolamento, i cui limiti (indicati in figura<br />

con linea tratteggiata) sono ben individuati dalle verticali dove sono stati installati gli<br />

inclinometri. Le misure inclinometriche definivano superfici di scivolamento caratterizzate<br />

da localizzazioni piuttosto nette su bande di taglio sottili, sulle quali la resistenza mobilitata –<br />

valutata tramite verifiche di stabilità a ritroso - appariva in linea con quanto emerso dalla<br />

determinazione sperimentale della resistenza al taglio di tipo residuo.<br />

Figure 4. Sezione C-C (cfr. figura 2) con l’indicazione della strumentazione installata.<br />

PIANO DI EMERGENZA COMUNALE<br />

Considerate le possibili conseguenze sulla sicurezza degli abitanti di Santa Maria Maddalena,<br />

la prosecuzione dei lavori venne subordinata all’integrazione del sistema di monitoraggio con<br />

uno specifico piano di emergenza.<br />

Nell’agosto 2012 tale piano veniva formalizzato nel “Piano di emergenza comunale per<br />

l’abitato di Santa Maria Maddalena” redatto sulla base di specifiche soglie di attenzione,<br />

preallarme e allarme definite in relazione agli esiti del monitoraggio degli edifici e del relativo<br />

versante. I valori di soglia individuati ai fini del piano di emergenza sono riportati in Tabella 1:<br />

per gli edifici, le soglie riguardano i gradienti di spostamento verticale ed orizzontale (espressi<br />

in millesimi) e sono state ricavate dalla letteratura tecnica con intenti particolarmente<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 279


Tabella 1. Valori soglia di spostamento per gli edifici e delle velocità per il movimento di versante.<br />

Soglie relative al gradiente degli spostamenti per gli edifici<br />

Tipo di soglia<br />

gradiente di<br />

spostamento verticale<br />

differenziale<br />

gradiente di spostamento<br />

orizzontale differenziale<br />

Attenzione 1.00 0.45<br />

Preallarme 1.50 0.70<br />

Allarme 3.35 1.50<br />

Soglie di velocità profonda e superficiale per il movimento di versante<br />

Tipo di soglia Profonda Superficiale<br />

cautelativi in base alla classe di danno associata, mentre per il movimento franoso le soglie<br />

riguardano le velocità di spostamento sia a piano campagna che in profondità, nelle zone<br />

dove è localizzata la superficie di scivolamento della frana. Quest’ultime sono state definite in<br />

base alla natura dei terreni interessati e sulla scorta delle evidenze registrate in casi analoghi;<br />

i loro valori tengono evidentemente conto delle azioni conseguenti e differiscono sostanzialmente<br />

dalle soglie utilizzate ai fini di monitoraggio ambientale.<br />

Lo scopo del Piano di Emergenza Comunale era quello di definire le disposizioni organizzative<br />

per la preparazione e la gestione di eventuali situazioni di emergenza riferite al versante da<br />

parte di tutti gli enti e le strutture tecniche coinvolte.<br />

Il Piano Comunale di Emergenza individua per ciascun soggetto coinvolto le azioni da<br />

intraprendere a seconda dei tre scenari possibili: di attenzione, di preallarme o di allarme.<br />

Lo scenario di rischio più probabile considera la possibilità di un’evacuazione controllata<br />

e pianificata di poche o singole unità. Il numero totale degli edifici oggetto di monitoraggio<br />

è pari a 125, che ospitano 160 nuclei familiari e 339 persone abitualmente presenti.<br />

La procedura prevista in caso di superamento delle soglie di “allarme” è stata sintetizzata<br />

e schematizzata in Figura 6, nella quale sono state introdotte solamente le azioni ritenute più<br />

significative. In caso di superamento delle soglie di “allarme” per il versante (verifica a cura<br />

della Direzione Lavori) o per gli edifici (verifica a cura dell’impresa esecutrice), il Sindaco<br />

rinvia al Collegio dei Tecnici la verifica dello stato del versante e dell’entità dei danni alle<br />

abitazioni. Il Collegio dei Tecnici informa il Sindaco e la Protezione Civile delle verifiche<br />

eseguite e, in caso di accertato pericolo per la popolazione, comunica la necessità di delocalizzare<br />

la popolazione stessa.<br />

velocità di spostamento<br />

cm/giorno<br />

velocità di spostamento<br />

cm/giorno<br />

Attenzione 0.50 1.00<br />

Preallarme 1.20 2.00<br />

Allarme 3.00 4.00<br />

Al termine, completate le operazioni previste dalla procedura di “allarme”, sarà il Servizio<br />

Geologico Regionale a proporre la cessazione dello stato di allarme al Sindaco, il quale ne darà<br />

informazione a tutti gli Enti interessati ed alla popolazione delle località interessate.<br />

280 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 5. Spostamenti differenziali locali nella fascia di deformazione.<br />

CONCLUSIONI<br />

Nel presente lavoro è stato presentato un caso di riattivazione di un movimento profondo<br />

di versante, innescatosi a seguito dello scavo per la realizzazione della galleria Val di Sambro,<br />

e la sua interazione con gli abitati soprastanti. La frana riattivata è caratterizzata da un<br />

movimento molto profondo, con superficie di scorrimento che si attesta anche oltre 50-60 m<br />

di profondità. Date le dimensioni del corpo di frana e l’elevato volume di terreno coinvolto,<br />

era pressoché impossibile ricorrere a interventi di stabilizzazione del versante che arrestassero<br />

completamente il fenomeno in atto. Pertanto, al fine di preservare l’integrità degli edifici<br />

e l’incolumità della popolazione degli abitati interessati, è stato implementato un complesso<br />

piano di emergenza, basato sulla misurazione in campo di parametri ritenuti significativi, sul<br />

confronto di tali misure con valori di soglia predefiniti ed infine sull’avvio di una procedura<br />

di emergenza a seconda del livello di pericolo riscontrato.<br />

In prima fase si è quindi proceduto all’installazione di un accurato ed articolato sistema di<br />

monitoraggio geotecnico, costituito da strumentazione profonda per il controllo dell’evoluzione<br />

dei movimenti di versante, e topografico mediante strumentazione di precisione per il<br />

controllo dei danni strutturali agli edifici. In seconda fase si sono definiti i livelli di soglia,<br />

individuando due parametri significativi: la velocità di spostamento del versante, distinguendo<br />

tra movimento profondo e superficiale, ed il gradiente di spostamento differenziale, sia<br />

orizzontale che verticale, per gli edifici. Per entrambi i parametri sono stati definiti, ai fini<br />

della redazione del piano di emergenza, tre diversi valori soglia corrispondenti a tre livelli<br />

di pericolo denominati di attenzione, preallarme e allarme. In terza ed ultima fase è stato<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 281


Figure 6. Piano di emergenza: procedura in caso di superamento della soglia di allarme.<br />

implementato un Piano di Emergenza Comunale, diversificato in funzione del livello di<br />

pericolo registrato, con lo scopo di definire le disposizioni organizzative necessarie per la<br />

preparazione e la pianificazione di eventuali situazioni di emergenza, come ad esempio<br />

l’evacuazione dei nuclei abitativi e la loro ricezione in strutture di accoglienza già predisposte.<br />

L’acquisizione delle registrazioni in automatico, per 24 ore al giorno, ha consentito,<br />

e consente tuttora, una valutazione in tempo reale della situazione in atto e l’eventuale<br />

immediata attivazione del piano di emergenza programmato, a seconda del livello di<br />

emergenza riscontrabile. Nel corso dei lavori, tuttavia, non si sono mai verificate condizioni<br />

effettive di superamento delle soglie predefinite, fatta eccezione per segnalazioni isolate<br />

e sporadiche che, dopo attenta verifica, sono risultate prive di significato.<br />

Con l’abbattimento dell’ultimo diaframma della canna sud della galleria Val di Sambro<br />

avvenuto nel novembre 2014, lo scavo della galleria Val di Sambro risulta oggi interamente<br />

completato. Il passaggio dei fronti in corrispondenza dell’abitato di Santa Maria Maddalena<br />

ha determinato velocità medie di spostamento del versante fino a 8-10 mm/mese e oltre nel<br />

2011-2012, poi ridottesi fino a 1-2 mm/mese nel biennio 2013-2014. Attualmente, la fitta<br />

rete di monitoraggio attiva sul versante conferma, in generale, la tendenza al sostanziale<br />

rallentamento dei movimenti profondi.<br />

282 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


BIBLIOGRAFIA<br />

- Autostrade per l’Italia (2006). Variante di Valico, Newsletter (https://www.autostrade.it/<br />

variante-di-valico/newsletter-variante-di-valico/index.html).<br />

- Autostrade per l’Italia (2007). Autostrada A1 Milano – Napoli. Adeguamento del tratto di<br />

attraversamento appenninico tra Sasso Marconi e Barberino di Mugello. Tratto: La Quercia –<br />

Badia Nuova. Sub-tratta: Lagaro – Badia Nuova. Lotto 6-7, Progetto Esecutivo., Galleria Val<br />

di Sambro, Relazione Geomeccanica.<br />

- Autostrade per l’Italia (2011). Autostrada A1 Milano – Napoli. Adeguamento del tratto di<br />

attraversamento appenninico tra Sasso Marconi e Barberino di Mugello. Tratto: La Quercia –<br />

Badia Nuova. Sub-tratta: Lagaro – Badia Nuova. Lotto 5B, Progetto Esecutivo, Galleria Val<br />

di Sambro, Perizia di variante tecnica 2.<br />

- Barla G., Chiappone A., Vai L. (2006). Slope monitoring system. Instabilità di versante.<br />

Interazioni con le infrastrutture, i centri abitati e l’ambiente. XI Ciclo di Conferenze di<br />

Meccanica e Ingegneria delle Rocce (MIR 2006), Cap. 8: 177–202.<br />

- Bertolini G., Pellegrini M. (2001). The landslides of the Emilia Apennines (northern Italy)<br />

with reference to those which resumed activity in 1994–1999 period and required Civil<br />

Protection interventions. Quad. Geol. Appl. 8: 27–74.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 283


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Adaption and further development of the numerical<br />

solution in the avalanche simulation model SamosAT<br />

Matthias Granig, DI 1 ; Peter Sampl, DI Dr. 2 ; Andreas Kofler, DI 3 ; Jan-Thomas Fischer, DI 3 ; Philipp Jörg, Mag 4<br />

ABSTRACT<br />

The avalanche simulation model SamosAT is in practical application for the assessment of<br />

potential avalanche hazards since 2008. Step by step the tool has been further developed.<br />

The current software release 2015 of SamosAT contains new improvements, especially to<br />

optimize the modeling of the dense flow part. The new release focuses on enhancements<br />

in the numerical solution as well as on the modeling of avalanches by implementing new<br />

boundary conditions. Additional features are optimizing the handling of the program.<br />

This paper gives an overview of the main new features and procedures of the SamosAT<br />

update including first work experiences and recommendations for the practical application.<br />

KEYWORDS<br />

avalanche modelling, SamosAT, avalanche simulation, model improvements<br />

INTRODUCTION<br />

The avalanche simulation software SamosAT (Snow Avalanche MOdelling and Simulation<br />

- Advanced Technology) is an approved tool for the assessment of potential avalanche hazards<br />

for many years. The SamosAT modeling recommendations were updated according to the<br />

actual findings (see Granig, Sauermoser, 2009; Joerg et al., 2010). The program release of<br />

SamosAT in March 2015 gives new possibilities in the simulation. In this paper we concentrate<br />

on the major enhancements of the model. Therefore we explain the newly implemented<br />

Smoothed Particle Hydrodynamics (SPH) function in more detail. So far the SamosAT model<br />

worked with a predefined end time criterion. Now a stop criterion based on the flow energy<br />

has been introduced to optimise the simulation time and to avoid premature simulation cut<br />

offs. Furthermore the mountain snow cover (MSC) approach (Fischer, 2013), that provides a<br />

continuous initial snow distribution, which can be used as boundary condition for avalanche<br />

release and entrainment is implemented in the SamosAT software. This feature allows an easy<br />

application and quick comparisons with the standard avalanche release for the analysis of<br />

the results.<br />

1 Avalanche and Torrent Control (WLV), Innsbruck, AUSTRIA, matthias.granig@die-wildbach.at<br />

2 AVL List GmbH, Graz<br />

3 Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Innsbruck<br />

4 tur gmbh, Davos<br />

284 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP037


METHODS<br />

The lateral pressure forces within the SamosAT dense flow avalanche (DFA), acting tangentially<br />

to the terrain surface and in direction against the flow depth gradient, have been<br />

calculated in a simplified way in SamosAT. Under certain circumstances this has resulted in<br />

artificial “fingers” in the predicted DFA deposition. Figure 1 shows an example of such a<br />

finger on the orographic left side of the simulation. This problematic behaviour has been<br />

corrected by an improved calculation of these forces. The improved result is shown in figure<br />

2. Also the overrun of the ridge in the avalanche runout on the orographic right side is<br />

reduced in the SPH mode.<br />

Figure 1: SamosAT DFA standard simulation with lateral spreading<br />

Figure 2: SamosAT DFA simulation with SPH mode<br />

In order to explain what has been changed, some background information on the SamosAT<br />

simulation needs to be given.<br />

SamosAT, like for instance the model of Savage and Hutter (1989) or Hungr (in Harbitz et al.<br />

1998), employs a Lagrangian method to compute the DFA movement instead of the more<br />

common Eulerian method, as used for instance in RAMMS (Christen et al. 2008). The<br />

essence of the Lagrangian method is that the control volumes (CVs), used to apply the<br />

fundamental equations of conservation of mass and momentum, are attached to the fluid<br />

mass and move with the fluid, while in the Eulerian method the CVs are grid cells attached<br />

to the terrain model and hence have a fixed position. Since the avalanche typically covers a<br />

small part of the terrain only at a given time, the Eulerian method wastes storage and<br />

computational effort by filling the entire terrain with CVs. The Lagrangian CVs are always<br />

concentrated in the avalanche, effectively rendering a higher numerical resolution with the<br />

same number of CVs. Furthermore, the Lagrangian method is simpler to implement since<br />

there is no mass transfer between the CVs. With the Euler method, the mass flow between<br />

the CVs has to be computed for each time step. The disadvantage of the Lagrangian method,<br />

however, is that the momentum transfer between the CVs due to lateral friction and pressure<br />

is much harder to compute, since neither the shapes of the CVs nor their boundary surfaces<br />

are actually known precisely, only the centres of gravity of the CVs are. Fortunately, for<br />

shallow flows like the DFA, it can be shown (see Savage & Hutter 1991) that lateral friction<br />

and pressure forces are much smaller than the main forces, which are gravitational acceleration,<br />

bottom pressure and bottom friction. Indeed lateral friction is so small that it is ignored<br />

by most of the avalanche models altogether (see Harbitz et al. 1998), and lateral pressure<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 285


needs not be calculated with full accuracy. This fact finally makes the Lagrangian method<br />

very attractive for DFA simulations.<br />

In the momentum balance for a CV, the pressure force Fp may be formulated as<br />

F p = -mg∇h<br />

with m the mass of the CV, g the gravitational acceleration and ∇h the gradient (vector) of the<br />

flow depth. SamosAT used a simple and fast method to compute the depth gradient. First, the<br />

masses of all CVs were assigned to points of an auxiliary uniform grid according to an inverse<br />

bilinear interpolation. Then the flow depth was computed from the summed masses at each<br />

grid point and finally the depth gradient was computed from a bilinear interpolation from the<br />

depths at the grid points. This works fine as long as the flow depth is not too small or the<br />

main forces are large compared to the lateral pressure. But for a single CV in the runout zone,<br />

where the main forces tend to zero, this method always gives a depth gradient and pressure<br />

force which drives the CV towards the centre of the containing auxiliary grid cell. The<br />

gradient is zero at the cell centre only, which is clearly unphysical. It should be zero everywhere<br />

for an isolated single CV. In presence of shallow channels in the runout which are<br />

aligned with the grid lines, this computation method even leads to the formation of “chains”<br />

of CVs. To resolve this problem, the depth gradient is now computed according to the<br />

Smoothed Particle Hydrodynamics (SPH), a Lagrangian method, which is well known in fluid<br />

dynamics (Monaghan 1992). According to SPH, the flow depth h at any terrain point x may<br />

be computed as the sum over all CVs,<br />

h(x)=∑m p ρ -1 w(r xp )<br />

with m p<br />

the mass of the p-th CV, ρ the flow density and w a “kernel function” dependent on<br />

the distance r xp<br />

between x and the centre of the CV. The kernel function (figure 3, left) has<br />

the dimension m -2 and is chosen such that it drops to zero for distances larger than a<br />

smoothing length r k<br />

, which is determined to be identical to the grid size of the terrain model<br />

in SamosAT (usually 5 m). Only CVs within this distance need to be considered in the sum<br />

(figure 3, right).<br />

Taking the gradient of this depth function yields<br />

∇h(x)=∑m p ρ -1 ∇w(r xp )<br />

This relation is used in SamosAT to compute the depth gradient at each CV-centre and the<br />

pressure force acting on it. This method avoids any auxiliary grid and the formation of<br />

grid-aligned “chains” and gives a zero depth gradient for a single CV with no other CVs closer<br />

than the smoothing length. It generally leads to a more homogenous distribution of the CVs.<br />

The method is slower than the original one, because all CVs closer than the smoothing radius<br />

have to be determined for each CV at each time step. Using fast searching algorithms this<br />

286 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3: SPH kernel function used in SamosAT and CVs contributing to the flow depth<br />

overhead can be reduced such that DFA simulation times increases by about 20% to 50%.<br />

The SPH method gives a substantially more homogeneous distribution which is numerically<br />

desirable.<br />

Another improvement in SamosAT is the implemented stop criterion, such that the simulation<br />

is automatically terminated as soon as the avalanche comes to a rest. The model<br />

optionally stops as soon as the kinetic energy of the entire avalanche drops below a user<br />

defined fraction (typically 2-3%) of the maximal kinetic energy that occurred in the running<br />

simulation up to this point. Using the running maximum as reference ensures that the<br />

simulation is neither stopped prematurely in the release phase nor continued too long due<br />

to trailing avalanche parts still slowly moving when the main part has already stopped.<br />

The criterion is checked separately for the DFA-part and the powder-snow-part (if active),<br />

and the stop is performed only if the condition holds for both parts at the same time. The<br />

energy threshold values are derived pragmatically to ensure sufficient calculation steps and to<br />

save calculation time. A 2 % threshold value is good to be on the rather safe side, especially<br />

for smaller avalanches with a lower energy maximum to avoid early cut offs. In the previous<br />

versions it was necessary to predefine an end time (usually 200 sec.). Consequently after the<br />

simulation it was required to check, whether the assumed end time was sufficient. This<br />

procedure was time consuming and led in some cases to too short avalanche runout<br />

simulations.<br />

The mountain snow cover (MSC) approach was implemented in SamosAT as an additional<br />

feature to provide an alternative boundary condition for the snow mass input. This approach<br />

assumes a smooth snow cover distribution (hMSC) over the whole digital terrain model. It<br />

has the advantage that the definition of especially the lower end of an avalanche release area<br />

has less importance, because the potential snow entrainment provides similar snow heights<br />

along the avalanche path. Though the concept works properly it needs careful handling as a<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 287


consequence of the shift of release mass to rather more snow entrainment. With the new<br />

implementation of this concept it can be easily tested and studied as an alternative simulation<br />

result. More details about the idea and the simulation of MSC can be derived from Fischer<br />

(2013) and Fischer et al. (2014).<br />

RESULTS AND CONCLUSIONS<br />

The tests with the SPH mode in SamosAT displayed a compact runout behavior as shown in<br />

figure 1 also for avalanches in complex terrain. This is in some cases resulting in slightly<br />

shorter avalanche (DFA) runout calculations. In a next step the avalanche simulation with<br />

SPH needs a comparison with the reference avalanche data pool for systematic verification.<br />

Therefore we recommend the practical application of the SPH mode as an additional scenario<br />

to the standard simulations in conjunction with a careful plausibility check to use the<br />

simulation for further assessments.<br />

So far the MSC approach usually calculates a rather big avalanche runout behavior in<br />

comparison to the documented avalanche events. A possibility is to combine the mountain<br />

snow cover approach with the SPH module. The first step is done to introduce the feature of<br />

the mountain snow cover simulation in the SamosAT program. Now further analysis can be<br />

done to verify and to develop a practical application procedure also for the standard simulation<br />

routine.<br />

The stop criterion is working as planned and can already be used in the practical application.<br />

We recommend a defined fraction of the kinetic energy of 2% for both dense flow and<br />

powder flow avalanches. Hence premature runout cut offs can be minimized with the<br />

stopping criterion. The computational time benefit is though smaller as expected. Still for<br />

computing powder snow avalanches which takes several hours the time saving is in order of<br />

10-15% of the total simulation time. Now with this new feature early cut offs can be avoided.<br />

Furthermore it reduces a potential source of error.<br />

288 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


LITERATURE<br />

- Christen, M., Bartelt, P., Kowalski, J., Stoffel, L., 2008: Calculation of dense snow avalanches<br />

in three-dimensional terrain with the numerical simulation program RAMMS. In:<br />

International Snow Science Workshop 2008, Proceedings. September 21-27, 2008. Whistler,<br />

BC, CAN. 709-716.<br />

- Fischer JT., Kofler A., Fellin W., Granig M., Kleemayr K. (2014): Optimization of Computational<br />

Snow Avalanche Simulation Tools. Proceedings, International Snow Science<br />

Workshop (ISSW), Banff, Canada, p. 665-669.<br />

- Fischer, J.-T. (2013): A novel approach to evaluate and compare computational snow<br />

avalanche simulation. Natural Hazards and Earth System Science, 13(6):1655–1667.<br />

Granig, M., Sauermoser, S. (2009): Ein Erfahrungsbericht über die Lawinenmodellierung aus<br />

der aktuellen praktischen Arbeit der WLV. Wildbach und Lawinenverbau, 73. Jahrgang,<br />

Heft Nr. 163., pp. 142-151, Salzburg.<br />

- Harbitz C.B. et al. (1998): A Survey of Computational Models for Snow Avalanche Motion,<br />

Deliverable No. 4 of the EU Programme SAME (Snow Avalanche Modeling, Mapping and<br />

Warning in Europe), Norwegian Geotechnical Institute, Oslo.<br />

- Joerg P. et al. (2010): Implementation of a new suspension model and calibration of the<br />

powder snow layer in SamosAT, European Geosciences Union, General Assembly 2010, Wien.<br />

Monaghan J.J. (1992): Smoothed Particle Hydrodynamics. Ann. Rev. Astron. Astrophys<br />

(1992). 30 : 543-74.<br />

- Sampl P. (2015): Abschlussbericht: Erweiterung der Lawinensimulationssoftware SamosAT,<br />

AVL, Graz.<br />

- Savage S. B., Hutter, K. (1991) The dynamics of avalanches of granular materials from<br />

initiation to runout. Part I: Analysis, Acta Mechanica 86, 201-223.<br />

- Savage S.B. & Hutter K. (1989): The motion of a finite mass of granular material down<br />

a rough incline. J. Fluid Mech. 199, 177-215.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 289


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

An Effective Camera Based Water level recording<br />

Technology for Flood Monitoring<br />

Issa Hasan, Dr. Eng. 1 ; Thomas Hies, Dr. 2 ; Ebi Jose 2 ; Rudolf Duester 3 ; Marcus Sattler 3 ; Matthias Satzger 3<br />

ABSTRACT<br />

Beside the technical flood protection constructions, a timely warning is a crucial factor for<br />

preven-tion or reduction of damages caused by flood disasters. The monitoring of water level<br />

at dams and dikes provides information to determine their water balance, which is one of the<br />

crucial factors for their stability. A continuous monitoring of surface water level is therefore<br />

very necessary and can be carried out by different methods. The optical water level measurement<br />

is a new method for this purpose. The aim of this work is to develop a new effective<br />

method for a continuous contactless water level measurement even under critical conditions<br />

like floods and hydraulic jumps, under which other localised gauging methods could be<br />

temporal out of operation or not sufficiently rep-resentative. In particular the access to<br />

images of the site, which are the basis of the new gauge method, will allow investigating the<br />

situation and judging on the quality of the water level meas-urement. The developed method<br />

was successfully validated at several sites and under different conditions.<br />

KEYWORDS<br />

water level;continuous monitoring;contactless measurement;optical method;floods<br />

INTRODUCTION<br />

Flood risk management has an increasing importance in many areas of the world, especially<br />

under the consideration of the potential influence of climate change and the reduction of<br />

natural river meadows caused by human activities. “Floods have the greatest damage<br />

potential of all natural dis-asters worldwide and affect the greatest number of people” (unsidr,<br />

2002). A recent confirmation of this fact is the June flood, which was with 15.2 billion US$<br />

the most expensive natural disaster in 2013 in Germany (Munich RE, 2014). Very large<br />

amounts of precipitation caused flooding in most river basins in Germany (BfG, 2013).<br />

Therefore, an effective and timely monitoring of surface water level is a very crucial factor of<br />

the quantitative flood risk management for the reduction of potential damages. Especially in<br />

potential flooding areas, e.g. near rivers and dams, is a continuous surface water monitoring<br />

with an effective alarm system very necessary. The monitoring of surface water level at dams<br />

and dikes provides information to determine their water balance, which is one of the crucial<br />

factors for their stability. Physical and numerical models have shown that even partially<br />

1 SEBA Hydrometrie, Kaufbeuren, GERMANY, hasan@seba.de<br />

2 2DHI Water & Environment (S) Pte Ltd, Singapore<br />

3 SEBA Hydrometrie GmbH & Co. KG, Germany<br />

290 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP075


saturated conditions on the air side of dams and dikes could cause mechanical instabilities<br />

(Hasan et al., 2012).<br />

Monitoring of surface water level can be carried out by different methods. Pressure sensors,<br />

floaters, radar sensors and ultrasonic techniques are some of the most applied methods<br />

providing accurate and reliable data acquisition for water level measurement. A disadvantage<br />

of these methods is the regular visual inspection of the site required due to environmental<br />

changes. The optical water level measurement is a new method for this purpose, which has<br />

been investigated more widely in the recent years. A significant example of water level<br />

detecting based on image processing is the camera system of HydroPix Monitoring, which is<br />

installed in a closed sewer system having the ad-vantage that light conditions are stable<br />

without any day and night time changes and that electrical power connection is available<br />

(Nguyen, 2009). Further optical gauge system is the GaugeCam, which is designed for open<br />

channels and tested in the laboratory and at one site and proposes the usage of infrared light<br />

for night applications (www.gaugecam.com).<br />

Other applications like RiverBoard (www.tenevia.com) use server based image processing<br />

which al-low to connect different camera technologies but require available and stable<br />

internet connections for real-time processing.<br />

The aim of the present work is to develop a new effective method for a continuous contactless<br />

water level measurement even under critical conditions like floods and hydraulic jumps,<br />

under which other localized gauging methods could be temporal out of operation or not<br />

sufficiently representative. In particular, the access to images of the site, which are the basis of<br />

the new water level detection method, will allow investigating the situation and judging on<br />

the quality of the water level measurement. The image processing and, as a result, the<br />

obtaining of water level data should be occur on site.<br />

METHODS<br />

SEBA Hydrometrie GmbH & Co. KG has developed a new gauge for enhanced water Level<br />

detection by image processing, which is based on the edge detection principle. The new<br />

instrument for optical water level measurement is called GaugeKeeper. The detection<br />

algorithm is running in real-time on the device.<br />

As it is shown in the Figure 1, GaugeKeeper system consists of the following components:<br />

day and night camera, infrared projector, a white board, a processor unit, a data logger and<br />

data transmission unit. All units are integrated in one system but it is also possible to apply<br />

only the GaugeKeeper-Algorithm for an existing system (e.g. an installed camera).<br />

Using this technology it is easy to survey, measure, and verify the water level data (Hies et<br />

al., 2012). Independently, alarm limits can be defined for the case the water level reaches a<br />

critical limit or hardware warnings (i.e. battery capacity). SMS alarms can be sent to up to<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 291


Figure 1: This figure shows the GaugeKeeper components and an<br />

on-site picture of the installed system.<br />

8 different mobile phone numbers as well as<br />

to a facsimile. Prior to using the system for<br />

the first time, the Gauge-Keeper needs to be<br />

calibrated to the site‘s specific conditions.<br />

That is done via a graphical user interface<br />

(GUI). Thereafter the software calibrates the<br />

system and defines an individual measuring<br />

scale. The surveillance camera is ruggedized,<br />

equipped with special, non-visible infrared<br />

illumination for night-time measurement and<br />

uses an integrated powerful processor to<br />

automatically convert data to measurement<br />

values. The obtained data are available as<br />

hydrographs, images and time-lapse movies.<br />

The frequency is configurable and the images<br />

are saved to a local SD-card for preservation<br />

of evidence. The water level is measured and<br />

converted inside the processor unit and<br />

stored on the data logger. Those data and the<br />

images can be downloaded via remote access<br />

(e.g. GSM/GPRS, satellite, landline, radio<br />

transmission, DSL, Ethernet). The major steps<br />

for the robust detection of the water level are<br />

summarized below:<br />

– Automatic, adaptive selection of the region-of-interest (ROI);<br />

– An image processing technique, the so-called edge detection, is applied to obtain the edge<br />

image of the ROI image edge-detection assuming discontinuities of intensities of pixels of<br />

images are linked to physical changes e.g. material changes, depth changes, surface<br />

orientation changes etc. (Barrow et al., 1981), (Lindeberg, 2001), (Jaehne, 2002);<br />

– Hough-transformation calculating the longest straight line in the edge image of the water<br />

level (the red line).<br />

Figure 2 and 3 show the transformation of the captured images to undistorted frontal-view<br />

images with the region of interest and red line indicating the water level.<br />

After the water level is detected through the above methods, the water depth of the channel<br />

is interpolated based on the field measurement done at the ROI (Hies et al., 2012).<br />

292 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: This figure shows the water level detection for an image captured by the day-camera (left: original image, right: transformed<br />

image).<br />

Figure 3: This figure shows the water level detection for an image captured by the night-camera (left: original image, right: transformed<br />

image).<br />

RESULTS<br />

The developed optical gauge was tested at several sites and under different conditions (rain<br />

and heavy tropical rain events, snow, fog, day and night) in Germany and Singapore. The<br />

validation was carried out by comparing the water levels determined by the new developed<br />

gauge against the levels measured by conventional sensors like radar and pressure sensor at<br />

the same location. The agreement between the measurements carried out by the optical<br />

gauge and by the two reference sensors was very good (Fig. 4 and 5). The accuracy of the<br />

camera system was 1.1 % for the test period between April and December 2011. A second<br />

test, with a pressure sensor as a reference gauge, was carried out in the period between<br />

December 2014 and February 2015. The relative deviation was in this case around 0.95 %<br />

and the root-mean-square error (RMSE) was about 1 cm (the average water depth of the site<br />

was around 76 cm).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 293


Figure 4: This figure shows a water level measurement comparison between GaugeKeeper and a radar sensor at a site in Singapore.<br />

Figure 5: This figure shows a water level measurement comparison between GaugeKeeper and a pressure sensor at a site in Germany.<br />

Due to the optical image processing method, the developed gauge system requires no contact<br />

with the measured medium. Therefore, silting or flotsam have no influence on the operation<br />

of Gauge-Keeper and it can work even in extreme events such as floods and hydraulic jumps.<br />

The distance can be up to 70 m be-tween the camera and ROI (the white board).<br />

The special lighting of the presented gauge system enables its operation under many different<br />

weather and light conditions. The low energy consumption of the measuring allows a<br />

permanent autonomous battery or solar operation. The implemented low power components<br />

allow continuous 24 hours, 7 days operation with real-time monitoring access based on<br />

battery power supply for a minimum duration of 14 days (Hies et al., 2012).<br />

The activation of the measuring system can alternatively be controlled by trigger pulses. This<br />

can be very useful in cases where the water doesn’t flow permanently or if the water level<br />

exceeds a pre-defined value (e.g. flood events). Applying a water detection sensor, Gauge-<br />

Keeper automatically will be switched from a sleep mode (e.g. every 24 hours) to a dynamic<br />

measurement mode with higher data recording frequency (e.g. every 2 minutes). This feature<br />

provides a detailed visual representation of the observed events and saves energy significantly.<br />

The user of this gauge system can be immediately informed by SMS and/ or e-mail when<br />

294 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


critical system states (e.g. in case of low battery voltage or sensor drift) are reached or when<br />

definable thresholds are exceeded/ fallen be-low.<br />

CONCLUSIONS<br />

The presented optical gauge was successfully verified and validated under various weather<br />

and lighting conditions. The new developed gauge has proven to be a reliable method for<br />

on-site water level measurement. In addition to the measured water level value, the<br />

associated photographic evidence can be provided by the gauge system. The application of<br />

this technology within flood protection measures can give a real time overview about the<br />

observed sites to undertake timely the suitable actions especially in urban areas and where<br />

landslides and dike-breaches are potential. The GaugeKeeper is maintenance-free. The<br />

camera lenses and the glass of the illumination unit must be clean and free of dirt. The white<br />

board is coated with special coating materials, which minimizes the cleaning work.<br />

The developed optical gauge will be tested in the future in industrial and agricultural sectors<br />

to detect the filling level of liquids and solids.<br />

REFERENCES<br />

- Barrow, H. G. and Tenenbaum, J. M. (1981). Interpreting line drawings as three-dimensional<br />

surfac-es, Artificial Intelligence, vol 17, issues 1-3, pages 75-116.<br />

- Hasan, I., M. Meyer, J. Guo , P.-W. Gräber, (2012). Simulation of the hydrological regime<br />

in earth dams and dikes as a basis for stability analysis using the software PCSiWaPro ® .<br />

ISBN 978-83-60455-66-1. Opole/ Polen (2012).<br />

- Hies, T. Parasuraman, S.B., Wang, Y., Duester, R., Eikaas, H.S, Tan, K.M. (2012):<br />

Enhanced Wa-ter-level Detection by Image Processing. Proceedings 10th International<br />

Conference on Hydroin-formatics, HIC 2012, Hamburg, Germany<br />

- Jaehne, B. (2002). Digital Image Processing, Springer, ISBN 3-540-67754-2.<br />

- Lindeberg, T. (2001). Edge detection, in M. Hazewinkel (editor), Encyclopedia of Mathematics,<br />

Kluwer/Springer, ISBN 1402006098. (http://eom.springer.de/E/e120040.htm)<br />

Munich Reinsurance (2014). http://www.munichre.com/de/media-relations/publications/<br />

press-releases/2014/2014-01-07-press-release/index.html<br />

- Nguyen, L. S., Schaeli, B., Sage, D., Kayal, S., Jeanbourquin, D., Barry, D. a, & Rossi, L.<br />

(2009). Vision-based system for the control and measurement of wastewater flow rate in<br />

sewer systems. Water science and technology, 60(9), 2281-9.<br />

- The United Nations office for disaster risk reduction (2002).<br />

http://www.unisdr.org/files/558_7639.pdf<br />

- The Federal Institute of Hydrology (Bundesanstalt für Gewässerkunde, BfG) 2013.<br />

Annual report 2012/213. ISSN 0170–5156. http://www.bafg.de/EN/03_The_%20BfG/<br />

AnnualReport1213.pdf?__blob=publicationFile<br />

- http://www.gaugecam.com<br />

- http://www.hydropix.ch<br />

- www.tenevia.com<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 295


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Flood protection at Zurich main station: physical model<br />

experiments<br />

Hochwasserschutz Hauptbahnhof Zürich: Hydraulische<br />

Modellversuche<br />

Florian Hinkelammert, Msc. 1 ; Dr. Volker Weitbrecht 2 ; Prof. Dr. Robert M. Boes 2<br />

ABSTRACT<br />

Essential parts of downtown Zurich are located on the alluvial fan of the Sihl River. Due to<br />

high sediment loads and considerable amounts of driftwood during extreme flood events,<br />

the potential damage for a PMF is estimated at about 5 billion CHF. The main bottleneck<br />

concerning the discharge capacity is located at Zurich's main railway station, where the Sihl<br />

River crosses the station in an intermediate floor through five culverts. For the successful<br />

design of flood control measures, reliable data on the discharge capacity with the influence<br />

of driftwood and sediment transport are essential. To this end, VAW of ETH Zurich performed<br />

physical model investigations at a scale of 1:30. In parallel, a numerical 2D-model was<br />

operated. The experiments showed that the consideration of backwater effects triggered by<br />

the confluence of Sihl River and Limmat River 400 m downstream of Zurich main station<br />

is crucial. Therefore, the discharge of the Limmat River has to be considered for the specification<br />

of the discharge capacity of the five culverts.<br />

ZUSAMMENFASSUNG<br />

Grosse Bereiche der Stadt Zürich liegen auf dem Schwemmkegel des Voralpenflusses Sihl und<br />

sind stark hochwassergefährdet. Aufgrund der starken Verbauung wird das Schadenspotential<br />

bei EHQ auf bis zu 5 Milliarden Franken geschätzt. Die massgebende Schlüsselstelle für die<br />

Abflusskapazität der Sihl im Stadtgebiet ist die Position der Gleishalle des Hauptbahnhofs<br />

Zürich, welche von der Sihl in einem Zwischengeschoss in fünf Durchlässen durchquert wird.<br />

Diese Situation begünstigt Verklausungen durch Schwemmholz und anderes Treibgut und<br />

kann zu einer Reduktion der Abflusskapazität bei Materialablagerungen in den Durchlässen<br />

führen. Der Ausbau des Hochwasserschutzes im Stadtgebiet bedingt eine möglichst exakte<br />

Kenntnis der Abflusskapazität der Sihldurchlässe. Hybride Untersuchungen der Versuchsanstalt<br />

für Wasserbau, Hydrologie und Glaziologie (VAW) der ETH Zürich mittels eines<br />

physikalischen Modells im Massstab 1:30 sowie einem hydronumerischen 2D-Modell zeigten,<br />

dass der Einfluss des 400 m flussab gelegenen Zusammenflusses von Sihl und Limmat<br />

massgebenden Abfluss auf die Wasserspiegellagen in den Sihldurchlässen hat. Angaben zur<br />

1 VAW, ETHZ, Zürich, SWITZERLAND, hinkelammert@vaw.baug.ethz.ch<br />

2 VAW, ETHZ<br />

296 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP107


Abflusskapazität der Sihl können daher nur in Zusammenhang mit dem jeweiligen Limmat-Abfluss<br />

eindeutig interpretiert werden.<br />

KEYWORDS<br />

Flood protection; physical model; hybrid modelling; debris flows; sediment transport<br />

HINTERGRUND<br />

Grosse Teile des Zürcher Stadtgebiets wurden auf dem natürlichen Schwemmkegel der Sihl<br />

errichtet und sind bei ausserordentlichen Hochwasserereignissen stark überflutungsgefährdet.<br />

Aufgrund des stetigen Ausbaus dieser Gebiete im Zuge der Stadtentwicklung wird das<br />

Schadenspotential bei einer Abflussspitze von 550 m³/s auf bis zu 5 Milliarden Franken<br />

geschätzt (Marti et al. 2014). Eine Schlüsselstelle für die Abflusskapazität der Sihl im Stadtgebiet<br />

nimmt der Hauptbahnhof Zürich („HB Zürich“) ein, dessen Gleishalle von der Sihl in<br />

einem Zwischengeschoss mit fünf Durchlässen durchquert wird.<br />

Das Hochwasserereignis von August 2005 entsprach im Stadtgebiet Zürich mit einem Sihl-<br />

Spitzenabfluss von 280 m³/s knapp einem HQ 30<br />

. Aufgrund einer günstigen Wetterlage kam<br />

es zu keinen Überflutungen im Stadtgebiet, das Ereignis verdeutlichte jedoch die im Hochwasserschutz<br />

bestehenden Defizite. Aufgrund des dringenden Handlungsbedarfs starteten die<br />

Kantone Zürich und Schwyz unter Leitung des Amts für Abfall, Wasser, Energie und Luft des<br />

Kantons Zürich (AWEL) ein umfangreiches Projekt zum Hochwasserschutz im Einzugsgebiet<br />

Sihl – Zürichsee - Limmat (Kanton Zürich 2012). Neben der Umsetzung diverser kurz- und<br />

mittelfristiger Massnahmen in den Jahren 2005 bis 2012 werden bis 2017 zwei Konzepte für<br />

den langfristigen Hochwasserschutz geprüft. Variante 1 sieht die Errichtung eines Entlastungsstollens<br />

vor, welcher ab einem Abfluss von 150 m³/s die Hochwasserspitzen der Sihl in den<br />

Zürichsee ableiten würde. Die 2. Variante „Kombilösung Energie“ beinhaltet den Ausbau des<br />

bestehenden Pumpspeicherkraftwerks Etzelwerk am Sihlsee und vereint Aspekte des<br />

Hochwasserschutzes und der Energieproduktion (Marti et al. 2014).<br />

ZIELSETZUNG<br />

Beide Varianten für den langfristigen Hochwasserschutz bedingen eine möglichst exakte<br />

Kenntnis der Abflusskapazität der Sihldurchlässe im Bereich des HB Zürich. Numerische<br />

Simulationen stossen bei solchen Fragestellungen an ihre Grenzen, vor allem die Prognose<br />

der Sohllagen sowie die Untersuchung von Verklausungsszenarien sind nicht in ausreichender<br />

Genauigkeit möglich. Die Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie<br />

(VAW) der ETH Zürich wurde durch das AWEL sowie die Schweizerischen Bundesbahnen<br />

(SBB) im Juli 2012 mit der Durchführung von hydraulischen Modellversuchen beauftragt.<br />

Die Resultate dienen unter anderem der Festlegung des Ausbaugrads der Sihl in der Stadt<br />

Zürich sowie der Massnahmenplanung im Überlastfall (Marti et al. 2014).<br />

Folgende Aspekte wurden untersucht:<br />

– Abflusskapazität der Sihldurchlässe mit sowie ohne gesetzliche Freiborde („Q max<br />

“)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 297


– Systemverhalten bei Hochwasserszenarien entsprechend der Gefahrenkartierung<br />

(HQ 100<br />

, HQ 300<br />

, EHQ)<br />

– Geschiebetransport mit Variantenuntersuchungen zu Sohlaufbau in Sihldurchlässen<br />

und Gerinne<br />

– Verklausungsgefahr durch Schwemmholz<br />

– Optimierungsmöglichkeiten für zukünftige Gestaltung der Durchlässe<br />

Für die hydraulischen Modellversuche wurden die Szenarien der Gefahrenkartierung („GK“,<br />

Basler & Hofmann 2008) als Grundlage verwendet. Die Spitzenabflüsse, Hydrographen sowie<br />

Abflusskombinationen wurden dementsprechend gewählt. Für die Bestimmung der maximalen<br />

Wasserspiegel wurde ein Szenario gewählt, bei dem einer der 5 Sihldurchlässe vollständig<br />

mit Schwemmholz verklaust ist. Während der Durchführung der Modellversuche wurden<br />

zusätzliche Untersuchungen zur Hydrologie des Einzugsgebiets abgeschlossen (Scherrer 2013),<br />

welche zu einer Erhöhung der Spitzenabflüsse der verschiedenen Jährlichkeiten führte.<br />

Diese höheren statistischen Abflusswerte wurden für die Hauptszenarien im hydraulischen<br />

Modell nicht berücksichtigt, jedoch im Rahmen einer Sensitivitätsanalyse untersucht. Auf das<br />

Hauptziel der Modellversuche, die Bestimmung der maximalen Abflusskapazität, hatte die<br />

Erhöhung der statistischen Hochwasserwerte keinen Einfluss.<br />

UNTERSUCHUNGSGEBIET SIHLDURCHLÄSSE<br />

Das Untersuchungsgebiet erstreckt sich vom Pegel Sihlhölzli an der Sihl bis zum Pegel Unterhard<br />

an der Limmat (Abbildung 1).<br />

Die Gleishalle des HB Zürich liegt 400 m flussauf des Zusammenflusses von Sihl und Limmat<br />

und wird von der Sihl in einem Zwischengeschoss durch 5 Durchlässe auf einer Länge von<br />

ca. 190 m gequert (Masse pro Durchlass: lichte Weite ca. 12 m, lichte Höhe ca. 3 m, Länge<br />

ca. 190 m). Für die Gewährleistung des Geschiebetransports in der Sihl ist diese vom flussauf<br />

des HB Zürich einmündenden Schanzengraben mittels einer ca. 1 m hohen, ca. 200 m langen<br />

Mauer getrennt. Bei mittleren Abflüssen fliesst die Sihl durch die linken drei Durchlässe<br />

unter der Gleishalle, während der Schanzengraben die rechten zwei Durchlässe für sich<br />

beansprucht. Erst ab einem Sihl-Abfluss von ca. 140 m³/s wird die Trennmauer überströmt,<br />

wodurch der Sihl bei Hochwasserereignissen der gesamte Abflussquerschnitt zur Verfügung<br />

steht.<br />

Knapp oberstrom des Zusammenflusses von Sihl und Limmat befindet sich im Gerinne der<br />

Limmat das Lettenwehr, welches den Wasserstand des Zürichsees regelt und als Ausleitungsbauwerk<br />

für das Kraftwerk Letten dient. Aufgrund dieser Anordnung haben die Wehrsteuerung<br />

sowie die Abflussmenge in der Restwasserstrecke (RWS) der Limmat einen direkten<br />

Einfluss auf das Abflussgeschehen der Sihl sowie die Wasserspiegellagen in den Sihldurchlässen.<br />

Das derzeitige Wehrreglement beschränkt den Abfluss in der Limmat unterstrom des<br />

Zusammenflusses auf max. 600 m³/s, wobei bei EHQ von einem Gesamtabfluss von 800 m³/s<br />

ausgegangen wird.<br />

298 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 1: Untersuchungsgebiet Sihldurchlässe (VAW, mod. nach EWZ)<br />

Für die Szenarien der GK wurde angenommen, dass bei Extremereignissen das KW Letten<br />

abgeschaltet wird und der gesamte Abfluss über die RWS fliesst. Tabelle 1 zeigt für die<br />

Szenarien der GK die entsprechenden Abflusskombinationen sowie die Geschiebe- und<br />

Schwemmholzfrachten während der Ereignisse gemäss den Festlegungen für die Modellversuche<br />

der VAW sowie den zur Verfügung stehenden relevanten Studien (Flussbau AG 2009,<br />

2010).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 299


Tabelle 1: Abflusskombinationen gemäss GK Stadt Zürich sowie Geschiebe- und Schwemmholzfrachten<br />

MODELLZUSTÄNDE<br />

Die Bauarbeiten für die Erstellung der SBB-Durchmesserlinie Altstetten – Zürich HB – Oerlikon<br />

(„DML“) führten im Untersuchungsgebiet zu massgebenden baulichen Veränderungen.<br />

Für die Untersuchung der Abflusskapazität der Sihldurchlässe wurde daher zwischen dem<br />

Zustand 2006 – vor dem Bau der DML – sowie dem Zustand 2014 – nach Abschluss der<br />

Bauarbeiten – unterschieden.<br />

Zustand 2006<br />

Bis 2006 verfügte die Sihl unterhalb des HB Zürich über eine grösstenteils natürliche Flusssohle,<br />

in deren letztem Drittel mit einer Überdeckung von ca. 1.3 m der Tiefbahnhof<br />

Museumsstrasse lag (Abbildung 2, Ziffer 1). Die Decke der Durchlässe setzt sich aus den<br />

Gleisbrücken der 16 Hauptgleise sowie den Bahnsteigen zusammen und ist von der Sihl frei<br />

zugänglich (Abbildung 2, Ziffer 2). Im Einlaufbereich unterhalb der Postbrücke nimmt die<br />

lichte Höhe von ca. 4.5 m auf etwa 3 m ab. Erst unterhalb der ersten Gleisbrücke ist somit<br />

der kritische Querschnitt im Einlaufbereich vorhanden (Abbildung 2, Ziffer 3).<br />

Die Durchlässe werden von Zwischenmauern unterteilt, welche als Widerlager für die Gleisbrücken<br />

dienen. Das untere Ende der Durchlässe wird von der Zollbrücke überspannt. Kurz<br />

vor diesem Bauwerk liegt bei sämtlichen Durchlässen der tiefste Punkt der Deckenkonstruktion<br />

(Abbildung 2, Ziffer 4). Ober- sowie unterstrom des HB Zürich befanden sich bis 2006 im<br />

Einflussbereich der Trennmauer ausgedehnte, teils stark bewachsene Schotterinseln.<br />

In diesem Zustand kam es in den Jahren 2005, 2006 und 2007 zu grösseren Hochwasserereignissen,<br />

welche anhand von Hochwasserspuren („HW-Spuren“) dokumentiert wurden.<br />

Zustand 2014<br />

Zur Erhöhung der Hochwassersicherheit während der Bauarbeiten für die DML wurde die<br />

Sohle in den Sihldurchlässen gegenüber der mittleren Sohle von 2006 um ca. 0.6 m abgesenkt<br />

und auf dieser Höhenlage flächig mit armiertem Beton versiegelt (Abbildung 2, Ziffer<br />

5). Der Tiefbahnhof Löwenstrasse wurde neu erstellt und liegt ca. 0.8 m bis 1.3 m unterhalb<br />

der Sohlversiegelung (Abbildung 2, Ziffer 6). Die Deckenplatten der Tiefbahnhöfe befinden<br />

sich in Trögen, welche mit Sohlmaterial der Sihl aufgefüllt wurden (Abbildung 2, Ziffern 7).<br />

Die Deckenstruktur der Sihldurchlässe wurde im Rahmen der Bauarbeiten für die DML nicht<br />

verändert. Neben der Absenkung der Sohle in den Durchlässen wurden flussauf sowie flussab<br />

300 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 2: Sihldurchlässe: Querschnitt und Längsschnitte in den Modellzuständen 2006 und 2014 (VAW, mod. nach SBB)<br />

des HB Zürich in der Sihl Baggerungen von bis zu 1 m Tiefe vorgenommen. Die Trennmauer<br />

oberhalb des HB wurde teilweise abgebrochen.<br />

HYBRIDE MODELLIERUNG<br />

Numerisches Modell<br />

Aufgrund der komplexen Randbedingungen für den Betrieb des hydraulischen Modells<br />

wurden von der VAW mit der Simulationsumgebung BASEMENT für beide Modellzustände<br />

hydronumerische 2D-Modelle erstellt. Der Perimeter der hydronumerischen Modelle<br />

erstreckte sich von der Pegelstation Sihlhölzli bis zur Kornhausbrücke (Abbildung 1), der<br />

Betrieb erfolgte rein hydraulisch mit fester Sohle. Die Kalibrierung des numerischen Modells<br />

erfolgte mit Hilfe von 15 HW-Spuren des Hochwasserereignisses von August 2005 an Sihl und<br />

Limmat und erlaubte speziell im Bereich des Zusammenflusses eine korrekte Abbildung der<br />

Wasserspiegellagen. Die Ergebnisse des numerischen Modells wurden in den Elementen des<br />

Berechnungsnetzes entsprechend der Lage der HW-Spuren bestimmt und den Naturwerten<br />

gegenübergestellt (Tabelle 2). Die Kalibrierung erfolgte über Optimierungen der Randbedingungen,<br />

der Netzauflösung sowie durch Anpassung der Rauhigkeitsbeiwerte. Die Validierung<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 301


des Modells wurde anhand der Hochwasserereignisse in 2006 und 2007 durchgeführt, wobei<br />

nur für den Nahbereich des HB Zürich Hochwasserspuren vorlagen (Tabelle 2).<br />

Laborversuch<br />

Zur Untersuchung der Abflussverhältnisse in den Sihldurchlässen wurde in der Versuchshalle<br />

der VAW ein hydraulisches Modell im Massstab 1:30 nach Froude’scher Modellähnlichkeit<br />

errichtet. Das Modell bildete 900 m Fliessstrecke der Sihl ab, die maximale Breite des Modellperimeters<br />

betrug 200 m. Der Modelleinlauf befand sich im Prototyp 400 m oberhalb des HB<br />

Zürich, das Modellende lag 50 m flussauf des Zusammenflusses von Sihl und Limmat. Die<br />

korrekte Wiedergabe des Wasserstandes beim Modellauslauf wurde durch ein gestautes Auslaufbecken<br />

mit automatischer Regulierung des Wasserstands sichergestellt.<br />

Das Hauptgerinne der Sihl war mit beweglicher Sohle ausgestattet, während der Schanzengraben<br />

sowie die Ufer im Modell befestigt wurden. Für einen optimalen optischen Zugang<br />

wurden die Sihldurchlässe sowie die Seitenmauern des Modells in diesem Bereich in Acrylglas<br />

ausgeführt. Die Wasserspiegel wurden durch Ultraschallsensoren sowie Messzylinder,<br />

welche über kommunizierende Röhren mit der Flusssohle verbunden waren, aufgezeichnet.<br />

Die Sohllagen im Modell wurden mittels Laserdistanzmessung aufgenommen. Die Geschiebezugabe<br />

erfolgte über eine automatisierte Beschickungsanlage, Schwemmholz wurde manuell<br />

zugegeben.<br />

Tabelle 2: Abweichungen für Kalibrierung und Validierung von numerischer Modellierung und Laborversuch<br />

Die Kalibrierung des hydraulischen Modells erfolgte anhand der Hochwasserereignisse in den<br />

Jahren 2005 / 2006 / 2007 und in Gegenüberstellung mit den Ergebnissen der parallel<br />

durchgeführten numerischen Simulationen. Tabelle 2 gibt einen Überblick über die mittleren<br />

sowie maximalen Abweichungen der Kalibrierungs- und Validierungsereignisse.<br />

Die Ergebnisse des numerischen Modells waren bei sämtlichen Szenarien massgebend für die<br />

Festlegung der unteren Randbedingung im Laborversuch. Die Wasserspiegellagen wurden in<br />

einem Zielelement aus der hydronumerischen Simulation des jeweiligen Szenarios ausgelesen,<br />

massstäblich umgerechnet und mittels eines Korrekturwerts an die Strömungsbedingun-<br />

302 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


gen im Auslaufbecken des hydraulischen Modells angepasst. Diese korrigierten Zielwerte<br />

wurden für die automatisierte Steuerung des Wasserstands im Auslaufbecken verwendet.<br />

ERGEBNISSE<br />

Maximale Abflusskapazität<br />

Die Versuche im hydraulischen Modell verdeutlichten den massgebenden Einfluss des<br />

Rückstaus der Limmat auf die Abflussverhältnisse und die Wasserspiegellagen im Bereich der<br />

Sihldurchlässe. Angaben zur Abflusskapazität der Sihl können daher nur in Kombination mit<br />

dem jeweiligen Abfluss in der Limmat eindeutig interpretiert werden. Als maximale Abflusskapazität<br />

Qmax wurde durch das AWEL und die VAW der Abflusszustand festgelegt, bei dem<br />

ein „gleichmässiges Anschlagen des Wasserspiegels an Gleisbrücken bzw. Brückenbauwerken“<br />

zu beobachten ist. Die Versuche im hydraulischen Modell zeigten, dass Q max<br />

gemäss dieser<br />

Definition bei einem Spitzenabfluss von 490 m³/s erreicht ist und in Kombination mit einem<br />

Limmatabfluss von 190 m³/s gilt („Q max<br />

490/190“). Dieser Wert wurde im Laborversuch für<br />

die Zustände 2006 und 2014 sowie für Versuche mit und ohne Schwemmholzzugabe<br />

bestätigt.<br />

Die Laborversuche zeigten, dass Q max<br />

auch durch eine Absenkung des Wasserspiegels beim<br />

Zusammenfluss Sihl / Limmat nicht signifikant vergrössert werden kann, obwohl die<br />

Strömungsprozesse in der Sihl stark durch den Limmatwasserstand beeinflusst werden.<br />

Grund dafür ist das gewählte Kriterium, bei dem der maximale Abfluss durch ein gleichmässiges<br />

Anschlagen des Wasserspiegels an der Deckenstruktur der Durchlässe definiert ist. Ein<br />

geringerer Limmatabfluss führte zwar im Mittel zu einer Absenkung der Wasserspiegel im<br />

Bereich des HB Zürich, aufgrund der grösseren Fliessgeschwindigkeiten bzw. Froudezahlen<br />

kam es jedoch zu verstärkter Wellenbildung.<br />

Prozesse im Zustand 2006<br />

Im Zustand 2006 kam es bei Qmax 490/190 im Einlaufbereich der Durchlässe zum Anschlagen<br />

des Wasserspiegels, das mittlere Freibord im kritischen Querschnitt betrug 0.2 bis 0.3 m.<br />

Aufgrund des Stammdurchmessers des Schwemmholzes von 0.3 bis 0.4 m passierte dieses die<br />

Sihldurchlässe zum grössten Teil, nur vereinzelt blieben Stämme an Widerlagern hängen. Bei<br />

den beobachteten Prozessen wurden jedoch lokal die Grenzen der Modellähnlichkeit erreicht.<br />

Das Schwemmholz wurde im Laborversuch als entastet modelliert und teilweise während der<br />

Versuche an den idealisierten Gleisbrücken aus Acrylglas entlangeschoben. Überlastversuche<br />

mit vollständiger Abdichtung des mittleren Durchlasses zeigten jedoch, dass es auch bei<br />

Vorhandensein von massiven Verklausungskörpern im Einlaufbereich zu keiner plötzlichen<br />

Reduktion der Abflusskapazität kommt. Unterhalb der Verklausungskörper wurden in der<br />

natürlichen Flusssohle tiefe Kolke gebildet, welche die Abflusskapazität aufrechterhielten.<br />

Im Auslaufbereich der Sihldurchlässe wurde hinsichtlich der Wasserspiegellagen der Rückstau<br />

der Limmat als massgebender Parameter identifiziert. Die Sohllagen flussab des HB Zürich<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 303


sowie die Schotterinseln hatten nur einen geringen Einfluss auf die Abflussverhältnisse in<br />

diesem Bereich.<br />

Prozesse im Zustand 2014<br />

Aufgrund des dominierenden Rückstaus der Limmat führten die Baggerungen sowie die<br />

Sohlversiegelung in den Durchlässen im Zustand 2014 zu keiner signifikanten Erhöhung der<br />

Abflusskapazität. Durch die tieferen Sohllagen lagen die Wasserspiegel bei Qmax 490/190 um<br />

0.3 bis 0.4 m unterhalb des kritischen Querschnitts im Einlaufbereich, wodurch das Verklausungsrisiko<br />

reduziert wurde. Die Schwachstelle der Abflusskapazität lag im Zustand 2014<br />

somit im unteren Drittel der Sihldurchlässe, an dieser Stelle wurde bei Qmax 490/190 das<br />

erste Anschlagen des Wasserspiegels festgestellt. Auch in diesem Bereich blieb aufgrund der<br />

beschriebenen Effekte nur vereinzelt Schwemmholz hängen. Die Überlastversuche mit<br />

Abdichtung des mittleren Durchlasses zeigten, dass die Sohlversiegelung die Bildung von<br />

Kolken unterhalb von Verklausungen verhindert und in diesem Fall einen negativen Einfluss<br />

auf die Abflusskapazität hat.<br />

Sohlentwicklung<br />

Der Gerinnequerschnitt der Sihl verbreitert sich oberstrom des HB Zürich von 55 m auf 70 m.<br />

Gleichzeitig ist die Sohlneigung in diesem Flussabschnitt geringer, so dass der Bereich<br />

oberstrom des HB Zürich eine Auflandungsstrecke darstellt. Durch den Rückstau der Limmat<br />

im Hochwasserfall wird dieser Effekt verstärkt und es kommt auch flussab des HB Zürich zu<br />

Auflandungen. Das Vorhandensein grosser Schotterinseln im Zustand 2006 bestätigt diese<br />

Beobachtungen. Bei sämtlichen untersuchten Hochwasserszenarien kam es oberstrom der<br />

Sihldurchlässe zu Auflandungen. In den Durchlässen wurde bei diesen Szenarien die Bildung<br />

von Geschiebeansammlungen beobachtet, deren Fronten sich bei fortschreitender Versuchsdauer<br />

mit gleichbleibender Mächtigkeit durch die Durchlässe bewegten. Dieser Prozess wurde<br />

in beiden Modellzuständen beobachtet, ist in Zustand 2014 aufgrund der tieferen Sohllagen<br />

jedoch stärker ausgeprägt. Signifikanter Geschiebetransport aus der Sihl in die Limmat<br />

konnte bei keinem der untersuchten Hochwasserszenarien beobachtet werden.<br />

Bestvariante<br />

Das AWEL erteilte für die Projektierung der Durchmesserlinie die Auflage, dass das Sihlgerinne<br />

nach Abschluss der Bauarbeiten wieder in einen natürlichen Zustand versetzt wird. Vor<br />

diesem Hintergrund wurde von der VAW eine Bestvariante für das künftige Erscheinungsbild<br />

der Sihl im Bereich des HB Zürich entwickelt. Untersuchungen des Einflusses der Trennmauer<br />

zwischen Sihl und Schanzengraben zeigten, dass deren Entfernung keine negativen<br />

Auswirkungen auf die Abflusskapazität hat, jedoch eine dynamischere Entwicklung der Sohle<br />

zulässt.<br />

Eine natürliche Kiessohle in den Durchlässen ist für die Fischgängigkeit der Sihl sowie die<br />

Interaktion mit dem Grundwasserkörper von Vorteil. Vor diesem Hintergrund und unter<br />

304 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Berücksichtigung der ermittelten Abflusskapazitäten empfiehlt die VAW, die Sohlversiegelung<br />

in den Sihldurchlässen zu entfernen und die natürliche Kiessohle wieder herzustellen. Durch<br />

die natürliche Auflandungstendenz im Untersuchungsgebiet werden auf Dauer die Sohlhöhen<br />

des Zustands 2006 wieder erreicht werden.<br />

Die Laborversuche zur maximalen Abflusskapazität im Zustand 2006 zeigten im Einlaufbereich<br />

der Sihldurchlässe Kolktiefen zwischen -1.5 und -2 m. Eintiefungen dieser Grössenordnung<br />

gefährden die Fundationen der Zwischenmauern der Sihldurchlässe und dementsprechend<br />

die Stabilität der darauf gelagerten Gleisbrücken. Im hydraulischen Modell wurde<br />

daher für den Einlaufbereich die Wirksamkeit eines Kolkschutzes mittels Blockteppich<br />

(Natursteinblöcke à 1.5 t) überprüft und bei Qmax 490/190 bestätigt.<br />

FAZIT<br />

Gemäss der beschriebenen Definition liegt die maximale Abflusskapazität der Sihl beim HB<br />

Zürich in beiden Modellzuständen bei einem Sihlabfluss von 490 m³/s in Kombination mit<br />

einem Limmatabfluss von 190 m³/s. Höhere bzw. tiefere Wasserspiegel in der Restwasserstrecke<br />

der Limmat beeinflussen die maximale Abflusskapazität der Sihldurchlässe entsprechend<br />

der Definition als Anschlagen des Wasserspiegels an Bauwerksunterkanten nicht<br />

signifikant. Bei Spitzenabflüssen bis HQ 300<br />

ist der Einfluss der Limmat jedoch massgebend<br />

und verlangt eine ganzheitliche Interpretation und Untersuchung der Abflussverhältnisse im<br />

Bereich des HB Zürich. Die Untersuchungen im hydraulischen Modell haben gezeigt, dass<br />

das Verklausungsrisiko bei diesen Maximalabflüssen gering ist, jedoch von Modelleffekten<br />

ausgegangen werden muss. Für die zukünftige Gestaltung der Sihl im Untersuchungsgebiet<br />

empfiehlt die VAW die Wiederherstellung der natürlichen Kiessohle mit den Sohllagen von<br />

2006. Die Sohlversiegelung in den Durchlässen bringt keine massgebende Erhöhung der<br />

Abflusskapazität und kann vor diesem Hintergrund rückgebaut werden. Aufgrund der<br />

Kolkbildung bei Extremereignissen im Einlaufbereich der Sihldurchlässe sind lokale Schutzmassnahmen<br />

der Sohle anzuraten. Die Entfernung der Trennmauer zwischen Sihl und<br />

Schanzengraben führen zu einer dynamischeren und natürlicheren Sohlentwicklung.<br />

LITERATUR<br />

- Basler und Hofmann AG (2008). Gefahrenkartierung Hochwasser Stadt Zürich, Technischer<br />

Bericht. Im Auftrag des AWEL. Stand: 24. November 2008 (unveröffentlicht)<br />

- Flussbau AG (2009). Schwemmholzstudie Sihl. Stand: 15. Dezember 2009 (unveröffentlicht)<br />

- Flussbau AG (2010). Geschiebehaushaltsstudie Sihl - Limmat. Stand: 20. August 2010<br />

(unveröffentlicht)<br />

- Kanton Zürich (2012). Wasserbau, Hochwasserschutz Sihl-Zürichsee-Limmat (Ausgabenbewilligung).<br />

Regierungsratsbeschluss 925. Stand: 12. September 2012<br />

- Marti C. et al. (2014). Hochwasserschutz Sihl-Zürichsee-Limmat. Tagungsband „Wasserbau<br />

und Flussbau im Alpenraum“, VAW-Mitteilung 227/228 (R. Boes, ed.), VAW, ETH Zürich<br />

- Scherrer AG (2013). Hochwasser-Hydrologie der Sihl - Hochwasserabschätzung unterhalb<br />

des Sihlsees bis Zürich. Im Auftrag des AWEL. Stand: Juli 2013 (unveröffentlicht)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 305


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Characteristics of debris flow vibration signals in<br />

Shenmu, Taiwan<br />

Yi-Min Huang, Ph.D. 1 ; Chung-Ray Chu, Ph.D. 2 ; Yao-Min Fang, Ph.D 3 ; Ming-Chang Tsai 3 ; Bing-Jean Lee, Ph.D. 4 ; Tien-Yin Chou,<br />

Ph.D. 4 ; Chen-Yang Lee 5 ; Chen-Yu Chen, Ph.D. 6 ; Hsiao-Yuan Yin, Ph.D. 6<br />

ABSTRACT<br />

Influenced by the climate change and the extreme weather, debris flow has become a common<br />

disaster in Taiwan in recent years. To protect people from the impacts of debris flows,<br />

monitoring and warning system were established in Taiwan since 2002. Most of the warning<br />

systems or models are based on the analysis of rainfall, the major cause of debris flow (Jan et<br />

al., 2003; Jan and Lee, 2004; Lee 2006). The measurement of rainfall, however, is an indirect<br />

option of debris flow monitoring (Huang et al., 2013), resulting in "false alarms" most of the<br />

time. One direct measure is to use geophone and broadband seismograph (Chu et al., 2014;<br />

Huang et al., 2012) to record the vibration signals of debris flows. This study analyzed the<br />

vibration signals of a site in Shenmu, Taiwan, where debris flows frequently occurred (Lee et<br />

al., 2014), and discussed the performance of using vibration signals for debris flow warning.<br />

The results of using vibration signals were practically promising for debris flow monitoring.<br />

KEYWORDS<br />

debris flow; geophone; seismograph; ground vibration; monitoring<br />

INTRODUCTION<br />

Influenced by the climate change and the extreme weather, debris flow has become a<br />

common disaster in Taiwan in recent years. To protect people from the impacts of debris<br />

flows, monitoring and warning system were established by the Soil and Water Conservation<br />

Bureau (SWCB) in Taiwan since 2002. Currently there are 19 debris flow monitoring stations<br />

in Taiwan (Fig. 1). Most of the stations are located at the central part of Taiwan.<br />

Most of the warning systems or models are based on the analysis of rainfall, the major cause<br />

of debris flow (Jan et al., 2003; Jan and Lee, 2004; Lee 2006). The warnings based on the<br />

rainfall thresholds for debris flows were useful from the past experience. The measurement of<br />

rainfall, however, is an indirect option of debris flow monitoring (Huang et al., 2013), which<br />

is useful for disaster response but usually results in "false alarms". In contrast to the rainfall<br />

1 GIS Research Center, Taichung, TAIWAN, niner@gis.tw;ninerh99@gmail.com<br />

2 Fortemedia Inc.<br />

3 Department of Urban Planning and Spatial Information, Feng Chia University, Taiwan, R.O.C.<br />

4 Department of Civil Engineering, Feng Chia University, Taiwan, R.O.C.<br />

5 Soil and Water Conservation Bureau, Council of Agriculture, Taiwan R.O.C.<br />

6 Debris Flow Disaster Prevention Center, Soil and Water Conservation Bureau, Council of Agriculture, Taiwan, R.O.C.<br />

306 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP024


Figure 1: Debris flow monitoring stations in Taiwan<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 307


measurement, using geophone (short period seismograph) and broadband seismograph<br />

(Chu et al., 2014; Huang et al., 2012) are direct options of debris flow monitoring, and they<br />

were used to record the vibration signals generated by debris flows. The vibration signals of<br />

cases in Shenmu, Taiwan, were analyzed to understand the characteristics of debris flow, and<br />

the possibility of applying geophones and broadband seismographs to debris flow warnings<br />

was discussed.<br />

STUDY AREA AND VIBRATION DETECTION OF DEBRIS FLOW<br />

The Shenmu area is located in the central Taiwan, where debris flows frequently occurred<br />

(Lee et al., 2014). A debris flow monitoring station was built in 2002. The local village is<br />

adjacent to the confluence of three streams: Aiyuzi Stream (DF226), Huosa Stream (DF227)<br />

and Chushuei Stream (DF199). These streams are classified as high-potential debris flow<br />

torrents. Table 1 summarized the environment of Shenmu, Table 2 and Fig. 2 indicate the<br />

area and locations of landslides along these three streams after 2009, and Table 3 lists the<br />

debris flow events in this area. It should be noted that the debris flows usually occurred at<br />

the Aiyuzi Stream in the past 5 years, due to its shorter length and large landslide area in<br />

its upstream (Huang, et al., 2013).<br />

Table 1: Environment of Shenmu Station (Huang, et al., 2013).<br />

Location Shenmu Village, Nantou County Debris Flow No. DF199, DF227, DF226<br />

Catchment Zhuoshui River Streams Chusuei, Huosa, Aiyuzi<br />

Debris Flow Warning<br />

Threshold<br />

250 mm Hazard Type Channelized debris flow<br />

Monitored Length 5.518 km Catchment Area 7,216.45 ha (Shenmu)<br />

Geology neogene sedimentary rock Slope at Source 30~50°<br />

Landslide area Large, 1%≦ landslide ratio ≦5% Sediment<br />

Average debris material size:<br />

3”-12”<br />

Vegetation Natural woods, medium sparse Damaged by debris, overflow<br />

Engineering Practice None Priority of Mitigation High<br />

Station Elevation 1,187 m Coordinate (TWD97) X: 235367 Y: 2602749<br />

Protected Targets<br />

Residents Facility Transportation<br />

> 5 households school roads, bridges<br />

Table 2: The landslide area in Shenmu after 2009 (Huang, et al., 2013).<br />

Debris Flow No. Stream Length (km) Catchment Area (ha) Landslide Area (ha)<br />

DF199 Chusuei Stream 7.16 861.56 33.29<br />

DF227 Huosa Stream 17.66 2,620 149.32<br />

DF226 Aiyuzi Stream 3.30 400.64 99.85<br />

308 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: The landslide areas of Shenmu site (image taken in 2009 after Typhoon Morakot).<br />

The sensors and instrument of rain gauges, geophones, broadband seismographs, wire sensors,<br />

and CCD camera were installed in the Shenmu Monitoring Station. The rain gauge is classified<br />

as the indirect option in the monitoring system to measure rainfall data. Most of researches<br />

about debris flow had been contributed in developing the relationship between the debris<br />

flow occurrence and rainfall. Rainfall is easy to measure and if a reasonable prediction model<br />

is using rainfall as a variable, it can provide a time window that can greatly improve the<br />

disaster warning and evacuation. The comparison of rainfall-based debris flow monitoring<br />

models can be made by model’s rainfall indices: accumulative rainfall (R), rainfall intensity<br />

(I), and the duration (T) (Lee, 2006). Each rainfall index has its characteristics in modeling<br />

debris flow. Therefore, Jan and Lee (2004) promoted a model considering the influence of all<br />

rainfall indices (R, T, and I), and used debris flow cases to determine the rainfall thresholds of<br />

a given location. This method was adopted by SWCB and works for debris flow warning in<br />

Taiwan.<br />

The direct option in debris flow monitoring system refers to the instruments and sensors that<br />

response when a debris flow actually occurs. Wire sensors, geophones and broadband<br />

seismographs are classified as this type. Wire sensors are simply steel wires crossing the river<br />

with signal transducers at ends. When a debris flow occurs, the flowing mass of debris will<br />

break the wire and results in a signal being sent out. Geophones and broadband seismographs<br />

are sensors installed along the river banks to detect ground surface vibration which comes<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 309


Table 3: Debris flow hazard history of Shenmu (after Huang, et al., 2013).<br />

Location<br />

Geophone Hazard<br />

Date<br />

Event<br />

Occurrence<br />

(stream)<br />

Warning* Type<br />

2004/5/20 - Aiyuzi 14:53 NA debris flow<br />

2004/5/21 - Aiyuzi 16:08 NA debris flow<br />

2004/5/29 - Aiyuzi 16:19 NA debris flow<br />

2004/6/11 - Aiyuzi 16:42 NA debris flow<br />

2004/7/2 Typhoon Mindulle Aiyuzi 16:41 NA debris flow<br />

2005/7/19 Typhoon Haitang Chusuei, Aiyuzi - NA flood<br />

2005/8/4 Typhoon Matsa Chusuei, Aiyuzi - NA flood<br />

2005/9/1 Typhoon Talim Chusuei, Aiyuzi - NA flood<br />

2006/6/9 0609 Rainfall Chusuei, Aiyuzi about 08:00 NA debris flow<br />

2007/8/13 0809 Rainfall Chusuei - NA flood<br />

2007/8/18 Typhoon Sepat Chusuei - NA flood<br />

2007/10/6 Typhoon Krosa Chusuei - NA flood<br />

2008/7/17 Typhoon Kalmaegi Chusuei - NA flood<br />

2008/7/18 Typhoon Kalmaegi Aiyuzi - NA flood<br />

2009/8/8 Typhoon Morakot<br />

Chusuei,Aiyuzi, 08:00 (landslide)<br />

landslide,<br />

NA<br />

Huosa 16:57 (debris flow)<br />

debris flow<br />

2010/9/19 Typhoon Fanapi Huosa - NA flood<br />

2011/7/13 - Aiyuzi 14:33 No debris flow<br />

2011/7/19 0719 Rainfall Aiyuzi 3:19 No debris flow<br />

2011/11/10 - Aiyuzi 13:17<br />

Yes<br />

13:18 (Nov 10)<br />

debris flow<br />

2012/5/4 - Aiyuzi<br />

15:56<br />

16:09<br />

No debris flow<br />

2012/5/20 - Aiyuzi 8:15 No flood<br />

2012/6/10 0610 Rainfall Aiyuzi<br />

10:34 No (unstable<br />

15:14 communication)<br />

debris flow<br />

2012/6/11 0610 Rainfall Chusuei 17:08 No flood<br />

2013 0517 Rainfall Aiyuzi 7:02 (May 19) No flood<br />

2013 Typhoon Saulik Aiyuzi 6:54 (July 13)<br />

Yes<br />

6:47 (July 13)<br />

debris flow<br />

2013 Typhoon Trami Aiyuzi 22:41 (Aug. 21)<br />

NA (under<br />

repair)<br />

flood<br />

2014 0520 Rainfall Aiyuzi 12:53 (May 20)<br />

NA (unstable<br />

communication)<br />

debris flow<br />

*: the warning was issued when the max. accumulated wavelet energy was 5 times the background wavelet energy.<br />

from the movement of debris in the channel. The warning level for debris flow by geophone<br />

signals was predefined based on its accumulated wavelet energy (Lee et. al., 2012), and is still<br />

under testing. When the warning was issued by the geophone, it was checked with the status<br />

of nearby wire sensors (broken or not) and the CCD image (in-situ conditions). As shown in<br />

Table 3, the warnings were not issued every time when a debris flow occurred in the past 5<br />

years. This may because of the scale of debris flows and the geophone warning criteria. More<br />

study is needed on geophone warning criteria, and this paper will focus on the characteristics<br />

of debris flow vibration signals.<br />

The layout of monitoring sensors is shown in Fig. 3. One geophone and two seismographs are<br />

installed at the Aiyuzi Stream. The geophone of GS-20 DX made by Geospace Tech. was used,<br />

310 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


which has clean band pass of 250 Hz and intrinsic sensitivity of 0.7 V/in/sec. The broadband<br />

of Yardbird DF-2 was first installed at the site in 2013, made by Institute of Earth Science,<br />

Academia Sinica Taiwan, with frequency measurement of 0.13~200 Hz, intrinsic sensitivity of<br />

150 V/m/s, and 24 bit digital resolution. The signal data of z-direction (vertical) recorded by<br />

the geophone at the upstream and the broadband seismograph at the downstream of Aiyuzi<br />

Stream were used for analysis in this study.<br />

Figure 3: The monitoring layout of Shenmu Station.<br />

METHODS AND STUDY CASES<br />

To analyze the vibration signals of debris flows, the signal was processed to convert the data<br />

into a time sequence of velocity. Fast Fourier Transform (FFT) was first applied to obtain the<br />

distribution of vibration frequencies. The filter method of Haar wavelet transform (Fang et al.,<br />

2008) was used in the signal analysis for geophone data, as well as to estimate the wavelet<br />

energy. The spectrograms of signal were plotted to illustrate the frequency characteristics<br />

from the broadband seismograph, and used to compare the signals of geophone and broadband<br />

seismograph.<br />

Four cases in the past 5 years were used for analysis and comparison (Table 4). All of them<br />

were debris flow events. The scale of debris flow, small, medium, and large, was determined<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 311


Table 4: Wavelet energy change and time widow of warning of 4 events.<br />

Yea<br />

r<br />

2011<br />

2013<br />

2013<br />

Event<br />

1110<br />

Rainfall<br />

0530<br />

Heavy<br />

Rainfall<br />

Typhoon<br />

Saulik<br />

based on the maximum hourly rainfall, average flow speed, and the maximum accumulated<br />

wavelet energy.<br />

Max.<br />

hourly<br />

rainfall<br />

(mm)<br />

Flow<br />

speed<br />

(m/s)<br />

Warning<br />

announced *<br />

DF a<br />

arrived **<br />

Max.<br />

accumulated<br />

wavelet<br />

energy (Jmax)<br />

Background<br />

wavelet<br />

energy (Jb)<br />

17 1.77 13:18 13:29 242.5 19.7 Y<br />

15 ~1.0 NA ~15:24 NA 31.45 Y<br />

51.5 8.52 6:47 6:54 7243.78 31.45 Y<br />

2014<br />

0520<br />

Heavy<br />

Rainfall<br />

39.5 4.87 NA *** 12:53 180.10 30.27 Y<br />

*, **: the time recorded based on the geophone at the upper stream of Aiyuzi River.<br />

***: communication unstable, no record.<br />

****: G for geophone (GS-20 DX) and BS for broadband seismograph (Yardbird DF-2)<br />

a: DF = Debris Flow<br />

DF? DF mass DF Scale<br />

mainly<br />

sediment (∅<br />

50cm)<br />

medium<br />

small<br />

large<br />

medium<br />

to large<br />

Used for<br />

analysis<br />

(G or<br />

BS) ****<br />

G<br />

BS<br />

G & BS<br />

G & BS<br />

RESULTS<br />

The observation of three cases by the upstream geophone in the Aiyuzi Stream is shown in<br />

Fig. 4. It was noted that there peaks occurred in the signal before the arrive of debris flows.<br />

Fig. 5 shows the results of FFT, and it indicates that the significant frequency range of debris<br />

flow was less than 30 Hz in all three cases. The finding was in agreement with other<br />

researches (Fang et al., 2008). In order to understand the signature frequency, the Haar<br />

wavelet transform was applied to extract the signals of 0~31.25 Hz, as shown in Fig. 6. The<br />

signals of 0~31.25 Hz from the figure had more clear on peaks than those in Fig. 4. Therefore,<br />

the characteristic frequency of debris flow in Shenmu was about 0~31.25 Hz. In order to<br />

further analyze the relationship of signature frequency and the scale of debris flow, the<br />

spectrograms was used to find out the initial major frequency of debris flow front end.<br />

The spectrograms are shown in Fig. 7. Although the noise appeared in the figure, the energy<br />

distribution with time was still recognizable. In this figure, the frequency at which the energy<br />

propagated by the debris flow started to increase (the color changed from blue to red) was<br />

about 10 Hz or less in the cases, except the case of 1110 Rainfall in 2011. When considered<br />

with the arrival time of debris flow (Table 4), it was noted that the energy of frequency about<br />

5 Hz or less started to increase about 5 minutes (6:49) and 1 minutes (12:52) before the<br />

debris flow arrived at the location of geophone in the case of Typhoon Saulik 2013 and 0520<br />

Heavy Rainfall 2014, respectively. However, due the sensitivity of the geophone, the signals at<br />

low frequencies (


debris flows of large and medium to large scales, respectively. In contrast, the small debris<br />

flow of 0530 Rainfall 2013 had front-end major frequency of about 10 Hz (Table 5). Thus,<br />

the scale of a debris flow may be related to its front-end major frequency.<br />

Figure 4: The vibration signals of the upstream geophone. (a) 1110 Rainfall (Nov. 10, 2011) (b) Typhoon Saulik (July 13, 2013) (c) 0520<br />

Heavy Rainfall (May 20, 2014)<br />

In addition to the rainfall, the warning to a debris flow in Shenmu was also considered by<br />

applying geophone data. The test warnings were announced based on the accumulated<br />

wavelet energy estimated by the signals of the upstream geophone in Aiyuzi Stream. When<br />

the accumulated wavelet energy is 5 times the background value (Table 4), the warnings will<br />

be sent. From the past events, the testing warning rule of 5 times the background wavelet<br />

energy was considerably applicable. The time window between the warning and the arrival of<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 313


debris flows at the upstream geophone was about 9 minutes in average at the Aiyuzi Steam.<br />

The 9-minute time window may not useful for evacuation during disaster response, but the<br />

direct measure of vibration signals provided distinct evidence of debris flow occurrence.<br />

Compared with the geophone data, the time window between the detected front-end signal<br />

and the arrival at the downstream of Aiyuzi Stream was about 4 minutes in average by the<br />

signals of broadband seismograph (Table 6). Both geophones and broadband seismographs<br />

were practically useful.<br />

Figure 5: The FFT results of the geophone signals. (a) 1110 Rainfall (Nov. 10, 2011) (b) Typhoon Saulik (July 13, 2013)<br />

(c) 0520 Heavy Rainfall (May 20, 2014)<br />

314 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 6: The signals of frequency 0~31.25 Hz of the upstream geophone. (a) 1110 Rainfall (Nov. 10, 2011) (b) Typhoon Saulik<br />

(July 13, 2013) (c) 0520 Heavy Rainfall (May 20, 2014)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 315


Figure 7: The spectrograms of signals at the upstream geophone. (a) 1110 Rainfall (Nov. 10, 2011) (b) Typhoon Saulik (July 13, 2013)<br />

(c) 0520 Heavy Rainfall (May 20, 2014)<br />

Table 5: Broadband major frequency and the scale of debris flows.<br />

Event Date Scale Flow speed Major frequency<br />

1 2013/5/30 small ~ 1 m/s 11 Hz<br />

2 2013/7/13 large ~ 10 m/s 2 Hz<br />

3 2014/5/20 median ~ 5 m/s 5 Hz<br />

316 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 8: The spectrograms of broadband seismograph in Aiyuzi River during (a) 0530 Rainfall 2013 (b) Typhoon Saulik in 2013<br />

(c) 0520 Heavy Rainfall in 2014.<br />

Table 6: Time earlier of observed frequency by the broadband seismograph at downstream to the occurrence of debris flow (6:57:39)<br />

during Typhoon Saulik 2013.<br />

Observed Frequency Recorded Time Time earlier<br />

2 Hz 6:53:25 4 m 14 s<br />

8 Hz 6:57:02 37 s<br />

20 Hz 6:57:25 14 s<br />

Peak wave 6:57:39 0<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 317


CONCLUSION<br />

The data of broadband seismographs and geophones along the Aiyuzi River in Shenmu was<br />

used in this study, as well as 4 debris flow events. The frequency range of 0~10 Hz (broadband<br />

seismograph) and 0~31.25 Hz (short period seismograph) were practically suitable for<br />

debris flow warning in terms of vibration characteristics. It was noted that large debris flows<br />

had signature frequency less than 10 Hz, and the small to median debris flows usually had<br />

signature frequency greater than 10 Hz. The time window of response to the debris flow was<br />

about 4 minutes for broadband seismographs and 9 minutes in average for geophone from<br />

the cases in Shenmu. Warning levels of geophone signal were suggested to be 5 times the<br />

background energy (in joule) for debris flow warning. Overall, the study showed that the<br />

direct method of geophones and broadband seismograph was practically promising for debris<br />

flow monitoring.<br />

ACKNOWLEDGEMENT<br />

This research was partly supported by the Soil and Water Conservation Bureau, Council of<br />

Agriculture, Executive Yuan, Taiwan. Thanks to all people providing help on this study.<br />

REFERENCES<br />

- Chu C.-R., Huang C.-J., Lin C.-R., Wang C.-C., Kuo B.-Y., Yin H.-Y. (2014) “The Time-<br />

Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows”, Abstract<br />

NH51B-3853 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15-19 Dec.<br />

Fang Y.M. et al. (2008) Analysis of Debris Flow Underground Sound by Wavelet Transform-<br />

A Case Study of Events in Aiyuzih River, Journal of Chinese Soil and Water Conservation,<br />

CSWCS, 39(1), 27-44.<br />

- Huang C.-J., Chu C.-R., Tien T.-M., Yin H.-Y., and Chen P.-S. (2012) Calibration and<br />

deployment of a fiber-optic sensing system for monitoring debris flows, Sensors, 12(5),<br />

5835-5849.<br />

- Huang Y.M., Chen W.C., Fang Y.M., Lee B.J., Chou T.Y., Yin H.Y. (2013) Debris Flow<br />

Monitoring – A Case Study of Shenmu Area in Taiwan, Disaster Advances, 6(11), 1-9.<br />

- Jan C.D., Lee M.H., Huang T.H. (2003) Effect of Rainfall on Debris Flows in Taiwan,<br />

Proceedings of the International Conference on Slope Engineering, Hong Kong, 2, 741-751.<br />

- Jan C.D. and Lee M.H. (2004) A Debris-Flow Rainfall-Based Warning Model, Journal of<br />

Chinese Soil and Water Conservation, CSWCS, 35(3), 275-285 (in Chinese).<br />

- Lee B.J. et al. (2014) The 2012 On-site Data gathering and Monitoring Station Maintenance<br />

Program, Project Report, Soil and Water Conservation Bureau, 476 (in Chinese).<br />

- Lee M.H. (2006) A Rainfall-Based Debris Flow Warning Analysis and Its Application, Ph.D.<br />

Thesis, National Cheng Kung University, Taiwan, (in Chinese).<br />

318 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Analysis of flood related processes at confluences of<br />

steep tributary channels and their receiving streams<br />

– 2d numerical modelling application<br />

Johannes Kammerlander, DI 1 ; Bernhard Gems, DI Dr. 2 ; Michael Sturm, DI 2 ; Markus Aufleger, Dr.-Ing. habil. 2<br />

ABSTRACT<br />

The work presented within this paper deals with the crucial hydraulic and morphologic<br />

processes at confluences of steep torrent channels and receiving streams in case of exceptional<br />

extreme events. 2d numerical modelling is accomplished with the BASEMENT software for<br />

the confluence of Schnannerbach torrent channel and Rosanna River. There, the damage<br />

causing flood event from August 2005 is reconstructed. Processes of bedload deposition,<br />

flooding and overbank sedimentation, as they could be observed in August 2005 and<br />

analysed within a physical model at the University of Innsbruck, are simulated. The modelling<br />

results provide a valuable insight into the processes being crucial for the damages on the<br />

adjacent flood plain. Compared to the laboratory analysis, which delivers a very reliable and<br />

vivid process representation but is restricted to a rather small spatial extent, numerical<br />

modelling allows for an analysis of bedload transport and deposition further downstream in<br />

the Rosanna River and backwater effects upstream.<br />

KEYWORDS<br />

bedload transport, event reconstruction, confluence zone, 2D model<br />

INTRODUCTION<br />

Experiences from recent torrential hazard events in the Alps reveal that confluences of steep<br />

tributaries and their receiving waters are often critical spots concerning flood risk. Due to<br />

massive supply of sediments from the torrent catchments and insufficient transport capacities<br />

in the receiving streams, processes of regressive aggradation appear, possibly leading to overbank<br />

flooding and sedimentation on the alluvial fan. In this respect, physical scale modelling<br />

of bedload transport processes proved to be a suitable tool for optimizing mitigation measures<br />

at confluence zones (Gems et al. 2014).<br />

However, to accurately reproduce natural conditions, the scale, and with it the similarity law,<br />

have to be defined carefully. In case of bedload pulses entering receiving waters, experimental<br />

modelling is typically restricted to the proximity of the confluence zone (Gems et al., 2014).<br />

In contrast, hydraulic and morphologic responses of the receiving streams extend far in<br />

upstream and downstream directions. The optimization of geometric patterns at the conflu-<br />

1 Austrian Service for Torrent and Avalanche Control, Salzburg, Salzburg AUSTRIA, johannes.kammerlander@die-wildbach.at;<br />

j.kammerlander@gmx.at<br />

2 Unit of Hydraulic Engineering, University of Innnsbruck<br />

IP_<strong>2016</strong>_FP039<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 319


ence zone yields a significant onward movement of sediment (Gems et al., 2014), but critical<br />

spots, featuring aggradation and flooding, may appear further downstream in the receiving<br />

water. In this regard, the area of risk is rather spacious and its extent strongly depends on the<br />

bedload transport capacity of the whole system rather than at the confluence only. In order<br />

to assess their impact on flood safety and to determine areas of risk, the application of a<br />

numerical tool is suggested to be an adequate method, since it easily copes with the large<br />

areal extent of the area of interest.<br />

METHODS<br />

General Remarks<br />

Numerical simulations of bedload transport in steep mountain streams are commonly<br />

accomplished by means of 1d hydrodynamic approaches. As long as water flow is laterally<br />

confined, these simplifications are of minor effects. In contrast, fluvial fans typically feature<br />

convex terrains with multiple flow paths in case of overbank flooding. Additionally, confluence<br />

zones exhibit complex flow patterns, since water enters from different directions.<br />

In order to account for these conditions, at least a 2d hydrodynamic model needs to be applied<br />

for the simulation of hydraulic and involved bedload transport processes.<br />

However, the set of equations in 2d hydrodynamic models is rather sophisticated (e.g. Vetsch<br />

et al., 2011) and its applicability to high gradient streams with huge sediment loads is hardly<br />

tested so far. To make a contribution to that, the simulation tool BASEMENT (© ETH Zurich)<br />

was applied to a case study in order to examine its performance.<br />

Case Study Event<br />

The case study comprises an extreme event in the Schnannerbach Torrent (Tyrol), which was<br />

intensively investigated and comprehensively documented concerning both, hydrologic<br />

(Chiari, 2008) and morphologic characteristics (Gems et al., 2014; Chiari, 2008; Hübl et al.,<br />

2006; Figure 1); in these literature references the reader also finds a detailed overview of<br />

catchments characteristics.<br />

Summarizing, a heavy rain storm occurred in August 2005, which caused run-off generation<br />

and erosion along the steep scree slopes which are composed of lime stone rock and located<br />

in the upper catchment of the Schnannerbach Torrent. The total bedload that was transported<br />

to the fan apex was in the range of 36,000 m³ (Hübl et al., 2006) and 59,000 m³ (Gems et al.,<br />

2014). However, about 25,000 m³ of sediment (volume including pores) deposited on the<br />

alluvial fan (Hübl et al., 2006), which means that up to 34,000 m³ of bedload has entered the<br />

receiving Rosanna River.<br />

However, in this study the event reconstruction of Gems et al. (2014) is used as boundary<br />

condition for the numerical investigations. In their study, the sediment flux that entered the<br />

lined trench at the fan was reconstructed by determining the system’s capacity (critical load in<br />

the confluence zone and transport capacity of the Schnannerbach channel) by means of<br />

320 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 1: The extent of the 2d model used for the simulation including the hydro- and sedigraphs at the upstream boundaries and the<br />

location of downstream boundaries which are defined by constant friction slopes; the purple points are used as spatial reference only.<br />

physical scale modelling. The boundary conditions as highlighted in Figure 1 sufficiently<br />

reproduced the spatial and temporal location of the system failures (overbank flooding) that<br />

were observed during the event in 2005.<br />

Model Extent<br />

The 2d numerical modelling tool BASEMENT (2006-2015) is used to simulate the hydraulics<br />

and the bedload transport of the considered flood event. Thereby, the numerical model covers<br />

the lower half of the alluvial fan of the Schnannerbach Torrent and extends over two<br />

kilometres of the receiving mountain stream (Rosanna River), with the confluence zone<br />

located in the middle (Figure 1). The computational grid of the modelling area (0.37 km²) is<br />

characterized by an unstructured mesh consisting of approx. 11,600 nodes which are either<br />

based on high resolution LiDAR data (floodplain) or bathymetric survey data (water courses).<br />

Summarizing, the alluvial fan features a mean gradient of 0.1 m/m and the channel is<br />

constructed as a lined trench with a sequence of small check dams (artificial steps) which<br />

prevents from channel bed erosion. The flow section of the artificial channel has a base and<br />

top width of approx. 5 m and 6 m and is on average 3 m deep. In contrast, the gradient of the<br />

receiving mountain stream is only 0.008 m/m and features a trapezoidal cross section with an<br />

average bed and top width of 16 m and 26 m, respectively. Although the geometrics of the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 321


channels and the floodplain are of high resolution, local structures crossing the channels<br />

(bridges) could not be considered. Hence, the model does not enable to simulate clogging of<br />

bridge cross sections with sediment due to pressurized flow, which had been observed during<br />

the prototype event (Gems et al., 2014).<br />

Except for the artificial steps and walls of the tributary channel, the water course of both, the<br />

Schnannerbach Torrent (tributary channel) and the Rosanna River (receiving mountain<br />

stream), was chosen to be mobile, allowing for river bed erosion. In addition, deposition and<br />

remobilization of bedload is considered within the entire computational domain.<br />

Parameter Settings<br />

The BASEMENT software simulates flow hydraulics by solving the shallow water equations<br />

that are commonly used to model a wide variety of physical phenomena (Vetsch et al., 2015).<br />

Next to the assumptions of a hydrostatic pressure distribution and steady-state resistance<br />

laws, this approach is only valid in case of small channel slopes (θ), with cos(θ)~1. The alluvial<br />

fan features a mean slope of 0.1 m/m, but the error is assumed to insignificantly influence the<br />

outcomes of this study. However, hydraulics in the overall steep and artificially stepped<br />

Schnannerbach Torrent are highly non uniform, with a permanent transition of super- and<br />

subcritical flow. Hence, solving the governing shallow water equations numerically might<br />

generate instabilities due to problems in convergence. In order to minimize these error<br />

sources, emphasis was put on (i) the specifications of parameters at the hydraulic boundaries<br />

(e.g. friction slope, weighting type) which were defined carefully by trial and error and (ii) a<br />

regularly distributed computation mesh consisting of triangular elements on the channel bed.<br />

As recommended by Vetsch et al. (2015), the element size was small in regions of abrupt<br />

changes in flow conditions, while it was coarse on the alluvial fan and the floodplain.<br />

Sensitivity tests confirmed the importance of these issues.<br />

A variety of flow resistance equations are available in BASEMENT. In this study, the approach<br />

of Manning-Strickler is used with spatially variable but temporally constant roughness scales<br />

(Strickler coefficients) of 23 m 0.33 s -1 for the channel bed of the Schnannerbach and 30 m 0.33 s -1<br />

for the Rosanna River. Thus, the friction attributed to the river bed does not differ in case the<br />

formerly bed surface is covered by deposited bedload, but its impact on flow hydraulics is<br />

assessed by changes of geometric patterns (e.g. the burial of the artificial steps causes the<br />

longitudinal profile to smooth).<br />

Bedload transport is calculated according the Meyer-Peter and Mueller (1949) equation<br />

which is extended to a fractionized approach in BASEMENT (Vetsch et al., 2015).<br />

The mobility of single grain sizes is determined by the hiding function that assumes equal<br />

mobility of all fractions finer than the D40 (grain size for which 40 % are finer by weight)<br />

and size selective mobility for coarser ones. Therefore, the grain size distributions were<br />

determined separately regarding both, the source (bed sediment and bedload) and the stream<br />

(Schnannerbach torrent and Rosanna River).<br />

In steep mountain streams, only a fraction of total shear stress is available for bedload<br />

transport. The form and spill drag around macro roughness elements, which are typically<br />

322 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


present in steep streams, act as momentum sinks. However, there is no approach available in<br />

the simulation tool BASEMENT to account for momentum losses due to macro roughness<br />

elements. But the artificial steps of the tributary channel (Figure 1) have a similar effect on<br />

the shear stress. While the energy gradient (and hence the shear stress) is very large at a<br />

certain step, it is comparatively small along the mobile channel between two steps. Hence,<br />

form resistance is assumed to be adequately reproduced by the high resolution of the channel<br />

geometrics only, rather than by additional, empirical equations.<br />

Next to the bedload transport that originates due to flow hydraulics, BASEMENT provides an<br />

option to account for gravitational transport, which is primarily attributed to river bank<br />

failures. However, gravitational induced relocations of sediment might also appear during the<br />

formation of large deposit cones due to slope failures or shallow landslides on the downwards<br />

facing slopes (Zollinger, 1983). In order to activate gravitational transport in BASEMENT,<br />

three critical failure angles must be defined beforehand. These distinguish for dry or wetted<br />

embankments or deposited sediment and are set to 35 °, 20° and 10°, respectively.<br />

RESULTS<br />

Basically, the results of numerical simulations reveal the capability of a 2d hydrodynamic<br />

modelling tool to accurately reproduce field and laboratory observations (Figure 2). However,<br />

there are still some areas where modelling results do not correspond to the aerial photograph.<br />

For instance the areal extent of overbank sedimentation on the alluvial fan is too small<br />

(Figure 2a), while deposit heights are generally too large when compared to the event<br />

reconstruction of Hübl et al. (2006). The cause of these differences is mainly attributed to<br />

local structures (e.g. walls, railings, etc.) that are insufficiently included in the model. In this<br />

respect, overbank flow might had been laterally confined by these structures and thus, the<br />

flow’s competence to transport sediment was higher than calculated. Additionally, numerical<br />

simulations insufficiently reproduce the overbank sedimentation of the Rosanna River<br />

(Figure 2a), although all except of the most upstream part is flooded with water (Figure 2b).<br />

Probably, these sedimentations refer to suspended load which is not accounted for in the<br />

numerical simulations.<br />

Despite these uncertainties, the failure mechanisms can be assessed in more detail and the<br />

results enable an event history analysis regarding the processes of bedload aggradation and<br />

their feedback on hydraulics and flood risk.<br />

Within the first few hours of the event, artificial steps in the tributary channel were filled up<br />

and thus, the longitudinal profile was smoothed which minimizes form resistance and<br />

maximizes flow competence to transport bedload (Figure 3a and 3b). However, the bedload<br />

that passed the tributary channel initially accumulated in the confluence zone (Figures 3b<br />

and 3c). There, an abrupt change in bed gradient from 0.07 m/m at the lowermost reach on<br />

the alluvial fan to less than 0.01 m/m in the Rosanna River appears. Despite the fact, that<br />

water discharge in the receiving stream is almost 7 times larger, transport capacity is less than<br />

in the small Schnannerbach channel.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 323


Figure 2: a) Magnitudes of deposition and erosion after the torrential hazard event (at the end of the simulation) and b) maximum flow<br />

depth of each node. The aerial photo (© Bundesamt für Eich- und Vermessungswesen) in the background of the figures shows the study<br />

area a few days after the extreme event (see also Figure 1 and Hübl et al., 2006).<br />

Figure 3: Evolution of the bed level in the lowermost reach of the tributary channel at certain times (a-d) during the case study event<br />

Consequently, the entering bedload forms a deposit cone. Thereby, the level of the cone’s<br />

crest defines the downstream base level of the tributary channel which contributes to a<br />

decrease of slope with growing bedload accumulation in the confluence zone (Figure 3c).<br />

324 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


By that, the transport capacity decreases as well, resulting in severe channel bed aggradation<br />

(Figure 3d). Hence, bedload accumulation successively propagates against the flow direction<br />

of the tributary channel and the channel’s flow capacity decreases until it is insufficient to<br />

cope with the discharge from the tributary catchment. Due to overbank flooding on the<br />

alluvial fan, the channel’s transport capacity rapidly decreases once more with most of the<br />

entering sediment depositing on the alluvial fan. In addition, modelling results further<br />

highlight the impact on flow hydraulics in the upstream reach of the receiving stream.<br />

Backwater effects caused a dramatic increase of the water level which was accompanied with<br />

the flooding of agricultural areas nearby the receiving stream (Figure 2b).<br />

According to the boundary condition in the Schnannerbach Torrent (Figure 1), the sediment<br />

load diminished after about 14 hours (Figure 1). As a consequence, the water cuts into the<br />

sediment filled channel by remobilizing the accumulated bedload. Corresponding to eye<br />

witness observations of the event in August 2005, the lined trench of the tributary channel is<br />

almost free from sediment at the end of the simulation. It is worth to note that channel<br />

incision propagates forward, starting at the upstream end and thus, differs from aggradation.<br />

However, there remain large sediment accumulations on the alluvial fan and in the confluence<br />

zone (Figure 2).<br />

Although the transport capacity of the receiving stream is far less than the sediment input<br />

from the tributary catchment, a significant amount of bedload is transported further<br />

downstream during the event. According to the numerical simulations, this is accompanied<br />

Figure 4: Time series of a) bedload transport rate and b) accumulated bedload transport (volumes refer to solid volumes) at certain<br />

locations in the receiving Rosanna River<br />

with an obvious river bed aggradation downstream of the confluence zone leading to a<br />

reduction of flow capacity, followed by overbank flooding and sedimentation. According to<br />

Gems et al. (2014) about 15,400 m³ of bedload passed the downstream end of their physical<br />

scale model (120 m downstream of the confluence zone) within the first 10.5 hours of the<br />

event that properly matches with the simulation results (11,700 m³; Figure 4). In total, a<br />

considerable fraction (approx. 25,000 m³) of the entire sediment pulse that originated from<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 325


the tributary channel (59,000 m³ according to Gems et al., 2014) is remobilized at the<br />

confluence zone during the event. But the propagation distance is limited to a few hundred<br />

meters (Figure 4) with severe river bed aggradation and overbank flooding in this region<br />

(Figure 2).<br />

CONCLUSION<br />

The application of a 2d hydrodynamic simulation tool is suitable to reproduce the complex<br />

interactions of bed morphology (aggradation / incision) and flow hydraulics present at a river<br />

confluence zone during an exceptional event in the tributary catchment. It is worth to note<br />

that simulation results properly matched with observations although most parameters<br />

referred to their default values.<br />

Results reveal that the magnitude of bedload accumulation in the confluence zone majorly<br />

controls channel bed aggradation and overbank flooding in both, the tributary and the<br />

receiving stream; at least in this case study event. In terms of modelling, the growing rate of<br />

the deposit cone strongly depends on the angle of response of the deposited bedload, which<br />

was defined by 10°. However, there is a lack of knowledge regarding this parameter and thus,<br />

more emphasis is needed to evaluate the performance of 2d hydrodynamic modelling under<br />

different geometric configurations.<br />

LITERATUR<br />

- BASEMENT – Basic Simulation Environment for Computations of Environmental Flow and<br />

Natural Hazard Simulation. Version 2.5. ©ETH Zurich, VAW, Vetsch, D., Siviglia A., Ehrbar D.,<br />

Facchini M., Gerber M., Kammerer S., Peter S., Vonwiller L., Volz C., Farshi D., Mueller, R.<br />

Rousselot P., Veprek R., Faeh R., 2006-2015.<br />

- Chiari M. 2008. Numerical modelling of bedload transport in torrents and mountain streams.<br />

PhD Thesis at the University of Natural Resources and Applied Life Sciences (BOKU), Vienna.<br />

Gems B., Sturm M., Vogl A., Weber C., Aufleger M. 2014. Analysis of damage causing hazard<br />

processes on a torrent fan – scale model tests of the Schnannerbach Torrent channel and its<br />

entry to the receiving water. Digital Proceedings of the Interpraevent 2014 in the Pacific Rim,<br />

Nara.<br />

- Hübl, J., Ganahl, E., Bacher, M., Chiari, M., Holub, M., Kaitna, R., Prokop, A., Dunwoody,<br />

G., Forster, A., Schneidenbauer, S., 2006. Dokumentation der Wildbachereignisse vom 22./23.<br />

August 2005 in Tirol, Band 2: Detaillierte Aufnahme (5W+ Standard); IAN Report 109 Band 2,<br />

Institute of Natural Hazards, University of Resources and Life Sciences Wien.<br />

- Vetsch D., Siviglia A., Ehrbar D., Facchini M., Gerber M., Kammerer S., Peter S., Vonwiller L.,<br />

Volz C., Farshi D., Mueller, R. Rousselot P., Veprek R., Faeh R. 2015. System Manuals of<br />

BASEMENT, Version 2.5. Laboratory of Hydraulics, Glaciology and Hydrology (VAW),<br />

ETH Zurich.<br />

- Zollinger, F. 1983. Die Vorgänge in einem Geschiebeablagerungsplatz: ihre Morphologie und<br />

die Möglichkeiten einer Steuerung, PhD Thesis, ETH Zurich, No. 7419, 265 p (in German).<br />

326 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Analysis and classification of bedload transport events<br />

with variable process characteristics<br />

Analyse und Klassifikation von Geschiebetransportereignissen<br />

mit unterschiedlichen Prozesscharakter<br />

istika<br />

Andrea Kreisler 1 ; Markus Moser²; Johann Aigner³; Rolf Rindler³; Michael Tritthart³; Helmut Habersack³<br />

ABSTRACT<br />

In Salzburg/Austria an integrative monitoring system has been installed in the year 2011,<br />

which combines direct (mobile basket sampler, bedload trap) and indirect (geophone plates)<br />

measuring devices. Comprehensive results have been achieved in the monitoring period.<br />

The application of a geophone device enables the permanent recording of the intensity and<br />

distribution of bedload transport within the channel cross-section in high spatial and<br />

temporal resolution. The calibration of the geophone data is performed using results of direct<br />

bedload measurements and gives us the opportunity to calculate bedload rates and bedload<br />

yields in selected time periods. This work presents various bedload transport events at the<br />

Urslau stream and offers insights concerning measured bedload rates and bedload yields.<br />

The assessment of the monitoring data further shows that sediment availabilty is a determining<br />

factor for prevalent bedload fluxes at the Urslau stream.<br />

ZUSAMMENFASSUNG<br />

In Salzburg/Österreich wurde 2011 ein integratives Monitoringsystem installiert, bei dem<br />

direkte (mobiler Geschiebefänger, Geschiebefalle) und indirekte (Geophonanlage) Messgeräte<br />

kombiniert werden. Umfassende Ergebnisse konnten im Monitoringzeitraum gewonnen<br />

werden. Durch den Einsatz der Geophone wird die Intensität und Verteilung des Geschiebetransportes<br />

im Bachquerschnitt in hoher räumlicher und zeitlicher Auflösung erfasst.<br />

Die Kalibrierung der Geophondaten erfolgt über die Ergebnisse der direkten Geschiebemessungen<br />

und ermöglicht uns die Berechnung von Geschiebetransportraten und –frachten<br />

in beliebigen Zeiträumen. Diese Arbeit präsentiert unterschiedliche Geschiebetransportereignisse<br />

an der Urslau und zeigt Ergebnisse über gemessene Transportraten und Geschiebefrachten<br />

auf. Die Analyse der Monitoringergebnisse hat weiters ergeben, dass die Sedimentverfügbarkeit<br />

einen entscheidenden Einfluss auf vorherrschende Geschiebetransportraten<br />

an der Urslau hat.<br />

1 Universität für Bodenkultur, Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau, Vienna, Österreich,<br />

andrea.kreisler@boku.ac.at<br />

2 Wildbach- und Lawinenverbauung, Österreich<br />

3 Universität für Bodenkultur, Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau, Vienna, Österreich<br />

IP_<strong>2016</strong>_FP020<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 327


KEYWORDS<br />

bedload transport; integrative monitoring system; bedload transport events<br />

EINFÜHRUNG<br />

Die Bedeutung eines umfangreichen Geschiebemonitorings für Wissenschaft und Praxis,<br />

durch welches Geschiebetransportraten, -frachten und Korngrößen gewonnen werden<br />

können, ist unumstritten. Die Messung des Transportprozesses ist oftmals herausfordernd,<br />

wird jedoch vermehrt von unterschiedlichen Einrichtungen betrieben (z.B. Bunte et al.,<br />

2004, Garcia et al., 2000, Habersack et al., 2001, Lenzi et al., 2004, Rickenmann et al., 2012).<br />

Naturmessdaten des Geschiebetransportes zeigen häufig eine hohe zeitliche und räumliche<br />

Variabilität auf, wodurch eine starke Streuung der Geschiebetransportraten bei vergleichbaren<br />

hydraulisches Bedingungen beobachtet werden kann (Habersack et al., 2008, Mao et<br />

al.,2014, Turowski et al., 2009). Wir präsentieren in dieser Arbeit das integrative Geschiebemesssystem,<br />

durch welches seit 2011 kontinuierliche Daten des Geschiebetransportprozesses<br />

an der Urslau gewonnen werden. Die Messstation wurde vom Institut für Wasserwirtschaft,<br />

Hydrologie und konstruktiven Wasserbau / Universität für Bodenkultur Wien in enger<br />

Zusammenarbeit mit der Wildbach- und Lawinenverbauung in Salzburg errichtet. Es werden<br />

in dieser Arbeit Geschiebefrachten und Transportraten von unterschiedlichen Ereignistypen<br />

angegeben. Die Auswertung der Daten zeigt unterschiedliche Geschiebetransportraten je nach<br />

Ereignistyp und Abflussmenge. Es wird dargestellt, dass die Geschiebeverfügbarkeit einen<br />

großen Einfluss auf aktuelle Transportraten hat.<br />

PROJEKTGEBIET<br />

Das Projektgebiet befindet sich in Salzburg/Österreich, nahe Maria Alm (Abb.1a). Die Urslau<br />

entspringt zwischen dem Hochkönig und dem Steinernen Meer (Abb.1b) und mündet nach<br />

18,8km Lauflänge in die Saalach. Das mittlere Gefälle ist 4% und die Größe des Einzugsgebietes<br />

beträgt 122 km². Am Pegel Saalfelden beträgt der Mittelwasserdurchfluss (MQ) 4,71 m³/s<br />

(Hydrografisches Jahrbuch 2012, Reihe 1951-2011). Am Unterlauf der Urslau, rund 7.5 km<br />

flussauf der Mündung in die Saalach, wurde im Jahr 2011 eine Geschiebemessstation<br />

errichtet (Abb.1c). Hier ist die Bachbreite 8m. Die charakteristische Korngröße D50 des<br />

Sohlsubstrats ist 0,05 m und D84 ist 0,09 m.<br />

328 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 1: (a) geografische Übersicht; (b) Aufnahme des Entstehungsgebiets; (c) Fotografie der Messstation; (d) Geschiebefalle und<br />

Geophonanlage; (e) Behälter Geschiebefalle; (f) Fangkorb<br />

GESCHIEBEMONITORING<br />

An der Station kommt ein Integratives Geschiebemesssystem zum Einsatz, in welchem<br />

direkte (mobiler Geschiebefänger, Geschiebefalle) und indirekte (Geophone) Messmethoden<br />

kombiniert werden. Im Folgenden wird ein Überblick über die Messgeräte gegeben, genauere<br />

Informationen werden in Kreisler et al. (in Bearbeitung) zur Verfügung gestellt. In Habersack<br />

et al. (in Bearbeitung) werden detaillierte technische Informationen und Anwendungsmöglichkeiten<br />

präsentiert.<br />

Das Konzept des Geschiebefängers (Abb. 1f) basiert auf den mobilen Geschiebefallen, welche<br />

in Bunte et al. (2004) präsentiert werden. Geschiebemessungen werden mit Hilfe eines<br />

Kranwagens durchgeführt. Die Messung mit dem Fangkorb ist auf niedrige Durchflüsse<br />

beschränkt. In höheren Durchflussbereichen wird die Geschiebefalle eingesetzt (Abb. 1d und<br />

1e). Die Geschiebefalle ist in der Mitte des Profils in der Sohle eingebaut. Im Ereignisfall kann<br />

ein Messschlitz über einen Hydraulikmechanismus geöffnet werden und das Geschiebe fällt in<br />

einen Sammelbehälter, der auf Wägezellen gelagert ist. Über die automatisch aufgezeichnete<br />

Massenzunahme wird der Geschiebetrieb erfasst. Durch den Einsatz der direkten Messgeräte<br />

kann der Geschiebetransport im gesamten Profil und die Korngrößen erfasst werden.<br />

Zusätzlich ist der Einsatz der direkten Messgeräte erforderlich, um die Geophone zu kalibrieren.<br />

Flussauf der Geschiebefalle sind sieben Geophone, die an Stahlplatten montiert sind,<br />

regelmäßig über den Querschnitt verteilt eingebaut (Abb.1d). Geschiebepartikel, die über die<br />

Platte transportiert werden, erzeugen Vibrationen, die vom Geophon registriert werden.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 329


Dieses Signal wird in ein elektrisches Spannungssignal transformiert und von einem Computersystem<br />

weiterverarbeitet. Bei der Verarbeitung des Rohdatensignals werden über eine<br />

Software unter anderem jede Minute die Anzahl der Impulse (Überschreiten eines Schwellenwertes<br />

von 0,1 Volt) aufgezeichnet. Durch diese automatisierte Messmethode wird der<br />

Geschiebetransport sowohl über den gesamten Querschnitt als auch zeitlich kontinuierlich<br />

(Minutenwerte) aufgezeichnet.<br />

Die Kalibrierung der Geophone, und damit die Möglichkeit die registrierten Geophonimpulse<br />

in Massen des transportierten Geschiebes umzurechnen, erfolgt durch eine Gegenüberstellung<br />

der Ergebnisse der direkten Messmethoden und der aufgezeichneten Geophonimpulse.<br />

Geophonimpulse werden nur von Geschiebekörnern größer als 10-20mm ausgelöst (Rickenmann<br />

et al., 2012). Daher wird für die Erstellung der Kalibrierungsfunktion nur Geschiebematerial<br />

>10mm berücksichtigt. Daraus folgt, dass berechnete Geschiebetransportraten und<br />

–frachten sich nur auf Geschiebematerial >10mm beziehen. In Kreisler et al. (in Bearbeitung)<br />

wird die Kalibrierungsfunktion präsentiert. Es wird gezeigt, dass ein linearer Zusammenhang<br />

zwischen dem gemessenen Geschiebetrieb und den registrierten Geophonimpulsen besteht<br />

und mit der in Formel 1 angegebenen Funktion beschrieben werden kann:<br />

Formel 1: Kalibrierungsfunktion nach Kreisler et al. (in Bearbeitung)<br />

wobei IMP den Mittelwert der registrierten Geophonimpulse im Messzeitraum [imp m -1 s -1 ]<br />

und qb den direkt gemessenen Geschiebetrieb D>10mm [kgm -1 s -1 ] bezeichnet.<br />

DATENGRUNDLAGE<br />

Die Auswertung der hier präsentierten Analyse umfasst die Messdaten des Jahres 2012.<br />

Es werden basierend auf 15 min Mittelwerten der Geophonimpulse Geschiebetransportraten<br />

und -frachten über die Kalibrierungsfunktion in Formel 1 berechnet. Die Durchflussdaten<br />

werden in 15 min Intervallen vom hydrografischen Dienst bezogen. Niederschlags- und<br />

Temperaturdaten werden von der Messstation 11137 in Maria Alm von der Zentralanstalt<br />

für Meteorologie und Geodynamik zur Verfügung gestellt.<br />

GESCHIEBETRANSPORTEFFIZIENZ<br />

Neben der Ermittlung von Geschiebetransportraten und Frachten kann durch die kontinuierliche<br />

Erfassung des Transportprozesses auch der Zusammenhang zwischen Geschiebetransport<br />

und Durchfluss untersucht werden. Wir haben in der Monitoringperiode beobachtet, dass die<br />

Beziehung zwischen Geschiebetransport und Durchfluss bei den unterschiedlichen Ereignissen<br />

verschieden ist. Um diesen Zusammenhang darzustellen, wurde für alle analysierten<br />

Geschiebetransportereignisse die Geschiebetransporteffizienz (in Folge mit ep bezeichnet)<br />

berechnet. Diese wird in Bagnold (1966) als Verhältnis zwischen „bedload work rate“ und<br />

„stream power“ definiert und berechnet sich wie folgt:<br />

330 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Formel 2: Geschiebetransporteffizienz ep nach Bagnold (1966)<br />

wobei ib die Geschiebetransportrate unter Wasser darstellt: i b =q v g(ρ s -ρ) mit q v – volumetrische<br />

spezifische Geschiebetransportrate, g – Erdbeschleunigung, ρ s – Feststoffdichte, q – Fluiddichte.<br />

In Formel 2 ist ω - stream power mit ω = ρgqS, worin q – spezifischer Durchfluss und<br />

S – Gefälle. Tan α ist der Reibungswinkel und wurde, wie in Recking (2012) vorgeschlagen,<br />

in dieser Analyse mit α = 52° gewählt. Prinzipiell stellt e p das Verhältnis aus transportiertem<br />

Geschiebematerial und hydraulischen Verhältnissen dar und spiegelt im Zuge dieser Analyse<br />

die Intensität eines Ereignisses wieder.<br />

ERGEBNISSE<br />

Abbildung 2a zeigt die Ganglinie der Tagesmittelwerte des Geschiebetransportes und des<br />

Durchflusses des Jahres 2012 an der Urslau. Zusätzlich sind die Tagesssummen des Niederschlags<br />

und die Monatsmittelwerte der Temperatur an der Station 11137 in Maria Alm<br />

(Daten der Zentralanstalt für Meteorologie und Geodynamik) abgebildet. Für die folgende<br />

Analyse werden drei Bereiche (B1-B3) der Ganglinie herausgehoben.<br />

Bei Bereich B1 handelt es sich um die Schneeschmelzperiode. Die Niederschlagssummen sind<br />

verglichen mit den Sommermonaten gering und die Tagesmittelwerte des Durchflusses hoch.<br />

Die Ganglinie in Abbildung 2a veranschaulicht sehr gut, dass in dieser Schneeschmelzperiode<br />

die höchsten Tagesmittelwerte des Durchflusses vorherrschten. Ein exemplarischer Bereich<br />

(3 Tage) der Schneeschmelzperiode ist detailliert (15 min Mittelwerte) in Abbildung 2b<br />

dargestellt. Ein deutlicher Tagesgang der beiden Messwerte ist ersichtlich. Für die weitere<br />

Analyse wurde der Bereich B1 in Teilereignisse gegliedert. Diese Gliederung erfolgte nach<br />

hydrologischen Verhältnissen (Durchflussspitzen). Insgesamt umfasst Bereich B1 10 Teilereignisse,<br />

wobei davon TE2, TE3 und TE4 in Abbildung 2b dargestellt sind.<br />

Der zweite Bereich B2 umfasst ein lang andauerndes Geschiebetransportereignis im Sommer.<br />

Der Anfang des Ereignisses ist in 15 Minuten Auflösung in Abbildung 2b dargestellt.<br />

Bei diesem Ereignis wurde über einen Zeitraum von ungefähr 40 Tagen kontinuierlich<br />

Geschiebetransport erfasst. Dieser Bereich B2 wurde im Zuge der folgenden Analyse in<br />

10 Teilereignisse geteilt.<br />

Auf das langandauernde Geschiebeereignis (Bereich B2) folgen im Jahr 2012 7 weitere<br />

kleinere Ereignisse. Diese Folgeereignisse werden im Bereich B3 zusammengefasst. Das<br />

höchste dieser Folgeereignisse trat in der Nacht vom 23.08.2012 auf den 24.08.2012 auf und<br />

dauerte nur 10 Stunden. Abbildung 2b zeigt dieses Ereignis. Die Geschiebefracht des Bereichs<br />

B1 (Schneeschmelze) liegt bei 6500 t (27.04.12-06.05.12). Die mittlere Fracht von den Teilereignissen<br />

ist 450 t. Die mittlere Geschiebetransportrate von B1 beträgt 4.5 kgs -1 . Im Zuge<br />

des in Bereich B2 dargestellten Ereignisses wurde in einem Zeitraum von 40 Tagen eine<br />

Geschiebefracht von ca. 19800 t transportiert. In diesem Zeitraum betrug die mittlere Transportrate<br />

5.8 kgs -1 . Die Geschiebefracht des Ereignisses, welches in Abbildung 3c dargestellt ist,<br />

beträgt 274 t. Hierbei wurde ein maximaler Geschiebetransport von 63 kgs -1 gemessen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 331


Abbildung 2: (a) Jahresganglinie von Durchfluss, Geschiebetransportrate, Niederschlagssumme und Temperatur; (b) ausgewählte<br />

Ereignisse<br />

Wie im Kapitel „Geschiebetransporteffizienz“ beschrieben, wurde für die analysierten Ereignisse<br />

der Wert e p nach Bagnold (1966) (Formel 2) berechnet und in Abbildung 3a aufgetragen.<br />

In Abbildung 3b werden jeweils die Mittelwerte des Geschiebetransportes und des<br />

Durchflusses der jeweiligen Teilereignisse dargestellt. Es zeigt sich in dieser Auswertung, dass<br />

der mittlere Durchfluss im Zeitraum der Schneeschmelze vergleichbar hoch ist. Die Abbildung<br />

veranschaulicht weiter, dass unter den analysierten Ereignissen die mittleren Geschiebetransportraten<br />

von TE1 und TE2 in Bereich 2 am größten waren. Es ist auffallend, dass bei TE10<br />

am Ende des Bereichs B2 der mittlere Geschiebetransport abnimmt, obwohl der Durchfluss,<br />

im Vergleich zu den vorherigen Werten, relativ konstant bleibt. Selbiges gilt für die Teilereignisse<br />

in Bereich B3. Der mittlere Durchfluss variiert hier zwischen 3.9 und 5.6 m 3 s -1 , jedoch<br />

nimmt die mittlere transportierte Geschieberate ab. Diese Beobachtung wird auch durch die<br />

Ergebnisse für e p in Abbildung 3a bestätigt. Hier werden die berechneten Werte e p pro<br />

Teilereignis in einem Box-Plot Diagramm dargestellt. Berechnete e p Ergebnisse für die<br />

Teilereignisse ‚TE1 und TE2 in Bereich 2 sind im Vergleich zu den anderen Werten sehr hoch,<br />

332 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


woraus die Autoren in diesem Teilbereich auf intensiven Geschiebetransport schließen. Von<br />

TE3 bis TE9 (Bereich 2) liegen die Werte in der gleichen Größenordnung und werden erst<br />

bei dem Teilereignis TE10 (Bereich 2) niedriger, da bei vergleichbaren Durchflussraten ein<br />

geringerer Geschiebetransport registriert wurde. Die Werte für e p der Ereignisse in Bereich 3<br />

liegen in derselben Größenordnung wie Ereignis TE10 (Bereich B2). Es zeigt sich in Abbildung<br />

2 deutlich, dass die Beziehung zwischen Geschiebetransport und Durchfluss bei den<br />

unterschiedlichen Ereignissen nicht konstant ist. Wir interpretieren für die hier dargestellten<br />

Ereignisse, dass während der Durchflussspitze von Bereich 2 (TE1 und TE2) viel Geschiebematerial<br />

mobilisiert und im weiteren Verlauf des Ereignisses transportiert wurde. Erst im<br />

Teilereignis TE10 kommt es zu einer verminderten Geschiebeverfügbarkeit und dadurch zu<br />

einem geringeren Wert von e p für die folgenden Ereignisse. Im Zeitraum der Schneeschmelze<br />

konnten sehr hohe Durchflussraten beobachtet werden, jedoch vergleichbar moderate<br />

Geschiebetransportraten. Die berechneten e p Werte liegen im Bereich der Teilereignisse von<br />

Bereich 3. Wir folgern daraus, dass im Zeitraum der Schneeschmelze die lang anhaltenden<br />

hohen Abflüsse zu einem Ausräumen des Gerinnes und damit reduziertem Geschiebedargebot<br />

an der Gewässersohle geführt haben und durch die bestehende Schneedecke der<br />

Geschiebeeintrag aus dem Einzugsgebiet eingeschränkt war. Zusätzlich fehlen dem Abflussprozess,<br />

der in diesem Zeitraum durch kontinuierliche hohe Werte charakerisiert ist, intensive<br />

und rasch ansteigende Durchflussspitzen. Verminderte Geschiebetransportraten in der<br />

Schnee schmelzperiode bei vergleichbaren Durchflusswerten wurden unter anderem von Mao<br />

et al., 2014 und Rickenmann et al., 1998 beobachtet.<br />

Abbildung 3: (a) Berechnete Geschiebetransporteffizienz; (b) Mittlerer Geschiebetransport und Durchfluss für die ausgewählten<br />

Teilereignisse.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 333


FAZIT<br />

Durch den Einsatz des integrativen Geschiebemesssystems an der Urslau können wichtige<br />

Messdaten über den Geschiebetransport in einem Wildbachunterlauf gewonnen werden.<br />

Durch das langjährige Monitoring konnte eine Kalibrierungsfunktion für die Geophone<br />

erstellt werden. Es wird somit ermöglicht, aus den kontinuierlichen und automatisch<br />

erfassten Geophondaten Geschiebetransportraten und -frachten in beliebigen Zeiträumen zu<br />

ermitteln. In dieser Arbeit werden die Daten eines Messjahres präsentiert, und es werden<br />

Geschiebefachten und Transportraten von ausgewählten Ereignissen an der Urslau angegeben.<br />

Diese Werte sind nicht nur für wildbachtechnische Fragestellungen in der Praxis wichtig,<br />

sondern ermöglichen auch ein erweitertes Prozessverständnis und bilden die Basis für die<br />

Kalibrierung und Weiterentwicklung von Transportformeln sowie numerischen Feststofftransportmodellen.<br />

Wir haben in dieser Arbeit dargestellt, dass an der Urslau hinsichtlich des<br />

Geschiebetransportverhaltens unterschiedliche Ereignisse auftreten. Es zeigt sich, dass die<br />

Beziehung zwischen Durchfluss und Geschiebetransport bei den unterschiedlichen Ereignissen<br />

nicht konstant ist. Schmelzbedingte Ereignisse liefern andere Transportraten als Ereignisse<br />

die durch Niederschlag bedingt sind. Bei langandauernden Ereignissen und Folgeereignissen<br />

konnten wir eine Abnahme des Geschiebetransportes bei vergleichbaren hydraulischen<br />

Verhältnissen beobachten. Die Vorgeschichte dieser Folgeereignisse führte zu einem „Ausräumen“<br />

des leicht mobilisierbaren Materials an der Sohle und den Erosionsquellen am Ufer.<br />

Auch die Ausbildung einer Deckschicht wird von den Autoren angenommen. Wir folgern auf<br />

Basis des hier dargestellten Messjahres, dass an der Urslau unterschiedliche Geschiebeverfügbarkeiten<br />

und die Vorgeschichte eines Ereignisses den vorherrschenden Geschiebetransport<br />

beeinflussen.<br />

LITERATUR<br />

- Bagnold R. A. (1966): An approach to the sediment transport problem from general<br />

pyhsics, Geological survey Professional Paper. Washington.<br />

- Bunte K., Abt S., Potyondy J., Ryan S. (2004): Measurement of Coarse Gravel and Cobble<br />

Transport Using Portable Bedload Traps, in: Journal of Hydraulic Engineering, 130, S.<br />

879-893.<br />

- Garcia C., Larone J.B., Sala, M. (2000): Continuous monitoring of bedload flux in a<br />

mountain gravel-bed river, in: Geomorphology, 34, S. 23-31.<br />

- Habersack H., Kreisler A., Aigner J., Rindler R., Seitz H., Liedermann, M. (in Bearbeitung).<br />

Integrative automatic bedload transport monitoring<br />

- Habersack H., Nachtnebel P., Laronne J. (2001): The continuous measurement of bedload<br />

discharge in a large alpine gravel bed river, in: Journal of Hydraulic Research, 39, S. 125-133.<br />

- Habersack H., Seitz H., Laronne J. (2008): Spatio-temporal variability of bedload transport<br />

rate: Analysis and 2D modelling approach, in: Geodinamica Acta, 21, S. 67-79.<br />

- Kreisler A., Moser M., Aigner J., Rindler R., Tritthart M., Habersack H. (in Bearbeitung):<br />

Analysis and classification of bedload transport events with variable process characteristics<br />

334 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Lenzi M. A., Mao L., Comiti F. (2004). Magnitude-frequency analysis of bed load data in an<br />

Alpine boulder bed stream, in: Water Resources Research, 40, W07201.<br />

- Mao L., Dell'Agnese A., Huincache C., Penna D., Engel M., Niedrist G., Comiti F. (2014).<br />

Bedload hysteresis in a glacier-fed mountain river, in: Earth Surface Processes and Landforms,<br />

39, S. 964-976.<br />

- Recking A. (2012). Influence of sediment supply on mountain streams bedload transport,<br />

in: Geomorphology, 175–176, S. 139-150.<br />

- Rickenmann D., D’Agostino V., Fontanta G., Lenzi M., Marchi L. (1998). New results from<br />

sediment transport measurements in two Alpine torrents. IAHS Publication no. 248,<br />

S.283-289.<br />

- Rickenmann D., Turowski J. M., Bruno F., Angela K., Andreas L. (2012). Bedload transport<br />

measurements at the Erlenbach stream with geophones and automated basket samplers, in:<br />

Earth Surface Processes and Landforms.<br />

- Turowski J. M., Yager E. M., Badoux A., Rickenmann D., Molnar P. (2009). The impact of<br />

exceptional events on erosion, bedload transport and channel stability in a step-pool channel,<br />

in: Earth Surface Processes and Landforms, 34, S. 1661-1673.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 335


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Integration of remote and terrestrial monitoring data<br />

for analysing alpine geomorphic processes – examples<br />

from Switzerland and Italy<br />

Volkmar Mair, Ph.D. 1 ; David Mosna, MSc 1 ; Robert Kenner, Ph.D 2 ; Giulia Chinellato, MSc 3 ; Marcia Phillips, Ph.D 2 ;<br />

Claudia Strada, Ph.D 1 ; Benni Thiebes, Ph.D. 3<br />

ABSTRACT<br />

Radar satellite systems represent a viable solution for monitoring geomorphic processes and<br />

slope instabilities in alpine environments as they cover large areas and have a sufficient<br />

spatial and temporal resolution. In this paper, we present some results of the Interreg project<br />

SloMove that focused on monitoring slow mass movements in high alpine areas using<br />

terrestrial and remote sensing techniques. We found that DInSAR is well suited for monitoring<br />

of geomorphic processes if the test sites are carefully selected, matching the geographical<br />

situation of the slope with the geometric conditions of the satellites. Movement trends and<br />

areas of increased activity can then be identified with high reliability. However, satellite<br />

remote sensing needs to be supported by terrestrial measurements, particularly in the case<br />

where the results aim for supporting civil protection purposes. The validation with groundbased<br />

methods, in our case DGNSS and TLS, showed that the magnitude of displacement<br />

cannot be assessed with the same accuracy and that punctual data represent good reference<br />

points for comparisons of the different measurement techniques.<br />

KEYWORDS<br />

InSAR; GNSS; TLS; rock glaciers; monitoring<br />

INTRODUCTION<br />

Over the last ten years, space-borne methods have become more frequently applied for the<br />

monitoring of landslides, rockslides and active rock glaciers. Differential interferometric<br />

synthetic aperture radar (DInSAR) has particularly gained in popularity due to its ability to<br />

detect and monitor ground displacements along the line of sight with very high accuracy (in<br />

the range of cm to mm). The main benefit of DInSAR is its possibility to investigate large<br />

areas at relatively low costs by analysing the phase differences from sets of SAR images.<br />

Several examples of SAR applications to geomorphic processes have been presented recently,<br />

e.g. for landslides and rock glaciers (Calò et al., 2014; Liu et al., 2012; Mair et al., 2008;<br />

Papke et al., 2012; Schlögel et al., 2015).<br />

1 Office for Geological Surveys and building material test, Autonomous Province of Bozen/Bolzano, Italy, david.mosna@provinz.bz.it<br />

2 WSL Institute for Snow and Avalanche Research SLF, Switzerland<br />

3 Institute for Applied Remote Sensing, European Academy of Bozen/Bolzano (EURAC), Italy<br />

336 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP043


Nevertheless, DInSAR has some limitations, in particular if the method is applied to alpine<br />

environments. These are related to the recording conditions of the acquiring satellite such as<br />

ascending and descending tracks, look direction, shadowing or the conditions at the study<br />

sites. In addition, temporal changes of surface reflectivity, e.g. related to vegetation or snow,<br />

can make it difficult to correctly correlate the images. However, the use of natural persistent<br />

scatterers may help to enhance the correlation and therefore allows analysing a greater set of<br />

images and larger time spans. Areas far from settlements and without infrastructure often<br />

only have few fix points that can be identified or presumed to be persistent or permanent<br />

scatterers (PS). The installation of artificial corner reflectors can provide ideal PS, as it allows<br />

to detect a known point and should thereby help to minimise de-correlation (see Mair et al.<br />

Interpraevent <strong>2016</strong>). To have an independent control for the slope movements, we analysed<br />

two DInSAR test sites with terrestrial laser scanning (TLS) which required the installation of<br />

reference targets. Moreover, differential GPS (DGPS) measurements were carried out utilising<br />

the corner reflectors which were specifically designed to be used in combination with GNSS<br />

systems. Reference measurements were not only taken within the actively moving areas but<br />

also included measurements in the areas known to be not affected by displacements<br />

TEST SITES<br />

Test sites have to be selected very carefully due to the limitations given by the slopes and the<br />

restrictions implicated by the satellite system. For slopes factors such as orientation, geometry,<br />

the assumed movement rates and the vegetation and snow cover have to be considered very<br />

carefully, and in particular the presence and the distribution of natural persistent scatterers.<br />

For the satellite system the orbital period, the direction of the tracks, the line of sight and the<br />

look direction (geometrical distortion, shadowing) have to be determined, amongst other<br />

factors. In addition especially for the TLS-monitoring and the maintenance of the corner<br />

reflectors and the GPS, the logistics must be considered, including accessibility and, last but<br />

not least, the expenditure of time for every single measuring campaign. Careful planning is<br />

necessary for a long-term monitoring system that takes into account the potential of these<br />

methods.<br />

Within the SloMove project presented here, two test sites were identified, located between<br />

2500 and 3000 m asl, in South Tyrol, Italy, and Grisons Canton, Switzerland. The Italian site<br />

is located in the NE of Schnalstal (Val Senales), in the Kurzras (Maso Corto) ski resort,<br />

Schnals Municipality, Autonomous Province of Bolzano. The eastern flank of the Steinschlagspitze<br />

(Punta delle Frane) is affected by a rockslide that evolves into different rock glacier<br />

lobes, while the northern part features a large active rock glacier. The Swiss test site Foura da<br />

l’amd Ursina is located on the Schafberg above Pontresina, Upper Engadine, Canton Grisons,<br />

and includes three active rock glaciers named Ursina I-III.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 337


Figure 1: Sketch map of the two test sites in Graubünden and South Tyrol<br />

METHODS<br />

Monitoring of the test sites was carried out in 2012, 2013 and 2014 using the following<br />

methods: (i) DInSAR, (ii) TLS, and (iii) DGPS.<br />

DInSAR processing relied on SAR images acquired by COSMO SkyMed CSK ® and used the<br />

Small BAseline Subset (SBAS) algorithm (Berardino et al., 2002). The SBAS approach uses a<br />

stack of SAR acquisitions and implements an easy combination of a properly chosen set of<br />

multi-look DInSAR interferograms computed from these data. It allows the generation of<br />

mean deformation velocity maps and displacement time series. As each interferogram is<br />

calibrated with respect to a single pixel located in an area that can be assumed stable or at<br />

least, with known deformation behaviour, this point is referred to as reference SAR pixel<br />

(Casu et al., 2006). This requires well known natural reflectors or, in addition, the use of<br />

artificial corner reflectors provide the possibility to detect a known point and thereby<br />

minimise de-correlation. We designed and installed new specific artificial reflectors with an<br />

additional arm attached to accommodate a GPS antenna for periodic surveys. To facilitate the<br />

data cross validation and, in the perspective of an operational use, to be able to consistently<br />

switch from one system to the other, we also installed reference targets for TLS measurements.<br />

In this way, the artificial corner reflectors can be used as reference stations for all three<br />

monitoring technologies.<br />

338 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Due to seasonal limitations (snow cover in winter causes de-correlation) and internal management<br />

decisions of the SAR image provider (i.e. the Italian Space Agency), only 12 images<br />

were available for the Italian test site, and 22 for the Swiss study area in an acquisition period<br />

of 3 years (2011-2013). According to Colesanti et al. (2003), accurate processing with the<br />

SBAS algorithm requires at least 20 consecutive images. Consequently, no advanced<br />

interpretations can be provided for the Italian test site.<br />

TLS campaigns were carried out annually using Riegl long range scanners (LPM321 and<br />

VZ-6000) and artificial reflectors for improved merging of point clouds acquired from<br />

different scan positions. The scans were performed with a resolution of < 10cm. The acquired<br />

point clouds were filtered in order to homogenize the spatial resolution and to remove<br />

outliers. Following Chen and Medioni (1991) the iterative closest point (ICP) algorithm was<br />

applied to match unchanged terrain parts in the scan and to achieve an optimal relative<br />

referencing of the multi-temporal scans. The set of relative registered point clouds was then<br />

transformed into global coordinates. Finally, the point clouds were transformed into grid<br />

based digital elevation models (DEM) with 20cm resolution. Based on similar surface<br />

patterns, individual patches of multi-temporal DEMs were correlated to obtain horizontal<br />

displacement information.<br />

Seven differential GNSS campaigns with double frequency sensors (Leica Viva GS10 and<br />

Leica GS530) were carried out in the summer months of 2012 - 2014. In total, 18 and 14<br />

fixed points were measured with rapid static surveys for at least 30 minutes and a sampling<br />

rate of 5 seconds in the Italian and Swiss study areas, respectively. Every measurement<br />

campaign utilised a mobile rover and two GPS base stations. The post-processing of the<br />

collected GNSS data was performed using the Leica Geo Office software by Leica Geosystems.<br />

In order to refer the local net to the global reference system the base stations were connected<br />

to permanent reference stations belonging to the geodetic network of Switzerland (SWIPOS)<br />

and South Tyrol (STPOS). The results between two measurement campaigns were referred<br />

against each other by correcting the point coordinates using the local reference stations.<br />

The accuracy was defined by evaluating the deviation of the corrected reference station<br />

coordinates between two measurement campaigns.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 339


Figure 2: Test sites monitoring line-up; a) test site “Steinschlagspitze Schnals Valley, South Tyrol; b) test site “Schafberg” Pontresina,<br />

Switzerland; c) new type of artificial corner reflector with GPS-antenna and TLS reflector at the base.<br />

DISCUSSION<br />

Data acquisition by different monitoring techniques of the same process within the same area<br />

in general leads to dissimilar information. The evaluation of the data obtained by these independent<br />

basic principles, techniques and calculation procedures, e.g. remote data acquisition<br />

compared to punctual on site data measurements, does not allow a direct comparison of<br />

the single results. The concept of real data integration to obtain a unique and coherent final<br />

product not only requires a straightforward comparison between single data sets or a mutual<br />

validation of them, but also the assimilation of the various input information.<br />

In all cases, it is necessary to have carefully georeferenced data sets that are attributable to the<br />

same spatial and temporal dimension. This requires extensive calculations and projections of<br />

the different vectors on a Cartesian coordinate system where in some cases the results are not<br />

distinct, e.g. when the movements are perpendicular to the line of sight of the satellite. This<br />

problem may be solved by analysing longer time-periods and by utilising larger data sets.<br />

With the described set-up, detailed information on the movement of the geomorphic features<br />

was acquired for both test sites. In general, the methods provide similar results and assess<br />

comparable movement trends. However, at some points the magnitude of displacements<br />

differs remarkably, or even shows a reverse trend. This is related to the fact that GPS and<br />

DInSAR analysis of the artificial corner reflectors do only measure single points and not<br />

changes of larger areas like TLS or DInSAR based on extensive natural scatterers.<br />

340 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3: Comparison of horizontal TLS creep rates and DInSAR displacements. Different sources for data gaps are evident: red areas –<br />

shadow effects of TLS; blue areas – de-correlation of SAR images due to fast creep processes.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 341


CONCLUSIONS<br />

The integration of the data collected with the three applied monitoring techniques allows to<br />

draw the following conclusions:<br />

– Punctual information obtained from accurate selective data such as recorded with DGPS<br />

measurements or PS interferometry, represents a good reference point for comparison<br />

between different measurement techniques and principles.<br />

– Spatial information, collected by TLS- and SAR-images, is less accurate with respect to<br />

single points, but better represents the overall trends of the investigated mass movement.<br />

– Even with a limited number of SAR images, it was possible to obtain comparable information<br />

to the other planar monitoring techniques using the SBAS-algorithm.<br />

The suitability of the various methods for applications in the field of hazard management can<br />

be determined on the basis of our experiences with the different technologies:<br />

– DGPS only provides sparse information but accurate punctual results on the deformation<br />

of a large sliding mass. Very fast motions or non-uniform acceleration can be monitored<br />

efficiently. This technique requires a greater effort on site because of the installation of<br />

measuring devices and due to the longer data acquisition times. It is economically<br />

applicable only in specific cases for local civil protection matters. DGPS is thereby well<br />

suited for automatic alerting systems, however, the equipment remains expensive.<br />

– The TLS-technique allows the monitoring of larger areas in short periods of time.<br />

The use depends on two major factors:<br />

(i) Finding a suitable position for the measuring instrument and the reflectors (view angle<br />

and distance), from which it is possible to record the entire study area.<br />

(ii) The accessibility of the monitoring site and the weather conditions, because it works<br />

only with good visibility.<br />

This technology may be strengthened using new sensors and the improvement of the<br />

automatic data processing. An application for automatic alerting systems would be possible<br />

and some research activities in that direction have already been reported (Canli et al.,<br />

2015).<br />

– DInSAR allows for the monitoring of larger areas that must be well pre-selected matching<br />

the geographical situation of the slope with the geometric conditions of the satellites.<br />

However, SAR image acquisition is only being carried out at relatively long time intervals<br />

and assessing surface deformation is a lengthy process.<br />

– The shortened intervals between two data acquisitions by satellites of the last generation<br />

like Cosmo Sky Med ® and Terra SAR X ® are already not suitable for monitoring of<br />

processes that require rapid data acquisition and evaluation and also for automatic alerting<br />

systems.<br />

At present, this technology is only suitable for science and land-use planning, as there is no<br />

guarantee for the delivery of SAR-images and coherent data sets. To use the technology for<br />

continuous monitoring and for civil defence affairs, it is necessary that this technology moves<br />

342 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


from a purely strategic and military application to a civil use. It should be ensured that data<br />

acquisitions are carried out following a user-defined program and that data processing and<br />

interpretation can be done continuously and – ideally - by technicians with local experience.<br />

In order to exploit the full potential of this technology, the following should be enhanced:<br />

– Establishment of research and evaluation institutions near the monitoring areas;<br />

– Reduction of revisiting times and costs for the data analysis<br />

– Development of new algorithms that allow good data processing and interpretation of<br />

a small number of SAR images.<br />

ACKNOWLEDGEMENTS<br />

The described research was co-funded by the Interreg IV Italia-Svizzera Program, European<br />

Regional Development Fund.A9 and by the IFFI-programme of the Autonomous Province<br />

of Bozen, Italy.<br />

REFERENCES<br />

- Berardino P., Fornaro G., Lanari R., Sansosti E. (2002): A new algorithm for surface<br />

deformation monitoring based on small baseline differential SAR interferograms, in: IEEE<br />

Transactions on Geoscience and Remote Sensing, v. 40, no. 11, p. 2375–2383<br />

- Bollmann E., Rieg L., Spross M., Sailer R., Bucher K., Maukisch M., Monreal M., Zischg A.,<br />

Mair V., Lang K., Stötter J. (2012): Blockgletscherkataster Südtirol: Erstellung und Analyse,<br />

in: Innsbrucker Geographische Studien Bd. 39: Permafrost in Südtirol, p. 147-171<br />

- Calò F., Ardizzone F., Castaldo R., Lollino P., Tizzani P., Guzzetti F., Lanari R., Angeli M.-G.,<br />

Pontoni F., and Manunta M. (2014): Enhanced landslide investigations through advanced<br />

DInSAR techniques: The Ivancich case study, Assisi, Italy: Remote Sensing of Environment,<br />

v. 142, p. 69–82<br />

- Canli E., Thiebes B., Höfle B., Glade T. (2015b): Permanent 3D laser scanning system for<br />

alpine hillslope instabilities, in: 6th International Conference on Debris-Flow Hazards<br />

Mitigation. Presented at the 6th International Conference on Debris-Flow Hazards Mitigation,<br />

Tokyo, Japan<br />

- Casu F., Manzo M., Lanari R. (2006): A quantitative assessment of the SBAS algorithm<br />

performance for surface deformation retrival from DInSAR data, in: Remot Sensing of<br />

Environment 102, p.195-210<br />

- Colesanti C., Ferretti A., Prati C., Rocca F. (2003): Multi-Image Satellite SAR Interferometry:<br />

State of the Art and Future Trends, in: Proc Radar Conference, Adelaide. 2003. p. 239-244<br />

- Liu L., Millar C.I., Westfall R.D., Zebker H.A., and others (2012): Surface motion of active<br />

rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR:<br />

The Cryosphere Discuss, v. 7, p. 343–371<br />

- Mair V., Zischg A., Krainer K., Stötter J., Zilger J., Belitz K., Schenk A., Damm B., Kleindienst<br />

H., Bucher K., Lang K., Tagnin S., Munari M. (2008): PROALP – Rilevamento e<br />

monitoraggio dei fenomeni permafrost. Esperienze della Provincia di Bolzano, in: AINEVA,<br />

64, p. 50-59<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 343


- Papke J., Strozzi T., Wiesmann A., Wegmueller U., Tate N.J. (2012): Rock glacier monitoring<br />

with spaceborne SAR in Graechen, Valais, Switzerland, in: Geoscience and Remote Sensing<br />

Symposium (IGARSS), 2012 IEEE International, IEEE, p. 3911–3914.<br />

- Schlögel R., Doubre C., Malet J.-P., Masson F. (2015): Landslide deformation monitoring<br />

with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method, in:<br />

Geomorphology, v. 231, p. 314–330.<br />

344 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Nationwide assessment of the climate sensitivity of<br />

natural hazard processes in Switzerland A fuzzy logic<br />

approach<br />

Peter Mani, lic. phil. nat. 1 ; Stéphane Losey, Dipl. Ing. forest ETH 2<br />

ABSTRACT<br />

Information about the changes that may be expected with respect to natural hazard processes<br />

is crucial to the development of climate change adaptation strategies. To assess the impacts of<br />

climate change on the magnitude and frequency of natural hazard processes, a methodology<br />

was developed, which is based on existing spatial data, literature analyses and expert knowledge<br />

and uses fuzzy logic to assess the sensitivity of natural hazard processes to changes in<br />

the climate. Evaluation rules were defined for an intermediate and an extreme climate<br />

scenario in the case of gravitational processes, avalanches, debris flows and torrent processes.<br />

The results of the study present a differentiated view of the changes to be expected as a<br />

function of the regions and processes involved. The greatest changes may be expected in the<br />

Alps. Permafrost degradation and changes in water availability result in an increase in the<br />

frequency and magnitude of rock fall. The frequency of small and medium-sized torrent<br />

processes will increase significantly for the same reason.<br />

KEYWORDS<br />

natural hazards; climate change; GIS; fuzzy logic<br />

INTRODUCTION<br />

Changes in precipitation and temperature arising from climate change can influence not only<br />

the magnitude and frequency of natural hazard processes but also their spatial distribution<br />

(Schweiz. Eidgenossenschaft 2012). However, the impacts vary according to the features of<br />

the natural landscape. Hence, the knowledge of where such changes may be expected is a<br />

central factor in the development of climate change adaptation strategies. There are many<br />

studies which analyze the impact of climate change on natural hazards whereof many refer to<br />

the Alpine region (c.f. Stoffel et al. 2013, Stoffel et al. 2014, Gobiet et al. 2014, Pavlova et al.<br />

2014). But there are few that relate to lower areas in Switzerland. A nationwide, spatially<br />

differentiated overview about the climate change impact on natural hazards is still missing.<br />

In the context of a project on the climate sensitivity of natural hazard processes, which was<br />

commissioned by the Federal Office for the Environment (FOEN), a methodology was<br />

developed that enables the nationwide assessment of the sensitivity of natural hazard process-<br />

1 geo7 AG, geowissenschaftliches Büro, Bern, SWITZERLAND, peter.mani@geo7.ch<br />

2 Bundesamt für Umwelt BAFU, Bern<br />

IP_<strong>2016</strong>_FP114<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 345


es to changes in the climate in Switzerland. The focus of this paper will be on the methodological<br />

approach. In the second part a brief overview of the results is presented.<br />

METHODOLOGICAL APPROACH<br />

The links between the climate and process systems on the Earth’s surface are complex. The<br />

reasons for this include nonlinearities, retardation and hysteresis effects (Knight & Harrison<br />

2013). As a result, analyzing the changes in natural hazard processes due to climate change<br />

using numerical models is very complicated and, due to the data situation, only possible for<br />

small investigation areas and individual processes. Hence an alternative methodological<br />

approach, which is described below, was selected for the project described here.<br />

The availability of spatially resolved, comprehensive and homogeneous base data on hazard<br />

processes and their influencing parameters is a precondition for such a nationwide analysis.<br />

Such data are available in the form of the intermediate and final results of process simulations,<br />

which were carried out for all of Switzerland in the context of the development of the<br />

protective forest index maps (SilvaprotectCH) (BAFU 2008). These data cover block and rock<br />

falls, snow avalanches, shallow landslides and torrent processes (debris flows, bed load<br />

transport). However, in some instances they are encumbered by significant inaccuracies,<br />

which must be taken into account in their further use. This is possible using fuzzy logic that<br />

is based on Zadhe’s fuzzy set theory (1965). Unlike the boolean logic, where a value can only<br />

belong to one class, in the fuzzy logic the classes, the so-called linguistic variables, can overlap<br />

to incorporate the fuzziness of the data. The variables are combined logically, using fuzzy<br />

rules. These rules can be derived from literature, data analysis or expert knowledge. Fuzzy<br />

logic is applied in many fields, amongst others in expert systems. Fuzzy logic based expert<br />

systems are also used for the analysis of natural hazard processes. Several examples are<br />

related to landslides (Brauner & Ganahl 1999, Regmi et al. 2010, Thiery et al. 2014) and<br />

Zischg et al. (2005) used it for assessing the risk posed to transport routes by wet snow<br />

avalanches.<br />

For the evaluation of the climate sensitivity of natural hazard processes, the data were linked<br />

with the help of fuzzy rules. The rules were defined on the basis of literature research and<br />

expert hearings. Based on the concept of disposition (BUWAL 1998), evaluation rules are<br />

defined for each process for the basic disposition, the variable disposition and the triggering<br />

process. These rules were applied on the basis of grid data with a resolution of 10 meters for<br />

the detailed analyses over the whole of Switzerland and on the level of the 22,400 catchment<br />

areas from the division of Switzerland into catchment areas (BAFU, year not specified) for the<br />

spatial aggregation of the final results (Figure 1). This required the efficient implementation<br />

of the fuzzy analyses in the GIS environment. This was achieved by integrating Matlab‘s fuzzy<br />

logic tools into ArcGIS as geoprocessing tools. The calculations were then implemented as<br />

Python Script. This means that new calculations can be carried out efficiently if better base<br />

data or new insights relating to the evaluation become available.<br />

346 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CLIMATE SCENARIOS<br />

Two climate scenarios, one medium and one extreme, were deduced for the sensitivity<br />

analysis from the Swiss Climate Change Scenarios CH2011 (2011). The ensembles from<br />

10 model chains for 188 temperature stations and 565 precipitation stations were used.<br />

The A1B emissions scenario (Nakicenovic & Swart 2000) provided the basis for these<br />

scenarios. The median values for the time horizon 2060 were used for the medium scenario,<br />

and the 97.5 % percentiles for the time horizon 2085 were used for the extreme scenario.<br />

The scenarios distinguish three regions. The scenarios for seasonal temperatures and seasonal<br />

precipitation are presented in Table 1 and Table 2 respectively. In addition, scenarios for heavy<br />

precipitation were defined on the basis of the extended CH2011 scenarios (CH2011, under<br />

review), and scenarios for the snow/rain distribution for different elevation ranges were<br />

derived from transient simulations.<br />

Table 1: Decisive seasonal temperature scenarios for medium and extreme scenario<br />

Season Central Plateau, Jura Pre-Alps, Alps South Switzerland<br />

medium<br />

[Δ°C]<br />

extreme<br />

[Δ°C]<br />

medium<br />

[Δ°C]<br />

extreme<br />

[Δ°C]<br />

medium<br />

[Δ°C]<br />

extreme<br />

[Δ°C]<br />

DJF +2 +3 +2 +3 +2 +4<br />

MAM +2 +3 +2 +3 +2 +4<br />

JJA +2 +5 +3 +5 +3 +5<br />

SON +2 +4 +2 +4 +2 +4<br />

Table 2: Decisive seasonal precipitation scenarios for the medium and extreme scenario<br />

Saison Central Plateau, Jura Pre-Alps, Alps South Switzerland<br />

medium<br />

[Δ%]<br />

extreme<br />

[Δ%]<br />

medium<br />

[Δ%]<br />

extreme<br />

[Δ%]<br />

medium<br />

[Δ%]<br />

extreme<br />

[Δ%]<br />

DJF +5 +25 0 +20 +10 +10<br />

MAM +5 +20 +5 +10 0 0<br />

JJA -10 -5 -10 -5 -15 -15<br />

SON -5 +25 0 +20 0 0<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 347


IMPLEMENTATION OF THE METHODOLOGY: EXAMPLE ROCK FALL<br />

The implementation of the methodological approach is described in greater detail below using<br />

the example of the rock fall process. According to the National Platform of Natural Hazards<br />

(PLANAT) we define rock fall as a large volume of rock (> 100 m³) detached en masse.<br />

The hypothesis that changes in the permafrost and in the availability of water are the main<br />

factors was adopted as a basis for the rock fall sensitivity analysis. Thawing permafrost<br />

results in a reduction in the stability of rock faces and increases the disposition for rock fall<br />

(c.f. Gruber & Haeberli 2007). Changes in water availability influence the water pressure in<br />

fissures, which is an important triggering factor (c.f. Gruner 2008, Schneuwly & Stoffel 2008).<br />

Both factors can alter the magnitude and frequency of rock falls. In addition, new rock fall<br />

areas can evolve from glacier retreat, such as the Eiger rock slide (Oppikofer et al., 2008)<br />

(this point is not further developed). The structural characteristics of the rock body are also<br />

significant. However, nationwide data are lacking on this parameter, thus it could not be<br />

included in the evaluation.<br />

The assessment of the permafrost degradation incorporated, first, the permafrost index from<br />

the Permafrost Index Map of Switzerland (BAFU 2005), and, second, the exposition. The<br />

permafrost index provides qualitative data on the areal distribution, thickness and temperature<br />

of permafrost bodies. The higher the index, the greater the likelihood that permafrost<br />

is present and the thicker and colder the permafrost bodies will be. The exposition is used as<br />

an indicator of the influence of short-wave radiation or sensitivity to temperature increase.<br />

South-facing rock faces react less sensitively than north-facing ones as the radiation towards<br />

the south already gives rise to higher energy input today and this will not change significantly<br />

in the future. However, the change in temperature will have a stronger impact in north-facing<br />

rock faces (Salzmann et al. 2007).<br />

The elevation range and size of the catchment area above the area under consideration were<br />

taken into account for the evaluation of the water availability. For the calculation of the<br />

catchment area a multiple flow direction approach has been applied to account for both,<br />

surface runoff and subsurface flow (Quinn et al. 1991). If water can only flow from a small<br />

area above a rock face, sensitivity is lower than it would be if it can flow from a larger area.<br />

Elevation range was used as an indicator for the change in the distribution of the precipitation<br />

in snow and rain and the seasonal change in the total water availability (Table 3). Due<br />

to the greater winter precipitation and shift in snow melt in locations above 1,200 m asl,<br />

according to the extreme scenario, increased water inflow may be expected in the Central<br />

Plateau and Jura. The decline in the snow melt is overcompensated by the increased<br />

precipitation at this altitude in spring. The water inflow is unchanged or declines in summer.<br />

It increases strongly at all altitudes in autumn. The situation is largely comparable in the Alps<br />

and Pre-Alps. In spring alone, the water availability does not increase below 2,500 m asl.<br />

In south Switzerland, a – possibly strong – increase in water inflow may be expected at lower<br />

348 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


and medium altitudes. The water inflow declines in spring (exception altitudes > 2,500 m asl)<br />

and summer and remains unchanged in autumn.<br />

Table 3: Combination of the seasonal changes in precipitation and snow melt for the extreme scenario (R: rain, SM: snow melt, -:<br />

decrease, +/-: unchanged, +: increase, ++: strong increase)<br />

Altitude DJF MAM JJA SON<br />

Central Plateau,<br />

Jura<br />

R SM Total<br />

R SM Total<br />

R SM Total<br />

R SM Total<br />

< 1200 ++ +/- ++ ++ - + +/- +/- +/- ++ +/- ++<br />

> 1200 + + ++ ++ - + +/- +/- +/- ++ +/- ++<br />

Pre-Alps, Alps<br />

< 1200 ++ +/- ++ + - +/- +/- +/- +/- ++ +/- ++<br />

1200 - 2500 + + ++ + - +/- +/- +/- +/- ++ +/- ++<br />

> 2500 +/- +/- +/- +/- ++ ++ +/- - - ++ +/- ++<br />

South Switzerland<br />

< 1200 + +/- + +/- - - - +/- - +/- +/- +/-<br />

1200 - 2500 + + ++ +/- - - - +/- - +/- +/- +/-<br />

> 2500 +/- +/- +/- +/- + + - - - +/- +/- +/-<br />

The permafrost degradation and water inflow were evaluated using fuzzy rules. The sensitivity<br />

of the rock fall process in relation to climate change was then deduced from these parameters.<br />

To this end, statements were made on changes in magnitude and frequency. Fuzzy rules<br />

were also applied here. Up to this point, the evaluation of sensitivity was still carried out<br />

on the level of the individual grid cells without taking into account whether rock fall process<br />

areas are present or not. In the concluding step, the grid data were aggregated to the<br />

catchment areas from the subdivision of Switzerland into catchment areas (BAFU, year not<br />

specified). This involved, first, sampling based on the process areas (Fig. 1 a). The proportion<br />

of process areas per square kilometer was calculated from this. The sensitivity level was then<br />

determined from the grid for each sample point. The 25 %, 50 % and 75 % percentiles of the<br />

sensitivity evaluation were calculated on the basis of these data (Fig. 1 b). The sensitivity was<br />

deduced from the percentiles and proportion of process area using fuzzy rules (Fig. 1 c and d).<br />

The maps in Figure 2 show that, according to the extreme scenario, an increase or strong<br />

increase in frequency may be expected for most of Switzerland at grid level. In the case of<br />

magnitude, a reduction or no change may be expected in the Central Plateau and Jura, and in<br />

the Pre-Alps and lower altitudes of the Alps. However, a strong increase may be expected at<br />

higher altitudes in the Alps. The increase in frequency may be explained by the greater water<br />

inflow in autumn, winter and spring in the Central Plateau and Jura. Due to the increase in<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 349


Figure 1: Spatial aggregation concept at catchment area level<br />

frequency and limited rock material in areas without permafrost magnitude declines<br />

according to the magnitude-frequency relationship (c.f. Hungr et al. 1999). However, this<br />

relationship applies only with respect to a larger area. In south Switzerland, a reduction<br />

in frequency may be expected at lower altitudes while no change may be expected in the<br />

situation at higher altitudes. In the case of magnitude, with the exception of areas at the<br />

highest altitudes, an unchanged situation may be expected. The decline in precipitation is<br />

the main factor here.<br />

According to the aggregation to the level of the catchment areas, the changes are limited to<br />

the higher locations in the Alps and scattered areas in the Pre-Alps. The density of rockfall<br />

areas is low in other areas, which explains why no major changes may be expected here.<br />

A strong increase in rock fall frequency may be expected at the higher attitudes across the<br />

Bernese, Valais and Grison Alps, and also in the Uri and Glarus Alps. The same applies to<br />

magnitude. The reason for this is the increasing instability of rock faces due to permafrost<br />

degradation and the increased water availability. A decrease may be expected in some areas<br />

of the Pre-Alps as there no permafrost occurs.<br />

350 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Results for rock fall at grid level (above) and catchment area level (below)<br />

RESULTS<br />

The results for all of the evaluated processes are presented in a highly generalized form in<br />

Figure 3. The overview presents a differentiated picture of the changes to be expected<br />

according to the region and processes involved.<br />

In the case of slope processes in the Jura and the Central Plateau no major changes may be<br />

expected with the exception of an increase at shallow landslides on steep slopes. With regard<br />

to avalanches in the Pre-Alps the reduction in snowfall in this region will lead to a decline in<br />

frequency and magnitude but also to unchanged conditions in some cases. The frequency<br />

and magnitude of block fall in the Pre-Alps will decrease or remain unchanged as a decline<br />

in freeze-thaw days causes less weathering and, therefore, less material is available for such<br />

events. An increase in shallow landslides on steep slopes may be expected as precipitation<br />

falls increasingly as rain, particularly in the winter, when evapotranspiration is low.<br />

The biggest changes may be expected in the Alps. According to both scenarios, permafrost<br />

degradation and the increase in water availability will prompt an increase in the frequency<br />

and magnitude of rock falls. Moreover, according to the extreme scenario in particular, an<br />

increase in avalanche activity may be expected at high elevation where precipitation<br />

continues to fall as snow while precipitation in winter will increase. In the case of hillslope<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 351


Process Medium scenario Extreme scenario<br />

Block fall<br />

Frequency Magnitude Frequency Magnitude<br />

Rock fall<br />

Dry snow<br />

avalanche<br />

Wet snow<br />

avalanche<br />

Shallow<br />

landslides<br />

from steep<br />

slopes<br />

Debris flows<br />

from poorly<br />

consolidate<br />

d talus<br />

Torrent,<br />

small events<br />

Torrent<br />

large events<br />

Torrent very<br />

lange events<br />

Legend<br />

Figure 3: Results 3: Results of the of sensitivity the sensitivity analysis for analysis both scenarios for and both the scenarios different processes and the different processes<br />

debris flows from poorly consolidated talus, an increase in frequency may be expected due<br />

to the thawing of the permafrost. The results in south Switzerland are inconsistent.<br />

352 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


A decrease or no change may be expected for the majority of processes. Shallow landslides<br />

from steep slopes and wet snow avalanches (extreme scenario only) are the exceptions here.<br />

In both cases an increase of frequency may be expected.<br />

For the sensitivity assessment of torrent processes sediment yield and triggering events are<br />

taken into account. Changes in the sediment yield were derived from the assessment of the<br />

slope processes, in which only areas relevant for the sediment yield were considered. The<br />

assessment of the sensitivity of triggering events was derived from the climate scenarios.<br />

The sensitivity of torrent processes was assessed for three magnitudes.<br />

For the medium scenario in all regions an increase or strong increase of small events may<br />

be expected. The reason for this is the increase in the triggering events. In the Jura and the<br />

Central Plateau, this results in a decrease or unchanged conditions in large or very large<br />

events, as available bed load is limited. In the Pre-Alps, where many ancient deposits exist<br />

and in the Alps, where degradation of permafrost and glacier retreat cause an increase of sediment<br />

yield, an increase or a strong increase for large or very large events may be expected.<br />

In the extreme scenario in almost all regions a strong increase in triggering events must be<br />

expected. This results in an increase or a strong increase in small events. The limited<br />

availability of loos material in the Central Plateau leads to a decrease of large and very large<br />

torrent events. In the Jura increased sediment yield from shallow landslides leads partly to an<br />

increase of large events. With regard to very large events, this increase of shallow landslides<br />

cannot compensate the increase in frequency. In the Pre-Alps and Alps with its large<br />

additional sediment yield an increase or strong increase of large und very large events may<br />

be expected, despite the increase in frequency. In south Switzerland the situation is heterogeneous.<br />

With regard to large events an increase may be expected, due to several ancient<br />

deposits in higher regions. But very large events will decrease.<br />

DISCUSSION AND CONCLUSIONS<br />

In the context of the above-described project it was possible to develop a methodology which<br />

enables the efficient assessment of the sensitivity of natural hazard process related to climate<br />

change. Recent events in Switzerland (e.g. August 2005, October 2011) indicate an acceleration<br />

of processes, especially in the periglacial area, but also in the Pre-Alps. This is in correspondence<br />

with the results from this study. The new periglacial hazard index map, which was<br />

elaborated based on detailed input data for the Bernese Oberland (Tobler et al. in rev.) also<br />

coincide in most part. Effects of climate change as described in Stoffel & Huggel (2012) or in<br />

a detailed study on rock fall (Perret et al. 2006) are reproduced in the here presented results.<br />

But there are also some limits which must be considered when using the result from this<br />

study. Thus, the study is limited to the analysis of the disposition and the triggering events.<br />

The reach of hazard processes is not included. Furthermore, new process chains that could<br />

become relevant in the context of climate change (e.g. flood waves, triggered by a rock<br />

avalanche falling into a new glacier lake) are not considered. However, the results are<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 353


valuable to determine areas for more detailed studies, they can be used for the planning of<br />

monitoring concepts and they show where climate change effects must be taken into account<br />

when hazard maps are revised. For this the data produced in this study will be made available<br />

to the cantonal authorities.<br />

BIBLIOGRAPHY<br />

- BAFU (2005). Hinweiskarte der potenziellen Permafrostverbreitung in der Schweiz.<br />

- BAFU (2008). SilvaProtect-CH – Phase I. Projektdokumentation.<br />

- BAFU (o. Jahr). Einzugsgebietsgliederung Schweiz EZGG-CH.<br />

- Brauner M. Ganahl E. (1999). GIS-basiertes Expertensystem zur Risikobewertung<br />

von Hanggleitungen in Wildbacheinzugsgebieten. Österreichische Zeitschrift für<br />

Vermessung & Geoinformation. 87. Jg. Heft 2+3: 93-100.<br />

- BUWAL (1998). Begriffsdefinition zu den Themen: Geomorphologie, Naturgefahren,<br />

Forstwesen, Sicherheit, Risiko. Arbeitsbericht.<br />

- CH2011 (2011). Swiss Climate Change Scenarios CH2011. Published by C2SM, MeteoSwiss,<br />

ETH, NCCR Climate, and OcCC. Zurich, Switzerland.<br />

- CH2011 (in rev). Projections of Extreme Precipitation in Switzerland. CH2011 Extension<br />

Series.<br />

- Gobiet A., Kotlarski S., Beniston M., Heinirch G., Rajczak J., Stoffel M. (2014). 21st century<br />

climate change in the European Alpts – A review. Sci. Total Environ., 493: 1138–1151.<br />

- Gruber S., Haeberli W. (2007) Permafrost in steep bedrock slopes and its temperaturerelated<br />

destabilization following climate change. J. Geophys. Res. 112: F02S18.<br />

- Gruner U. (2008). Klimatische und meteorologische Einflüsse auf Sturzprozesse.<br />

Interpraevent, 147–158.<br />

- Hungr O., Evans S.G., Hazzard J. (1999). Magnitude and frequency of rock falls and rock<br />

slides along the main transportation corridors of southwestern British Columbia. Can.<br />

Geotech. J., 36(2), 224-238.<br />

- Jasper K., Harrison S. (2013). The impacts of climate change on terrestrial Earth surface<br />

systems. Nature Climate Change, 3, 24-29.<br />

- Oppikofer T., Jaboyedoff M., and Keusen H.-R. (2008). Collapse at the eastern Eiger flank<br />

in the Swiss Alps, Nat. Geosci., 1, 531–535.<br />

- Pavlova I., Jomelli V., Brunstein D., Grancher D., Martin E., Déqué M. (2014). Debris flow<br />

activity related to recent climate conditions in the French Alps: A regional investigation.<br />

Geomorphology, 219: 248–259.<br />

- Perret S., Stoffel M., Kienholz, H. (2006). Spatial and temporal rockfall activity in a forest<br />

stand in the Swiss Prealps—a dendrogeomorphological case study. Geomorphology, 74(1),<br />

219-231.<br />

- Quinn P.F., Beven K.J., Chevallier P., Plancon O. (1991). The prediction of hillslope flow<br />

paths for distributed hydrological modelling using digital terrain models. Hydrol. Process,<br />

5:59-79.<br />

354 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Regmi N.R., Giardino J.R., Vitek J.D. (2010). Assessing susceptibility to landslides:<br />

Using models to understand observed changes in slopes. Geomorphology 122:25-38.<br />

- Salzmann N., Nötzli J., Hauck C., Gruber S., Hoelzle M., Haeberli W. (2007). Ground surface<br />

temperature scenarios in complex high-mountain topography based on regional climate<br />

model results. J. Geophys. Res., 112, F02S12, doi: 10.1029/2006JF000527.<br />

- Schneuwly D.M., Stoffel M. (2008). Tree-ring based reconstruction of the seasonal timing,<br />

major events and origin of rockfall on a case-study slope in the Swiss Alps, Nat. Hazards Earth<br />

Syst. Sci., 8, 203–211.<br />

- Stoffel M., Huggel, C. (2012). Effects of climate change on mass movements in mountain<br />

environments. Progress in Physical Geography, 36(3), 421-439.<br />

- Stoffel M., Mendlik T., Schneuwly-Bollschweiler M., Gobiet A. (2013). Possible impacts of<br />

climate change on debris flow activity in the Swiss Alps. Clim. Chang. 122(1-2), 141-155.<br />

- Stoffel M., Tiranti D., Huggel C. (2014). Climate change impacts on mass movements –<br />

Case studies from the European Alps. Sci. Total Environ., 493: 1255–1266.<br />

- Schweizerische Eidgenossenschaft (2012). Anpassung an den Klimawandel in der Schweiz<br />

– Ziele, Herausforderungen und Handlungsfelder. Erster Teil der Strategie des Bundesrates<br />

vom 2. März 2012.<br />

- Thiery Y., Maquaire O., Fressard M. (2014). Application of expert rules in indirect approaches<br />

for landslide susceptibility assessment. Landslides, 11(3), 411-424.<br />

- Tobler D., Mani P., RinerR., Liener S., Haehlen N., Bender-Gàl R., Graf K., Raetzo H.<br />

(in rev.). Gefahrenhinweiskarte Periglazial. Ein Grundlageninstrument für das präventive<br />

Gefahrenmanagement. Interpaevent <strong>2016</strong>.<br />

- Zadhe L. A. (1965). Fuzzy Set. Information and Control 8: 338-353.<br />

- Zischg A., Fuchs S., Keiler M., Meissl G. (2005). Modelling the system behaviour of wet<br />

snow avalanches using an expert system approach for risk management on high alpine<br />

traffic roads. Nat. Hazards Earth Syst. Sci. 5: 821-832.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 355


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Defining sample size and strategy for<br />

dendrogeomorphic rockfall reconstructions<br />

Pauline Morel 1 ; Daniel Trappmann 2 ; Christophe Corona 2 ; Markus Stoffel 2<br />

ABSTRACT<br />

Optimized sampling strategies have been recently proposed for dendrogeomorphic reconstructions<br />

of mass movements with a large spatial footprint, such as landslides, snow<br />

avalanches and debris flows. Such guidelines have been missing for rockfalls and cannot be<br />

transposed owing to the sporadic nature of this process and the occurrence of individual rocks<br />

and boulders. Based on a dataset of 314 European larch (Larix deciduaMill.) trees (64 trees/<br />

ha), growing on an active rockfall slope, this study bridges this gap and proposes an optimized<br />

sampling strategy for the spatial and temporal reconstruction of rockfall activity. Spatially, our<br />

results demonstrate that the sampling of only 6 representative trees/ha can be sufficient to<br />

yield a reasonable mapping of the spatial distribution of rockfall frequencies on a slope,<br />

especially if the oldest and most heavily affected individuals are included in the analysis.<br />

Temporally, we demonstrate that at least 40 trees/ha are needed to obtain reliable rockfall<br />

chronologies.<br />

KEYWORDS<br />

Rockfall, Dendrogeomorphology, Simulation, Frequency, Methodology<br />

INTRODUCTION<br />

Rockfall represents one of the most frequent natural mass movement processes in mountainous<br />

areas and can be defined as the free falling, bouncing, or rolling of rocks downslope that<br />

typically originate from cliffs or rockwalls (Varnes, 1978; Berger et al., 2002). On forested<br />

slopes, each rock impact on trees dissipates kinetic energy and may change the rock's<br />

trajectory and velocity, thus reducing runout distances as compared to non-forested slopes<br />

(Jahn, 1988; Dorren et al., 2005, 2007). Impacts also leave characteristic scars on tree trunks<br />

and growth disturbances (GD) in tree-ring series that have been proven to be reliable,<br />

accurate and precise indicators to reconstruct past rockfall activity through dendrogeomorphic<br />

analysis (Alestalo, 1971; Stahle et al., 2003; Stoffel et al., 2005a, 2013; Stoffel and<br />

Bollschweiler, 2010; Stoffel and Corona, 2014). While in the earliest studies a limited number<br />

of 25–30 samples was used for rockfall reconstructions (Gsteiger, 1989; Schweingruber,<br />

1996), laterwork generally was based on much larger numbers of samples (135 - 283 trees;<br />

e.g., Stoffel et al., 2005b; Moya et al., 2010; Šilhán et al., 2013). A clear guideline regarding<br />

the sample size needed to obtain reliable results still does not exist.<br />

1 DendroLab, Bern, SWITZERLAND, pauline.morel@ymail.com;pauline.morel@geo.unibe.ch<br />

2 Dendrolab.ch, Institute of Geological Sciences, University of Berne, Baltzerstrasse 1+3, CH-3012 Berne, Switzerland<br />

356 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP042


A suite of recent studies concluded that an appropriate sampling design and size is a fundamental<br />

requirement to improve the reliability of dendrogeomorphic reconstructions (Schneuwly-Bollschweiler<br />

et al., 2013; Trappmann et al., 2013). In the case of mass movements with<br />

a large spatial footprint, such as snow avalanches (Corona et al., 2012), landslides (Corona et<br />

al., 2014), and debris flows (Schneuwly-Bollschweiler et al., 2013), it has been demonstrated<br />

that a definition of sample size thresholds is possible and that such values permit assessment<br />

of realistic event frequencies with optimized cost–benefit ratios. In contrast, rockfall does not<br />

typically leave a clear spatial footprint as it damages a limited number of individual trees<br />

along its trajectory (Stoffel and Perret, 2006;Moya et al., 2010). Therefore, the thresholds<br />

established for snow avalanches, landslides, and debris flows cannot be applied in this case as<br />

different thresholds and approaches need to be defined to obtain more reliable rockfall<br />

reconstructions and better input data for hazard zoning. In order to fill this gap, this study<br />

aims to determine optimal sampling sizes and strategy for dendrogeomorphic rockfall studies.<br />

Based on an unusually large dataset of rockfall induced GD in trees growing on a slope in the<br />

Swiss Alps, we (i) test results based on different subsets of trees and (ii) characterize the<br />

optimal spatial configuration of trees to be sampled on the slope using random bootstrap<br />

extraction of trees from the dataset. The same subsets were then used to (iii) explore the<br />

effect of sample size and tree selection on the reliability of reconstructed rockfall chronologies.<br />

Finally, (iv) the random extractions of trees were compared with a stratified sampling<br />

strategy based on an arbitrary selection of trees so as to propose clear guidelines for the<br />

selection of optimal trees in terms of tree location, age, number and frequency of GD.<br />

REGIONAL SETTINGS<br />

Located in the Saas valley (Valais, Switzerland, 46° 05′41 N; 7° 57′17 E; Fig. 1) between<br />

1670-1800 m asl., the investigated slope (5 ha) has a northeastern exposure and a slope<br />

ranging from 14-49°. The rockfall source area is formed by an active rock glacier at >2570m<br />

asl. at the lower permafrost boundary as well as by subvertical rock faces downslope of the<br />

rock glacier. The rocks deposited in the study area have mean axes lengths of 0.57 m and a<br />

volume of 0.31 m³. The tree stand at the site is mainly composed of Larix decidua Mill.,<br />

intermixed with young Pinus cembra L. and Picea abies L. Karst. The tree age distribution<br />

(Fig.1D) shows relatively young individuals (11–40 yr) in the upper part of the slope, thus<br />

reflecting the influence of former cattle grazing. Rare avalanches may potentially have<br />

influenced the age distribution on the site as well, especially in the uppermost part where the<br />

rockfall couloir opens to form a relatively homogeneous talus slope. Based on geomorphic<br />

mapping and tree morphology at the site, however, rockfall is clearly the only relevant<br />

process causing damage to the sampled trees. In the lower part of the slope and on its<br />

northern part, older trees can be found.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 357


Figure 1: Overview of the study site. (A) Aerial photograph of the study area and location of sampled trees (green dots); (B) overview of<br />

the forest stand; C)View of the study site from the release areas located at the front of the Plattjen rock glacier towards the study site<br />

delimited by dotted box; D)and E) geographical location.<br />

METHODS<br />

Dendrogeomorphic reconstruction of rockfall activity<br />

In total, 616 increment cores were taken from 314 L. decidua trees. Systematic sampling was<br />

favored to a preferential selection of visibly impacted trees as L. decidua is known to heal and<br />

completely hide scars (Stoffel and Perret, 2006). Increment cores were extracted as close to<br />

the injury as possible, where the vascular cambium remained intact, providing complete<br />

tree-ring series and strong signals. In cases where no injury was visible, increment cores were<br />

extracted from the upslope side of the stem to maximize chances for impact detection at 0.5,<br />

1 and 1.5 m. More cores were taken from trees with larger diameters (and thicker, more<br />

structured bark) because more hidden scars can be expected. Trees were sampled every 12m<br />

along transects across the slope, but we excluded trees growing in the fall line of close<br />

neighbors.<br />

Standard dendrogeomorphic procedures were used during tree-ring analysis (Stoffel and<br />

Bollschweiler, 2008, 2010). Growth disturbances (see Astrade et al. (2012) or Stoffel and<br />

Corona (2014) for response typologies) were dated with annual precision. Years with rockfall<br />

activity were determined from injuries present on the increment cores, tangential rows of<br />

traumatic resin ducts (TRD), the presence of callus tissue, abrupt tree growth suppression or<br />

358 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


elease. Only strong GD (Stoffel and Corona, 2014) were kept for further analyses. Also,<br />

when more than one GD is noticed within a year, we only kept the strongest GD for the<br />

analyses. Details on the GD detected and kept for the analyses in the 314 trees used to date<br />

rockfall impacts can be seen in Table 1.<br />

Testing the optimal sampling strategy for spatial reconstruction<br />

We adapted the routine used in Corona et al. (2013a, see article for a detailed description)<br />

designed for snow avalanches, which allows the computation of random extractions (REs) of<br />

trees from the dendrogeomorphic dataset. The routine is based on the RE of n subsamples for<br />

m iterations. The frequency of rockfall activity was computed for each individual tree.<br />

A reference map (Refmap) was interpolated with the frequency values derived from<br />

individual trees of the entire dataset using the Inverse Distance Weighting (IDW) method.<br />

RE was performed with 30, 50, 100, 150, 200, 250, and 300 trees from the complete dataset.<br />

This extraction was repeated 100 times for each threshold in order to reduce dependence of<br />

results on sampling location. Interpolated frequency raster maps were automatically<br />

generated (based on IDW interpolation) for each subsample in the form of 100 “RESubmaps”.<br />

For each submap the Root Mean Square Error (RMSE) was computed from the reference<br />

map to quantify discrepancy between the submap and the reference map.<br />

Maps representing the lowest error (best sampling) and the highest error (worst sampling) for<br />

each step of random extraction were plotted and investigated in further detail via comparison<br />

with the Refmap.<br />

Testing the optimal sampling strategy for temporal reconstructions<br />

Rockfall time series were derived for the 30-300 tree subsets corresponding to best and worst<br />

RESubmaps based on the “range corrected impacts” concept (RCI) (see Trappmann et al.,<br />

2013 for a detailed description). The RCI uses impact probability for the forest stand in each<br />

year to correct the number of recorded tree impacts. The concept thus includes a range of<br />

uncertainty and a quantitative estimation of events missed by dendrogeomorphic analyses.<br />

The RCI also permits definition of an adequate sample size, as the approach yields indications<br />

on the quality and the reliability of the reconstructed rockfall series.<br />

Stratified sampling strategy based on an arbitrary selection of trees<br />

Frequency maps and chronologies derived from random extractions (REs) were compared<br />

with results from the stratified sampling design based on an arbitrary sampling (AS) of trees<br />

so as to establish rules for future sampling design. The AS is based on the assumption that<br />

fewer samples are needed in areas with trees suggesting similar frequencies, meaning that on<br />

a slope segment with identical rockfall frequency, sampling one representative tree could<br />

hypothetically yield a reliable rockfall frequency for the sector. For this purpose, (i) heterogeneity<br />

maps were computed using the ArcGis spatial statistics tool “slope” (ESRI, 1998) which<br />

calculates the maximum rate of value change from one cell to its neighbors on the reference<br />

rockfall frequency map. Then, (ii) sample size was weighted in several compartments of the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 359


heterogeneity map according to the degree of heterogeneity (i.e. less trees in homogeneous<br />

areas). Finally, and for each compartment, (iii) trees were arbitrary selected as a function of<br />

their age (old vs. young trees) and of the number of GD (severely vs. little damaged trees).<br />

RESULTS<br />

Event frequency reconstruction<br />

The oldest tree sampled had 421 tree rings at sampling height and was present at the site<br />

since at least AD 1590, whereas the youngest tree reached sampling height only in AD 2000.<br />

The mean age of the tree population was 60 yr. Based on the analysis of GD in the tree-ring<br />

series, a total of 372 rockfall impacts could be detected (Table 1), resulting in a rockfall<br />

chronology spanning the last 106 years. The mean frequency of rockfalls at the level of<br />

individual trees is 0.031 impacts yr-1. The reference map (Fig.2) reflects the channelizing<br />

topography and also shows that the highest activity occurs at the outlet of the rockfall couloir<br />

descending from the rock glacier and the steep rockwall (south-west, and upper part of the<br />

study site). The northernmost part of the study site exhibits the lowest activity with a mean<br />

Table1: Overview on growth disturbances used to date rockfall injuries.<br />

Growth Traumatic resin<br />

Growth<br />

Callus tissue Injuries<br />

disturbances ducts<br />

suppression<br />

Growth release<br />

Number 336 20 6 6 4<br />

% 90 5 2 2 1<br />

Figure 2: Reference frequency map (Refmap) of rockfall derived from the 314 sampled trees. The interpolation was performed the using<br />

inverse distance weighted method.<br />

360 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3.1: Best (lowest RMSE, left panel) and worst (highest RMSE, central panel) rockfall frequency maps interpolated for each of the<br />

100 subsamples of 30 to 150 randomly extracted trees. Maps on the right panel represent the differences in absolute value between<br />

the best and the worst frequency maps computed for each subsample.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 361


frequency of 0.0067 impacts yr-1 on individual trees. A downslope decline of rockfall activity<br />

also becomes apparent and illustrates the breaking effect of the forest stand on rockfall.<br />

On a temporal scale, the rockfall chronology is reliable after the RCI criterion for the period<br />

1950-2011, earlier years suffer from low numbers of available trees for reconstruction.<br />

Testing optimized random sampling strategy for spatial reconstruction<br />

Figures 3-4 illustrate differences between the reference frequency map (Refmap), computed<br />

with all sampled trees, and the best (min. mean RMSE) and worst (max. mean RMSE)<br />

RESubmaps obtained for the different RE subsets. Visual comparison of results shown in Fig.3<br />

suggests that the best RESubmaps derived from small sample sizes(30-50 trees) properly<br />

reproduce the W-E gradient in rockfall frequency. Conversely, the worst RESubmaps (30 and<br />

Figure 3.2: Best (lowest RMSE, left panel) and worst (highest RMSE, central panel) rockfall frequency maps interpolated for each of the<br />

100 subsamples of 200 to 300 randomly extracted trees. Maps on the right panel represent the differences in absolute value between<br />

the best and the worst frequency maps computed for each subsample.<br />

362 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


50) lead to significant under- and overestimations of rockfall frequencies in large compartments<br />

(south westernmost and northeastern parts) of the slope where trees were absent in<br />

the subset, thereby pointing to clear dependencies between mean RMSE and sampling design,<br />

i.e. the spatial distribution of trees selected for the interpolation.<br />

Figure 4 illustrates that the mean RMSE of RESubmaps decreases by >80% with increasing<br />

sample size, and varies between 0.015±0.01for RESubmap30 to 0.005±0.002 impacts yr–1<br />

for RESubmap300. Noteworthy, the best RESubmap50 and 100 have a RMSE comparable<br />

to the average RMSE obtained for RESubmaps100 and 150, respectively.<br />

Figure 4: Boxplots for the Root Mean Square Error (RMSE) between the reference frequency map computed from 314 trees and<br />

100 frequency maps computed with 30 to 300 randomly extracted trees. Boxplots show minimum, lower (Q 0.25), median (Q 0.5),<br />

upper quantile (Q 0.75) and maximum values for each sub-sample.<br />

Optimized sample size for rockfall chronologies<br />

The rockfall chronologies of the best and worst RESubmaps were then analyzed with the<br />

RCI concept. The chronologies obtained show significant differences depending on the<br />

number of trees used. Table 2 shows that with a sampling size of 30 trees and for 50 trees<br />

(worst sampling), not even a short part of the chronologies can be considered as reliable<br />

because more impacts are assumed to be missed in the trees. With increasing sample sizes<br />

(≥150 trees), RCI chronologies become more stable. According to the considerations mentioned<br />

above, Table 2 suggests a threshold of at least 150-200 trees to obtain short, yet<br />

reliable rockfall chronologies.<br />

Table 2: Time period covered by the rockfall time series determined from the Range Corrected Impact (RCI) for best and worst<br />

subsamples (30-300 trees). Annotation: NR: Not Reliable<br />

Subsample<br />

30 50 100 150 200 250 300<br />

Best<br />

Random<br />

extraction<br />

sampling<br />

Worst<br />

sampling<br />

NR 1994 1994 1991 1985 1950 1950<br />

NR NR 1994 1991 1991 1985 1950<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 363


Chronology reliability is further explored in Fig.6 where the proportion of reconstructed event<br />

years is illustrated for each best and worst sampling of the RESubmaps. Event years are here<br />

defined as years with at least one rockfall impact detected in the given year of the time series.<br />

As could be expected, a larger number of sampled trees will lead to a more complete record<br />

of event years. However, by using a subset of only 30 (10%) trees, it is possible to reconstruct<br />

already 20% of the event years. Starting with 150 sampled trees, more than 50% (61% and<br />

74% for the best and worst sampling, respectively) of the event years can be reconstructed.<br />

When over 250 trees are sampled, the rate of reconstructed events years remains stable as<br />

well as the confidence interval.<br />

Figure 6: Percentage of reconstructed events for the worst and best random extractions as a function of sample sizes.<br />

Random extraction (RE) vs. arbitrary selection (AS)<br />

The heterogeneity map (Fig.7), reveals three compartments (A, B, C) corresponding to<br />

increasing levels of heterogeneity. According to our hypothesis that more sampled trees in<br />

areas with heterogeneous activity will yield better reconstructions, weights of 0.1, 0.3, and<br />

0.6 were attributed to each compartment, respectively. In a first test, 10% of trees were<br />

selected from homogeneous compartment C, 30% from the transition compartment B and<br />

60% from the heterogeneous compartment A for all subsamples from 30 to 300 trees. In a<br />

second test, we inverted the weights of the compartments (A: 0.6; B: 0.3; C: 0.1) to test the<br />

influence of stratified sampling. In each compartment, trees were again arbitrarily selected<br />

according to their age and to the number of visible scars. In total, eight different datasets were<br />

364 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


finally produced (old vs. young, severely vs. lightly injured trees for both preferential<br />

sampling in areas with homogeneous and heterogeneous activity) for sample size varying<br />

from 30-200 trees. The characteristics of each dataset are summarized in Table 3.<br />

Figure 7: Heterogeneity map computed from Refmap using the ArcGis spatial statistics tool “slope” (ESRI, 1998) that calculates the<br />

maximum rate of change in value from one cell to its neighbors. Rectangle delineates the three compartments (A) homogeneous, (B)<br />

intermediate and (C) heterogeneous used respectively weighted 0.1, 0.3 and 0.6 in the stratified sampling strategy.<br />

At the spatial scale, the comparison amongst ASsubmaps (Fig.8) clearly demonstrates that<br />

lower RMSEs are obtained when trees are sampled preferentially in areas with heterogeneous<br />

rockfall activity. Lower errors are also achieved when older trees are selected, and this finding<br />

is regardless of sample size. By contrast, 1.3 (30 trees) to 9 times (200 trees) larger discrepancies<br />

are observed when trees are selected in homogeneous areas and when trees without<br />

visible impact are arbitrarily selected. When comparing the AS and RE submaps, even lower<br />

RMSEs can be found for old trees and for a subset 150, the best<br />

RE results show lower RMSE than any AS reconstruction, even though similarly low levels of<br />

RMSE can be achieved if sampling preferentially focuses on older and frequently impacted<br />

trees in the heterogeneous areas. By comparing the AS and REsubmaps, it also becomes<br />

obvious that preferential sampling of trees without visible impacts results in higher RMSE<br />

values. Errors are lower if old trees are preferably sampled, over younger trees.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 365


Figure 8: Root Mean Square Error (RMSE) measuring the deviation of frequency maps generated with different subsets from the<br />

reference frequency map. RMSE is given for various sample sizes of best and worst random extractions as well as for different arbitrary<br />

selections. Preferential sampling in areas with heterogeneous rockfall activity is presented by ‘E’ and in homogeneous by ‘O’.<br />

Temporally, Table 3 demonstrates that in many cases, chronologies from AS are more reliable<br />

than those from RE, regardless of the sample size. For sample size


CONCLUSION<br />

Evaluating the potential of tree-ring analysis on an extensively sampled slope in the Valais<br />

region (Swiss Alps) reveals that the optimal sampling size and strategies will depend strongly<br />

on the aim of the reconstructions. We demonstrate that for a site with frequent rockfalls<br />

composed of individual rocks, as little as 6-10 trees/ha can be sufficient to obtain frequency<br />

maps similar to those obtained with the full dataset containing 63 trees/ha. Temporally,<br />

results show that 40 trees/ha can be sufficient to reconstruct 80% of past rockfall event years<br />

and that the chronologies obtained appear balanced. Although the thresholds provide very<br />

valuable indications on optimal sample sizes needed for reliable reconstructions, they should<br />

not be seen as absolute values. Instead, sample design and the number of investigated trees<br />

will need to remain flexible, as the nature of the process, topography, availability and ability<br />

of trees to record events will differ from site to site. In addition, representative trees will need<br />

to be selected with great care, even more so in case of small sample sizes. We thus suggest<br />

that trees should be selected after a preliminary assessment of process activity at the study site<br />

and based on the degree of heterogeneity in rockfall frequency. With respect to the selection<br />

of trees, we encourage a balanced choice of different age classes including old and heavily<br />

affected trees. Optimized minimum sampling sizes and design will ultimately facilitate<br />

fieldwork, and render analyses and interpretation more reliable, less time consuming, and<br />

will also improve cost-benefit ratios.<br />

REFERENCES<br />

- Alestalo, J., 1971. Dendrochronological interpretation of geomorphic processes.<br />

Fennia 105: 1-139<br />

- Astrade, L., Stoffel, M., Corona, C., Lopez Saez, J., 2012. L'utilisation des cernes de<br />

croissance des arbres pour l'étude des événements et des changements morphologiques :<br />

intérêts, méthodes et apports des recherches alpines à la dendrogéomorphologie.<br />

Géomorphologie: Relief, Processus, Environnement3: 295–316.<br />

- Berger, F., Quetel, C., Dorren, L., 2002. Forest: A natural protection mean against rockfall,<br />

but withwich efficiancy? The objectives and methodology of the ROCKFOR project. In:<br />

Proceedings International Congress Interpraevent 2002 in Pacific Rim, Matsumoto, Japan,<br />

pp. 815-826.<br />

- Corona, C., Lopez-Saez, J., Stoffel, M., 2014. Defining optimal sample size, sampling design<br />

and thresholds for dendrogeomorphic landslide reconstruction. Quaternary Geochronology<br />

22: 72-84.<br />

- Corona, C., Lopez Saez, J., Stoffel, M., Rovéra, G., Edouard, J.L., Berger, F., 2013a.<br />

Seven centuries of avalanche activity at Echalp (Queyras massif, southern French Alps)<br />

as inferred from tree rings. The Holocene 23:2: 292-304<br />

- Corona, C., Lopez-Saez, J., Stoffel, M., Bonnefoy, M., Richard, D., Astrade, L., Berger, F.,<br />

2012. How much of the real avalanche activity can be captured with tree ring ? An evaluation<br />

of classic dendrogeomorphic approaches and comparison with historical archives.<br />

Cold Regions Science and Technology 74-75: 31-42.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 367


- Dorren, L.K.A., Berger, F., Le Hir, C., Mermin, E. and Tardif, P., 2005. Mechanisms, effects<br />

and management implications of rockfall in forests. Forest Ecology and Management<br />

215(1-3): 183-195.<br />

- Dorren, L., Berger, F., Jonsson, M., Krautblatter, M., Moelk, M., Stoffel, M., Wehrli, A.,<br />

2007. State of the art in rockfall–forest interaction. Schweizerische Zeitschrift für Forstwesen158<br />

(6): 128–141.<br />

- Gsteiger, P., 1989. Steinschlag, Wald, Relief. Empirische Grundlagen zur Steinschlagmodellierung.<br />

Geographisches Institut, Universität Bern.<br />

- Jahn, J., 1988. Entwaldung und Steinschlag. Proceedings of the International Congress<br />

Interpraevent 1988, 1: 185-198.<br />

- Moya, J., Corominas, J., Pérez Arcas, J., 2010. Tree-ring based assessment of rockfall<br />

frequency on talus slopes at Solà d’Andorra, Eastern Pyrenees. Geomorphology 118 (3-4):<br />

393-408.<br />

- Schneuwly-Bollschweiler, M., Corona, C. Stoffel, M., 2013. How to improve dating quality<br />

and reduce noise in tree-ring based debrisflow reconstructions, Quaternary Geochronology<br />

18: 110-118.<br />

- Schweingruber F.H., 1996. Tree rings and environnment: Dendroecology. Paul Haupt, Bern,<br />

Stuttgart, Wien, 609 pp.<br />

- Šilhán, K., Pánek, T., Hradecký, J., 2013. Implications of spatial distribution of rockfall<br />

reconstructed by dendrogeomorphological methods. Nat. Hazards Earth Syst. Sci. 13:<br />

1817–1826. doi:10.5194/nhess-13-1817-2013<br />

- Stahle, DW., Fye, FK., Therrell, MD., 2003. Interannual to decadal climate and streamflow<br />

variability estimated from tree rings. Development in Quaternary Sciences 1: 491-504.<br />

- Stoffel, M., Corona, C., 2014. Dendroecological dating of geomorphic disturbance in trees.<br />

Tree-Ring Research 70, 3-20.<br />

- Stoffel, M., Bollschweiler, M., 2010. Tree-ring analysis in natural hazards research – preface.<br />

Natural Hazards and Earth System Sciences 10: 2355–2357.<br />

- Stoffel, M., Bollschweiler, M., 2008. Tree-ring analysis in natural hazards research – an<br />

overview. Natural Hazards and Earth System Sciences8: 187–202.<br />

- Stoffel, M., Perret, S., 2006. Reconstructing past rockfall activity with tree rings: some<br />

methodological considerations. Dendrochronologia24(1): 1-15.<br />

- Stoffel, M., Butler, D.R., Corona, C., 2013. Mass movements and tree rings: A guide for<br />

dendrogeomorphic field sampling and dating. Geomorphology 200: 106-120.<br />

- Stoffel, M., Lièvre I., Monbaron, M., Perret, S., 2005a. Seasonal timing of rockfall activity<br />

on forested slope at Täschgufer (Swiss Alps)- a dendeogeomorphical approach. Zeitschrift<br />

fuer Geomorphologie 49: 89-106.<br />

- Stoffel, M., Scheuwly, D., Bollschweiler, M., Lièvre I., Delaloye, R., Myint, M., Monbaron,<br />

M., 2005b. Analyzing rockfall activity (1600-2002) in a protection forest- a case study using<br />

dendrogeomorphology. Geomorphology 68: 224-241.<br />

368 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Trappmann, D., Corona, C., Stoffel, M., 2013. Rolling stones and tree rings: a state of<br />

research on dendrogeomorphic reconstructions of rockfall. Progress in Physical Geography<br />

37(5): 701-716.<br />

- Varnes, D.J., 1978. Slope movements: types and processes. In Schuster, R.L., Krizek, R.J.,<br />

(eds), Landslide analysis and control. Transportation Research Board, Special Report 176,<br />

Washington D.C., pp 11-33.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 369


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Critical Rainfall Conditions Triggering Shallow<br />

Landslides or Debris Flows in Torrents - Analysis of<br />

Debris Flow events 2012, 2013 and 2014 in Austria<br />

Markus Moser, DI 1 ; Stefan Janu, DI 2 ; Susanne Mehlhorn, Dipl. Geogr. 2<br />

ABSTRACT<br />

Generally, debris flows are caused by both small-scale intensive precipitation and long lasting<br />

rainfalls with lower intensity but high pre-wetting or both combined. The triggering mechanism<br />

of the debris flow events in Austria 2012, 2013 and 2014 were mass movements on<br />

steep slopes in the upper catchments. Those masses slide with very high velocity into the<br />

torrent beds provoking hyperconcentrated flows or debris flows. In areas of the geologically<br />

unstable Greywacke zone, the torrents were cleared up onto the bedrock and the debris was<br />

deposited in the storage areas of existing debris flow breakers or in torrents without technical<br />

protection measures the debris caused catastrophic damage on the alluvial fan. Following the<br />

events, comprehensive documentations and analyses were undertaken to support the<br />

understanding of the occurred processes to mitigate future hazards. Unfortunately, the<br />

small-scale heavy rain events are not detected by the precipitation stations. Therefore,<br />

weather radar data (INCA-Data) analysis was used to determine the - usually very local - intensities<br />

which caused those catastrophic landslides and debris flows.<br />

KEYWORDS<br />

critical rainfall conditions; debris flow; event analysis<br />

INTRODUCTION<br />

The knowledge of which precipitation intensities and durations are capable of triggering<br />

debris flows and landslides are of decisive importance to the effort of optimizing integrated<br />

protection concepts in torrent control. This knowledge is won through thorough event<br />

documentation and detailed analysis, here, of debris flow events that occurred in Austria in<br />

2012, 2013 and 2014. These events were characterized by very localized precipitation events<br />

of high intensities, both with and without a high degree of pre-wetting. Most of the debris<br />

flow events were triggered by slope failures in the uppermost catchment areas, which in turn<br />

were caused by a high water saturation of the soil and a temporary increase in the pore water<br />

pressure. The slopes were therefore destabilized through a reduction in the soil’s shear<br />

strength.<br />

1 Austrian Service for Torrent and Avalanche Control, Vienna, AUSTRIA, markus.moser@die-wildbach.at<br />

2 Austrian Service for Torrent and Avalanche Control<br />

370 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP041


PROBLEM STATEMENT<br />

Determining the precipitation sums per unit of time which are capable of triggering debris<br />

flow events such as those considered here are problematic for two reasons. Due to the very<br />

small spatial extent of the precipitation events, an analysis of data from precipitation stations<br />

(which are often not situated directly in the catchment area in question) is difficult and needs<br />

rely on interpolations. In addition to this, factors such as the event‘s prehistory (e.g. degree of<br />

pre-wetting) and the area’s disposition due to its geology play a deciding role. Numerous<br />

published studies, beginning with Caine (1980), Crozier (1986) and Zimmermann (1997),<br />

can be found that report empirically determined threshold values based on the precipitation<br />

parameters of intensity i [mm/h] and duration D [h]. The data used to investigate the<br />

relationships of intensity and duration were drawn from events which occurred in areas that<br />

have a great diversity of climatological and geological characteristics, and as such, the<br />

databases must be considered as rather inhomogeneous. Crozier extended the method in a<br />

1997 study to include precipitation data from rainfall events that did not trigger mass<br />

movement events. Guzzeti et al. (2008) employed the same method, but constrained the<br />

threshold values for a variety of climatic regions. MLIT (2004) expanded the methodology<br />

employed by Crozier (1986) by considering the prehistory (pre-wetting) of the events<br />

analysed, as well as the effective rainfall necessary to trigger slides and debris flow events.<br />

Strenger (2009) attempted to calculate precipitation threshold values for the triggering of<br />

debris flow events in the Vinschgau (South Tyrol, Italy) using the Antecedent Daily Rainfall<br />

Models after Glade et al. (2000). He was able to prove that although the model is generally<br />

well suited for such calculations, it is inadequate to capture the heavy rainfall events, which<br />

are usually of a very localized spatial extent, due to the poor spatial resolution of weather<br />

station data. Also Braun 2014 referred in his study to the inadequate detection of local heavy<br />

rainfall events with weather station data. Analyses of rainfall events using the highest<br />

available resolution for the whole dataset of one day lack the short term component.<br />

METHOD<br />

For this study, the analysis of a precipitation intensity and duration relationship was carried<br />

out using weather radar data (INCA data), limited spatially to a single geological unit in<br />

Austria, the Greywacke zone. The dataset was furthermore divided into mass movement<br />

events that occurred either with or without pre-wetting to take into account the catchment’s<br />

prehistory and disposition. The threshold values were empirically determined using the<br />

relationship found in measured precipitation data (weather station as well as weather radar<br />

data) between precipitation intensity i [mm/h] and duration D [h] (I = α× Dβ). The smallest<br />

precipitation sum which triggered a landslide or debris flow was selected as the threshold<br />

value.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 371


DATA SOURCES<br />

Weather radar data (INCA)<br />

The INCA (Integrated Nowcasting through Comprehensive Analysis) System of the ZAMG<br />

(Zentralanstalt für Meteorologie und Geodynamik; Eng: Central Institute for Meteorology and<br />

Geodynamics) is used for spatial and temporal analyses of a high resolution, as well as for<br />

weather predictions on the order of a few hours, taking particular account of regional and<br />

local topographic effects. The precipitation analysis of the INCA System comprises a combination<br />

of interpolated weather station data (with elevation effects taken into account) and<br />

weather radar data. The combined use of radar and rain gauges provides the benefit of each<br />

of these instruments’ respective strengths: the exactness of a point measurement on the<br />

ground (rain gauge) and the acquisition of a precipitation system’s spatial structure with the<br />

aid of weather radar. On the other hand, the methodology is not without weaknesses or<br />

possible shortfalls: unrepresentative locations and/or low spatial density of weather stations<br />

and rain gauges on the one hand, as well as the uncertainty of indirect precipitation measurement<br />

via weather radar on the other hand. The available data raster has a horizontal<br />

resolution of 1 x 1 km and a temporal resolution of 15 minutes.<br />

Figure 1: Geological map with catchment areas<br />

372 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Geological conditions<br />

All of the investigated events occurred in the Greywacke zone (from Greywacke, the name of<br />

a Paleozoic sandstone). Geologically, this zone is located between the Northern Limestone<br />

Alps towards the north, of which it forms the geological base, and the Central Eastern Alps in<br />

the south. The bedrock consists of phyllite and the Paleozoic slate of the Greywacke zone,<br />

which are mostly extensively shattered and as a consequence prone to mechanical and<br />

chemical weathering. These rocks, especially the clay layers, produce a laminar, creeping<br />

scree material that covers the slopes in a substantial mantle of weathering debris of various<br />

thicknesses up to the ridges. This unconsolidated rock already becomes unstable at minimal<br />

levels of water uptake, which, upon further wetting produces large mass movements.<br />

DATA SOURCES<br />

Disposition – with and without pre-wetting<br />

The following two examples serve to illustrate the importance of a catchment area’s prehistory.<br />

The event which occurred in Klemmgraben in 2014 was a single event without any<br />

antecedent precipitation (0 mm precipitation in 3 days), whereas the event that occurred in<br />

the Lorenzerbach in 2012 followed three days of antecedent rain( 200 mm precipitation<br />

in 3 days) with the resulting high degree of pre-wetting making for a higher disposition.<br />

The different wetting-situations result in different behavior of the catchments.<br />

Figure 2: Precipitation and total precipitation – Klemmgraben 2014<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 373


Figure 3: Precipitation and total precipitation – Lorenzerbach 2012<br />

STUDY SITES AND EVENTS<br />

Lorenzerbach, Paltental 2012<br />

The muddy debris flow event of 21. July 2012 in St. Lorenzen was caused by a combination<br />

of high sums of precipitation in the preceding 4 weeks (430 mm, this equals to a return<br />

period of more than 300 years) and heavy rain on the night of the event. Since there are no<br />

precipitation stations inside the catchment area, the areal precipitation was determined with<br />

the aid of weather radar data (INCA analysis, raster data 1 x 1 km, 15 minute intervals.).<br />

The highest 15 minute precipitation rate within the catchment area was found to be nearly<br />

40.4 mm/15 min and occurred on the 19th of July. In sum, from 14:00 UTC of the day before<br />

the event up to shortly after the debris flow, 96 mm of precipitation was registered in the<br />

catchment area of the Lorenzerbach torrent. These extreme precipitation sums led to a<br />

complete saturation of the groundwater reservoirs and to an activation of flow- and slide<br />

processes along the gorge sections.<br />

Sattelbach 2013<br />

A similar disposition could be reconstructed for the debris flow event in the Sattelbach<br />

torrent. A high pre-wetting since the beginning of May 2013, in combination with intensive<br />

rainfall toward the end of that month and on the 1st and 2nd of July, resulted in numerous<br />

debris flow and landslide events in the torrential catchment areas of Salzburg’s Pinzgau and<br />

Pongau regions. A catastrophic debris flow occurred in the municipality of Hüttau on the<br />

morning of 2. June 2013. Following a three day period of rain, a marked increase in<br />

precipitation rates occurred in the night of 1. June to the morning of 2. June. Evaluation of<br />

the precipitation rates obtained from weather radar data revealed a precipitation sum of<br />

80 mm in the catchment area up to the time of the debris flow. The trigger of the debris flow<br />

could be identified as a 2000 m² large landslide in the upper part of the catchment. The<br />

374 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


steepness of the ravine consequently enabled the development of a debris flow, which in its<br />

passing cleared the fore-filled sediment down to the bedrock. According to expert estimates,<br />

the fully developed debris flow transported 12,000 m³ of material.<br />

Klemmgraben 2014<br />

In terms of pre-wetting, a different disposition existed for the debris flows of 2014. Very short<br />

but intensive precipitation events were responsible for triggering these debris flows, a<br />

circumstance that was substantiated through analyses of weather radar data as well as data<br />

from surrounding weather stations. The Klemmgraben event on the 1st of August was<br />

likewise triggered by a very short but high intensity precipitation event. According to eyewitness<br />

reports, the heavy rain cell was situated above the upper portions of the catchment<br />

area. The analysis of the local precipitation was complemented by processing of INCA data,<br />

the sum of the precipitation was 28.3 mm/45 min with a peak of 12 mm/ 15 min. The<br />

surrounding precipitation stations registered from 16.9 mm (Flachau) to 33.2 mm (Radstadt)<br />

of rainfall on that day. The station Hüttau, in the north west of the catchment area, registered<br />

60 mm/45 min.<br />

RESULTS - CRITICAL RAINFALL CONDITIONS<br />

A number of studies (Austria/BFW 1972 – 2000, Caine 1980, Caine in Dodt 2007, Giannecchi<br />

2006, Braun 2014) have described critical rainfall conditions as a relationship between the<br />

intensity i [mm/h] and duration D [h] of a precipitation event that acts as a trigger for mass<br />

movements.<br />

The precipitation intensities – values in 15 minute intervals, derived from INCA analyses<br />

– that were associated with the debris flow events were classified according to the type of<br />

event and displayed graphically in a precipitation intensity-duration diagram.<br />

The following two event types were defined:<br />

– Events with a high level of pre-wetting<br />

– Events that occurred without any pre-wetting<br />

A comparison reveals the high intensities associated with events that occurred without<br />

pre-wetting and the low intensities associated with events with pre-wetting.<br />

The lowest precipitation values which triggered a debris flow were selected in order to obtain<br />

functions of rainfall intensity and duration thresholds for each event type in the Greywacke<br />

zone. Regression analysis yields the following relationship between threshold precipitation<br />

intensity and duration for events which occurred without pre-wetting:<br />

Formula 1: Regression equation for the relationship between<br />

precipitation intensity and duration for events without pre-wetting<br />

For events with a high degree of pre-wetting, these precipitation parameters are related thus:<br />

Formula 2: Regression equation for the relationship between<br />

precipitation intensity and duration for events with pre-wetting<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 375


Figure 4 Rainfall intensity-duration thresholds of 8 debris flow events occurred 2012 - 2014 in the Greywacke zone, Austria<br />

Table 1 Precipitation threshold values per duration, event type and difference between event types in %<br />

This comparison also confirms the generally valid statement that relatively low precipitation<br />

intensities are sufficient to trigger debris flows if a high degree of pre-wetting is given. The<br />

estimated threshold value for the short duration for example of 0.5 hours only 58 % from the<br />

threshold value without pre-wetting is needed. The highest precipitation intensities found for<br />

the events described above (in mm/h, mm/2h, and so forth) correspond well to the values<br />

quoted in literature, as being critical, debris flow triggering rainfall conditions.<br />

376 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DISCUSSION<br />

The advantage of the method introduced here, using weather radar data, is that it also allows<br />

precipitation threshold values to be calculated for very locally occurring intense rainfall<br />

events which cannot be sufficiently resolved using the existing weather station network. It is<br />

however important to not only consider the immediate time period of the mass movement<br />

in question, but to also include and analyse the event’s pre-history within its catchment area.<br />

Those different pre-wetting situations are the reason for a different behavior of the catchments<br />

and result in a higher disposition for catchments with a high degree of pre-wetting.<br />

Dividing a given dataset into events with and without pre-wetting is a first step and the<br />

examples provided here clearly illustrate that the results may differ quite substantially. Since<br />

different catchment areas may have significantly different dispositions for producing<br />

landslides and debris flows, based on their geology. Therefore only events in geological similar<br />

catchment areas were selected. An even more detailed data acquisition will be necessary for<br />

further investigations; this example may constitute an applicable approach for such research<br />

ventures.<br />

REFERENCES<br />

- Braun, M. 2014: Hydrometeorological Triggers of Debris Flows. Evolution of the temporal<br />

occurrence of debris flows between 1900 and 2008. Diplomarbeit / Masterarbeit - Institut für<br />

Alpine Naturgefahren (IAN), BOKU-Universität für Bodenkultur.<br />

- Caine, N., 1980: The rainfall intensity – duration control of shallow landslides and debris<br />

flows. Geografiska Annaler Series a-Physical Geography, 62(1-2): 23-27.<br />

Crozier, M. J.: Landslides: causes, consequences and environment, Routledge, London-<br />

New York, 252, 1986.<br />

- Guzzetti, F., Peruccacci, S., Rossi, M. and Stark, C.P., 2008. The rainfall intensity-duration<br />

control of shallow landslides and debris flows: an update. Landslides, 5(1): 3-17.<br />

- Zimmermann, M., Mani, P., Gamma, P., 1997. Murganggefahr und Klimaänderung -<br />

Ein GIS-basierter Ansatz. Nationales Forschungsprogramm "Klimaänderungen und Naturkatastrophen"<br />

(NFP 31), Schlussbericht. vdf Hochschulverlag AG an der ETH Zürich.<br />

- Glade T. (2000): Modelling landslide-triggering rainfalls in different regions of New Zealand<br />

the soil water status model. In: Zeitschrift f. Geomorphologie, Suppl.-Bd.122, S.63-84.<br />

- Godt. J. W., Coe J. A ., 2006: Alpine debris flows triggered by a 28 July 1999 thunderstorm<br />

in the central Front Range, Colorado, U.S. Geological Survey, Denver Federal Center, Box<br />

25046, M.S. 966, Denver, CO 80225-0046, USA<br />

- MLIT, 2004: Guidelines For Development of Warning and Evacuation System Against<br />

Sediment Disaster in Developing Countries, Ministry of Land, Infrastructure and Transport -<br />

Infrastructure Development Institute. Japan (2004).<br />

- Strenger, Mark-Philip (2009) Niederschlagsschwellenwerte bei der Auslösung von Muren.<br />

Diplomarbeit, Universität Wien. Fakultät für Geowissenschaften, Geographie und Astronomie;<br />

BetreuerIn: Glade, Thomas<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 377


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Experimental Study on Effect of Houses on Debris-Flow<br />

Flooding and Deposition in Debris Flow Fan Areas<br />

Kana Nakatani, Dr. 1 ; Megumi Kosugi 2 ; Yuji Hasegawa 3 ; Yoshifumi Satofuka 4 ; Takahisa Mizuyama 5<br />

ABSTRACT<br />

This study conducted model experiments to determine the influence of houses on debris flow<br />

flooding and deposition. We applied uniform and also coarse-grained sediment in the<br />

following scenario cases: without houses; with houses; with houses and fences; and with<br />

houses that can be destroyed. The model experiments showed that when houses are present,<br />

the debris flow spreads widely in the cross direction immediately upstream of the houses.<br />

Houses located in the debris fan also influence the deposition area. Especially when fences<br />

exist around the houses, flow moves down between the fences, as in the real disaster cases,<br />

where flow moves down towards the roads. Finally, when houses are destroyed, flow moves<br />

down through the destroyed houses, and changes the flooding and deposition process<br />

compared with the non-destroyed houses case. With debris flow containing coarse-grained<br />

sediment, most of it deposits in the upstream area of the houses when houses exist.<br />

KEYWORDS<br />

debris flow; debris flow fan area; house influence; model experiment<br />

INTRODUCTION<br />

Debris flow causes flooding and sediment deposition when it reaches the debris flow fan area.<br />

In Japan, houses are usually built in debris flow fan areas through urban development, and<br />

these buildings affect flow and deposition during a debris flow event. As the number of<br />

people living in debris flow fan areas has increased because of rapid urban development,<br />

debris flow disasters, such as the one that occurred in August 2014 in Hiroshima Prefecture,<br />

Japan, have caused widespread damage to human lives and infrastructure. However, few<br />

studies have examined the effect of houses on debris flow disasters. This study conducted<br />

model experiments to determine the influence of houses on debris flow flooding and<br />

deposition.<br />

METHODS<br />

First, we considered typical landform and debris flow-scale conditions. For landform<br />

conditions, we set a mountainous torrent in the upstream area as a rectangular straight open<br />

channel with a length, width, and slope of 5 m, 0.1 m, and 15°, and debris flow fans as<br />

1 Kyoto University, Kyoto, Kyoto JAPAN, kana2151@kais.kyoto-u.ac.jp<br />

2 Ministry of Land, Infrastructure and Transport, Chubu Regional Bureau, Tenryugawa Upstream River Office<br />

3 Disaster Prevention Research Institute, Kyoto University<br />

4 Department of Civil Engineering, Ritsumeikan University<br />

5 National Graduate Institute for Policy Studies<br />

378 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP025


esidential areas in the downstream area (Fig.1). The model scale was 1/50, and the transverse<br />

direction was set as flat. We covered the experimental channel with 0.1-m-thick<br />

sediment and supplied a steady flow of water from upstream to generate a debris flow.<br />

The peak discharge and continuance time were set by considering that small-scale debris flow<br />

occurs at a high frequency of 2.0 L/s for 30 s and 5.0 L/s for 20 s. We examined cases of<br />

uniform sediment (diameter 3 mm) and uniform sediment with 5% coarse-grained sediment<br />

(diameter 20 mm). The sediment density was 2.58 g/cm 3 and supplied sediment volume was<br />

45 L (including void). As shown in Table 1, we considered the scenarios of without houses,<br />

with houses, with houses and fences, and with destructible houses. To model actual two-story<br />

6-m-high houses and 2-m-high fences, 0.12-m-high house and 0.04-m-high fence models<br />

were used. In this study, we set destructible houses to see how the flow depth and deposition<br />

caused by debris flow change from cases with non-destructible houses. Therefore, we<br />

modeled the destructible house which can be destroyed with debris flow caused by supplied<br />

discharge 5.0L/s, and didn’t consider the strength of house.<br />

Figure 1: Cross-sectional (top left) and longitudinal (bottom left) profiles of the debris flow experiment model (top right), houses and<br />

sensors location (middle right) and destructible houses (bottom right)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 379


Table 1: Experiment cases<br />

To see the time series difference of debris flow direction in debris fan due to houses and<br />

fences existence, we recorded the experiments in video and the time series of flow depth and<br />

deposition thickness using ultrasonic wave sensors (see Fig.1). The sediment thickness and<br />

range were also measured after the experiments.<br />

RESULTS<br />

The model experiments showed that when houses were present, the debris flow spread<br />

widely in the transverse direction immediately upstream of the houses (Fig. 2 left). Houses<br />

located in the debris flow fan also influenced the deposition area. In the case of houses with<br />

fences, the flow moved down between fences, which is similar to actual disasters where<br />

debris flow moves down toward the roads.<br />

Fig. 3 shows the results of deposition thickness distribution. From results with no houses and<br />

uniform sediment cases, 2 L/s (Case 1) showed deposition in the upstream side where the<br />

incline changed from 12° to 9°. With 6 L/s (Case 4), results showed deposition in the<br />

downstream side where the incline changed from 9° to 6°. It is assumed that the deposition<br />

was affected by the change in the vertical section-like incline. When compared with the<br />

uniform sediment case and the case with 5% coarse-grained sediment, the result that<br />

included coarse-grained sediment showed deposition widely in the downstream area.<br />

When houses exist, results show deposition especially in the upstream of the house in the<br />

steepest location (Case 2). When fences exist around the houses, deposition becomes more<br />

remarkable around the houses and fences (Case 3). Results in 6 L/s cases show the same<br />

trend. When houses and fences exist, flow spreads in the transverse direction and deposition<br />

occurs in the upstream area compared with the cases without houses. When fences exist,<br />

flows are obstructed and deposition seems to occur because the flow move between the<br />

fences. When houses are destroyed by the debris flow (Case 6 and 10), flow pass through the<br />

inside of the destroyed houses, and results show deposition in the downstream area compared<br />

with the results of the cases with non-destructible houses.<br />

380 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Deposition after the experiment (left) and sensors results (right) for debris flow discharge of 2.0 L/s (Case1-3)<br />

Fig. 4 shows the results of coarse sediment distribution and surface deposition. The plot<br />

shown in a circle in the figure represents the position of the coarse sediment in the surface;<br />

coarse sediment inside the deposition layer is not plotted as a circle.<br />

In the cases without houses (Case 8), little coarse sediment exists in the center line of the<br />

alluvial fan in the surface, in the 12–6° step-gradient. This seems to happen because when the<br />

flow reaches the fan from the channel, flow spreads widely, and then coarse sediment is left<br />

on the side where flow depths become small. Meanwhile, in the low-gradient (6–3°) area,<br />

coarse sediment deposits in the center of the surface.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 381


Figure 3: Sediment deposition thickness distribution for all the cases<br />

382 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 4: Coarse-sediment distribution and surface deposition (Cases 8-10)<br />

In the case of houses without destruction (Case 9), a larger deposition of the gravel occurs<br />

on the upstream side because of the influence of the houses. In the upstream section in the<br />

figure, no deposition can be seen, but in the 2nd and 3rd sections from the upstream,<br />

deposition of the gravel can be noted. Passing through the area with the houses, gravel moves<br />

downstream to the low-gradient 6–3°area. In Case 10 (houses with destruction), the<br />

distribution of the gravel is slightly different compared with Case 9. In Case 10, deposition<br />

of gravel can be seen in the upstream section because a large amount of gravel deposited<br />

upstream of the houses and on the inside of the destroyed houses.<br />

Fig.5 shows the data measured by the ultrasonic sensor. Note that in 6 L/s cases, flow<br />

splashed on the ch2 sensor due to the existence of houses, and data could not be acquired.<br />

During the experiment, the sensor measured the flow depth and the deposition thickness,<br />

and after the experiment it showed the deposition thickness.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 383


Figure 5: Sensor results of height in Cases 4, 5, 7(left), in Cases 4, 5, 8, 9 (center) and in Cases 5, 6, 9, 10(right)<br />

From Fig. 2 right, Case 2 showed high value compared to Case1 in ch1. Case 3 data was not<br />

recorded due to sensor trouble in ch1. Since the ch1 sensor is placed on the right bank side,<br />

the sensor reaction shows that flow expanded from the house located most upstream, and it<br />

reached the position of ch1. After 60 s passed, Case 2 still showed a large height, which reveals<br />

that deposition occurred in the front of the house. In the ch2 sensor, no major changes<br />

can be seen at the start of the value increase. Case 3 showed a slightly larger value at the<br />

start. After the increase, Case 1 height seems to decrease. However, values of Cases 2 and 3<br />

remained same and did not decrease. This seems to happen because sediment was not eroded.<br />

In ch3, Case 1 sensor did not react. In Cases 2 and 3, the sensor reacted and showed that flow<br />

and deposition had occurred. The extension of flooding and deposition occurred because of<br />

the existence of houses, which was more significant in Case 3. In ch4, Case 1 showed the<br />

largest value, second largest was Case 3, and smallest was the Case 2. The reason why Case 3<br />

showed a lager value than Case 2 is that when fences exist, flow seems to be inhibited<br />

between the fences and deposition occurs in that position.<br />

384 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Fig. 5 left show the cases of 6 L/s comparing the existence of houses and fences. Case 7<br />

showed the largest value, second largest was Case 5, and the smallest was Case 4 in ch1.<br />

These results are due to the effect that flows spread in the transverse direction when houses<br />

and fences exist. In ch3, Case 4 did not react, Case 5 value increased to 5 mm, and Case 7<br />

increased to 30 mm, then decreased and showed 5 mm deposition at 60 s. In Case 7, two<br />

peaks of the value can be seen. From the experiment observation, the first peak happened<br />

when flow reached the alluvial fan, flowed down the center of the fan, and moved toward<br />

ch1, then ch3 from the outer side. The second peak happened when the flow reached the<br />

alluvial fan, moved down the center of the fan, passed through the area between the fences,<br />

and moved towards ch3. In ch4, Case 4 showed the largest value, followed by Case 7, and the<br />

smallest was Case 5’s.<br />

Fig. 5 center show the cases of 6 L/s comparing the influence of the existence of houses and<br />

the coarse-sediment. Case 5 and Case 9 results showed a larger value than cases without<br />

houses in ch1. Case 9 result including coarse-sediment showed the largest value. In Cases 4<br />

and 8, flow reached the alluvial fan, spread in the transverse direction, then reached the ch1<br />

sensor and showed reaction. Case 4 showed a larger value than Case 8. In ch3, the sensor did<br />

not react in cases without houses because flow did not reach this area. Cases 5 and 9 showed<br />

reaction in ch3, and the largest value was shown in Case 9, as in ch1. In ch4, the sensor<br />

showed a high value at the peak in Cases 4 and 8. In the latter half of the experiment, the<br />

value decreased in all cases and no significant change could be seen.<br />

Fig. 5 right show the cases of 6 L/s comparing the influence of the existence of destructible<br />

houses and the coarse-sediment. In ch1, cases of destructible houses showed a smaller value<br />

compared with the cases of non-destroyed houses. Case 6 showed the smallest value, and the<br />

next smallest was Case 10. This difference seems to happen because of the house destroyed<br />

time. The house located at the top was destroyed earlier in Case 6 than in Case 10, therefore<br />

flow passing through to the downstream became larger and flow moving in the transverse<br />

direction to ch1 decreased. In ch3, the sensor reacted in Cases 5 and 9. In cases with<br />

destroyed houses, the value is small and also the duration is short in ch3. In ch4, almost all<br />

cases show the same start of the data increasing to the peak value. Cases 9 and 10 showed<br />

almost the same peak value, and Case 10 showed a slightly earlier peak time. This was<br />

because the flow passed through the destroyed house and flowed downstream in Case 10.<br />

On the other hand, Case 9 took more time because flow moved around the houses. In<br />

uniform sediment Cases 5 and 6, initially flow reached ch4 and showed the same reaction.<br />

After 8 s, Cases 6 and 5 showed different reactions. This was because house destruction in<br />

Case 6 occurred at the top, and flow moved down and deposition occurred around and inside<br />

the destroyed house. The flow from the upstream to ch4 was temporarily reduced.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 385


CONCLUSIONS<br />

We investigated the effect of the presence of houses and fences, and the destruction of houses<br />

in flooding and deposition of debris flow by a model experiment. Results showed that when<br />

houses exist, the flooding and deposition area changes, and remarkable deposition occurs<br />

upstream of the houses. When houses and fences exist, flow spreads in the transverse<br />

direction and deposition occurs in the upstream area compared with cases without houses.<br />

When fences exist around the houses, flow moves down between the fences toward the road.<br />

When houses can be destroyed, water and sediment pass through the destroyed houses;<br />

therefore sediment can move downstream compared with cases with non-destroyed houses.<br />

When including coarse-sediment, a large amount of gravel deposits upstream and inside of<br />

the destroyed houses.<br />

According to the time-series changes, when fences exist around the houses, flow direction<br />

can be changed and more than one peak may occur from the flow passing through the roads.<br />

When house destruction happens, the timing of the destruction causes a difference of flow<br />

direction and peak time compared with the non-destroyed houses.<br />

On engineering hazard assessment, the area affected by debris flow have been estimated<br />

without considering houses influence until now. However, from this study, we confirmed that<br />

houses, fences, and the destruction of houses affect the debris flow behavior in an alluvial<br />

fan. Therefore, to estimate the hazard area with accuracy and to plan the effective mitigation<br />

measurement, it is necessary to consider the houses influence. For future studies, we need to<br />

gather more information about the impact of houses, fences, and destruction of houses in a<br />

real disaster. Based on these experimental results, we are planning to propose numerical<br />

simulation models and programs that can describe the effect of houses on the debris flow<br />

behavior in the alluvial fan area.<br />

ACKNOWLEDGEMENT<br />

This study was supported by the JSPS KAKENHI, Grant Number 15K16312, Grant-in-Aid for<br />

Young Scientists (B).<br />

REFERENCES<br />

- Nakatani, K., Okuyama, Y., Hasegawa, Y., Satofuka, Y., Mizuyama, T. (2013): Influence of<br />

housing and urban development on debris flow flooding and deposition, Journal of Mountain<br />

Science, Volume 10, Issue 2, pp. 273-280.<br />

- Nakatani, K., Kosugi, M., Hasegawa, Y., Satofuka, Y., Mizuyama, T. (2015): Experimental<br />

study on debris flow behavior in debris fan area: considering influence of houses. Journal of<br />

the Japan Society of Erosion Control Engineering 67(6): 22-32. (in Japanese)<br />

386 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Bedload transport simulation with the model sedFlow:<br />

application to mountain rivers in Switzerland<br />

Dieter Rickenmann, Dr. 1 ; Martin Böckli 2 ; Florian U.M. Heimann, Dr. 2 ; Alexandre Badoux, Dr. 2 ; Jens M. Turowski, Dr. 3<br />

ABSTRACT<br />

The sedFlow simulation model for one-dimensional calculations of discharge and bedload<br />

transport was applied to five Swiss mountain rivers. After calibration it was capable of<br />

reproducing the observed bedload transport behavior reasonably well in the study rivers.<br />

For most simulations, the variable power equation (VPE) was used together with a reduced<br />

energy slope for the bedload transport calculations. The simulations with the Rickenmann<br />

(2001) transport equation were found to be suitable for simulation periods including a major<br />

flood event. The Wilcock and Crowe (2003) equation, a reference shear stress based approach,<br />

resulted in better agreement with long-term observations of bedload transport with<br />

only moderate peak flows. Using scenario simulations for a flood event, the effect of<br />

important lateral sediment input from tributaries due to debris-flow activity was investigated,<br />

indicating that bedload transport along the main river is mainly altered near the tributary<br />

locations.<br />

KEYWORDS<br />

bedload transport; 1D model; mountain river; Switzerland<br />

INTRODUCTION<br />

In alpine environments, bedload transport processes are dynamic and complex compared to<br />

lowland streams. Although there is a strong need for modelling tools in scientific and<br />

engineering applications, bedload transport in mountain streams is still relatively poorly<br />

understood. Field observations indicate that river bed morphology and thus hydraulic<br />

processes become increasingly complex as channel gradients become steeper. The range of<br />

observed grain diameters becomes larger, which entails more complex grain–grain and<br />

grain–flow interactions as well. Examining a large dataset on flow velocity measurements in<br />

steep streams, Rickenmann and Recking (2011) concluded that a considerable part of the<br />

river’s shear stress is consumed by turbulence due to complex bed morphology, summarized<br />

as macro-roughness. They proposed an procedure to quantify the impact of macro-roughness<br />

on bedload transport, which resulted in a better agreement between calculated and observed<br />

bedload transport in mountain streams and torrents (Nitsche et al., 2011).<br />

The sedFlow model for the one-dimensional simulation of discharge and bedload in a<br />

rectangular channel was developed at the Swiss Federal Research Institute WSL to assess river<br />

1 Swiss Federal Research Institute WSL, Birmensdorf, SWITZERLAND, dieter.rickenmann@wsl.ch<br />

2 Swiss Federal Research Institute WSL<br />

3 Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Germany<br />

IP_<strong>2016</strong>_FP003<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 387


ed morphodynamics and bedload transport on the catchment and reach scale in mountain<br />

rivers (Heimann et al. 2015a, 2015b; Heimann, 2014). The sedFlow model was applied in five<br />

Swiss mountain rivers, for which information on past bedload transport was available. The<br />

objective of this contribution is to present selected results and to discuss our experience with<br />

sedFlow.<br />

MODEL CHARACTERISTICS AND INPUT REQUIREMENTS<br />

The modelling tool includes the following main features: (1) consideration of state of the art<br />

approaches for the calculation of bedload transport in steep channels accounting for macroroughness;<br />

(2) bedload transport calculation for several grain diameter fractions separately i.e.<br />

fractional transport; (3) fast calculations for modelling transport in complete catchments and<br />

for performing scenario studies with automated calculation of many variations.<br />

A detailed description of the model structure and the numerical implementation is given by<br />

Heimann et al. (2015a). Using a simplified calculation procedure for the flow hydraulics,<br />

the sedFlow model can also simulate the effect of large sediment inputs by debris flows from<br />

tributaries.<br />

The required input parameters are the longitudinal channel profile, channel widths along the<br />

study reach, grain size distributions of the bed surface and subsurface sediment, and stream<br />

discharge. Typically, a calibration is made by varying the channel parameters such as grain<br />

size distribution and possibly channel width, if the width of a river reach is not naturally<br />

incised or constrained by lateral levees. In addition, different modelling options have to be<br />

defined: selecting a flow resistance equation, a bedload transport formula, the threshold for<br />

initiation of transport and the thickness of the sediment exchange layer at the bed surface.<br />

In sedFlow the stream channel is approximated by a rectangular profile; together with the<br />

Manning-Strickler equation, an analytical solution for the implicit flow routing using the<br />

kinematic wave approach is used, which results in fast calculation times. For steep streams<br />

with shallow flows it is recommended to use the variable power equation (VPE) of Ferguson<br />

(2007) (Rickenmann and Recking, 2011), and then the analytical solution for the implicit<br />

flow routing cannot be applied. Therefore, the VPE flow resistance calculation must be<br />

combined for example with explicit routing, but this requires relatively long computation<br />

times. An alternative option in sedFlow is to use of VPE together with a simplified hydraulic<br />

calculation, assuming constant flow per time step in channel reaches without lateral inflow.<br />

This model version results again in fast calculation times, and for (strong) lateral sediment<br />

inputs adverse channel slopes in the longitudinal profile are possible. For the application of<br />

sedFlow in the Brenno River it was found that a simplified backwater calculation produced<br />

similar bedload transport results as when using an implicit flow routing based on the<br />

kinematic wave approach. For the Kleine Emme, however this method of calculation resulted<br />

in substantially different, less plausible simulation results than the calculation with kinematic<br />

wave. The generally steeper channel reaches in the Brenno could be the reason that the<br />

388 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


simplified hydraulic calculation produced plausible results there. The model version combining<br />

the VPE with the simplified hydraulic calculation was used for all study rivers except for<br />

the Kleine Emmer River.<br />

The flow resistance calculations with the VPE used coefficients a 1 = 6.5 and a 2 = 2.5 as<br />

proposed both by Ferguson (2007) and Rickenmann and Recking (2011). A shear stress based<br />

bedload transport equation proposed by Rickenmann (2001) was used, modified for fractional<br />

transport calculations (Heimann et al. 2014a). To account for macro-roughness energy losses,<br />

a reduced energy slope was applied, based on an approach of Rickenmann and Recking<br />

(2011) and following a procedure described in Nitsche et al. (2011). Some calculations were<br />

also performed using the Wilcock and Crowe (2003) bedload transport equation, in combination<br />

with a reduced energy slope.<br />

STUDY CATCHMENTS AND SELECTED RESULTS OF MODEL APPLICATIONS<br />

The sedFlow model was applied to five Swiss mountain river catchments (Table 1). The best<br />

observations related to bedload transport were available for the Kleine Emme and the Brenno<br />

Rivers (Böckli et al., 2015c, 2015e). From consecutive surveys of river cross-sections, the net<br />

erosion and deposition along the longitudinal profile was derived, and additional information<br />

on gravel extraction and/or important sediment delivery from tributaries during the study<br />

period helped to constrain the total sediment budget (Rickenmann et al., 2014a; Heimann et<br />

al. 2015b). For the other three study catchments information of past bedload transport was<br />

less detailed (Böckli and Rickenmann, 2015; Böckli et al., 2015b, 2015d), for example with<br />

observed bedload volumes in a hydropower reservoir (Ferden at the Lonza River) or a sediment<br />

retention basin (Grosse Schliere). Below we summarize some results of our modelling<br />

experience.<br />

Effect of changing input parameters and transport equations<br />

The sedFlow model was first calibrated for the Kleine Emme and the Brenno mountain rivers<br />

over a study reach length of 20 km and 22 km, respectively. It produced a reasonable<br />

replication of the observed bedload transport for a five and ten year period, respectively<br />

(Rickenmann et al., 2014a; Heimann et al., 2015b). The Kleine Emme simulations included<br />

the extreme 2005 flood event (Rickenmann and Koschni, 2010) which resulted in substantial<br />

bedload transport due to important sediment input by bank erosion.<br />

The simulations with sedFlow showed that, in addition to choosing a suitable bed load<br />

transport formula, the minimum value for the critical dimensionless shear stress (Shields<br />

number) for beginning of bedload transport is also important for calibration. The critical<br />

Shields number is used with the transport formula of Rickenmann (2001), whereas a suitable<br />

reference shear stress has to be selected with the transport formula of Wilcock and Crowe<br />

(2003). The reference shear stress, which is comparable to the critical Shields number, can be<br />

varied by choosing the sand fraction of the surface bed material. Overall, the choice of the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 389


Table 1: Characteristics of the five study catchments.<br />

Kl. Emme Brenno Hasliaare Lonza Gr. Schliere<br />

Catchment area (A) [km 2 ] 478 (A) 397 (A) 554 (A) / 531 (B) 78 (A) / 131 (B) 27 (B)<br />

Mean eleva6on [m a.s.l.] 1050 1820 2150 2630 –<br />

Length simula6on reach 19.4 21.8 17.2 9.5 11.6<br />

Mean<br />

[km]<br />

channel slope [%] 0.8 2.6 3.8 4.7 7.7<br />

Sills or check dams yes no no no yes<br />

Channelized reaches yes no few no few<br />

Hydropower use<br />

liZle strong strong no no<br />

Tributaries<br />

(simula6on<br />

with<br />

reach)<br />

sed. input no yes yes yes yes<br />

debris-flow<br />

Gauging sta6ons<br />

ac6vity<br />

2 1 1 1 0 (C)<br />

(A) area upstream of FOEN gauging sta6on (Kleine Emme, Brenno, Hasliaare)<br />

(B) area upstream of most distal point of simula6on reach (Hasliaare, Lonza, Grosse Schliere)<br />

(C) discharge data from the neighboring catchment Kleine Schliere was used and adapted<br />

Shields number was important for the model calibration, particularly regarding the general<br />

level of bedload transport. The finally selected (optimized) Shields numbers were found to be<br />

in a plausible range, when compared with data from a recent field study on the beginning of<br />

bedload transport (Bunte et al. 2013). To best replicate the longitudinal pattern of net erosion<br />

and net deposition, only the grain size distribution along the river was optimized (in a<br />

plausible range) in the case of the Kleine Emmer River, and only the representative channel<br />

width was optimized (in a plausible range) for the depositional reaches in the Brenno River.<br />

For the simulation of the flood event 2011 in the Lonza, the transport formula of Rickenmann<br />

(2001) resulted in plausible results, also when using different hiding functions (which<br />

govern the fractional transport behavior). Here is an exponent of 1.5 was used in the<br />

calculation of the reduced energy slope. For the Lonza long-term simulations were made for<br />

the period 1976 to 2013, for which the cumulative sediment transport into the Ferden<br />

reservoir is known for 19 separate survey periods. During this period only one major flood<br />

event occurred in 2011. For the sedFlow simulations using the formula of Rickenmann<br />

(2001), the bedload transport was clearly overestimated (by about a factor of 10), even when<br />

varying the critical Shields number and the energy-slope exponent (Fig. 1).<br />

Using the transport formula of Wilcock and Crowe (2003) with an energy-slope exponent of<br />

1.5, resulted in similarly plausible results for the 2011 event as the formula of Rickenmann<br />

(2001). For the long-term simulations of Lonza, the transport formula of Wilcock and Crowe<br />

(2003) also yielded plausible results when either the sand fraction was set to 0.05 (high<br />

reference shear stress), or when a sand content of 0.20 (low reference shear stress) was used<br />

with an energy-slope exponent of 2 (Fig. 1). This result is not so surprising in the sense that a<br />

reference-based bedload transport equation can be expected to be better suited for weak to<br />

390 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


moderate bedload transport conditions. In fact, the bedload transport formula of Wilcock and<br />

Crowe (2003) in combination with a reduced energy slope and an exponent of 1.5 was found<br />

to provide reasonable agreement with field measurements of weak to moderate bedload<br />

transport over a wide range of channel conditions (Schneider et al., 2015).<br />

Effect of lateral sediment input<br />

The sedFlow model was applied to a 17 km long study reach of the Hasliaare River. There,<br />

several important debris-flow events occurred in tributaries during the last decade. In August<br />

2005 a large debris-flow event occurred in the Rotlauibach, a torrent catchment upstream of<br />

the village of Guttannen, and deposited a total volume of 500,000 m³ on the fan and in the<br />

main valley (Böckli et al., 2015d). After the 2005 event, sediment deposits with a thickness<br />

of about 1 m and a volume of about 15,000 m³ were observed in the Hasliaare channel at<br />

Innertkirchen, which is situated some 8 km downstream of the Rotlauibach. After calibration,<br />

the sedFlow model was able to replicate the observed deposition at Innertkirchen.<br />

Figure 1: Long-term simulations for the period 1976-2013 in the Lonza River without any major flood event. (GFsim/GFobs) is the ratio<br />

of simulated to observed bedload volume in the reservoir Ferden. Shown are results for different combinations of transport formulas<br />

(Ri: Rickenmann, 2001; W&C: Wilcock and Crowe, 2003), different Shields numbers (θc50), different sand fractions (Fs) and different<br />

energy-slope exponents (Exp). Simulations labelled “SL” were performed with a coarser layer of surface material. The box plots represent<br />

the variation over the 19 survey periods. The boxes include the median value and are limited by the upper and lower quartile.<br />

The whiskers indicate the maximum and minimum value.<br />

Extremely high debris-flow activity was observed in the Spreitgraben tributary in the period<br />

2009 to 2011, delivering a total of about 590’000 m³ into the Hasliaare River. Surprisingly<br />

only a very small part of this sediment was transported further downstream. Over six<br />

kilometers downstream of the Spreitgraben tributary, the sedFlow model predicted a strong<br />

decrease in bedload transport capacity, in qualitative agreement with the observations<br />

(Rickenmann et al., 2014b).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 391


The delta of the Hasliaare was surveyed repeatedly from 1905 to 1938 (Böckli et al., 2015d).<br />

From these data and accounting for fine material, we estimate the bedload supply to the Lake<br />

of Brienz to be about 40,000 to 70,000 m³/a. This amount is supported by geochronologic<br />

dating of the sediments in the alluvial plain between Meiringen and Lake of Brienz for the<br />

past 500 years (Carvalho and Schulte, 2013). Simulation results of bedload transport in the<br />

Hasliaare for entire years predicted an annual sediment delivery to the lake of Brienz which is<br />

in agreement with these observations (Rickenmann et al., 2014b).<br />

Scenarios of increased sediment input due to future debris flows from five tributaries were<br />

defined for further simulations. The basis was a flood hydrograph as in August 2005 with a<br />

peak flow of about 350 m³/s at the downstream end of the simulation reach, and a channel<br />

width of the order of 10 to 20 m. The simulation results show that both continuous (Fig. 2)<br />

and instantaneous (Fig. 3) lateral sediment input changes the bedload transport in the<br />

Hasliaare over a length of about 1 to 2 km both upstream and downstream of the active<br />

tributary. It can be observed that both the magnitude and the timing of the debris-flow inputs<br />

with regard to the duration of the flood event in the Hasliaare River have an important effect<br />

on the local bedload transport along the main river. An early input results in a larger decrease<br />

upstream and a larger increase downstream of the active tributary; more time is available for<br />

a reduction or increase of the bedload transport. The effect on the debris-flow deposit in the<br />

immediate confluence area tends to be greater, the later the sediment input occurs during the<br />

floods, while some distance further upstream an early entry may lead to more deposition.<br />

CONCLUSIONS<br />

After calibration, the sedFlow simulation model was capable of reproducing the observed<br />

bedload transport behavior reasonably well in five Swiss mountain rivers. For most simulations,<br />

the variable power equation (VPE) was used together with a reduced energy slope for<br />

the bedload transport calculations. The simulations with the Rickenmann (2001) transport<br />

equation were found to be suitable for simulation periods including a major flood event.<br />

The Wilcock and Crowe (2003) equation, a reference shear stress based approach, resulted<br />

in reasonable agreement with long-term observations of bedload transport for a 37 year<br />

period in the Lonza River with only moderate peak flows. Using scenario simulations for a<br />

flood event, the effect of important lateral sediment input from tributaries due to debris-flow<br />

activity was investigated. These simulations indicated that bedload transport along the main<br />

river is mainly altered near the tributary locations, suggesting that the transport further<br />

downstream may require multiple floods or longer flow durations.<br />

392 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Simulated bedload transport in the Hasliaare River for the case of continuous sediment input from five tributaries.<br />

The simulation reach extends from Handegg (km 17) to Meiringen (km 0). A flood event as in August 2005 was simulated, and a total<br />

sediment input of 31000 m³ (low), 90000 m³ (avg.), 165000 m³ (high) due to debris flows from five tributaries (indicated by vertical<br />

solid lines in the graph) was assumed. Results are shown for different magnitudes of the debris-flow inputs during the flood event<br />

in the Hasliaare River. The vertical dotted lines indicate the location of the village Innertkirchen.<br />

Figure 3: Simulated bedload transport in the Hasliaare River for the case of instantaneous sediment input from five tributaries.<br />

The simulation reach extends from Handegg (km 17) to Meiringen (km 0). A flood event as in August 2005 was simulated, and a total<br />

sediment input of 165,000 m³ due to debris flows from five tributaries (indicated by vertical solid lines in the graph) was assumed.<br />

Results are shown for different timings of the debris-flow inputs during the flood event in the Hasliaare River. The vertical dotted lines<br />

indicate the location of the village Innertkirchen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 393


ACKNOWLEDGEMENTS<br />

The model development and the performance of the five case studies was supported by the<br />

following two projects: (1) «Sediment transport in mountain catchments» (Contract no.<br />

11.0026.PJ/ K154-7241) of the Swiss Federal Office for the Environment (FOEN), and (2)<br />

«SEDRIVER» (SNF Project no. 4061-125975) as part of the National Research Program NFP61<br />

of the Swiss National Science Foundation.<br />

REFERENCES<br />

- Böckli, M., Rickenmann, D. (2015a). Lonza – Geschiebetransport-Simulationen mit<br />

sedFlow. Eidg. Forschungsanstalt WSL, Birmensdorf, Schweiz. (*)<br />

- Böckli, M., Greber, C., Rickenmann, D. (2015b). Grosse Schliere – Geschiebetransport-<br />

Simulationen mit sedFlow. Eidg. Forschungsanstalt WSL, Birmensdorf, Schweiz. (*)<br />

- Böckli, M., Rickenmann, D., Heimann, F.U.M., Badoux, A. (2015c). Brenno – Geschiebetransport-Simulationen<br />

mit sedFlow. Eidg. Forschungsanstalt WSL, Birmensdorf, Schweiz. (*)<br />

- Böckli, M., Bieler, C., Rickenmann, D., Heimann, F.U.M., Badoux, A. (2015d). Hasliaare<br />

– Geschiebe-transport-Simulationen mit sedFlow. Eidg. Forschungsanstalt WSL, Birmensdorf,<br />

Schweiz. (*)<br />

- Böckli, M., Rickenmann, D., Heimann, F.U.M., Bieler, C., Burkhard, L., Badoux, A. (2015e).<br />

Kleine Emme – Geschiebetransport-Simulationen mit sedFlow. Eidg. Forschungsanstalt WSL,<br />

Birmensdorf, Schweiz. (*)<br />

- Bunte, K.B., Abt, S.R., Swingle, K.W., Cenderelli, D.A., Schneider, J.M. (2013). Critical<br />

Shields values in coarse-bedded steep streams. Water Resources Research 49: 1–21.<br />

- Carvalho, F., Schulte, L. (2013). Morphological control on sedimentation rates and patterns<br />

of delta floodplains in the Swiss Alps. Geomorphology 198: 163-176.<br />

- Ferguson, R. (2007). Flow resistance equations for gravel- and boulder-bed streams.<br />

Water Resources Research, 43, W05427, doi: 10.1029/2006WR005422.<br />

- Heimann, F.U.M. (2014). sedFlow, User manual. Swiss Federal Research Institute WSL,<br />

June 2014, Version 1.00.<br />

- Heimann, F.U.M., Rickenmann, D., Turowski, J.M. (2015a). sedFlow – a tool for simulating<br />

fractional bedload transport and longitudinal profile evolution in mountain streams.<br />

Earth Surface Dynamics 3: 15-34.<br />

- Heimann, F.U.M., Rickenmann, D., Böckli, M., Badoux, A., Turowski, J.M., Kirchner, J.W.<br />

(2015b). Calculation of bedload transport in Swiss mountain rivers using the model sedFlow:<br />

proof of concept. Earth Surface Dynamics 3: 35–54.<br />

- Nitsche, M., Rickenmann, D., Turowski, J.M., Badoux, A., Kirchner, J.W. (2011). Evaluation<br />

of bedload transport predictions using flow resistance equations to account for macroroughness<br />

in steep mountain streams. Water Resources Research, 47: W08513, doi:<br />

10.1029/2011wr010645.<br />

- Rickenmann, D. (2001). Comparison of bed load transport in torrent and gravel bed<br />

streams. Water Resources Research, 37, 3295–3305.<br />

394 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Rickenmann, D., Koschni, A. (2010). Sediment loads due to fluvial transport and debris<br />

flows during the 2005 flood events in Switzerland. Hydrological Processes, 24: 993–1007.<br />

doi: 10.1002/hyp.7536.<br />

- Rickenmann, D., Recking, A. (2011). Evaluation of flow resistance in gravel-bed rivers<br />

through a large field data set. Water Resources Research, 47, W07538,<br />

doi:10.1029/2010WR009793.<br />

- Rickenmann D., Heimann F., Böckli M., Turowski J.M., Bieler C., Badoux A. (2014a).<br />

Geschiebetransport-Simulationen mit sedFlow in zwei Gebirgsflüssen der Schweiz.<br />

Wasser Energie Luft 106(3): 187-199.<br />

- Rickenmann, D., Heimann, F.U.M., Turowski, J.M., Bieler, C., Böckli, M., Badoux, A.<br />

(2014b). Simulation of bedload transport in the Hasliaare River with increased sediment<br />

input. In: A.J. Schleiss, G. De Cesare, M.J. Franca, M. Pfister (eds.), River Flow 2014,<br />

CRC Press, Balkema, pp. 2273-2281 (pdf version).<br />

- Rickenmann, D., Böckli, M., Heimann, F.U.M., Badoux, A., Turowski, J.M. (2015).<br />

Das Modell sedFlow und Erfahrungen aus Simulationen des Geschiebetransportes in fünf<br />

Gebirgsflüssen der Schweiz. Synthesebericht. WSL Berichte, Heft 24, 68p. (*)<br />

(www.wsl.ch/publikationen/pdf/14594.pdf)<br />

- Schneider, J.M., Rickenmann, D., Turowski, J.M., Bunte, K., Kirchner, J.W. (2015).<br />

Applicability of bedload transport models for mixed size sediments in steep streams<br />

considering macro-roughness. Water Resources Research 51: 5260–5283,<br />

doi:10.1002/2014WR016417.<br />

- Wilcock P., Crowe J. (2003). Surface-based Transport Model for Mixed-Size Sediment.<br />

Journal of Hydraulic Engineering 129(2): 120-128.<br />

(*)these reports are available as pdf from the website: www.wsl.ch/sedFlow<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 395


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Determining future evolution of landslides from the<br />

past: the historical evolution of shallow landslides in<br />

the upper Cassarate catchment (Southern Swiss Alps)<br />

Christian Ambrosi, Dipl.-Geol., Dr., Prof. 2 ; Samuel Arrigo, MSc Geogr. 2 ; Claudio Castelletti, MSc Geol. 2 ;<br />

Cristian Scapozza, MSc Geogr., Dr. 1<br />

ABSTRACT<br />

In mountain environments that were subject to intensive pastoralism, the abandonment<br />

of alpine pastures and the natural reforestation caused the main modifications in land use.<br />

These two factors may have had a significant effect on evolution of shallow landslides. In the<br />

upper Cassarate catchment, the evolution of the number and surface of shallow landslides<br />

between 1900 and 2014 was studied with diachronical mapping on historical analysis.<br />

Quantitative analysis of precipitation and antecedent standardized precipitation index (IPAS)<br />

allowed triggering thresholds of 55 shallow landslide events to be calculated. The good<br />

statistical fits between the difference of IPAS and, respectively, the minimal value of IPAS and<br />

the sum of precipitations, allows defining the shallow landslide triggering thresholds. Two<br />

scenarios of shallow landslide triggering were implemented thanks to numerical modeling<br />

with the TRIGRS program and allowed a validation of the triggering thresholds determined<br />

by the historical analysis. A forecasting of future shallow landslides evolution was possible by<br />

defining 1) potential aggravation zones of observed landslides; 2) potential triggering zones<br />

of new instabilities.<br />

KEYWORDS<br />

digital photogrammetry;historical analysis;numerical modeling;shallow landslide; Swiss Alps<br />

INTRODUCTION<br />

In mountain environments subject to intensive pastoralism since the second half of 20th<br />

century, modifications in land use derived usually from the abandonment of alpine pastures<br />

and the natural reforestation. These two factors may have had a significant effect on the<br />

number and surface of shallow landslides. A diachronic mapping was carried out in four<br />

study sites in order to quantify their evolution in the upper Cassarate catchment (Southern<br />

Swiss Alps) in the last century. This catchment is particularly affected by deep landslides,<br />

which cover 43% of its surface. The 160 deep rotational landslides inventoried by the<br />

photo-interpretative mapping carried out by Castelletti et al. (2014) cover 27% of the entire<br />

surface and characterize not only the loose materials but also the bedrock until 50–60 m<br />

depth. These landslides are generally comprised within the perimeter of 8 deep seated gravita-<br />

1 University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Canobbio, SWITZERLAND, cristian.scapozza@supsi.ch<br />

2 Institute of Earth Sciences University of Applied Sciences and Arts of Southern Switzerland (SUPSI)<br />

396 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP021


tional slope deformations (DSGSD, Figure 1), controlled by the geological and structural<br />

conditions of the valley, in particular by the dip slope conformation of the right side. These<br />

instabilities occupy the whole slope and often extend to the valley floor by mass transport<br />

phenomena (debris flows, earth flows, etc.) in ravines (Castelletti et al. 2014). In order to<br />

manage these effects, the upper part of the watershed was the target of major reforestation<br />

programs between 1880 and 2000 resulting in a reduction of the total areas affected by<br />

shallow landslides (Mariotta 2004). However, there are some areas where important slope<br />

erosion persists, even trends to increase.<br />

Figure 1: Geographical location and main slope instabilities in the upper Cassarate catchment (DSGSD: Deep Seated Gravitational Slope<br />

Deformation). Basemap: ©swisstopo.<br />

Considering the framework described above, the Consortium “Valle del Cassarate e golfo di<br />

Lugano” (CVC) has mandated the University of Applied Sciences and Arts of Southern<br />

Switzerland (SUPSI) to evaluate the evolution of shallow landslides and regressive erosion in<br />

the upper part of the watershed. The aim of this study is to provide essential basic data for an<br />

assessment of the present situation and an evaluation of the future evolution. The goal is the<br />

production of numerical scenarios for the evolution of shallow landslides. In this work, the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 397


identification and mapping of existent or potential slope instabilities (instability mapping; e.g.<br />

Guzzetti et al. 2012), the analysis of their evolution with time (diachronical mapping), the<br />

calculation of triggering thresholds based on historical events (e.g. Frattini et al. 2009), and<br />

the production of maps of potential landslide evolution (numerical modeling) are presented.<br />

The focus will be put on predicting future landslides by validation of triggering thresholds<br />

determined by correlation of shallow landslides with precipitation data, for better understand<br />

the relation between landslide occurrence and land use.<br />

METHODS<br />

Diachronical mapping<br />

In order to map shallow and deep seated landslides, we applied 3D digital stereoscopic<br />

photogrammetry to analogical and numerical aerial photographs taken between 1950 and<br />

2012 using the ArcGDS extension of the software ESRI® ArcGIS (Ambrosi and Scapozza<br />

2015). The stereoscopic vision allows obtaining precise results and collects a large amount of<br />

data such as perimeters, surfaces and volumes of Quaternary formations and/or landforms.<br />

The ArcGDS tool make it possible the direct exploitation, visualization and digitization of<br />

stereoscopic digital linear scanned images (e.g. Digital Image Strips). Combined with<br />

high-resolution digital elevation models, ArcGDS is a powerful tool, particularly over large<br />

areas, as well as under forest cover and on very steep slopes (Ambrosi and Scapozza 2015).<br />

Digital monophotogrammetry (or monoplotting) on ancient oblique non-metric photographs<br />

make it possible the shallow landslides identification for the period 1923–1950 (Figure 2A),<br />

moving back in time the 3D digital mapping of several decennia. Monoplotting allows the<br />

georeferentiation and orthorectification of single oblique unrectified photographs, which are<br />

related to a high-resolution digital elevation model (DEM; in this work the swissALTI3D,<br />

©swisstopo). The monoplotting relates each pixel of the photograph to the corresponding real<br />

world pixel on the DEM (Bozzini et al. 2012; Conedera et al. 2013; Scapozza et al. 2014). By<br />

means of this technique, it was possible to recuperate spatial data obtained by the georeferentiation<br />

and orthorectification of photographs of the first half of the 20th century in a digital<br />

format and in a GIS environment (Figure 2B and C).<br />

The diachronical mapping was based on the analysis and interpretation of terrestrial oblique<br />

photographs between 1923 and 1941, and of aerial photographs and orthophotos between<br />

1950 and 2012. Because the lack of images, the period between 1942 and 1949 could not be<br />

analysed. This kind of mapping based on historical analysis allowed quantifying the evolution<br />

of the number and surface of shallow landslides. This approach based on the join analysis of<br />

both oblique terrestrial and vertical aerial photographs makes it possible in particular a<br />

differentiation between shallow landslides that: 1) have developed since the beginning of the<br />

20th century; 2) remained stable across the decades; 3) have stabilized by means of reforestation<br />

programs.<br />

398 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Example of mapping on an oblique terrestrial photograph. A) Georeferentiation and orthorectification of a terrestrial oblique<br />

photograph with the WSL-Monoplotting-tool: example of the Alpe Rompiago study area in 1923. B) Shallow landslides in the Alpe<br />

Rompiago study area in September 1941. C) The landslides shown in B) reported by the WSL-Monoplotting-tool on a 2012 orthophoto.<br />

Photographs ©CVC; orthophoto ©swisstopo.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 399


Calculation of triggering thresholds<br />

Evolution of shallow landslides was compared to a historical database of all mass movements<br />

occurred in the upper Cassarate catchment between 1900 and 2014. This database was compiled<br />

based on information on historical landslide events provided by S. Mariotta (unpublished<br />

data) and by our own work. This compilation was based on identification and<br />

verification of historical events reported in written press and in cantonal, municipal and<br />

consortium archives. The analysis of historical data revealed 62 events of which 58 were<br />

classified as shallow landslides and 4 as rockslides. Three events were excluded because their<br />

date and location were uncertain. Based on the statistical analysis of rainfall duration and<br />

intensity during the 55 shallow landslide events retained, triggering thresholds were<br />

calculated (e.g. Pedrozzi 2004).<br />

For every event, a climatic quantitative analysis was performed considering the precipitation<br />

sum, the precipitation return times and an antecedent standardized precipitation index<br />

(IPAS), allowing the characterization of the state of moisture/drought of the near surface<br />

(Seiler et al. 2002). IPAS allows a classification of the ground moisture from extremely wet<br />

(IPAS ≥ 2.0) to extremely dry (IPAS ≤ -2.0). Normal values are comprised between 1 and -1.<br />

The regressions were computed considering 1σ- and 2σ-error (the probability coefficient of<br />

0.68 and 0.95, respectively) and took into account: 1) the difference of IPAS before and after<br />

the three days prior to the event [∆IPAS]; 2) the minimal value of IPAS [MIN-IPAS] during<br />

the three days preceding the event; 3) the sum of precipitations [ΣP] of the 3 days prior to<br />

the analyzed shallow landslide event.<br />

Numerical modeling<br />

Numerical modeling of potential instability zones was performed using the TRIGRS program<br />

(Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; see Baum et al.<br />

2008). This model is able to evaluate the effect of rainfall events on the temporal evolution of<br />

the slope stability considering local geotechnical characteristics and infiltration processes.<br />

Input data of TRIGRS program concerns topography and hydrography, derived from a DEM<br />

(in this work the swissALTI3D, ©swisstopo), thickness of loose materials (derived from direct<br />

observation and geophysical prospecting), water table depth, pressure diffusion below the<br />

water table, cohesion and friction angle (determined from laboratory analysis).<br />

This makes it possible to model the rainfall infiltration by the Richards equation as proposed<br />

by Iverson (2000), and the subsequent groundwater runoff in a spatial matrix defining the<br />

shallow subsurface. The slope stability is evaluated by the analysis of an undefined slope<br />

(Taylor 1948).<br />

RESULTS<br />

Quantification of variations in relative surface of shallow landslides was carried out based on<br />

the surface mapped for 1950 (Figure 3). For two study sites (Alpe Rompiago and Alpe<br />

Pietrarossa), surface variations derived from digital monophotogrammetry analysis show a<br />

slight increase in the area affected by shallow landslides in the decades before 1950. For the<br />

400 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


second half of 20th century, the data show a slow and gradual decrease in landslide area,<br />

which is in 2012 less than a half compared to 1950 (47% for Alpe Rompiago and 48% for<br />

Alpe Pietrarossa). In the two other study sites (Alpe Cottino and Cima di Fojorina) the<br />

increase in shallow landslides surface since 1923 is significant (+186% for Alpe Cottino and<br />

+389% for Cima di Fojorina with respect to 1950). And this despite an incomplete set of<br />

images (landslide surfaces from 1967 to 1977 are missing due to the poor coverage by aerial<br />

photographs for both sites). For Alpe Cottino, the main increase in landslide area was<br />

registered between 1983 and 1989 (+463% with respect to 1950), and a subsequent decrease<br />

until 2001. In the Cima di Fojorina, we registered a significant deterioration before 1983,<br />

where the total surface of instabilities was of +756% with respect to 1950.<br />

Figure 3: Evolution of absolute and standardized relative landslide surface and frequency diagram of the historical landslide events<br />

recorded in the upper Cassarate catchment. Standardisation was carried out by subtracting the mean and then dividing the standard<br />

deviation for obtaining dimensionless landslide surfaces and then compares the four study sites between them. In grey, data calculated<br />

by monophotogrammetry.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 401


The increase observed between 1958 and 1983, particularly, was related to increasing erosion<br />

zones due to sheep herding.<br />

Quantitative analysis of precipitation and IPAS allowed triggering thresholds of the 55 shallow<br />

landslide events occurred in the upper Cassarate catchment between 1900 and 2014 to<br />

be calculated (Figure 4). The statistical relationship between ∆IPAS and the shallow landslides<br />

historical dataset is very high, with 91.1% of the events that were predicted by this<br />

parameter.<br />

Triggering thresholds based on an exponential relationship between the sum of precipitation<br />

and the IPAS minimal value provides the highest correlation coefficients. The difference of<br />

IPAS before and after the three days prior to the event [∆IPAS3] and the minimal value of<br />

IPAS during the three days preceding the event [MIN-IPAS3] are correlated exponentially,<br />

with a good statistical fit (R = -0.79, R2 = 0.62, Figure 4A). This relation allows estimating the<br />

increase of IPAS with time and therefore quantifying the increase of moisture in the ground<br />

in the days before the landslide event. In addition, ∆IPAS has a good linear relationship with<br />

the sum of precipitations of the 3 days prior to the analyzed shallow landslide event [ΣP3]<br />

(R=0.74, R2 = 0.55, Figure 4B). By means of the two previous relationships, it was possible to<br />

calculate the final regression between ΣP3 and MIN-IPAS3 and then define the shallow<br />

landslide triggering thresholds for the upper Cassarate catchment (Figure 4C). This last<br />

relationship was used for a classification of all the days between 01.01.1900 and 31.12.2014<br />

(Figure 4D), in order to quantify positive and negative predictive values (PPV and NPV<br />

respectively). PPV of the triggering thresholds are lower than 5%, probably due to the very<br />

Figure 4: Statistical relationships between precipitations (data of the MeteoSwiss station of Bellinzona), IPAS and the occurrence of<br />

shallow landslides. A) Relationship between the difference of IPAS before and after the three days prior to the event [∆IPAS3] and the<br />

minimal value of IPAS during the three days preceding the event [MIN-IPAS3]. B) Relationship between the sum of precipitations of the<br />

3 days prior to the analyzed shallow landslide event [ΣP3] and ∆IPAS3. C) Relationship between ΣP3 and MIN-IPAS3 based on regressions<br />

presented in A and B. D) Classification of all the days between 01.01.1900 and 31.12.2014 based on regressions presented in C.<br />

402 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 5: Safety factor maps obtained for Alpe Pietrarossa by numerical modeling with TRIGRS. Modeling was performed with a sum of<br />

precipitation of 100 mm in 3 days. According to calculated triggering thresholds, triggering probability is very high for Scenario 1 A and<br />

very low for Scenario 1B. Under Scenario 1A, we would simulate a situation of probable landslide triggering, whereas under Scenario 1B,<br />

triggering must to be very limited or even absent.<br />

limited number of days with landslides (55) with respect to the total number of days analyzed<br />

(42’003 = 115 years). Despite this point, NPV are higher than 99.96%, indicating that it is<br />

very unlikely to have a landslide if this was not predicted.<br />

Two scenarios of shallow landslide triggering were finally implemented in the TRIGRS<br />

program for numerical modeling of triggering thresholds calculated. Validation of the model<br />

was performed based on scenarios related to potential conditions of instability (safety factor<br />

lower than 1) under the same rainfall conditions but with different ground moisture (Figure 5).<br />

The adjustment of cohesion and friction angle parameters makes it possible the final calib-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 403


ation of the numerical model. By means of this calibration, it was possible to integrate the<br />

results of numerical modeling with those of diachronical shallow landslide mapping for producing<br />

maps of: 1) potential aggravation zones of observed landslides; 2) potential triggering<br />

zones of new instabilities. The surface of potential unstable zones with a MIN-IPAS value of<br />

-2 (extremely dry), respectively 3 (extremely wet) is completely different for the same rainfall<br />

intensity and duration. This result allows a validation of triggering thresholds and confirms<br />

by numerical modeling that the state of ground moisture before the rainfall event has more<br />

influence on the landslide triggering that the same duration of rainfall.<br />

CONCLUSIONS<br />

Four main conclusions can be drawn from the observations, measurements and numerical<br />

models carried out at the four study sites:<br />

1. In the Alpe Rompiago and Alpe Pietrarossa study sites, the diachronical mapping illustrate<br />

a situation of relatively rapid closure of shallow landslide, produced by the significant<br />

decrease of intensive pastoralism and, as a consequence, the natural reforestation of these<br />

areas.<br />

2. Increase in shallow landslide surface for Alpe Cottino and Cima di Fojorina, on the other<br />

hand, is related to the geotechnical conditions of the near surface, which favor the<br />

triggering of new surface instabilities in relation to intense rainfall episodes occurred since<br />

the 1980s.<br />

3. Numerical modeling allowed the determination of areas with a potential safety factor<br />

below 1 to be determined on the basis of calculated triggering thresholds. This makes it<br />

possible to define two kinds of future instability zones: 1) potential zones that could<br />

present an increase of landslide area; 2) potential zones without an actual landslide that<br />

could generate a new instability.<br />

4. From a methodological point of view, the diachronical mapping highlights the integration<br />

of several techniques of 2D and 3D digital stereo- and mono-photogrammetry, allowing the<br />

collection of a lot of information about natural phenomena and also the identification and<br />

mapping of shallow landslides evolution of during time. The monoplotting technique<br />

makes it possible, in particular, to going back in time in this kind of mapping of several<br />

decades with respect to the classical aerial photographs analysis.<br />

ACKNOWLEDGEMENTS<br />

This study was funded by the Ufficio dei pericoli naturali, degli incendi e dei progetti of the<br />

Canton of Ticino. A special thanks to the two anonymous reviewers for their useful feedback,<br />

as well as to Filippo Schenker for the English proofreading.<br />

404 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


REFERENCES<br />

- Ambrosi C., Scapozza C. (2015). Improvements in 3-D digital mapping for geomorphological<br />

and Quaternary geological cartography. Geographica Helvetica 70: 121-133.<br />

Baum R.L., Savage W.Z., Godt J.W. (2008). TRIGRS – A Fortran program for Transient<br />

Rainfall Infiltration and Grid-based Regional Slope-stability analysis, Version 2.0. U.S.<br />

Geological Survey Open-File Report 2008-1159, 75 pp.<br />

- Bozzini C., Conedera M., Krebs P. (2012). A new monoplotting tool to extract georeferenced<br />

vector data and orthorectified raster data from oblique non-metric photographs. International<br />

Journal of Heritage in the Digital Era 1: 499-518.<br />

- Castelletti C., Scapozza C., Ambrosi C. (2014). Cartographie de l’évolution des glissements<br />

de terrain peu profonds grâce à la stéréo- et mono-photogrammétrie digitale dans le haut<br />

bassin du Cassarate (Val Colla, Tessin). FAN-Agenda 2/2014: 10-13.<br />

Conedera M., Bozzini C., Scapozza C., Rè L., Ryter U., Krebs P. (2013). Anwendungspotenzial<br />

des WSL-Monoplotting-Tool im Naturgefahrenmanagement. Schweizerische Zeitschrift für<br />

Forstwesen 164: 173-180.<br />

- Frattini P., Crosta G., Sosio G. (2009). Approaches for defining thresholds and return periods<br />

for rainfall-triggered shallow landslides. Hydrological Processes 23: 1444-1460.<br />

Guzzetti F., Mondini A.C., Cardinali M., Fiorucci F., Santangelo M., Chang H.-T. (2012).<br />

Landslide inventory maps: New tools for an old problem. Earth-Science Reviews 112: 42-66.-<br />

Iverson R.M. (2000). Landslide triggering by rain infiltration. Water Resources Research 36:<br />

1897-1910.<br />

- Mariotta S. (2004). Il bacino del Cassarate. Sintesi di 120 anni di interventi forestali volti a<br />

garantire la sicurezza del territorio. Schweizerische Zeitschrift für Forstwesen 155: 278-285.<br />

Pedrozzi G. (2004). Triggering of landslides in Canton Ticino (Switzerland) and prediction by<br />

the rainfall intensity and duration method. Bulletin of Engineering Geology and the<br />

Environment 63: 281–291.<br />

- Scapozza C., Lambiel C., Bozzini C., Mari S., Conedera M. (2014). Assessing the rock glacier<br />

kinematics on three different timescales: a case study from the southern Swiss Alps.<br />

Earth Surface Processes and Landforms 39: 2056-2069.<br />

- Seiler R.A., Hayes M., Bressan L. (2002). Using the standardized precipitation index for<br />

flood risk monitoring. International Journal of Climatology 22: 1365-1376.<br />

Taylor D.W. (1948). Fundamentals of soil mechanics. New York: Wiley, 700 pp.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 405


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

A specially developed side weir in the framework of an<br />

integral flood protection concept including a hydrological<br />

monitoring system<br />

Entwicklung eines Hochwasserentlastungsbauwerkes<br />

und Installation eines Monitoringsystems im Rahmen<br />

eines integralen Hochwasserschutzkonzeptes<br />

Josef Schneider, DI Dr. 1 ; Rudolf Schmidt, DI Dr. 2 ; Matthias Redtenbacher, DI 3 ; Franz Brenner, DI 2<br />

ABSTRACT<br />

This contribution describes the findings of studies of a planned overflow structure within the<br />

integral flood protection concept of municipality Thalgau, located in the province Salzburg,<br />

Austria. A part of the project will be the installation of a specific structure work in combination<br />

with a lateral weir in the river Brunnbach. The intention of this construction and the<br />

side weir is to guarantee that in case of a flood only a part of the discharge will be released<br />

downstream of the weir into the river. Physical model tests were performed in the laboratory<br />

of the Institute of Hydraulic Engineering and Water Resources Management of Graz University<br />

of Technology to develop and optimize these structures. The tests, scaled 1:20 and<br />

performed regarding Froude's law of similarity, result in an intelligent combination of two<br />

culverts with an optimized side weir to fulfil the required flow situation. First results<br />

concerning planned design criteria as well as information regarding the monitoring concept<br />

complete this contribution.<br />

ZUSAMMENFASSUNG<br />

Dieser Beitrag beschreibt die Ergebnisse der Untersuchungen eines geplanten Entlastungsbauwerkes<br />

im Rahmen des integrierten Hochwasserschutzes der Gemeinde Thalgau im Bundesland<br />

Salzburg/Österreich. Dabei ist u.a. die Errichtung eines Streichwehres in Kombination<br />

mit einem Regulierbauwerk am Brunnbach vorgesehen. Der Zweck dieses Bauwerkes ist eine<br />

kontrollierte Abgabe von Wasser aus dem Brunnbach in ein seitlich gelegenes Retentionsbecken<br />

zu gewährleisten, damit nur eine klar definierte maximale Restwassermenge im<br />

Brunnbach unterwasserseitig des Wehres abfließen kann. Ein physikalischer Modellversuch<br />

des Bauwerkes am Institut für Wasserbau und Wasserwirtschaft der TU Graz resultierte in<br />

einer optimierten Gestaltung dieses Bauwerkes. Mittels des Modelles, das im Maßstab 1:20<br />

errichtet und nach dem Froude’schen Ähnlichkeitskriterium betrieben wurde, konnten die<br />

1 Graz University of Technology, Graz, AUSTRIA, schneider@tugraz.at<br />

2 Wildbach- und Lawinenverbauung<br />

3 Graz University of Technology<br />

406 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP002


geforderten Anforderungen an das Bauwerk erfolgreich getestet und somit ein erfolgsversprechender<br />

Ausführungsvorschlag erarbeitet werden. Erste Ergebnisse hinsichtlich geplanter<br />

Bemessungsgrundlagen, die in weiterer Folge entwickelt werden sollen, sowie Angaben<br />

hinsichtlich des vorgesehenen Monitoringkonzeptes runden diesen Beitrag ab.<br />

KEYWORDS<br />

flood protection; physical model test; side weir; monitoring; design criterium<br />

EINFÜHRUNG<br />

Die im Bundesland Salzburg gelegene Gemeinde Thalgau wird immer wieder von größeren<br />

Hochwässern heimgesucht. Im Sommer 2002 ereigneten sich drei Hochwasserereignisse an<br />

der Fuschler Ache sowie deren beiden Zubringern Fischbach und Brunnbach mit dem<br />

Ergebnis, dass große Flächen des gesamten Tales überflutet wurden.<br />

Die potenziell überflutete Fläche beträgt ca. 320 ha. Etwa 5000 Einwohner leben in diesem<br />

hochwassergefährdeten Bereich. Dies entspricht rund 12% des gesamten ständig bewohnten<br />

Gebietes der Gemeinde Thalgau. Der historische Rückblick zeigt, dass dieses Gebiet schon<br />

immer gefährdet war und auch in ziemlich regelmäßigen Abständen überflutet wurde.<br />

Vor allem die für dieses Gebiet typischen lang anhaltenden advektiven Niederschläge, die<br />

durch kurze konvektive Ereignisse zusätzlich überlagert werden, können kritische Situationen<br />

hinsichtlich Hochwassergefahr bewirken (Salzburger Landesregierung, 2006).<br />

Aus diesem Grund wurde für die Gemeinde Thalgau seitens der Österreichischen Bundeswasserbauverwaltung<br />

(zuständig für den Fischbach) und der Wildbach- und Lawinenverbauung<br />

(zuständig für Fischbach und Brunnbach) ein integrales Hochwasserschutzkonzept gestartet.<br />

Dieser integrale Ansatz bedeutet, dass der Schutz gegen Naturgefahren durch den Einsatz<br />

aktiver und passiver Maßnahmen unter Einbeziehung aller Interessensbeteiligter erreicht<br />

wird. Der aktive Hochwasserschutz umfasst sowohl technische Maßnahmen im Gewässer als<br />

auch einzugsgebietsbezogene Schritte wie den gezielten Rückhalt von Wasser in der Fläche<br />

durch technische Eingriffe. Andererseits kommen weiters passive Schutzmaßnahmen zum<br />

Einsatz. Dazu zählen die Gefahrenzonenplanung, die Risikovermeidung durch das gezielte<br />

Bewusstmachen von Gefahren der Beteiligten, sowie eine geeignete und vorausschauende<br />

Raumplanung (Salzburger Landesregierung, 2006).<br />

Durch die linearen Verbauungsmaßnahmen an den Bächen in der Vergangenheit in Verbindung<br />

mit einer starken Siedlungstätigkeit sind großräumige Überflutungsflächen als wesentliche<br />

Hochwasserabfluss- und Retentionsgebiete in Verlust geraten. Betreffend technischer,<br />

aktiver Hochwasserschutzmaßnahmen kommt deshalb im vorliegenden Hochwasserschutzkonzept<br />

der Errichtung von Rückhaltebecken große Bedeutung zu. Im Zuge dessen ist u.a.<br />

die Errichtung eines Streichwehres in Kombination mit einem Regulierbauwerk am Brunnbach<br />

vorgesehen. Der Zweck dieses Bauwerkes ist eine kontrollierte Abgabe von Wasser aus<br />

dem Brunnbach in ein seitlich gelegenes Retentionsbecken (Nebenschluss) zu gewährleisten,<br />

damit nur eine klar definierte maximale Restwassermenge im Brunnbach unterwasserseitig<br />

des Wehres abfließen kann. Somit ist dieser Bereich der Gemeinde Thalgau (dem Ortszent-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 407


um vorgelagertes Industrie- und Gewerbegebiet) vor Hochwasser geschützt. Das Regulierbauwerk<br />

stellte eine große Herausforderung dar, da ein herkömmliches Wehr vor allem<br />

hinsichtlich beschränkter räumlicher Rahmenbedingungen in der dort geschützten Landschaft<br />

keine Option darstellte. Des Weiteren soll das Regulierbauwerk keine beweglichen Teile<br />

aufweisen, was eine zusätzliche Erschwernis bedeutet.<br />

Der Brunnbach weist bis zu seiner Mündung in den Fischbach (im Ortszentrum von Thalgau)<br />

eine Einzugsgebietsfläche von 18,9 km² auf. Die hundertjährliche Hochwasserspitze bei<br />

einem 6- stündigen Bemessungsregen von 158 mm beträgt 52 m³/s. Diese soll auf eine<br />

Ausbauwassermenge von 32 m³/s reduziert werden. Dies stellt ein Minimalziel dar, ein<br />

Freibord konnte dabei aufgrund der vorherrschenden Verhältnisse im Ortszentrum von<br />

Thalgau, die keinerlei Aufweitungen zulassen, nicht mehr berücksichtigt werden.<br />

Die insgesamt 4 (3 neu errichtet im Hauptschluss und 1 bestehendes im Nebenschluss,<br />

welches mit gegenständlichem Streichwehr adaptiert wurde) Rückhaltebecken besitzen ein<br />

Retentionsvolumen von insgesamt 550.000 m³ inklusive Fließretention bei Überschreiten<br />

der Stauziele.<br />

Für die Entwicklung und Optimierung des Entlastungsbauwerkes (z.B. Länge und Form des<br />

Streichwehres, Art und Abmessungen des Regulierbauwerkes) am Brunnbach wurde ein<br />

physikalischer Modellversuch durchgeführt. Das Institut für Wasserbau und Wasserwirtschaft<br />

der Technischen Universität Graz wurde seitens der Wildbach- und Lawinenverbauung,<br />

Gebietsbauleitung Pongau, Flachgau und Tennengau (WLV) damit beauftragt einen hydraulischen<br />

Modellversuch des Streichwehres Brunnbach durchzuführen.<br />

DAS MODELL<br />

Es wurde ein physikalisches Modell eines Ausschnittes des Brunnbaches im Wasserbaulabor<br />

der Technischen Universität Graz errichtet (siehe Abbildung 1, Ausgangszustand). Die<br />

Umfassungsmauer des Modelles wurde klassisch mittels Ziegeln errichtet und die Bachsohle<br />

aus vermörteltem Grobkies, der naturähnlich skaliert wurde, eingebaut. Die relevanten<br />

Bauteile wie die Wehrkrone, das Regulierbauwerk und ähnliches wurden aus Kunststoff<br />

hergestellt. Das hydraulische Modell wurde nach dem Froude’schen Ähnlichkeitskriterium<br />

betrieben. Froude’sche Ähnlichkeit bedeutet, dass das Verhältnis der Trägheits- und Schwerekräfte<br />

in der Natur und im Modell gleich ist. Das Modell für das Streichwehr wurde nach den<br />

vorgegebenen Profilen des Auftraggebers mit fester Flusssohle im Maßstab 1:20 ohne Überhöhung<br />

aufgebaut. Es entspricht einer Naturlänge von etwa 128 m. Im Labor hat das Modell<br />

eine Länge von etwa 6,4 m, eine max. Breite von 2 m und ist 0,8 m hoch (Zenz et al., 2014).<br />

Die Aufgabenstellung umfasst die Sicherstellung eines maximalen Abflusses im bachab vom<br />

Streichwehr gelegenen Abschnitt des Brunnbaches von 18 m³/s bei einer zufließenden<br />

Wassermenge von bis zu 60 m³/s. Der Zufluss beinhaltet eine gewisse Sicherheit und ist daher<br />

etwas größer als das HQ 100<br />

. Die geforderte Ausbauwassermenge von 32 m³/s im Ortszentrum<br />

von Thalgau ergibt sich aus dem Abfluss des Streichwehres sowie weiteren Zuflüssen<br />

408 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


unterwasserseitig des Bauwerkes über eine Strecke von etwa 2 km. Der seitliche Abwurf<br />

der überschüssigen Wassermenge von 42 m³/s bei Maximalabfluss hat über das untersuchte<br />

Streichwehr in ein Rückhaltebecken zu erfolgen. Zusammenfassend kann man folgende<br />

limitierenden Faktoren für den Modellversuch anführen:<br />

– Maximaler Zufluss in das Modell: 60 m³/s<br />

– Beginnende seitliche Hochwasserentlastung bei einem Zufluss von 16-18m³/s<br />

– Maximale verbleibende Restwassermenge im Brunnbach: 18m³/s<br />

– Keine beweglichen Teile/Verschlüsse<br />

Abbildung 1: Physikalisches Modell im Maßstab 1:20, Ausgangszustand, trocken, schematische Darstellung der limitierenden Zu- und<br />

Abflüsse<br />

Vor allem die Vorgabe, dass keine beweglichen Teile bei instationären Zuflussbedingungen<br />

Verwendung finden sollen, stellte eine gewisse Herausforderung dar. Eine Steuerung des<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 409


Abflusses mit Hilfe eines beweglichen Verschlusses wäre trivial gewesen. Ausgehend vom<br />

Ausgangszustand, der eine schräg angeströmte Tauchwand bei einem relativ kurzen Streichwehr<br />

abbildete (siehe auch Abbildung 1), wurde in weiterer Folge eine Vielzahl an Varianten<br />

getestet (Zenz et al., 2014).<br />

ERGEBNISSE<br />

Schlussendlich wurde folgende Lösung gefunden. Ein Regulierbauwerk, bestehend aus zwei<br />

hintereinander, normal auf die Hauptfließrichtung angeordneten Durchlässen in Kombination<br />

mit einem 46 m langen Streichwehr erfüllt die Vorgaben. Der Abstand zwischen den<br />

beiden Durchlässen beträgt 5,1 m, die Öffnungsweite des oberwasserseitigen Durchlasses ist<br />

3 m breit und 1,96 m hoch, des unterwasserseitig gelegenen Durchlasses 3,48 m breit und<br />

1,26 m hoch. Die beiden hintereinander angeordneten Durchlässe bewirken, dass sowohl der<br />

erste wie auch der zweite Durchlass eingestaut werden. Der Zufluss zu den Durchlässen<br />

erfolgt strömend, innerhalb der Kammer tritt eine hochturbulente Abflusssituation ein und<br />

nach der zweiten Öffnung verlässt das Wasser den Bereich im schießenden Strömungszustand.<br />

Das bedeutet, dass durch den Aufstau in der „Kammer“ (Bereich zwischen den beiden<br />

Durchlässen), die Spiegeldifferenz oberwasserseitig des Durchlasses 1 zur „Kammer“ reduziert<br />

wird und daher eine Drosselung des ersten Durchlasses auftritt. Die Kombination dieser<br />

beiden Durchlässe mit der dazwischen angeordneten „Kammer“ ist von entscheidender<br />

Bedeutung für die Funktionsfähigkeit des Bauwerkes. In Abbildung 2 wird der maximale<br />

Abfluss im Modell fotografisch dargestellt.<br />

Abbildung 2: Ausführungsvorschlag des Streichwehres und Regulierorganes bei maximalem Zufluss<br />

Wie diese spezielle Kombination des Streichwehres mit dem Regulierbauwerk wirkt, ist näher<br />

in Abbildung 3 nachvollziehbar. Die horizontale blaue Linie symbolisiert die Höhe der<br />

Streichwehrkrone. Die grüne Linie kennzeichnet den Abfluss im Brunnbach, gemessen direkt<br />

unterhalb des Regulierbauwerkes. Die Zunahme des Wasserstandes im Bereich des Wehres<br />

(gemessen direkt oberwasserseitig des Regulierbauwerkes) ist durch die rote Linie dargestellt.<br />

Auf der Abszisse wird die in das Modell zufließende Wassermenge dargestellt. Bei zunehmendem<br />

Zufluss in das Modell wird die gesamte Wassermenge bis zu etwa 16 m³/s durch die<br />

410 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 3: Ergebnisse des Ausführungsvorschlages<br />

Öffnungen des Regulierbauwerkes ohne einen Rückstau durchgeleitet. Ab 16 m³/s beginnt<br />

der Einstau des Regulierorgans, das heisst, dass ab diesem Zeitpunkt Wasser über das Streichwehr<br />

entlastet wird. Damit steigt naturgemäß auch der Wasserstand im Bereich des Streichwehres<br />

nicht mehr so stark an (Abflachen des Gradienten beim Knick). Bei der weiteren<br />

Zunahme des Zuflusses konnte eine leichte Abnahme des Abflusses durch das Regulierbauwerk<br />

beobachtet werden, was durch die auftretenden Verluste in den Durchlässen erklärbar<br />

ist. Ab einem Zufluss von etwa 19 m³/s steigt der Abfluss im unterwasserseitig gelegenen<br />

Bereich des Brunnbaches wieder. Bei der maximal zufließenden Wassermenge von 60 m³/s<br />

kann ein Ausfluss durch das Regulierorgan von 18 m³/s und somit eine Entlastung von<br />

42m³/s erreicht werden. Der Wasserstand direkt oberwasserseitig des Regulierorganes liegt bei<br />

580,4 m über Meeresniveau, es werden keine unerwünschten Ausuferungen in diesem<br />

Bereich beobachtet.<br />

Als nächster Schritt werden aufbauend auf diese Versuche Bemessungsrichtlinien für ähnlich<br />

gelagerte Probleme erarbeitet. In diesem Beitrag sollen die ersten vorläufigen Untersuchungen<br />

vorgestellt werden, die Werte sind qualitativ zu verstehen. In nächster Zeit werden<br />

sowohl standardisierte Laborversuche als auch numerische Untersuchungen durchgeführt,<br />

um hier gesicherte Grundlagen zu schaffen.<br />

Schritt 1 ist die Erstellung eines numerischen 1D Modells (HEC-RAS), um mögliche Variationen<br />

der Geometrie zu untersuchen. Das numerische Modell wurde analog zum physikali-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 411


schen Modellversuch aufgesetzt und auf Basis der Messungen im Versuch kalibriert. In Abbildung<br />

4 ist ein Längsschnitt mit den maßgebenden, kalibrierten Wasserständen dargestellt.<br />

Es sind der Oberwasserbereich mit dem Streichwehr und den beiden Durchlässen sowie der<br />

Unterwasserbereich dargestellt. Die beiden abgebildeten Wasserspiegellinien stellen sich bei<br />

den Zuflüssen „18 m³/s“ bzw. „60 m³/s“ ein. Die gelben Quadrate symbolisieren die Wasserstands-Punktmessungen<br />

im physikalischen Modell bei einem Zufluss von 60 m³/s.<br />

Auf diesen Abfluss wurde somit das numerische Modell kalibriert. Auf Basis dieses Modelles<br />

wurden unterschiedliche Variationen berechnet. So wurde einerseits die Länge des Wehres<br />

adaptiert, aber auch die jeweiligen Öffnungen in den Durchlässen verändert. Damit konnte<br />

das Verhalten des Abflusses durch die Änderung der hydraulischen Komponenten beurteilt<br />

werden.<br />

Abbildung 4: Längsschnitt durch das numerische 1D Modell, kalibrierte Wasserstände<br />

In Abbildung 5 ist beispielhaft ein Ergebnis solch einer Berechnung dargestellt. Es wurden<br />

hierfür beide Durchlassöffnungen prozentuell verkleinert, alle anderen Randbedingungen<br />

jedoch gleich gelassen. Die 100% Öffnung entspricht somit dem Ausführungsvorschlag, wie<br />

er oben beschrieben wurde. Die grüne horizontale Linie symbolisiert den Zufluss zum Modell,<br />

der bei allen Varianten konstant bei 60 m³/s (100%) gehalten wurde. Eine Verkleinerung der<br />

Öffnung bewirkt einerseits eine Reduktion des Abflusses im Brunnbach unterwasserseitig des<br />

Regulierorganes (violette Linie), andererseits naturgemäß eine Erhöhung der seitlich<br />

abgeworfenen Wassersmenge (blaue Linie) mit einer einhergehenden Erhöhung des<br />

Wasserstandes direkt oberhalb des Regulierorganes (rote Linie). Beide Abflüsse müssen in<br />

Summe dem Gesamtzufluss entsprechen.<br />

MONITORINGSYSTEM<br />

Der Bau und die Instandhaltung von Rückhaltebecken sind aus dem modernen Hochwassermanagement<br />

nicht mehr wegzudenken und halten zunehmend auch Einzug bei kleineren<br />

412 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 5: Änderung der Querschnittsfläche der Durchlässe, Auswirkung auf Abflüsse und Wasserstände<br />

Einzugsgebieten. Eine besondere Herausforderung stellt dabei die Minimierung des Betriebsrisikos<br />

und die Reduzierung der Betriebskosten dar. Automatisierte Monitoringsysteme<br />

können dabei von großem Nutzen sein. Abbildung 6 zeigt die in diesem Projekt eingesetzte<br />

mobile Monitoringanlage MOSES (Mobiles Sicherheits-Einsatzsystem), bestehend aus einem<br />

Datenlogger, Energieversorgung (Solar- und Batterie) und Übertragungseinrichtungen (GSM<br />

Modem). Es werden mittels Radar Geschwindigkeit und Abfluss gemessen. Zusätzlich<br />

Optische Informationen mittels Kamera (Standbilder alle drei Stunden, ab Überschreiten<br />

eines Schwellenwertes alle 5 min) und Infrarotscheinwerfer.<br />

Retentionsbauwerke stellen in Österreich Schlüsselbauwerke gemäß ONR Richtlinien 24800<br />

(ONR, 2008a) und 24803 (ONR, 2008b) dar. Sie müssen in jährlichen Intervallen auf ihre<br />

Funktionstüchtigkeit kontrolliert werden. Hydrologische Messsysteme können die operationale<br />

Arbeit erleichtern und die Sicherheit der Anlage erhöhen. Mit seinen im Endausbau<br />

7 großen Rückhaltebecken und einem Retentionsvolumen von etwa 1 Mio. m³ stellt das<br />

Projekt Thalgau diesbezüglich ein Pilotprojekt dar. Noch im Sommer 2015 werden die ersten<br />

drei Becken mit automatisierten Pegel- und Abflussmessungen ausgerüstet. Das Zusammenspiel<br />

der einzelnen Becken in Abhängigkeit von Niederschlagsereignissen soll Aufschlüsse<br />

über Projekterfolg und Optimierungsbedarf sowie Erkenntnisse für zukünftige Projektierungen<br />

liefern.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 413


Abbildung 6: Mobiles Sicherheits-Einsatzsystem MOSES zur Baustellenabsicherung am Brunnbach<br />

FAZIT UND AUSBLICK<br />

Dieser Beitrag zeigt ein Beispiel physikalischer Modelluntersuchungen für eine technische<br />

Lösung einer Hochwasserschutzmaßnahme im Rahmen eines integralen Hochwasserschutzkonzeptes<br />

sowie dessen zeitgemäßes Monitoringsystem.<br />

Die besondere Herausforderung in diesem Falle bestand, dass vorgegeben war, keine<br />

beweglichen Teile anzuwenden. Die Kombination eines Streichwehres mit einem Regulierbauwerk,<br />

das aus zwei normal auf die Hauptströmung angeordneten Durchlässen besteht,<br />

stellt eine äußerst zufriedenstellende Ausführungsform dar. Nur die besondere Anordnung<br />

dieser beiden Durchlässe, die sich gegenseitig beeinflussen, ermöglicht die Erfüllung der<br />

Vorgaben. Somit konnte für den Hochwasserschutz des unterliegenden Gebietes eine sehr<br />

gute Lösung gefunden werden. Hinsichtlich Schwemmholzeintrag in den Bereich des<br />

Bauwerkes kann durch bereits oberwasserseitig angeordnete Auswurfmöglichkeiten davon<br />

ausgegangen werden, dass keine Verklausungsgefahr besteht. Eine äußerst unwahrscheinliche<br />

Verklausung hätte aber auch keine schwerwiegenden Auswirkungen zur Folge, da dabei<br />

beim zu schützenden Bereich in der Gemeinde Thalgau mit noch geringerem Abfluss zu<br />

rechnen wäre und das Rückhaltebecken sehr groß und mit einer ausreichenden Entlastungsvorrichtung<br />

versehen ist. Ebenfalls ist mit überschaubaren Sedimentmengen in diesem<br />

Bereich zu rechnen, da oberwasserseitig ausreichende Rückhaltemaßnahmen vorgesehen<br />

sind.<br />

414 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Daraus resultierend sollen Bemessungsrichtlinien für ähnlich gelagerte Fälle entwickelt<br />

werden. Es wurden erste qualitative Ergebnisse erzielt. Dafür ist ein mit Hilfe der Modellversuche<br />

kalibriertes 1D numerisches Modell entwickelt worden, um Variationen der<br />

Geometrie beurteilen zu können. Sowohl die Verkürzung des Streichwehres als auch die<br />

Verringerung der Querschnittsöffnungen bedingen demensprechende Reaktionen des<br />

Abflussbildes. Hier sind weiterführende Grundlagenversuche an physikalischen Modellen<br />

notwendig, um vor allem darauf basierend numerische Modelle kalibrieren zu können, die<br />

der Entstehung von Bemessungsrichtlinien zugrunde liegen sollen.<br />

LITERATUR<br />

- ONR (2008a). Schutzbauwerke der Wildbachverbauung – Begriffe und ihre Definitionen<br />

und Klassifizierung<br />

- ONR (2008b). Schutzbauwerke der Wildbachverbauung – Betrieb, Überwachung und<br />

Instandhaltung<br />

- Salzburger Landesregierung (2006). Integraler Hochwasserschutz Thalgau – ein innovatives<br />

Schutzkonzept für die Fluss- und Wildbacheinzugsgebiete in der Marktgemeinde Thalgau /<br />

Land Salzburg, Amt der Salzburger Landesregierung, Fachabteilung 6/6, Wasserwirtschaft,<br />

Bundeswasserbauverwaltung.<br />

- Zenz G., Schneider J., Redtenbacher M., Lazar F. (2014). Hydraulischer Modellversuch –<br />

Streichwehr Brunnbach, nicht publizierter Schlussbericht.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 415


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Powder Snow Avalanche Engineering: New Methods to<br />

Calculate Air-Blast Pressures for Hazard Mapping<br />

Lukas Stoffel 1 ; Stefan Margreth 2 ; Mark Schaer 2 ; Marc Christen 2 ; Yves Bühler 2 ; Perry Bartelt 2<br />

ABSTRACT<br />

Powder snow avalanches are a common hazard in high alpine regions. Steep tracks and cold<br />

snow temperatures facilitate the formation of the powder suspension cloud developing from<br />

the dense, fast-moving avalanche core. Considerable damage to buildings and power lines is<br />

possible even when the dense core of the avalanche stops before reaching the infrastructure.<br />

An efficient simulation tool that calculates powder pressures in three-dimensional terrain<br />

would help engineers plan mitigation measures. We present a novel two-layer powder<br />

avalanche model that couples the cloud to the flowing core, allowing the simulation of mixed<br />

flowing/powder avalanches. The model predicts endangered areas outside the reach of the<br />

dense core. We apply this model to a well-documented case study in southern Switzerland<br />

and discuss the potential for future engineering applications.<br />

KEYWORDS<br />

avalanche;avalanche dynamics;Modeling;Hazard Assessment.<br />

INTRODUCTION: HAZARD MAPPING AND POWDER SNOW AVALANCHE DYNAMICS<br />

The yellow hazard zone was introduced into Swiss snow avalanche hazard mapping procedures<br />

to account for powder avalanches with a 300 year return period and pressures smaller<br />

than 3 kPa (RL, 1984). The yellow zone is placed between the blue and white hazard zones<br />

and allows engineers to consider destructive pressures beyond the reach of the dense flowing<br />

avalanche core. For example, in the yellow zone, exposed building components must be<br />

dimensioned to withstand the wind-like blast arising from the powder cloud. Although<br />

powder avalanche pressures are small in comparison to the pressure of the dense avalanche<br />

core, they can work over the entire height of a tall structure, leading to significant overturning<br />

moments and failure. Power line cables are especially vulnerable to the air-blast which<br />

can reach significant heights above the ground. Hazard engineers use the yellow zone to<br />

signal that there is danger for persons outside buildings that might be hit by hard snow<br />

granules, woody debris or rocks that are transported by the powder cloud.<br />

Numerical dense flow avalanche models are now in widespread application throughout the<br />

world to predict impact pressures of the flowing core, e.g. Christen (2010) and Sampl and<br />

Zwinger (2004). Flowing avalanche pressures primarily define the red and blue danger zone.<br />

If the hazard engineer, however, expects extreme powder snow avalanche activity, there are<br />

1 WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, SWITZERLAND, stoffell@slf.ch<br />

2 WSL Institute for Snow and Avalanche Research SLF<br />

416 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP038


few practical (and computationally efficient) models that can be employed to predict powder<br />

avalanche air-blast pressures.<br />

Powder avalanche engineering/modeling is especially difficult because many questions center<br />

around the influence of terrain features. As the momentum of the powder cloud is acquired<br />

from the avalanche core, terrain features in the transition zone are of great importance.<br />

For example, steep terrain segments in the transition zone serve to accelerate the avalanche<br />

core and therefore provide sufficient forward inertia to the cloud. Steep terrain is therefore<br />

the first indicator of powder cloud formation and that the air-blast calculations are required.<br />

Terrain features that divert the direction of the avalanche core are also considered, especially<br />

when defining the lateral dispersion of the cloud (Bozhinskiy and Losev, 1998; Bühler et al.,<br />

2011). The momentum imparted to the cloud will carry it forward in the direction of the<br />

core. As the cloud is less sensitive to ground features at the avalanche base, terrain features<br />

serve to separate the core from the cloud. Significant powder avalanche pressures can therefore<br />

be generated in the transition and runout zone at the lateral edges of the avalanche track<br />

– in both the transition and runout zones (Grigoryan et al., 1982). The hazard engineer<br />

therefore must identify terrain feature that potentially cause a flow separation. This is very<br />

difficult to do without models that consider both the motion of avalanche core and powder<br />

cloud in three-dimensional terrain.<br />

Snow climatology, avalanche volume, amount of snow entrainment and track elevation<br />

should also be considered when deciding if the powder avalanche pressures are relevant.<br />

Cold snow temperatures facilitate powder avalanche formation. Dry-cold-snow granules<br />

produce avalanche cores that fluidize and are less dense, resulting in faster flows. This allows<br />

the intake of air into the avalanche. The air becomes loaded with ice dust and is eventually<br />

blown-out of the avalanche to create the powder cloud (Bartelt et al., 2015). The temperature<br />

of the avalanche core is in large part determined by the temperature of the entrained snow<br />

(Vera Valero et al., 2015). The snowcover is, in general, colder at higher elevations. At warm<br />

temperatures, the liquid water film at the surface of snow crystals assists the bonding of stray<br />

crystals and the formation of large, heavy snow clumps (Bartelt and McArdell, 2011).<br />

Therefore, at colder temperatures it is easier to produce powder avalanches. Steep avalanche<br />

tracks with large release volumes and with potential for snow entrainment are therefore<br />

primary candidates for powder snow avalanches in cold climates and high elevations.<br />

In this paper we present a new two-layer powder avalanche model that facilitates the<br />

calculations of air-blast pressures. A salient feature of the model is the consideration of both<br />

the avalanche core and the suspension cloud (Bartelt et al., 2015). The model is threedimensional<br />

and accounts for snow entrainment. We apply the model to simulate the<br />

well-documented 1999 All’Acqua avalanche to demonstrate how air-blast pressures can<br />

be calculated outside the domain of the dense avalanche core.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 417


METHODS : TWO-LAYER MIXED FLOWING/POWDER AVALANCHE DYNAMICS MODELS<br />

To model powder snow avalanches, we apply the two-layer model of Bartelt et al. (2015)<br />

which has been implemented in the research version of the RAMMS (Christen et al., 2010)<br />

avalanche dynamics program. Two-layer models consist of an avalanche core Φ and a powder<br />

cloud Π (Figure 1). Two-layer models were first proposed by Russian scientists in the former<br />

Soviet Union (Bozhinskiy and Losev, 1998). They have also been applied to calculate powder<br />

avalanche pressures in the European alps (Naaim and Gurer, 1998; Issler 1998). The cloud Π<br />

is treated as an inertial flow arising from avalanche core Φ. The yellow zone is therefore<br />

defined by the attenuation of the powder cloud velocity after it detaches from the core. The<br />

density of the core is not constant – allowing dilute, disperse and dense flow densities. At the<br />

avalanche front, the core is dilute (“saltation layer”), allowing the intake of air Λ. This air is<br />

mixed with ice dust and blown out to create the powder cloud. For more details about the<br />

avalanche model, see Bartelt et al. (2015).<br />

65 out to create the powder cloud. For more details about the avalanche model, see Bartelt et al.<br />

65<br />

66<br />

out to create the powder cloud. For more details about the avalanche model, see Bartelt et al.<br />

(2015).<br />

66 (2015). 65 out to create the powder cloud. For more details about the avalanche model, see Bartelt et al.<br />

67<br />

Figure 1: The structure 1 66 (2015).<br />

odel, see Bartelt et al. of a mixed flowing/powder avalanche. The avalanche contains a dilute core Φ (often termed the “saltation<br />

67 layer”) Figure and the 1 powder cloud Π. The cloud can decouple from the core and move independently. Snow Σ and air Λ are entrained by the<br />

68 avalanche. The model state 67 variables Figure 1 for the core are,<br />

68 The model state variables for the core are,<br />

68 The model state variables for the core are,<br />

The model state variables for the core are,<br />

( ) T<br />

U Φ<br />

M =<br />

Φ<br />

, M<br />

ΦuΦ<br />

, M<br />

ΦvΦ<br />

, RhΦ<br />

, hΦ<br />

, M<br />

ΦwΦ<br />

, N 69 ( M , M u , M v<br />

Rh , h , M w , N ) K<br />

( T ) T<br />

Φ<br />

M<br />

Φ<br />

, M<br />

ΦuΦ<br />

, M<br />

ΦvΦ<br />

, RhΦ<br />

, hΦ<br />

, M<br />

ΦwΦ<br />

, N<br />

Φ Φ Φ Φ Φ<br />

Φ Φ Φ Φ K (1)<br />

K<br />

(1)<br />

and (1)<br />

70 for the cloud, 70<br />

70<br />

and for the cloud,<br />

71 U = ( M<br />

(2)<br />

( M<br />

u<br />

M<br />

( M<br />

v<br />

M u<br />

h ) T Π Π<br />

M Π Π<br />

M u Π Π<br />

M v Π<br />

h ) M v ) T<br />

Π Π Π Π Π Π<br />

hΠ<br />

(2)<br />

(2)<br />

T<br />

Π Π Π Π Π Π Π<br />

The slope parallel The slope parallel flow velocity of the core is given by the two-dimensional vector<br />

flow velocity of the core is given by the two-dimensional vector<br />

( u<br />

The slope parallel flow velocity of the core is given by the two-dimensional vector ( ) T<br />

Φ Φ<br />

vΦ<br />

72 u v ) T<br />

72 similarly for the of the avalanche core<br />

The slope parallel flow velocity of the core is given by the two-dimensional vector ( al vector ( u v )<br />

u v ) T<br />

in the slope perpendicular direction is w Φ . This be the initial blow-out<br />

Φ = Φ<br />

,<br />

Φ<br />

Φ Φ Φ<br />

73 similarly for the powder cloud, u ( ) T<br />

Π<br />

= uΠ<br />

, vΠ<br />

. The velocity of the avalanche core in the slope<br />

Φ Φ Φ<br />

anche 73 core similarly in the slope for the 74 powder perpendicular cloud, direction u = is( uw . v ) T<br />

73 velocity similarly of for the the plume powder structures cloud, of Π<br />

the Π<br />

powder<br />

( This velocity<br />

u Π<br />

. The can velocity be considered of the the avalanche initial blow-out core velocity in the of slope the<br />

Φ<br />

v cloud.<br />

) T This upward velocity should be<br />

blow-out velocity of the 75 plume structures of Π the powder Π cloud. Π<br />

. The This upward velocity velocity of the should avalanche be carefully core studied in the to predict slope<br />

74 perpendicular direction is w . This velocity can be considered the initial blow-out velocity of the<br />

Φ<br />

perpendicular direction is w . This velocity can be considered the initial blow-out velocity of the<br />

Φ<br />

plume structures of the powder cloud. This upward velocity should be carefully studied to predict<br />

76 forces acting on powder cables suspended well-above the avalanche core. Slope-perpendicular<br />

arefully 74 studied to predict<br />

418 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

75<br />

77 velocities are generated when the free mechanical energy R of the avalanche is deflected at the<br />

e. Slope-perpendicular


74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

perpendicular 74 perpendicular direction direction is w . This w velocity . This can velocity be considered can be considered the initial the blow-out initial blow-out velocity of velocity the of the<br />

Φ<br />

Φ<br />

plume 75 structures plume structures of the powder of the cloud. powder This cloud. upward This velocity upward should velocity be should carefully be carefully studied to studied predict to predic<br />

forces 76 acting forces on acting powder on cables powder suspended cables suspended well-above well-above the avalanche the avalanche core. Slope-perpendicular<br />

core. Slope-perpendicular<br />

velocities 77 velocities are generated are generated when the when free mechanical the free mechanical energy R energy of the R avalanche of the avalanche is deflected is deflected at the at the<br />

basal 78 boundary, basal boundary, creating creating the dispersive the dispersive pressure pressure N (Buser N and (Buser Bartelt, and 2015). Bartelt, The 2015). dispersive The dispersive<br />

carefully studied to predict forces acting on powder K cables K suspended well-above the<br />

pressure 79 avalanche pressure is associated is core. associated with Slope-perpendicular the with inelastic the inelastic scattering velocities scattering of are snow generated granules of snow when granules and the fluidization free and mechanical fluidization of the core of the core<br />

energy R of the avalanche is deflected at the basal boundary, creating the dispersive pressure<br />

and 80 therefore and therefore formation the formation of so-called of so-called “saltation “saltation layers”. layers”. Core and Core cloud and masses cloud per masses unit area per unit area<br />

N K (Buser and Bartelt, 2015). The dispersive pressure is associated with the inelastic scattering<br />

are 81 denoted of are snow denoted M granules and<br />

and and<br />

Φ fluidization M , respectively. of the core Flow and heights therefore measured the formation from the of so-called basal boundary for the<br />

Φ<br />

M , respectively. Flow heights measured from the basal boundary for the<br />

Π Π<br />

“saltation layers”. Core and cloud masses per unit area are denoted M Φ and M Π , respectively.<br />

core 82 and core the cloud and the are cloud designated are designated h and<br />

and<br />

Φ<br />

h .<br />

Φ<br />

h .<br />

Π Π<br />

Flow heights measured from the basal boundary for the core and the cloud are designated<br />

h Φ and h Π .<br />

The 83 motion The of motion the mixed of of the the avalanche mixed avalanche is found is is by found found solving by by solving the solving differential the the differential vector vector equations: vector equations: equations:<br />

84<br />

∂U<br />

U ∂<br />

Φ<br />

Φ<br />

y<br />

x + = G<br />

Φ<br />

t<br />

x ∂y<br />

and and U ∂<br />

Π<br />

Π<br />

Φ<br />

∂Φ<br />

∂Φ<br />

x y<br />

85 +<br />

x y<br />

+ = G<br />

Φ<br />

+ = G (3)<br />

∂t<br />

∂x<br />

∂y<br />

and ∂U<br />

Π<br />

∂Π<br />

∂Π<br />

x y<br />

+ + = G (3)<br />

∂t<br />

∂<br />

xt<br />

∂<br />

yx<br />

∂<br />

Π<br />

y (3)<br />

Π<br />

86<br />

for 87 the core for for the the and core core cloud and and layers, cloud cloud layers, respectively. layers, respectively. respectively. The flux The The components flux flux components components for the for core the for the core<br />

( Φ core (Φ x, Φ(<br />

) y<br />

Φ T ) T ) T<br />

cloud (Π x, Π y ) T x<br />

, Φ y<br />

and<br />

x<br />

, Φ y<br />

and<br />

are defined in Bartelt et al. (2015) and are not of interest here. Of greater<br />

cloud 88 ( Π practical cloud () Π T interest ) are T the components of the vectors G Φ G Π describing the friction and<br />

x<br />

, Π y<br />

are<br />

x<br />

, Πdefined y<br />

are defined Bartelt in et Bartelt al. (2015) et al. and (2015) are not and of are interest not of here. interest Of here. greater Of greater<br />

entrainment processes acting on the core Φ and cloud Π. These are,<br />

practical 89 practical interest are interest the components are the components of the vectors of the Gvectors<br />

and<br />

and<br />

Φ<br />

G describing the friction and<br />

Φ<br />

G describing the friction and<br />

Π Π<br />

⎛<br />

M<br />

−<br />

M<br />

⎞<br />

entrainment 90 processes ⎜ acting on the core ⎟ Φ and cloud Π. These are,<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

102<br />

entrainment<br />

⎛<br />

Σ→Φ<br />

Φ→Π<br />

M<br />

⎛ processes M acting on the core Φ and cloud Π. These are,<br />

−⎛<br />

⎞<br />

Σ→Φ<br />

− M<br />

Φ→Π<br />

⎜<br />

⎞<br />

Σ→Φ<br />

M<br />

M<br />

⎞<br />

Φ→Π<br />

⎜<br />

⎛<br />

⎛<br />

⎜<br />

⎟Σ→Φ<br />

− M<br />

M<br />

⎞<br />

Σ→Φ<br />

⎛<br />

Φ→Π<br />

⎜<br />

⎞<br />

Σ→Φ<br />

Φ→Π ⎟<br />

⎜<br />

G<br />

−<br />

S<br />

u<br />

⎟<br />

⎟<br />

Φ→Π<br />

⎜⎜G<br />

⎞<br />

Σ→Φ<br />

− M<br />

⎟<br />

x<br />

−<br />

Φ→Π<br />

⎜<br />

⎜Gx<br />

SΦx<br />

− M<br />

Φ→Π<br />

⎟<br />

uΦ<br />

x ⎜ x<br />

Φ<br />

Φ→Π<br />

u ⎟<br />

⎛<br />

⎜<br />

x x ⎟ Φ<br />

⎛<br />

M<br />

⎞<br />

M<br />

⎛<br />

+<br />

Φ→Π<br />

+ M<br />

⎞<br />

Φ→Π<br />

Λ→Π<br />

⎜<br />

G<br />

S<br />

ΦΦ<br />

x x<br />

−<br />

− −<br />

S<br />

MM<br />

Φ→Π Φ→Π<br />

x<br />

Φ<br />

x<br />

−⎜<br />

GM<br />

u<br />

Φ→Π<br />

−<br />

⎟u<br />

Φ Φ ⎟<br />

⎜<br />

S<br />

Φu<br />

Φ−<br />

M<br />

Φ→Πu<br />

⎜<br />

x<br />

⎟<br />

⎜<br />

⎜<br />

G<br />

− S<br />

−<br />

⎜<br />

⎟<br />

x<br />

⎟<br />

Φ ⎛ M<br />

Φ<br />

M<br />

⎟<br />

⎛ M<br />

⎞<br />

Φ→Π<br />

+ M⎛<br />

⎞<br />

Φ→Π<br />

+ M⎛<br />

M<br />

⎞<br />

Λ→ΠΦ→Π<br />

+ M<br />

M<br />

⎞<br />

Λ→Π Φ→Π<br />

+<br />

Λ→Π<br />

Λ→Π<br />

⎜<br />

Φ<br />

− M<br />

Φ→Π<br />

⎜<br />

⎟<br />

y y<br />

Λ→Π<br />

⎞<br />

+ M<br />

Λ→Π<br />

⎜<br />

G −⎜<br />

S⎜<br />

G<br />

v<br />

⎜<br />

− SΦ<br />

Φ<br />

MΦ<br />

M<br />

−<br />

M<br />

Φ→Πv<br />

⎜<br />

⎟<br />

y<br />

Φ<br />

⎜<br />

G − SΦ<br />

− M<br />

Φ→Π y<br />

⎟ v<br />

⎜<br />

⎟<br />

y y<br />

Φy<br />

Φ<br />

y y<br />

Φ→Πv<br />

Φ→ΠvΦ<br />

⎟<br />

⎜<br />

⎜<br />

⎟<br />

⎟<br />

Φ<br />

=<br />

⎜y<br />

α<br />

( S<br />

)<br />

⎟ ⎟ ⎜ M<br />

Φ→Π<br />

⎜ M<br />

uΦ<br />

−<br />

Φ→Πu<br />

SΠx<br />

Φ ⎜−<br />

⎟<br />

91 G MS<br />

ΠΦ→Π<br />

x ⎟ uΦ<br />

91 Φ<br />

=<br />

G<br />

⎜<br />

91<br />

Φ<br />

⋅ u<br />

G<br />

Φ<br />

y<br />

⋅<br />

−<br />

y<br />

−<br />

u<br />

β<br />

SΦy<br />

− M<br />

Φ<br />

(<br />

( R<br />

=<br />

)<br />

−K<br />

Φ ⎜Φ<br />

α( S<br />

β<br />

⎟<br />

Φ<br />

⎟⋅<br />

u<br />

and Φ→Π<br />

(4)<br />

(<br />

)<br />

)<br />

) −<br />

and<br />

Φ<br />

βR<br />

and<br />

G = ⎜ M<br />

⎟<br />

G ⎜<br />

Φ→Πu<br />

K<br />

Πand<br />

=<br />

⎜<br />

⎜ M<br />

Φ→Πu<br />

Φ→Πu<br />

Φ<br />

− S<br />

Φ<br />

− SΠx<br />

⎟<br />

91 G Πx<br />

)<br />

u<br />

⎟<br />

91 G =<br />

Φ<br />

=<br />

S<br />

Π<br />

x<br />

91<br />

Φ ⎜ α S<br />

⎜ α S<br />

Φ<br />

⋅ u<br />

Φ<br />

⋅ u<br />

Φ<br />

− βRΦ<br />

− βRK<br />

⎟ and G ⎜ G =<br />

=<br />

K<br />

G =<br />

⋅ −<br />

Φ<br />

α S<br />

u<br />

⎟ and G =<br />

Π ⎜<br />

⎟<br />

(4)<br />

βRK<br />

and<br />

Π ⎜G Π<br />

= ⎟<br />

(4)<br />

⎜<br />

⎟<br />

⎟<br />

⎜<br />

w<br />

⎜<br />

M<br />

Φ→Πv<br />

⎜<br />

⎟ Φ<br />

− S<br />

Π<br />

(4) Πx<br />

⎟<br />

G<br />

Φ<br />

= ⎜ α( S<br />

Π<br />

Φ<br />

− Sy<br />

(4) (4)<br />

⎜ Φ<br />

⋅ u<br />

Φ<br />

) − βR<br />

⎜<br />

⎟K<br />

⎟ and<br />

w<br />

⎟ ⎜<br />

MG Φ→Π Π v=<br />

Φ ⎜−<br />

Sy<br />

(4)<br />

⎜<br />

w<br />

⎟<br />

⎜<br />

M ⎜<br />

M<br />

Φ→Πv<br />

Φ→Πv<br />

−<br />

Φ<br />

− SyΦ<br />

Sy<br />

⎜<br />

Φ<br />

w<br />

⎜<br />

⎟M<br />

⎟<br />

vΦ<br />

⎟<br />

(4)<br />

⎜⎜<br />

Φ<br />

w ⎜<br />

⎟ ⎟<br />

Φ<br />

⎟<br />

⎟<br />

⎜<br />

Φ<br />

w<br />

M<br />

vΦ<br />

−<br />

Sy<br />

⎜<br />

Φ<br />

⎟<br />

Φ<br />

⎟<br />

⎟<br />

⎜ N<br />

⎝ VΦ→Π<br />

+<br />

⎜ N<br />

Λ→Π<br />

⎜<br />

⎟<br />

⎝ VΦ→Π<br />

+ V⎜<br />

M<br />

Φ→ΠvΦ<br />

− Sy<br />

⎜ N ⎟<br />

⎜<br />

⎟<br />

⎜<br />

⎟<br />

⎝ V ⎝ V<br />

Φ→Π<br />

+<br />

Φ→Π<br />

+<br />

K<br />

N ⎟<br />

⎝<br />

⎠<br />

⎟<br />

Λ→Π<br />

⎜<br />

Φ<br />

VΦ→Π<br />

⎠ + V<br />

K ⎟<br />

K<br />

V<br />

Λ→Π ⎠<br />

⎜⎜<br />

⎜ ⎜<br />

⎟<br />

K<br />

Λ→Π<br />

⎝ 2γP<br />

−<br />

N<br />

K<br />

⎝ VΦ→Π<br />

+ V⎠<br />

Λ→Π ⎠<br />

⎜<br />

⎝ ⎜<br />

2γ<br />

2<br />

P<br />

Nw N<br />

⎟<br />

−<br />

Φ2<br />

Nw<br />

/ h<br />

⎟<br />

⎟<br />

⎝<br />

⎝ 2γP<br />

⎝<br />

Φ2γ<br />

/ P<br />

h⎠<br />

⎟<br />

⎝ VΦ→Π<br />

+ VΛ→Π<br />

⎠<br />

K Φ<br />

Φ−<br />

2<br />

− 2Nw<br />

⎜<br />

/<br />

h<br />

Φ<br />

/ h<br />

Nw ⎠ Φ<br />

/ hΦ<br />

⎠<br />

92 ⎜<br />

⎟<br />

Φ<br />

Φ<br />

⎠<br />

92 92<br />

⎟<br />

⎝ 2γP<br />

− 2Nw<br />

⎠<br />

93 The 92 core ⎝ 2γP<br />

− 2Nw<br />

of the avalanche Φ<br />

/ h<br />

is driven Φ<br />

/ hby ⎠Φ<br />

the ⎠ gravitational acceleration in the slope-parallel directions<br />

92<br />

93<br />

The core 93<br />

of The the avalanche core of the is avalanche driven by is the driven gravitational by the gravitational acceleration acceleration in the slope-parallel in the slope-parallel directions directions<br />

93 92 The core of the avalanche is driven by the gravitational acceleration in the slope-parallel directions<br />

9493<br />

G The core of the avalanche is driven by the gravitational acceleration in the slope-parallel directions<br />

93 = (<br />

The core of the avalanche is driven by the gravitational in the slope-parallel directions<br />

The core G<br />

94<br />

x<br />

of =<br />

, G<br />

94 ( y<br />

)<br />

the x<br />

,<br />

= ( Gavalanche G<br />

M<br />

y is driven by the the slope-parallel<br />

94 G = ( ( ) =<br />

Φ<br />

g<br />

( MG<br />

x<br />

, M<br />

xΦ,<br />

Gg<br />

Φ<br />

x<br />

,<br />

g<br />

94 G = directions 94<br />

x<br />

, G<br />

y<br />

= Gravitational is decomposed into three<br />

() =<br />

x<br />

, G( ) (<br />

) My<br />

). ravitational acceleration is decomposed into three<br />

y<br />

=<br />

Φ( Mg<br />

yΦ<br />

)<br />

. g<br />

ravitational<br />

x<br />

, M<br />

Φ<br />

g<br />

y<br />

My<br />

= M g<br />

Φ<br />

g<br />

Gx<br />

, G<br />

y<br />

)<br />

x<br />

,<br />

Φ<br />

x<br />

,<br />

= (<br />

Φ y<br />

) )<br />

). ravitational acceleration acceleration is decomposed is decomposed into three into three<br />

. ravitational<br />

Φ y<br />

. ravitational acceleration is decomposed into three<br />

95 gravitational components,<br />

acceleration is decomposed into three<br />

95<br />

gravitational 95 gravitational components, M<br />

Φ<br />

g<br />

x<br />

, M<br />

Φ<br />

g<br />

y<br />

g = ( g<br />

components, x<br />

=<br />

,<br />

g( g<br />

y<br />

,<br />

). ravitational acceleration is decomposed into three<br />

95 gravitational components, g =<br />

g<br />

x<br />

,<br />

gz<br />

). The mass exchanges in the mixed flowing avalanche<br />

G = ( G<br />

y<br />

g ,<br />

g=<br />

z<br />

95<br />

gravitational<br />

95 gravitational components, g = ( ( )( . g The<br />

x<br />

, g<br />

mass<br />

y<br />

, g<br />

z<br />

components,<br />

x<br />

, g<br />

y<br />

, gx<br />

g = (<br />

z<br />

) )<br />

) exchanges . The mass in exchanges the mixed in flowing the mixed avalanche flowing avalanche<br />

x<br />

, G<br />

y<br />

) = ( M<br />

Φ<br />

g<br />

x<br />

, M<br />

Φ<br />

g<br />

y<br />

). ravitational<br />

.<br />

y<br />

,<br />

The<br />

z<br />

. The mass acceleration exchanges in is the decomposed mixed flowing into avalanche three<br />

mass exchanges in the in mixed flowing avalanche<br />

96 system are: snow entrainment into the avalanche flowing avalanche<br />

x<br />

, g<br />

y<br />

, gcore<br />

z<br />

. The M mass exchanges in the mixed flowing avalanche<br />

96<br />

system 96<br />

are: system snow entrainment are: snow entrainment into the avalanche into the core avalanche 96<br />

system 96<br />

system are: system<br />

are: snow are:<br />

snow entrainment snow entrainment<br />

entrainment into into the into the and mass blow-out of<br />

avalanche the avalanche Σ→ M<br />

Φ<br />

, volume and mass blow-out of ice-<br />

Σ→Φcore<br />

, volume M<br />

Σ→and Φ<br />

, volume mass blow-out and mass of blow-out ice- of icegravitational<br />

components, g = ( g core M<br />

core M<br />

96 system are: snow entrainment into the avalanche core<br />

Σ→Φ<br />

, volume<br />

Φ<br />

and mass blow-out of ice-<br />

M<br />

Σ→ , volume and mass blow-out of icex<br />

, g<br />

y<br />

, g<br />

z<br />

)<br />

97 dust from the core V<br />

Φ<br />

ice-dust 97<br />

dust from 97<br />

the dust core<br />

air Σ→ , volume and mass blow-out of ice-<br />

97 dust from the Φ→ from Π<br />

and<br />

V<br />

M<br />

Φ→<br />

the<br />

Πcore<br />

and Φ→V M<br />

Π<br />

and direct air entrainment into the powder cloud<br />

Φ→<br />

Π<br />

and M<br />

V<br />

direct<br />

Φ→Πair and entrainment direct air entrainment into the<br />

core V<br />

into powder into the the cloud Λ→ powder Π<br />

V<br />

Λ→<br />

Πcloud V<br />

Λ→Π<br />

97<br />

dust 97<br />

from dust the core<br />

from the V core<br />

Φ→Π<br />

and<br />

Φ→Π<br />

and M<br />

M<br />

V Φ→Π<br />

and<br />

Φ→Π<br />

and<br />

Φ→direct Π<br />

and direct air entrainment into the powder cloud V<br />

air entrainment into the powder cloud V<br />

Λ→Π<br />

98 system (volume) are: and snow M entrainment M<br />

Φ→Π<br />

and direct air entrainment into the powder cloud<br />

Λ→Π<br />

98<br />

(volume) 98<br />

and (volume) Λ→<br />

M<br />

Π<br />

(mass). into the avalanche core M<br />

V<br />

Λ→Π<br />

Λ→<br />

Π<br />

and<br />

(mass). M<br />

Λ→Π<br />

(mass).<br />

Σ→Φ<br />

98 (volume) and M<br />

98 Central (volume) to the and model M equations is the inclusion of the free mechanical energy R of the<br />

98 (volume) and<br />

Λ→Π<br />

(mass).<br />

Π<br />

M Λ→ (mass).<br />

avalanche core which is Λ→ (mass).<br />

99 dust Central from to the model core equations V<br />

Φ→<br />

Π<br />

and is sum the inclusion of Φ→ the Π<br />

energy of the free of mechanical the random energy granule R of the motions avalanche V<br />

K<br />

and<br />

Λ→<br />

99<br />

Central 99<br />

to the Central model to equations the model is equations the inclusion is the of inclusion the free mechanical of the free mechanical energy R of energy the avalanche R of the avalanche<br />

99 Central to the model equations is the inclusion of the free mechanical energy R of the avalanche<br />

10099<br />

configurational core Central to (density) model equations changes is the Rinclusion V<br />

(Buser of and the free Bartelt, mechanical 2015). energy The R total of the free avalanche mechanical<br />

100 99<br />

which core Central<br />

is the which is to<br />

sum the the<br />

of sum model<br />

the energy of equations<br />

of the energy is<br />

random<br />

of the inclusion<br />

granule random granule of<br />

motions<br />

100 core which is the sum of the energy of the the random free motions mechanical granule<br />

R and configurational<br />

(volume) and M<br />

K<br />

R motions<br />

and energy configurational R of the avalanche<br />

K<br />

R and configurational<br />

100 energy<br />

100<br />

core is which produced<br />

core which Λ→is Π<br />

(mass).<br />

K<br />

is the sum from<br />

the sum<br />

of the of<br />

energy rate<br />

the energy of the working<br />

of the random<br />

random of granule the<br />

granule<br />

total motions shear<br />

motions<br />

R S R<br />

and Φ<br />

· configurational<br />

u<br />

and<br />

K Φ<br />

, the<br />

configurational<br />

101 (density) model parameter α<br />

100 core changes which is the sum of the energy of the random granule motions K<br />

101<br />

(density) 101<br />

R (Buser and Bartelt, 2015). The total free mechanical energy changes<br />

R (Buser and Bartelt, 2015). The total free mechanical R and is produced configurational from<br />

(density) V changes<br />

Kenergy is produced from<br />

V<br />

R (Buser and Bartelt, 2015). The total free mechanical energy is produced from<br />

V<br />

describing 101 (density) the production changes R rate (Buser 0 ≤ and α ≤ Bartelt, 0.20 (Buser 2015). The and total Bartelt, free mechanical 2015). The energy kinetic is produced part of from the<br />

101 (density) changes R (Buser V<br />

102 the<br />

and Bartelt, 2015). The total free mechanical energy is produced from<br />

101 rate of (density) woring changes of the V total<br />

fluctuation 102<br />

the rate 102 energy of woring the Rrate K<br />

decays of the woring R shear (Buser and Bartelt, 2015). The total free mechanical energy is produced from<br />

V<br />

total<br />

102 the rate of woring of the<br />

according of shear<br />

S<br />

the Φ<br />

⋅u , the model parameter α describing the production<br />

total S Φ<br />

total shear<br />

the parameter β because of irreversible Φ<br />

⋅ushear<br />

, the model parameter α describing the production<br />

Φ<br />

S<br />

Φ<br />

⋅u , the model parameter α describing<br />

Φ<br />

collisional/<br />

the production<br />

102 the rate of woring of the total shear S<br />

frictional 102 interactions the rate of woring the of the avalanche total shear Φ<br />

⋅u<br />

S<br />

, Φ<br />

⋅u , the model parameter α describing the production<br />

the model Φ<br />

103 rate 0 ≤ parameter α describing the production<br />

core.<br />

ΦS<br />

The parameter β is very dependent on the snow<br />

103<br />

rate 103<br />

α<br />

0<br />

≤ 0.<br />

α<br />

20 (Buser and Bartelt, 2015). The inetic ≤rate 0.<br />

200 ≤(Buser α ≤ 0.<br />

and 20<br />

Bartelt, (Buser and 2015). Bartelt, Φ The ⋅u , part the model of the parameter fluctuation energy α describing the production<br />

Φ<br />

inetic 2015). part The<br />

103 rate 0 ≤ α ≤ 0. 20 (Buser and Bartelt, 2015). The inetic inetic of the fluctuation<br />

part of the part of the energy fluctuation<br />

R decays<br />

K<br />

core which is the sum of the energy of the random granule motions fluctuation R energy decays<br />

K<br />

R decays<br />

R K<br />

103<br />

energy and configurational<br />

temperature. rate 0 ≤ α ≤ 0. 20 (Buser and Bartelt, 2015). The inetic part of the fluctuation energy<br />

K<br />

103 rate 0 ≤ α ≤ 0. 20<br />

R<br />

R decays<br />

decays K<br />

104 according to the parameter 104<br />

according 104<br />

to according the parameter to (Buser β because<br />

the parameter and Bartelt,<br />

of irreversible<br />

2015). The<br />

collisionalfrictional<br />

inetic part of the<br />

interactions<br />

fluctuation<br />

in<br />

energy<br />

the K<br />

β because of β irreversible because of irreversible collisionalfrictional collisionalfrictional interactions interactions the R decays<br />

K in the<br />

104<br />

104<br />

according according to the parameter β because of irreversible collisionalfrictional interactions in the<br />

105 (density) avalanche changes to the 104 according<br />

core. The<br />

to<br />

parameter<br />

the V β because of irreversible collisionalfrictional interactions in the<br />

105<br />

avalanche 105<br />

core. avalanche The parameter β is very<br />

core. The parameter β is because<br />

dependent very dependent of β is irreversible<br />

on the snow<br />

very on dependent the collisionalfrictional<br />

temperature.<br />

snow on temperature.<br />

the snow temperature.<br />

interactions in the<br />

105 avalanche core. The parameter β is very dependent on the snow<br />

105 avalanche core. The parameter β is very dependent on the snow temperature.<br />

<strong>INTERPRAEVENT</strong> temperature. <strong>2016</strong> – Conference Proceedings | 419<br />

the rate 105<br />

of avalanche woring core. of the The parameter total shear β is S very dependent on the snow temperature.<br />

106<br />

S = S , S we use<br />

Φ<br />

⋅u<br />

a oellmy-type Φ<br />

ansatz<br />

The core of the avalanche is driven by the gravitational acceleration in the slope-parallel directions<br />

. The mass exchanges in the mixed flowing avalanche<br />

, volume and mass blow-out of ice-<br />

M and direct air entrainment into the powder cloud Π<br />

Central to the model equations is the inclusion of the free mechanical energy R of the avalanche<br />

R (Buser and Bartelt, 2015). The total free mechanical energy is produced from<br />

For shearing in the core ( )<br />

, the model parameter α describing the production


103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

102101<br />

101 the (density) rate (density) of woring changes changes of R the (Buser<br />

V<br />

R total (Buser and shear and Bartelt, Bartelt,<br />

Φ<br />

⋅u2015). , the 2015). model The total The parameter total free free mechanical describing energy energy the is production<br />

produced is produced from from<br />

V<br />

Φ<br />

102 rate the 0 ≤rate α of ≤ woring 0. 20 (Buser of the total and shear Bartelt, S<br />

Φ<br />

⋅u2015). , the model The inetic parameter part α describing of the fluctuation the production<br />

Φ<br />

energy R decays<br />

K<br />

103 102 102 rate the rate the rate of 0. of 20woring (Buser of the and of total the Bartelt, total shear shear 2015). S The inetic part of the fluctuation energy decays<br />

Φ<br />

⋅u S , the model parameter α describing the Φ ⋅u , the model parameter α describing the<br />

K<br />

production<br />

Φ<br />

103 according rate 0 ≤to α the ≤ 0. 20 parameter (Buser and Bartelt,<br />

β because 2015). The of irreversible inetic part of the collisionalfrictional fluctuation energy R interactions decays<br />

K<br />

in the<br />

104 103 103 according rate rate 0 ≤to 0 α the ≤ 0. α parameter 20 ≤ 0. (Buser 20 (Buser and β because and Bartelt, Bartelt, of 2015). irreversible 2015). The inetic The collisionalfrictional inetic part part of the of the fluctuation interactions energy energy in R the decays<br />

K<br />

R decays<br />

104 according to the parameter β because of irreversible collisionalfrictional interactions in the K<br />

105 avalanche 104 104 avalanche according according core. core. to the to The parameter the parameter β because β is β very because is very dependent of of dependent irreversible on the snow collisionalfrictional on temperature. the snow temperature.<br />

interactions the in the<br />

105 avalanche core. The parameter β is very dependent on the snow temperature.<br />

105 105 avalanche avalanche core. core. The parameter The parameter β is very β is very dependent on the on snow the snow temperature.<br />

106 For shearing in the core Φ Φy<br />

For in Φ<br />

= ( we use a oellmy-type ansatz<br />

106 For shearing in the core S<br />

Φ<br />

= ( SΦxS<br />

, ΦS<br />

Φx<br />

y,<br />

) Swe Φy<br />

use )<br />

we a oellmy-type a use Voellmy-type a oellmy-type ansatz ansatz ansatz<br />

2<br />

106 106 For shearing For Πshearing the in core the core S<br />

Φ<br />

= S<br />

Φ<br />

( S= Φ<br />

2<br />

x( , S<br />

Φ<br />

107<br />

2<br />

xy,<br />

) Swe Φy<br />

) use we a use a oellmy-type ansatz ansatz<br />

Φ u ⎡<br />

u ⎡<br />

V<br />

ρΦ<br />

u ⎤<br />

.<br />

u ⎤<br />

(5)<br />

Π<br />

Φ<br />

107 S Π<br />

Π<br />

ξ Φ<br />

S<br />

Φ<br />

= ⎢µ<br />

Φ<br />

V<br />

2 2<br />

Φ<br />

= ⎢µ<br />

(<br />

⎡(<br />

RV<br />

u RV<br />

⎡)<br />

N + ρΦ<br />

g ⎥ . ρΦ<br />

u<br />

⎤<br />

⎥<br />

⎤<br />

(5)<br />

u Π<br />

u<br />

Φ<br />

u<br />

Π<br />

Φ . (5)<br />

107 107<br />

108<br />

S ⎢<br />

⎥<br />

uΦ<br />

= S<br />

Π<br />

= ⎢ µ ( R⎢<br />

ξ<br />

Φ ⎣ Vµ<br />

)(<br />

NR<br />

V+<br />

) Nρ<br />

Φ+<br />

gΦ<br />

( R<br />

ρΦ<br />

. (5)<br />

Π ⎢<br />

gV<br />

) ⎥<br />

⎣u<br />

⎢<br />

( R⎦<br />

⎥ . (5)<br />

V⎥<br />

)<br />

108<br />

⎥<br />

Π<br />

u<br />

ξ ⎦ . (5)<br />

109 The normal pressure ⎣<br />

Π ⎢<br />

Φ<br />

( Rξ<br />

V<br />

)<br />

⎣<br />

Φ<br />

( R<br />

includes the self-weight ⎦<br />

V<br />

) ⎥⎦<br />

of the avalanche, centripetal and dispersive<br />

109 108 108 The normal pressure N includes the self-weight of the avalanche, centripetal and dispersive<br />

110 pressures. Both the Coulomb friction The 109 109<br />

normal The normal The normal pressure pressure<br />

pressure N N includes N includes the the<br />

the the V self-weight and turbulent of friction ξ<br />

of the of the the<br />

of the avalanche, avalanche, V centripetal depend on the<br />

and and dispersive<br />

centripetal and dispersive<br />

110 pressures. Both the Coulomb friction µ ( R V<br />

) and turbulent friction ξ ( R V<br />

) depend on the dispersive and dispersive<br />

111 pressures. 110 110 configurational pressures. pressures. Both Both the energy Both the Coulomb the content Coulomb of friction the friction core µ ( R<br />

V<br />

µ ,<br />

V)<br />

( R<br />

and see V<br />

) (Bartelt and turbulent turbulent et friction al., 2015). friction ξ ( R V<br />

ξ)<br />

( depend R V<br />

) depend on the on on the the configurational<br />

energy content of the core R V<br />

111 pressures. configurational Both the energy Coulomb content of friction the core R µ ( R, see (Bartelt<br />

, see V<br />

and turbulent et al., 2015).<br />

V<br />

friction ξ ( R )<br />

(Bartelt et al., V<br />

depend on the<br />

111 111<br />

configurational energy energy content content of the of core the core R , see (Bartelt et al., 2015).<br />

V<br />

R , see (Bartelt et al., 2015).<br />

V<br />

112 configurational Drag rag the the powder energy cloud content Π of Πxthe Πy<br />

core<br />

is given by<br />

R , by a see velocity a (Bartelt squared squared et type al., 2015). law type law<br />

112 rag the powder cloud S<br />

Π<br />

= ( SΠx<br />

, SΠy<br />

) is given Vby a velocity squared type law<br />

112 112 rag rag on the on powder the powder cloud 2 cloud S<br />

Π<br />

= S<br />

Π<br />

( S= Πx( , S<br />

Π<br />

xy,<br />

) Sis Πygiven ) is given by a by velocity a velocity squared squared type type law law<br />

u<br />

⎡<br />

u<br />

⎤<br />

Π<br />

Π<br />

rag S Π<br />

=<br />

on the ⎢<br />

powder ρ<br />

Π<br />

g<br />

cloud ⎥<br />

.<br />

S<br />

Π<br />

= ( SΠx<br />

, SΠy<br />

) is given by a velocity squared type law<br />

(6)<br />

u<br />

Π<br />

⎢ ξ<br />

⎣<br />

Π<br />

⎥⎦<br />

. (6)<br />

The impact pressure of the powder cloud is given by<br />

The impact pressure<br />

p of the powder cloud is given by<br />

Π<br />

2<br />

⎡<br />

u<br />

⎤<br />

Π<br />

p Π<br />

=<br />

C D<br />

⎢<br />

ρ<br />

Π<br />

⎥<br />

(7).<br />

⎢⎣<br />

2<br />

⎥⎦<br />

. (7)<br />

In the example calculations we consider only the impact on walls with C D<br />

=2.<br />

n the example calculations we consider only the impact on walls with D<br />

=<br />

2<br />

RESULTS: esults: POWDER owder PRESSURE ressure FIELD SIMULATION Field OF Simulation THE 1999 ALL’ACQUA of the AVALANCHE<br />

1999 llcqua valanche<br />

To demonstrate how powder pressures can be deduced using two-layer avalanche dynamics<br />

models, we consider the well-documented 1999 All’Acqua avalanche (SLF, 1999; SLF, 2015).<br />

To demonstrate how powder pressures can be deduced using two-layer avalanche dynamics<br />

A large powder avalanche released spontaneously from the Poncione di Cassina Baggio<br />

(Bedretto models, we Valley) consider the the 20th well-documented of February, 1999. 1999 The llcqua blast of avalanche the powder (SF, cloud 1999 damaged SF, 2015). the<br />

large<br />

chimney powder avalanche and solar panels released of the spontaneously Pianseccohütte from (Fig. the 2 oncione ) as well as di several Cassina cables Baggio of (Bedretto an electric<br />

alley)<br />

power line (Fig. 2). Several buildings in the runout zone were slightly damaged.<br />

on the 20 th of February, 1999. The blast of the powder cloud damaged the chimney and solar<br />

Furthermore up to 12 ha of 200 year old forest were destroyed on the lateral edges of the<br />

track panels and of in the the ianseccohtte runout zone (Fig. 2).<br />

2 ) as well as several cables of an electric power line (Fig. 2).<br />

A back analysis of this event revealed that (SLF, 1999; SLF, 2015):<br />

Several buildings in the runout zone were slightly damaged. Furthermore up to 12 ha of 200 year<br />

– A 150 m wide release zone with average release depth of 2 m was observed on the east<br />

old<br />

slope forest<br />

of the were<br />

Poncione destroyed<br />

di Cassina on the lateral<br />

Baggio. edges<br />

These of<br />

observations the trac and<br />

were in the<br />

used runout<br />

to delineate zone (Fig.<br />

the<br />

2).<br />

starting zone of the avalanche and define the release volume.<br />

– bac The powder analysis pressures of this event at the revealed Pianseccohütte that (SF, were 1999 estimated SF, 2015): to be 2 – 3 kPa.<br />

The core did not reach the hut.<br />

• 150 m wide release zone with average release depth of 2 m was observed on the east<br />

– The powder pressure in the forest between the Pianseccohütte and the avalanche track<br />

were estimated slope of the to be oncione 5 kPa.<br />

di Cassina Baggio. These observations were used to delineate the<br />

– At 1900 starting m a.s.l. zone the of cables the of avalanche the BKW and power define line the located release 50 m volume. above ground were not<br />

damaged by the powder cloud. Powder pressures are estimated to be less than 2 kPa.<br />

• The powder pressures at the ianseccohtte were estimated to be 2 3 a. The core did<br />

420 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

C .<br />

not reach the hut.<br />

• The powder pressure in the forest between the ianseccohtte and the avalanche trac<br />

were estimated to be 5 a.


– At 1700 m a.s.l. the cables of the ATEL powder line located 15 m above ground were cut<br />

and three masts overturned. The estimated pressures were calculated to be between<br />

2 kPa and 5 kPa.<br />

– Moderate forest damage at the valley bottom and at run-up counter slope indicate that<br />

powder pressures were approximately 2 kPa between 5 m and 15 m above ground.<br />

Figure 2: The All’ Acqua avalanche track with the calculated maximum core velocity. The figure depicts the starting zone (2500 m),<br />

the Pianseccohütte (1985 m), the BFW power line located 50 m above ground (1900 m), the ATEL power line, located 15 m above ground<br />

(1700 m), the runout zone, the stream and counter slope and the buildings of All’ Acqua (1600 m).<br />

The simulations reveal that after release the core of the avalanche split into two distinct flow<br />

arms (Fig. 2). At 2200 m a.s.l. the avalanche descended over steep cliffs, reaching a maximum<br />

flow velocity of some 35 m/s. The two flow arms combined at 2000 m a.s.l. and managed<br />

to traverse a 300 m long flat track segment (slope inclination 10o), slowing to a velocity of<br />

20 m/s. The avalanche core passed 120 m from the Pianseccohütte (Fig 2).<br />

The avalanche then reached a steeper channel section and accelerated to 35 m/s, passing<br />

under the two power lines (Fig. 2). In the runout zone the avalanche core split into two flow<br />

fingers, one finger crossed the road and reached the stream at the valley bottom, 100 m after<br />

the road (Fig. 2). The core did not travel up the counter slope. One flow arm passed only<br />

30 m – 50 m from several buildings located in All’Acqua.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 421


Figure 3: a) Maximum powder pressures. Location of profiles. Profile a: Pianseccohütte. Profile b: ATEL power line. Profile c: Road,<br />

All’Acqua. b) Calculated maximum powder cloud heights and final extent of powder cloud. Model parameters: h 0<br />

= 1.5m, ρ0 = 250 kg/<br />

m³, V0 = 38’000m 3 , h Σ<br />

= 0.5m, ρ Σ<br />

= 200 kg/m 3 , μ0 = 0.55, ξ0 = 2500 m/s², α=0.07, β=0.65 1/s, R0 = 2 kJ/m³.<br />

A major result in the model calculations is the difference between the simulated pressure at<br />

the Pianseccohütte (approximately 3 kPa) and the buildings located in the runout zone at<br />

All’Acqua (less than 1 kPa). The calculated powder snow avalanche pressures at the<br />

Pianseccohütte were larger, although the building is located 120 m from the flowing core.<br />

The calculated air-blast pressures at All’Acqua are smaller although the buildings are located<br />

only 30 m from the runout finger of the avalanche core. This result is due to terrain effects.<br />

The hut is located directly in the flow direction of the core as it descends over the cliffs.<br />

At this point the core reaches velocities up to 40 m/s. The core is later deflected but the<br />

powder cloud travels towards the Pianseccohütte. At the valley bottom in All’ Acqua, the<br />

houses are not in the primary direction of the core. A comparison of the pressures profiles a<br />

and c (defined in Fig. 3), reveals a large difference in the lateral attenuation of powder<br />

pressure: at the Pianseccohütte the air-blast pressure attenuates over a distance of approximately<br />

160 m (Fig. 4a); at All’Acqua the pressure attenuates over a distance of 50 m (Fig. 4c).<br />

Large air-blast pressures (between 6 kPa and 10 kPa) were predicted at the location where<br />

the avalanche crossed the ATEL power line (Fig. 4d). Maximum flow densities of the powder<br />

cloud varied between 4.5 kg/m³ and 5.0 kg/m³. In two-layer models these pressures<br />

represent the mean pressure exerted by the powder cloud. When the avalanche is a pure<br />

powder avalanche this region extends from the ground to the top of the cloud. The calculated<br />

powder cloud heights at the front of the avalanche (where the pressures are highest) are<br />

between 15 m and 20 m (Fig. 4d). The heights eventually increase to heights over 50 m<br />

422 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 4: a) Lateral attenuation of powder pressure at the profile a (Fig. 3a), Pianseccohütte. b) Attenuation of powder pressures at the<br />

ATEL power line, profile b (Fig. 3a). c) Powder profile at the road, profile c (Fig. 3a). d) Calculated powder cloud height and pressure at<br />

Pianseccohütte, ATEL power line and ATEL power line mast.<br />

(Fig. 3b). Therefore, the model predicts the ATEL cables are clearly vulnerable, although<br />

the two-layer model does not predict the attenuation of pressure with increasing height.<br />

At present we assume uniform depth profiles for velocity and density.<br />

Calculated pressures at the power mast are 2 kPa; calculated heights are 10 m, quickly rising<br />

to 25 m (Fig. 4d). These, coupled with the forces on the cables, would be sufficient to<br />

overturn the mast. At the upper power line (BKW) the calculated heights at the front of the<br />

avalanche are between 20 m and 30 m, lower than the 50 m suspension height of the cables<br />

(Fig. 3b).<br />

Finally, we note that the calculated pressures in the forested regions (Fig. 2) are enough to<br />

blow-down trees (Feistl et al., 2015). The regions of highest pressures (over 3 kPa) are<br />

located in the forest regions near the Pianseccohütte and between the two power lines<br />

(Fig. 3b). Calculated pressures on the counter slope (between 1 kPa and 2 kPa) are enough<br />

to cause isolated tree blow-downs (Fig. 3b).<br />

CONCLUSIONS<br />

In this paper we applied the research version of RAMMS, a two-layer numerical avalanche<br />

dynamics model, to simulate the spatial distribution of powder avalanche pressure in<br />

three-dimensional terrain. We are particularly interested in the pressures beyond the reach<br />

of the flowing avalanche core, as these pressures are used (1) to delineate yellow hazard<br />

zones, (2) identify regions of powder avalanche destruction (forests, buildings) and (3)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 423


calculate powder pressures on objects such as power lines, located some vertical distance<br />

above the flowing avalanche. We treat the powder cloud as an inertial flow: air is taken in by<br />

the avalanche core, loaded with ice-dust and blown-out with the speed of the flowing core.<br />

Once formed the powder cloud moves independently of the avalanche core. The primary<br />

flow direction and speed of the powder cloud is defined by the velocity of the core. The<br />

attenuation of the powder cloud speed (drag, Eq. 6) defines the magnitude of the powder<br />

cloud pressure outside the domain of the flowing core.<br />

Our simulation of the All’Acqua avalanche event indicate that because two-layer models<br />

simulate the movement of the core and cloud they allow the inclusion of important terrain<br />

effects which determine the area endangered by powder pressures, especially at the lateral<br />

edges of the avalanche. One-dimensional models are not able to reproduce these features.<br />

The model calculates the powder cloud height, speed and mean pressure, but does not predict<br />

the attenuation of pressure with height. For this purpose, we do not believe that threedimensional<br />

calculations are necessary, as these are computationally expensive; however, an<br />

engineering method is still out-standing. For this purpose, it will be necessary to redesign the<br />

experimental test sites to obtain measurements that validate an analytical pressure function.<br />

REFERENCES<br />

- Bartelt P., Buser O., Vera Valero C., Bühler Y. (2015) Configurational energy and the<br />

formation of mixed flowing/powder snow and ice avalanches, Annals of Glaciology, 71.<br />

- Bartelt P. and McArdell B. (2009). Granulometric investigations of snow avalanches. J.<br />

Glaciol., 55(193), 829–833 (doi: 10.3189/002214309790152384).<br />

- Bozhinskiy AN and Losev KS. (1998). The fundamentals of avalanche science [transl.<br />

CE Bartelt]. Eidg. Inst. Schnee- und Lawinenforsch. Mitt. 55.<br />

- Bühler Y., Christen M., Kowalski J., Bartelt P. (2011) Sensitivity of snow avalanche<br />

simulations to digital elevation model quality and resolution. Ann. Glaciol. 52, 58, 72-80.<br />

- Buser O. and Bartelt P. (2015). An energy-based method to calculate streamwise density<br />

variations in snow avalanches, Journal of Glaciology, 61(227), doi: 10.3189/2015JoG14J054.<br />

- Christen M., Kowalski J., Bartelt P. (2010). RAMMS: Numerical simulation of dense snow<br />

avalanches in three-dimensional terrain, Cold Regions Science and Technology, doi:10.1016/j.<br />

coldregions.2010.04.005.<br />

- Dreier L., Bühler Y., Ginzler C., Bartelt P. (2015). Comparison of simulated powder snow<br />

velocities, volumes and flow widths with photogrammetric measurements, Annals of<br />

Glaciology, in press.<br />

- Feistl, T., Bebi, P., Christen, M., Margreth, S., Diefenbach, L., and Bartelt, P. (2015).<br />

Forest damage and snow avalanche flow regime, Nat. Hazards Earth Syst. Sci., 15,<br />

1275-1288, doi:10.5194/nhess-15-1275-2015.<br />

- Grigoryan S., Urubayev N. and Nekrasov I .(1982). Experimental’noye issledovaniye lav<br />

innoy vozdushnoy volny [Experimental investigation of an avalanche air blast]. Mater.<br />

Glyatsiol. Issled.,<br />

424 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


44, 87–93 [in Russian].<br />

- Issler, D. (1998) Modelling of snow entrainment and deposition in powder snow<br />

avalanches, Annals of Glaciology, 26, 253 – 258.<br />

- Naaim, M. Gurer, I. (1998). Two-phase numerical model of powder avalanche:<br />

theory and application, Natural Hazards, 117, 129-145.<br />

- RL (1984). Richtlinien zur Berücksichtigung der Lawinengefahr bei raumwirksamen<br />

Tätigkeiten. Bundesamt für Forstwesen, Eidg. Institut für Schnee- und Lawinenforschung.<br />

Sampl, P., Zwinger, T., (2004). Avalanche simulation with SAMOS. Annals of Glaciology,<br />

38, 393-398.<br />

- SLF (1999). Lawinengefährdung der ATEL 380/220kV Leitung Airolo–Ponte(I) im Bereich<br />

All’Acqua Bedretto (TI), SLF Gutachten G 99.13.<br />

- SLF (2015). Lawineneinwirkungen auf die Pianseccohütte CAS/SAC, Bedretto (TI),<br />

SLF Gutachten G 2015.06.<br />

- Vera Valero C., Wikstroem Jones K., Bühler Y., Batelt, P. (2015). Release temperature,<br />

snow-cover entrainment and the thermal flow regime of snow avalanches, Journal of<br />

Glaciology, Vol. 61, No. 225, doi: 10.3189/2015JoG14J117.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 425


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Monitoring sediment fluxes in Alpine rivers:<br />

the AQUASED project<br />

Gianluca Vignoli, Ph.D. 1 ; Silvia Simoni, Ph.D. 2 ; Francesco Comiti, Ph.D. 3 ; Andrea Dell'Agnese, Ph.D. 3 ; Walter Bertoldi, Ph.D. 4 ;<br />

Roberto Dinale, M.S. 5 ; Rudi Nadalet, M.S. 5 ; Pierpaolo Macconi, M.S. 6 ; Julius Staffler, M.S. 6 ; Rudolf Pollinger, M.S. 6<br />

ABSTRACT<br />

Monitoring activities in Alpine rivers is normally focused on water discharge measurements;<br />

sediment transport measurements have recently gained interest for several reasons, such as<br />

flood protection, research purposes, sediment budget and continuity. A new monitoring<br />

station has been designed and deployed in the Sulden/Solda river (South Tyrol, Italy) to<br />

address these needs. The watershed is characterized by large glacier areas and steep slopes<br />

feeding the river with sediments. The station is equipped with a 4m-rack of geophone plates<br />

and an acoustic pipe-hydrophone. Bedload is measured along with suspended load, water<br />

stage, water conductivity and temperature. This work presents the installation and the results<br />

collected during a high flood event and compares them to values derived from bedload<br />

equations obtained by other authors.<br />

KEYWORDS<br />

monitoring, bed load, geophone, alpine rivers<br />

INTRODUCTION<br />

The traditional monitoring in Alpine rivers is focused on water discharge measurements.<br />

Recently the monitoring activities have focused both on water discharge and on sediment<br />

load (bedload + suspended load). Sediments move across the channel network transported by<br />

water according to two main mechanisms: as suspended sediment and as bed load. The first<br />

mechanism involves small size sediments (silt and sand), which are lifted by the water<br />

turbulence; the second involves the larger sediments (pebbles and cobbles), which move by<br />

rolling, sliding and saltation close to the riverbed. Mountain river hydraulic and morphology<br />

are strictly linked through bedload transport processes (Gomez, 2006); monitoring bedload<br />

is important to engineers, scientists, public authorities and people/institutions/enterprises<br />

operative in water resources. Measuring and understanding sediment transport phenomena is<br />

the key point for further investigation on the morphodynamic evolution of alpine rivers and<br />

on their response to natural and anthropic forcing. Suspended sediment transport monitoring<br />

is a consolidated activity and requires one or more turbidity meter to be installed in a river<br />

1 CISMA srl, Bolzano, ITALY, gianluca.vignoli@cisma.it<br />

2 Mountain-eering srl<br />

3 Facoltà di Scienze e Tecnologie-Libera Università di Bolzano<br />

4 Dipartimento di Ingegneria Civile Ambientale e Meccanica-Università degli Studi di Trento<br />

5 Ufficio Idrografico della Provincia Autonoma di Bolzano<br />

6 Agenzia per la protezione civile – Provincia Autonoma di Bolzano<br />

426 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP022


cross section. Bedload monitoring is a more challenging activity in mountain streams because<br />

of the complexity of the process. In the last decades both direct and indirect approaches for<br />

bedload monitoring have been applied in Europe (Lenzi et al., 1999; Rickenmann et al., 2012;<br />

Rickenmann et al., 2014; Dell'Agnese et al., 2014; Mao et al., 2014) and in Japan (Mizuyama<br />

et al.,2010). Within the AQUASED (which stands for the latin AQUA=water and SEDiments)<br />

project a new monitoring station has been set up along the Solda river to measure water and<br />

sediment fluxes. This work describes the set up of the new station and presents the instruments<br />

calibration and results related to bedload monitoring.<br />

THE AQUASED PROJECT<br />

Within the AQUASED project a new monitoring station (Figure 1) has been designed and<br />

set up in South Tyrol (Italy), along the Solda river. The project partners encompass two SMEs,<br />

two universities and the local authorities. The Solda river drains a 145 km 2 wide watershed<br />

with many glacial areas (18 km 2 ), which strongly affect the hydrological regime and the<br />

sediment availability. The new station has been designed with the aim of monitoring both<br />

water and sediment fluxes (suspended- and bedload). Suspended sediment monitoring is<br />

performed using a standard turbidity meter, bedload is indirectly measured by a rack of<br />

8 Swiss-plate geophones, installed on the downstream end of a check dam. The minimum<br />

plates sensitivity is 2, 3 cm-grain size . The plates rack is 4m long and covers half the river<br />

width (8m), from the river center to the right bank. Water discharge is measured by means of<br />

water level measurements and the estimation of a suitable rating curve, derived from several<br />

direct water discharge measurements, performed using the salt dilution method. This consists<br />

in dumping a known amount of salt (NaCl) into the stream so that its base conductivity is<br />

increased. This increment is indirectly measured with a conductivity meter and a thermometer<br />

installed on the river bank. The whole station is the result of a large cooperation: the<br />

SMEs provided part of the measuring instruments and the design activities, the universities<br />

provided the scientific support and the local authorities (Water Department of the Province of<br />

Bolzano) provided the necessary support to make the project be operative.<br />

Figure 1: (left) the measuring station: the array of geophones is installed on half width on the downstream end of the check dam and<br />

(right) a detail of the turbidimeter installation system<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 427


The monitoring station has been installed during winter 2013-14 and completed at the beginning<br />

of May 2014; the collected data include: water level, turbidity, temperature and conductivity<br />

and geophone impact data. One of the novelties of this installation is the geophones data<br />

recording system, which saves continuously the whole raw plate velocity (cm/s) data sampled<br />

at 5kHz, without loss of information, adopting a signal/noise detecting algorithm and an<br />

on-the-fly compression. This system can save a year of 5 kHz data in about 20 GB of disk<br />

space for each plate. The saved data can be elaborated both counting the number of impulses<br />

above given thresholds (i.e. the “traditional” plate signal elaboration described in Rickenmann<br />

et al. 2014) and applying any type of signal process algorithm. The traditional signal<br />

elaboration consists in fixing a threshold and counting the number of recurrences (called<br />

impulses) the signal exceeds it. Here six different thresholds are used; the signal intensity<br />

depends on the sediment grain size, vibrations due to larger cobbles are typically higher,<br />

therefore the upper threshold can be related to large-size sediments, while the lower are<br />

related to smaller sediments. In the following the number of impulses are collected by six<br />

channels, the first (channel n. 1) refers to the lower threshold and channel n.6 refers to<br />

the higher threshold.<br />

In 2014 the monitoring station was equipped with an acoustic pipe sensor (“Japanese pipe<br />

hydrophone”, Mizuyama et al., 2010) for bedload sampling, with the main aim of performing<br />

inter-comparison between the two indirect bedload measuring systems (plate geophone and<br />

pipe hydrophone), but unfortunately on August 13th 2014 a high intensity flood heavily<br />

damaged the pipe.<br />

Figure 2: bedload sampling using a crane mounted trap (left), the sediment trap (right)<br />

CALIBRATION<br />

The geophone plates carry out indirect measurement of the bedload discharge. Basically,<br />

recorded data are a measure of the vibrations induced by the sediments moving on the plates.<br />

Suitable rating curves are needed to correlate the specific bedload transport (measured in kg/<br />

(m s)) to the number of impulses recorded by the system. Calibration measurements have<br />

428 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


een performed using a heavy bedload trap, handled by a crane. The trap is made by a net<br />

characterized by an opening size of 3.6 mm anchored to a metal frame. It is lowered into the<br />

stream flow just downstream of a plate and held by a crane and four ropes, which help in the<br />

trap positioning. The trap is kept in the sampling position for 5 to 10 minute, depending on<br />

the bedload transport intensity. The net retains sediment particles larger than 3.6 mm in diameter.<br />

The collected material is then sieved using four sieves (Figure 3), characterized by net<br />

dimensions of 64mm, 45mm, 32mm and 22mm. The five separated samples are weighed, the<br />

four larger size samples are then released back into the stream and the grain size distribution<br />

of the finest size fraction (


RESULTS<br />

Since its installation the station worked regularly, recording a high intensity flood occurred<br />

on August 13th 2014. Figure 5 (upper part) shows the water discharge data recorded in the<br />

summer season 2015: the Solda river is characterized by a snow melting period during May<br />

and June, followed by a glacier melting period, during July and August. Figure 5 (lower part)<br />

shows the plate signal measured by plate n.2, located close to the river center. The number<br />

of impulses recorded on channel 2 is high, especially during high flows and during the<br />

glacier melting period. During the low flow periods channel 2 impulses never drop below<br />

100 impulses/h, since during the summer bedload is always active. The number of impulses<br />

recorded on channel 4 refers to larger sediments and during low flow conditions (end of May,<br />

June and August) it is very low, showing that in those periods large-size sediment transport<br />

is not observed.<br />

100000<br />

30<br />

20<br />

10<br />

0<br />

discharge [m 3 /s]<br />

pulses/h<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

05/16 05/30 06/13 06/27 07/11 07/25 08/08 08/22<br />

Channel 2 Channel 4 water discharge<br />

Figure 5: water discharge (above) and bedload impulses (below) during summer 2015, data from plate 2, located near the river center<br />

Figure 6 shows the flood of August 13th 2014, which was characterized by a peak of 72 m 3 /s<br />

(specific discharge 0.5 m³/s/km 2 ), and by an intense sediment transport, which attains values<br />

up to 1000 kg/s, (preliminarily estimate using data from only one geophone plate). The<br />

computation of the total amount of sediments transported across the measuring station<br />

during the entire flood event was 7100 tons. Impulses on channel 6 were recorded mainly<br />

during this intense flood event, characterized by large boulder transport. Water and sediment<br />

fluxes seems to be well correlated at the beginning of the flood; on the contrary the water<br />

430 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


discharge dropped rapidly at the end of the event whereas the sediment discharge kept high<br />

values for several hours. Unfortunately the acoustic pipe was damaged during this event<br />

because it was impacted by large boulders (up to 1m) transported by the flow. In contrast, the<br />

geophone plates were not damaged. Data show that the actual bedload is significantly lower<br />

compared to values estimated applying the Schocklitsch (1962) and Rickenmann (1990 and<br />

2001) equations, even after accounting for form drag correction. Sediment transport<br />

equations approximately match the bedload rates recorded by the geophone plates only at the<br />

peak of the transport event. This confirms that using formulas to estimate bedload in steep<br />

gravel-bed rivers can lead to large errors (Gray and Simões, 2008) especially at normal flows.<br />

Figure 6: bedload rate (thick black line) and water discharge data (grey line) data collected during the August 13th 2014 event<br />

Figure 7 shows the number of impulses recorded during summer 2015 on channel 4 versus<br />

the water discharge. Data show a complex pattern: the bedload transport intensity seems to<br />

be not well correlated to water discharge. High bedload rates have been measured whereas<br />

water discharge values never exceeded 7-8 m 3 /s especially in May; high bedload rates have<br />

been recorded during high flow conditions in June; in July the bedload transport rates did not<br />

reach the values observed in June-even though the water discharge reached a similar peak<br />

value; finally in August, high bedload transport intensities have been measured for intermediate<br />

flow conditions. Bedload intensity reflects both sediment availability (in the catchment<br />

as well as within the riverbed) and the sediment transport capacity of a given river reach. For<br />

example the high bedload transport rate measured in May could be related to high sediment<br />

availability within the riverbed; the high bedload transport rate measured in August is<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 431


probably related to the sediments coming from the glaciers located in the upper part of the<br />

catchment.<br />

100000<br />

10000<br />

1000<br />

pulses/h<br />

100<br />

10<br />

1<br />

5 10 15 20 25 30<br />

water discharge [m 3 /s]<br />

May<br />

June<br />

July<br />

August<br />

Figure 7: 2015 measured channel 4-impulses are plotted versus water discharge, data from plate 2, located near the river center<br />

CONCLUSIONS<br />

A new sediment transport monitoring station in a glacierized and active watershed has been<br />

designed and installed. The collected parameters are bedload, suspended load, water stage,<br />

water conductivty and temperature. Bedload is indirectly measured using a rack of 8 geophone-<br />

plates. Data are recorded using an innovative signal/noise recognition system and<br />

a compression algorithm, which allows to save the whole high-frequency signal, with an<br />

acceptable amount of storage usage. Calibration was performed using a bedload sampling<br />

device with a mobile crane support.<br />

A complete data set of bedload and water discharge values was collected during 2014 and<br />

2015. The Solda river behaviour is characterized by a glacial runoff regime, with a very low<br />

water discharge during winter, a snow melting period between March and June and a glacier<br />

melting period from July to August-September. Sediment transport data show higher bedload<br />

values during the glacier melting period and very low sediment transport rates during the<br />

snow melting phase, probably due to considerable difference in the sediment availability.<br />

Flood event data analyses and the comparison with bedload formulas confirm the complexity<br />

of bedload estimation in steep gravel bed rivers.<br />

432 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


REFERENCES<br />

- Dell'Agnese, A., Mao, L., Comiti, F. 2014: Calibration of an acoustic pipe sensor through<br />

bedload traps in a glacierized basin. Catena 121:222-231.<br />

- Gomez, B., 2006: The potential rate of bedload transport, Proceedings of the National<br />

Accademy od Sciences, V. 103, no.46, p. 17170-17173.<br />

- Gray, J.R., and Simões, F.J.M., 2008: Estimating sediment discharge, appendix D of<br />

Garcia,- Marcelo, ed., Sedimentation engineering: ASCE Manuals and Reports on Eng.<br />

Practice No. 110, p. 1067–1088<br />

- Lenzi, M.A.; D'Agostino, V.; and Billi, P., 1999: Bedload transport in the instrumented<br />

catchment of the Rio Cordon: Part 1. Analysis of bedload records, conditions and threshold<br />

of bedload entrainment. Catena 36 (3), 171-190.<br />

- Mao, L., Dell'Agnese, A., Huincache, C., Penna, D., Engel, M., Niedrist, G., Comiti, F. 2014:<br />

Bedload hysteresis in a glacier-fed mountain river. Earth Surface Processes And Landforms<br />

39(7):964-976.<br />

- Mizuyama, T.; Laronne, J.B; Nonaka, M.; Sawada, T.; Satofuka, Y; Matsuoka, M.; Yamashita,<br />

S.; Sako, Y; Tamaki, S.; Watari, M; Yamaguchi, S. and Tsuruta, K, 2010: Calibration of a<br />

Passive Acoustic Bedload Monitoring System in Japanese Mountain Rivers, part of U.S.<br />

Geological Survey Scientific Investigations Report 2010-5091.<br />

- Rickenmann, D. 1990: Bedload transport capacity of slurry flows at steep slopes, Diss.<br />

Techn. Wiss. ETH Zürich, Nr. 9065. http://dx.doi.org/10.3929/ethz-a-000555802<br />

- Rickenmann, D., 2001: Comparison of bed load transport in torrents and gravel bed streams.<br />

Water Resour. Res. 37, 12: 3295-3305.<br />

- Rickenmann, D.; Turowski, J.M.; Fritschi, B.; Klaiber, A.; Ludwig, A., 2012: Bedload<br />

transport measurements at the Erlenbach stream with geophones and automated basket<br />

samplers. Earth Surf. Process. Landf. 37: 1000-1011.<br />

- Rickenmann, D., Turowski, J.M., Fritschi, B., Wyss, C., Laronne, J., Barzilai, R., Reid, I.,<br />

Kreisler, A., Aigner, J., Seitz, H., Habersack, H. (2014): Bedload transport measurements with<br />

impact plate geophones: comparison of sensor calibration in different gravel-bed streams.<br />

Earth Surface Processes and Landforms, 39, 928–942, doi: 10.1002/esp.3499.<br />

- Schocklitsch, A, 1962: Handbuch des Wasserbaues, Speringer, Vienne, Vol 1, 173-177.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 433


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

Monitoring unstable parts in the ice-covered<br />

Weissmies northwest face<br />

Lukas E Preiswerk 2 ; Fabian Walter 1 ; Sridhar Anandakrishnan 3 ; Giulia Barfucci 4 ; Jan Beutel 5 ; Peter G Burkett 3 ;<br />

Pierre Dalban Canassy 2 ; Martin Funk 2 ; Philippe Limpach 6 ; Emanuele Marchetti 4 ; Lorenz Meier 7 ; Fabian Neyer 6<br />

ABSTRACT<br />

The glacierized northwest face of Weissmies in the Saas valley (Switzerland) recently became<br />

unstable due to climate-induced glacier thinning of the supporting Triftgletscher below.<br />

In the case of a large break-off of ice, human infrastructure in the Saas valley is exposed to<br />

the danger of an ice/snow avalanche. A monitoring campaign was initiated with the goal<br />

of detecting precursory signals to the break-off. Interferometric and Doppler radar, optical<br />

imaging as well as GPS sensors provide measurements of surface displacements.<br />

Infrasound and seismometer arrays monitor acoustic and seismic emissions of ice avalanches<br />

and englacial fracture development. Here we discuss the monitoring methods and the results<br />

obtained so far. The unstable glacier mass did not undergo a large-scale break-off event,<br />

in fact it decelerated during the unusually warm summer months. An explanation remains<br />

elusive but likely involves subglacial processes and bedrock topography. Nevertheless,<br />

our results allow us to draw important conclusions regarding the suitability of different approaches<br />

to monitoring unstable glaciers.<br />

KEYWORDS<br />

glacier monitoring; ice avanlache; early warning; natural hazards<br />

INTRODUCTION<br />

The hazard potential of glaciers ranges from relatively small ice falls (Röthlisberger, 1978) to<br />

substantial glacier break-offs, which have killed thousands of people in the past (Lliboutry,<br />

1975). To monitor such hazards, previous studies have focused on surface deformation and<br />

icequake activity (e.g. Failletaz et al., 2011; Dalban Canassy et al., 2012). Moreover, damage<br />

evolution (Pralong and Funk, 2006) and slider block models (Failletaz et al., 2010) have<br />

provided theoretical insights into glacier instabilities.<br />

The thermal regime of glaciers plays a key role in processes leading to instabilities. Cold-based<br />

glaciers are frozen to their beds and fail via fracture growth. Temperate-based glaciers slide on<br />

1 Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Switzerland, fwalter@vaw.baug.ethz.ch<br />

2 Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Switzerland<br />

3 Department of Geosciences and Earth and Environmental Systems Institute, Pennsylvania State University, USA<br />

4 Department of Earth Sciences, University of Firenze, Italy<br />

5 Computer Engineering and Networks Laboratory, ETH Zürich, Switzerland<br />

6 Institute of Geodesy and Photogrammetry, ETH Zürich, Switzerland<br />

7 GEOPRAEVENT AG, Zürich, Switzerland<br />

434 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP018


the bedrock and undergo “active phases”, which may lead to large-scale ruptures (Failletaz<br />

et al., 2015). These acceleration phases usually occur late in the melting season and are<br />

caused by elevated subglacial water pressure. Ongoing climate changes affect glacier stability<br />

as previously cold glaciers may transition to temperate thermal regimes (e.g. Glacier de<br />

Taconnaz (F); Gilbert et al., 2015).<br />

Here, we study the ice-covered northwest face of Weissmies in the Saas valley (Switzerland).<br />

Until recently, the adjacent Triftgletscher buttressed this ice cover from below (Fig. 1A).<br />

However, Triftgletscher's thinning has almost entirely removed this support (Fig. 1B).<br />

In addition, the glacier is likely in a transition from cold to temperate as surface meltwater<br />

warms the previously cold bedrock, weakening the ice-bed interface and further promoting<br />

instability. The situation is critical, because tourist activity and – in the case of a large event –<br />

human infrastructure in the Saas valley are exposed to the danger of a glacier break-off.<br />

Therefore, a monitoring campaign was initiated to determine the frequency and volumes of<br />

icefalls, to improve our understanding of processes leading to glacier instabilities, and to<br />

detect break-off precursors. An interferometric radar and an optical camera were installed in<br />

October 2014, followed by GPS sensors, Doppler radar, an infrasound array and seismometers<br />

in June 2015 (Fig. 1C).<br />

A Weissmies 4017 masl B<br />

200 m<br />

+<br />

C<br />

Instabil1 Instabil2 + Doppler Radar Interferometric Radar GPS Photogrammetry Infrasound Array Seismometers<br />

Interferometric Radar<br />

Doppler Radar<br />

GPS<br />

October 2014<br />

March 2015<br />

break-off<br />

break-off<br />

Photogrammetry<br />

October 2014<br />

Infrasound<br />

Seismology<br />

11.6. 18.6. 25.6. 2.7. 5.7. 9.7. 16.7. 23.7. 30.7. 6.8. 13.8.<br />

Date (2015)<br />

Figure 1: A) Oblique view of the unstable glaciers on the northwest face of Weissmies, between 2005 and 2009. (Source: swisstopo) B)<br />

The same view in 2014, with the position of our sensors. Note the substantial reduction of supporting ice below “Instabil1”. C) A<br />

temporal overview of the measurements during summer 2015.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 435


Here, we discuss the observations in terms of processes affecting glacier stability. We focus on<br />

two icefalls, one of which occurred on 25 June 2015, when part of the steep ice mass<br />

“Instabil1” (Fig. 1) broke off (http://youtu.be/0aVyTfqafzg). The second ice fall originated<br />

from “Instabil2” on 5 July 2015 (http://youtu.be/m3nEzT9TIYE; a radar animation, as this<br />

event was not captured by the video camera). The estimated volumes are a few thousand m³<br />

per event, which is only a tiny fraction of the 750 000 m³ that could potentially break off.<br />

In winter, events of more than 30 000 m³ of ice may endanger the ski resort, and a break-off<br />

of more than 200 000 m³ of ice could reach the town of Saas-Grund (information obtained<br />

from the company wasser/schnee/lawinen - A. Burkard AG, Brig).<br />

METHODS AND RESULTS<br />

Surface deformation<br />

The goal of monitoring of surface deformation is to detect hyperbolically increasing surface<br />

velocities, which typically precede large break-off events (Flotron, 1977; Röthlisberger, 1978).<br />

Interferometric Radar<br />

A<br />

Velocity, cm d -1<br />

30<br />

20<br />

10<br />

break-off<br />

break-off<br />

Interferometric Radar<br />

Glacier<br />

Instabil1<br />

Instabil2<br />

fastest 5%<br />

B<br />

C<br />

Velocity, cm d -1<br />

Hours above 0° C<br />

0<br />

20<br />

15<br />

10<br />

5<br />

0<br />

11.6. 18.6. 25.6. 2.7. 9.7. 16.7. 23.7. 30.7. 6.8.<br />

Date (2015)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Glacier<br />

Instabil1<br />

Instabil2<br />

GPS Instabil1<br />

0<br />

0<br />

1.6.14 1.8.14 1.10.14 1.12.14 1.2.15 1.4.15 1.6.15 1.8.15<br />

Date<br />

Figure 2: A) Radar line-of-sight velocities of Triftgletscher and the unstable zones. Note the increase in velocity prior to the second<br />

break-off event. B) GPS 3D velocities on Instabil1. The increase around 9 July is mostly an increase in vertical direction, likely due the<br />

GPS antenna stakes sinking into the ice. C) Long-term velocities (in color) and temperature (in hours above 0° C) clearly show that the<br />

summer of 2015 was warmer than the previous one, leading to more melt.<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Radar velocities, cm d -1<br />

436 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The interferometric radar emits microwaves (17 GHz, wavelength ≈ 1.7 cm) and evaluates the<br />

signal reflected by the glacier surface (Rödelsperger et al., 2010). Our IBIS-L system produces<br />

2D images (azimuth and range) using the Synthetic Aperture Radar (SAR) technique. Since<br />

microwaves are affected by air humidity, temperature and pressure, atmospheric effects have<br />

to be removed. Reflection data are projected onto a topographic model to obtain a 3D image<br />

of glacier surface velocities. Uncertainties are estimated at 10% - 20% based on daily signal<br />

fluctuations, which are attributed to radar processing and not to actual glacier motion. Radar<br />

measurements are possible in low visibility weather and at night, and can be made from a<br />

safe distance (~ 2 km in this case). However, only the target motion component parallel to<br />

the line of sight is recorded.<br />

Fig. 2A shows the average velocity of the glacier and the unstable parts during summer 2015.<br />

The movement is around 10 cm d -1 and fairly stable in this period. Long-term velocities<br />

(Fig. 2C) indicate that the unstable parts are significantly slower than in October 2014, when<br />

Instabil1 was moving at more than 20 cm d -1 .<br />

A clear velocity increase to up to 25 cm d -1 precedes the icefall on 5 July (Fig. 2A). The area<br />

affected by the acceleration is readily identified in the projection onto an elevation model<br />

(Fig. 3C&D). In contrast, no elevated velocities were registered prior to the 25 June event<br />

(Fig. 2A, 3A&B).<br />

Doppler Radar<br />

A Range-Doppler Radar operating at X band (10 GHz), with the ability to measure azimuth<br />

angle, range and velocity was installed to detect ice avalanches. It has opening angles of 90°<br />

horizontally and 10° vertically and captures all movements up to a range of 2000 m within<br />

this area, hence also snow avalanches.<br />

GPS<br />

Two low-power, low-cost GPS sensors that measure the L1 frequency only were installed on<br />

Instabil1 (Fig. 1B) measuring in-situ surface velocities. A local long-haul WLAN enables<br />

wireless data transmission. Differential processing provides accuracies in the cm range (Fig.<br />

2B). GPS sensors yield valuable ground truth data for the radar measurements. The difference<br />

between GPS and radar velocities can be attributed to projection and local site effects.<br />

However, they constitute point measurements and neither predicted nor detected the two icefalls,<br />

which occurred a few 100 m from the antennas.<br />

Photogrammetry<br />

In contrast to radar measurements, this method is sensitive to displacements perpendicular to<br />

the line of sight. Subsequent image templates (small sections around a feature in the image)<br />

are matched using least squares optimization (e.g. Grün, 1985). We used an optical off-theshelf<br />

digital camera with 70 mm focal length resulting in a pixel resolution of ~15 cm, slightly<br />

varying due to the various target distances in the field of view. The accuracy of the technique<br />

is on the order of 0.05 pixel (e.g. Mass and Hampel, 2006). In our case, pronounced snow<br />

height and ice topography changes, as well as strong variations in scene illumination lead to<br />

relatively high inaccuracies of about 0.5 pixel, equivalent to 7.5 cm. The event on 5 July was<br />

captured in the image sequence, with observed peak velocities of around 30 cm d -1 in<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 437


A<br />

before break-off<br />

B<br />

after break-off<br />

25 June<br />

25 June<br />

C<br />

5 July<br />

0 12 24 cm d -1<br />

0 12 24 cm d -1<br />

0 12 24 cm d -1 0 12 24 cm d -1<br />

before break-off<br />

D<br />

after break-off<br />

5 July<br />

horizontal component break-off<br />

0.35 0.35 vertical component break-off<br />

E F<br />

0.30<br />

0.30<br />

0.25<br />

0.25<br />

0.20<br />

0.20<br />

0.15<br />

0.15<br />

0.10<br />

0.10<br />

0.05<br />

0.05<br />

0.00<br />

0.00<br />

-0.05<br />

-0.05<br />

-0.10<br />

28.6. 30.6. 2.7. 4.7. 6.7. 8.7. 10.7. 28.6. 30.6. 2.7. 4.7. 6.7. 8.7. 10.7.<br />

Date (2015)<br />

Date (2015)<br />

Relative motion, m<br />

Figure 3: A) - D) Radar velocities before and after the break-off events. Note the almost identical radar images A) and B), but the clear<br />

difference between C) and D). E) & F) Displacement estimates derived from optical image sequences. The transition of image pixel to<br />

metric displacements is based on the camera-target distance. The data gap after the event is due to the loss of coherent image<br />

structures after the break-off.<br />

horizontal and 20 cm d-1 in vertical direction (Fig. 3E&F). There was no sign in the image<br />

sequence for the earlier event (25 June).<br />

Acoustic and Seismic Emission<br />

Acoustic and seismic waves originate from icequakes, which are mostly tensile dislocations in<br />

the ice, or arguably arise from stick-slip motion of the glacier (Walter et al., 2008). Changes<br />

in icequake activity reflect the evolution of englacial damage prior to a glacier break-off<br />

(Failletaz et al., 2011).<br />

Relative motion, m<br />

438 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Infrasound<br />

We measured low-frequency (1-20 Hz) acoustic waves with a small aperture (150 m) 4<br />

element infrasound array installed ~2.5 km away from the unstable glacier tongue (Fig 1B).<br />

Each array element was equipped with a differential air pressure transducer with a sensitivity<br />

of 25 mV/Pa and lower corner frequency of 0.01 Hz.<br />

Array processing was performed on the infrasonic data applying multi-channel correlation<br />

among all elements of the array. Signal correlation is exploited to calculate arrival time<br />

differences of incoming sound waves, which are then used to determine wave parameters<br />

(event back-azimuth and apparent propagation velocity) (Ulivieri et al., 2011). Analysis was<br />

performed over 5 s windows, leading to a total of 52283 detections of coherent signals during<br />

the observation period. A variety of continuous background sources (e.g. nearby melt water<br />

streams, cultural activity) are responsible for the large number and diurnal variability of infrasound<br />

detections (Fig. 4A).<br />

Requiring wave parameter stability reduces the detection list to 19 events (yellow crosses in<br />

Fig. 4A). Among those, the two break-offs can be unambiguously identified by their<br />

back-azimuth (Fig. 4B). During the 25 June break-off, the decreasing back-azimuth reflects<br />

the northward motion of the ice avalanche (Fig. 4D). The decrease in back-azimuth for the<br />

event of 5 July is less pronounced, as this event was moving due west, towards the array<br />

(Fig. 4F). Despite the reliable detection capability, the large 2.5 km distance between array<br />

and glacier implied a low signal-to-noise ratio. Any signals from precursory fracture activity<br />

are likely hidden in the background noise.<br />

A<br />

B<br />

C<br />

D<br />

Pressure, Pa<br />

Back Azimuth, °N<br />

Pressure, Pa<br />

Back Azimuth, °N<br />

8<br />

6<br />

4<br />

2<br />

0<br />

360<br />

270<br />

180<br />

90<br />

0<br />

0.1<br />

0<br />

-0.1<br />

115<br />

110<br />

break-off<br />

18.6. 25.6. 2.7. 9.7. 16.7. 23.7.<br />

340<br />

330<br />

105<br />

320<br />

05:58:00 05:58:15 05:58:30 05:58:45 05:59:00<br />

Time (25.6.2015)<br />

Apparent Velocity, m s -1<br />

E<br />

F<br />

Weissmies NW-face<br />

Infrasound events<br />

Doppler radar events<br />

105<br />

320<br />

17:17:30 17:17:45 17:18:00 17:18:15 17:18:30<br />

Time (5.7.2015)<br />

Figure 4: A) Pressure and B) back-azimuth of infrasound detections. From all events (yellow crosses), the two break-offs can be<br />

identified from their back-azimuth pointing towards Weissmies’ northwest face. The Doppler radar picked up smaller events as well<br />

(green asterisks). C) - F) Pressure, back-azimuth and apparent sound velocities of the two break-off events.<br />

Pressure, Pa<br />

Back Azimuth, °N<br />

break-off<br />

0.1<br />

0<br />

-0.1<br />

115<br />

110<br />

340<br />

330<br />

Apparent Velocity, m s -1<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 439


Seismology<br />

We installed three seismometers (sensitivity from 10 Hz to 500 Hz) on Instabil1, two of them<br />

collocated with the GPS sensors (Fig 1B). The seismometers were recovered after two weeks,<br />

as wireless data transmission did not work reliably. Therefore, our interpretation is limited<br />

to the break-off event of 25 June. In the hours before the break-off, no precursory activity<br />

stands out (Fig. 5A&B). Moreover, automatic icequake detections (Walter et al., 2008)<br />

indicate a steady decrease in fracture event activity (Fig. 5C).<br />

A<br />

B<br />

Frequency (Hz)<br />

C<br />

counts<br />

5000<br />

0<br />

-5000<br />

250<br />

100<br />

50<br />

break-off<br />

10<br />

00:00 01:00 02:00 03:00 04:00 05:00 06:00<br />

Time (25 June)<br />

40<br />

× 10 4<br />

5<br />

4<br />

3<br />

2<br />

1<br />

break-off<br />

4000<br />

Power Spectral Density<br />

events per hour<br />

D<br />

30<br />

20<br />

10<br />

0<br />

0<br />

13.06. 15.06. 17.06. 19.06. 21.06. 23.06. 25.06.<br />

Date (2015)<br />

3000<br />

2000<br />

1000<br />

30.9.2014 E<br />

8.8.2015<br />

cumulative number of events<br />

Figure 5: A) Seismogram of the 6 hours before break-off. Data gaps amounting to less than 0.01% were filled via interpolation. B)<br />

Corresponding spectrogram. Vertical spectral lines indicate icequake occurrences and highlight their broadband (10-100 Hz) character.<br />

Note the clear signal of the break-off event. The straight horizontal lines are electronic noise. C) Evolution of events in the two weeks<br />

before the break-off. D) 2014 aerial photograph of Instabil 1 showing widespread wetted bedrock and thus sheet-like subglacial melt<br />

discharge. (Source: U. Andenmatten) E) Photograph from 2015 showing a single channel of subglacial discharge.<br />

440 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


DISCUSSION<br />

Monitoring Methods<br />

No large break-off events occurred during our monitoring period. Nevertheless, the interferometric<br />

radar successfully forecasted the break-off of 5 July. On the other hand, the radar<br />

detected no acceleration prior to the 25 June event. Photogrammetric analysis of this event<br />

also failed to detect changes in surface motion at least 15 minutes before break-off. Both techniques<br />

are sensitive to glacier surface motion in different (perpendicular) directions. We<br />

therefore suggest that the 25 June break-off had a different failure mechanism, which unlike<br />

the 5 July event was not preceded by an acceleration phase. Thus, instabilities of a few<br />

thousand m³ of ice can develop and fail without speed-up.<br />

Infrasound provided reliable detection of both break-off events and no false alarms. The<br />

Doppler radar detected the two avalanches as well as some smaller events. Similarly, the<br />

25 June break-off generated the strongest detected seismic signal. Further analysis of the<br />

preceding icequakes is needed to clarify if these events provide some information about<br />

precursory fracture activity leading to break-off.<br />

In conclusion, none of the presented techniques by itself is sufficient for automatic detection<br />

and forecasting of break-off events. On the other hand, break-offs of at least a few thousand<br />

m³ of ice with precursory acceleration can be reliably forecasted using interferometric radar<br />

and photogrammetry. However, at this stage manual review of radar and photographs is<br />

needed. Infrasound, Doppler radar and seismic measurements produce clear break-off signals,<br />

which require minimal human interaction and could potentially be fully automated. A<br />

large-scale break-off of the entire unstable ice mass may produce stronger signals, including<br />

precursors, which all presented techniques are capable of detecting.<br />

Glacier dynamics<br />

The surface velocities on the unstable part of the glacier decreased from ~20 cm d -1 in October<br />

2014 to 5 cm d -1 in February 2015 (Fig. 2C). During July 2015, it even decreased to an<br />

unexpected low of 3 cm d -1 .<br />

In 2015, long periods above freezing substantially promoted meltwater production (Fig. 2C).<br />

Surface meltwater most likely accessed the glacier bed, where it partly refroze, warming the<br />

ice/bed contact and promoting basal sliding. Therefore, contrary to the observed slowdown,<br />

the unstable glacier part was expected to move faster during the 2015 high-melt periods.<br />

This slowdown can be explained by a change in subglacial hydraulics. Comparing images<br />

from 2014 and 2015 reveals a widespread zone of wet rock below the unstable ice in 2014<br />

(Fig. 5D). Subglacial water was thus present under an extended part of the glacier. Conversely,<br />

a single stream exited the unstable part in 2015 (Fig. 5E). Higher amounts of available<br />

meltwater in 2015 probably lead to the channelization of subglacial meltwater flow making<br />

the drainage system more efficient during summer 2015 than in 2014. This reduced basal<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 441


water pressures, strengthening the basal contact (Kamb et al., 1985), and leading to limited<br />

basal motion. Another explanation for glacier deceleration is the presence of a subglacial rock<br />

barrier, against which the ice mass has recently stabilized. There is no further evidence for<br />

this theory, but at this stage this possibility cannot be excluded. Our seismological results can<br />

explain both the sliding decrease and subglacial barrier hypothesis in terms of reduced<br />

stick-slip icequakes and less extensional crevasse icequakes, respectively.<br />

By the time of writing, it is unclear how long the various measurements will continue in the<br />

future. This will largely depend on the future hazard assessment by the responsible authorities.<br />

Additional investigations on the englacial thermal regime with borehole measurements<br />

would help to understand the dynamical behavior of this steep ice covered face. A numerical<br />

ice flow model incorporating material damage would help to identify critical regions where<br />

crevasse formation indicates imminent failure. Finally, bedrock topography and the total ice<br />

volume, which could be obtained by ground-penetrating radar, would be an asset for future<br />

hazard assessment.<br />

ACKNOWLEDGEMENTS<br />

The Swiss National Science Foundation financed the salaries of LP and FW and part of the<br />

instrument deployment (GlaHMSeis Project PP00P2_157551). We received funding from the<br />

US National Science Foundation (OPP1039982) for development of the geopebbles. We thank<br />

the editor and two anonymous reviewers for constructive comments. We are also indebted to<br />

U. Andenmatten, S. Bilén, R. Bock, Ch. Marty, J. Portelli, M. Pusateri, the Municipality of<br />

Saas-Grund, the Canton of Valais, the Swiss Federal Office for the Environment and<br />

Bergbahnen Hohsaas AG.<br />

REFERENCES<br />

- Dalban Canassy, P., Faillettaz, J., Walter, F., & Huss, M. (2012). Seismic activity and surface<br />

motion of a steep temperate glacier: a study on Triftgletscher, Switzerland. J. Glac., 58(209).<br />

- Faillettaz, J., Sornette, D., & Funk, M. (2010). Gravity-driven instabilities: Interplay between<br />

state- and velocity-dependent frictional sliding and stress corrosion damage cracking.<br />

JGR:SE, 115(B3), B03409.<br />

- Faillettaz, J., Funk, M., & Sornette, D. (2011). Icequakes coupled with surface displacements<br />

for predicting glacier break-off. J. Glac., 57(203), 453–460.<br />

- Faillettaz, J., Funk, M., & Vincent, C. (2015). Avalanching glacier instabilities: Review on<br />

processes and early warning perspectives. Rev. Geophys., 53.<br />

- Flotron, A. (1977). Movement studies on a hanging glacier in relation with an ice<br />

avalanche. J. Glac., 19(81), 671–672.<br />

- Gilbert, A., Vincent, C., Gagliardini, O., Krug, J., & Berthier, E. (2015). Assessment of<br />

thermal change in cold avalanching glaciers in relation to climate warming. Geophys.<br />

Res. Lett., 42.<br />

442 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Grün, A. W. (1985). Adaptive Least Squares Correlation: A Powerful Image Matching<br />

Technique. S. Afr. J. Photogramm., Rem. Sens & Cart., 14, 175–187.<br />

- Kamb, B., et al. (1985). Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier,<br />

Alaska. Science 227(4686), 469–479.<br />

- Lliboutry, L. (1975). La catastrophe du Yungay (Pérou). Proc. Snow & Ice Symp., Moscow,<br />

August 1971, 353–363.<br />

- Maas, H.-G., & Hampel, U. (2006). Photogrammetric Techniques in Civil Engineering<br />

Material Testing and Structure Monitoring. Photogramm. Eng. Rem. Sens., 72(1), 39–45.<br />

- Pralong, A., & Funk, M. (2006). On the instability of avalanching glaciers. J. Glac.,<br />

52(176), 31–48.<br />

- Rödelsperger, S., Läufer, G., Gerstenecker, C., & Becker, M. (2010). Monitoring of displacements<br />

with ground-based microwave interferometry: IBIS-S and IBIS-L. J. Appl. Geod.,<br />

4(1), 41–54.<br />

- Röthlisberger, H. (1978). Eislawinen und Ausbrüche von Gletscherseen. Jahrb. Schweiz.<br />

nat.forsch. Ges., 158, 170–212.<br />

- Ulivieri, G., Marchetti, E., Ripepe, M., Chiambretti, I., De Rosa, G., & Segor, V. (2011).<br />

Monitoring snow avalanches in Northwestern Italian Alps using an infrasound array.<br />

CRST, 69(2-3), 177–183.<br />

- Walter, F., Deichmann, N., & Funk, M. (2008). Basal icequakes during changing subglacial<br />

water pressures beneath Gornergletscher, Switzerland. J. Glac., 54(186), 511–521.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 443


DATA ACQUISITION AND MODELLING (MONITORING, PROCESSES, TECHNOLOGIES, MODELS)<br />

M-AARE - Coupling atmospheric, hydrological, hydrodynamic<br />

and damage models in the Aare river basin,<br />

Switzerland<br />

Andreas Paul Zischg, PhD 1, 2 ; Guido Felder, Msc 2 ; Rolf Weingartner, Prof. 2 ; Juan José Gómez-Navarro, PhD 2 ; Veronika<br />

Röthlisberger, Msc 2 ; Daniel Bernet, Msc 2 ; Ole Rössler, PhD 3 ; Christoph Raible, Prof. 4 ; Margreth Keiler, PD 5 ; Olivia Martius, Prof. 2<br />

ABSTRACT<br />

The triggering mechanism and the temporal evolution of large flood events, especially of<br />

worst-case scenarios, are not yet fully understood. Consequently, the cumulative losses of<br />

extreme floods are unknown. To study the link between weather conditions, discharges and<br />

flood losses it is necessary to couple atmospheric, hydrological, hydrodynamic and damage<br />

models. The objective of the M-AARE project is to test the potentials and opportunities of<br />

a model chain that relates atmospheric conditions to flood losses or risks. The M-AARE model<br />

chain is a set of coupled models consisting of four main components: the precipitation<br />

module, the hydrology module, the hydrodynamic module, and the damage module.<br />

The models are coupled in a cascading framework with harmonized time-steps. First<br />

exploratory applications show that the one way coupling of the WRF-PREVAH-BASEMENT<br />

models has been achieved and provides promising new insights for a better understanding<br />

of key aspects in flood risk analysis.<br />

KEYWORDS<br />

model coupling; worst-case flood; flood risk; Aare river; Switzerland<br />

INTRODUCTION<br />

In Switzerland, floods are the major cause of significant economic losses. The amplitude of<br />

flood peaks and the flood volume depend on the intensity and track of the triggering<br />

precipitation events, the topography and geology of the catchments, the wetness of the<br />

catchments prior to precipitation events as well as the hydro-morphologic conditions in the<br />

floodplains. However, the detailed triggering mechanism and the temporal evolution of<br />

large flood events, especially of worst-case scenarios, are not yet fully understood. Regarding<br />

mesoscale catchments, insights on the precipitation patterns leading to the most extreme<br />

floods are missing. Consequently, the cumulative losses of worst-case floods are unknown.<br />

The knowledge of the worst-case flood or of flood discharge return periods of up to<br />

10’000 years are important for managing critical infrastructures as well as financial risks, e.g.,<br />

1 University of Bern, Bern, SWITZERLAND, andreas.zischg@giub.unibe.ch<br />

2 Mobiliar Lab for Natural Risks, Oeschger Centre for Climate Change Research, Institute of Geography, University of Bern<br />

3 Oeschger Centre for Climate Change Research, Institute of Geography, University of Bern<br />

4 Physics Institute, Oeschger Centre for Climate Change Research, University of Bern<br />

5 Institute of Geography, University of Bern<br />

444 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP019


for portfolio management of insurance companies. On a longer time scale, the question how<br />

the expected changes in precipitation intensities due to climatic changes influence the flood<br />

risk is of special interest. To study the link between weather conditions, discharges and flood<br />

losses it is necessary to couple atmospheric, hydrological, hydrodynamic and damage models.<br />

An attempt for coupling hydrologic with hydraulic models for flash flood predictions has been<br />

shown by Laganier et al. (2014). Various examples of coupling process models and vulnerability<br />

models were elaborated in the CRISMA project (Heikkilä et al. 2015). The focus in this<br />

project laid on the improvement of crisis management by simulating complex crisis scenarios<br />

of winter storm events, coastal submersion processes, earthquakes and for forest fires.<br />

An example of coupling hydrologic, hydrodynamic and damage models is given by Kourgialas<br />

and Karatzas (2013).<br />

The objective of the project “M-AARE – Coupling atmospheric, hydrological, hydrodynamic<br />

and damage models in the Aare river basin” is to test the potentials and opportunities of a<br />

model chain that relates atmospheric conditions to flood risks. Thus, the main question is<br />

whether the coupling of atmospheric, hydrologic, hydrodynamic and damage models could<br />

potentially contribute to a better understanding of the formation of flood events and their<br />

consequences. Another aim of this explorative study is to quantify the resources needed for<br />

simulating these processes in a model chain.<br />

With the model chain, the discharges from the catchments to the floodplains for selected<br />

precipitation scenarios and the retention effects in lakes and floodplains should be quantified.<br />

This allows to predict the flooded areas and the related losses to exposed residential buildings.<br />

Beside the hydro-meteorological characteristics, a key aspect of the method is to characterize<br />

and capture the non-linear effects of flood retention in the valley bottom and in the lakes.<br />

Furthermore, the model chain will allow the quantification of potential losses for given<br />

scenarios based on flow depths and flow velocities and therefore provide a sound basis for<br />

risk analysis.<br />

The model chain was developed and tested in the watershed of the river Aare upstream of<br />

Bern, Switzerland, with an area of approx. 3000 km 2 . This river basin is a complex network<br />

of sub-catchments with different runoff characteristics including two larger regulated lakes.<br />

Most of the rivers are trained since the 18th and 19th century.<br />

METHODS<br />

The M-AARE model chain is a set of coupled models consisting of four main components:<br />

the precipitation module, the hydrology module, the hydrodynamic module, and the damage<br />

module (see Fig. 1). The selected models in each module will be inter-changeable or can be<br />

used in an ensemble-framework for further sensitivity and uncertainty assessments.<br />

Precipitation module<br />

The precipitation module provides precipitation scenarios as inputs for the rainfall-runoff<br />

model. The latter is set up for each tributary and delivers the input hydrographs for the<br />

hydrodynamic model. The precipitation scenarios are formulated using two different<br />

approaches: a) by defining representative spatio-temporal precipitation patterns represented<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 445


in gridded datasets or b) by selecting extreme precipitation events from a long climate simulation<br />

of a Global Circulation Model (CESM1) and downscaling these selected cases with<br />

a Regional Climate Model (WRF). The first approach was used to estimate the probable<br />

maximum precipitation (PMP), which is done by applying a Monte Carlo approach. The<br />

identified spatio-temporal distributions with the most severe impacts feed subsequent models.<br />

For the second approach, a long-term climate simulation (a control simulation spanning more<br />

than 500 years) with the Earth System Model (ESM) provides a coarse-resolution dataset of<br />

several centuries of precipitation. From this data set, a number of case studies corresponding<br />

to extreme situations are selected as candidates for further analysis. However, the global<br />

model employs a coarse spatial resolution (1 degree) that precludes the accurate simulation of<br />

the precipitation in areas of complex topography such as Switzerland. Hence, these cases<br />

need to be dynamically downscaled with a Regional Climate Model (RCM). The applied RCM<br />

WRF implements a spatial resolution of 2 km over the entire alpine area, which allows a<br />

more realistic representation of precipitation induced by interactions between the large-scale<br />

forcing and orography. Outputs of both approaches in this module consist of gridded time<br />

series of temperature and precipitation of a selected number of scenarios.<br />

Figure 1. Conceptional setup of the model chain M-AARE in the Aare river basin.<br />

Hydrologic module<br />

For the rainfall-runoff modelling, we apply the hydrological model PREVAH (Viviroli et al.<br />

2009). The model is set up for 15 sub-catchments that are located within the Aare basin<br />

with a spatial resolution of 1 km and hourly time steps. The delimitation of the catchments<br />

are presented in Fig. 2. The model is fed by the precipitation scenarios described above.<br />

The model output of the hydrologic module is used as the upper boundary condition of the<br />

hydrodynamic model.<br />

446 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Hydrodynamic module<br />

The generated hydrographs are then routed with the hydrodynamic model BASEMENT-ETH<br />

(Vetsch et al. 2015) that accounts for the retention effects of lakes and floodplains. The<br />

hydraulic model was set up in two ways, a 1D- hydrodynamic model for all research<br />

questions regarding the flow routing only and a 2D-model used for coupling the damage<br />

module. The 1D model consists of cross sections along the whole valley bottom and considers<br />

the characteristics of the two lakes (lake Thun and lake Brienz) in modulating the flood<br />

hydrographs from the upper catchments. All of the main rivers considered in the 1D model<br />

were coupled in one integrated hydrodynamic model. This model consists of the Aare river<br />

from Meiringen to Bern including the two lakes and the area between the two lakes, the<br />

Gürbe valley, the Lütschine valley downstream from Gsteig, the Kander river downstream<br />

from the confluence with the Simme river. The river reaches in the main floodplains are<br />

implemented also in a 2D hydrodynamic model. Therefore, depending on the research<br />

question or on the damage model applied, these river reaches can either be modelled in 1D<br />

or in 2D, respectively. The 1D model was used for studying worst case discharges at the basin<br />

outlet in Bern. The 2D model was used to delimitate the flooded areas and as an input for the<br />

damage module. The spatial setup of the interface between the hydrologic and the hydraulic<br />

models is shown in Fig. 2.<br />

Figure 2. Spatial setup of the interface between hydrologic and hydrodynamic models. The black lines show the catchment delimitations.<br />

The calibrated catchments are indicated by labels. The black triangles indicate where the output of the hydrologic model will be used as<br />

input for the hydrodynamic model. The hatched areas represent the floodplains modelled in a 2D hydrodynamic model. The damage<br />

model is applied only in these areas.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 447


Damage module<br />

The hydrodynamic model – run in 2D mode – provides the basis for the damage module. This<br />

module consists of a dataset of buildings, each object classified by type, functionality, construction<br />

period, volume, reconstruction costs, and number of residents. The flood intensity maps<br />

resulting from the hydrodynamic module lead to the calculation of the object-specific<br />

vulnerability and therefore to the estimation of object-specific losses. The cumulative losses of<br />

a simulated precipitation scenario are summed up in a second step. Currently, a vulnerability<br />

function based on insurance data and reconstructed flood events is implemented. The method<br />

for the elaboration of the vulnerability curve follows the approach of Papathoma-Köhle et al.<br />

(2015), adopted to flood damages based on insurance data in Switzerland. The loss of life is<br />

calculated after Jonkman et al. (2008).<br />

Coupling strategy<br />

After Laganier et al. (2014), the model coupling strategy can either be of unidirectional or<br />

of bidirectional type. The first case is also called external coupling or a model cascade; the<br />

information is exchanged in one direction only. In the second case, the coupled sub-models<br />

interact between each other. In our case, the models are coupled in a cascading framework<br />

with harmonized time-steps. The coupling of the modules is controlled in a central timing<br />

and control device.<br />

Calibration and validation<br />

Each of the sub-models is calibrated and validated separately. The precipitation module is<br />

bias-corrected against gridded data sets of observations of precipitation in Switzerland. The<br />

hydrologic model is calibrated, if available, with observation data at the outflow of each<br />

sub-catchment (8 gauged sub-catchments). The models for the ungauged sub-catchments are<br />

regionalized by applying the parameter regionalization method proposed by Viviroli (2011).<br />

The hydrodynamic model was calibrated by empirically adjusting the friction coefficients.<br />

The values were adjusted by reconstructing observed flood events with particular regard to<br />

the water surface elevation in the main channel at peak discharge and the runtime of a peak<br />

discharge from one gauging station to another. The hydrodynamic model was validated based<br />

on watermarks along the rivers measured during the flood event in June 2014. The computed<br />

water surface elevations are within +/- 30 cm at nearly bankfull discharge. The 2D<br />

hydrodynamic model is calibrated in terms of reproducing the known channel capacity of the<br />

river reaches and in terms of reproducing the flooded areas of known flood events of 2005.<br />

The validation of the modelled flooded areas could not be quantified directly because the<br />

river geometry changed remarkably in some river reaches since the last observed floodings<br />

due to river training works. The damage model was validated in terms of reproducing the<br />

order of dimension of observed cumulative losses in past flood events. A direct validation of<br />

the damages to buildings was not possible because of lacking data at single objects level.<br />

448 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3. Flooded areas and losses to buildings in the subcatchment Gürbe related to a hydrograph resulting from one probable<br />

maximum precipitation scenario. The map at the left shows the flow depths at peak discharge, the diagram at the right shows the inflow<br />

hydrograph (continuous line) and the computed losses (grey area) over the time axis (hours).<br />

RESULTS<br />

The main result of the M-AARE project is the set up of a modelling chain of one-way coupled<br />

deterministic models. The first simulations of the model chain show that the chosen settings<br />

are suitable for modelling these natural processes, from precipitation to floods and flood<br />

losses. The meteo module provided numerous precipitation scenarios with different spatio-temporal<br />

distributions. These scenarios provide the input for the hydrologic model and the<br />

resulting discharges feed into the hydrodynamic model. The use of the downscaled global<br />

circulation model with a regional climate model showed that the latter is able to improve the<br />

simulation of precipitation compared to the GCM alone. Although, the large-scale flow and<br />

the location of the precipitation maxima is very similar at continental scales (as it is driven by<br />

the boundary conditions provided by the GCM) the spatial structure of the precipitation is<br />

refined at mesoscale scales, producing stronger precipitation gradients that allow to identify<br />

the main orographic barriers. Furthermore, much higher precipitation rates occur in some<br />

river catchments, which are indicative of potential disastrous situations at localised regions.<br />

The setting of the hydrodynamic model is able to consider retention capacities of lakes and<br />

floodplains, and to investigate the relationship between characteristics of process intensities<br />

and the related damages to residential buildings. The coupling between hydrologic and<br />

hydrodynamic models indicate that the relation between the input peak discharge and the<br />

modelled peak discharge at the outlet of the floodplains shows non-linear effects, which are<br />

usually neglected in extreme value statistical analyses. Further results of coupling the<br />

hydrologic and hydrodynamic models in probable maximum flood analyses are described in<br />

Felder et al. (subm.). Fig. 3 shows exemplarily the result of one of the simulated worst case<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 449


scenarios. The map in Fig. 3 shows the modelled flow depths at peak discharge. The diagram<br />

in Fig. 3 shows exemplarily a hydrograph of one probable maximum precipitation scenario in<br />

one of the subcatchments and the related losses on buildings. The evolvement of the losses<br />

during the flood event is shown on the same time axis as the discharge.<br />

CONCLUSIONS AND OUTLOOK<br />

The results show that the one way coupling of the modules has been achieved and provides<br />

promising new insights for a better understanding of key aspects in flood risk analysis.<br />

The described model configuration allows to route the precipitation through different states<br />

of the river system and to take the retention effects of lakes and floodplains into account.<br />

The modelled magnitude of the effect of retention areas highlights the importance of<br />

considering such effects in extreme discharge estimations. First exploratory applications with<br />

the coupling of the WRF-PREVAH-BASEMENT models show the importance of clearly<br />

defined interfaces between the models. The coupling entails that all of the models are flexible<br />

enough to meet the requirements for the exchange of data, especially taking into account the<br />

different temporal resolution of each model. It is shown, that both the PREVAH model and<br />

the BASEMENT model are suited to be chained together and both are flexible enough to be<br />

operated by an external controller. In our case, the most important aspect is to harmonise the<br />

different time steps by using one framework. Therefore, the controller module is of strategic<br />

importance. Another important point is the definition of the location in space where the<br />

rainfall-runoff model delivers the computed discharges to the hydrodynamic model. These<br />

interfaces are located on the upper edges of floodplains in which remarkable effects of flood<br />

retention are to be supposed. The first applications of the damage model show that the<br />

vulnerability functions are crucial for calculating the damages. This module needs to be<br />

further improved and validated.<br />

In conclusion, the M-AARE model chain has shown that the coupling of deterministic models<br />

offers a high potential to address further research questions and offers opportunities to<br />

provide a sound framework for different tasks in flood risk management. However, a successful<br />

implementation requires a high demand on specific knowledge and an interdisciplinary<br />

approach. Each of the modules needs knowledge and the coupling itself requires a rigorous<br />

definition of the interfaces between the models and an expertise in setting up of the controller<br />

module. Overall, the described model chain may provide the basis for further investigations:<br />

– The model chain will simulate more scenarios of physically plausible peak discharges in the<br />

study area that are determined by the most extreme situations leaded by the large-scale<br />

circulation within the GCM. This will enable the analysis and characterization of worst-case<br />

floodings whose return period exceeds several centuries.<br />

– With this model chain, it is possible to quantify the cumulative effects of all river training<br />

works or to assess the sensitivity of river reaches to the effects of climatic changes. This<br />

allows analysing the lake regulation procedures in case of a worst case flood.<br />

450 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– It allows forecasting flood damages on the basis of discharge forecasts in selected river<br />

reaches due to the analysed discharge-damage-relationships.<br />

– The implementation of a multi-modelling approach in the hydrologic, hydrodynamic and<br />

damage modules will provide the possibility to quantify and describe the uncertainties<br />

in more detail.<br />

– The M-AARE model chain may also provide a platform for planning of flood corridors and<br />

studying their effects in terms of flood hydrograph modulation on basin scale.<br />

– Up to now, only buildings are considered in the computation of losses. The damage module<br />

has to be extended to other categories, e.g. losses to infrastructures etc.<br />

REFERENCES<br />

- Felder, G.; Zischg, A.; Weingartner, R. (subm.). The effect of a coupling of hydrologic<br />

and hydrodynamic models on PMF estimation.<br />

- Heikkilä, A.-M.; Havlik, D.; Schlobinski, S. (2015). Modelling crisis management for<br />

improved action and preparedness. Espoo: VTT.<br />

- Jonkman, S. N.; Vrijling, J. K.; Vrouwenvelder, A. C. W. M. (2008). Methods for the<br />

estimation of loss of life due to floods: a literature review and a proposal for a new method.<br />

In: Nat Hazards 46 (3), 353–389. DOI: 10.1007/s11069-008-9227-5.<br />

- Kourgialas, Nektarios N.; Karatzas, George P. (2013). A hydro-economic modelling<br />

framework for flood damage estimation and the role of riparian vegetation. In: Hydrol.<br />

Process. 27 (4), S. 515–531. DOI: 10.1002/hyp.9256.<br />

- Laganier, O.; Ayral, P. A.; Salze, D.; Sauvagnargues, S. (2014). A coupling of hydrologic and<br />

hydraulic models appropriate for the fast floods of the Gardon River basin (France).<br />

In: Nat. Hazards Earth Syst. Sci. 14 (11), 2899–2920. DOI: 10.5194/nhess-14-2899-2014.<br />

- Papathoma-Köhle, M.; Zischg, A.; Fuchs, S.; Glade, T.; Keiler, M. (2015). Loss estimation<br />

for landslides in mountain areas – An integrated toolbox for vulnerability assessment and<br />

damage documentation. In: Environmental Modelling & Software 63, 156–169.<br />

DOI: 10.1016/j.envsoft.2014.10.003.<br />

- Viviroli, D.; Zappa, M.; Gurtz, J.; Weingartner, R. (2009). An introduction to the hydrological<br />

modelling system PREVAH and its pre- and post-processing-tools. In: Environmental<br />

Modelling & Software 24 (10), 1209–1222. DOI: 10.1016/j.envsoft.2009.04.001.<br />

- Viviroli, D.; Weingartner, R. (2011). Umfassende hochwasserhydrologische Beurteilung<br />

ungemessener mesoskaliger Einzugsgebiete im Schweizerischen Rheineinzugsgebiet durch<br />

prozessorientierte Modellierung. In: Hydrologie und Wasserbewirtschaftung, 55(5), 258-272.<br />

- Vetsch, D.; Siviglia, A.; Ehrbar, D.; Facchini, M.; Gerber, M.; Kammerer, S.; Peter, S.;<br />

Vonwiler, L.; Volz, C.; Farshi, D.; Mueller, R.; Rousselot, P.; Veprek, R.; Faeh, R. (2015).<br />

BASEMENT – Basic Simulation Environment for Computation of Environmental Flow<br />

and Natural Hazard Simulation. ETH Zürich.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 451


452 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

Convivere<br />

con i rischi<br />

naturali


Hazard and Risk Assessment<br />

(analysis, evaluation)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 453


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Understanding the impact of climate change on<br />

debris-flow risk in a managed torrent: expected future<br />

damage versus maintenance costs<br />

Juan Antonio Ballesteros Canovas, PhD. 1 ; Markus Stoffel 2 ; Klaus Schraml 3 ; Christophe Corona 4 ; Andreas Gobiet 5 ;<br />

Satyanarayana Tani 5 ; Sven Fuchs 6 ; Franz Sinabell 7 ; Roland Kaitina 6<br />

ABSTRACT<br />

In this communication, we evaluate the role of maintenance costs of hydraulic infrastructures<br />

in the risk analysis of torrential channels under the impact of process and/or climate changes.<br />

We combine stochastic life-cycle analysis (LCA), debris-flow modelling and risk assessments<br />

to understand the cumulative effects of extreme debris-flow events and potential progressive<br />

degradation of infrastructure on mitigation structures. We compare two scenarios to assess<br />

the reliability of check dams in reducing debris flow risks, with a focus on their performance<br />

and maintainability. We detect that maintenance works will play an important role in the<br />

next decades to maintain the reliability of infrastructure at a high level of confidence, which<br />

will however result in high economic costs.<br />

KEYWORDS<br />

Debris flow, risk assessment, stochastic life-cycle analysis, cost-benefit<br />

INTRODUCTION<br />

Debris flows are categorized as one of the costliest natural hazard in mountain environments,<br />

causing repeated damage to infrastructures, urban development and even loss of life (Jakob<br />

and Hungr, 2005). In mountain areas, debris flows risk assessment is an important issue for<br />

practitioners and it could even become more crucial in the next decades due to (i) the<br />

expected changes in magnitude-frequency of processes due to climate, and (ii) the rapid<br />

socio-economic development of such environments (Totschnig and Fuchs, 2013).<br />

Disaster risk managers aim to reduce the expected losses based on passive (i.e. land-use<br />

management, hazard mapping) as well as active mitigation strategies (i.e. structural measurement,<br />

protection forest) (Holub and Fuchs, 2008). Active-based structural measures, such as<br />

retention basins, check dams and channel canalization are therefore common in Central<br />

1 University of Bern, Bern, SWITZERLAND, juan.ballesteros@dendrolab.ch<br />

2 Climate Change an Climate Impacts (C3i) Institute for Environmental Sciences 7 route de Drize, 1227 Carouge-Geneva<br />

3 University of Natural Resources and Applied Life Sciences (BOKU), Institute of Mountain Risk, Engineering (IAN), Vienna<br />

4 Centre National de la Recherche Scientifique (CNRS) UMR6042 Geolab, 4 rue Ledru, F-63057 Clermont-Ferrand Cedex, France<br />

5 University of Graz, Wegener Center for Climate and Global Change (WegCenter), Graz<br />

6 University of Natural Resources and Life Sciences, Institute of Mountain Risk Engineering, Austria<br />

7 Österreichisches Institut für Wirtschaftsforschung<br />

454 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP049


Europe (Mazzorana et al., 2012) and they have played an important role in vulnerability<br />

reduction. However, the reliability of these structures can be affected by their previous state.<br />

Given that major investments in active measures were realized over the last decades, it is<br />

hypothesized that structures may soon lose or may already have lost performance of<br />

hydraulic function due to attrition. Consequently, some of them may no longer present<br />

optimal states (Romang et al., 2003), which would however be crucial for efficient risk<br />

reduction (Sánchez-Silva, 2004). Under this premise, two main factors will be therefore<br />

critical in the next decades: (i) the possible increase in frequency and magnitude of debrisflow<br />

hazards related to more frequent extreme climatic conditions (precipitation, snowmelt<br />

events) and/or changes in land cover and land use; and (ii) the current and future state of<br />

reliability of existing infrastructures depending on their maintenance, repair, and potential<br />

system failures.<br />

In this communication, we present a coupled framework based on a time-dependent<br />

performance analysis of infrastructures in managed torrents affected by recurrent debris flow,<br />

their maintenance and operability and classical risk assessment procedures. By combining<br />

stochastic life-cycle analysis (LCA, Sanchez-Silva et al., 2011), debris flow modelling and risk<br />

assessment, we aim at understanding the cumulative effects of extreme events and progressive<br />

degradation on the design capacity of structures. We also aim at exploring the applicability<br />

of stochastic LCA to debris-flow risk assessment in a managed torrent watershed located in<br />

the southern part of the Austrian Alps where severe debris flows have been recorded in 1997.<br />

By comparing two alternatives (‘pre- and post-1997 event’), we assess the reliability and<br />

sustainability of check dams in reducing debris-flow risks, with a focus on their performance<br />

and maintainability.<br />

METHODS<br />

Study site: The study site is the Wartschenbach torrent, located in the southern Austrian<br />

Alps (Lienz district, province of East Tyrol). This torrent is characterized by a catchment area<br />

of 2.7 km 2 , with altitudes ranging from 670 to 2113 m a.s.l. The main channel is 3.6 km long<br />

and has an average slope gradient of 0.18 m/m, and maximum values up to 0.4 m/m in the<br />

central part (Melton index = 1,01). The apex of the sediment fan is located at 1460 m a.s.l<br />

and it has an average slope of 16°. The two villages of Nußdorf-Debant and Gaiming, located<br />

on the fan of the Wartschenbach torrent, have suffered severe damage from debris-flow<br />

activity in the past (Hübl et al., 2002). To achieve more effective protection of the exposed<br />

community, local authorities adopted a protection strategy focused on the successive<br />

implementation of a range of active measures (i.e. three open-slit check dams in the upper<br />

part of the fan). The historical record of events suggests that deposition heavily reduced the<br />

capacity of the dams between 1995 and 2000, requiring maintenance and cleaning work with<br />

an annual average cost of about 280,000 €.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 455


Methodological steps: We quantify expected losses due to debris-flow activity by using a<br />

coupled stochastic LCA risk assessment model (Figure 1; Ballesteros-Cánovas et al., in<br />

review). Expected losses were estimated as the sum of the costs related to (i) regular<br />

maintenance work of check dams to keep their original retention capacity after a debris-flow<br />

event; and (ii) damage downstream of the structure in case that a debris flow exceeds the<br />

maximum capacity of the dams. We considered two different alternatives for the development<br />

of infrastructures: i) pre-1997 event and, ii) post-1997 event. Additionally, we also<br />

considered three climate change (CC) scenarios (i.e. S1, S2 and S3) integrating expected<br />

changes in debris-flow frequency as a result of the expected increase in temperatures and<br />

extreme precipitation events (Gobiet et al., 2014).<br />

Figure 1: General description of the proposed method (Ballesteros-Cánovas et al., in review).<br />

We used the catalogue of historical natural disasters from the Lienz region (Hübl et al., 2011)<br />

to characterize the occurrence of debris-flow events. Then, we determined daily rainfall<br />

intensities prior to and at the day of occurrence of each event based on the Iselsberg-Penzelberg<br />

meteorological series. Debris-flow frequencies (i.e. number of events per decade) were<br />

then analyzed in terms of threshold exceedance (from 10 to 100 mm) by using the distribution<br />

of past daily rainfall triggers as a guide and basis for the assessment of how these<br />

thresholds could be exceeded in the future (Guzzetti et al., 2008). Finally, debris-flow<br />

frequencies were connected to statistically downscaled station data and error-corrected<br />

climate change scenarios available for fixed daily precipitation thresholds (comprised between<br />

10 to 100 mm) averaged over two months until the mid-21st century. For the purpose of this<br />

study, we used three contrasting climate scenarios derived from regional climate model.<br />

In the subsequent step, a stochastic LCA model (Sánchez-Silva et al., 2011) was implemented<br />

to determine the performance of existing dams during their life time (t=80 yrs). Two different<br />

alternatives (A) were considered:<br />

456 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– (i) A1 (past situation, pre-1997 event): one dam (maximum retention capacity: 25,000 m 3 ).<br />

– (ii) A2 (current situation, post-1997 event): three check dams (maximum retention<br />

capacity: 77,000 m 3 ).<br />

Exponential distributions were used to characterize the average recurrence time of events for<br />

each scenario. In addition, LogNormal (LN) distributions were used to model expected<br />

magnitudes of events (i.e. the volume of deposition; m 3 ) based on historical information.<br />

Age-related degradation of check dam capacity was assessed with a monotonous-decrease<br />

time-dependent function by using observations from other torrents (Romang et al., 2003).<br />

During the LCA, two different check dam capacity limits can be taken into account namely<br />

Smin and Kmin. . Here, we have considered Smin as the average event capacity > 10,000 m 3<br />

resulting in a capacity loss requiring system maintenance according to historical records (Hübl<br />

et al., 2002), and Kmin as the maximum designed retention capacity volume for A1 = 25,000<br />

m 3 and A2 = 77,000m 3 .Building cost was assessed at 1 million € per dam and clearance (i.e.<br />

maintenance costs) at 5 € per m³ sediment retained behind the dam. This average value<br />

includes the cleaning of the dam as well as the transport, and further deposition of sediments;<br />

however other costs related with technical works during maintenance are not explicitly here<br />

considered (i.e. condition assessment, attendance, corrective maintenance). The stochastic<br />

LCA analysis has been performed using Monte-Carlo simulations with 1,000 iterations and<br />

takes account of a subsequent recovery of retention capacity up to 100 % when retention<br />

capacity of the check dams D[t] falls below Smin. In addition, the impact of performing<br />

periodic maintenance works was analyzed and different maintenance periods have been<br />

implemented in the model (i.e. each 2, 5, or 10 years). Their impact on the reliability of check<br />

dams has been evaluated in terms of number of recoveries, time to recovery, and average<br />

recovery cost. Here it was assumed that periodic maintenance works can improve check dam<br />

capacity by up to 10%.<br />

In case that Kmin is exceeded, deposition outside the channel causes damage to properties<br />

located on the fan. To estimate related cost with this scenario, we quantified damage<br />

functions based on available vulnerability curves (Fuchs et al., 2007; Totschnig and Fuchs,<br />

2013), intensity of the event (deposition depth in m), and economic value of houses. We then<br />

used the numerical simulation model Flo-2D to estimate expected debris-flow deposition (m)<br />

to each expected volume. Flo-2D is a bi-dimensional quadratic shear stress model describing<br />

regimes from viscous to turbulent/dispersive flow. The model was based on a 1-m digital<br />

elevation model and previously calibrated based on the well-documented event in August<br />

1997. ArcGis was used to determine the exposure degree of each building, whereas vulnerability<br />

curves and average economic properties values were used to define damage functions.<br />

Finally, a cost-based debris-flow risk assessment was based on the expected total annual cost<br />

incurred by the entire system, i.e. the sum of expected maintaining costs of check dams<br />

throughout the life cycle of works, and expected annual costs of debris-flow damage in terms<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 457


of fatalities after a potential failure of the retention system was carried out. We compared<br />

the reliability of the entire system (different alternatives) under different scenarios based on<br />

the expected annual cost. In order to include all uncertainties from all modelling steps, we<br />

performed Monte Carlo simulations based on 5,000 iterations.<br />

RESULTS<br />

Analysis of the historical database suggests that more than 121 debris-flow and related events<br />

occurred in the Lienz region between 1950 and 2000 (mean: 21 events per decade). Threshold<br />

intensities extracted from the database for debris-flow initiation vary between 0 mm and<br />

123.3 mm day–1. Mean rainfall intensity for debris-flow triggering is 59 mm day–1. Maximum<br />

debris flow frequency was observed in the past during summer (S1: 5.2 events per<br />

decade in June-July) for daily rainfall intensities comprised between 10 and 20 mm. In the<br />

future, according to scenarios S2 (S3), the frequency of 10-20 mm rainfall will decrease<br />

(increase) by 30% (5%). As a consequence, the expected frequency of debris-flow events per<br />

decade will change accordingly:<br />

– i. S1 (reference scenario): 21 events/decade,<br />

– ii. S2 (best scenario): 14 events/decade (-33 %)<br />

– iii. S3 (worst scenario): 29 events/decade (+38 %).<br />

Figure 2 provides a graphical example of check dam performance as a result of debris-flow<br />

occurrences and ageing degradation along structure life (example of 1 and 10 simulations for<br />

A2). Results indicate that the expected damage resulting from debris flows in the Wartschenbach<br />

in A1 is almost 98 % lower than in A2. The mean expected annual damage for the<br />

scenarios were 56,955 € (S1), 78,653 € (S2) and 37,970 € (S3) for A1, and 1,236,753 € (S1),<br />

1,659,085 € (S2) and 790,179 € (S3) for A2. Changes in debris-flow frequency as a result of<br />

climate change are predicted to induce a range of variations in expected annual costs which<br />

are comprised between +38 % (S2) and -33 % (S3).<br />

Figure 2: Example of check dam performance analysis. Left (right) panel represents 1 (10) simulations. In both cases, the evolution<br />

of check dam performance has been evaluated for the mitigation scenario A1 (3 check dams) and the climate change scenario S1<br />

(current situation, 21 debris flow per decade (Ballesteros-Cánovas et al., in review).<br />

458 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The cost related with system performance under climate change forcing vary between<br />

2,336,988 € (3,126,953 €) and 3,423,836 € (5,988,019 €) for A1 (A2), respectively.<br />

The total expected annual costs (expected damage including expected maintenance costs)<br />

are on average lower in A1 (S1=82,690 €; S2=114,459 €; S3=59,227 €) as compared to A2<br />

(S1 = 1,236,753 €; S2 = 1,659,085 €; S3 = 790,179 €) regardless of the scenario considered.<br />

As a consequence, we interpret that the performance of A1 is more economical than A2.<br />

However, when the initial installation cost of each check dam (estimated at 1 million € per<br />

dam) is weighted against the recovery factor (80-yr lifetime with a 5 % interest rate), the<br />

expected annual cost for A1 will vary between 212,315 and 267,547 €; whereas for A2 it is<br />

ranked between 1,710,114 € and 841,208 €. As a consequence (Figure 3), the annual net<br />

benefit without considering the installation cost is optimal for the current alternative<br />

(+14 % vs -9.5 % ), however, if the installation cost is included in the analysis, the current<br />

alternative seems much less cost-effective (-185 % versus -9.5 %).<br />

Figure 3: Annual net benefit comparison (in %) taking account of or ignoring the installation cost of the check dams. (*) indicates the<br />

reference level at which the appraisal was performed (Ballesteros-Cánovas et al., in review).<br />

CONCLUSIONS<br />

The coupled stochastic LCA risk analysis allowed for an estimation of expected annual costs<br />

related to debris-flow hazards in a managed torrent catchment under future climate change<br />

conditions. Through the use of a stochastic analysis, uncertainties related to the performance<br />

of the existing infrastructures and the quantification of damage have been considered.<br />

Despite the large and uncertainties step involve in the risk system analysis, the coupled<br />

stochastic LCA risk analysis has been demonstrated as being a powerful tool to integrate most<br />

of processes involved in the economic analysis. We conclude that integrated analysis<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 459


incorporating deterioration and maintenance operation cost should be included in future<br />

analysis of debris flow on managed torrents. Therefore, the modeling approaches clearly<br />

highlighted the prominent role of maintenance operation works needed to maintain the<br />

reliability of infrastructure at a high level of confidence for our case study site.<br />

ACKNOWLEDGEMENTS<br />

This project received financial support from the Austrian Climate and Energy Fund and is<br />

carried out within the framework of the `ACRP´ Program (project number B060372).<br />

REFERENCES<br />

- Ballesteros Cánovas J.A., Stoffel M., Schraml K. Corona C., Gobiet A., Sinabell F., Fuchs S.<br />

,Kaitna R. (in review). Debris flow risk analysis in a managed torrent based on a stochastic<br />

life-cycle assessment. Landslide.<br />

- Fuchs S., Heiss K., Hübl J. (2007). Towards an empirical vulnerability function for use in<br />

debris flow risk assessment. Natural Hazards Earth System Science 7: 495-506.<br />

- Guzzetti F., Peruccacci S., Rossi M., Stark C.P. (2008). The rainfall intensity-duration control<br />

of shallow landslides and debris flows: an update. Landslides 5: 3–17.<br />

- Gobiet A., Kotlarski S., Beniston M., Heinrich G., Rajczak J., Stoffel M. (2014). 21st century<br />

climate change in the European Alps – A review. Science of Total Environment 493: 1138–<br />

1151.<br />

- Holub M., Fuchs S. (2008). Benefits of local structural protection to mitigate torrent-related<br />

hazards. WIT Trans. Info. Comm. 39: 401-411.<br />

- Hübl J., Ganahl E. Schnetzer I. (2002). Dokumentation Wartschenbach, IAN Report, 52,<br />

Institut für Alpine Naturgefahren, Universität für Bodenkultur, Wien.<br />

- Hübl J., Fuchs S., Sitter F., Totschnig R. (2011). Towards a frequency-magnitude relationship<br />

for torrent events in Austria. In: Genevois, R., Hamilton, D., Prestininzi, A. (eds) Proceedings<br />

of the 5th International Conference on Debris-flow hazards mitigation: mechanics, prediction<br />

and assessment. Casa Editrice Università La Sapienza, Padova, pp. 895-902.<br />

- Jakob, M., Hungr, O. (2005). Debris-flow hazards and related phenomena. Springer, Berlin.<br />

- Mazzorana B., Levaggi L., Keiler M., Fuchs S. (2012). Towards dynamics in flood risk<br />

assessment. Nat. Hazards Earth Syst. Sci. 12 (11): 3571-3587<br />

- Romang H., Kienholz H., Kimmerle R., Böll A. (2003). Control structures, vulnerability,<br />

cost-effectiveness – a contribution to the management of risks from debris torrents. In: - Rickenmann,<br />

D., Chen, C., (eds.) Debris-flow hazards mitigation: mechanics, prediction and<br />

assessment. Millpress, Rotterdam, pp. 1303-1313.<br />

- Sanchez-Silva M., Klutke G. A., Rosowsky D.V. (2011). Life-cycle performance of structures<br />

subject to multiple deterioration mechanisms. Struct. Safety. 3: 206-217.<br />

- Totschnig R., Fuchs S. (2013). Mountain torrents: quantifying vulnerability and assessing<br />

uncertainties. Eng. Geol.: 155, 31-44<br />

460 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Unraveling the spatio-temporal debris-flow activity on<br />

a forested cone in the Kyrgyz Range: implications for<br />

hazard assessment<br />

Vitalii Zaginaev 1 ; Juan Antonio Ballesteros Canovas, PhD. 2 ; Markus Stoffel, Prof. Dr. 2,3 ; Sergei Erokhin 1<br />

ABSTRACT<br />

Ongoing climate change has recently resulted in an increase of risks related with glacial lake<br />

outburst flows (GLOFs) and debris flows in Northern Tien Shan, Kyrgyzstan. In this communication,<br />

we analyze recent process activity by applying tree-ring analysis to contribute to a<br />

better understanding of the past debris-flow activity. Based on the analysis of 96 disturbed<br />

trees, we reconstruct spatio-temporal patterns of events going back to 1877. A total of 26<br />

events have been reconstructed, revealing high activity in the 1960s and 1970s. Our results<br />

are in agreement with the existing, but very fragmentary historical records, and can be used<br />

as a baseline for both risk assessment and for the understanding of glacier-climate-debris flow<br />

linkages in the region.<br />

KEYWORDS<br />

debris flow, glacial lake outburst flows, GLOFs, tree-rings, Northern Tien Shan<br />

INTRODUCTION<br />

Debris flows are rapid mass movements in which a combination of loose soil, rock, organic<br />

matter, air, and water mobilize as slurry flows downslope. This natural process is considered<br />

one of the most common natural hazards in mountain environments and is often responsible<br />

for large damage to infrastructure and even loss of life. Especially powerful events are the<br />

so-called glacial lake outburst flows (GLOFs), which are formed through the breaching of<br />

moraine dammed or supraglacial lakes or subglacial reservoirs as a consequence of glacier<br />

dynamics. These extreme events shape debris cones in the Tien Shan Mountains of Central<br />

Asia and produce intense changes in depositional forms, affecting long distances downstream<br />

of fans and thereby disrupting inhabited valleys (Erochin et al., 2009a).<br />

The creation of new unstable glacier lakes in many high mountain environments and the<br />

destabilization of the cryosphere is explained by changes in extreme precipitation and<br />

temperature patterns (Stoffel and Huggel, 2012). Given the projected temperature increase<br />

in Northern Tien Shan, one can expect these processes to become an even greater challenge<br />

for local authorities and populations in the next future.<br />

1 Institute of water problems and hydropower, National Academy of Science, Bishkek, KYRGYZSTAN<br />

2 Dendrolab.ch, Institute of Geological Sciences, University of Berne, SWITZERLAND juan.ballesteros@dendrolab.ch<br />

3 Climatic Change and Climate Impacts, Institute for Environmental Sciences, University of Geneva, SWITZERLAND<br />

IP_<strong>2016</strong>_FP052<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 461


In this communication, we contribute to the understanding of past spatio-temporal occurrences<br />

of GLOFs at a case-study site in northern Tien Shan. We use tree-ring data to provide<br />

the longest annually-resolved GLOF record existing to date. Results are expected to be useful<br />

to re-define debris-flow hazard at the level of the cone level where touristic activities become<br />

increasingly important as well as provide findings about long-term changes in debris-flow<br />

frequency.<br />

METHODS<br />

Study site<br />

The study site is located on the Aksay cone (42˚33 Ń; 74˚29 ́E; Figure 1). This is the largest<br />

debris-flow cone of northern Tien Shan (Kyrgyz Mountain Range). Catchment size is 28.3<br />

km 2 with a relief of 2645 m. There are two glaciers systems located in the accumulation area<br />

on the western slopes of Semenov Tianshanskiy (4895 m asl) and Korona (4691 m asl) peaks,<br />

respectively. Vegetation on the cone is formed by Picea abies and Betula sp.. The mean annual<br />

precipitation is 517 mm (ranging between 18.1 mm in January and 87.1 mm in May), mean<br />

annual temperature is 6.5 °C. Snow is present from September to April. At this site, debris-flow<br />

(GLOF) activity has been observed in the recent past; generally during the summer<br />

season (Erochin et al., 2009a). Archival records from the Kyrgyz Hydrometeorogical Survey<br />

and State Agency of Geology contains data on nine debris flows triggered by GLOFs and one<br />

event triggered by rainfall between 1960 and 1999 (Erochin et al., 2009b).<br />

Figure 1: A. Location of study area, North slope of Kyrgyz range, National Ala-Archa park, Aksay valley. B. View on cone from west to east.<br />

C. View on cone from east to west. D. Sampled site on satellite image (2014).<br />

METHODOLOGICAL STEPS<br />

Initially, a geomorphic description combining both aerial images interpretation (from 1960,<br />

1971, 1978, 2014) and field surveys was carried out to characterize past and current debris-<br />

462 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


flow channels, as well as the main depositional areas and forest cover. Then, all disturbed<br />

trees located on the fan were sampled following standard dendrogeomorphic procedures<br />

(Stoffel and Corona, 2014). At least two increment cores were extracted per tree. Additionally,<br />

undisturbed trees were sampled on adjacent, unaffected sites to build a reference chronology<br />

to identify pointer years for cross-dating.<br />

Samples were prepared and measured following standard dendrochronological procedures.<br />

Tree rings were first counted and then measured with a precision of 0.01mm using a digital<br />

LINTAB positioning table connected to a Leica stereomicroscope and TSAPWin Scientific<br />

software. Growth disturbance (GD) related with past debris flow activity were then identified<br />

on the increment cores and included injuries, callus tissue, compression wood, abrupt growth<br />

increase and/or growth suppression. In samples from Picea abies, the occurrence of tangential<br />

rows of traumatic resin ducts (TRD) was used as an indirect indicator of scars (Stoffel, 2008).<br />

Debris-flow definition was based on the weighted index value (Wit) developed by Kogelnig-Mayer<br />

et al. (2011). This index considers the number and the intensity of GDs within<br />

each tree-ring series and the total number of trees available for the reconstruction. We<br />

applied detection thresholds based on previous experience form debris flow in Alps (Schneuwly-Bollschweiler<br />

et al., 2013). The criteria here used for debris flow definition was: if Wit ><br />

1,2; then we considered a sure event; if 1,2>Wit>0,8 then we considered a potential event; if<br />

Wit < 0,8, then we reject the possibility of event. During this process, a visual analysis based<br />

on the spatial distribution of affected trees on the fan was also performed to detect potential<br />

incongruences. The representation and visualization of disturbed trees during specific<br />

debris-flow events also allows interpretation of spatial patterns of past events in the current<br />

and past channels. During this analysis we exclusively focused on the location of breakout<br />

sites, the extension of affected areas, and the dynamic of existing channels.<br />

RESULTS<br />

Eleven past debris flow channels as well as the main fan deposits and the forest cover<br />

evolution were identified based on aerial pictures (Figures 2 and 3). In the field, very large<br />

deposits with boulder sizes of up to 10-14 m in diameter were found at the cone apex. Most<br />

affected areas were located in the central and southern parts of the cone, where the forest<br />

cover was completely removed on older images (this site now bears a 20-30-yr old forest).<br />

By contrast, the northern part of the cone was less affected.<br />

A total of 320 GD were identified in the 156 samples from 96 P. abies trees affected by past<br />

debris-flow activity. Based on tree-ring analysis, the older trees date back to AD 1850 and are<br />

located in the northern part of cone, whereas the youngest trees grow next to the channel<br />

and in southern part of the cone. Our tree-ring data reveals that the 6% of the analyzed GDs<br />

corresponded to injuries, 25% of the reactions were strong, 33% medium, and 36% weak.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 463


Figure 2: Aksay debris cone changes. A. aerial image 11.08.1960; B. aerial image 01.09.1971; C. aerial image 08.08.1978; D satellite<br />

image 30.08.2014<br />

Figure 3: Number of debris flow channels. For each aerial image counted a number of active and passive channels. B. Forest cover for<br />

each year, area in 2014 – 100%<br />

Based on this dataset, the temporal reconstruction of debris-flow events at Aksay cone is<br />

presented in Figure 4. The oldest reconstructed event was in 1877, whereas the more recent<br />

event took place in 1999. Based on historical records, nine dated debris flow events were<br />

related with lake outbursts floods being transformed into debris flows (1960, 1961, 1965,<br />

1966, 1968, 1969, 1970, 1975, and 1980), and only in one case, the dated event was related<br />

with intense rainfall (i.e. 1999). Higher Wit indexes were observed for the events recorded in<br />

1980 (Wit=22,3), 1969 (Wit=10,6), 1960 (Wit=12,8) as well as for the newly documented<br />

events in 1928 (Wit=15,6), 1936 (Wit=9,1), and 1950 (Wit=11,8). The more recent events<br />

were, by contrast, characterized by lower Wit indices (e.g. in 1993 – Wit=1,42, and 1999 –<br />

464 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Wit=2,12). The most recent event occurred on 23 and 25 July 2015, i.e. during our fieldwork<br />

for this study, but did not yet leave evidence (GD) in the tree-ring series. Our results show<br />

increased debris-flow activity on the cone between the 1960 and 1970 (0.54 event/year; i.e.<br />

1960, 1961, 1965, 1968, 1969, and 1970), and a significant decrease from 1970s to the end of<br />

the 20th century (0.16 event/year: 1973, 1975, 1977, 1980, 1993 and 1999).<br />

Figure 4: Reconstructed frequency of debris flows on the Aksay debris cone.<br />

Spatial analysis of the positions of disturbed trees shows that channels 1, 2, 3, and 6 have<br />

been repeatedly active during past events (up to 13 events). The most recent events in<br />

channels 3 and 8 were dated to 1999 and observed in 2015 (23 and 25 July). In contrast, less<br />

activity (only 3 events) was recorded in channel 9, with a last event in 1969. Based on these<br />

observations, we identify two main spatial patterns at Aksay cone (Figure 5):<br />

Pattern A.<br />

Debris flows affecting the entire cone: Reconstructed events in 1885, 1922, 1928, 1936, 1950,<br />

1955, 1960, 1961, 1965, 1966, 1968, 1969, 1970, 1977, and 1980. Generally, these events are<br />

related with high-magnitude flow energy and large sediment transport where boulders with<br />

more than 1 m diameter can occur, with the breakout of surges from the main channels (1, 2,<br />

4) at the apex of the cone. Based the historical records, at least the events of 1960, 1961,<br />

1965, 1966, 1968, 1969, 1970, and 1980 were caused by the outburst of proglacial Lake<br />

Aksay. The same pattern has also been observed for the previously unrecorded events in<br />

1922, 1928, 1936, 1950, and 1955. This pattern is therefore considered congruent with the<br />

imprint of past GLOFs events. Under this pattern, existing infrastructure can be affected<br />

during future events.<br />

Pattern B.<br />

Debris flows affecting the southern part of the cone: Reconstructed events: 1877, 1916, 1918,<br />

1924, 1934, 1941, 1943, 1973, 1975, 1993, 1999, and 2015. Existing records suggest that<br />

these events may be triggered by rainfall (1999) or intensive snow and ice melting in the<br />

absence of rainfall (2015). In this pattern, debris flows are affecting exclusively channels 12<br />

and 13 located in the southern part of the cone. In comparison with pattern A, pattern B is<br />

characterized by a transport of smaller amounts of sediments insufficient to produce<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 465


outbreaks at the cone apex. Consequently, channels located in the northern of the cone are<br />

not affected. Also, the capacity of sediment to produce temporal dams at Ala-Archa River is<br />

minimal. Most sediment is deposited in the un-vegetated area on the cone. Infrastructures are<br />

not affected under this pattern.<br />

Figure 5: Spatial patterns of past debris-flow events: (A) Sketch of the Aksay cone with the localization of the identified channels,<br />

forest cover and sampled trees. (B) Debris flows affecting a north and south parts of cone an event in 1936 (pattern A). (C) Debris<br />

flows in 1968 affected almost cone, using channels in north, central and south parts of cone. In some cases flows reached a main<br />

Ala-Archa river following channels 10, 9, 1 (pattern A). It was registered event after outbursting glacier water pocket (D) In pattern<br />

B trees with growth disturbances by the 1999 event found in channel 8 in a central part and channels 4 and 3 in a current Aksay river<br />

channel (pattern B).<br />

CONCLUSIONS<br />

The coupled tree-ring analysis and classical geomorphic inspection has allowed to provide the<br />

longest annually-resolved debris flow history of Northern Tien Shan. Our results suggest that<br />

at least 26 events took place between AD 1877 and 2015, allowing tracking process dynamics<br />

in 11 mapped channels which are inactive under normal conditions. Results here provided<br />

are in agreement with historical records from 1960 to 1970, and therefore point out the<br />

reliability of this reconstruction. Our results are the basis to understand the glacier-climate-<br />

debris flow linkages in the region, as well as for the design of more reliable hazard maps and<br />

subsequent integrated risk management. Therefore, it is expected that both defined pattern<br />

will be useful to calibrate numerical model outcomes based on accurate topography to define<br />

future GLOFs/debris flow event scenarios. Moreover, the average occurrence of events here<br />

reported may be useful to define the probability of occurrence, and consequently the hazard<br />

level at the cone. Taken into account that the national natural park Ala-Archa is a popular<br />

tourist place, especially in summer season, our event pattern may be used to re-define hazard<br />

areas. This is specially the case in the central part of a cone (channels 4 and 8), where many<br />

tourist facilities have been constructed in hazard areas during last years.<br />

466 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ACKNOWLEDGEMENTS<br />

This study was funded by the Swiss National Science Foundation (SNF, Schweizerischer<br />

Nationalfonds zur Forderung der Wissenschaftlichen Forschung) in the framework of the<br />

DEFENCC (n° 152301; Future DEbris Flows and lake outburst floods in Tian Shan: possible<br />

impacts of projected Climate Change) project.<br />

REFERENCES<br />

- Erochin, S.A., Mamatkanov, D.M., Tuzova, T.V., 2009 a. Monitoring of Kyrgyz lakes at risk<br />

of outburst floods. Int. Conf. Floods. Tbilisi, Georgia, pp.130-147.<br />

- Erochin, S.A., Cerny M., 2009 b. Monitoring of outbursting lakes of Kyrgyzstan. Final Proc.<br />

Int. Conf. Mauntain-hazards, Bishkek, Kyrgyzstan, pp. 30–34.<br />

- Kogelnig-Mayer, B., Stoffel, M., Bollschweller, M., Hubl, J., Rudolf-Miklau, F., 2011.<br />

Possibilities and imitations of dendrogeomorphic time-series reconstructions on sites<br />

influenced by debris flows and frequent snow avalanche activity, Arct. Antarc. Alp. Res. 43<br />

(3), 649–658.<br />

- Schneuwly-Bollschweiler, M., Corona, C., Stoffel, M., 2013. How to improve dating quality<br />

and reduce noise in tree-ring based debris-flow reconstructions. Quat. Geochronol. 18,<br />

110–118.<br />

- Stoffel, M., 2008. Dating past geomorphic processes with tangential rows of traumatic resin<br />

ducts. Dendrochronologia 26 (1), 53-60.<br />

- Stoffel, M., Huggel, C., 2012. Effects of climate change on mass movements in mountain<br />

environments. Progress in Physical Geography 36, 421–439.<br />

- Stoffel, M., Corona, C., 2014. Dendroecological dating of geomorphic disturbance in tress.<br />

Tree Ring Res. 70, 3-20.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 467


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Flood volume estimation in Switzerland using<br />

synthetic design hydrographs - a multivariate<br />

statistical approach<br />

Manuela Irene Brunner 1,2 ; Olivier Vannier, Dr. 1 ; Anne-Catherine Favre, Prof. 1 ; Daniel Viviroli, Dr. 2,3 ; Paul Meylan 4 ;<br />

Anna Sikorska 2 , Dr.; Jan Seibert, Prof. 2,5<br />

ABSTRACT<br />

Accurate estimations of flood peaks, volumes and hydrographs are needed to design safe and<br />

cost-effective hydraulic structures. In this study, we propose a statistical approach for the<br />

estimation of the design variables peak and volume by constructing a synthetic design<br />

hydrograph. Our approach is based on fitting probability density functions to observed flood<br />

hydrographs and takes the dependence between the two variables peak and volume into<br />

account. The method consists of the following six steps: sampling of flood events, baseflow<br />

separation, normalization of the hydrographs, fitting of the hydrographs with statistical<br />

density functions, modeling of peak and volume considering their dependence, and construction<br />

of the synthetic design hydrograph. The method was developed and tested based on data<br />

from nine meso-scale catchments in Switzerland, and has been shown to provide reliable synthetic<br />

design hydrographs for all of these catchments. While the method has so far been<br />

applied to gauged catchments, it is foreseen to make it applicable to ungauged catchments<br />

using regionalization approaches.<br />

KEYWORDS<br />

Synthetic design hydrographs; flood volume estimation; bivariate analysis, copulas<br />

INTRODUCTION<br />

An accurate flood estimation is needed for resilient flood risk management, to design<br />

hydraulic structures such as dam spillways, bridges, road culverts, and levees, and to manage<br />

residential area zoning, floodplains, and urban design. The major quantity of interest in flood<br />

estimation is the magnitude of the flood peak for a specific return period (Rosbjerg et al.,<br />

2013). However, flood peaks provide only a limited description of a flood event. For the<br />

prevention of flood damage and for designing hydraulic structures, it is also important to<br />

know the flood volume and the shape of the entire flood hydrograph. The aim of this study<br />

was to develop a flood volume estimation method for meso-scale catchments (i.e. 20-1000<br />

km 2 ) which can easily be applied by practitioners. Although different methods to derive<br />

1 Université Grenoble-Alpes, Grenoble INP, LTHE, Grenoble, FRANCE, manuela.brunner@geo.uzh.ch<br />

2 Department of Geography, University of Zurich, SWITZERLAND<br />

3 belop gmbh, Sarnen, SWITZERLAND<br />

4 AlC Ingénieurs Conseil SA, Lausanne, SWITZERLAND<br />

5 Department of Earth Sciences, Uppsala University, Uppsala, SWEDEN<br />

468 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP072


design flood hydrographs are described in the literature, most of them are of limited use for<br />

practitioners because of their complexity (Yue et al., 2002).<br />

Therefore, we propose a statistical approach for the estimation of not only flood peaks but<br />

also flood volumes and the entire flood hydrographs using synthetic design hydrographs.<br />

The method has been developed as a simple tool that can support practitioners in consulting<br />

or engineering companies with reasonable efforts. The focus lies on meso-scale catchments<br />

with natural runoff conditions, i.e. without significant human alterations, and with an<br />

insignificant degree of glacierized areas. The basic idea relies on fitting probability density<br />

functions to observed flood hydrographs, while considering the dependence between flood<br />

peak and flood volume. This is essential because flood events are multivariate and a univariate<br />

frequency analysis does not allow for a complete assessment of the probability of their<br />

occurrence (Yue et al., 2002). The approach does not rely on a rainfall-runoff model, which<br />

makes it less demanding with respect to input data and methods. The transfer to ungauged<br />

catchments is foreseen in a next step.<br />

DATA<br />

The proposed method has been developed and tested using data from a representative set of<br />

nine meso-scale study catchments in Switzerland. The selected catchments cover different<br />

sizes, elevations, and regime types. To avoid hydrograph shapes modified by direct human<br />

impacts, we selected only catchments with flow conditions neither altered through hydropower<br />

plants nor lake regulation. For the development of the method, long term observations<br />

were required. We also exclude highly glacierized catchments because unimpaired flow<br />

records are scarce. Moreover, they are usually only sparsely populated and therefore exhibit a<br />

low damage potential. The characteristics of the nine study catchments selected are listed in<br />

Table 1.<br />

Table 1: List of study catchments and their characteristics.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 469


METHODS<br />

The method for the construction of synthetic design hydrographs (SDHs) relies on the fitting<br />

of statistical density functions to observed flood hydrographs considering the dependence<br />

between the design variables Q max<br />

and V. This is crucial, because a univariate frequency<br />

analysis of Q max<br />

or V alone cannot provide an accurate evaluation of the corresponding<br />

probabilities. The bivariate analysis was implemented using a copula model (Genest and<br />

Favre, 2007). The entire method of the SDH construction is divided into six main steps<br />

(Figure 1).<br />

Figure 1: Overview of the method proposed for the construction of synthetic design hydrographs.<br />

These steps include:<br />

1. Flood sampling: The SDH construction method is based on observed runoff data. Therefore,<br />

historical flood event hydrographs were selected in nine Swiss catchments (Table 1)<br />

independently from precipitation information. We used a peak-over-threshold (POT)<br />

approach to sample flood events. The threshold for the peak discharge was chosen<br />

iteratively to fulfill a target condition of a defined number of events per year (here four).<br />

The independence between successive events was ensured by prescribing a minimum time<br />

interval between them (here 72 hours). According to the extreme value theory, POT values<br />

follow a generalized Pareto distribution (GPD) (Coles, 2001). Therefore, we used a GPD<br />

to fit the peak discharge values. The volume values, on the contrary, follow a generalized<br />

extreme value distribution (GEV) because the threshold was only applied to the peak<br />

discharge and not to the volume. The goodness-of-fit of the GPD to the peak discharges<br />

and the GEV to the volumes was found to be good using the Akaike and the Bayesian<br />

information criteria (Meylan et al., 2012).<br />

470 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


2. Baseflow separation: The SDH approach describes only the quick flow component of the<br />

event hydrograph. Thus, it is necessary to distinguish between the slow and the fast runoff<br />

components to analyze the statistical properties of flood hydrographs (Yue et al., 2002). In<br />

this study, we applied a recursive digital filter (Eckhardt, 2005), whose two parameters<br />

need to be estimated for each catchment. This method allows for the separation of the<br />

baseflow from the quick flow and is easily applicable to a wide variety of catchments and<br />

provides reliable results.<br />

3. Normalization of the hydrographs: The quick flow component of the hydrographs was<br />

normalized so that both the base width and the volume of the modified hydrographs were<br />

equal to one. This was done by dividing the base width of each flood hydrograph by its<br />

duration D and then dividing the ordinate of each hydrograph by the mean runoff (V/D).<br />

4. Fitting of the normalized hydrographs with statistical density functions: The shape of a<br />

normalized hydrograph can be fitted by a probability density function (PDF) because both<br />

the area under the normalized hydrograph and the area under the PDF are equal to one.<br />

To select the best density, eight different PDFs were fitted to all of the normalized hydrographs<br />

in the nine study catchments: Normal, Lognormal, Fréchet, Weibull, Logistic,<br />

Gamma, inverse Gamma, and Beta (Nadarajah, 2007; Serinaldi and Grimaldi, 2011). The<br />

parameters of the distributions were estimated so that the PDFs approximate the shape of<br />

the normalized hydrographs as well as possible. The goodness-of-fit of each distribution<br />

function was ranked according to the three performance criteria: Nash-Sutcliffe efficiency<br />

(NSE), volumetric efficiency (VE), and correlation coefficient (R2). In each catchment, a<br />

representative normalized hydrograph was determined as the PDF that best fitted the median<br />

normalized hydrograph. We chose the median normalized hydrograph instead of the<br />

mean of the normalized hydrographs because it refers to a real event, which is not the case<br />

for the mean of the normalized hydrographs.<br />

5. Modelling the statistical dependence between Q max<br />

and V using copulas: The pair of design<br />

variables, Q max<br />

and V associated with a defined return period T was estimated using the<br />

marginal distributions of the variables and a copula to model their dependence. For the<br />

marginal distributions, we assumed a GEV distribution for the flood volumes and a GPD for<br />

the peak discharges. Copulas are multivariate distribution functions whose marginal<br />

distributions are uniform. The main advantage of this approach is that the selection of an<br />

appropriate model for the dependence between variables, represented by the copula, can<br />

then proceed independently from the choice of the marginal distributions (Genest and<br />

Favre, 2007). In contrast to standard multivariate distributions, copula models thus allow<br />

the variables to be characterized by different marginal distributions. The dependence<br />

between the two variables Q max<br />

and V was tested graphically by plotting all pairs of Q max<br />

and<br />

V and numerically by computing two rank correlation coefficients, Kendall's Tau and<br />

Spearman's Rho. Six copula models of the Archimedean copula family, namely the<br />

Gumbel, Clayton, Joe, Frank, Ali-Mikhail-Haq (AMH), and the independence copula plus<br />

the normal copula, were fitted and tested using both graphical approaches and a goodnessof-fit<br />

test based on the Cramér-von Mises statistic (Genest and Favre, 2007). A p-value for<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 471


the Cramér-von Mises statistic of each copula was estimated using a statistical bootstrap<br />

procedure (Genest et al.,2009). The copula model with the best performance was used<br />

to estimate the two design variables for a given return period.<br />

6. Construction of the SDH: The SDH was obtained from scaling the representative normalized<br />

hydrograph by the two estimated design variables using:<br />

Formula 1<br />

where f(t) is the representative normalized hydrograph, and Q max<br />

and V are the design<br />

variables for a given return period T. In bivariate frequency analysis, in contrast to the<br />

univariate case, the definition of an event with a given return period is not clear (Yue and<br />

Rasmussen, 2002). The return period used to describe bivariate events can be defined in<br />

two different ways. The first of these ap proaches uses the conditional probability to<br />

determine a conditional return period, while the second approach uses joint probability<br />

distributions to calculate joint return periods (Gräler et al., 2013). Here, we relied on a<br />

conditional probability approach to estimate the design variable pairs Q max<br />

and V because<br />

the potential end-users of our approach are more familiar with conditional probabilities<br />

than joint probabilities. Thereby, the estimation of the variable V for the given return<br />

period was calculated according to its marginal distribution. Once the volume was<br />

estimated, the estimation of the second variable peak discharge could take place using the<br />

conditional cumulative distribution of the copula (Salvadori et al., 2011), as described in<br />

Step 5. The SDH was then calculated using the representative normalized hydrograph,<br />

scaled by the computed estimates of the design variables Q max<br />

and V. At the end of the<br />

procedure, the baseflow, removed from the hydrograph in Step 2 of the procedure, needs<br />

to be added to the SDH.<br />

RESULTS<br />

The proposed method was applied to a sample of nine meso-scale study catchments in<br />

Switzerland with an average record length of 40 years (Table 1). The results are illustrated<br />

by one of these study catchments, the Birse catchment at Moutier-la-Charrue.<br />

Eight PDFs were fitted to the normalized hydrographs that were derived from the raw data.<br />

In the Birse catchment, the Fréchet and Logistic distributions were most often ranked as the<br />

best PDFs for all considered performance criteria (Figure 2). Interestingly, the Fréchet<br />

distribution together with the normal distribution was also most often ranked as the worst<br />

PDF. The fact that the same statistical distribution was ranked both as the best and as the<br />

worst PDF could be due to differences in the causative mechanism of the flood events.<br />

The tendency of the Fréchet and Logistic distribution to provide good results was also<br />

observed in the other eight study catchments.<br />

472 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Distributions of the ranks obtained by the eight statistical densities fitted to the normalized hydrographs in the Birse<br />

catchment. For each event, the eight densities were ranked according to the three performance criteria NSE, VE, and R2.<br />

Q max<br />

and V were clearly dependent in the Birse catchment with a Kendall's Tau of 0.323 and a<br />

Spearman’s Rho of 0.477. Figure 3 shows the observed pairs of Q max<br />

and V (red crosses) and<br />

10 000 pairs simulated using the seven fitted copula models (black crosses).<br />

Figure 3: Representation of the bivariate distribution of the variables Q max<br />

and V for the Birse catchment. The observations are plotted<br />

as red crosses. The black crosses represent 10 000 pairs of Q max<br />

and V values simulated according to one of the seven copulas which<br />

were fitted to the data and tested subsequently.<br />

Different behaviours among the modelled bivariate distributions can be observed. The<br />

Gumbel and Joe copulas tend to model a clear dependence between Q max<br />

and V with extreme<br />

values expanding towards the upper-right corner of the plot while other copulas do not<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 473


indicate a dependence and rather behave in a way similar to the independence copula. As a<br />

quantitative assessment of a copula’s ability to represent the dependence between Q max<br />

and V,<br />

a goodness-of-fit test based on the Cramér-von Mises statistic was applied. This confirmed<br />

that the Gumbel and Joe copulas are best suited to model the dependence between Q max<br />

and<br />

V. The other tested copulas were rejected at a significance level of 0.05. This tendency is also<br />

visible in most of the other study catchments.<br />

The SDHs were computed using seven pairs of design variables, Q max<br />

and V, for the 100-year<br />

return period, computed with the seven different copulas mentioned above (Figure 4). The<br />

SDHs are associated with uncertainty envelopes which represent all the traces resulting of the<br />

Figure 4: SDHs for an event of a 100-year return period in the Birse catchment. The SDHs were calculated with seven copulas. The<br />

envelopes correspond to the eight statistical densities used for the fit. The hydrograph of the highest event (in terms of peak discharge)<br />

observed in the Birse catchment is shown as a reference.<br />

fits made with different statistical densities. There was a clear difference between all the SDHs<br />

derived using different copula models (Figure 4). All calculated values of Q max<br />

for a 100-year<br />

return period are larger than the value obtained by a univariate analysis (SDH independence).<br />

A univariate analysis would neglect the dependence between the two variables Q max<br />

and V. This tendency was observed in all nine study catchments. In addition, most of the<br />

computed values of the pair Q max<br />

and V exceed the highest recorded value.<br />

474 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CONCLUSIONS & OUTLOOK<br />

The method presented proved to provide reliable SDHs for all nine study catchments.<br />

Although the method was developed using a small number of catchments, it can potentially<br />

be applied in any meso-scale catchment with no or small glacierized areas and unaltered flow<br />

conditions for which observational data are available. The major advantages of the method<br />

are its ease of application, its independence from a rainfall-runoff model, and the possibility<br />

to account for the dependence between peak discharge and volume. The importance of<br />

considering the dependence between peak discharge and volume was clearly shown in all<br />

study catchments, where the use of a classical univariate approach would have resulted in<br />

a clear underestimation of the magnitude of the design flood hydrograph compared to the<br />

approaches where the dependence between the two design variables peak discharge and<br />

flood volume is considered.<br />

In the next step, this method will be regionalized to ungauged catchments to also allow for<br />

the estimation of flood volume and hydrograph without any runoff measurements. Thus,<br />

several parameters used in the method need to be regionalized. To aid this regionalization,<br />

relationships between the modelled shape of hydrographs and a typology of causative flood<br />

mechanisms will be explored because different flood types are usually characterized by typical<br />

hydrograph shapes. Furthermore, relationships between catchment characteristics and<br />

parameters of the SDH will be quantified.<br />

ACKNOWLEDGEMENTS<br />

We thank the Swiss Federal Office for the Environment (FOEN) for funding the project under<br />

contract 13.0028.KP / M285-0623 and for providing observed runoff data. We also thank the<br />

reviewers for their constructive comments.<br />

REFERENCES<br />

- Coles S. (2001). An introduction to statistical modeling of extreme values. Springer,<br />

London, 208.<br />

- Eckhardt K. (2005). How to construct recursive digital filters for baseflow separation.<br />

Hydrological Processes 19: 507-515.<br />

- Genest C. and Favre A.-C. (2007). Everything you always wanted to know about copula<br />

modeling but were afraid to ask. Journal of Hydrologic Engineering 12: 347-367.<br />

- Genest C., Rémillard B. and Beaudoin D. (2009). Goodness-of-fit tests for copulas: A review<br />

and a power study. Insurance: Mathematics and Economics 44: 199-213.<br />

- Gräler B., van den Berg M. J., Vandenberghe S., Petroselli A., Grimaldi S., Baets B. D. and -<br />

Verhoest N. E. C. (2013). Multivariate return periods in hydrology: a critical and practical<br />

review focusing on synthetic design hydrograph estimation. Hydrological Earth System<br />

Sciences 17: 1281-1296.<br />

- Meylan P., Favre A.-C. and Musy A. (2012). Predictive hydrology. A frequency analysis<br />

approach. Science Publishers. St. Helier, Jersey, British Channel Islands, 212.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 475


- Nadarajah S. (2007). Probability models for unit hydrograph derivation. Journal of<br />

Hydrology 344: 185-189.<br />

- Rosbjerg D., Blöschl G., Burn D. H., Castellarin A., Croke B., Baldassarre G. D., Iacobellis V.,<br />

Kjeldsen T. R., Kuczera G., Merz R., Montanari A., Morris D., Ouarda T. B. M. J., Ren L.,<br />

Rogger M., Salinas J. L., Toth E. and Viglione A. (2013). Prediction of floods in ungauged<br />

basins. In Runoff prediction in ungauged basins. A synthesis across processes, places and<br />

scales (G. Blöschl, M. Sivapalan, T. Wagener, A. Viglione, and H. Savenije, eds.), pp. 189-226.<br />

Cambridge University Press, Cambridge.<br />

- Salvadori G., DeMichele C. and Durante F. (2011). On the return period and design in a<br />

multivariate framework. Hydrological Earth System Sciences 15: 3293-3305.<br />

- Serinaldi F. and Grimaldi S. (2011). Synthetic design hydrographs based on distribution<br />

functions with finite support. Journal of Hydrologic Engineering 16: 434-446.<br />

- Yue S., Ouarda T. B. M. J., Bobée B., Legendre P. and Bruneau P. (2002). Approach for<br />

describing statistical properties of flood hydrograph. Journal of Hydrologic Engineering 7:<br />

147-153.<br />

- Yue S. and Rasmussen P. (2002). Bivariate frequency analysis: discussion of some useful<br />

concepts in hydrological application. Hydrological Processes 16: 2881-2898.<br />

476 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Channel widening during extreme floods: how to<br />

integrate it within river corridor planning ?<br />

Francesco Comiti 1 ; Margherita Righini 2 ; Laura Nardi 3 ; Ana Lucía 4 ; William Amponsah 5 ; Marco Cavalli 5 ; Nicola Surian 2 ;<br />

Lorenzo Marchi 5 ; Massimo Rinaldi 3 ; Marco Borga 6<br />

ABSTRACT<br />

Channel widening taking place during large flood events can be substantial in mountain<br />

rivers, with consequent great potential damages to infrastructures and buildings. The purpose<br />

of this work is twofold: i) to provide a quantitative assessment of geomorphic effects of an<br />

extreme flood event (recurrence interval > 100 years); ii) to test on this study case a new<br />

hydromorphological methodological framework (IDRAIM) developed to guide river corridor<br />

planning and management.<br />

As to the first objective, field surveys were integrated with remote sensing, GIS and statistical<br />

analyses for a flood event occurred in 2011 in Northwestern Italy. Channel widening ratios<br />

(width after / width before the flood) were calculated and then correlated with different<br />

controlling factors, and envelope relationships were then obtained.<br />

The tool of the IDRAIM framework used for the second objective was the Event Dynamics<br />

Classification (EDC) applied to selected study reaches, whose widening ratios turned out to<br />

correspond well with the EDC classes.<br />

Based on the results obtained, a practical procedure for predicting the expected widening is<br />

finally proposed.<br />

KEYWORDS<br />

large floods; channel changes; stream power; bank erosion; river corridor<br />

INTRODUCTION<br />

Infrequent, high-magnitude floods can lead to sudden, dramatic channel changes in alluvial<br />

and semi-alluvial channels. Indeed, the geomorphic role of large floods has long been debated<br />

(e.g. Wolman and Miller, 1960; Costa and O'Connor, 1995; Phillips, 2002; Magilligan et al.,<br />

2015). Nonetheless, rather few are the studies which have analyzed in detail the magnitude<br />

of channel widening determined by extreme floods in Alpine rivers (Krapesch et al., 2011),<br />

despite the paramount relevance of such process on flood hazard. In fact, a sound river<br />

corridor planning should include – beside flood inundation depth and velocities – the<br />

expected channel dynamics (bank erosion and bed incision/aggradation) occurring during<br />

1 Free University of Bozen-Bolzano, Bolzano, ITALY, francesco.comiti@unibz.it<br />

2 Dept. Geosciences - University of Padova, ITALY<br />

3 Dept. of Earth Sciences - University of Florence, ITALY<br />

4 Center for Applied Geoscience, Eberhard Karls University of Tübingen, GERMANY<br />

5 CNR IRPI - Padova, ITALY<br />

6 Dept. Land and Agroforest Environments - University of Padova, ITALY<br />

IP_<strong>2016</strong>_FP060<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 477


flood events, as these can both substantially modify the flooding pattern and cause direct<br />

damage to buildings and infrastructures.<br />

Unfortunately, the expected sudden and notable changes in channel width during floods are<br />

typically not included in flood hazard mapping. Indeed, our current understanding of the<br />

factors controlling channel widening is very limited. In fact, hydrodynamic forces were found<br />

to be not sufficient to explain geomorphic effects (e.g. Heritage et al., 2004; Nardi and Rinaldi,<br />

2015), and thus other factors, such as bedload supply and pre-flood channel planform (Dean<br />

and Schmidt, 2013), lateral confinement (Thompson and Croke, 2013), and channel<br />

curvature (Buraas et al., 2014) should also be also accounted for in the prediction of<br />

widening. However, field data available to build reliable statistical models or to validate<br />

numerical morphodynamic models are very limited. On the other hand, easy-to-use tools<br />

applicable by practitioners of river management agencies are much needed to predict the<br />

reach-scale morphological response of the channel network to extreme (recurrence intervals<br />

RI>100 yr) flood events.<br />

The purpose of this work is twofold: i) to provide a quantitative assessment of the channel<br />

widening associated to an extreme flood event which occurred in 2011 in Northwestern Italy<br />

(Magra River basin); and ii) to test on this study case a new methodological framework<br />

(IDRAIM) developed to guide river corridor planning and management which focuses on<br />

channel adjustments occurring both in the long-term and during extreme events.<br />

METHODS<br />

Study case: the 2011 flood event in the Magra River basin<br />

Figure 1: Location map of the Magra River basin and of the analyzed tributaries (from Surian et al., <strong>2016</strong>).<br />

478 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The Magra River basin is located in the northern Apennines (Italy) and covers an area of<br />

1717 km 2 , ranging from sea level to a maximum elevation of 1901 m a.s.l. (Fig. 1). Sedimentary<br />

rocks (mostly sandstones and mudstones) prevail in the basin, but some outcrops of<br />

magmatic (ophiolites) and metamorphic rocks are also present. The climate is Mediterranean,<br />

with dry summers and the most abundant precipitation occurring in autumn. The mean<br />

annual precipitation is about 1700 mm, and maximum values (up to about 3000 mm) are<br />

observed in the upper part of the catchment. Forests cover 66% of total basin area and<br />

occupy most of catchments slopes. Agricultural areas, urban areas and transportation<br />

structures mostly lie in the valley floors and on the lower sectors of the slopes.<br />

An intense precipitation event took place within the river basin on October 25th, 2011, and<br />

originated a flash flood both in the Magra River, with a peak discharge having a RI of about<br />

100 yr (Nardi and Rinaldi, 2015) and along several tributaries, there with extremely high<br />

peak flows (up to RI>300 yr, based on rainfall time series), where enormous volumes of large<br />

wood were eroded from the floodplains (Lucía et al., 2015) causing extensive bridge clogging.<br />

Rainfall maps for the study event were obtained based on data from a rain gauges network<br />

and the Monte Settepani radar, and the estimates show that maximum hourly rates were up<br />

to 149 mm/hr, whereas three-hours maximum and event-accumulation maxima were up to<br />

326 mm and 500 mm, respectively. Antecedent moisture conditions in the basins were<br />

intermediate. An integrated approach was adopted to investigate the geomorphic effects of<br />

the 2011 flood in the Magra catchment, and the whole approach is described in detail by<br />

Rinaldi et al. (<strong>2016</strong>).<br />

Six catchments chosen among those where rainfall was most intense were selected to analyze<br />

channel response: Pogliaschina, Gravegnola, Osca, Teglia, Geriola and Mangiola (Fig. 1).<br />

Figure 2: Example of the channel widening observed in the Mangiola River.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 479


In these rivers, unit peak discharge estimates range from 12.8 m 3 s -1 km -2 (Osca) to<br />

23.7m 3 s -1 km -2 (Pogliaschina). Streams within the six catchments are characterized by average<br />

channel slope ranging from 4.1% (Osca) to 8.8% (Geriola), coarse sediments (mainly gravels<br />

and cobbles), and a wide range of conditions in terms of lateral confinement, but only<br />

partly- and unconfined reaches were analyzed for channel widening. Importantly, artificial<br />

structures (bed and bank protections) were very limited before the flood.<br />

The morphological changes induced by the 2011 flood were assessed by field surveys and<br />

interpretation of aerial photographs. To assess changes in channel width, channel banks and<br />

islands (i.e. in-channel surfaces covered by woody vegetation) were digitized on pre- and<br />

post-flood orthophotos (Fig. 2). The term “channel” refers to the active channel, which<br />

includes low-flow channels and unvegetated or sparsely vegetated bars (i.e. exposed<br />

sediments). Then, channel width was calculated dividing channel area by the length of the<br />

reach, and changes in channel width were expressed as width ratio Wr, i.e. channel width<br />

after / channel width before the flood, as in Krapesch et al. (2011).<br />

The IDRAIM methodological framework<br />

The IDRAIM methodological framework (Rinaldi et al., 2014, 2015) includes the following<br />

four phases: (1) catchment-wide characterization of the fluvial system; (2) evolutionary<br />

trajectory reconstruction and assessment of current river conditions; (3) description of future<br />

trends of channel evolution; (4) identification of management options. A series of specific<br />

tools have been developed for the assessment of river conditions, in terms of morphological<br />

quality and channel dynamics. These latter include the “Morphological Dynamics Index”, the<br />

“Event Dynamics Classification”, and the “River Morphodynamic Corridors”.<br />

The present work focuses specifically on the “Event Dynamics Classification” (EDC), applying<br />

it to selected study reaches and comparing them with observed geomorphic changes. In<br />

particular, EDC leads to classify each reach into one of four classes of expected event<br />

dynamics (very high, high, medium, low), adopting a guided logical procedure based on flow<br />

charts. The assessment is carried out by combining two aspects (Table 1):<br />

Table 1: Classification of EDC (Event Dynamics Classification, from low to very high) based on the expected morphological changes<br />

(from small to very relevant) coupled to the clogging probability (From Rinaldi et al., 2015).<br />

i) the expected magnitude of morphological changes (4 classes) and ii) the clogging conditions<br />

(2 classes, i.e. likely or not likely occurrence of clogging, mostly by wood elements) at critical<br />

cross-sections (bridges and culverts). EDC provide information on the expected magnitude of<br />

480 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


94<br />

95<br />

96<br />

94<br />

97<br />

95<br />

98<br />

99<br />

96<br />

97<br />

100<br />

98<br />

101 99<br />

102<br />

100<br />

103<br />

104<br />

101<br />

105<br />

102<br />

106<br />

103<br />

107<br />

104<br />

108<br />

105<br />

109<br />

106<br />

107<br />

110<br />

108<br />

109 111<br />

112<br />

channel dynamics in a given reach on a one-dimensional scale. This information has to be<br />

integrated with a 2-D analysis to define the areas of the fluvial corridor that will be affected<br />

by such dynamics (“Event Morphodynamic Corridor”, EMC). The procedure suggested in<br />

IDRAIM for the delineation of the event river morphodynamic corridor (EMC) includes (i)<br />

reconstruction of historical channel changes; (ii) determining the expected flood spatial<br />

dynamics based on EDC class; iii) identification of natural elements of confinement (e.g.,<br />

hillslopes, old terraces); and (iv) identification of reliable protection works preventing lateral<br />

lead to better statistical results compared to its calculation through the post-ev<br />

channel mobility. All the details of the methodology for both EDC and EMC can be found in<br />

Rinaldi et al. (2014 and 2015).<br />

al., <strong>2016</strong>).<br />

RESULTS<br />

Channel widening in the Magra River basin<br />

The widening data (n=35) measured in the main channel of the Magra River (Nard<br />

The “Width Ratio” (Wr) measured in all the analyzed reaches (n=157) of the six basins<br />

lead to better statistical results compared to its calculation through the post-ev<br />

described are reported above are as plotted well. The in Figure large 3 against variability the estimated (log-log unit scale stream graph) power of the flood channel resp<br />

peak, al., <strong>2016</strong>). calculated using the pre-event channel width (as in Krapesch et al., 2011) as<br />

energy is clearly apparent, especially at intermediate unit stream power (1000<br />

ω =γ QS/W, where γ is the specific weight of water, Q is the flood peak discharge, S is channel<br />

slope, and W is the channel width measured before the flood. The unit stream power<br />

best fit (R 2 = 0.44) power equation including all data is the following:<br />

estimated The widening using the data pre-event (n=35) width measured was found in to the lead main to better channel statistical of results the Magra compared River to (Nard<br />

its calculation through the post-event width (Surian et al., <strong>2016</strong>).<br />

The<br />

are<br />

widening<br />

reported<br />

data (n=35) measured in the main channel of the Magra River (Nardi and<br />

WW rr = 0.07ωω 0.44 as well. The large variability (log-log scale graph) of the channel resp<br />

Rinaldi, 2015) are reported as well. The large variability (log-log scale graph) of the channel<br />

energy is clearly apparent, especially at intermediate unit stream power (1000<br />

response to similar flow energy is clearly apparent, especially at intermediate unit stream<br />

power best Based fit (1000-10000 on (R 2 this = 0.44) regression, Wmpower -2 ). The equation best the fit minimum (R 2 = including 0.44) power unit all stream equation data is power including the following: required all data is the to cause so<br />

following:<br />

out to be about 400 Wm -2 . However, one reach of the Magra River exhibited a w<br />

WW rr = 0.07ωω 0.44<br />

a unit stream power as low as 173 Wm -2 . On the other side, very limited wid<br />

Equation 1<br />

observed in some reaches for ω up to about 5000 Wm -2 . Very intense channel w<br />

Based Based on on this this regression, regression, the minimum the minimum unit stream power unit stream required power to cause some required widening to cause so<br />

turns instead out to observed be for ω>2000 -2 . Wmone -2 in reach other of the reaches Magra River (Gravegnola, exhibited a Pogliaschina, width O<br />

out to be about 400 Wm -2 . However, one reach of the Magra River exhibited a w<br />

ratio of 1.08 for a unit stream power as low as 173 Wm -2 . On the other side, very limited<br />

consequence of the enormous scatter in the relationship, indications on the<br />

widening a unit stream (Wr10) sounder was instead to plan observed on the for safety ω>2000 side. Wm -2 To in other this reaches aim, the (Gravegnola,<br />

observed Pogliaschina, in some Osca reaches channels). for As ω a consequence up to about of the 5000 enormous Wm -2 . scatter Very in intense the channel w<br />

following eq<br />

relationship, in Fig. 3) represents indications on the upper maximum envelope expected of width the ratios plot, are fitted sounder to to a plan linear on the trend excl<br />

instead observed for ω>2000 Wm -2 in other reaches (Gravegnola, Pogliaschina, O<br />

safety side. To this aim, the following equation (dashed line in Fig. 3) represents the upper<br />

outliers (9 out of 192 reaches, i.e. about 5%):<br />

envelope consequence of the plot, of fitted the enormous to a linear trend scatter excluding the seemingly relationship, outliers (9 indications out of 192 on the<br />

reaches, i.e. about 5%):<br />

width ratios are sounder to plan on the safety side. To this aim, the following eq<br />

WW rr ≈ 0.002ωω<br />

in Fig. 3) represents the upper envelope of the plot, fitted to a linear trend excl<br />

Equation 2<br />

outliers Nonetheless, (9 out the of 192 lateral reaches, confinement i.e. about (expressed 5%): by the confined index calcula<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 481<br />

width divided by pre-event channel width) plays a relevant role on the maxim


Figure 3: Scatterplot of width ratio vs unit stream power (calculated based on the pre-event channel width) for the study reaches. Data<br />

from Nardi and Rinaldi (2015) are also included. The solid line represents the best fit equation (Eq. 1), the dashed line the upper<br />

envelope curve (Eq. 2).<br />

Figure 4: Scatterplot of width ratio vs confinement index (i.e. alluvial plain width / pre-event channel width) for the study reaches. Data<br />

from Nardi and Rinaldi (2015) are not available. The dashed line represents the 1:1 relationship.<br />

482 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Nonetheless, the lateral confinement (expressed by the confinement index calculated as<br />

alluvial plain width divided by pre-event channel width) plays a relevant role on the<br />

maximum width ratios, as shown in Figure 4, where most of the data plot below – in some<br />

cases considerably – the equality line. However, 10 reaches feature widening ratios exceeding<br />

the confinement index, an indication that part of the hillslopes was also eroded during the<br />

flood (this was verified in the field). Therefore, in most of cases the widening was not limited<br />

by the lateral extent of the erodible corridor, although a positive correlation exists between<br />

the two variables.<br />

When plotting the widening magnitude against the pre-flood channel width, an inverse<br />

relationship is shown (Fig. 5). The plot shows how large is the variability in the width ratios<br />

observed in the narrower (1-10 m) reaches, and that for large channels (>100 m) width ratios<br />

> 1.5 should not be expected.<br />

Figure 5: Scatterplot of width ratio vs pre-event channel width for the study reaches. Data from Nardi and Rinaldi (2015) are also<br />

included. The dashed line represents equation 3 (envelope curve).<br />

The envelope curve (fitted by eye to a simple power form, excluding 5% of the dataset) is<br />

given by following equation:<br />

124<br />

125<br />

126<br />

127<br />

WW rr ≈ 2WW <br />

<br />

Equation 3<br />

A more complete, in-depth statistical analysis – entailing multiple factors – for t<br />

the variability in the observed width ratios is presented in Surian et al. (<strong>2016</strong>), w<br />

prediction of the widening extent is discussed in the next section.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 483


A more complete, in-depth statistical analysis – entailing multiple factors – for the understanding<br />

of the variability in the observed width ratios is presented in Surian et al. (<strong>2016</strong>),<br />

whereas the practical prediction of the widening extent is discussed in the next section.<br />

Table 2: EDC (Event Dynamics Classification), width ratio and basic characteristics of some reaches of the Magra and Mangiola rivers..<br />

Predicting channel widening based on morphological analysis<br />

The “Event Dynamics Classification” (EDC) was applied to some reaches of the Magra and<br />

Mangiola rivers, as a preliminary test. Table 2 presents the EDC classification along with the<br />

width ratio measured after the 2011 flood event.<br />

The partly confined reach classified as “Very high” event dynamics (the highest, indicating<br />

that flood waters and bedload transport are expected to abandon the existing channel as a<br />

result of avulsion processes related to relevant aggradation, landslide damming or bridge<br />

clogging) featured a widening of 3.5, much higher than the one falling into “High” class<br />

(Wr=1.3). For the unconfined reaches, the lowest slope Magra reach (close to the river outlet)<br />

classified with “Medium” dynamics (a class indicating that avulsions are not expected, and<br />

only local bank erosions and limited aggradation or incision are expected) showed no<br />

widening during the 2011 event, whereas a “Very high” dynamics was attributed to the<br />

steeper reach in the Mangiola which was characterized by Wr=5.3.<br />

DISCUSSION AND CONCLUSIONS<br />

The magnitude of the channel widening occurred during the 2011 flood in the Magra River<br />

basin is hugely variable, and the relevance and significance of the different factors (including<br />

unit stream power, confinement index and sediment supply as well) are mediated by channel<br />

slope, as statistically demonstrated in Surian et al. (<strong>2016</strong>). A simplified approach to a first<br />

order estimation of the average extent of the widening expected during a large (RI>100 yr)<br />

flood in mountain basins could be based on the upper envelope curves for the observed width<br />

ratios, with the caution that our database is limited to one river basin (although large and<br />

diverse) and to one event. The procedure should entail: i) application of eqs. 2-3 and<br />

averaging of their results, in order to derive the maximum potential width ratio based on<br />

flow energy/channel size; ii) assessment of the confinement index; iii) evaluation of EDC<br />

class.<br />

484 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


In case the Wr estimated by the integrated application of eqs. 2-3 is larger than the confinement<br />

index, and the EDC class is “high” or “very high” (meaning that artificial bank<br />

protections are not present, not reliable or not relevant for the event dynamics), the Wr<br />

should be assumed equal to the confinement index, or even slightly higher in case of poorly<br />

resistant hillslope substrates. In case EDC is high or very high, but the confinement index is<br />

larger than what predicted by Eqs. 2-3, then the latter values should be adopted. Finally, if<br />

EDC classes are low to medium (due to either stable bank protections, or cohesive banks/very<br />

low slopes), the potential for widening is limited, and the width ratios predicted by eqs. 2-3<br />

should be considered unrealistic, and a very limited widening (even null) could be assumed.<br />

Further post-event analysis will be obviously of great importance to broaden the dataset and<br />

to test the suggested simplified approach.<br />

REFERENCES<br />

- Buraas E.M., Renshaw C.E., Magilligan F.J., Dade W.B. (2014). Impact of reach geometry on<br />

stream channel sensitivity to extreme floods. Earth Surface Processes and Landforms 39:<br />

1778–1789.<br />

- Costa J.E., O'Connor J.E. (1995). Geomorphically effective floods. In: Costa, J.E., Miller,<br />

A.J., Potter, K.W., Wilcock, P. (Eds.), Natural and Anthropogenic Influences in Fluvial<br />

Geomorphology. Monograph, vol. 89. American Geophysical Union, Washington, D.C.:<br />

45–56.<br />

- Dean D.J., Schmidt J.C. (2013). The geomorphic effectiveness 693 of a large flood on the<br />

Rio Grande in the Big Bend region: Insights on geomorphic controls and post-flood geomorphic<br />

response. Geomorphology 201: 183–198.<br />

- Heritage G.L., Large A.R.G., Moon B.P., Jewitt G. (2004). Channel hydraulics and geomorphic<br />

effects of an extreme flood event on the Sabie River, South Africa. Catena 58: 151–181.<br />

- Krapesch G., Hauer C., Habersack H. (2011). Scale orientated analysis of river width<br />

changes due to extreme flood hazard. Natural Hazards and Earth System Sciences 11:<br />

2137–2147.<br />

- Lucía A., Comiti F., Borga M., Cavalli M., Marchi L. (2015). Dynamics of large wood during<br />

a flash flood in two mountain catchments. Nat. Hazards Earth Syst. Sci., 15, 1741–1755.<br />

- Magilligan F.J., Buraas E.M., Renshaw C.E. (2015). The efficacy of stream power and flow<br />

duration on geomorphic responses to catastrophic flooding. Geomorphology 228: 175-188.<br />

- Nardi L., Rinaldi M. (2015). Spatio-temporal patterns of channel changes in response to a<br />

major flood event: the case of the Magra River (central-northern Italy). Earth Surface - Processes<br />

and Landforms 40: 326-339.<br />

- Phillips J. D. (2002). Geomorphic impacts of flash flooding in a forested headwater basin.<br />

Journal of Hydrology 269: 236–250.<br />

- Rinaldi M., Surian N., Comiti F., Bussettini M. (2014) IDRAIM – Sistema di valutazione<br />

idromorfologica, analisi e monitoraggio dei corsi d'acqua. Istituto Superiore per la Protezione<br />

e la Ricerca Ambientale, Roma, 113/2014, ISBN 978-88-448-0661-3<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 485


- Rinaldi M., Surian N., Comiti F., Bussettini M. (2015). A methodological framework for<br />

hydromorphological assessment, analysis and monitoring (IDRAIM) aimed at promoting<br />

integrated river management. Geomorphology 251: 122-136.<br />

- Rinaldi M., Amponsah W., Benvenuti M., Borga M., Comiti F., Lucía, A., Marchi L., Nardi,<br />

L., Righini M., Surian N. (<strong>2016</strong>). An integrated approach for investigating geomorphic<br />

response to an extreme flood event: methodological framework and application to the<br />

October 2011 flood in the Magra River catchment, Italy. Earth Surface Processes and<br />

Landforms 41: 835-846..<br />

-Surian N., Righini M., Lucía A., Nardi L., Amponsah M., Benvenuti M., Borga M., Cavalli<br />

M., Comiti F., Marchi L., Rinaldi M., Viero A. (<strong>2016</strong>). Channel response to extreme floods:<br />

insights on controlling factors from six mountain rivers in northern Apennines, Italy.<br />

Geomorphology (in press).<br />

- Thompson C., Croke J. (2013). Geomorphic effects, flood power, and channel competence<br />

of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley,<br />

southeast Queensland, Australia. Geomorphology 197: 156–169.<br />

- Wolman M.G, Miller J.P. (1960). Magnitude and frequency of forces in geomorphic<br />

processes. Journal of Geology 68: 54–74.<br />

486 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Key results of the Swiss wide natural hazard risk<br />

assessment on national roads<br />

Luuk Dorren, PhD 1 ; Philippe Arnold, MSc. 2<br />

ABSTRACT<br />

Since 2008, the Federal roads office FEDRO is owner and manager of all national roads in<br />

Switzerland, which comprise the highways as well as most of the mountain passes of key<br />

importance. As a result, Swiss-wide, standardized information on natural hazards that threaten<br />

national roads (highways) was not available. The FEDRO therefore decided to initiate a<br />

four year project aiming at quantifying and mapping all risks due to natural hazards threatening<br />

Swiss national roads. This paper presents the methodology used in this project and<br />

presents a summary of the monetarised risks of the evaluated road sections. The natural<br />

hazards that are assessed are snow avalanches, rock- and icefall, flooding, debris flows,<br />

landslides (permanent, spontaneous and slope type debris flows) and collapse dolines. Risk<br />

hot spots mainly occur due to road closure related to rockfall or bank erosion. Damage to<br />

infrastructure represents generally only up to 20 % of the total calculated risk; person risks<br />

add up to 8 % of the total risk.<br />

KEYWORDS<br />

risk evaluation; natural hazards, road management, hazard assessment<br />

INTRODUCTION<br />

Snow avalanches, landslides and flooding repeatedly pose a threat to Alpine regions (e.g.,<br />

BUWAL 1999; Rudolf-Miklau et al. 2006; Bezzola and Hegg 2007). To reduce the risk posed<br />

by these hazards, about 775 million CHF is yearly invested in hazard prevention, by the Swiss<br />

Confederation, cantons, communes and privates (PLANAT, 2007). Protection against flooding<br />

and debris flows takes up 54% of this amount, 25% is used for landslides and rockfall<br />

prevention, and 21% for prevention of snow avalanches. Nevertheless, a 100% safety cannot<br />

be guaranteed. Examples such as the rockfall event of June 2006 on the Gotthard highway,<br />

the road destructing flooding and landsliding events in August 2005 or the numerous snow<br />

avalanches in the winter of 1999 show that road infrastructure and its users are susceptible to<br />

the impact of natural hazards.<br />

Since January 2008, the federal roads office (FEDRO) is responsible for the Swiss national<br />

road network (highways and the main alpine passes). Before then, the national roads were<br />

managed by Cantonal road services. As a result, Swiss-wide, standardized information on the<br />

type, frequency, intensity and location of natural hazards that threaten national roads, as well<br />

1 HAFL, Bern University of Applied Sciences, Zollikofen, SWITZERLAND<br />

2 Federal Roads Office FEDRO, SWITZERLAND<br />

IP_<strong>2016</strong>_FP048<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 487


as the costs of required protective measures, was not available. The FEDRO therefore decided<br />

to initiate a Swiss wide project, called “natural hazards on national roads – NHNR” with the<br />

technical support of the Federal Office for the Environment (FOEN), aiming at quantifying<br />

and mapping all risks due to natural hazards threatening Swiss national road network (total<br />

length = 1892 km). At the moment of writing, 75% of the national road network, including<br />

all alpine national roads, has been analysed, which allows to assess and evaluate the<br />

importance of natural hazard related risks on national roads. This paper will present the<br />

methodology used in the project and presents a summary of the monetarised risks of the<br />

evaluated road sections.<br />

METHODOLOGY<br />

The detailed project methodology of the project NHNR can be found online (FEDRO, 2012).<br />

This methodology describes in detail the following 4 main parts: 1) hazard assessment, 2) risk<br />

analysis, 3) risk evaluation and 4) planning of protective measures. As such the methodology<br />

defines the natural hazards to be studied, the study perimeter, the standards to be used, the<br />

risk equations, and parameter values to be used, as well as the products to be delivered. The<br />

project steering committee decided not to prescribe models for simulating the different<br />

natural hazards to be assessed, but rather to define the required products in detail, in order to<br />

guarantee a maximum transparency and traceability of the methods, models and assumptions<br />

used.<br />

For this project, the national road network has been split in road sections of 30 – 70 km.<br />

On each of these sections, the following natural hazards (if present), also called gravitational<br />

natural hazards, have to be assessed:<br />

– snow avalanches<br />

– rock- and icefall, rock avalanches<br />

– flooding and debris flows<br />

– landslides (permanent, spontaneous and slope type debris flows)<br />

– collapse dolines<br />

The field and modeling studies needed for the hazard and risk analysis are being done by<br />

consortiums of collaborating geotechnical bureaus. In general, each consortium consists of an<br />

interdisciplinary project leader with experience in natural hazards, an avalanche expert, one<br />

or two geological experts, a hydraulic engineering/flooding expert and a risk analysis expert.<br />

On average, they need approximately one and a half year to complete the natural hazard<br />

assessment per road section. The risk analysis is subsequently finalised within three months.<br />

We used hazard indication maps based on the projects Aquaprotect (FOEN, 2015a) and<br />

SilvaProtect-CH (FOEN, 2015b) to determine which hazards had to be studied in detail in<br />

which area. To obtain a homogeneous and comparable dataset for the entire Swiss national<br />

road network, 4 return period scenarios (0 – 10 yrs, 10 – 30 yrs, 30 – 100 yrs, 100 – 300 yrs<br />

488 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


and intensity classes low, medium and high) have to be defined for each the potential hazard<br />

source area. The so called damage potential perimeter that is to be taken into account is the<br />

area covered by the highway with a 10 m buffer, as well as surrounding facilities (e.g.,<br />

parking places, technical tunnel installations, ...). The risk analysis is carried out on one or<br />

two lines that represent the road axes and on surrounding facilities.<br />

The risk calculation is finally done by an internet based risk calculation tool called RoadRisk<br />

(www.roadrisk.ch). This tool is WebGIS-based (Fig. 1) and intersects the intensity maps of all<br />

studied natural hazards for the defined return periods with the damage potential. The<br />

underlying attributes of the intensity polygons and the road axes allow the calculation of the<br />

following risk types:<br />

– Direct impact (Risk direct impact),<br />

– Collision with deposits on the road or with cars that are impacted by natural hazards (Risk<br />

collision),<br />

– Damage to infrastructure (Risk infra damage),<br />

– Precautionary road closure (Risk pre-closure),<br />

– Road closure after an event (Risk post-closure).<br />

Figure 1: A screen shot of the internet tool RoadRisk.<br />

Casualties are expressed in costs using a value of 5 million CHF per human life. Variables<br />

required for calculating person risks (direct impact and collision risk) are:<br />

– the probability of the a precautionary road closure during the hazard event.<br />

– the mean daily traffic.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 489


– the mean occupancy rate per vehicle (= 1.76 person per vehicle).<br />

– the maximum driving speed per road section.<br />

– the occurrence probability of traffic jams.<br />

– the lethality of the people in a car being impacted as function of<br />

– the type of hazard process and its intensity.<br />

The main variables for calculating the risks of infrastructure damages and road closure are<br />

infrastructure construction costs (defined by the FEDRO), as well as the daily costs for road<br />

closure (varying between 150’000 and 4’000’000 CHF/day, after Erath 2011) and the<br />

estimated duration of the road closure. As mentioned before, all risk calculation algorithms<br />

can be found in FEDRO (2012).<br />

RESULTS<br />

The results of the 22 completed national road sections show that the sum of the yearly<br />

expected damage due to gravitational natural hazards can add up to several 100’000 CHF/<br />

year, and in extreme cases up to several millions CHF/year per road section. Fig. 2 shows a<br />

summary of the risk hot spots on the completed road sections.<br />

Figure 2: Overview of the risk hot spots on the national road sections that have been analysed between September 2008 and August<br />

2015.<br />

The most prominent risks are due to road closure in areas that are strongly affected by rock -<br />

fall or bank erosion/underscouring (cf. the damaged highway viaduct in canton Uri in 1987).<br />

Figure 2 also shows that high risks on natural roads due to natural hazard in Switzerland do<br />

490 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


not occur in alpine terrain only. An example is the risk hot-spot west of the city of Biel (on<br />

the N5 parallel to lake Biel), which is related to high frequency rockfall from a Jura-type<br />

limestone cliff and a relative high mean daily traffic (~15’500 vehicles per day). A typical risk<br />

hot-spot is the double highway viaduct of Chillon, close to Montreux at the eastern side of<br />

Lake Geneva. Although the occurrence probability if low, the pillars of this viaduct can be<br />

heavily damaged by falling blocks with volumes of 5m 3 , which would lead to a road closure<br />

of several months. The lack of suitable detour possibilities leads to a high risk of road closure<br />

after an event.<br />

Details of the expected damages (Fig. 3) show that direct damage to infrastructure represents<br />

generally only adds up to 16% of the total potential damages, but can reach up to 40% for<br />

some individual hazard sources. Looking at the sums of the expected damage values of the<br />

road sections that are currently finished, road closure after an event represents 69%,<br />

precautionary road closure 7%. Person risks (casualties) are mostly to be expected due to<br />

falling rocks, rock avalanches, debris flows and dense snow avalanches, which add up to 8%<br />

of the total risk.<br />

The results show that rockfall is responsible for 31% of the total calculated risk, bank erosion<br />

for 17%, flooding for 14%, snow avalanches for 13%, landslides for 9%, rock avalanches for<br />

Figure 3: Risk details per hazard and damage type for all analysed road sections.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 491


8%, debris flows for 6%, and slope-type debris flows for 1%. Finally, subsidence processes<br />

due to doline collapse, falling ice and snow gliding account for 0.7% resp. 0.3% and 0.1%.<br />

When calculating the expected number of casualties per year caused by rockfall (incl. rock<br />

mass falls) on national roads, by dividing the total of the rockfall related person risks by 5<br />

million CHF, the result is 0.25 casualties per year. In the last thirty years, rockfall caused 0.13<br />

casualties per year on average. The total expected number of casualties per year caused by all<br />

gravitational natural hazards on national roads is 0.6<br />

CONCLUSIONS<br />

The currently available results of the project NHNR show that rockfall and bank erosion are<br />

mainly responsible for the expected damage due to natural hazards on national roads in<br />

Switzerland. A large part of this is due to road closure after hazard events.<br />

The threshold for the individual risk of death due to natural hazards defined by the FEDRO is<br />

1 * 10 -5 . If an individual would pass all currently evaluated endangered national road sections<br />

every day, his or her individual risk of death would be 1 * 10 -4 . In the meantime, the project<br />

results regarding the number of casualties seem to be too pessimistic in comparison to reality<br />

of the last thirty years.<br />

The currently known total sum of expected yearly damage by natural hazards on national<br />

roads (~40 million CHF per year) are equal to 15% of the mean yearly amount for the<br />

prevention of gravitational hazards invested by the Swiss confederation between 2000 and<br />

2005 (PLANAT, 2007). This amount covers risk prevention on all roads, railways, residential<br />

areas and other critical infrastructure. At present, the mentioned expected yearly damage<br />

justifies continuous investments in risk reduction on national roads.<br />

REFERENCES<br />

- Bezzola, G.-R., Hegg, C. (2007). Ereignisanalyse Hochwasser 2005. Teil 1 – Prozesse,<br />

Schäden und erste Einordnung. BAFU & WSL.<br />

- BUWAL (1999). Leben mit dem Lawinenrisiko - Die Lehren aus dem Lawinenwinter 1999.<br />

BUWAL.<br />

- Erath, A. (2011). Vulnerability of road transport infrastructure, Ph.D. Thesis, ETH Zürich,<br />

Zürich.<br />

- FEDRO (2012). Natural hazards on national roads: Risk concept. Methodology for risk-based<br />

assessment, prevention and response to gravitative natural hazards on national roads. ASTRA<br />

Documentation 89001. Federal Roads Office FEDRO. http://www.astra.admin.ch/dienstleistungen/00129/00183/01156/index.html?lang=en<br />

- FOEN (2015a) Aquaprotect. Federal office for the environment FOEN. http://www.bafu.<br />

admin.ch/naturgefahren/01916/06598/index.html?lang=en<br />

- FOEN (2015b) SilvaProtect-CH - Schutzwald in der Schweiz. Federal office for the environment<br />

FOEN. http://www.bafu.admin.ch/naturgefahren/01920/01964/index.html?lang=de<br />

492 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- PLANAT, (2007). Jährliche Aufwendungen für den Schutz vor Naturgefahren in der<br />

Schweiz (www.planat.ch). 41 p.<br />

- PLANAT, (2009). Risk concept for natural hazards, Strategy Natural Hazards Switzerland (in<br />

German; www.planat.ch).<br />

- Rudolf-Miklau, F., Ellmer, A., Gruber, H., Hübl, J., Kleemayr, K., Lang, E., Markart, G.,<br />

Scheuringer, E., Schmid, F., Schnetzer, I., Weber, C., Wöhrer-Alge, M., (2006). Hochwasser<br />

2005 - Ereignisdokumentation. Bundesministerium für Land- und Forstwirtschaft, Umwelt<br />

und Wasserwirtschaft, Sektion Forst, Abteilung Wildbach- und Lawinenverbauung, Wien.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 493


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Investigation of the flood hazard of the Nuclear Power<br />

Plant KKG by earthquake induced dam breaks waves at<br />

the River Aare<br />

Davood Farshi, Ph.D. 1 ; Michael Ballmer 2 ; Donat Job 3 ; Brigitte Faust 4<br />

ABSTRACT<br />

The flood safety of the Nuclear Power plant KKG in terms of dam breaks scenarios at the<br />

River Aare was investigated through using a deterministic method. Based on the requirements<br />

of the Swiss Federal Nuclear Safety Inspectorate (ENSI), four dam break scenarios were<br />

identified for the investigation. The scenarios were based on conservative assumptions of<br />

different combinations of weirs' breaks.<br />

The propagation of the flood waves were computed by means a hybrid model as a combination<br />

of one (1D) and two-dimensional (2D) models.<br />

Based on the simulations it was possible to estimate the risk of flooding of the KKG area and<br />

if needed to suggest some measures to prevent such flooding. Additionally it has been<br />

investigated, if important water intakes were at the risk in regard to the allowable maximum<br />

and minimum water level.<br />

The sediment transport was studied qualitatively, if there were high erosion risks. According<br />

to the calculated bottom shear stresses the river bed erosion is possible only locally and over a<br />

very short time period.<br />

KEYWORDS<br />

Dam break; Hybrid model; Flood wave; NPP<br />

INTRODUCTION<br />

After Fukushima, the question arises, how strongly the nuclear power plants (NPP) could be<br />

impacted by the natural extreme events in Switzerland. The Swiss Federal Nuclear Safety<br />

Inspectorate (ENSI) requires new investigation from all plant operators in Switzerland. Flood<br />

waves which are due to dam breaks caused by extreme earthquakes, are categorized under<br />

extreme events against which Swiss nuclear plants have to be protected. In order to ensure<br />

such protection, the NPP operators are obliged to review the hazard at regular intervals on<br />

the basis of experience and the latest developments in science and technology [ENSI 2014].<br />

Based on previous ENSI’s requirements, the flood safety of the nuclear power plant Gösgen-Däniken<br />

AG (KKG) has been already evaluated and ensured for an extreme flood with<br />

an annual probability of occurrence of 10 -4 (HQ 10000<br />

). Additionally ENSI requested KKG to<br />

1 EnHydro GmbH, Zürich, SWITZERLAND, davood.farshi@enhydro.ch<br />

2 TK Consult AG, Zürich, Switzerland<br />

3 AF Consult Switzerland AG, Baden, Switzerland<br />

4 Kernkraftwerk Gösgen-Däniken AG, Däniken, Switzlerand<br />

494 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

FP055


Figure 1: Layout of the KKG area.<br />

Figure 2: Layout of the investigated reach of the river Aare.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 495


investigate the impacts of the flood waves due to the extreme earthquake-induced dam<br />

breaks (annual probability of occurrence of 10 -4 ) on KKG area and especially on important<br />

cooling water intakes (Figure 1). The break of all weirs upstream the KKG till the lake Biel<br />

has to be considered for the investigation (Figure 2).<br />

BASIC DATA<br />

Hydrology<br />

The important inflow and discharge measurement stations between the lake Biel and KKG<br />

are shown in Figure 3. The significant hydrological parameters are represented in Table 1.<br />

Figure 3: Important inflows and stations of the river Aare between the lake Biel and KKG [BAFU 2014].<br />

Table 1: Important discharge values of the river Aare.<br />

Parameter<br />

Value<br />

(m 3 /s)<br />

Mean Discharge (Q m ) of Aare at Brügg 244.0<br />

Mean Discharge (Q m ) of Aare at<br />

Murgenthal<br />

287.0<br />

Low discharge (Q 347 ) of Aare at Brügg 106.0<br />

Low discharge (Q 347 ) of Aare at<br />

Murgenthal<br />

128.0<br />

TOPOGRAPHY<br />

The topography data of the investigated Area consisted of different forms of data. There were<br />

more than 850 cross sections measurements of the river Aare for a distance of 170 km and<br />

also a detailed DTM of the area close to KKG.<br />

496 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


METHODOLOGY<br />

For the modeling and computing of the flood waves due to dam breaks the investigation area<br />

has been subdivided into perimeters (Figure 4):<br />

Figure 4: Hybrid model of the investigation perimeter.<br />

A) 1D-Perimeter: the area from the three lakes (lake Neuenburg, Murten and Biel) to weir<br />

Ruppoldingen.<br />

B) 2D-Perimeter: the area from weir Ruppoldingen to the connection of hydropower channel<br />

and the old Aare.<br />

All dam breaks have been considered as sudden failure of the whole weir, which is based on a<br />

conservative assumption and is a well-established method in Switzerland [BFE 2014]. In case<br />

the hydropower house and weir are in the same place, the sudden break has been considered<br />

for the whole structure. For regulation of weirs the condition (n-1) has been adopted, in<br />

which the capable weir segment has been considered to be closed. The programs Flux/Floris,<br />

HYDRO_AS-2D and BASEMENT have been used for the simulation.<br />

SCENARIOS<br />

On the basis of ENSI’s requirements four different worst-cases have been defined as modeling<br />

scenarios (Table 2).<br />

The two mean and low discharges (Q 347<br />

, Q m<br />

) have been considered as basic discharges in the<br />

river Aare, because the peak discharge in case of any dam break depends on the water surface<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 497


Table 2: Scenarios for the assessment of the flood hazard of KKG due to the dam breaks.<br />

Scenario Event<br />

1<br />

2<br />

3<br />

4<br />

difference between upstream and downstream of a weir. A combination of extreme flood<br />

event and earthquake-induced dam break was beyond the investigation criteria and has not<br />

been considered.<br />

The following assumptions have been considered in all scenarios:<br />

– The Weir Port breaks first due to the closeness to the epicenter of the earthquake<br />

– The downstream weirs are heavily damaged by the earthquake and can’t be regulated<br />

anymore.<br />

– All turbines are out of service after the earthquake (No discharge through Hydropower<br />

house).<br />

Sequential dam breaks at the River Aare<br />

(Weir Port to Weir Winznau)<br />

Sequential dam breaks at the River Aare<br />

(Weir Port to Weir Winznau)<br />

Sequential dam breaks at the River Aare<br />

(Weir Port to Weir Ruppoldingen) and WKW<br />

Gösgen<br />

Simultaneous dam breaks at the River Aare<br />

(Weir Port to Weir Ruppoldingen) und<br />

Sequential break of the Weir Winznau<br />

Discharge in<br />

River Aare [m 3 /s]<br />

Q 347<br />

– The downstream weirs break in arrival time of maximum wave (Sequential breaks).<br />

Q m<br />

Q m<br />

Q m<br />

INITIAL CONDITIONS<br />

The initial conditions in the river Aare has been calculated as steady state for the both<br />

discharges Q 347<br />

and Q m<br />

, with an assumption that all turbines of the power houses are in<br />

service. The water elevation upstream of the weirs has been set to the regulated storage level.<br />

Table 3 shows the regulated storage level for both discharges.<br />

Table 3: Regulated water elevation upstream head of the weirs (Initial condition).<br />

Weir Q 347 Q m<br />

429.00<br />

429.50<br />

Port<br />

(lake level) (lake level)<br />

Flumenthal 426.00 426.00<br />

Bannwil 417.30 417.30<br />

Wynau 408.08 408.08<br />

Ruppoldingen 397.20 398.20<br />

Winznau 388.14 388.14<br />

498 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RESULTS<br />

The modeling of dam breaks has been run in two phases. In the first phase the break of weirs<br />

from Weir Port to Ruppoldingen has been simulated through the 1D-Model (see Methodology).<br />

In the second phase the outflow of the 1D-Model has been defined as a boundary<br />

condition for the 2D-Model and the break of the Weir Winznau und WKW Gösgen has been<br />

simulated. The time point 0.00 corresponds to the break of the Weir Port in all results.<br />

1The results show that sequential dam breaks induce very large peak flow at Weir Ruppoldingen<br />

and in the case of the scenario 2 the peak flows are larger (Figure 5 & 6). The peak flow<br />

discharge at Ruppoldingen is almost 4 times larger than the peak flood discharge with an<br />

annual probability of occurrence of 10 -2 (HQ 100<br />

). Contrary the peak discharge reduces at the<br />

time of the dam break of the Weir Winznau due to the overflow of the arriving flood waves,<br />

which reduces the water elevation difference between upstream and downstream of the weir<br />

(Figure 7 & 8).<br />

In Figure 9 and 11 the time history of the water surface elevation at the intake ZM05 is<br />

illustrated. As it is shown the critical elevation of the intake will never be touched by the<br />

flood waves.<br />

CONCLUSIONS<br />

The flood hazard of the KKG area has been investigated through different dam break<br />

scenarios of the weirs between the lake Biel and KKG. This investigation has been carried out<br />

Figure 5: Time history of the discharge at weirs for the scenario 1.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 499


Figure 6: Time history of the discharge at weirs for the scenario 2.<br />

Figure 7: Time history of the discharge at the Weir Winznau and at KKG for the scenario 1.<br />

500 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 8: Time history of the discharge at the Weir Winznau and at KKG for the scenario 2.<br />

Figure 9: Time history of the water elevation at the intake ZM05 for the scenario 1.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 501


Figure 10: Time history of the water elevation at the intake ZM05 for the scenario 2.<br />

based on a hybrid simulation model, which consists of 1D and 2D-model. With the simulations<br />

it can be shown, to what extent the KKG area and also the cool water intakes are<br />

imperiled through the flood waves of dam breaks. The scenarios are based on conservative<br />

assumptions such as sudden break of weirs and can be considered as worst cases. The<br />

simulations show that the scenario 2 induces large flood waves and has the worst impact on<br />

the area close to the KKG.<br />

REFERENCES<br />

- BAFU (2014). Homepage des Bundesamtes für Umwelt (BAFU), Bern, www.hydrodaten.<br />

admin.ch<br />

- ENSI (2014). The Safety of Swiss Nuclear Plants in case of External Flooding, www.ensi.ch.<br />

- BFE (2014). Richtlinie über die Sicherheit der Stauanlagen, Teil B: Besonderes Gefährdungspotenzial<br />

als Unterstellungskriterium.<br />

502 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Spatial and temporal exposure of elements at risk in<br />

Austria<br />

Räumliche und zeitliche Exponiertheit von Gebäuden<br />

in Österreich<br />

Sven Fuchs, PD Dr. 1 ; Andreas Zischg, Dr. 2 ; Margreth Keiler, PD Dr. 3<br />

ABSTRACT<br />

The paper presents a nation-wide spatially explicit object-based assessment of buildings exposed<br />

to natural hazards in Austria. The assessment was based on two different datasets, (a)<br />

hazard information providing input to the exposure of elements at risk, and (b) information<br />

on the building stock combined from different spatial data available on the national level. It is<br />

shown that the repeatedly-stated assumption of increasing exposure due to continued population<br />

growth and related increase in assets has to be carefully evaluated by the local development<br />

of building stock. While some regions have shown a clearly above-average increase in<br />

assets, other regions were characterised by a below-average development. In sum, around 5<br />

% of all buildings are exposed to torrential flooding, and around 9 % to river flooding, with<br />

around 1 % of the buildings stock being multi-exposed. In conclusion, the presented objectbased<br />

assessment is an important and suitable tool for nation-wide exposure assessment and<br />

may be used in operational risk management.<br />

ZUSAMMENFASSUNG<br />

Aussagen zur Exposition von Wertobjekten gegenüber Naturgefahren hängen von der Verfügbarkeit<br />

entsprechender Datengrundlagen ab, insbesondere von einer genauen Bewertung der<br />

so genannten Risikoelemente und ihrer räumlichen und zeitlichen Dynamik. Bislang waren<br />

derartige Daten flächendeckend nicht verfügbar, und in Folge waren Untersuchungen zur Exposition<br />

auf die lokale Skalenebene einzelner Fallstudien beschränkt. Für alpine Naturgefahren<br />

wurden langfristige Änderungen des Schadenpotentials einem signifikanten Anstieg<br />

der Anzahl und Werte gefährdeter Gebäude zugeschrieben und können sowohl in Agglomerationen<br />

als auch im ländlichen Raum nachgewiesen werden (Fuchs et al. 2013). Kurzfristige<br />

Veränderungen im Schadenpotential variieren den beobachteten langfristigen Trend, vor<br />

allem in Bezug auf gefährdete Personen (Keiler et al. 2005; Zischg et al. 2005). Die meisten<br />

der aktuellen Studien basieren auf lokalen Daten oder auf aggregierter Information zur<br />

Landnutzung (Zischg et al. 2013), was zu substantiellen Unsicherheiten bei der Risikoberechnung<br />

führt (de Moel & Aerts 2011). Im Folgenden wird aufgezeigt, wie eine objektbasierte<br />

1 University of Natural Resources and Life Sciences, Institute of Mountain Risk Engineering, Vienna, AUSTRIA,<br />

sven.fuchs@boku.ac.at<br />

2 Universität Bern Geographisches Institut, Mobiliar Lab, Bern, SWITZERLAND<br />

3 Universität Bern Geographisches Institut, Bern, SWITZERLAND<br />

IP_<strong>2016</strong>_FP067<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 503


Expositionsanalyse auf nationalem Maßstab in hoher räumlicher Auflösung durchgeführt<br />

werden kann, und wie sich die Exposition gegenüber Naturgefahren räumlich und zeitlich<br />

entwickelt hat.<br />

KEYWORDS<br />

Exposure; building stock; spatial analysis; temporal analysis; risk management<br />

EINFÜHRUNG<br />

Aussagen zur Exposition von Wertobjekten gegenüber Naturgefahren hängen von der Verfügbarkeit<br />

entsprechender Datengrundlagen ab, insbesondere von einer genauen Bewertung der<br />

so genannten Risikoelemente und ihrer räumlichen und zeitlichen Dynamik. Bislang waren<br />

derartige Daten flächendeckend nicht verfügbar, und in Folge waren Untersuchungen zur<br />

Exposition auf die lokale Skalenebene einzelner Fallstudien beschränkt. Für alpine Naturgefahren<br />

wurden langfristige Änderungen des Schadenpotentials einem signifikanten Anstieg<br />

der Anzahl und Werte gefährdeter Gebäude zugeschrieben und können sowohl in Agglomerationen<br />

als auch im ländlichen Raum nachgewiesen werden (Fuchs et al. 2013). Kurzfristige<br />

Veränderungen im Schadenpotential variieren den beobachteten langfristigen Trend, vor<br />

allem in Bezug auf gefährdete Personen (Keiler et al. 2005; Zischg et al. 2005). Die meisten<br />

der aktuellen Studien basieren auf lokalen Daten oder auf aggregierter Information zur Landnutzung<br />

(Zischg et al. 2013), was zu substantiellen Unsicherheiten bei der Risikoberechnung<br />

führt (de Moel & Aerts 2011). Im Folgenden wird aufgezeigt, wie eine objektbasierte Expositionsanalyse<br />

auf nationalem Maßstab in hoher räumlicher Auflösung durchgeführt werden<br />

kann, und wie sich die Exposition gegenüber Naturgefahren räumlich und zeitlich entwickelt<br />

hat.<br />

METHODEN<br />

Die zeitlich-räumliche Analyse der Exposition folgt im Ansatz dem Risikokonzept für die<br />

Analyse und Bewertung von Naturgefahren, und basiert auf einer Verschneidung zwischen<br />

den gefährdeten Flächen und der Gebäudeinformation. Zwei unterschiedliche Datensätze<br />

wurden verwendet, (a) Gefahreninformation als Input für die Exposition, und (b) Informationen<br />

aus dem digitalen Gebäude- und Wohnungsregister (GWR II). Um ein vollständigeres<br />

Bild zur Exposition zu bekommen, wurden die Prozesse „Überschwemmung“, „Wildbachprozesse“<br />

und „Lawinen“ analysiert und die Ergebnisse miteinander verglichen, da diese Prozessgruppen<br />

– neben Sturmwind und Hagel, die in vorliegender Studie jedoch nicht weiter analysiert<br />

werden – für die Mehrheit der Schäden im Alpenraum verantwortlich zeichnen (Hilker<br />

et al. 2009).<br />

Für alpine Naturgefahren (Wildbäche und Lawinen) wurden vorhandene Gefahrenzonenpläne<br />

verwendet. Gefahrenzonenpläne beziehen sich in der Regel auf eine einzelne Gemeinde,<br />

und auf den von einem Bemessungsereignis mit einer Wiederkehrperiode von 150 Jahren<br />

betroffenen Bereich (Republik Österreich 1976). Die roten und gelben Gefahrenzonen<br />

504 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


enthalten mit Stand 09/2014 rund 92% aller Gemeinden mit einer Verpflichtung zur<br />

Gefahrenzonenplanerstellung nach ForstG 1975 (Republik Österreich 1975).<br />

Zur Darstellung der von Überschwemmung betroffenen Flächen wurden Daten aus der<br />

digitalen eHORA Plattform (http://www.hochwasserrisiko.at/) verwendet. Diese Daten zeigen<br />

überschwemmungsgefährdete Bereiche und wurden gemeinsam vom Bundesministerium für<br />

Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft und dem österreichischen Versicherungsverband<br />

auf mehr als 25.000 Flusskilometern modelliert (Stiefelmeyer & Hlatky 2008).<br />

Aufgrund der Diskussion über die Harmonisierung der Gefahrenkartierung in Österreich<br />

(Rudolf-Miklau & Sereinig 2009) wurde das modellierte hundertjährliche Hochwasser-Szenario<br />

für die Studie verwendet.<br />

Die Exposition wurde mit Hilfe des GWR II ermittelt. Seit der Umsetzung des Bundesgesetzes<br />

über das Gebäude und Wohnungsregister (Republik Österreich 2009, 2013) sind Gemeinden<br />

in Österreich für die Sammlung und Verarbeitung von digitalen Informationen für den<br />

gesamten Gebäudebestand verantwortlich. Diese Informationen werden zentral in einer<br />

Datenbank gespeichert und enthalten Angaben über die Lage und Größe der einzelnen<br />

Gebäude, sowie die Baukategorie und die Bauperiode (vor 1919, 1920-1944, 1945-1960,<br />

1961-1970, 1971-1980, 1981-1990, 1991-2000) bzw. das Baujahr (seit 2001).<br />

Es erfolgte eine räumliche Verschneidung zwischen der Gefahreninformation und dem GWR<br />

II-Datensatz. Mit Ausnahme von Sakralbauten wurde ein ökonomisches Modell zur Berechnung<br />

des Wertes der Gebäude angewendet unter Verwendung von (a) den vorliegenden<br />

Informationen des GWR II in Bezug auf Gebäudetyp, Anzahl der Geschosse und Nutzung,<br />

und (b) regional gemittelten Baukosten beruhend auf einer Kombination der Ansätze aus<br />

Keiler et al. (2006) und Kranewitter (2002). Die Baukosten wurden auf Neuwerte anstelle<br />

von Marktwerten gerechnet, was allgemeinen Versicherungsgrundsätzen entspricht, und<br />

wurden mit dem jeweiligen Index der Baukosten (Statistik Austria 2013) inflationsangepasst.<br />

Die räumlichen und zeitlichen Analysen des Schadenpotentials wurden aufgrund der<br />

Information zu Bauperiode und Baujahr der aktuell bestehenden Gebäude getätigt. Die<br />

Analyseergebnisse können demnach nicht dazu verwendet werden, um beispielsweise die<br />

tatsächliche (historische) Bevölkerungsentwicklung oder die tatsächliche (historische)<br />

Werteentwicklung in gefährdeten Bereichen abzuleiten, da diese Information nicht im<br />

Datensatz enthalten ist. Die Analyse stützt sich lediglich auf den Bauzeitpunkt der heute<br />

bestehenden Gebäude ab.<br />

ERGEBNISSE<br />

Im Folgenden werden Ergebnisse präsentiert, zunächst in Bezug auf die räumliche und<br />

anschließend in Bezug auf die zeitliche Analyse. Auffallend ist die generell bestehende<br />

Heterogenität zwischen einzelnen Gemeinden und Gebäudekategorien.<br />

In Österreich konnten 2.399.500 Gebäude eindeutig einer Information im GWR II zugeordnet<br />

werden, davon sind 319.026 (13,3 %) gegenüber den untersuchten Naturgefahren exponiert<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 505


Tabelle 1: Exponierte Gebäude in Österreich (Einfach- und Mehrfachgefährdung).<br />

Einfachgefährdung<br />

Mehrfachgefährdung<br />

Bundesland<br />

Gebäude<br />

[N]<br />

Nichtexponierte<br />

Gebäude<br />

[N]<br />

Exponierte<br />

Gebäude<br />

[N]<br />

Exponierte<br />

Gebäude<br />

[%]<br />

Überschwemmung<br />

Wildbach<br />

[N]<br />

[N]<br />

Lawine<br />

[N]<br />

Überschwemmung<br />

und Wildbach<br />

[N]<br />

Wildbach<br />

und<br />

Lawine<br />

[N]<br />

Überschwemmung<br />

Über-<br />

und Lawine<br />

[N]<br />

schwemmung,<br />

Wildbach und<br />

Lawine [N]<br />

Burgenland 133.482 123.905 9.577 7,2 9.439 140 0 2 0 0 0<br />

Kärnten 185.693 161.782 23.911 12,9 17.012 8.466 188 1.660 95 10 10<br />

Niederösterreich 648.693 569.085 79.608 12,3 73.239 8.381 6 2.018 0 0 0<br />

Oberösterreich 425.718 378.307 47.411 11,1 37.836 12.471 137 2.950 22 71 10<br />

Salzburg 139.377 99.662 39.715 28,5 20.360 23.800 594 4.684 319 128 92<br />

Steiermark 381.484 331.065 50.419 13,2 27.953 25.695 460 3.530 130 52 23<br />

Tirol 192.381 141.735 50.646 26,3 25.635 24.631 4.465 2.975 924 276 90<br />

Vorarlberg 106.098 91.910 14.188 13,4 4.334 8.089 3.159 270 1.105 31 12<br />

Wien 186.574 183.023 3.551 1,9 3.551 0 0 0 0 0 0<br />

Summe 2.399.500 2.080.474 319.026 13,3 219.359 111.673 9.009 18.089 2.595 568 237<br />

(Tabelle 1). Von diesen knapp 2,4 Mio. Gebäuden sind 9 % (219.359) überschwemmungsgefährdet,<br />

und 5 % gegenüber alpinen Naturgefahren exponiert (Wildbach 111.673 und Lawine<br />

9.009). Insgesamt sind 298.248 Gebäude (93,5 % der exponierten Gebäude und 12,4 % des<br />

gesamten Gebäudebestandes) gegenüber einem Naturgefahrentyp exponiert, und 20.778<br />

Gebäude (6.5 % der exponierten Gebäude und 0,9 % des gesamten Gebäudebestandes)<br />

gegenüber mehr als einem Naturgefahrentyp (multi-exposure): 18.089 Gebäude sind von<br />

Flusshochwasser und Wildbächen betroffen, 2.595 von Wildbach- und Lawinengefahren,<br />

568 von Lawinen und Flusshochwasser, und 237 von allen drei Prozesstypen.<br />

Wird der Datensatz nach den unterschiedlichen Gebäudekategorien analysiert, ergibt sich<br />

folgendes Bild (vgl. Tabelle 2): Der Großteil der exponierten Gebäude entfällt auf Wohngebäude<br />

(Kategorien 1-3), aber es ist auch ein erheblicher Anteil an Hotels und ähnlichen<br />

Gebäuden (Gastgewerbe, Kategorie 4) und Gewerbebauten (Kategorien 5-8) exponiert.<br />

– Die insgesamt 2.056.322 Wohngebäude entsprechen 85,7 % des Gebäudebestandes in<br />

Österreich, und 12,62 % davon (259.687) sind exponiert.<br />

– Die insgesamt 140.470 Gewerbebauten entsprechen 5,86 % des Gebäudebestandes in<br />

Österreich, und 21,06 % davon (29.593) sind exponiert.<br />

– Die insgesamt 37.272 Gebäude des Gastgewerbes entsprechen 1,55 % des Gebäudebestandes<br />

in Österreich, und 23,04 % davon (8,589) sind exponiert.<br />

Die räumliche Abfrage auf Gemeindeebene ist in Abbildung 1 wiedergegeben. Die Referenzgröße<br />

der Abbildung sind die von den jeweiligen Prozessen betroffenen Gemeinden. In Bezug<br />

auf Lawinen beträgt die mittlere Anzahl exponierter Gebäude 30,4 pro Gemeinde (für von<br />

Lawinen gefährdete Gemeinden). Die höchste Exposition mit > 3 Standardabweichungen<br />

findet sich in Gemeinden Westösterreichs nahe des Alpenhauptkamms (Vorarlberg und Tirol).<br />

Die mittlere Anzahl wildbach-exponierter Gebäude beträgt 87,7 pro Gemeinde (für wildbachgefährdete<br />

Gemeinden). Gemeinden mit einer hohen Exposition finden sich vor allem im<br />

Bundesland Salzburg, sowie in einigen Gemeinden des Tiroler Unterlandes. Überschwemmung<br />

entlang der Flüsse betrifft größere Landesflächen, und im Mittel sind 97,1 Gebäude je<br />

506 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Tabelle 2: Exponierte Gebäude in Österreich (nach Gebäudekategorien).<br />

Gebäudekategorie<br />

Gebäude<br />

[N]<br />

Gebäud<br />

e [%]<br />

Nichtexponiert<br />

e<br />

Gebäude<br />

[N]<br />

Exponi<br />

erte<br />

Gebäu<br />

de [N]<br />

Exponie<br />

rte<br />

Gebäud<br />

e [%]<br />

Einfachgefährdung<br />

Überschw<br />

emmung<br />

[N]<br />

Wildbac<br />

h [N]<br />

Lawine<br />

[N]<br />

Mehrfachgefährdung<br />

Übersch<br />

wemmu<br />

ng und<br />

Wildbac<br />

h [N]<br />

Wildbach<br />

und<br />

Lawine<br />

[N]<br />

Überschw<br />

emmung<br />

und<br />

Lawine<br />

[N]<br />

Überschw<br />

emmung,<br />

Wildbach<br />

und<br />

Lawine<br />

[N]<br />

Gebäude mit einer Wohnung (1) 1.510.151 62,94 1.335.938 174.213 11,54 119.189 60.424 4.607 8.600 1.280 221 94<br />

Gebäude mit zwei oder mehr<br />

Wohnungen (2)<br />

Wohngebäude für Gemeinschaften<br />

(3)<br />

542.118 22,59 457.359 84.759 15,63 56.195 32.477 2.308 5.421 681 177 58<br />

4.053 0,17 3.338 715 17,64 528 204 38 37 18 3 3<br />

Hotels und ähnliche Gebäude (4) 37.272 1,55 28.683 8.589 23,04 4.217 4.622 994 895 302 82 35<br />

Bürogebäude (5) 31.420 1,31 25.551 5.869 18,68 4.815 1.325 63 315 17 5 3<br />

Groß- und Einzelhandelsgebäude<br />

(6)<br />

Gebäude des Verkehrs- und<br />

Nachrichtenwesens (7)<br />

32.583 1,36 25.646 6.937 21,29 5.612 1.761 73 481 25 5 2<br />

4.319 0,18 3.525 794 18,38 544 295 53 73 24 9 8<br />

Industrie- und Lagergebäude (8) 72.148 3,01 56.155 15.993 22,17 12.874 4.113 248 1.139 86 30 13<br />

Gebäude für Kultur-<br />

/Freizeitzwecke, Bildungs- und<br />

Gesundheitswesen (9)<br />

Landwirtschaftliches Nutzgebäude<br />

(10)<br />

21.082 0,88 17.041 4.041 19,17 3.142 1.113 90 264 35 11 6<br />

18.496 0,77 17.341 1.155 6,24 624 501 121 66 24 4 3<br />

Privatgarage (11) 48.819 2,03 43.412 5.407 11,08 3.686 1.811 136 193 31 5 3<br />

Kirchen, sonstige Sakralbauten<br />

(12)<br />

4.384 0,18 3.896 488 11,13 289 200 47 33 15 2 2<br />

Pseudobaulichkeit (13) 4.536 0,19 3.683 853 18,81 797 71 3 18 0 0 0<br />

Sonstiges Bauwerk (14) 68.119 2,84 58.906 9.213 13,52 6.847 2.756 228 554 57 14 7<br />

Summe 2.399.500 100 2.080.474 319.026 13,30 219.359 111.673 9.009 18.089 2.595 568 237<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 507


Abbildung 1: Anzahl der gegenüber Überschwemmung, Wildbächen und Lawinen exponierten Gebäude, dargestellt auf Gemeindeebene<br />

und in Form der Abweichung vom Mittelwert.<br />

508 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Gemeinde exponiert. Aufgrund der hohen Anzahl an Gebäuden im Bereich der HORA-Modellierung<br />

sticht die Stadt Wien heraus, ebenso wie die Gemeinden entlang der Donau.<br />

2,500,000<br />

2,000,000<br />

a)<br />

Non-exposed buildings<br />

Exposed to snow avalanches<br />

Exposed to torrential flooding<br />

Exposed to river flooding<br />

3,500<br />

3,000<br />

2,500<br />

c)<br />

Buildings [N]<br />

1,500,000<br />

1,000,000<br />

Buildings [N]<br />

2,000<br />

1,500<br />

1,000<br />

500,000<br />

500<br />

0<br />

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010<br />

0<br />

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010<br />

Year<br />

Year<br />

Exposed to river flooding [N]<br />

Exposed to torrential flooding [N]<br />

Exposed to snow avalanches [N]<br />

7<br />

6<br />

5<br />

b)<br />

Total amount of buildings<br />

Exposed to snow avalanches<br />

Exposed to torrential flooding<br />

Exposed to river flooding<br />

12.0<br />

10.0<br />

d)<br />

Factor of growth [-]<br />

4<br />

3<br />

Buildings [%]<br />

8.0<br />

6.0<br />

4.0<br />

2<br />

1<br />

2.0<br />

0<br />

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010<br />

Year<br />

0<br />

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010<br />

Year<br />

Abbildung 2: Zeitliche Kennzahlen des Gebäudebestandes in Österreich.<br />

In Abbildung 2 ist die zeitliche Analyse des Gebäudebestandes in Österreich zusammengefasst.<br />

Insgesamt steigen über den Untersuchungszeitraum sowohl der Gesamtgebäudebestand,<br />

als auch die Anzahl der in den drei Gefahrengruppen exponierten Gebäude kontinuierlich an.<br />

Weder im Bereich der Überschwemmungen, noch im Bereich der Wildbäche sind besonders<br />

hohe Steigerungsraten auffallend (Abbildung 2a), hingegen ist seit den 1950er Jahren die<br />

Anzahl der nicht-exponierten Gebäude stark gestiegen. Darüber hinaus zeigt sich, dass die<br />

Anzahl der gegenüber Lawinen exponierten Gebäude gemessen am Gesamtbestand der<br />

Gebäude vernachlässigbar ist, diese Gruppe wurde aus diesem Grund in vorliegendem Bericht<br />

nicht weiter beschrieben. Seit 1919 ist die Anzahl der Gebäude in Österreich um den Faktor<br />

6,4 von 373.067 auf 2,4 Millionen gestiegen. Da für rund 4,2 % der Gebäude das Baujahr in<br />

der Datengrundlage fehlt, wurden diese von der weiteren Analyse ausgeschlossen.<br />

Die Anzahl der gegenüber Überschwemmung exponierten Gebäude ist um den Faktor 6,5<br />

gestiegen (von 33.697 auf 219.359), siehe auch Abbildung 2b, die Anzahl der gegenüber<br />

Wildbachgefahren exponierten Gebäude um den Faktor 5.9 (von 18.797 auf 111.673).<br />

In Abbildung 2b ist die kumulative Steigerungsrate des Gebäudebestandes dargestellt, zum<br />

einen für den Gesamtgebäudebestand und zum anderen für die gegenüber den drei Prozessgruppen<br />

exponierten Gebäude. Während die Steigerungsrate für die überschwemmungsge-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 509


fährdeten Gebäude leicht über jener des Gesamtbestandes liegt, ist die Rate für die wildbachgefährdeten<br />

Gebäude seit 1990 abnehmend und liegt unterhalb jener des Gesamtbestandes.<br />

In Abbildung 2c ist die durchschnittliche jährliche Summe der Neubauten für die Exposition<br />

gegenüber den drei Gefahrengruppen dargestellt. Bis in die 1970er Jahre ist diese deutlich<br />

angestiegen, ab 1980 nimmt diese leicht ab und in der letzten Dekade ist wiederum eine<br />

leichte Zunahme zu verzeichnen. Auffallend ist, dass die Kurven für Überschwemmung und<br />

Wildbachgefährdung einem ähnlichen Muster folgen. Im letzten untersuchten Jahr (2012)<br />

wurden 78 Gebäude in lawinengefährdeten, 1.028 in wildbachgefährdeten, und 2.172 in<br />

überschwemmungsgefährdeten Bereichen errichtet. Die zeitliche Entwicklung der Bautätigkeit<br />

in gefährdeten Bereichen ist in Abbildung 2d dargestellt als Verhältnis zwischen den<br />

jährlichen Neubauten innerhalb von Gefahrenzonen und der Gesamtzahl jährlicher Neubauten.<br />

Über den gesamten Untersuchungszeitraum nahm der Prozentsatz von 10,6 auf 8,1 %<br />

(Überschwemmung), und von 4,2 auf 3,8 % (Wildbach) ab.<br />

FAZIT<br />

Eine detaillierte und räumlich verortete Bewertung der gegenüber Naturgefahren exponierten<br />

Gebäude in Österreich wurde durchgeführt für überschwemmungs-, wildbach- und<br />

lawinengefährdete Bauwerke. Insgesamt ist im Zeitverlauf ein Anstieg des Schadenpotentials<br />

nachweisbar. Die räumliche Analyse zeigt, dass einige Gemeinden einen deutlich überdurchschnittlichen<br />

Anstieg und andere einen unterdurchschnittlichen Anstieg der Gebäudezahlen<br />

aufweisen (vgl. auch Fuchs et al. 2015). Dies spiegelt einerseits die Topographie des Landes<br />

wider, aber auch die unterschiedlichen wirtschaftlichen Aktivitäten: Beherbergungsbetriebe<br />

sind vor allem in den westlichen Bundesländern gegenüber alpinen Naturgefahren exponiert,<br />

während Gewerbebauten und Gebäude der Freizeitnutzung vor allem von Überschwemmung<br />

betroffen sind. Wohngebäude zeigen demgegenüber eine durchschnittliche Exposition.<br />

Eine flächendeckende objektbasierte Bewertung hat Vorteile im Vergleich zu kleinräumigen<br />

fallstudienbasierten Analyseansätzen, da kleinskalige Verteilungsmuster und unterschiedliche<br />

Auftretensmuster von gefährlichen Prozessen zu einer Verzerrung der Ergebnisse führen<br />

können. Die dargestellten Ergebnisse können genutzt werden, um flächendeckende Risikoabschätzungen<br />

(beispielsweise im Rahmen der Umsetzung der EU-Hochwasserrisiko-Managementrichtlinie)<br />

durchzuführen. Darüber hinaus können flächendeckende Aussagen zum<br />

Schadenausmaß zukünftiger Naturgefahrenereignisse getätigt werden.<br />

510 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


LITERATUR<br />

- de Moel H., Aerts J. (2011). Effect of uncertainty in land use, damage models and<br />

inundation depth on flood damage estimates. Natural Hazards 58: 407-425.<br />

- Fuchs S., Keiler M., Sokratov S., Shnyparkov A. (2013). Spatiotemporal dynamics:<br />

the need for an innovative approach in mountain hazard risk management.<br />

Natural Hazards 68: 1217-1241.<br />

- Fuchs S., Keiler M., Zischg A. (2015). A spatiotemporal multi-hazard exposure assessment<br />

based on property data. Natural Hazards and Earth System Sciences 15: 2127-2142.<br />

- Hilker N., Badoux A., Hegg C. (2009). The Swiss flood and landslide damage database<br />

1972-2007. Natural Hazards and Earth System Sciences 9: 913-925.<br />

- Jongman B., Koks E., Husby T., Ward P. (2014). Increasing flood exposure in the<br />

Netherlands: implications for risk financing. Natural Hazards and Earth System Sciences 14:<br />

1245-1255.<br />

-Keiler M., Zischg A., Fuchs S., Hama M., Stötter J. (2005). Avalanche related damage<br />

potential – changes of persons and mobile values since the mid-twentieth century, case study<br />

Galtür. Natural Hazards and Earth System Sciences 5: 49-58.<br />

- Keiler M., Zischg A., Fuchs S. (2006b). Methoden zur GIS-basierten Erhebung des<br />

Schadenpotenzials für naturgefahreninduzierte Risiken. In: Strobl J., Roth C. (eds) GIS<br />

und Sicherheitsmanagement. Wichmann, Heidelberg: 118-128.<br />

- Kranewitter H. (2002). Liegenschaftbewertung. GESCO, Wien.<br />

- Republik Österreich (1975). Forstgesetz 1975. BGBl 440/1975.<br />

- Republik Österreich (1976). Verordnung des Bundesministers für Land- und Forstwirtschaft<br />

vom 30. Juli 1976 über die Gefahrenzonenpläne. BGBl 436/1976.<br />

- Republik Österreich (2009). Bundesgesetz, mit dem das Registerzählungsgesetz, das<br />

Bundesgesetz über das Gebäude- und Wohnungsregister, das Bundesstatistikgesetz 2000<br />

und das E-Government-Gesetz geändert werden. BGBl 125/2009.<br />

- Republik Österreich (2013). Bundesgesetz über das Gebäude- und Wohnungsregister<br />

(GWR-Gesetz). BGBl 9/2004 i.d.F. 1/2013.<br />

- Rudolf-Miklau F., Sereinig N. (2009). Festlegung des Bemessungshochwassers:<br />

Prozessorientierte Harmonisierung für Flüsse und Wildbäche. Österreichische<br />

Wasser- und Abfallwirtschaft 61: 27-32.<br />

- Statistik Austria (2013). Baupreisindex für den Hoch- und Tiefbau. Statistik Austria, Wien.<br />

- Stiefelmeyer H., Hlatky T. (2008). HORA - An Austrian platform for natural hazards as a<br />

new way in risk communication. In: Mikoš M., Hübl J., Koboltschnig G. (eds) Internationales<br />

Symposion Interpraevent, Band 1, Dornbirn: 229-236.<br />

- Zischg A., Fuchs S., Keiler M., Stötter J. (2005). Temporal variability of damage potential on<br />

roads as a conceptual contribution towards a short-term avalanche risk simulation. Natural<br />

Hazards and Earth System Sciences 5: 235-242.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 511


- Zischg A., Schober S., Sereinig N., Rauter M., Seymann C., Goldschmidt F., Bäk R.,<br />

Schleicher E. (2013). Monitoring the temporal development of natural hazard risks as a basis<br />

indicator for climate change adaptation. Natural Hazards 67: 1045-1058.<br />

DANKSAGUNG<br />

Die Studie wurde vom Bundesministerium für Land- und Forstwirtschaft, Umwelt und<br />

Wasserwirtschaft sowie vom Versicherungsverband Österreich unterstützt.<br />

512 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Event-based rapid landslide mapping including<br />

estimation of potential human impacts on landslide<br />

occurrence: a case study in Lower Austria<br />

Karin Gokesch 1 ; Thomas Glade 1 ; Joachim Schweigl 2<br />

ABSTRACT<br />

Within any landslide susceptibility, hazard and risk assessment, landslide inventories play a<br />

crucial part determining the quality of further analyses. The applied methodology describes a<br />

fast way of assessing landslides related to a heavy rainfall event in Lower Austria in May<br />

2014. Based on reported damages and aerial photographs a first inventory was created.<br />

Information on the location, extent and human activities potentially influencing landslide<br />

occurrence were assessed. The resulting event-based landslide inventory showed that a quick<br />

landslide mapping can provide an overview of affected areas following a rainfall event.<br />

The extent of the landslides was assessed allowing a better estimation of potential hazards<br />

accompanying heavy precipitation in the study area. Analyzing the potential human impact<br />

on landslide occurrence showed that numerous indirect and direct influences, such as slope<br />

undercutting, forest roads or drainage, can serve as preparatory and predisposing factors for<br />

landslide occurrence. Although the direct human impact on landslide-triggering could not be<br />

determined, landslide mapping immediately after the event provided detailed documentation<br />

of human influences on landslide occurrence.<br />

KEYWORDS<br />

landslide mapping; landslide inventory; event documentation; human impact<br />

INTRODUCTION AND BACKGROUND<br />

Landslide investigations are important when assessing hazard and risk in any region.<br />

Especially in alpine areas with often highly varying lithological, morphological and environmental<br />

settings, landslides are relevant phenomena influencing the landscape (Schweigl &<br />

Hervás 2009). Landslide mapping, as an essential part of any landslide susceptibility, hazard<br />

and risk assessment, is a crucial element determining the outcome and applicability of any<br />

final product such as detailed slope stability information or any kind of inventory, susceptibility,<br />

hazard or risk maps (Glade et al. 2005). Especially in the context of specific triggering<br />

factors, the assessment of all associated landslides triggered by respective hydro-meteorological<br />

events is of particular interest. An inventory of event-related landslides, including debris<br />

slides and flows, translational or rotational slides or rock falls (according to Cruden & Varnes<br />

1996), not only provides detailed information on the time of occurrence, but also on the<br />

1 University of Vienna, Geomorphological Systems and Risk Research, Vienna, AUSTRIA, karin.gokesch@univie.ac.at<br />

2 Geological Survey, Federal State Government of Lower Austria, AUSTRIA<br />

IP_<strong>2016</strong>_FP064<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 513


specific landslide types triggered by the particular heavy rainfall event (Guzzetti et al. 2012).<br />

A landslide inventory in general represents the total number of landslides and their location<br />

in a certain area and can also include information on the type of movement and/or the<br />

time-scale of each event (Guzzetti et al. 2000). Often such inventories cannot be generated<br />

directly following a triggering event because of insufficient resources to perform the immediate<br />

investigations, which results in restricted data availability (Guzzetti et al. 2012). Several<br />

methods for creating landslide inventories can be applied, depending on the specific aim of<br />

the study and data availability (Hervás 2013). For example, creating an inventory based on<br />

remote sensing data has, in the past few years, become a very common method of generating<br />

new and extending existing inventories (Petschko et al. 2010). Although the interpretation of<br />

aerial photographs or landform models based on laserscanning is a rather quick way of<br />

generating a landslide inventory, there are often no such data available directly after a<br />

triggering rainfall event (Ghosh et al. 2012). Furthermore, remote sensing data do usually not<br />

include exact information on the time of occurrence for each landside, but only the date on<br />

which the photograph or laserscan data were taken, thus only showing all landslides that<br />

occurred in the period prior to that date.<br />

Another method of creating landslide inventories is the interpretation of historical data from<br />

different archives (e. g. literature sources, chronicles, newspaper reports; Glade 2001, 2005)<br />

or expert knowledge (Guzzetti 2005). But certain issues of data availability and accuracy can<br />

also arise when analyzing different data sources (Petschko et al. 2014b). Compiling a<br />

landslide inventory can also be done by field-mapping. Even though field-mapping can be<br />

very time-consuming and often landslides cannot directly be identified in the field (due to<br />

e.g. vegetation, removal of dislocated material; Bardi et al. 2014), it also shows numerous<br />

advantages compared to other methods (Guzzetti et al. 2012). Field-mapping can be done<br />

directly after a certain triggering event, thus providing information on the time of occurrence<br />

and also the direct relation to the triggering event can be assessed.<br />

Furthermore field-mapping allows for a detailed investigation of potential human impacts on<br />

predisposing factors of landslide occurrence, such as slope undercutting, deforestation,<br />

drainage etc. to determine the role of humans within in landslide assessment. During<br />

field-work it is possible to examine, and often quite clearly to determine, which kind of<br />

factors might have influenced each single landslide leading to the slope failure. Therefore the<br />

method applied here presents a rapid way to record landslide occurrences to better estimate<br />

and further analyze the underlying factors and consequent process dynamics. The presented<br />

study aims to apply a quick way of mapping specific landslides related to a certain triggering<br />

event in order to create a detailed landslide inventory. Furthermore this inventory also<br />

includes information on potential human impact on landslide occurrence, thus providing a<br />

first estimation of potential human influences on slope stability and the subsequent effects on<br />

the potentially related hazards and risks. A fast inventory of landslides related to certain<br />

514 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


triggering event, as presented within this study, can further serve as valuable input for future<br />

risk assessment and management (Guzzetti et al. 2012).<br />

STUDY AREA<br />

The study area is located in the western part of Lower Austria (Figure 1) within the districts<br />

of Amstetten, Waidhofen/Ybbs, Scheibbs, Lilienfeld and St. Pölten. The landscape is characterized<br />

by forests (mainly in the southern part) and farmland (Petschko et al. 2014a) with<br />

settlements situated predominantly in the valley bottoms. The area is based mainly within the<br />

lithological units of the Flyschzone and the Northern Calcerous Alps, in particular including<br />

Limestone and Dolomite (Figure 1).<br />

Figure 1: Lithological units and general location of the study area in Lower Austria, Austria.<br />

The study area is situated in a transition zone between marine and continental climate<br />

(Petschko 2014), with an average annual precipitation of 1200-2000 mm including extreme<br />

single rainfall events (Hydrographic Service of Lower Austria 2014). Throughout the whole<br />

region the highest precipitation and temperature values are usually recorded during the late<br />

spring and summer months, from May to August (Figure 2). In 2014 a heavy rainfall event<br />

occurred during this generally wet season, with a maximum of total precipitation in May<br />

of 453 mm in Lunz/See (district Scheibbs) or 348 mm in Waidhofen/Ybbs (ZAMG 2014).<br />

This rainfall event represents an event with a 30-year recurrence interval (Hydrographic<br />

Service of Lower Austria 2014), and mainly occurred from 15th to 18th of May followed by<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 515


further precipitation peaks from 23rd to 28th of May, leading to numerous floods and<br />

landslides. This event thus served as a basis for the mapping and development of the<br />

event-based landslide inventory presented in this study.<br />

Figure 2: Average precipitation and temperature values in the districts of Amstetten, Lilienfeld, Scheibbs, St. Pölten and Waidhofen/Ybbs<br />

(modified after http://de.climate-data.org/index.html)<br />

METHODS<br />

Data acquisition<br />

The database used for generating the landslide inventory consists of several datasets provided<br />

by the provincial government of Lower Austria and the Geological Survey of Austria (Table<br />

1). 24 damage reports were included, that were already available shortly after the rainfall<br />

event. Furthermore aerial images of landslides, acquired during a helicopter flight carried out<br />

by the Geological Survey of Lower Austria, were used as a basis for the field investigations<br />

resulting in a total of 56 landslides. Each of these events were geographically located using<br />

Table 1: Available data.<br />

Level Year Resolution<br />

DGM & derivates District 2006-2009 1 m<br />

Orthophoto Federal state 2002/2005/2007 25 cm<br />

District boundaries District 2004 1:50 000<br />

Municipality boundaries Municipality 2004 1:50 000<br />

Rivers Federal state 2001 1:10 000<br />

Forest-cover Federal state 1986 1:50 000<br />

Road network Federal state a. n. 1:50 000<br />

Lithology Federal state 2011 1:200 000<br />

516 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


GPS coordinates, thus resulting in a first inventory of landslides including the location and<br />

number of events related to the May 2014 heavy rainfall event.<br />

Mapping<br />

Using these datasets as a basis, a detailed mapping to create the landslide inventory was<br />

carried out (Figure 3). Several field surveys were performed between May and September<br />

2014. Within the field surveys a specific mapping form was developed based on the work of<br />

Cruden and Varnes (1996) and Turner and Schuster (1996). This form includes information<br />

on the type of movement (rock fall, debris slide, debris flow or complex movements),<br />

geographical coordinates of landslide location, detailed extent and other relevant criteria such<br />

as land use, lithology, exposition and slope angle. Further parameters like the distance of the<br />

landslide to roads, buildings and watercourses as well as records of slope undercutting,<br />

deforestation or drainage were added in order to be able to estimate the potential human<br />

impact on landslide occurrence. In addition some information on planned and/or already<br />

performed mitigation measures were included to establish a highly detailed dataset for each<br />

landslide.<br />

Using the already available information on landslides reported by the Geological Survey of<br />

Lower Austria, a first mapping route was defined (Figure 3). This route served as a basis for<br />

the field work and was expanded adding surrounding areas and additional landslides based<br />

on conversations with locals and visible slope movements in the field, which had not been<br />

reported prior. The extent of all landslides near this route was measured, slope-profiles of<br />

each landslide were generated and numerous photographs were taken as further accompanying<br />

information. A specific code was assigned to each landslide to allow a precise identification<br />

within the landslide inventory.<br />

Figure 3: Flow-chart of the methodology for the mapping procedure.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 517


Based on this mapping procedure, the landslide extent was digitized taking also into account<br />

the different types of movement. In case of combined processes and complex movements, e.<br />

g. a debris slide resulting in a debris flow further downslope, the different process-types were<br />

separately mapped, measured and digitized to allow a more precise analysis of the process<br />

distributions.<br />

Delineation of mapped area<br />

For potential further analyses the completely mapped area, i. e. the area where a completeness<br />

of the inventory can be assumed, had to be delineated (Figure 3). Since not all areas<br />

within the whole study region of western Lower Austria could be fully mapped due to<br />

resource restrictions, certain adjustments to confine the mapped area were needed. Due to<br />

missing digital imagery and satellite data in the period directly after the May 2014 event and<br />

because of the urgent need to rapidly assess the landslide information, it was decided to<br />

specifically include only the areas that were actually investigated during the field surveys.<br />

This limitation is especially important, since the inventory and the related data on landslides<br />

in May 2014 might serve as input for further studies, for example for landslide susceptibility<br />

Figure 4: Detail of delineation of the mapped area, showing (a) the mapping route, (b) with a 1000 m radius representing maximum<br />

visibility, (c) with exclusion of forest areas and shadowing effects and (d) after including visibility of 50 m for forested areas<br />

representing the final mapped area.<br />

518 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


and hazard modeling. In such a case it is of major importance to only include these landslides<br />

and surrounding areas in the modeling analysis, which were covered within the field survey<br />

in order to get valid and therefore reliable results.<br />

Starting from the mapping route based on damage reports (Figure 4a) a maximum visibility<br />

of the landscape of 1000 m was assumed representing the average visible area taking into<br />

account a minimum landslide size of 100 m². This 1000 m buffer was added on all sides of the<br />

mapping route (Figure 4b). Additionally, densely forested parts were excluded due to reduced<br />

visibility. Within the mountainous area, shadowing effects of mountain ridges or valley<br />

corners were eliminated by reducing the total mapped area at the respective locations to the<br />

visible regions (Figure 4c). Finally within the remaining forest zones, a visibility of 50 m was<br />

assumed and implemented, representing the minimum visibility from the mapping route<br />

(Figure 4d). After these adjustments, the resulting study area represents the mapped area<br />

(Figure 5), where one can assume that all landslides that occurred during the May 2014<br />

rainfall event have been recognized, investigated and mapped. Thus the final landslide<br />

inventory can be regarded as complete in this area.<br />

RESULTS<br />

The investigated road network extends to a total of 292.76 km. After the abovementioned<br />

restriction (as deduced in Figure 4) the total mapped area covers a region of 112.57 km²<br />

(Figure 5). From the preliminary inventory of 56 already known events, 18 of these needed<br />

to be excluded prior to or in course of the field work. This had to be done because not all<br />

landslides identified on the aerial photographs could be specifically related to the May 2014<br />

rainfall event or because mapping in the field was not possible due to restricted access to the<br />

sites (e. g. non-accessible private properties). In some cases no landslide tracks could be found<br />

in the field, which also led to an elimination of these landslides from the inventory. In total<br />

52 sites were visited, but as mentioned above, not all could be mapped and thus have not<br />

been included in the inventory.<br />

With an addition of four landslides that were identified in the field but not formerly being<br />

recognized, a total of 42 landslides were investigated in detail. The landslide types included 28<br />

debris slides, one distinct debris flow, two rock falls and eleven complex movements where<br />

earth and debris slides turned into debris flows (Table 2).<br />

Table 2: Mapped landslides for each district distinguished by process types.<br />

Process type<br />

District<br />

Amstetten Lilienfeld Scheibbs St. Pölten<br />

Debris slide 7 3 2 11<br />

Debris flow 1 – – –<br />

Rock fall 1 – 1 –<br />

Complex movements 5 – 2 3<br />

∑ 14 3 5 14<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 519


Figure 5: Mapped area during the field investigations and landslide inventory related to the May 2014 heavy rainfall event in the<br />

investigated study region.<br />

The final landslide inventory (Figure 5) showed not only the dimensions and general<br />

geographic information for each landslide, but also the differences of landslide occurrence<br />

related to land use and the potential influences of human activities such as drainage, deforestation<br />

or road construction. Most of the landslides could be detected in forest areas (45 %),<br />

followed by grassland (24 %) as well as pasture (21 %). Especially the rather high abundance<br />

in forest areas indicates the importance to account for completeness of the inventory in<br />

forested zones thus only including areas that actually were mapped when delineating the<br />

study area for potential further analyses.<br />

Regarding the analysis of potential human impact on landslide occurrence, especially the<br />

scarp and source as well as the surrounding area was investigated for each landslide. Within<br />

the complex movements, only the combination of earth and debris slides and flows have<br />

been examined. Rock falls show different triggering dynamics and therefore did not contribute<br />

to complex movements. The vicinity to drainages or wells seems to act as a preparatory<br />

factor influencing the hydrology of a slope thus potentially changing its stability. Forest roads<br />

and slope undercutting near the scarp area might also have a potential effect on stability as<br />

well as deforestation. For all landslides all these factors were recorded and also the multiple<br />

occurrence of different potentially influencing factors was registered. Table 34 shows the<br />

results of this investigation in relation to the land use. The total numbers indicate that within<br />

520 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


the investigated study area forest roads might be regarded as the main potential influence on<br />

slope stability. The highest number of landslides occurring directly on or in the vicinity of<br />

forest roads was found in forest areas where the roads directly cut through the tree-cover and<br />

change the topography through cuts in upslope and fills in downslope directions. This can be<br />

interpreted as a potential decrease of local slope stability leading to potential failures. But also<br />

drainage outlets could be identified as potential influences on slope stability in seven cases.<br />

These outlets were located above or, in some cases, directly within the landslide-mass, which<br />

is why the drainage influence on the movement at the specific sites cannot be fully excluded.<br />

Table 3: Potential human influences on landslide occurrence for each land use type.<br />

Forest roads Deforestation Wells Drainage Slope undercutting<br />

Forest 13 1 1 1 1<br />

Grassland 4 – 2 2 3<br />

Pasture 5 – 1 4 –<br />

Garden 1 – – – 1<br />

∑ 23 1 4 7 5<br />

CONCLUSIONS<br />

To rapidly create a landslide inventory following a heavy rainfall event is often necessary to<br />

better implement response strategies and estimate the effects of such extreme precipitation.<br />

The methodology applied within this study gives the indication, that it is possible to implement<br />

a detailed inventory on the basis of damages reported directly after an event with rather<br />

limited resources (e.g. data and time restrictions). Nevertheless, this method has proven to<br />

provide valuable information, not only for direct reconstruction and subsequent mitigation<br />

measures, but also for a first approximation of the underlying process-dynamics and a<br />

preliminary overview of potential impacts of human activities on slope stability.<br />

The delineation of the study area, i. e. the completely mapped area, carried out within this<br />

study has proven to be a necessary step towards creating a database for potential further<br />

analyses. It is crucial to explicitly define the investigated area within any susceptibility, hazard<br />

or risk mapping in order to provide useful information for further modeling or validation of<br />

existing models. The method for defining the mapped area applied here did not consider<br />

administrative boundaries or river catchments, as it is often the case in landslide analyses.<br />

On the contrary these boundaries were completely neglected to create an inventory related<br />

to the May 2014 rainfall event, which spread over several districts and river catchments but<br />

did not cover them all. Still the tight clipping of the study area alongside the mapping route<br />

shows the restrictions of the applied methodology with only a small area being completely<br />

mapped and large forested areas not being included in the inventory. The applied field<br />

mapping based on known events showed, that a fast way of creating an event-related<br />

landslide-database is to investigate these events first. As an immediate second step, this<br />

information has to be expanded by designing a mapping route and then extending the<br />

existing data base entries in order to receive a final detailed and most complete inventory.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 521


It has to be mentioned that not all landslides that occurred during the May 2014 event could<br />

be mapped, because such wide-spread mapping would have required much more time. When<br />

mapping landslides it is often crucial to act quickly within the given resources, since remedial<br />

works along the transport corridors often have to be done immediately following the event.<br />

Therefore it is necessary to investigate the events directly after their initiation and not wait<br />

until sufficient data is available. Even though not all landslides in the area could be mapped,<br />

a detailed inventory within the defined study area was established. This inventory contains,<br />

besides the specific time of occurrence for each recorded landslide, also detailed information<br />

on single landslide locations and the human activities that have a potential impact on their<br />

occurrence.<br />

The evaluation of the potential human impact showed that numerous activities including<br />

slope undercutting, drainage or deforestation have likely influenced slope stability. But still<br />

these relations are just field-based observations and have not been assessed in full detail.<br />

Indeed, a more profound analysis is required. Furthermore, to better understand the exact<br />

dynamics between the different processes leading to a landslide, further analyses are<br />

indispensable. The inventory established within this research only outlines the different<br />

potential impacts on slope stability within the study area and does not give a definite relation<br />

of human activities to landslide occurrence. However, it is a valuable source for practitioners<br />

and for further more detailed analysis.<br />

ACKNOWLEDGEMENTS<br />

The authors thank the Provincial Government of Lower Austria and the Geological Survey of<br />

Lower Austria for the support and the provision of data as well as the municipalities and the<br />

governing mayors for their support during the field work. Further we would like to thank our<br />

colleagues from the research project “MoNOE – Method development for landslide susceptibility<br />

maps for Lower Austria” for their assistance and the reviewers for constructive<br />

comments.<br />

522 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


REFERENCES<br />

- Bardi F., Frodella W., Ciampalini A., Bianchini S., Del Ventisette C., Gigli G., Fanti R., Moretti<br />

S., Basile G. & Casagli N. (2014): Integration between ground based and satellite SAR data<br />

in landslide mapping: The San Fratello case study, in: Geomorphology 223, S. 45-60.<br />

- Cruden D. M. & Varnes D. J. (1996): Landslide types and processes. TRB Special Report,<br />

National Academy Press, Washington, S. 36-75.<br />

- Glade T. (2001): Landslide hazard assessment and historical landslide data - an inseparable<br />

couple? In: Glade T., Albini P. & Frances F. (Hrsg.): The use of historical data in natural hazard<br />

assessments, in: Advances of Technological and Natural Hazard Research, Kluwer, S. 153-169.<br />

- Glade T. (2005): Der Nutzen der historischen Daten für die naturwissenschaftliche Gefahrenzonierung,<br />

in: Schenk W. & Dix A. (Hrsg.): Naturkatastrophen und Naturrisiken in der<br />

vorindustriellen Zeit und ihre Auswirkungen auf Siedlungen und Kulturlandschaft.- Siedlungsforschung.<br />

Archäologie - Geschichte - Geographie 23, Selbstverlag ARKUM e.V. Bonn, S.<br />

9-18.<br />

- Glade T., Anderson M. & Crozier M.J. (Hrsg..) (2005): Landslide hazard and risk. Wiley.<br />

- Ghosh S., van Westen C. J., Carranza E. J. M., Jetten V. G., Cardinali M., Rossi M. &<br />

Guzzetti F. (2012): Generating event-based landslide maps in a data-scarce Himalayan<br />

environment for estimating temporal and magnitude probabilities, in: Engineering Geology<br />

128, S. 49-62.<br />

- Guzzetti F., Mondini A. C., Cardinali M., Fiorucci F., Santangelo M. & Chang K.-T. (2012):<br />

Landslide inventory maps: New tool for an old problem, in: Earth-Science Reviews 112, S.<br />

42-66.<br />

- Guzzetti F. (2005): Landslide hazard and risk assessment. Dissertation, Rheinisch Friedrich-Wilhelms<br />

Universität, Bonn.<br />

- Guzzetti F., Cardinali M., Reichenbach P. & Carrara A. (2000): Comparing Landslide Maps: A<br />

Case Study in the Upper Tiber River Basin, Central Italy, in: Environmental Management 25<br />

(3), S. 247-263.<br />

- Hervás J. (2013): Landslide Inventory, in: Bobrowsky P. T. (Hrsg.): Encyclopedia of Natural<br />

Hazards. Springer-Verlag, Dordrecht, S. 610-611.<br />

- Hydrographical Survey of Austria (Hydrographischer Dienst Österreich) (2014): N2-Auswertung<br />

– Niederschlag 15. Mai 2014, 16. Mai 2014, 28. Mai 2104.(online: http://www.noel.gv.<br />

at/Externeseiten/wasserstand/analysen/nlv/ereignisse_nlv.htm)<br />

- Petschko H. (2014): Challenges and solutions of modelling landslide susceptibility in<br />

heterogeneous regions – preparing maps for spatial planning in Lower Austria. Dissertation,<br />

Universität Wien.<br />

- Petschko H., Bell R. & Glade T. (2014a): Relative age estimation at landslide mapping on -<br />

LiDAR derivates: revealing the applicability of land cover data in statistical susceptibility<br />

modeling, in: Sassa K. et al. (Hrsg.): Landslide Science for a Safer Geoenvironment, Vol. 2,<br />

Springer, S. 337-343.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 523


- Petschko H., Brenning A., Bell R., Goetz J. & Glade T. (2014b): Assessing the quality of<br />

landslide susceptibility maps – case study Lower Austria, in: Natural Hazards and Earth<br />

System Sciences 14, S. 95-118.<br />

- Petschko H., Glade T., Bell R., Schweigl J. & Pomaroli G. (2010): Landslide inventories for<br />

regional early warning systems, in: Malet J. P., Glade T. & Casagli N. (Hrsg.): Proceedings of<br />

the International Conference “Mountain Risks: Bringing Science to Society”, CERG Editions,<br />

Strasbourg, S. 277-282.<br />

- Schweigl J. & Hervás J. (2009): Landslide Mapping in Austria. JRC Scientific and Technical<br />

Reports, European Commission, Luxemburg.<br />

- Turner A. K. & Schuster R. L. (Hrsg.) (1996): Landslides – Investigation and Mitigation.<br />

Special Report 247, Transportation Research Board, National Research Council, National<br />

Academy of Sciences.<br />

- ZAMG (2014): Witterungsübersicht Mai 2014 [online: http://www.zamg.ac.at/zamgWeb/<br />

klima/klimarueckblick/archive/2014/05/wiewars05-14.pdf, Zugriff 26.02.2015, 12.45 Uhr]<br />

524 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Integral protection concept "Bielzug"<br />

Integrales Schutzkonzept Bielzug<br />

Nicole Oggier, MSc. 2 ; Christoph Graf, dipl. Geogr. 1 ; Reynald Delaloye, Prof. Dr. 3 ; André Burkard, dipl. Kult.ing. 2<br />

ABSTRACT<br />

The basic disposition to natural hazards and the resulting risk situation in many Alpine<br />

catchments has changed significantly in recent years, partially due to climate change. Six<br />

torrents located in the highly-affected Matter Valley in Canton Valais, Switzerland (communities<br />

of St. Niklaus and Randa), the Grosse Grabe, Fallzug, Geisstriftbach, Birchbach and<br />

Dorfbach, were studied in 2013. During analysis, different debris flow runout scenarios were<br />

developed and modelled using the RAMMS::DEBRIS FLOW 1.5 model. Furthermore, a<br />

revised hazard map was created. The combination of computational modelling and field<br />

verification was quite useful in the project, representing an important and fruitful link<br />

between scientific research and practice. Based on the identified protection deficits, additional<br />

protection measures were developed for settlement areas, individual objects (e.g. power lines)<br />

and transportation routes (road and railway). The Bielzug example shows that structural<br />

measures are not always sufficient to protect settlements or transportation routes. A com -<br />

prehensive risk management that accounts for maintenance, spatial planning, organisational<br />

and structural measures is also essential.<br />

ZUSAMMENFASSUNG<br />

Die Grunddisposition für Naturgefahren und die daraus resultierende Gefahrenlage in vielen<br />

Alpinen Wildbacheinzugsgebieten hat sich in den letzten Jahren deutlich verändert, auch<br />

wegen des Klimawandels. In einer stark davon betroffenen Region in den Schweizer Alpen<br />

wurden 2013 die sechs Wildbäche Grosse Grabe, Bielzug, Fallzug, Geisstriftbach, Birchbach<br />

und Dorfbach (Gemeinden St. Niklaus und Randa im Mattertal (VS)) detailliert untersucht.<br />

Im Rahmen der Gefahrenanalyse wurden Szenarien für Murgangereignisse erarbeitet, diese<br />

mit dem Murgangmodell RAMMS::DEBRIS FLOW 1.5 modelliert und eine überarbeitete<br />

Gefahrenkarte erstellt. Die Kombination Modellierungen mit Simulationsprogrammen und<br />

Verifizierung durch Feldbegehungen hat sich im Rahmen des vorgestellten Projekts sehr gut<br />

bewährt. Sie stellt somit eine wichtige und gewinnbringende Verbindung zwischen wissenschaftlicher<br />

Grundlagenforschung und Praxis dar. Basierend auf den erkannten Schutzdefiziten<br />

wurden ergänzende Schutzmassnahmen zur Sicherung von Siedlungsgebieten, besonders<br />

schadenanfälligen Einzelobjekten (u.a. Stromleitungen) und Verkehrswegen (Strasse und<br />

Bahn) erarbeitet. Das Beispiel Bielzug zeigt auf, dass bauliche Massnahmen zum Schutz von<br />

Siedlungen und Verkehrswegen alleine nicht immer ausreichen. Es braucht ein umfassendes<br />

1 WSL Swiss Federal Research Institute Birmensdorf, SWITZERLAND, christoph.graf@wsl.ch<br />

2 wasser/schnee/lawinen, Ingenieurbüro A. Burkard AG, Brig-Glis, SWITZERLAND<br />

3 University of Fribourg, Departement of Geosciences, Unit of Geography, Fribourg, SWITZERLAND<br />

IP_<strong>2016</strong>_FP070<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 525


Risikomanagement, welches Unterhalts-, raumplanerische, organisatorische und bauliche<br />

Massnahmen beinhaltet.<br />

KEYWORDS<br />

debris flow; rock glacier;hazard assessment; integrated protection concept; emergency<br />

management<br />

EINLEITUNG<br />

In den letzten Jahrzehnten hat sich die Grunddisposition in vielen Alpinen Wildbacheinzugsgebieten<br />

aufgrund des Klimawandels und der damit verbundenen steigenden Temperaturen<br />

schleichend verändert. Bedingt durch das Auftauen von Permafrost in hochalpinem Gelände<br />

sind Siedlungsgebiete und Verkehrswege einer sich ständig verändernden neuen Gefahrenlage<br />

ausgesetzt, so auch im Mattertal (Delaloye et al., 2013) in den Schweizer Alpen (Abb. 1A).<br />

Lockermaterialeinträge aus destabilisierten Blockgletschern in den Einzugsgebieten steiler<br />

Wildbäche an der Westflanke der Mischabelgruppe führten seit 2010 vermehrt zu Murgangereignissen,<br />

welche in den letzten Jahren temporäre Evakuierungen von Anwohnern und<br />

Sperrungen von Verkehrswegen nötig machten (Graf et al., 2013). Um möglichst fundierte<br />

Informationen über die Veränderungen in solchen Gebieten sammeln zu können, diese zu<br />

analysieren und als Grundlage für zukünftige Entscheide bereitzustellen, sind verschiedene<br />

Forschergruppen mit Untersuchungen im Mattertal (VS) beschäftigt (Delaloye et al., 2013,<br />

Graf et al., 2013).<br />

Aufgrund der veränderten Gefahrensituation wurden 2013 im Auftrag der Gemeinden St.<br />

Niklaus und Randa und in enger Zusammenarbeit mit der kantonalen Dienststelle für Wald<br />

und Landschaft die sechs Wildbäche Grosse Grabe, Bielzug, Fallzug, Geisstriftbach, Birchbach<br />

und Dorfbach detailliert untersucht (Abb. 1B). Im Rahmen der Vorstudie Sicherheitskonzept<br />

Wildbäche Mattertal (arge wasser/schnee/lawinen, Geoplan AG, Bumann Reinhold GmbH,<br />

2013) wurden Szenarien für Murgangereignisse erarbeitet, diese mit dem Murgangmodell<br />

RAMMS::DEBRIS FLOW 1.5 (Graf et al., 2013, Christen et al., 2012) modelliert und eine<br />

überarbeitete Gefahrenkarte erstellt. Zur Zielsetzung gehörte die Beurteilung möglicher<br />

baulicher Schutzmassnahmen sowie temporärer Vorkehrungen zur Sicherung von Siedlungsgebieten,<br />

besonders schadenanfälligen Einzelobjekten (u.a. Stromleitungen) und Verkehrswegen<br />

(Strasse und Bahn). Das Vorgehen und die Methoden sind auf andere Wildbäche<br />

anwendbar.<br />

Basierend auf den Resultaten der oben beschriebenen Vorstudie wurden in der Zwischenzeit<br />

in einzelnen Bächen bereits detailliertere Projekte ausgearbeitet oder sind in Planung. Im<br />

Herbst 2014 wurde z. B. im Bielzug (Abb. 1B/C) ein Alarmsystem für die Siedlung und<br />

Verkehrsachsen in Betrieb genommen. Zudem werden im Bielzug ab Herbst 2015 bauliche<br />

Massnahmen innerhalb von ca. 2 Jahren umgesetzt (Abb. 1D). Ein Murgang im Fallzug<br />

verschüttete 2014 die Gleise der Matterhorn Gotthard Bahn (MGB) meterhoch und verur-<br />

526 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


sachte einen Schaden von ca. 400‘000 CHF. Der Fallzug hat bei der MGB eine hohe Dringlichkeit<br />

und der Vorschlag zur Ausarbeitung eines Wasserbauprojekts wurde 2014 an die<br />

zuständige kantonale Dienststelle weitergeleitet. In den restlichen Bächen sind zurzeit keine<br />

weiteren Massnahmen geplant.<br />

Abbildung 1: A: Lage Bielzug. B: Die sechs Einzugsgebiete der Vorstudie Sicherheitskonzept Wildbäche Mattertal. C: Übersicht<br />

Einzugsgebiet Bielzug. D: Geplante Schutzmassnahmen im Kegelbereich des Bielzugs.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 527


In der Folge werden die angewandten Methoden (Abb. 2) und Resultate der Vorstudie am<br />

Beispiel des Bielzugs (Abb. 1 C/D) erläutert.<br />

METHODEN<br />

Das Vorgehen und die dazugehörigen Referenzen sind in Abbildung 2 schematisch zusammengefasst.<br />

Um sich einen Überblick über die Aktivität in den Wildbächen zu verschaffen,<br />

wurde für jeden Bach ein Ereigniskataster zusammengestellt. Als Quellen dienten die<br />

Ereigniskataster des Kantons, der Gemeinden St. Niklaus und Randa, der Forschungsanstalt<br />

für Wald, Schnee und Landschaft (WSL) und der MGB. Alle Schutzbauten im Kegelbereich<br />

wurden aufgenommen und hinsichtlich ihres Zustandes gemäss der Methodik PROTECT<br />

(Romang et al., 2008) beurteilt. Um die massgebenden Szenarien für jeden Wildbach<br />

definieren zu können, wurde anschliessend die Charakteristik der Wildbäche bestimmt.<br />

Diese beinhaltet die Morphometrie, die Hochwasserabflüsse, die Karte der Phänomene und<br />

die Gefahrenpotentiale wie z. B. Gletscher, Blockgletscher, geologische Prozesse oder das<br />

Schwemmholzpotential. Den Unsicherheiten bei der Beurteilung und den Berechnungen<br />

wurde mit der Angabe von Bandbreiten Rechnung getragen, wie dies in der Ereignisanalyse<br />

zum Hochwasser 2005 (Bezzola und Hegg, 2008) empfohlen wird. Die Hochwasserabflüsse<br />

wurden mit HAKESCH (BAFU, 2003) bestimmt. In der Karte der Phänomene wurden die im<br />

Gelände sichtbaren Spuren und morphologischen Merkmale (stumme Zeugen) sowie<br />

Angaben zur Disposition von gefährlichen Prozessen erfasst und dargestellt. Damit liefert die<br />

Karte wichtige Hinweise bezüglich der Aktivität und Gefährlichkeit des untersuchten<br />

Gebietes. Die aktuelle Gefährdung durch Gletscher wurde in Zusammenarbeit mit der<br />

Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie VAW (ETHZ) beurteilt. Zudem<br />

dienten die Angaben aus dem „Inventar der gefährlichen Gletscher in der Schweiz“ als<br />

Grundlage (Raymond et al., 2003). Informationen über die jährliche Schuttproduktion, die<br />

Bewegungsgeschwindigkeiten, die Abbruchgefahr von Blockgletscherfronten, die Mächtigkeit<br />

etc. diverser Blockgletscher im Mattertal lieferten laufende Studien der Universität Fribourg<br />

(Delaloye et al., 2013). Für die Beurteilung der aktuellen geologischen Gefährdung durch<br />

Hanginstabilitäten (Rutschungen) aus Gebieten oberhalb der Waldgrenze dienten teilweise<br />

unveröffentlichte Interpretationskarten von InSAR-Daten (Satelliten-Daten) des Bundesamts<br />

für Umwelt (BAFU). Für die Abschätzung der potentiellen Materialmobilisierungen aus<br />

Hangzonen unterhalb der Permafrostzone durch Spontanrutschungen und Hangmuren<br />

wurde projektintern eine Methodik entwickelt. Aufgrund von Erfahrungswerten wurde<br />

davon ausgegangen, dass lediglich jene Hangbereiche Material in das Hauptgerinne liefern<br />

können, welche in einer Pufferzone von 150 m um das Hauptgerinne liegen. In dieser<br />

Pufferzone wurden die Mächtigkeit der Lockermaterialbedeckung aufgrund der Hangneigung<br />

für alle Flächen ohne Felsen abgeschätzt, welche eine Neigung > 20° aufweisen oder nicht<br />

stark bewaldet sind. Die daraus erhaltene Karte mit Angaben zu Vorkommen und Mächtigkeit<br />

des Lockergesteins diente als Grundlage zur Abschätzung der potentiellen Materialmobilisierung<br />

aus den Hangzonen. Die Abschätzung der Geschiebemengen wurde mit der<br />

Methodik SEDEX (Frick et al., 2011) durchgeführt. Die Geschiebefracht für ein 100-jährliches<br />

528 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Ereignis (GF100) wurde zudem gemäss dem Flussdiagramm nach Spreafico et al. (1996)<br />

abgeschätzt und das Ergebnis mit den Resultaten nach SEDEX verglichen und beurteilt.<br />

Ausserdem wurde auch das mobilisierbare Schwemmholzpotential abgeschätzt.<br />

Ereigniskataster<br />

-Kanton<br />

-Gemeinde<br />

-WSL<br />

-MGB<br />

Schutzbauten<br />

gemäss Methodik PROTECT - Wirkung<br />

von technischen Schutzmassnahmen,<br />

Teil E, Romang et al. 2008<br />

Charakteristik Wildbäche<br />

-Morphometrie<br />

-Längenprofil<br />

-Hochwasserabflüsse<br />

(gemäss HAKESCH, BWG 2003)<br />

-Karte der Phänomene<br />

(gemäss Empfehlung „Symbolbaukasten<br />

...zur Kartierung der Phänomene“, BWG et<br />

...al. 1995)<br />

Gefahrenpotentiale<br />

-Gletscher (Inventar der gefährlichen Gletscher in<br />

...der Schweiz, VAW, ETHZ)<br />

-Blockgletscher (Uni Fribourg)<br />

-Hanginstabilitäten(InSAR-Daten, BAFU,<br />

...unveröffentlicht)<br />

-Schwemmholz (gemäss „Schwemmholz und<br />

...Hochwasser“, Rickenmann 1997)<br />

-Geschiebemengen (SEDEX, Frick et al. 2011)<br />

Definierung Szenarien<br />

-Auslösebedingungen<br />

-Mobilisierung<br />

-Materialeintrag<br />

-Ereigniskubaturen<br />

-Ereignisabläufe<br />

-Murgangtyp<br />

-Prozesslimitierende Faktoren<br />

-zukünftige Entwicklung<br />

Simulationen<br />

-mit RAMMS::DEBRIS FLOW 1.5<br />

-anschliessende Kontrolle im Feld<br />

Erstellung Intensitätskarten (Ik)<br />

IK’s für ein 30-, 100- und 300- jährliches sowie ein extremes<br />

Ereignis (EHQ) unter Berücksichtigung der bestehenden<br />

Schutzbauten<br />

gemäss Empfehlung „Berücksichtigung der Hochwassergefahren bei<br />

raumwirksamen Tätigkeiten“, BWW et al.1997<br />

Erstellung Gefahrenkarte (Gfk)<br />

gemäss Empfehlung „Berücksichtigung der Hochwassergefahren<br />

bei raumwirksamen Tätigkeiten“, BWW et al.1997<br />

Definierung Schutzziele<br />

Grundlage Schutzzielmatrix gemäss Empfehlung „Raumplanung<br />

und Naturgefahren“, ARE et al. 2005<br />

Keine Massnahmen<br />

ja<br />

Schutzziel<br />

erreicht?<br />

nein<br />

Massnahmen:<br />

-Unterhalt<br />

-raumplanerisch<br />

-organisatorisch<br />

-baulich<br />

Abbildung 2: Angewandte Methoden<br />

Basierend auf diesen Grundlagen wurden die massgebenden Gefahrenszenarien für jeden<br />

Wildbach bestimmt. Für die Szenarien wurden die Ereigniskubatur, die Auslösebedingungen,<br />

der Materialeintrag, die Mobilisierung, die Ereignisabläufe (Anzahl Schübe, Ablagerungen im<br />

Gerinne), der Murgangtyp (granular oder flüssig), die prozesslimitierenden Faktoren (Wasser,<br />

Geschiebe) und ein qualitativer Beschrieb der zukünftigen Entwicklung vom Geschiebepoten-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 529


tial im Einzugsgebiet definiert. Anhand der Murgangszenarien und mit Hilfe des Murgangmodells<br />

RAMMS::DEBRIS FLOW 1.5 (Christen et al., 2012) wurden für alle Bäche Simulationen<br />

durchgeführt. Das Modell wurde mit Hilfe von kartierten Ereignissen und den Erkenntnissen<br />

und Erfahrungen aus Graf et al. (2013) kalibriert. Hierbei wurden die bestehenden Schutzmassnahmen<br />

berücksichtigt. Schwachstellen entlang des Gerinnes wurden im Feld aufgenommen,<br />

mit den Ausbruchstellen der RAMMS-Modellierungen verglichen und deren<br />

Relevanz für Gerinneausbrüche in Abhängigkeit der Wiederkehrperiode beurteilt. Die<br />

Erstellung der Intensitätskarten Hochwasser und Murgang erfolgte anhand der Modellierungsresultate<br />

sowie einer Plausibilisierung im Feld. Aus den erarbeiteten Intensitätskarten<br />

wurden schliesslich die Gefahrenkarten erstellt.<br />

Die Schutzziele wurden projektspezifisch festgelegt. Als Grundlage diente die Schutzzielmatrix<br />

gemäss der Bundesempfehlung „Raumplanung und Naturgefahren“ (ARE et al., 2005).<br />

Bauzonen (Dorfbereiche), Freizeitanlagen und Campingplätze sollen einen vollständigen<br />

Schutz bis zu einem 100-jährlichen Murgang- oder Hochwasserereignis (M 100<br />

/HQ 100<br />

)<br />

aufweisen. Die Kantonsstrasse, Einzelgebäude, Infrastrukturanlagen sowie Hochspannungsleitungen<br />

sollen bei einem 30-jährlichen Ereignis (M 30<br />

/HQ 30<br />

) einen vollständigen Schutz<br />

aufweisen. Durch die Überlagerung der Intensitätskarten mit der Schutzzielkarte wurden<br />

Gebiete mit einem Schutzdefizit ermittelt.<br />

Aufgrund der durchgeführten Untersuchungen in den Einzugsgebieten und den vorhandenen<br />

Schutzdefiziten resultierte ein Massnahmenkatalog zur Verbesserung des Schutzes.<br />

Unterhalts-, raumplanerische, organisatorische und bauliche Massnahmen wurden dabei<br />

berücksichtigt.<br />

RESULTATE<br />

Im folgenden Kapitel werden am Beispiel des Bielzugs die Resultate der Untersuchung<br />

zusammengefasst und dargestellt. Gemäss dem Ereigniskataster ist im Bielzug durchschnittlich<br />

alle 7 Jahre mit Murgängen zu rechnen, welche einen Teil des Geschiebes im Gerinne<br />

mobilisieren. Die jüngsten Ereignisse haben gezeigt, dass sich im Bielzug Murgänge auch<br />

ohne Niederschläge bilden können. Aufgrund der überdurchschnittlichen Schneeschmelze<br />

und der gleichzeitig hohen Aktivität des Blockgletschers Gugla ereignete sich im Juni 2013<br />

eine mehrtägige Murgangserie. Die Blockgletschergeschwindigkeit hat sich rezent sehr stark<br />

beschleunigt und lag 2013 zwischen 4 und 17 m/Jahr in dem 100 m breiten und 100 - 150 m<br />

langen, jetzt gespaltenen Stirnbereich (Tab. 1). Durch die aktuell (2013-2014) hohe jährliche<br />

Schuttproduktion des Blockgletschers, die rund 8‘000 m 3 /Jahr erreichte (Delaloye et al.,<br />

2013, Kummert and Delaloye, 2015), kann sich Geschiebe rasch wieder in Zwischendepots<br />

ansammeln (Tab. 1).<br />

530 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


1<br />

Tabelle 1: Entwicklung der mittleren Geschwindigkeit der Stirn [m/Jahr] und der Schuttproduktion des Blockgletschers Gugla [m 3 /Jahr].<br />

Die Geschwindigkeiten wurden bis 2009 mittels Luftbildanalysen bestimmt. Seit 2007 werden GPS-Messungen durchgeführt. Die<br />

Schuttproduktion ist das abgeschätzte jährliche Volumen von Lockermaterial, das durch Blockgletscherbewegung und Eisschmelze an<br />

der Blockgletscherfront frei geworden ist.<br />

2<br />

1<br />

Mittlere<br />

Geschwindigkeit<br />

Blockgletscherstirn<br />

[m/Jahr]<br />

Schuttproduktion<br />

[m 3 /Jahr]<br />

1968-<br />

1982<br />

Die Untersuchungen im Bielzug ergaben die in Tabelle 2 aufgeführten, massgebenden<br />

Murgangszenarien. Grössere Abbrüche von Geschiebepaketen aus dem Blockgletscher<br />

wurden im EHQ-Szenario (>300-jährlich) berücksichtigt. Die Plausibilisierung der Geschiebemengen<br />

des Bielzugs hat gezeigt, dass die Feststofffracht für ein 100-jährliches Ereignis<br />

(GF100), welche gemäss Spreafico et al. (1996) abgeschätzt wurde (38‘000 m 3 ), unter der<br />

Bandbreite der mit SEDEX bestimmten Ereigniskubatur liegt (Tab. 2). Massgebend für diesen<br />

Unterschied sind die Art der Materialeinträge durch den Blockgletscher Gugla, welche bei<br />

Spreafico et al. (1996) nicht berücksichtigt werden. Die abgeschätzten Kubaturen werden<br />

daher als plausibel eingestuft.<br />

1982-<br />

1995<br />

1995-<br />

2005<br />

2005-<br />

2009<br />

2009-<br />

2013<br />

0.35 0.5 1.4 3.0 6.0 10.8<br />

250 400 1‘100 2‘300 4‘700 8‘500<br />

2013 Tendenz (2014-2033) Tendenz<br />

(nach<br />

2033)<br />

Möglicherweise zuerst<br />

ansteigend, dann<br />

konstant bis abnehmend<br />

Tabelle 2: Abfluss, massgebende/maximale Geschiebemengen/Murgangvolumina und grösster erwarteter Murgangschub für die<br />

untersuchten Szenarien.<br />

Szenario<br />

Hochwasserabfluss<br />

(Reinwasser)<br />

max. Geschiebefracht /<br />

Murgangvolumen<br />

2<br />

Grösster<br />

Murgangschub<br />

30-jährlich 9-12 m 3 /s 10‘000-20‘000 m 3 10‘000 m 3<br />

100-jährlich 13-18 m 3 /s 40‘000-60‘000 m 3 20‘000 m 3<br />

300-jährlich 19-26 m 3 /s 60‘000-80‘000 m 3 30‘000 m 3<br />

> 300-jährlich 26-36 m 3 /s 80‘000-120’000 m 3 90‘000 m 3<br />

abnehmend<br />

Die in Tabelle 2 aufgelisteten Szenarien dienten als Grundlage für die Simulationen mit<br />

RAMMS::DEBRIS FLOW 1.5 (Christen et al., 2012). Basierend auf den Erfahrungen im<br />

Dorfbach (Graf et al. 2013) und anhand von Ereignissen wurde das Modell numerisch<br />

kalibriert. Im Rahmen der Vorstudie wurden die repräsentativsten Simulationen pro<br />

Wiederkehrperiode und die entsprechenden Fliesswege, Fliesshöhen und Fliessgeschwindigkeiten<br />

dargestellt. Demnach ist ab einem 30-jährlichen Ereignis mit Gerinneausbrüchen<br />

unterhalb der bestehenden Schutzmauer beim Kegelhals zu rechnen, falls sich dort Geschiebe<br />

zwischenlagert. Aufgrund des zu geringen Retentionsvolumens des Geschiebesammlers muss<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 531


auch hier mit einem Überströmen gerechnet werden. Ab dem 100-jährlichen Ereignis muss<br />

zudem mit Ausbrüchen am Kegelhals gerechnet werden. Die Resultate wurden im Rahmen<br />

einer Feldbegehung gutachterlich verifiziert. Basierend auf den beiden Beurteilungen wurde<br />

für jede Wiederkehrperiode eine Intensitätskarte erstellt. Gemäss Empfehlung (BWW et al.,<br />

1997) werden für deren Erstellung die Ablagerungshöhe und die Fliessgeschwindigkeit<br />

berücksichtigt. In Absprache mit dem BAFU wurde beschlossen, bei der Intensitätsklassierung<br />

nicht die Ablagerungshöhe zu berücksichtigen, sondern die maximale Fliesshöhe, da diese<br />

massgebend für die Gefährdung ist.<br />

Die überarbeitete Gefahrenkarte zeigt nur eine geringe Abweichung gegenüber der früheren<br />

Version. Einzig die Flächenanteile der verschiedenen Gefahrenstufen haben sich leicht<br />

geändert. So ist das nördliche Siedlungsgebiet von Herbriggen stärker durch Murgänge<br />

betroffen als bisher angenommen. Dies ist vor allem auf die Berücksichtigung der Entwicklung<br />

des Blockgletschers Gugla zurückzuführen.<br />

1<br />

Tabelle 3: Resultierende Schutzdefizite (gekennzeichnet mit ‚ x ‘) und die erreichten Schutzziele (gekennzeichnet mit ‚ √ ‘) aufgrund der<br />

Intensitätskarten vor Massnahmen basierend auf der Bundesempfehlung „Raumplanung und Naturgefahren“ (ARE, BWG, BUWAL,<br />

2005).<br />

Kategorie<br />

30-jährliches<br />

Szenario<br />

100-jährliches<br />

Szenario<br />

300-jährliches<br />

Szenario<br />

EHQ<br />

(>300-jährlich)<br />

Verkehrswege und Leitungen (Kat 2.3)<br />

Kantonsstrasse ! ! ! "<br />

Bahnlinie ! ! ! "<br />

Hochspannungsleitung a " ! ! "<br />

Hochspannungsleitung b ! ! ! "<br />

Siedlungsgebiet (Kat. 3.2)<br />

2<br />

Herbriggen " ! ! !<br />

Basierend auf den Intensitätskarten und der Schutzzielmatrix aus der Bundesempfehlung<br />

„Raumplanung und Naturgefahren“ (ARE et al., 2005) wurden die Schutzdefizite des<br />

Bielzugs bestimmt (Tab. 3). Um die Schutzdefizite beheben zu können, sind Massnahmen<br />

notwendig (Abb. 1D). Aus Platzgründen können im Bielzug bauliche Massnahmen nur für<br />

30- bis 100-jährliche Ereignisse dimensioniert werden. Sie umfassen eine Erhöhung der<br />

bestehenden Leitmauer am Kegelhals, einen zusätzlichen Ablenkdamm, eine Vergrösserung<br />

des bestehenden Geschiebesammlers und eine Verschalung des MGB-Durchlasses (vgl. Abb.<br />

1D). Diese Massnahmen alleine genügend jedoch nicht zum Schutz vor seltenen und sehr<br />

seltenen Ereignissen und schützen insbesondere die Verkehrswege ungenügend. Der<br />

Überlastfall wird daher mit organisatorischen Massnahmen abgedeckt. Für die Reduktion des<br />

verbleibenden Risikos wurde eine Warnanlage für Bahn und Strasse erstellt (Abb. 1D). Mit<br />

einer Kombination verschiedener Sensoren (Geophone, Murgangkombisensor, Pegelsonde)<br />

werden mittlere und grosse Ereignisse detektiert und die Verkehrswege werden im Ereignis-<br />

532 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


fall mittels Lichtsignalen automatisch gesperrt. Das Risikomanagement der Gemeinde St.<br />

Niklaus beinhaltet eine Notfallplanung, in welcher einerseits Beobachtungspunkte im<br />

Einzugsgebiet für eine verbesserte Frühwarnung und andererseits Interventionsmassnahmen<br />

für rasches und effizientes Handeln festgelegt worden sind.<br />

SCHLUSSFOLGERUNGEN<br />

Die Vorstudie hat aufgezeigt, dass sich das Geschiebeangebot aufgrund der Aktivität eines<br />

Blockgletschers massgebend verändern kann. Die Gefahrenkarte in solchen Wildbächen sollte<br />

daher regelmässig überprüft und wenn nötig nachgeführt werden. Dies zeigt auch, dass eine<br />

Gefahrenkarte grundsätzlich nicht als statisch angesehen werden darf. Die Kombination von<br />

numerischer Modellierungen und Plausibilisierung der Resultate durch Feldbegehungen hat<br />

sich im Rahmen der Vorstudie Mattertal sehr gut bewährt. Dies stellt im vorliegenden Fall<br />

auch ein Bindeglied zwischen wissenschaftlicher Grundlagenforschung und der Praxis dar.<br />

Oft bieten sich aufgrund der örtlichen Verhältnisse bei Wildbächen primär bauliche Massnahmen<br />

an. Das Beispiel Bielzug hat jedoch aufgezeigt, dass bauliche Massnahmen zum Schutz<br />

von Siedlungen und Verkehrswegen nicht immer ausreichen. Es braucht daher ein Risikomanagement,<br />

welches Unterhalts-, raumplanerische, organisatorische und bauliche Massnahmen<br />

beinhaltet.<br />

REFERENZEN<br />

- arge wasser/schnee/lawinen, Geoplan AG, Bumann Reinhold GmbH (2013). Vorstudie<br />

Sicherheitskonzept Wildbäche im Matteral, Brig-Glis, Steg, Naters, Dezember 2013.<br />

- Bezzola G.R., Hegg C. (eds.) (2008). Ereignisanalyse Hochwasser 2005, Teil 2 - Analyse von<br />

Prozessen, Massnahmen und Gefahrengrundlagen. Bundesamt für Umwelt BAFU, Eidgenössische<br />

Forschungsanstalt WSL. Umwelt-Wissen Nr. 0825: 429 S.<br />

- Bundesamt für Umwelt, Wald und Landschaft BUWAL, Bundesamt für Wasser und Geologie<br />

BWG (1995). Symbolbaukasten zur Kartierung der Phänomene, 41 S.<br />

- Bundesamt für Raumentwicklung ARE, Bundesamt für Wasser und Geologie BWG,<br />

Bundesamt für Umwelt, Wald und Landschaft BUWAL (2005). Empfehlung - Raumplanung<br />

und Naturgefahren. 48 S.<br />

- Bundesamt für Wasser und Geologie BWG (2003). Hochwasserabschätzung in schweizerischen<br />

Einzugsgebieten, Berichte des BWG, Serie Wasser Nr. 4, Bern 2003, 118 S.<br />

- Bundesamt für Wasserwirtschaft BWW, Bundesamt für Raumplanung BRP, Bundesamt für<br />

Umwelt, Wald und Landschaft BUWAL (1997). Berücksichtigung der Hochwassergefahren bei<br />

raumwirksamen Tätigkeiten, Empfehlung Naturgefahren, Biel, 1997, 32 S.<br />

- Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell,<br />

B.W., Gerber, W., Deubelbeiss, Y., Feistl, T. & Volkwein, A. (2012). Integral hazard management<br />

using a unified software environment: numerical simulation tool "RAMMS" for<br />

gravitational natural hazards. In: Koboltschnig, G.; Hübl, J.; Braun, J. (eds.) 12th Congress<br />

<strong>INTERPRAEVENT</strong>, 23-26 April 2012 Grenoble - France. Proceedings. Vol. 1. Klagenfurt,<br />

International Research Society <strong>INTERPRAEVENT</strong>. 77-86.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 533


- Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M., & Gachet, S., (2013).<br />

Rapidly moving rock glaciers in Mattertal. In: Graf, C.(Red.) Mattertal - ein Tal in Bewegung.<br />

Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 9. Juni<br />

bis 1. Juli 2011, St. Niklaus. Birmensdorf, Eidg. Forschungsanstalt WSL. 21-31.<br />

- Frick, E., Kienholz, H., Romang, H. (2011). SEDEX. Anwenderhandbuch. Geographica<br />

Bernensia, P 42 128 S.<br />

- Graf, C., Deubelbeiss, Y., Bühler, Y., Meier, L., McArdell, B., Christen, M., Bartelt, P. (2013).<br />

Gefahrenkartierung Mattertal: Grundlagenbeschaffung und numerische Modellierung von<br />

Murgängen. In: Graf, C. (Red.) Mattertal - ein Tal in Bewegung. Publikation zur Jahrestagung<br />

der Schweizerischen Geomorphologischen Gesellschaft 29. Juni - 1. Juli 2011, St. Niklaus.<br />

Birmensdorf, Eidg. Forschungsanstalt WSL. 85-112.<br />

- Kummert, M. & Delaloye, R. (2015). Quantifying sediment transfer between the front of an<br />

active alpine rock glacier and a torrential gully. In: Jasiewicz J., Zwolinski Zb., Mitasova H.,<br />

Hengl T. (eds.) Geomorphometry for Geosciences. Adam Mickiewicz University in Poznan -<br />

Institute of Geoecology and Geoinformation, International Society for Geomorphometry,<br />

Poznan, 2015. 193 - 196.<br />

- Raymond, M., Wegmann, M. und Funk, M. (2003). Inventar der gefährlichen Gletscher in<br />

der Schweiz. Mitteilungen Nr. 182 der Versuchsanstalt für Wasserbau, Hydrologie und<br />

Glaziologie, der ETH Zürich. Herausgeber: Prof. Dr.-Ing. H.-E. Minor.<br />

- Rickenmann, D. (1997). Empirical Relationships for Debris Flows. Natural Hazards. 47 - 77.<br />

- Romang, H. (Ed.) (2008). Wirkung von Schutzmassnahmen. Nationale Plattform für<br />

Naturgefahren PLANAT, Bern. 289 S.<br />

- Spreafico, M., Lehmann, CH., Naef, O. (1996). Empfehlung zur Abschätzung von Feststofffrachten<br />

in Wildbächen, Teil 1, Handbuch, Mitteilung Nr. 4, GHO, Bern.<br />

534 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Integrated natural hazards protection concept Vitznau<br />

LU - Case study Plattenbach<br />

Benjamin Hohermuth, dipl. Umwelting. 2 ; Christoph Graf, dipl. Geogr. 1 ; Jörn Heilig, dipl. Ing. (TU) 3<br />

ABSTRACT<br />

Vitznau (LU) is located at the foot of the south flank of the pre-alpine Rigi mountain. Eight<br />

debris-flow and flood prone torrents run through the village into the Lake Lucerne. The work<br />

presented herein focuses on the Plattenbach. Within the revision of the integrated protection<br />

concept numerical simulations for debris flow and floods were incorporated into the planning<br />

and design of protection measures. This case study illustrates this approach which is still not<br />

standard practice in Switzerland. The effectiveness of debris-flow mitigation structures was<br />

successfully evaluated using the new No-Flux feature of the RApid Mass Movement<br />

Simulation (RAMMS). The original layout could be optimized in a hazard protection and<br />

economical aspect. Flood events with less sediment mobilization were simulated using the<br />

hydro-numerical model BASEMENT.<br />

The final design of the retention dam provides protection against debris flows with up to<br />

300-year return period. Additional measures on the fan allow for the conveyance of up to a<br />

100-year flood. In case of extreme events a robust system behaviour is expected.<br />

KEYWORDS<br />

integrated hazard management; protection concept; debris flow; RAMMS; BASEMENT<br />

INTRODUCTION<br />

Present-day numerical simulation tools allow for in-depth evaluations of hazard scenarios.<br />

Their use lately gained increasing importance in hazard and risk assessment. While the<br />

number of simulation tools has enlarged, the need for improvement of their practical<br />

application still exists. Especially the often extensive calibration of model parameters and the<br />

interpretation and further use of simulation results remains challenging. This paper presents a<br />

case study of an integrated natural hazard protection concept in which numerical simulations<br />

were used in an early project stage to evaluate existing measures and assist the design of new<br />

structures.<br />

The village of Vitznau (LU) is located at the bottom of the pre-alpine Rigi mountain in Central<br />

Switzerland. Eight steep mountain torrents run through the village. All torrents are prone to<br />

debris flows. Reworked hazards maps revealed protection deficits, showing weak points along<br />

the torrents. Based on these findings a risk-based prioritization by the Canton of Lucerne<br />

1 WSL Swiss Federal Research Institute, Birmensdorf, SWITZERLAND, christoph.graf@wsl.ch<br />

2 ETH Zurich Laboratory of Hydraulics, Hydrology and Glaciology, Zürich, SWITZERLAND<br />

3 HOLINGER AG, Liestal, SWITZERLAND<br />

IP_<strong>2016</strong>_FP111<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 535


educed the project to Altdorfbach, Kalibach, Widibach and Plattenbach. This paper focuses<br />

on the Plattenbach. The project perimeter also includes the adjoining Mühlebach (Fig. 1) for<br />

flood processes.<br />

Figure 1: Overview of Plattenbach catchment area (red line); landslide areas marked in red.<br />

The Plattenbach drains part of the steep southern flank of the Rigi. The bedded psephites on<br />

the southern flank are covered by detritus of variable thickness. Three instable zones<br />

“Stollenegg”, “Brand” and “Glinge” (Fig. 1) are prone to landslide activity. Main and most<br />

active slide area is “Stollenegg”. In case of long-lasting precipitation an acceleration of the<br />

sliding process is expected. The sediments transform to channelized debris-flows, estimated<br />

surge volume and maximum discharge are shown in Tab. 1. The channel runs predominantly<br />

on bedrock, is partially deeply incised, and passes through several narrow points. After<br />

crossing the railway embankment of the Rigibahn the Plattenbach runs for about 120 m in a<br />

culvert before the confluence with the Mühlebach. The last bottleneck is the culvert under<br />

the main road shortly before it flows into the Lake of Lucerne (Fig. 1).<br />

A total of three culverts on the fan and natural narrow points in the transit section limit the<br />

conveyance of floods and debris-flow surges. Debris or driftwood clogging at these narrow<br />

points poses a large damage potential for the today densely populated fan. As observed in the<br />

536 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Table 1: Flood and debris-flow data for the Plattenbach. Values in brackets are Mühlebach flood discharges and bed-loads. Data from<br />

Holinger AG & NDR Consult (2013)<br />

Return period 30-year 100-year 300-year Extreme<br />

Flood event<br />

Discharge [m 3 /s] 12 (+10) 20 (+19) 32 (+26) 42 (+34)<br />

Bed-load volume [m 3 ] 10 (+1'000) 200 (+2'000) 800 (+7'000) 4000 (+20'000)<br />

Debris flow<br />

Total volume [m 3 ] 5'040 16'700 31'300 79'000<br />

Surges [-] 2 3 4 3<br />

Surge volume [m 3 ] 2'520 5'567 7'825 26'333<br />

Peak Discharge [m 3 /s] 70 130 170 420<br />

2005 event discharge form the Mühlebach and backwater effects from Lake Lucerne need to<br />

be considered as well.<br />

Only a few historical events are known for the Plattenbach. Two of them are documented.<br />

The one from 1910 is the largest recorded event. In 2005 a similar sequence of events with<br />

lower debris volumes and minor consequences took place. In both cases intense and<br />

long-lasting rainfall with a 100-year return period caused slope destabilization in the<br />

“Stollenegg” area. In 1910, about 15’000 m 3 of the total landslide mass of 30 – 40’000 m 3<br />

formed a debris flow and deposited on the western part of the fan. No debris or log jam at the<br />

already existing railroad embankment was reported. Information on flow depth and flow<br />

velocity is missing. At this time the western part of the fan was almost not inhabited expect of<br />

the old school building that was damaged and the protestant church that was eventually<br />

touched but not damaged because of elevated and distal location. In August 2005 a volume of<br />

500-1000 m 3 debris material was destabilized in the “Stollenegg” area. Toe erosion led to<br />

fluvial sediment transport and deposition in the culvert under the main road and at the outlet<br />

to the lake.<br />

METHODS<br />

In this project numerical models were used to assess different hazard processes in the initial<br />

state. In a second step the same numerical models were employed to evaluate the effectiveness<br />

of different natural hazard protection measures. The models were also used to assist the<br />

design of the protection measures.<br />

NUMERICAL MODELS<br />

The numerical models used in this work are the RApid Mass Movement Simulation<br />

(RAMMS) for debris-flow computations and BASEMENT for hydraulic flow and sediment<br />

transport simulations. RAMMS is based on the 2D shallow water equations and allows the<br />

computation of debris-flow runout on complex terrain (Christen et al. 2012). Debris flows are<br />

modelled as one single phase and the well-known rheological friction law of Voellmy-Salm is<br />

employed. The two empirical friction parameters were calibrated with the documented<br />

debris-flow event in 1910 (Hohermuth 2014). To account for different debris-flow mixtures<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 537


the evaluation of protection measures was performed with a parameter range rather than<br />

single values (Hohermuth & Graf 2014). Digital Elevation Model (DEM) quality and resolution<br />

characterize the natural terrain and are therefore the key input parameters. The DEM used<br />

for the simulations is based on LIDAR data collected within the project and was verified in<br />

the field (Hohermuth 2014). The simulations in RAMMS were performed on a grid with<br />

1x1m spatial resolution.<br />

RAMMS 1.6.20 features so-called No-Flux cells, which allow to define impermeable flow<br />

areas such as buildings and retention dams. This feature was used for the first time in the<br />

work presented herein to evaluate protection measures i.e. deflection walls in a densely<br />

populated area. Fig. 2 shows the comparison of two different deflection wall designs. The<br />

simulations also allow to estimate the impact pressure and thus help with adequate design.<br />

Figure 2: Comparison of debris-flow runout with and without deflection walls. Simulation results from RAMMS 1.6.20 with No-Flux cells.<br />

Deflection walls were dismissed in a later project stage.<br />

BASEMENT is a simulation environment developed at the Laboratory of Hydraulics, Hydrology<br />

and Glaciology (Vetsch et al. 2013). For the computations within this project the<br />

2D module BASEPlane V2.4 was used. Bed load transport can be modelled with various<br />

empirical equations. Gravitational transport is included with a simple geometric approach<br />

based on critical slope angles. There are no flood marks available for calibration and the<br />

hydrology of the 2005 flood event is only poorly documented. However, a rough calibration<br />

was performed to match the general sediment deposition behavior observed in 2005.<br />

Despite lacking a thorough calibration the simulations allow for a relative comparison of<br />

different flood protection measures.<br />

OPTIMIZATION OF EXISTING DEBRIS-FLOW PROTECTION CONCEPT<br />

Preliminary studies (Holinger AG & NDR Consult 2013) propose the following set of<br />

measures for debris-flow protection:<br />

– Small check dams and slope drainage in the upper catchment “Stollenegg” (realized<br />

as emergency measure in 2012)<br />

– Sediment trap with V = 10’600 m 3 downstream of the “Brand” slope instability<br />

– Reinforcement of railway embankment to allow for sediment retention, V = 2’600 m 3<br />

538 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– Emergency corridor for events with more than a 100-year return period<br />

The proposed measures were tested in RAMMS. The analysis showed that the original<br />

sediment retention volume is insufficient. In a 300-year debris flow –despite other measures<br />

– the remaining intensity would be above the acceptable limit. Based on simulation results<br />

the retention capacity of the check dam “Brand” was tripled to 33’000 m 3 , what allows for<br />

a complete retention of sediments for the “Brand” and “Stollenegg” slope instability up to a<br />

300-year return period.<br />

A sensitivity analysis of the hydrograph shape and maximum peak discharge showed that<br />

the capacity of the channel in the transitional zone is sufficient even for extreme events.<br />

This superseded measures to increase the channel capacity which were considered in an<br />

earlier project stage.<br />

The structural condition of the railway embankment makes a reinforcement to withstand<br />

debris-flow impact expensive. Backed up by numerical simulations it was concluded that<br />

debris flows originating from the “Glinge” slope instability can mostly be conveyed by the<br />

Plattenbach channel and do not lead to unacceptable intensities. Therefore measures in the<br />

transitional zone and sediment retention at the embankment were rejected. However to<br />

avoid clogging of the culvert a drift wood rack is intended upstream of the railway line.<br />

The optimized concept consists of:<br />

– Sediment trap with V = 33’000 m 3 downstream of the “Brand” slope instability<br />

– Driftwood rack at the embankment culvert (no sediment retention)<br />

– Emergency corridor for extreme events (R > 300-years)<br />

In contrast to the original concept, the optimized concept provides protection up to a<br />

300-year debris flow.<br />

EVALUATION OF DIFFERENT FLOOD PROTECTION CONCEPTS<br />

For regular flood events with moderate sediment mobilization additional measures are<br />

needed. The capacity of the culvert under the main road is 30 m 3 /s for clear water flow.<br />

This is insufficient in a 100-year event (concurrence of flood events in both Plattenbach and<br />

Mühlebach). After the hydraulic jump at the confluence of Platten- and Mühlebach sediment<br />

deposition occurs. Additional deposition takes place in the “Seestrasse” culvert after the<br />

confluence due to the smaller channel slope. This could be observed during the flood event in<br />

2005. The four different concepts shown in Fig. 3 were evaluated with the help of 2D<br />

simulations in BASEMENT. All concepts feature lateral walls (red in Fig. 3) and additional<br />

measures as follows:<br />

– V1: Capacity increase: The conveyance of the culvert under the main road is increased. The<br />

culvert width is increased from 2.2 m to 7.5 m, this creates enough capacity even with<br />

large sediment deposits. Capacity increase at the schoolhouse bridge.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 539


– V2: Side weir and diversion tunnel Mühlebach: Up to 10 m 3 /s are diverted from the<br />

Mühlebach during a flood event.<br />

– V3: Weir and diversion tunnel Plattenbach: A diversion weir inside the existing culvert<br />

“Zihlstrasse” diverts up to 15 m 3 /s. Capacity increase at the schoolhouse bridge.<br />

– V4: Flood depression overflow corridor: An flood corridor is created by an abatement of the<br />

main street. Additional object protection measures guide the water through the small park<br />

into the lake. Capacity increase at the schoolhouse bridge<br />

The concepts were assessed based on the criteria hydraulics, performance in extreme events,<br />

ecological impact and feasibility and costs. The large land acquisition is the biggest downside<br />

of concept V1. Numerical simulations and sediment transport calculations showed that in V2<br />

the maximum diverted discharge is limited to 10 m 3 /s to avoid sediment deposition after the<br />

diversion. Thus an increase of the discharge capacity of the “Seestrasse” culvert is still needed<br />

what makes this the most expensive concept. The approach flow of the side weir in V3 is<br />

supercritical. In general, side weirs are not recommended for approach flow Froude numbers<br />

Figure 3: Illustration of four different protection concepts (versions V1 - V4).<br />

F o<br />

> 0.75 due to their poor discharge characteristics (Bühlmann & Boes 2014). Sediment<br />

transport and the location inside the culvert further complicate the situation. Hydraulic model<br />

test would be required and the excess capacity during an extreme event is limited. Additionally<br />

concept V3 features high construction costs. The flood corridor in V4 will be in operation<br />

every 50-100 years. Discharges exceeding the capacity of the “Seestrasse” culvert are routed<br />

540 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


through the flood corridor into the lake. The low construction costs and the robust behavior<br />

during extreme events make V4 the best option.<br />

FINAL DESIGN<br />

Measures against debris flow<br />

The main requirements of the check dam “Brand” are retention, filtration and dehydration of<br />

sediments in case of debris flows and large floods. Due to spatial restrictions a conventional<br />

20 m high concrete structure was chosen over a series of net barriers.<br />

The retention volume is 33'000 m 3 for a sediment deposition slope of 7%. A 10 m wide<br />

overflow section is included in the middle of the 74 m long dam crest. To facilitate filtration<br />

and dehydration of debris a slot will be set up in the middle of the dam. Smaller flood events<br />

are conveyed by a gully at the bottom of the slot. An upstream driftwood / debris rack<br />

prevents early clogging of the slot during small events. The construction of a 700 m long new<br />

forest road allows access for construction and maintenance.<br />

To account for potential driftwood from the lower catchment a new driftwood rack upstream<br />

of the railway culvert is planned. A total of 15 bars with a max. height of 2 m and a bar<br />

spacing of 0.8 m are planned. The right turn of the Plattenbach just upstream of the culvert<br />

allows for almost parallel approach flow. Thus backwater effects at the rack can be minimized.<br />

Flood protection measures<br />

The final design consists of lateral walls along the Plattenbach and the Mühlebach (max.<br />

height 1.5 m) as well as of object protection measures. The abatement of the main road to<br />

generate a flood corridor illustrated in Fig.4 exhibits good synergies with a simultaneous<br />

project to slow down transit traffic.<br />

The capacity of the schoolhouse bridge across the Mühlebach has to be increased by the<br />

relocation of a small step and a local abatement of the river bed.<br />

Management of the overload event<br />

Although the measures provide protection up to a 300-year debris-flow event or a 100-year<br />

flood respectively, the overload scenario (extreme event) has to be evaluated. Numerical<br />

simulations show comparable flow depth and extent with and without the sediment<br />

retention “Brand” for extreme debris flows. It is assumed that the check dam is completely<br />

filled after the second surge and has no effect on third and last surge. Even the failure of the<br />

completely filled check dam does not lead to significantly higher intensities, because the<br />

intensities are in both cases mainly caused by the failure of the railway embankment. It can<br />

be concluded, that the measures do not aggravate the situation in an extreme debris-flow<br />

event. The project suggests the creation of an “overload zone” in which special regulations<br />

(building regulations, evacuation plans) apply.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 541


Figure 4: Schematic illustration of the flood corridor. Diversion of discharge exceeding the culvert capacity into Lake Lucerne. Deflection<br />

walls drawn in red (Picture Holinger 2015).<br />

For overload flood scenarios the capacity of the flood corridor is exceeded and low flood<br />

intensities occur along the main road. The flood corridor still has an attenuating effect during<br />

extreme events.<br />

Cost Benefit Analysis<br />

The total construction cost of all sediment and flood protection measures was estimated to<br />

12.8 Mio. CHF whereas the risk reduction per annum was (based on EconoMe 2.0) approximated<br />

to 740’000 CHF/a (Plattenbach) and 232’000 CHF/a (Mühlebach). Thus a benefit-cost<br />

ratio from 2.9 (Plattenbach) and 6.0 (Mühlebach) is achieved with a design lifespan of 100<br />

years and an interest rate of 2% (Holinger AG 2015).<br />

CONCLUSIONS<br />

Numerical debris-flow simulations in RAMMS were successfully employed to evaluate and<br />

optimize an existing protection concept. The tool allows to assess the effectiveness of<br />

protection measures. The optimizations allow for a higher protection level (up to 300-year<br />

return period) with the same cost-benefit ratio as the initial concept. The simulations help to<br />

test the robustness and resilience of the measures in an extreme event even though some<br />

limitations apply (Hohermuth & Graf 2014).<br />

542 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


BASEMENT was used to investigate bed level changes during flood events. The simulations<br />

were used to assist the design of a flood corridor and additional measures which form a<br />

robust system that can handle floods with a broad range of sediment volumes.<br />

REFERENCES<br />

- Bühlmann, M., Boes, R.M. (2014). Lateral flood discharge at rivers: Concepts and challenges.<br />

Proc. Intl. River Flow Conference (Schleiss, A.J., De Cesare, G., Franca, M.J., Pfister, M.,<br />

eds.), ISBN 978-1-138-02674-2, Taylor & Francis Group, London, UK: 1799-1806.<br />

- Christen M., Bühler Y., Bartelt P., Leine R., Glover J., Schweizer A., Graf C., McArdell B.W.,<br />

Gerber W., Deubelbeiss Y., Feistl T., Volkwein A. (2012). Integral Hazard Management Using a<br />

Unified Software Environment-Numerical Simulation Tool „RAMMS“ for Gravitational<br />

Natural Hazards. 12th Congress Interpraevent 2012.<br />

- Hohermuth B. (2014). Integrales Schutzkonzept Plattenbach Vitznau – Murgangsimulationen<br />

mit RAMMS (Integrated Natural Hazard Protection Concept Plattenbach Vitznau – Debris-flow<br />

Simulations with RAMMS). Master Thesis, Swiss Federal Institute for Forest, Snow<br />

and Landscape Research WSL and Laboratory of Hydraulics Hydrology and Glaciology (VAW),<br />

ETH Zurich (in German, unpublished).<br />

- Hohermuth B., Graf C. (2014). Einsatz numerischer Murgangsimulationen am Beispiel des<br />

integralen Schutzkonzepts Plattenbach Vitznau (The use of numerical debris-flow<br />

simulations – case study Plattenbach). Wasser Energie Luft 106(4), 285-290 (in German)<br />

- Holinger AG, NDR Consult. (2013). Integrales Schutzkonzept Vitznauer Bäche (Integral<br />

Natural Hazard Protection Concept „Vitznauer Bäche“). Technical Report (in German).<br />

- Holinger AG (2015). Integrales Schutzkonzept Plattenbach / Mühlebach (Integral Natural<br />

Hazard Protection Concept Plattenbach / Mühlebach. Technical Report (in German)<br />

- Vetsch D., Siviglia A., Ehrbar D., Faccini M., Gerber M., Kammerer S., Peter S., Vonwiller L.,<br />

Volz C., Farshi D., Mueller R., Rousselot P., Veprek R., Faeh R. (2006-2013). BASEMENT-Basic<br />

Simulation Environment for Computation of Environmental Flow and Natural Hazard<br />

Simulation. Version 2.4. ETH Zurich. Available from http://www.basement.ethz.ch<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 543


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Unveiling the avalanche activity in the Upper Goms<br />

Valley (Switzerland) over the past 400 years using<br />

tree-ring records<br />

Sébastien Guillet 1 ; Markus Stoffel 1 ; Christophe Corona 2<br />

ABSTRACT<br />

Knowing the spatial extent of past high magnitude snow-avalanches on poorly documented<br />

forested slopes is essential for land planners as it may help to define with better accuracy<br />

avalanche hazards maps. Dendrogeomorphology has proven to be an efficient method to<br />

reconstruct spatio-temporal activity of snow avalanches on forested slopes for which limited<br />

historical avalanche records are available. Based on tree-ring records, we reconstructed<br />

avalanche activity over the past 400 years for two slopes located above the village of<br />

Oberwald in the Upper Goms Valley (Valais, Switzerland). This high resolution chronology is,<br />

to date, one of the longest records ever elaborated for the Swiss Alps. 566 trees presenting<br />

growth disturbances related to avalanche activity have been sampled and analyzed. Analyses<br />

of tree-ring growth disturbances allowed identification of 38 events and the mapping of their<br />

spatial extent for the period 1600-2014. 12 snow-avalanches traveled through the slopes and<br />

stopped at or very close to the valley bottom in 1689, 1720, 1793, 1813, 1880, 1937, 1951,<br />

1999, and 2003.<br />

KEYWORDS<br />

snow-avalanches; tree-rings; dendrogeomorphology; forested slopes<br />

INTRODUCTION<br />

Snow avalanches are a major natural hazard in the Swiss Alps. Every year, they affect<br />

transport infrastructure and may endanger settlements and threaten human life. Over the last<br />

century, urban sprawl in mountains areas of Switzerland in combination with growing<br />

demands for mobility and recreational activities have increased avalanche risk significantly. In<br />

a society with ever increasing avalanche risk and safety expectations, risk acceptance of<br />

modern societies has been equally decreasing over recent decades. Substantial efforts have<br />

therefore been deployed over the last decades to build databases listing past avalanche events<br />

and providing accurate information regarding their magnitude, spatial extent and return<br />

period. However, for most of the Swiss Alps historical records of past avalanche activity are<br />

sparse and scarce before the 20th century. Past avalanche activity is especially poorly<br />

1 Dendrolab.ch, Institute of Geological Sciences, University of Berne, SWITZERLAND, sebastien,guillet@dendrolab.ch<br />

2 Geolab, Université Blaise Pascal, 4 rue Ledru F-63057 Clermont-Ferrand, FRANCE<br />

544 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP056


documented in the Upper Goms valley (canton of Valais) where no long chronologies of snow<br />

avalanches currently exist.<br />

Dendrogeomorphology is the science using information contained in tree rings to reconstruct<br />

the activity of past natural hazards in time and space. On forested slopes, this approach has<br />

proven successful to compensate for the scarcity of written sources (Corona et al., 2012).<br />

Over the past 40 years, several dendrogeomorphic studies have indeed demonstrated that<br />

trees impacted by mass movements, such as avalanches, landslides, rockfall or debris flows,<br />

record the event in the form of growth disturbances (Stoffel and Bollschweiler, 2008). Since<br />

trees form one increment ring per year in temperate climates it is possible to date the<br />

occurrence of the geomorphic process with an annual resolution.<br />

Trees growing in the upper Goms valley are particularly suitable for dendrogeomorphic analyses.<br />

Indeed the upper Goms valley holds some of the oldest forest stands of Switzerland, thus<br />

offering a unique opportunity and first-hand information to document past avalanche activity<br />

over several centuries. In 2013 the Canton of Valais mandated the dendrolab.ch to perform<br />

an important study with the goal of reconstructing spatio-temporal avalanche activity on<br />

several slopes located on the south-facing side of the Goms Valley (Oberwald, Geschinen,<br />

Münster). Here we present the results of the dendrogeomorphic study for two avalanche<br />

paths located above the village of Oberwald.<br />

METHODS<br />

Study site: The Oberwald avalanche paths (46°32’N, 8°20’E) are located on the south-facing<br />

slope of the upper part of the Goms Valley in the Swiss Central Alps (Canton of Valais,<br />

Switzerland, Figure 1A-D). According to the nearby weather station of Ulrichen (46°5’N,<br />

8°31’E, 1346 m asl), annual temperature is 3.3°C for the period 1981-2010 and annual<br />

precipitation amounts to 1212 mm. Winter temperature (DJF) is -6.6°C while winter<br />

precipitation amounts to 300 mm. Between November and April precipitation falls primarily<br />

as snow and average annual snowfall reaches 578 cm for the period 1999–2010 (MeteoSwiss,<br />

2014). At the study site, snow avalanches are commonly triggered from several non-forested<br />

release zones located between 1680 and 2200 m asl. The forested slope located underneath<br />

the starting zones is mainly composed of European larch (Larix decidua) and Norway spruce<br />

(Picea abies) and can be subdivided into two units.<br />

The first unit (OB1) is a vast area (68 ha) extending from the Jostbach torrent to the<br />

Rätischbach torrent. The canton of Valais has defined 6 main avalanche tracks within this<br />

slope (Figure 1C). OB1 is characterized by a double segmentation. Between 1900 and 1680<br />

m, the slope profile is characterized by gentle slopes (15° on average). Below 1680 m, slope<br />

angles increase significantly and exceed 20°. We therefore assume that new avalanches can<br />

be triggered from these locations. This hypothesis is further supported by several rows of<br />

avalanche barriers put in place by cantonal authorities in this portion of the slope to stabilize<br />

snowpack and to prevent the release of avalanches.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 545


The second unit (OB2) extends from the Rätischbach torrent to the Restaurant Rhonequelle<br />

(61 ha). Three main avalanche paths have been defined by the Canton of Valais for this sector<br />

(Figure 1C). In 1951, due to the damages caused to three houses after the release of an<br />

avalanche, a deflecting barrier was built in the runout zone of the three avalanches paths to<br />

protect the village. The Oberwald avalanche tracks do not only pose a direct threat to the<br />

village of Oberwald, they also menace the Matterhorn-Gotthard Bahn (MGB) railway line<br />

connecting Brig (Canton of Valais) to Andermatt (Canton of Uri).<br />

Figure 1: Location of the study site in (A) Switzerland and (B) in the Goms Valley. (C) Spatial distribution of the sampled trees. The black<br />

and red squares respectively refer to the spatial extent of the sites OB1 and OB2. The colored areas represent the hazard map defined by<br />

the canton of Valais. Red indicates an area that is exposed to considerable danger with frequent avalanches (average return period of<br />

30 years or less). In the blue colored area, avalanches are less frequent (more than 30 year average return period) and accompanied by<br />

only small compression forces of less than 30 kN/m². The danger in the yellow area is low. Yellow is typically used to designate the<br />

runout zone of powder avalanches. (D) Photograph illustrating the investigated avalanche paths.<br />

Sampling strategy: A total of 566 trees (1140 increment cores, 10 cross sections) have been<br />

sampled during the summers of 2013 and 2014 (Figure 1C). A minimum of two cores were<br />

extracted per tree, one perpendicular to the slope and one in the downslope direction. GPS<br />

coordinates were recorded for each tree with 5 m precision. Trees presenting obvious<br />

evidence of snow avalanches, such as decapitation, tilting and injury, were preferentially<br />

targeted. Following the recent recommendations made by Stoffel et al. (2013) and Stoffel and<br />

Corona (2014), we selected old trees in order to extend the reconstruction of past avalanche<br />

events as far as possible but also considered younger trees to take account of the loss in<br />

sensitivity of older trees to record damage (Šilhán and Stoffel, 2015). Trees located close to<br />

546 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


sectors with intense forest management activities (logging) were not sampled to avoid the<br />

inclusion of growth disturbances not related with avalanche activity in the final avalanche<br />

reconstruction.<br />

Laboratory analyses: All samples were prepared following standard dendrochronological<br />

procedures (Bräker, 2002). Cores were mounted on wooden sticks and then polished with<br />

sandpaper. Tree rings were counted and analyzed using a LINTAB-5 positioning table<br />

connected to a Leica stereomicroscope. Individual tree-ring series were cross-dated using two<br />

local reference chronologies (Büntgen et al., 2006, Schweingruber, 1974) so as to correct our<br />

series for possibly missing rings. In a second step, all cores were visually inspected under a<br />

binocular to identify growth disturbances (GD) induced by snow avalanches. Typically the<br />

reactions most commonly observed in tree rings following an avalanche event are: (1) an<br />

abrupt growth suppression (GS) following apex loss or the break-off of branches, (2) the<br />

formation of compression wood (CW) after tilting of the trunk, (3) the production of callus<br />

tissue (CT) and tangential rows of traumatic resin ducts (TRD) after an impact . We assigned a<br />

score to each GD following the recommendations made by Kogelnig-Mayer et al. (2011) to<br />

distinguish between weak (intensity class 1), medium (intensity class 2), and strong (intensity<br />

class 3) reactions and clear evidence of injuries (intensity class 4).<br />

Reconstruction of avalanche events: After the identification and the dating of the GD, we<br />

developed the avalanche reconstruction using the weighted index factor (Wit) developed by<br />

Kogelnig-Mayer et al. (2011). The Wit gives a weight to each GD based on its intensity. It is<br />

expressed as follows:<br />

nn<br />

WWWWWW = [(∑ GGGGGG4 ∗ 7) + (∑ GGGGGG3 ∗ 5) + (∑ GGGGGG2 ∗ 3) + (∑ GGGGGG1 ∗ 1)] ∗ ∑ nn<br />

ii=1 RR tt<br />

∑nn<br />

ii=1<br />

where GDI (1 to 4)= Sum of trees showing clear evidence of injury (intensity class 4), strong<br />

reactions (intensity class 3), medium signals (intensity class 2), weak signals (intensity<br />

class 1), respectively.<br />

nn<br />

ii=1<br />

nn<br />

ii=1<br />

nn<br />

ii=1<br />

ii=1 AA tt<br />

R t<br />

= Total amount of trees reacting in year t.<br />

A t<br />

= Number of sampled trees being alive (sample size) in year t.<br />

All the years with Wit ≥1 were considered as avalanche events. In addition, and in order to be<br />

sure that the thresholds chosen were not too restrictive, we also carefully examined all years<br />

with a 0.8≥ Wit ≤1. The inclusion of avalanche events in the database did not only rely on the<br />

Wit index, but was also based on the spatial distribution of impacted trees. When the spatial<br />

pattern of affected trees is not meaningful (in terms of avalanche trajectory), we rejected<br />

events even if the Wit ≥ 1 criteria was clearly fulfilled.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 547


In a last methodological step, we attempted to assess the detection of past events and to<br />

separate signal from noise. Noise is defined here as all growth disturbances that cannot be<br />

related to avalanche activity but to insect outbreaks. In the Goms valley and more widely in<br />

the Alps, larch trees have been documented to suffer from larch budmoth (Zeiraphera diniana<br />

Gn.) outbreaks such that tree growth remains suppressed for several years (Esper et al.,<br />

2007). Since growth suppression is also typical in trees with decapitation, a careful analysis of<br />

the nature of the damage and the distribution of affected trees needs to be performed. We<br />

used several databases recording larch budmoth outbreaks in the Swiss Alps and in the Goms<br />

valley in particular to this end (Weber et al., 1997; Baltenschweiler and Ruby, 1999; Esper et<br />

al., 2007). All the years with a Wit ≥ 0.8, matching with documented larch budmoth year and<br />

presenting 80% of GS but almost no evidence of TRD, CW, or injuries were thus considered<br />

as dubious and removed from the final tree-ring based avalanche reconstruction.<br />

RESULTS<br />

Age structure of the stand: The average age of trees sampled at OB1 amounts to 217 years<br />

(SD: 105 yrs) with the oldest individual dating back to AD 1429 and the youngest tree<br />

reaching sampling height in AD 1987. A total of 51 (16) trees were at least 300 (400) yrs old.<br />

At OB2, the mean age of sampled trees is 196 yrs (SD: 120 yrs). A total of 54 (10) trees were<br />

at least 300 (500) years old. The oldest trees sampled at OB2 date back to 1495, 1478, 1464,<br />

1452, 1449, 1434, and 1429, respectively. The youngest tree dates back to 1998. For both<br />

sites, the distribution of the oldest larches suggests that there was no event of sufficient<br />

magnitude to destroy larger parts of the forest stands for at least 300 years.<br />

Reconstruction of snow avalanche events: Analysis of the 566 trees revealed 2590 GD.<br />

Abrupt growth suppressions and TRD represent the most frequently observed source of<br />

evidence of past events with 1270 (49%) and 1170 (45%) occurrences in the tree-ring series.<br />

By contrast, compression wood and injuries were by far less frequently observed on the increment<br />

cores with respectively 94 (3%) and 55 (2%) observations.<br />

At OB1, analysis allowed reconstruction of 14 snow avalanche events for the period 1689–<br />

2014, namely in 1982, 1948, 1945, 1937, 1935, 1925, 1906, 1894, 1880, 1870, 1842, 1800,<br />

1793, and 1689. The years with the largest amount of responses and/or the highest Wit<br />

values were 1793 (Wit=4.7), 1880 (Wit=3.3), 1842 (Wit=2.2), 1906 (Wit=2.19), and 1689<br />

(Wit=1.97), (Figure 2A-B). As a result of the limited number of samples reaching back<br />

beyond 1670 (


At OB2, we identified a total of 18 snow avalanches between AD 1605 and 2014, namely in<br />

2003, 1999, 1975, 1966, 1945, 1937, 1919, 1912, 1882, 1880, 1846, 1813, 1803, 1793, 1692,<br />

1650, 1641, and 1605. The largest number of disturbances and/or the highest Wit values were<br />

recorded in 2003 (Wit=5.3), 1999 (Wit=3.3), 1937 (Wit=8.7), 1882 (Wit=3.2), 1880 (Wit=12),<br />

1813 (Wit=2.7), and 1641 (Wit=2.7). Again, four snow avalanches could not be determined<br />

as event years with the same level of confidence and were therefore recorded as possible<br />

events (1961, 1885, 1734 and 1681), (Figure 2C-D).<br />

Based on the criteria introduced earlier and the fact that they match with periods of known<br />

larch budmoth outbreak activity, the years 1581, 1599, 1909, 1910, 1953, 1954, 1955 and<br />

1981 were disregarded in the snow avalanche reconstruction. In addition, we also decided to<br />

reject 1986 from the OB1 avalanche reconstruction as the spatial distribution of the trees<br />

impacted during this year exhibited a pattern which is unlikely to stem from an avalanche.<br />

TD<br />

A<br />

4DD<br />

TD<br />

C<br />

T88D<br />

T955<br />

4DD<br />

W it Threshold=T<br />

Wit=T2=T<br />

Wit=T6=5<br />

W it Threshold=D=8D<br />

8<br />

8<br />

3DD<br />

3DD<br />

W it<br />

6<br />

4<br />

2DD<br />

Sample depth<br />

W it<br />

6<br />

4<br />

2DD<br />

Sample depth<br />

TDD<br />

TDD<br />

2<br />

2<br />

D<br />

D<br />

D<br />

D<br />

T4DD T45D T5DD T55D T6DD T65D T7DD T75D T8DD T85D T9DD T95D 2DDD<br />

Years<br />

T4DD T45D T5DD T55D T6DD T65D T7DD T75D T8DD T85D T9DD T95D 2DDD<br />

Years<br />

B<br />

D<br />

Event<br />

T<br />

D<br />

Previously undocumented events<br />

Confirmed historical events<br />

Known avalanches not identified<br />

in tree-ring records<br />

Uncertains events<br />

Rejected events<br />

4DD<br />

3DD<br />

2DD<br />

TDD<br />

D<br />

Sample depth<br />

Event<br />

T<br />

D<br />

4DD<br />

3DD<br />

2DD<br />

TDD<br />

D<br />

Sample depth<br />

T4DD T45D T5DD T55D T6DD T65D T7DD T75D T8DD T85D T9DD T95D 2DDD<br />

Years<br />

Avalanche reconstruction - Site OBT<br />

T4DD T45D T5DD T55D T6DD T65D T7DD T75D T8DD T85D T9DD T95D 2DDD<br />

Years<br />

Avalanche reconstruction - Site OB2<br />

Figure 2: Event-response histograms showing avalanche induced growth responses from sampled trees at OB1 and OB2: (A) Preliminary<br />

avalanche chronology obtained at OB1 using the Weighted Index method (Wit). After additional analysis (see methods), 3 years (1954,<br />

1955 and 1986) were removed from the final tree-ring based avalanche reconstruction. (B) Final avalanche chronology covering the<br />

period 1605-2014 at OB1. (C) Preliminary avalanche chronology obtained at OB2 using the Wit method. After additional analyses, 7<br />

years (1581, 1599, 1909, 1910, 1954, 1955 and 1981) were removed from the final tree-ring based avalanche reconstruction. (D) Final<br />

avalanche chronology covering the period 1689-2014 at OB2.<br />

Spatial extent of avalanches events: The spatial distribution of trees affected by the same<br />

event was used to determine the minimum lateral spread and the minimum runout elevation<br />

of reconstructed avalanches. At OB1, the mean runout elevation is calculated at 1625 m asl.<br />

Runout elevation varies between 1755 m asl in 1880 and 1450 m asl in 1935 (1370 m asl in<br />

1951 if we include historical records; SLF 1952). Large avalanches stopped next to or at the<br />

valley bottom in at least 5 cases over the last 400 years, namely in 1689, 1793, 1894, 1937,<br />

and 1951. Two other events (1935, 1948) reached the valley floor but were released from the<br />

middle part of the slope. We also reconstructed 9 events which stopped in the upper portions<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 549


of the slope (and at elevations above 1680 m asl), namely in 1800, 1810, 1870, 1880, 1906,<br />

1925, 1945, 1990 and 1995.<br />

At OB2, the mean runout elevation is 1625 m asl, varying between 1840 m asl in 1690 and<br />

1460 m asl in 2003 (1370 m in 1720 if we include historical records). Since 1580, at least 7<br />

snow avalanches developed sufficient energy to reach the valley floor, namely in 1720, 1793,<br />

1813, 1880, 1937, 1951, and 2003. According to our reconstruction, 15 events were, by<br />

contrast, restricted the upper part of the slope and would have stopped at elevations > 1680<br />

m asl, namely in 1605, 1641, 1650, 1681, 1692, 1734, 1803, 1880, 1882, 1885, 1912, 1919,<br />

1945, 1966, and 1975.<br />

Temporal and spatial accuracy of the reconstruction: In this study, a total of 38<br />

avalanche events were reconstructed for the period 1600-2014 based on a dendrogeomorphic<br />

approach. To assess the temporal and spatial reliability of our reconstruction, we compared<br />

our results with local records of past avalanches. We observe that 4 out of the 5 documented<br />

snow avalanches that occurred on the avalanche forested slopes of Oberwald could be<br />

reconstructed with dendrogeomorphic techniques. The most recent avalanche which<br />

occurred in 2003 at OB2 and destroyed about 500 m 3 of forest, is successfully recorded in our<br />

reconstruction. Its spatial extent is also very well captured by tree rings, as can been seen<br />

from visual comparison between two aerial photographs taken in 1999 and 2003 (Figure<br />

3A-C). The events of 1999 (OB2), 1961 (OB2) and 1935 (OB1), known from archival records,<br />

were also successfully identified. Only one event occurring during the winter 1920-1921<br />

could not be identified. The success rate is slightly higher than for tree-ring reconstructions of<br />

avalanches performed in the Oisans massif in France (Corona et al., 2010) and in the<br />

Mont-Blanc massif at Chamonix (Corona et al., 2012).<br />

Figure 3: (A, B) Diachronic evolution of the forested slope of Oberwald (OB2) between 1999 and 2005. (C), Tree-ring-based<br />

reconstruction of the 2003 avalanche event.<br />

550 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Three other large avalanches were documented in Oberwald (one event in 1720, and two in<br />

1951). However none of them occurred on the forested slopes of OB1 and OB2. The<br />

avalanches occurred and stayed within the incised paths of the Jostbach and the Rätischbach<br />

torrents. Dendrogeomorphic techniques have more limitations when it comes to reconstruct<br />

avalanche activity in these deeply incised paths, as avalanches tend to break, uproot and<br />

remove trees, leaving no datable evidence of past avalanche events. As a consequence, most<br />

of the vegetation found in these paths consists of young broadleaved trees, often in the form<br />

of large shrubs such as Alnus viridis or Betula pendula Roth. While these specimens can be<br />

used to assess the most recent past, they will not yield any information on more ancient snow<br />

avalanches. For this reason, we could not find evidence for the 1720 and 1951 avalanches<br />

which reportedly occurred in the Jostbach and Rätischbach torrents.<br />

CONCLUSIONS<br />

The analyses of growth disturbances in trees growing on the forested slopes located above the<br />

village of Oberwald allowed identification of 38 events as well as the mapping of their spatial<br />

extent over the past 400 years. In total, 32 of the avalanches documented through tree-ring<br />

analyses have not been known prior to this study. At least 12 snow avalanches traveled<br />

through the slopes and stopped at or very close to the valley floor. The 1689, 1720, 1793,<br />

1813, 1880, 1937, 1951, 1999, and 2003 events were the largest avalanches observed over<br />

the last 400 years. The tree-ring based chronology of past avalanches presented in this paper<br />

is, to date, one of the longest records ever elaborated for the Swiss Alps, and the third longest<br />

record existing at the level of the European Alps (Luzian et al., 2011, Corona et al., 2013).<br />

This study highlights how beneficial can the dendrogeomorphic approach be to land use<br />

planners, as it provides first-hand information for the assessment of runout distances and<br />

return periods of extreme avalanche events on forested slopes for which only scarce historical<br />

archives are available. This approach may help practitioners in the future to define with<br />

better accuracy avalanche hazard zones.<br />

REFERENCES<br />

- Baltensweiler W., Rubli D. (1999). Dispersal, an important driving force of the cyclic<br />

population dynamics of the larch-bud-moth Zeiraphera diniana Gn. Forest Snow Landscape<br />

Research 74: 1-153.<br />

- Bräker O. U. (2002). Measuring and data processing in tree-ring research: a methodological<br />

introduction. Dendrochronologia 20: 203-216.<br />

- Büntgen U., Esper J., Frank D., Nicolussi K., Schmidhalter M. (2005). A 1052-Year tree-ring<br />

proxy for alpine summer temperatures. Climate Dynamics 25: 41-153.<br />

- Esper J., Büntgen U., Frank D.C., Nievergelt D., Liebhold A. (2007). 1200 years of regular<br />

outbreaks in alpine insects. Proceedings of the Royal Society B 274: 671-679.<br />

- Corona C., Rovéra G., Lopez Saez J., Stoffel M., Perfettini P. (2010). Spatio-temporal<br />

reconstruction of snow avalanche activity using tree rings: Jean Jeanne avalanche talus,<br />

Massif de l'Oisans, France. Catena 83: 107-118.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 551


- Corona C., Lopez Saez J., Stoffel M., Bonnefoy M., Richard D., Astrade L., Berger F. (2012).<br />

How much of the real avalanche activity can be captured with tree rings? An evaluation of<br />

classic dendrogeomorphic approaches and comparison with historical archives. Cold Regions<br />

Science and Technology 74-75: 31-42.<br />

- Corona C., Lopez Saez J., Stoffel M., Rovéra G., Edouard J.-P., Berger F. (2013). Seven<br />

centuries of avalanche activity at Echalp (Queyras massif, southern French Alps) as inferred<br />

from tree rings. The Holocene 23: 292-304.<br />

- Kogelnig-Mayer B., Stoffel M., Bollschweiler M., Hübl J., Rudolf-Miklau F. (2011).<br />

Possibilities and limitations of dendrogeomorphic time-series reconstructions on sites<br />

influenced by debris flows and frequent snow avalanche activity. Arctic, Antarctic, and Alpine<br />

Research 43: 619-658.<br />

- Luzian R., Pindur P., Nicolussi K., Sailer R., Haas J.N., Zwerger P. (2011). Holozänes<br />

Lawinengeschehen und „Global Warming". Zeitschrift für Wildbach, Lawinen, Erosions und<br />

Steinschlagschutz 167: 102-117.<br />

- MeteoSwiss (2014). http://www.meteoswiss.admin.ch/product/output/climate-data/<br />

climate-diagrams-normal-values-station-processing/ULR/climsheet_ULR_np8110_e.pdf.<br />

Accessed on 02.04.2014.<br />

- SLF (1952). Schnee und Lawinen in den Schweizeralpen im Winter 1950/51, Winterbericht<br />

des Eidg. Instituts für Schnee und Lawinenforschung, Davos, Nr. 15, SLF Davos, 232 p.<br />

Schweingruber F.H. (1974). Riederalp VS Aletschwald, Swit140. NOAA International<br />

Tree-Ring Databank (ITRDB).<br />

- Šilhán K, Stoffel M. (2015). Impacts of age-dependent tree sensitivity and dating approaches<br />

on dendrogeomorphic time series of landslides. Geomorphology 236: 34-43.<br />

- Stoffel M., Bollschweiler M. (2008). Tree-ring analysis in natural hazards research – an<br />

overview. Natural Hazards and Earth System Sciences 8: 187-202.<br />

- Stoffel M., Butler D.R., Corona C. (2013). Mass movements and tree rings: A guide to<br />

dendrogeomorphic field sampling and dating. Geomorphology 200: 106-120.<br />

- Stoffel M., Corona C. (2014). Dendroecological dating of geomorphic disturbance in trees.<br />

Tree-Ring Research 70: 3-20.<br />

- Weber U. M. (1997). Dendroecological reconstruction and interpretation of larch budmoth<br />

(Zeiraphera diniana) outbreaks in two central alpine valleys of Switzerland from 1470-1990.<br />

Trees 11: 277-290.<br />

552 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Management of glacier floods in the Bernese Oberland<br />

Umgang mit Gletscherhochwasser im Berner Oberland<br />

Nils Hählen 1 ; Oliver Hitz 2 ; Damian Stoffel 2<br />

ABSTRACT<br />

Glacier floods are an important part of natural hazards in the Bernese Oberland. As a result<br />

of climate change they will probably increase significantly in future. The approach of at least<br />

two scenarios with different characteristics (e.g. an optimistic and a pessimistic) is useful to<br />

handle the uncertainty in risk estimation. These scenarios can then be compared with the<br />

magnitude of floods caused by rainfall which are mapped on the hazard maps. This step<br />

allows a classification of the glacier flood in comparison to "normal" floods. Glaciers and their<br />

predisposition for hazardous processes change over time. As a consequence a periodical check<br />

of the situation is needed and if necessary the scenarios have to be adapted. Therefore a systematic<br />

monitoring and the sensitization of the persons responsible for security in the communes<br />

are essential for a successful hazard management of glacier risks.<br />

ZUSAMMENFASSUNG<br />

Gletscherhochwasser sind ein wichtiger Teil der Naturgefahren im Berner Oberland und<br />

dürften als Folgen des Klimawandels in Zukunft noch zunehmen. Für deren Risikoabschätzungen<br />

sind mindestens zwei Szenarien mit verschiedenen Ausprägungen (z.B. ein optimistisches<br />

und ein pessimistisches) hilfreich, um mit den Unsicherheiten umzugehen. Diese<br />

Szenarien können mit der Magnitude von niederschlagsverursachten Hochwassern verglichen<br />

werden, die in den Gefahrenkarten abgebildet sind. Dieser Schritt erlaubt eine Einordnung<br />

von Gletscherhochwasser im Vergleich zu “normalen” Hochwassern. Gletscher und ihre<br />

Disposition für gefährliche Prozesse verändern sich laufend. Deshalb ist eine periodische<br />

Kontrolle der aktuellen Situation wichtig und die Szenarien sind, wenn nötig, periodisch<br />

anzupassen. Für ein erfolgreiches Risikomanagement sind daher ein systematisches Monitoring<br />

der Gletscher und die Sensibilisierung der Sicherheitsverantwortlichen entscheidend.<br />

KEYWORDS<br />

glacier; flood; risk management; Bernese Oberland<br />

EINFÜHRUNG<br />

Rund 200 km 2 oder 7% der Fläche des Berner Oberlandes sind vergletschert. Schon immer<br />

haben Hochwasser aus Gletschern im Berggebiet Siedlungen bedroht. Im Berner Oberland<br />

gelten die Ereignisse Grüöbengletscher Guttannen (1921, 1942), Steingletscher Gadmen<br />

(1956, 1998) und Unterer Grindelwaldgletscher (1951, 2008) als die grössten in den letzten<br />

1 Amt für Wald des Kantons Bern, Interlaken, SWITZERLAND, nils.haehlen@vol.be.ch<br />

2 Oberingenieurkreis I, Tiefbauamt des Kantons Bern<br />

IP_<strong>2016</strong>_FP069<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 553


100 Jahren. Zu Beginn des 21. Jahrhunderts häuften sich solche Ereignisse als Folge des<br />

beschleunigten Gletscherrückgangs durch die Klimaänderung. Die Herausforderung im<br />

Management von Gletscherhochwasser liegt in der frühzeitigen Erkennung kritischer<br />

Situationen, der Herleitung realistischer Szenarien und dem geeigneten Umgang mit Risiken,<br />

die zwar nur vorübergehend bestehen, aber oft ein immenses Gefahrenpotential beinhalten.<br />

Gletscher können verschiedene Gefahrenprozesse verursachen. Weil die Reichweite von<br />

Hochwasser sehr gross ist, sind Gletscherhochwasser die am weitesten reichenden Prozesse<br />

unter den Gletschergefahren (Raymond et al. 2003) und bilden somit ein erhebliches<br />

Gefahrenpotential. Auslöser von Gletscherhochwassern sind plötzliche Entleerungen von<br />

Wasseransammlungen am, auf oder in einem Gletscher. Bei Gletscherhochwasser ist zwischen<br />

supraglazialen Gletschersee- und subglazialen Wassertaschenausbrüchen zu unterscheiden.<br />

Oft sind Gletscherseeausbrüche die Folge einer Verkettung von Prozessen, so z. B. wenn<br />

grosse Massenbewegungen in Gletscherseen, diese zum Überlaufen bringen. Weiterführende<br />

Informationen zu Gletscherhochwasser geben beispielsweise Raymond et al. (2003) oder<br />

Huggel et al. (2004). Vertiefte Informationen über die Hydraulik von Gletscherhochwasser<br />

sind in Worni et al. (2014) zu finden.<br />

GEFAHRENBEURTEILUNG BEI GLETSCHERHOCHWASSER<br />

Die Gefahrenbeurteilung besteht in der Festlegung von Szenarien sowie der Ausscheidung<br />

von Wirkungsräumen und dazugehörigen Prozessintensitäten. Ein pragmatisches Vorgehen<br />

für eine grobe Gefahrenbeurteilung bei Gletschern ist in Huggel et al. (2004) beschrieben.<br />

Diese Methode bewährt sich für eine erste, einfache Einschätzung. Falls danach eine<br />

relevante Gefährdung nicht ausgeschlossen werden kann, sind vertiefte Analysen nötig.<br />

Angaben zur Wahrscheinlichkeit von Ereignissen, zum Speichervolumen und zur Ausbruchsart<br />

mit dazugehöriger Ganglinie stellen die grossen Herausforderungen bei der Szenarienbildung<br />

für Gletscherhochwasser dar. Die verschiedenen Einflussfaktoren auf Szenarien und<br />

Prozessablauf sind in Abbildung 1 dargestellt und qualitativ nach ihrem Grad an Unsicherheit<br />

klassiert. Die Einteilung in die drei Kategorien erfolgt aufgrund des Kriteriums Qualität der<br />

Wissens- resp. Datenbasis und des Kriteriums der Subjektivität der nötigen Beurteilung.<br />

Unterliegen beide Kriterien einem grossen Streubereich, wird die Unsicherheit als gross,<br />

wenn nur eines einen grossen Streubereich hat, als mittel und wenn beide einen kleinen<br />

Streubereich haben als klein klassiert. Bei der Gefahrenbeurteilung ist auf die Faktoren mit<br />

grossen Unsicherheiten besonderes Augenmerk zu richten.<br />

Häufig wiederholen sich Gefahrenprozesse an einem Gletscher. Informationen zu früheren<br />

Ereignissen sind daher sehr hilfreich. Liegen keine Informationen zu früheren Ereignissen vor<br />

oder hat sich die Situation seit den letzten Ereignissen relevant verändert, sind längerfristige<br />

Prognosen mit grossen Unsicherheiten verbunden. Dann muss auf Analysen, Annahmen und<br />

Analogieschlüsse zu ähnlichen Fällen abgestützt werden. Die Unsicherheiten sind entsprechend<br />

gross; oft bedeutend grösser als bei anderen Prozessarten. Weil Gefahrenbeurteilungen<br />

bei Gletscherhochwasser meist erst gemacht werden, wenn eine Gefahrenquelle neu entsteht,<br />

554 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ist die Wahrscheinlichkeit gross, dass sie in kurzer Zeit anhand tatsächlicher Ereignisse<br />

überprüft werden kann - Chance für die Experten, ihre Überlegungen zu verifizieren, aber<br />

auch Fluch, weil Abweichungen Erklärungsbedarf gegenüber der Bevölkerung und Behörden<br />

nötig machen und die Glaubwürdigkeit der Experten leiden kann. Die grössten Unsicherheiten<br />

in der Gefahrenbeurteilung von Gletscherhochwasser liegen in der Festlegung der<br />

Szenarien. Die aus den Szenarien abgeleitete Wirkungsbeurteilung beinhaltet bedeutend<br />

weniger Unsicherheiten, weil es für die Ausbreitung der Prozesse heute gute Modellierungssoftware<br />

gibt. Auch die dazu notwendigen Höhenmodelle liegen in der Schweiz in hoher<br />

Genauigkeit vor.<br />

Abbildung 1: Phasen in der Gefahrenbeurteilung und im Risikomanagement von Gletschergefahren mit dazugehörigen Teilschritten und<br />

Klassierung der Unsicherheit.<br />

Um die Unsicherheiten in der Szenarienbildung zu reduzieren, hat es sich bewährt, eine<br />

Bandbreite an möglichen Szenarien festzulegen, was am Giesengletscher an der Nordwestflanke<br />

der Jungfrau exemplarisch gezeigt werden soll. An diesem hat sich seit 2011 an der<br />

Gletscherzunge ein Eispaket abgespaltet. Bei einem Abbruch ist davon auszugehen, dass die<br />

Eistrümmer in der darunterliegenden Schlucht eine Wasserstauung verursachen. Je nach<br />

Ausbildung der Ablagerung sind im Falle eines nachfolgenden Seedurchbruchs unterschiedliche<br />

Abflussspitzen möglich. Ein realistisches Szenario mit 100‘000 m 3 Wasser würde eine<br />

Abflussspitze von 80 – 130 m 3 /s verursachen, im pessimistischen Szenario ist bei 400‘000 m 3<br />

Wasser mit einer Abflussspitze von 350 – 440 m 3 /s zu rechnen.<br />

RISIKOBEURTEILUNG VON GLETSCHERHOCHWASSER<br />

Das Gefahrenpotential von Gletschern ändert sich über die Zeit, womit Gletscherhochwasser<br />

nicht immer gleich wahrscheinlich sind. Dies unterscheidet Gletscher von anderen Gefahrenquellen,<br />

deren Grunddisposition über längere Zeiträume keiner relevanten Veränderung<br />

unterworfen ist. Diese Variation hat vor allem mit der kontinuierlichen, klimabedingten<br />

Geometrieänderung (Vorstoss- und Rückzugsphasen) der Gletscher zu tun: Neue Senken<br />

entstehen und bestehende vergrössern sich oder lösen sich auf. Ein Gletscher hat Phasen, in<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 555


denen Gletscherhochwasser gehäuft und Phasen, in denen solche Prozesse nicht auftreten.<br />

Oft besteht eine Gefahrenquelle auch nur vorübergehend für einige Monate oder wenige<br />

Jahre.<br />

Abbildung 2: Vergleich der Bandbreite der niederschlagsverursachten Hochwasser (HQ 30<br />

bis HQ 300<br />

) aus der Gefahrenkarte, den effektiv<br />

aufgetretenen Abflussspitzen durch Gletscherhochwasser und der Bandbreite der Prognose für Abflussspitzen durch Wasserausbrüche<br />

für verschiedene Gletscher im Berner Oberland.<br />

Die Risikobeurteilung setzt voraus, dass neben Ort und Intensität eines möglichen Gletscherhochwassers<br />

auch die Eintretenswahrscheinlichkeit und das Ausmass des daraus resultierenden<br />

Schadens bekannt sind. Risiko ist allgemein das Produkt aus Schadenausmass und Eintretenswahrscheinlichkeit.<br />

Wegmann et al. (2004) haben eine Methode zum Risikomanagement<br />

bei Gletschergefahren entwickelt. Diese beruht darauf, dass im Rahmen eines partizipativen<br />

Verfahrens mit Fachspezialisten und Lokalkennern die Risiken durch Gletschergefahren<br />

quantitativ abgeschätzt werden können. In der Anwendung dieser Methode bildet v.a. die<br />

Festlegung der Eintretenswahrscheinlichkeit aufgrund der oft sehr grossen Unsicherheiten<br />

eine Schwierigkeit. Dies kann am Beispiel des Oberen Grindelwaldgletschers gut gezeigt<br />

werden: Dort wurde von 2009 bis 2011 durch über dreissig Wassertaschenausbrüche dreimal<br />

ein 100-jährliches und sechsmal ein 30-jährliches Hochwasser überschritten. In einem<br />

solchen Fall ist es nicht sinnvoll, die Hochwasserstatistik, welche sich auf niederschlagsbedingte<br />

Hochwasser bezieht, anzupassen und das bisherige 100-jährliche neu als 10-jährliches<br />

Hochwasser zu klassieren, da absehbar ist, dass die Gefahrensituation nur solange anhält, bis<br />

sich der Gletscher in wenigen Jahren aus der engen, flachen Schlucht zurückgezogen hat.<br />

Hier eine Wiederkehrperiode für Gletscherhochwasser zu definieren, ist nicht möglich. Der<br />

Unsicherheitsbereich einer so festgelegten Wiederkehrperiode würde um ein Mehrfaches<br />

stärker variieren als alle übrigen Einflussgrössen auf das Risiko.<br />

556 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Bezüglich Eintretenswahrscheinlichkeit bei Gletscherhochwasser ergeben sich zwei Fragestellungen:<br />

– Interannuelle Wahrscheinlichkeit: Wie gross ist die Wahrscheinlichkeit für einen oder<br />

mehrere Wasserausbrüche mit einer bestimmten Abflussspitze innerhalb eines Jahres?<br />

– Dekadische Wahrscheinlichkeit: Welche Wiederkehrperiode ist einer solchen Abflussspitze<br />

in der Hochwasserstatistik des betroffenen Gewässers innerhalb einer Zeitspanne von<br />

einem oder mehreren Jahrzehnten zuzuordnen?<br />

Die interannuelle Wahrscheinlichkeit lässt sich nur durch eine situative, gutachterliche<br />

Beurteilung der Gefahrendisposition anhand des aktuellen Zustands des Gletschers und seines<br />

Umfelds beantworten und beinhaltet die beschriebenen Schritte der Gefahrenbeurteilung<br />

(siehe oben). Wird die Abflussspitze eines Gletscherhochwassers in Relation zu einem<br />

„normalen“ niederschlagsverursachten Hochwasser mit einer bekannten Wiederkehrperiode<br />

von beispielsweise 30, 100 oder 300 Jahren gesetzt, lässt sich die dekadische Wahrscheinlichkeit<br />

eingrenzen. Dies setzt aber voraus, dass Gletscherhochwasser über längere Zeiträume<br />

betrachtet nicht zu einer wesentlichen Veränderung der Hochwasserstatistik führen. Damit<br />

kann das potentielle Ereignis je nach Ausprägung in den Bereich eines häufigen oder eines<br />

aussergewöhnlichen Prozessablaufs eingeordnet werden (vgl. Abbildung 2). Gleichzeitig lässt<br />

sich die Eintretenswahrscheinlichkeit in der Risikoformel grob eingrenzen.<br />

RISIKOMANAGEMENT VON GLETSCHERHOCHWASSER<br />

Das Risikomanagement hat zum Ziel, Schäden an Personen und Sachwerten zu minimieren<br />

oder im besten Fall zu verhindern. Die Konzepte und Instrumente des integralen Risikomanagements<br />

bei gravitativen Naturgefahren in der Schweiz haben sich bewährt und lassen sich<br />

auch bei Gletscherhochwasser erfolgreich einsetzen.<br />

Da Gletscherhochwasser oft nur vorübergehend ein Risiko darstellen und die Wahrscheinlichkeit<br />

eines Grossereignisses meist gering ist, konzentrieren sich Präventionsmassnahmen<br />

üblicherweise auf organisatorische Massnahmen, d.h. den Schutz von Personen. Schäden an<br />

Sachwerten werden dabei eher in Kauf genommen. Das Risikomanagement setzt voraus, dass<br />

ein mögliches Gefahrenpotential erkannt wird. Da sich die Gletscher innerhalb kurzer Zeit<br />

stark verändern können, müssen sämtliche Schritte von der Szenarienbildung bis zur<br />

Wirkungsbeurteilung laufend überprüft und gegebenenfalls angepasst werden. Ein systematisches<br />

Monitoring ist daher eine essentielle Daueraufgabe. Dieses ermöglicht es, die Bildung<br />

oder Vergrösserung von Gletscherseen frühzeitig zu erkennen. Im Berner Oberland basiert<br />

dieses hauptsächlich auf periodischen Auswertungen von Luftbildern und Beobachtungsmeldungen<br />

durch Sicherheitsverantwortliche aus den Gemeinden, Bergführer oder Berggänger.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 557


RAUMPLANERISCHE MASSNAHMEN<br />

Präventive raumplanerische Massnahmen gegen Gletscherhochwasser sind aufgrund der<br />

grossen Unsicherheiten oft nicht realisierbar. Sofern die Wirkungsräume und Intensitäten<br />

eines Gletscherhochwassers im Bereich des in der Gefahrenkarte abgebildeten, niederschlagsverursachten<br />

Hochwassers liegen (vgl. Abbildung 2), besteht keine Notwendigkeit, diese<br />

speziell in der Gefahrenkarte zu berücksichtigen. Sobald sie aber ein bedeutend grösseres<br />

Ausmass annehmen, sind sie bei der Beurteilung von Bauvorhaben über Bauverbote oder<br />

Bauauflagen zu berücksichtigen. Dazu werden die erwarteten Wirkungsräume in einer<br />

separaten Karte als ergänzendes Gefahrengebiet mit unbestimmter Gefahrenstufe dargestellt.<br />

Eine solche Karte hat oft nur wenige Jahre Gültigkeit. Sie wird aufgehoben, sobald die<br />

Gefährdung nicht mehr besteht. So war aufgrund des Gletschersees auf dem Unteren<br />

Grindelwaldgletscher von 2008 bis 2010 in acht unterliegenden Gemeinden eine solche Karte<br />

in Kraft und hat sich als Präventionsmittel sehr bewährt. Grössere Bauvorhaben in kritischen<br />

Gebieten wurden gestützt auf dieses Instrument zurückgestellt.<br />

ORGANISATORISCHE MASSNAHMEN<br />

In Bezug auf Schutzmassnahmen ist die Art und Exposition der Schutzgüter entscheidend. In<br />

Fällen, in denen v.a. Personen gefährdet sind, ist es zweckmässig, die gefährdeten Räume<br />

abzusperren, wenn sich eine Gefahrensituation einstellt. Um diese Entscheidungen treffen zu<br />

können, sind Überwachungs- und Frühwarnsysteme hilfreich, welche die Sicherheitsverantwortlichen<br />

mit den notwendigen Informationen versorgen. Frühwarnsysteme haben zum<br />

Ziel, die Reaktionszeit im Vorfeld von Ereignissen zu erhöhen. Im Berner Oberland sind<br />

einige dieser Systeme erfolgreich im Einsatz. Voraussetzung dafür ist, dass die Prozesse<br />

verstanden sind und eine Notfallorganisation mit Pikettdienst besteht, welche die notwendigen<br />

Massnahmen bei kritischen Entwicklungen zeitgerecht umsetzt. Auf der Plaine Morte in<br />

der Gemeinde Lenk besteht ein solches Frühwarnsystem, das auf automatischen Kameras<br />

beim Gletschersee, einer Pegelmessung im See und einer Abflussmessung beim Gletschertor<br />

basiert. Durch die Gletscherseeausbrüche sind in erster Linie eine Alp, ein viel begangener<br />

Wanderweg in einem beliebten Ausflugsgebiet sowie ein Hotel und ein Campingplatz<br />

gefährdet. Die Seeausbrüche verliefen bisher sehr gutmütig: Ein Ausbruch war dank des<br />

Frühwarnsystems Tage im Voraus in der Stagnation und im anschliessenden gemächlichen<br />

Absinken des Seepegels erkennbar, bevor ein deutlicher Anstieg des Abflusses in der Simme<br />

auftrat. Damit besteht eine komfortable Reaktionszeit, um gefährdete Wanderwege präventiv<br />

zu sperren. Für den Fall eines grösseren Ausbruchs liegt eine Notfallplanung zum Schutz von<br />

Personen vor.<br />

BAULICHE SCHUTZMASSNAHMEN<br />

Bauliche Schutzmassnahmen an Gletschern sind selten und werden nur dann ergriffen, wenn<br />

das Ausmass eines Ereignisses sehr gross werden kann und der Schutz mit organisatorischen<br />

Massnahmen ungenügend ist. Beim Gletschersee auf dem Unteren Grindelwaldgletscher<br />

waren die Personenrisiken mit dem 2006 eingerichteten Frühwarnsystem und einer<br />

558 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


umfangreichen Notfallplanung in den Griff zu bekommen. Für den Stollenbau war dann aber<br />

das erwartete Schadenausmass im Lütschinental bis nach Interlaken von rund Fr. 200 Mio.<br />

(berechnet gemäss Methode Econome 1.0 BAFU 2007) im Falle eines Seeausbruchs sowie der<br />

absehbare mehrwöchige Verkehrsunterbruch durch Schäden an der Verkehrsinfrastruktur<br />

nach Grindelwald entscheidend (Fechtig, Hählen 2013). Daher wurden die Investitionen von<br />

Fr. 15 Mio. für den Stollenbau in einer aufwändigen Variantenevaluation durch ein Expertengremium<br />

als verhältnismässig angesehen. Der Stollen wurde 2009 gebaut und hat seither<br />

zusammen mit dem weiteren Abschmelzen des Gletschers die Gefahrenlage am Unteren<br />

Grindelwaldgletscher markant entschärft.<br />

VERZICHT AUF MASSNAHMEN<br />

Nicht bei jedem Gletschersee sind aufwändig Massnahmen nötig. Aus dem proglazialen<br />

Gletschersee am Hubelgletscher im hinteren Lauterbrunnental hat sich 2004 ein grosser<br />

Murgang ereignet, der eine Brücke zerstört, sechs parkierte Autos weggerissen und grosse<br />

Teile der Alp- und Forststrasse beschädigt hat. Ursache des Ausbruchs war der Bruch einer<br />

Verklausung des Seeausflusses durch Eisblöcke aus Eiskalbungen des hinterliegenden<br />

Gletschers. Ein solches Ereignis kann immer noch auftreten. Da jedoch nur Alpgebiete und<br />

Wanderwege betroffen sind, wurde auf umfangreiche Schutzmassnahmen verzichtet. Die<br />

gefährdeten Abschnitte des Wanderwegs sind mit Warntafeln mit Verhaltensanweisungen<br />

versehen. Daneben wird der Zustand des Gletschers periodisch durch die Sicherheitsverantwortlichen<br />

beurteilt.<br />

AUSBLICK<br />

Gemäss NELAK (2013) können im Berner Oberland im Zuge des Gletscherschwundes<br />

innerhalb der nächsten Jahrzehnte über 100 neue Seen auf insgesamt 39 Gletschern<br />

entstehen. Zusammen mit den tendenziell zunehmenden Instabilitäten durch degradierenden<br />

Permafrost, woraus sich Massenbewegungen in neue Seen ergeben können, dürfte das<br />

Gefahrenpotential in Zukunft weiter ansteigen. 2015 wurde im Berner Oberland eine Studie<br />

im Auftrag des Kantons abgeschlossen (vgl. Tobler et al. in Vorbereitung), welche u.a. die<br />

Entwicklung des Gefahrenpotentials der Gletscher bis ins Jahr 2060 grob beurteilt. Damit<br />

besteht neben dem Inventar der gefährlichen Gletscher der Schweiz (Raymond et al. 2003),<br />

welches auf einer retrospektiven Sicht beruht, auch eine Übersicht über mögliche Gefahren,<br />

die künftige Entwicklungen miteinschliesst. Diese Studie erlaubt es, die potentiell kritischen<br />

Gebiete zu identifizieren und mit einem geeigneten Monitoring ungünstige Entwicklungen<br />

frühzeitig erkennen zu können. Da die Bildung von gefährlichen Situationen bei Gletschern<br />

umso wahrscheinlicher ist, je stärker und schneller die Veränderung der Gletscher abläuft<br />

(GLACIORISK 2003), muss in den kommenden Jahren mit weiteren anspruchsvollen<br />

Situationen gerechnet werden. Die Bedeutung von anpassungsfähigen und verhältnismässigen<br />

Massnahmen wird dabei immer mehr zunehmen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 559


LITERATUR<br />

- BAFU (2007): EconoMe 1.0. Online-Berechnungsprogramm zur Bestimmung der Wirtschaftlichkeit<br />

von Schutzmassnahmen gegen Naturgefahren. Handbuch/Dokumentation,<br />

Bern, 27 s.<br />

- Fechtig R., Hählen N. (2013): Entwässerungsstollen Gletschersee Unterer Grindelwaldgletscher.<br />

In: Tunnelling Switzerland, vdf Hochschulverlag Zürich, S. 386-391.<br />

GLACIORISK (2003): GLACIORISK. Survey and prevention of extreme glaciological hazards<br />

in European mountainous regions. EVG1 2000 00512 Final report (01.01.2001–31.12.2003),<br />

compiled by Richard D. and Gay M., Cemagref Grenoble, 62 S.<br />

- Huggel Chr., Haeberli W., Kääb A., Bieri D., Richardson S. (2004): An assessment procedure<br />

for glacial hazards in the Swiss Alps. In: Canadian Geotechnical Journal, 41, S. 1068-1083.<br />

- NELAK (2013): Neue Seen als Folge des Gletscherschwundes im Hochgebirge – Chancen<br />

und Risiken. Forschungsbericht NFP 61. Haeberli W., Bütler M., Huggel Chr., Müller H.,<br />

Schleiss A. (Hrsg.), vdf Hochschulverlag Zürich. 290 S.<br />

- Raymond M., Wegmann M., Funk M. (2003): Inventar gefährlicher Gletscher in der<br />

Schweiz, VAW Mitteilungen 182, ETH Zürich, 368 S.<br />

- Tobler D., Mani P., Riner R., Liener S., Hählen N., Bender R., Graf K., Raetzo H. (in<br />

Vorbereitung): Periglazial Hazard Indication Map: A Basic Instrument in Prospective Hazard<br />

Management. Interpraevent <strong>2016</strong>, Tagungsbeiträge, Klagenfurt.<br />

- Wegmann M., Bruderer A., Funk M., Wuilloud Ch. (2004): Partizipatives Verfahren zum<br />

Risikoma-nagement bei Naturgefahren. Angewendet für Gletschergefahren. In: Interpraevent<br />

2004 Band IX, Klagenfurt, S. 297-308.<br />

- Worni R., Huggel Chr., Clague J.J., Schaub Y., Stoffel M. (2014): Coupling glacial lake<br />

impact, dam breach, and flood processes: A modeling perspective. In: Geomorphology 224. S.<br />

161-176.<br />

560 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

New recommendations for the assessment of river<br />

bank erosion hazards<br />

Eine neue Empfehlung zur Beurteilung der Gefahr<br />

von Ufererosion an Fließgewässern<br />

Lukas Hunzinger, Dr. 1 ; Annette Bachmann 2 ; Ralph Brändle 3 ; Paul Dändliker 4 ; David Jud 5 ; Mario Koksch 6<br />

ABSTRACT<br />

An important prerequisite to protect settlements and lifelines from bank erosion effectively is<br />

a sound hazard assessment. This recommendation describes a step by step approach for such<br />

an assessment. In a first step basic scenarios are defined. The second step consists of a weak<br />

point analysis, in which the relevant load cases are identified. Load cases are: erosion of the<br />

toeslope, direct bank erosion and erosion of the slope crest. For each basic scenario the load<br />

parameters corresponding to the relevant load cases are determined as a function of discharge,<br />

bed load and estimated bed level changes and are compared to the resistance<br />

parameters of the bank. Bank erosion is assumed if the load parameters are larger than the<br />

resistance parameters. Finally, the dimension of the bank erosion is estimated. The erosion<br />

width may measure a multiple of the original channel width, depending whether changes in<br />

the channel pattern lead to large scale channel migration or whether bank erosion is triggered<br />

by local irregularities in the channel topography only.<br />

ZUSAMMENFASSUNG<br />

Eine wichtige Grundlage, um Siedlungen und Verkehrswege wirksam vor Ufererosion<br />

schützen zu können, ist eine qualitativ und quantitativ nachvollziehbare Gefahrenbeurteilung.<br />

Die vorliegende Empfehlung beschreibt die wichtigsten Schritte dazu. Nach der<br />

Definition von Grundszenarien werden im Rahmen der Schwachstellenanalyse die maßgeblichen<br />

Gefährdungsbilder für das Ufer identifiziert: Erosion am Böschungsfuß, direkter<br />

Strömungsangriff und Erosion an der Böschungsoberkante. Für alle zu untersuchenden<br />

Hochwasserszenarien werden für diese Gefährdungsbilder die Belastungsgrößen in Abhängigkeit<br />

von Abfluss, Geschiebetransport und Sohlenveränderung während eines Hochwassers<br />

bestimmt und dem Widerstand der Böschung gegenüber gestellt. Ist die Belastung größer als<br />

der Widerstand muss auf dem betreffenden Gewässerabschnitt mit Erosion gerechnet werden.<br />

Die Breite der Erosion kann ein mehrfaches der Gerinnebreite betragen. Sie hängt davon ab,<br />

1 Flussbau AG SAH, Bern, SWITZERLAND, lukas.hunzinger@flussbau.ch<br />

2 CSD Ingenieure AG, SWITZERLAND<br />

3 Kanton St. Gallen, Naturgefahrenkommission, SWITZERLAND<br />

4 Bundesamt für Umwelt BAFU, SWITZERLAND<br />

5 Meier und Partner AG, SWITZERLAND<br />

6 Kanton Luzern, vif, SWITZERLAND<br />

IP_<strong>2016</strong>_FP051<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 561


ob übergeordnete morphologische Prozesse zu einer großräumigen Verlagerung des Gerinnes<br />

führen oder ob die Seitenerosion durch eine lokale Unregelmäßigkeit im Gerinnequerschnitt<br />

verursacht wird.<br />

KEYWORDS<br />

bank erosion; hazard analysis; weak point analysis<br />

EINLEITUNG<br />

Die Ufererosion ist ein Gefahrenprozess, der im Vergleich zur Überflutung weniger häufig<br />

und auf kleineren Flächen auftritt. Ihr Gefahrenpotenzial wurde bislang allerdings unterschätzt.<br />

Dies hat insbesondere das Hochwasserereignis im Jahr 2005 in der Schweiz und in<br />

den angrenzenden Ländern aufgezeigt, bei welchem durch den Abtrag von Uferböschungen<br />

viele Gebäude und Infrastrukturanlagen beschädigt oder zerstört wurden (Hilker et al., 2007).<br />

Eine wichtige Grundlage, um Siedlungen und Verkehrswege wirksam vor Ufererosion<br />

schützen zu können, ist eine qualitativ und quantitativ nachvollziehbare Gefahrenbeurteilung.<br />

Zur Beurteilung des Prozesses Ufererosion gibt es bis heute keine allgemein anerkannten<br />

Methoden oder Berechnungsgrundlagen. Um diese Lücke zu schließen, haben die Fachleute<br />

Naturgefahren Schweiz (FAN) und die Kommission für Hochwasserschutz, Wasserbau und<br />

Gewässerpflege (KOHS) eine Empfehlung zur Beurteilung der Gefahr von Ufererosion<br />

erarbeiten lassen (FAN und KOHS 2015). Die Empfehlung richtet sich an Wasserbau- und<br />

Naturgefahrenfachleute aus Praxis und Verwaltung. Sie schlägt Vorgehensweisen vor, nach<br />

denen die Gefahr von Ufererosion Schritt für Schritt beurteilt werden soll. Die Wahl der<br />

geeigneten Berechnungsansätze, mit denen die maßgeblichen Größen in den einzelnen<br />

Bearbeitungsschritten bestimmt werden, ist hingegen dem Anwender überlassen.<br />

DER PROZESS DER SEITENEROSION<br />

Unter Seitenerosion versteht man den lateralen Abtrag des Böschungsmaterials und die<br />

daraus resultierende Verbreiterung eines Gerinnes. Die Erosion wird durch die Strömung<br />

verursacht, die wirkenden Kräfte werden mit der Schleppspannung beschrieben. Damit es zu<br />

einer Erosion kommt, muss die angreifende Schleppspannung größer sein als die Grenzschleppspannung<br />

der Böschung. Diese hängt unter anderem von der Art des Ufermaterials<br />

(Korngröße, Kohäsion, etc.), dem Bewuchs (Beck 2006, Requena 2008) sowie einer<br />

allfälligen Uferverbauung ab (Romang 2008).<br />

In der Literatur wird zwischen primärer und sekundärer Seitenerosion unterschieden. Gemäß<br />

Anderson et al. (1975) bewirkt die primäre Seitenerosion eine Verbreiterung des Gerinnes auf<br />

der gesamten Länge, ohne dass sich die Lage und die Form des Gerinnes verändern. Bei der<br />

sekundären Seitenerosion hingegen verlagert und verformt sich das Gerinne aufgrund von<br />

Querströmungen. Abhängig von Flussbettbreite, Korngrößen, Gerinneneigung und Sedimen-<br />

562 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


teintrag bilden sich Mäander oder ein verzweigtes Gerinne. Ahmari und da Silva (2011)<br />

haben Kriterien definiert, um das Auftreten verschiedener Gerinneformen voneinander<br />

abzugrenzen.<br />

Im vorliegenden Artikel wird die Seitenerosion als Gefahrenprozess verstanden, welcher<br />

außerhalb des Gerinnes beobachtet wird. Er wird deshalb als Ufererosion bezeichnet.<br />

DAS GENERELLE VORGEHEN ZUR BEURTEILUNG DER EROSIONSGEFAHR<br />

Das generelle Vorgehen zur Beurteilung der Gefahr von Ufererosion ist in die drei Phasen<br />

Definition von Grundszenarien, Schwachstellenanalyse und Wirkungsanalyse unterteilt<br />

(Abbildung 1). Mit den Grundszenarien werden Abflussmengen, Sedimenteintrag und<br />

Schwemmholzaufkommen bei möglichen Hochwasserereignissen festgelegt. In der Schwachstellenanalyse<br />

wird die Frage beantwortet, ob es auf dem untersuchten Gewässerabschnitt<br />

überhaupt zu einer Ufererosion kommen kann und in der Wirkungsanalyse wird das Ausmaß<br />

der Erosion bestimmt. Die Schwachstellen- und die Wirkungsanalyse werden für jeden<br />

untersuchten Gewässerabschnitt und für jedes Grundszenario einzeln durchlaufen.<br />

DIE SCHWACHSTELLENANALYSE<br />

Bei der Schwachstellenanalyse werden auf der Grundlage der aktuellen Morphologie und<br />

möglicher Veränderungen während eines Hochwassers verschiedene Gefährdungsbilder<br />

untersucht: a) Erosion am Böschungsfuß, b) direkter Strömungsangriff und c) Erosion an der<br />

Böschungsoberkante (Abbildung 2).<br />

Mit der Beschreibung der aktuellen Morphologie und der Prognose von morphologischen<br />

Veränderungen während eines Hochwasserereignisses können für einen Gerinneabschnitt die<br />

maßgeblichen und die weniger wahrscheinlichen Gefährdungsbilder identifiziert werden. So<br />

muss zum Beispiel das Gefährdungsbild Erosion am Böschungsfuß sicherlich berücksichtigt<br />

werden, wenn während eines Hochwasserereignisses Sohlenerosion erwartet wird. Werden<br />

hingegen Geschiebeablagerungen im Gerinne erwartet, ist das Gefährdungsbild Erosion an<br />

der Böschungsoberkante wahrscheinlicher. Der direkte Strömungsangriff muss am Prallhang<br />

und in geraden Fließstrecken berücksichtigt werden, nicht aber am Gleitufer von Flusskrümmungen.<br />

Ein nicht zu unterschätzender Aspekt der Morphologie sind Unregelmäßigkeiten im<br />

Abflussquerschnitt wie zum Beispiel Einbauten (Buhnen, Schwellen) oder Abflusshindernisse<br />

im Querschnitt (Bäume, Wurzelstöcke). Diese können Erosionsprozesse initiieren, wenn sie<br />

zu einer Strömungskonzentration am Ufer oder zur Bildung von Kolken führen.<br />

Für die als maßgeblich betrachteten Gefährdungsbilder werden die Belastungsgrößen in<br />

Abhängigkeit von Abfluss, Geschiebetransport und Sohlenveränderung während eines<br />

Hochwassers bestimmt. Je nach Gefährdungsbild ist die Schleppspannung oder die Kolktiefe<br />

die entscheidende Belastungsgröße. In vielen Fällen müssen die Belastungsgrößen gutachterlich<br />

und qualitativ bestimmt werden. In Gewässern in denen die hydraulischen Verhältnisse<br />

bei Hochwasser mit ausreichender Genauigkeit vorhergesagt werden können, sollen die<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 563


Grundszenarien<br />

Abfluss Q<br />

Geschiebezufuhr G<br />

Holzzufuhr H<br />

Schwachstellenanalyse<br />

Bekannte Erosionsstellen<br />

Morphologie<br />

- aktuell<br />

- Veränderungen bei Hochwasser<br />

Gefährdungsbilder<br />

a) Erosion am Böschungsfuß<br />

b) Direkter Strömungsangriff<br />

c) Erosion an der<br />

Böschungsoberkante<br />

Belastungsgrößen<br />

- Schleppspannungen<br />

- Kolktiefen<br />

Erosionswiderstand<br />

- Uferbeschaffenheit<br />

- Bauhöhe, Baulänge, Fundation<br />

- Zustand<br />

- Grenzbelastung<br />

Fazit:<br />

Seitenerosion möglich?<br />

nein<br />

Beurteilung Ufererosion für<br />

das Szenario abgeschlossen<br />

ja<br />

Wirkungsanalyse<br />

Ausdehnung und Intensität<br />

- Flächige Ausdehnung<br />

- Intensität<br />

Räumliche<br />

Auftretenswahrscheinlichkeit<br />

Folgeprozesse untersuchen<br />

Abbildung 1: Flussdiagramm zum generelles Vorgehen zur Beurteilung der Gefahr von Ufererosion.<br />

564 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


a) Erosion am Böschungsfuß<br />

b) Direkter Strömungsangriff<br />

B UE<br />

B UE<br />

c) Erosion an der Böschungsoberkante<br />

B UE<br />

Abbildung 2: Gefährdungsbilder bei der Beurteilung der Gefahr von Ufererosion. BUE bezeichnet die Erosionsbreite. Die Pfeile<br />

symbolisieren die maßgebliche Belastung.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 565


Belastungsgrößen jedoch berechnet werden. Für die Berechnung von Kolktiefen sind aus der<br />

Literatur verschieden Ansätze bekannt, z.B. von Tschopp und Bisaz (1972) bei Überfällen,<br />

von Peter (1986) oder Kikkawa et al. (1976) bei Flusskrümmungen und von Zarn (1997) in<br />

Gerinnen mit Bänken. Die maßgebliche Belastungsgröße beim direkten Strömungsangriff<br />

(Abbildung 2b) und bei der Erosion an der Böschungskante (Abbildung 2c) ist die Schleppspannung<br />

auf der Böschung bzw. dem darüber liegenden Terrain.<br />

Die Belastungsgrößen werden dem Erosionswiderstand des Ufers gegenüber gestellt. Um den<br />

Widerstand zu bestimmen, müssen die Beschaffenheit und der Zustand des Ufers bzw. des<br />

umliegenden Terrains erfasst werden. Zu den Parametern, welche den Widerstand beeinflussen,<br />

zählen die Art des Ufers (Fels oder Lockermaterial, verbaut oder nicht verbaut), seine<br />

Kornzusammensetzung (Kies, Feinsedimente; kohäsiv oder nicht), sein Bewuchs (flachgründig,<br />

tiefgründig), seine Neigung und gegebenenfalls die Fundationstiefe von Verbauungen. In<br />

vielen Fällen ist auch hier eine gutachterliche und qualitative Beurteilung notwendig.<br />

Insbesondere die Fundationstiefe einer bestehenden Uferverbauung ist nur selten bekannt<br />

oder kann nur mit verhältnismäßig großem Aufwand ermittelt werden. Bei Uferverbauungen<br />

mit Blockwürfen lässt sich der Erosionswiderstand z.B. mit dem Ansatz von Stevens und<br />

Simons (1971) bestimmen. Für ingenieurbiologische Verbauungen sind Grenzwerte der<br />

Schleppspannung zum Beispiel bei Pasche (2000) zu finden.<br />

Zum Schluss der Schwachstellenanalyse wird aufgrund der in den vorangehenden Schritten<br />

gewonnenen Erkenntnisse entschieden, ob an einer bestimmten Stelle des Gewässers<br />

Ufererosion anzunehmen ist oder nicht.<br />

DIE WIRKUNGSANALYSE<br />

Im Rahmen der Wirkungsanalyse wird das Ausmaß der möglichen Erosion festgelegt. Es wird<br />

durch die Erosionsbreite, Erosionshöhe und Erosionslänge beschrieben (Abbildung 3). Die<br />

Erosionslänge L UE<br />

wird entlang der ursprünglichen Uferlinie gemessen. Als Erosionsbreite B UE<br />

wird die maximale Ausdehnung der Erosionsnische senkrecht zur Fließrichtung betrachtet.<br />

Die Erosionshöhe h UE<br />

bezeichnet den Höhenunterschied zwischen der ursprünglichen<br />

Gewässersohle und der Anrisskante. Die Erosionshöhe wird verwendet, um die Intensität des<br />

Gefahrenprozesses zu beschreiben.<br />

Die Erfahrungen aus dem Hochwasser 2005 und aus jüngeren Hochwasserereignissen lehren,<br />

dass die Erosionsbreite ein Mehrfaches der ursprünglichen Gerinnebreite aufweisen kann<br />

(Hunzinger und Durrer 2008, Krapesch et al. 2011, Bachmann 2012,). Verändert sich die<br />

Morphologie eines Gewässers großräumig, d.h. bilden sich neue Mäander oder Gerinneverzweigungen,<br />

haben Ufererosionen eine größere Ausdehnung als wenn sie durch eine lokale<br />

Unregelmäßigkeit im Abflussquerschnitt verursacht werden.<br />

Werden die Ergebnisse der Beurteilung für eine Risikoanalyse verwendet, wird der Ufererosion<br />

eine räumliche Auftretenswahrscheinlichkeit zugewiesen, welche zwischen 0.1 (in<br />

geraden Gerinnen) und 1.0 (in Außenkurven eines Mäanderbogens) liegt. Schließlich darf<br />

man nicht vergessen, dass durch die Erosion eines Ufers Folgeprozesse ausgelöst werden<br />

566 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 3: Bezeichnungen für das Ausmaß der Erosion. Beispiel an der Theiss, Ukraine. Foto: Flussbau AG SAH, 2001.<br />

können, wie z.B eine Hanginstabilität. Als letzter Schritt der Beurteilung müssen deshalb<br />

mögliche Folgeprozesse identifiziert werden.<br />

EIN ANWENDUNGSBEISPIEL<br />

Das folgende Anwendungsbeispiel soll die oben erwähnte Empfehlung zum Vorgehen veranschaulichen.<br />

Es werden Erosionsprozesse bei einem 300-jährlichen Hochwasserereignis am<br />

Ticino bei Chiggiogna, einem Gebirgsfluss in der Südschweiz, untersucht. Das Flussbett ist im<br />

Abbildung 4: Blocksatz am Ticino bei Chiggiogna. Foto: Flussbau AG SAH, 2012.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 567


untersuchten Abschnitt zwischen 40 m und 80 m breit und verzweigt. Das Längengefälle<br />

beträgt 1.7 %. Das Ufer ist mit einem intakten Blocksatz gesichert (Abbildung 4).<br />

Das betrachtete Grundszenario hat eine Abflussspitze von 610 m 3 /s und es werden rund<br />

60'000 m 3 Geschiebe zugeführt. Der Transport von Schwemmholz ist in diesem Beispiel für<br />

die Beurteilung der Ufererosion ohne Bedeutung.<br />

Die Schwachstellenanalyse zeigt, dass die Gefährdungsbilder Erosion am Böschungsfuß<br />

(Abbildung 2a) und direkter Strömungsangriff (Abbildung 2b) näher untersucht werden<br />

müssen: Für das 300-jährliche Ereignis ist mit großräumigen Ablagerungen auf der Sohle zu<br />

rechnen und das Gerinne wird sich stärker verzweigen. Die möglichen Kolke werden mit<br />

dem Ansatz von Zarn (1997) berechnet. Sie sind tiefer, als das Ufer fundiert ist. Für das<br />

Gefährdungsbild direkter Strömungsangriff wird die Schleppspannung auf der Böschung<br />

berechnet. Sie berücksichtigt eine Strömungskonzentration an der Kurvenaußenseite. Die<br />

Grenzschleppspannung wird nach Stevens und Simons (1971) bestimmt. Sie ist dank des<br />

hohen Blockgewichtes höher als die Belastung (Tabelle 1). Das Gefährdungsbild Erosion an<br />

der Böschungsoberkante ist wenig wahrscheinlich, weil auf dem Abschnitt bei Hochwasser<br />

keine Ausuferungen erwartet werden. Das Fazit der Schwachstellenanalyse lautet: durch<br />

Erosion am Böschungsfuß kann bei einem 300-jährichen Hochwasserereignis das Ufer erodieren<br />

(Tabelle 1).<br />

1<br />

Tabelle 1: Schwachstellenanalyse für das Anwendungsbeispiel Ticino bei Chiggiogna: Gefährdungsbilder, Belastung, Widerstand und<br />

Fazit.<br />

2<br />

3<br />

4<br />

5<br />

Gefährdungsbild Belastung Widerstand Fazit<br />

Erosion am Böschungsfuß Kolktiefe t = –2.5 m Fundationstiefe -1.5 m Seitenerosion möglich<br />

Direkter Strömungsangriff τ = 370 N/m 2 Blocksatz, 45° geneigt, Keine Seitenerosion<br />

Blockgewicht 4 t<br />

τ crit = 390 N/m 2<br />

Erosion an der<br />

keine – Keine Seitenerosion<br />

Böschungsoberkante<br />

Im Tabelle Rahmen 1: Schwachstellenanalyse der Wirkungsanalyse wird für postuliert, das Anwendungsbeispiel: dass einem 300-jährlichen Gefährdungsbilder, Ereignis das<br />

Gewässer Belastung, die Widerstand gesamte Talebene und Fazit. beansprucht, weil das Terrain hinter dem Blocksatz aus leicht<br />

erodierbaren alluvialen Schottern aufgebaut ist. Die Erosion kann auf der gesamten Länge des<br />

betrachteten Abschnittes auftreten. Die Erosionshöhe entspricht der Böschungshöhe und<br />

misst zwischen 2.5 m bis 3 m. Die räumliche Auftretenswahrscheinlichkeit wird zu 0.25<br />

gesetzt, d.h. es wird angenommen, dass sich wegen der Verzweigung lokale Prallhangsituationen<br />

und Abschnitte ohne Ufererosion abwechseln. Auf dem untersuchten Abschnitt werden<br />

keine Folgeprozesse der Erosion erwartet.<br />

568 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Zum Vergleich: Auf einem Abschnitt 5 km oberstrom des Untersuchungsabschnittes wurden<br />

während des Hochwassers von 1987 mit einer Abflussspitze um 450 m 3 /s Seitenerosionsprozesse<br />

mit einer Erosionsbreite von 10 - 20 m beobachtet (Ufficio dei corsi d'acqua, 1987). Auf<br />

dem betreffenden Abschnitt war das Gerinne aber nicht verzweigt.<br />

FAZIT<br />

Die Belastung durch ein Hochwasser und der Erosionswiderstand einer Uferböschung lassen<br />

sich nicht immer oder nur mit großem Aufwand quantitativ erfassen. Oftmals ist man auf<br />

eine gutachterliche Schätzung angewiesen. Die Beurteilung der Gefahr der Seitenerosion<br />

erfordert deshalb große Erfahrung des Gutachters. Wie jede andere Gefahrenbeurteilung ist<br />

auch die Beurteilung der Ufererosion mit Unsicherheiten verbunden. Unsicherheiten können<br />

insbesondere im Rahmen der Schwachstellenanalyse bei der Bestimmung von Belastungsgrößen<br />

und bei der Bestimmung des Erosionswiderstandes auftreten. Aus den Unsicherheiten<br />

resultiert eine Unschärfe im Ergebnis der Beurteilung. Ein Mittel, um diese Unschärfe zu<br />

erkennen und möglicherweise zu vermindern, ist die Anwendung verschiedener Methoden<br />

bei der Bearbeitung der einzelnen Schritte. In manchen Fällen kann die Unschärfe in der<br />

Beurteilung vermindert werden, indem Unsicherheiten in den Grundlagen, insbesondere<br />

jene zur Beschaffenheit des Ufers, durch detaillierte Abklärungen beseitigt werden. Dabei gilt<br />

es aber, die Balance zwischen dem erforderlichen Mehraufwand und der Verbesserung der<br />

Aussagekraft zu wahren.<br />

DANK<br />

Die Erarbeitung der Empfehlung wurde durch das Bundesamt für Umwelt (Schweiz)<br />

finanziert. Eine erweiterte Arbeitsgruppe aus Mitgliedern von FAN und KOHS hat die<br />

Erarbeitung der Empfehlung fachlich begleitet. Ihnen gilt der besondere Dank der Autorenschaft.<br />

LITERATUR<br />

- Ahmari H. & da Silva A.M.F. (2011). Regions of bars, meandering and braiding in da Silva<br />

and Yalin's plan. Journal of Hydraulic Research. Vol. 49, No. 6: 718-727.<br />

- Anderson A.G., Parker G. & Wood A. (1975). The flow and stability characteristics of alluvial<br />

river channels. St. Anthony Falls Hydraulic Laboratory. Rep. No. 161<br />

- Bachmann A. (2012). Ausmass und Auftreten von Seitenerosionen bei Hochwasserereignissen.<br />

Geographisches Institut der Universität Bern, Bern.<br />

- Beck J.R. (2006). Streambank erosion hazard mapping: concepts, methodology and<br />

application on the Venoge river (Switzerland). Ecole polytechnique fédérale de Lausanne,<br />

Lausanne.<br />

- Hilker N., Aller D. & Hegg C. (2007): Schäden. in Bezzola G. R. & Hegg C. (Ed.) 2007:<br />

Ereignisanalyse Hochwasser 2005, Teil 1 – Prozesse, Schäden und erste Einordnung.<br />

Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt WSL. Umwelt- Wissen Nr.<br />

0707. 215 S.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 569


- FAN & KOHS (2015). Empfehlung zur Beurteilung der Gefahr von Ufererosion an Fliessgewässern.<br />

www.fan-info.ch bzw. www.swv.ch.<br />

- Hunzinger L. & Durrer S. (2008): Seitenerosion. in Bezzola G.R. & Hegg C. (Ed.) 2008.<br />

Ereignisanalyse Hochwasser 2005, Teil 2 – Analyse von Prozessen, Massnahmen und<br />

Gefahrengrundlagen. Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt für<br />

Wald, Schnee und Landschaft WSL. Umwelt-Wissen Nr. 0825: 429 S.<br />

- Kikkawa H., Ikeda S. & Kitagawa A. (1976). Flow and Bed Topography in Curved Open<br />

Channels. Proc. ASCE, J. of Hydr. Div. 102(HY9): 1327-1342.<br />

- Krapesch G., Hauer C. & Habersack H. (2011). Scale orientated analysis of river width<br />

changes due to extreme flood hazards. Natural Hazards and Earth System Sciences 11:<br />

2137-2147.<br />

- Pasche E. (2000). Wasserbau. Skript zur Vorlesung, Technische Universität Hamburg.<br />

- Peter W. (1986). Kurvenkolk - Untersuchung über die Sohlenausbildung in Flusskrümmungen.<br />

Mitteilung Nr. 85 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der<br />

ETH Zürich.<br />

- Requena R. (2008). Seitenerosion in kiesführenden Flüssen – Prozessverständnis und<br />

quantitative Beschreibung. Mitteilung Nr. 210 der Versuchsanstalt für Wasserbau, Hydrologie<br />

und Glaziologie der ETH Zürich.<br />

- Romang H. (Ed.) 2008: Wirkung von Schutzmassnahmen. Teil F Flüsse. Nationale Plattform<br />

für Naturgefahren PLANAT, Bern. 289 S.<br />

- Stevens M.A. & Simons D.B. (1971). Stability Analysis for Coarse Granular Material on<br />

Slopes. River Mechanics, Shen H.W. (ed.), Fort Collins, Colorado, 17-1: 17-27.<br />

- Tschopp J. & Bisaz E. (1972). Profundidad de erosión al pie de un vertedero para la<br />

aplicación de corrección de arroyos en quebradas empinados (Erosion depth at weir toe for<br />

the application of river corrections at steep canyons). 5. Congreso Latinoamericano de<br />

Hidráulica, IAHR, Lima, PE.<br />

- Ufficio dei corsi d'acqua (1987). Alluvione Agosto 1987 Leventina + Bedretto, Fotografie.<br />

Repubblica e Cantone Ticino, Uffico dei corsi d'acqua. Unveröffentlicht.<br />

- Zarn B. (1997). Einfluss der Flussbettbreite auf die Wechselwirkung zwischen Abfluss,<br />

Morphologie und Geschiebetransportkapazität. Mitteilung der Versuchsanstalt für Wasserbau,<br />

Hydrologie und Glaziologie der ETH Zürich, 154 S.<br />

570 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Human induced risk dynamics - a quantitative analysis<br />

of debris flow risks in Sörenberg, Switzerland<br />

(1950 to 2014)<br />

Benjamin Fischer, MSc 1,2 ; Margreth Keiler, PD Dr. 1<br />

ABSTRACT<br />

Settlement extension into endangered areas has led to increased losses through natural<br />

disasters in recent years. Despite the significant role of human activity for the development of<br />

losses, only few studies focus on the quantitative evolution of natural hazard risk over time.<br />

In this study, a quantitative multi-temporal risk approach is applied to analyse the debris flow<br />

risk evolution from 1950 to 2014 in Sörenberg, Switzerland. Three hazard scenarios are<br />

modelled with RAMMS debris flow 1.6.20. The analysis of elements at risk focuses on<br />

physical economic damage to building structures while the vulnerability is calculated based<br />

on the empirical vulnerability curve by Papathoma-Köhle et al. (2012). The results show that<br />

a massive building boom caused a risk increase between factor 41.1 and 65.6 from 1950 to<br />

2000. The implementation of structural mitigation measures in 2014 reduced the risk in all<br />

scenarios but the risk of scenario C was still 14-times higher compared to the risk in 1950.<br />

KEYWORDS<br />

risk; risk evolution; RAMMS debris flow; vulnerability; vulnerability curve<br />

INTRODUCTION<br />

The losses related to natural disasters considerably increased worldwide within the last<br />

decades. In recent literature it is widely accepted that human activity plays a key role for this<br />

development (e.g. Fuchs & Keiler 2013). This induced that the concept of risk has become the<br />

common approach to assess the impact of natural hazards on settlement areas (Fuchs et al.<br />

2004). Fuchs & Keiler (2013) emphasized that every risk parameter shows its own dynamics<br />

in time and space with increasing complexity between the different parameters. However,<br />

only few studies exist which quantify the risk evolution over a longer period of time (e.g.<br />

Keiler et al. 2006, Schwendtner et al. 2013, Kallen 2015). Thus, the objective of this study is<br />

to analyse quantitatively the debris flow risk evolution of Sörenberg, Switzerland, from 1950<br />

to 2014.<br />

The case study site is a small tourist resort in the Swiss Prealps (Fig. 1). The boom of winter<br />

sports boosted the touristic development in Sörenberg and caused a building boom starting in<br />

1 University of Bern, Institute of Geography, Bern, SWITZERLAND<br />

2 wasser/schnee/lawinen Ingenieurbüro A. Burkard AG, Brig-Glis, SWITZERLAND, b.fischer@wasserschneelawinen.ch<br />

IP_<strong>2016</strong>_FP050<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 571


the 1960s in the settlements Laui and Flüehütte, which are located on an ancient debris fan.<br />

The slopes above the settlements belong to a well-documented deep-seated sagging process<br />

(red in Fig. 1) which affects the three torrents Satzgraben, Lauigraben and Lauibach. The<br />

geology in the study area is Schlierenflysch. Six landslide events with subsequent debris flows<br />

occurred in the 20th century, whereas the last event dates from 14 May 1999 and occurred in<br />

the Lauibach (Zimmermann 2006). Since then, extensive mitigation measures were taken<br />

including a contingency plan and structural measures with two debris collectors in the<br />

Satzgraben, a debris collector in the Lauigraben and protection dams in all three torrents<br />

which were completed in autumn 2014 (Fig. 1; Fischer 2014).<br />

Figure 1: Study area with mitigation measures (finished in 2014) in Sörenberg.<br />

572 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


In terms of natural hazards, risk can be defined as R i,j<br />

= f (p Si<br />

, A Oj<br />

, v Oj,Si<br />

, p Oj,Si<br />

). Risk is a<br />

function of the probability of occurrence of the hazard scenario i (p Si<br />

), the value of object j at<br />

risk (A oj<br />

), the vulnerability of object j in dependence on scenario i (v Oj,Si<br />

) and of the probability<br />

of exposure of object j in scenario i (p Oj,Si<br />

) (Fuchs & Keiler 2013). In this study, vulnerability is<br />

defined according to Fell et al. (2008: 86):„The degree of loss to a given element or set of<br />

elements within the area affected by the landslide. It is expressed on a scale of 0 (no loss) to 1<br />

(total loss). For property, the loss will be the value of the damage relative to the value of the<br />

property.”<br />

METHODS<br />

Similar to recently conducted risk evolution analyses (e.g. Schwendtner et al. 2013), a<br />

quantitative multi-temporal risk approach is applied which consists of four work steps: the<br />

hazard analysis, the analysis of elements at risk, the vulnerability analysis and the risk<br />

calculation.<br />

Hazard analysis<br />

The hazard analysis aims to define event scenarios of the three torrents and generate<br />

quantitative intensity maps based on modelling with RAMMS debris flow 1.6.20 (Christen et<br />

al. 2012). In this study, the hazard scenarios are assumed to be constant over time. A pair of<br />

scenarios including a scenario without mitigation measures (situation from 1950 to 2000,<br />

scenarios 1a-3a) and a scenario with implemented mitigation measures (situation since 2014,<br />

scenarios 1b-3b) is defined for each torrent. They are defined according to the bed load<br />

scenario with a recurrence interval of 100 years, derived from the official hazard map. While<br />

the calibration of RAMMS in the Lauibach is based on the event analysis from the event in<br />

1999, there is no recent debris flow event, which would reflect the current hazard situation<br />

in the other two torrents. Thus, the model calibration in these cases are based on previous<br />

modelling, the semi-quantitative intensity maps for flood hazards and the described characteristics<br />

of the debris flow hazard in these torrents (Fischer 2014). The modelling is carried<br />

out with a digital terrain model with a resolution of 2 m. The input parameters of every event<br />

scenario including the modelled debris flow volume, the applied friction parameters μ and ξ<br />

and the maximum flow discharge Q max<br />

are presented in Tab. 1. The chronological sequence of<br />

the hazard scenarios 1a/1b, 2a/2b and 3a/3b results in the hazard evolution scenarios A-C.<br />

The modelling results have been verified on-site.<br />

Analysis of elements at risk<br />

The analysis of elements at risk focuses on physical economic damage to building structures<br />

based on data from the cantonal building insurance of Lucerne. Seven elements at risk layers<br />

were generated which represent the situation of the settlement in the years 1950, 1960,<br />

1970, 1980, 1990, 2000 and 2014. As a simplification of the method, the insurance values<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 573


from 2014 are considered as stable for the entire investigation period. Consequently, the<br />

results of the different decades are inflation-adjusted and can be directly compared.<br />

Table 1: Applied modelling parameters in RAMMS debris flow 1.6.20 for the event scenarios 1a-3a and 1b-3b (Fischer 2014).<br />

Event<br />

scenario<br />

Scenario 1a Scenario 2a Scenario 3a Scenario 1b Scenario 2b Scenario 3b<br />

Torrent<br />

Satzgraben<br />

Lauigraben<br />

Satzgraben<br />

Lauibach Satzgraben Lauigraben Lauibach<br />

Mitigation<br />

measures<br />

(m 3 )<br />

no no no no 26.000 34.500 40.000<br />

Debris flow<br />

volume<br />

(m 3 )<br />

25.000 25.000 10.000 100.000 0 0 60'000<br />

µ / ξ 0.16 / 200<br />

0.25 /<br />

200<br />

0.16 /<br />

200<br />

0.3 / 100 - - 0.3 / 100<br />

Q max 80 50 20 50 - - 50<br />

Vulnerability analysis<br />

Papathoma-Köhle et al. (2012) provides a methodology for the development of a site-specific<br />

quantitative vulnerability curve. The methodology cannot be applied due to insufficient data<br />

on damaged buildings in Sörenberg. The vulnerability analysis is thus conducted quantitatively<br />

according to the empirical vulnerability function by Papathoma-Köhle et al. (2012) which<br />

was developed based on several case studies in the South Tyrol, Italy. This vulnerability curve<br />

describes the vulnerability as the ratio of the intensity (I) expressed as deposition height to<br />

the degree of loss (Fig. 2).<br />

Risk calculation<br />

As the three scenarios have a recurrence interval of 100 years, the potential loss of each<br />

scenario is divided by 100 to calculate the risk of each scenario expressed in CHF/a.<br />

RESULTS<br />

Hazard analysis<br />

The modelling of the event scenarios resulted in six intensity maps, which are used as a basis<br />

for the multi-temporal risk analysis. Fig. 3 shows the modelled intensity maps in the Lauibach<br />

before (scenario 3a, on the left) and after the implementation of mitigation measures<br />

(scenario 3b, on the right). The protection dams and debris collectors diminish the process<br />

intensities in scenario 3b, but according to the model results many parts of the settlements are<br />

still affected because the protection dams only retain 60’000 m 3 of 100’000 m 3 in the<br />

574 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


1<br />

0.9<br />

0.8<br />

0.7<br />

Degree of loss<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

Intensity [m]<br />

Figure 2: Empirical vulnerability curve by Papathoma-Köhle et al. (2012).<br />

Figure 3: The hazard situation in the Lauibach before (scenario 3a; left) and after the implementation of mitigation measures (scenario<br />

3b; right), modelled with RAMMS debris flow 1.6.20 (Christen et al. 2012).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 575


Lauibach (Fischer 2014). The measures are more effective in the scenarios 1b and 2b, where<br />

they prevent the debris flows from reaching the settlement area.<br />

Evolution of the elements at risk<br />

Driven by a building boom with over 100 new buildings in each decade from the 1960s to the<br />

1980s, the values at risk considerably increased from less than 3 million CHF in 1950 to a<br />

range between 59.7 million (scenario A) and 188.6 million (scenario C) in 2000. This<br />

corresponds to a proportional development of factor 45.3 to 142.5. The implemented<br />

structural measures cut the values at risk to 0 in the scenarios A and B. In scenario C, the<br />

values at risk only decreased to 162.2 million CHF in 2014 because the extent of the affected<br />

area was slightly reduced and 20 new buildings were constructed between 2000 and 2014.<br />

Evolution of the vulnerability parameter<br />

The mean vulnerability per building increased from average values between 0.029 (standard<br />

deviation: 0.038; scenario A) and 0.034 (standard deviation: 0.050; scenario C) in 1960 to<br />

values between 0.043 (standard deviation: 0.058; scenario C) and 0.074 (standard deviation:<br />

0.098; scenario A) in 2000. Scenario A presents the most distinct proportional development<br />

with factor 2.6. In the last time step, the average vulnerability in scenario C is reduced to<br />

0.015. This implies that the average vulnerability decreased by 56 % (equal to factor 0.44) in<br />

scenario C from 1960 to 2014 while it drops to 0 in scenario 1 and 2.<br />

Risk evolution<br />

Obviously, the risk situation has changed substantially in the study area within the investigated<br />

time period from 1950 to 2014. Tab. 2 presents the proportional risk evolution of the<br />

hazard evolution scenarios A-C and event scenarios 1a-3a (without mitigation measures),<br />

whereas the oldest value of 1950 was set to factor 1.<br />

Table 2: Proportional development of risk in the scenarios A-C (including mitigation measures in 2014) and 1a-3a (excluding mitigation<br />

measures) in Sörenberg, with the values from 1950 serving as basis (Fischer 2014, © Geoinformation Kanton Luzern).<br />

Decade Scenario A Scenario B Scenario C Scenario 1a Scenario 2a Scenario 3a<br />

1950 1,0 1,0 1,0 1,0 1,0 1,0<br />

1960 2,7 3,4 2,1 2,7 3,4 2,1<br />

1970 17,1 22,5 11,8 17,1 22,5 11,8<br />

1980 26,7 32,6 20,8 26,7 32,6 20,8<br />

1990 59,8 47,7 37,3 59,8 47,7 37,3<br />

2000 65,6 49,9 41,1 65,6 49,9 41,1<br />

2014 0,0 0,0 14,3 65,8 52,7 50,0<br />

576 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The risk evolution from 1950 to 2000 was dominated by the building boom since the 1960s<br />

which led to a proportional risk increase of factor 41.1 to factor 65.6. In monetary values, the<br />

risk reached 39’000 CHF/a in scenario A in 2000 and 92’700 CHF/a in scenario C in the same<br />

time step. While the risk would have further increased without the implementation of<br />

mitigation measures in the scenarios 1a-3a it was reduced to 0 in the scenarios A and B due<br />

to structural measures. In scenario C, it still shows an increase of factor 14 compared to the<br />

situation of 1950.<br />

DISCUSSION<br />

The calculated risk evolution depends on the applied methodology and on the definition of<br />

hazard scenarios and their probabilities, which feature several uncertainties. The event<br />

history shows that debris flow events always took place after an increased activity of the<br />

sagging mass and the occurrence of a landslide. Debris flows are thus tertiary processes and<br />

their volumes depend on how much slided material is remobilized. In the event of 1999, a<br />

landslide with 250’000 m 3 was released from the sagging mass whereas only 50’000 m 3 were<br />

remobilized by debris flows (Zimmermann 2006). Another uncertainty arises from the<br />

simplification of the probability of the hazard scenarios, which are treated as constant within<br />

the investigated time period. It should be further considered that the difference between the<br />

maximum flow height – the output of the modelling – and the deposition height, which is<br />

used as a parameter in the vulnerability curve, is neglected in this study.<br />

The evolution of the elements at risk in Sörenberg is very pronounced compared to the risk<br />

evolution analyses in Martell (factor 3.3; Schwendtner et al. 2013), and Galtür (factor 5;<br />

Keiler et al. 2006). In Sörenberg, the proportional development factors from 1950 to 2000 are<br />

thus 9 to 47 times higher than those in similar studies. However, building renovations (e.g.<br />

change of the building structure material) and changes of the building sizes, which were<br />

important factors for increasing values at risk in Martell and Galtür, were neglected in this<br />

case study.<br />

The mean vulnerability values in this study are very low. This is the consequence of the use<br />

of unprocessed modelling results, which enhances the comparability of the methodology.<br />

Although the empirical vulnerability curve by Papathoma-Köhle et al. (2012) has the<br />

advantage that it prevents inaccuracies due to defined vulnerability values for wide intensity<br />

ranges, it faces major methodological constraints. The vulnerability curve does not differ<br />

between different building structure types, which may cause inaccurate results for specific<br />

buildings and which would be important for the analysis of the vulnerability evolution over<br />

time.<br />

The risk evolution of scenario C indicates that the implementation of structural measures do<br />

not implicitly lead to a risk decrease over time, which is consistent with recent literature<br />

(Keiler et al. 2006, Schwendtner et al. 2013). Compared to other debris flow risk evolution<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 577


analyses by Schwendtner et al. (2013) and Kallen (2015), which showed a risk increase of<br />

factor 5.8 between 1954 and 2006 in Martell, Italy, and an increase of factor 2.6 to 3.9 in<br />

Reichenbach, Switzerland, from 1890 to 2010, respectively, the analysed risk evolution in<br />

Sörenberg is however disproportionately fast and pronounced. Other case studies (e.g. Galtür<br />

(Keiler et al. 2006) or Davos (Fuchs et al. 2004)) showed a risk increase in the years after the<br />

implementation of the mitigation measures. This rebound effect of risk is the consequence of<br />

an improved hazard situation that encourages a more intensive settlement extension, which<br />

again increases the risk. The probability of a rebound effect is higher if there are considerable<br />

uncertainties in the definition of the hazard scenarios. As this is the case in Sörenberg, further<br />

investigations are necessary at a later date.<br />

CONCLUSION<br />

The quantitative risk evolution analysis in Sörenberg indicates the seriousness of the risk<br />

increase due to settlement extension into an active process area. A further investigation of the<br />

long-term effect of the mitigation measures on the risk evolution in Sörenberg will be<br />

necessary. Additionally, the study indicates methodological challenges as the development of<br />

specific vulnerability curves for different building structure types and the consideration of the<br />

variability of the hazard parameter into risk evolution analyses.<br />

ACKNOWLEDGEMENTS<br />

Special thanks to the two anonymous reviewers whose comments improved the quality of<br />

the paper significantly.<br />

REFERENCES<br />

- Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell,<br />

B.W., Gerber, W., Deubelbeiss, Y., Feistl, T., Volkwein, A., 2012. Integral hazard management<br />

using a unified software environment - Numerical simulation tool “RAMMS” for gravitational<br />

natural hazards. 12th Congr. Interpraevent 2012 - Grenoble.<br />

- Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z., 2008. Guidelines for<br />

landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 102 (2008),<br />

85–98.<br />

- Fischer, B., 2014. Risk evolution in debris flow prone areas from 1950 - 2014 – two case<br />

studies conducted in Lai-Ji (), Taiwan, and Sörenberg, Switzerland (Master thesis).<br />

Universität Bern.<br />

- Fuchs, S., Bründl, M., Stötter, J., 2004. Development of avalanche risk between 1950 and<br />

2000 in the municipality of Davos, Switzerland. Nat. Hazards Earth Syst. Sci. 4 (2), 263–275.<br />

- Fuchs, S., Keiler, M., 2013. Space and time: coupling dimensions in natural hazard risk<br />

management?, in: Müller-Mahn, D. (Ed.), The Spatial Dimension of Risk - How Geography<br />

Shapes the Emergence of Riskscapes. Earthscan publishers, London, pp. 189–201.<br />

578 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Kallen, I., 2015. Risikoentwicklung im Schatten des Geschiebesammlers - Die Veränderung<br />

des Risikos über die Zeit des Geschiebesammlerbaus im Richebach in Reichenbach i.K. bis<br />

heute (Masterarbeit). Universität Bern, Bern.<br />

- Keiler, M., Sailer, R., Jörg, P., Weber, C., Fuchs, S., Zischg, A., Sauermoser, S., 2006.<br />

Avalanche risk assessment - a multi-temporal approach, results from Galtür, Austria. Nat.<br />

Hazards Earth Syst. Sci. 6 (2006), 637–651.<br />

- Papathoma-Köhle, M., Totschnig, R., Keiler, M., Glade, T., 2012. A new vulnerability<br />

function for debris flow - the importance of physical vulnerability assessment in alpine areas.<br />

12th Congr. Interpraevent 2012 - Grenoble.<br />

- Schwendtner, B., Papathoma-Köhle, M., Glade, T., 2013. Risk evolution: how can changes<br />

in the built environment influence the potential loss of natural hazards? Nat. Hazards Earth<br />

Syst. Sci. 13, 2195–2207.<br />

- Zimmermann, M., 2006. Die Rutschung Sörenberg - nicht nur ein Studienobjekt, in:<br />

Beiträge Zur Angewandten Geologie - Festband Jean F. Schneider, Schriftenreihe des<br />

Depatments. Wien, pp. 119–130.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 579


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Maps of pluvial floods and their consequences:<br />

a case study<br />

Martin Mergili 1 ; Andreas Tader 1 ; Thomas Glade 1 ; Stefan Jäger 2 ; Clemens Neuhold 3 ; Heinz Stiefelmeyer 3<br />

ABSTRACT<br />

GIS based methods represent a helpful tool set for analyzing pluvial floods and their consequences.<br />

Focusing on the consequences for buildings, we use a two-step procedure to<br />

exemplify such an analysis with a well-documented event in the city of Graz (Austria) and to<br />

highlight possible methodological pitfalls and limitations. (i) We compute spatially distributed<br />

inundation depths using the software FloodArea. (ii) Based on inundation depths and a set of<br />

rules and functions, we derive the exposure, vulnerability and risk for each building. (iii) We<br />

scale the results to the level of postal code zones. The official cadastre is used as input in<br />

combination with the building register, a DEM and soil and land cover data. Verification is<br />

based on loss reports, photos and videos. We demonstrate a certain potential of the suggested<br />

procedure to reproduce the documented damages at the level of postal code zones. However,<br />

the results are highly sensitive to the model assumptions and parameter settings, and a<br />

satisfactory back-calculation of even well-documented events remains a major challenge.<br />

KEYWORDS<br />

pluvial floods; flood routing; risk analysis; scaling<br />

INTRODUCTION<br />

Short but intense rainfall events often trigger heavy short-time flooding causing severe<br />

damage to residential housing, roads, critical infrastructures, agricultural lands and other<br />

types of private and public assets. These damages are not only related to assets concentrated<br />

in flood plain areas, but also to those located in hilly terrain, thus where water is running<br />

along pathways such as slope cuts or through villages along roads. Therefore, besides the<br />

generally well established frameworks for fluvial floods, much more attention has to be paid<br />

to pluvial floods (Maksimović et al., 2009; Henonin et al., 2013), which should not be<br />

confused with flash floods.<br />

Every year society suffers from financial losses according to such pluvial flooding (Zhou et al.,<br />

2012, Smith et al., 2001 and Richard, 1995). The choice of appropriate adaptation and<br />

mitigation strategies often relies of GIS-supported analyses of expected inundation depths and<br />

consequences thereof. Such models have been used increasingly in the previous years<br />

(Leandro et al., 2009; Henonin et al., 2013). The effects of various key parameters on the<br />

1 Department of Geography and Regional Research, University of Vienna, AUSTRIA, martin.mergili@univie.ac.at<br />

2 geomer GmbH, Heidelberg, GERMANY<br />

3 Austrian Federal Ministry of Agriculture, Forestry, Environment and Water, Vienna, AUSTRIA<br />

580 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP057


model results were explored. Examples of such parameters include infiltration and surface<br />

roughness (Aronica et al., 1998; Singh et al., 2002; Casa et al., 2006; Choromanski et al.,<br />

2008; Sangati et al., 2009), and the influence of sewer systems (Masimović et al., 2009; Saul<br />

et al., 2010; Sun, 2011).<br />

The present paper focuses on the GIS based back-calculation of a well-documented pluvial<br />

flood event in the city of Graz (Austria). The aim is to:<br />

– propose a consistent and flexible work flow to derive the inundation depth and its possible<br />

consequences for buildings at varying levels of spatial aggregation, to<br />

– identify the possibilities, but also the challenges related to such an approach, and to<br />

– highlight the sensitivity of the analysis to some key parameters.<br />

STUDY AREA<br />

Graz is the capital of the province of Styria. With a population of approx. 270,000 it represents<br />

the second largest metropolitan area in Austria. In the present study we consider the<br />

city of Graz (Austria) along with some neighbouring municipalities. The area surveyed covers<br />

302 km², ranging between 321 m and 1339 m a.s.l. (Figure 1). Four control points for<br />

evaluation of the modelled inundation depths are chosen according to the availability of<br />

reference data (photo and video recordings during the event).<br />

Figure 1: The study area. The green dots show the control points evaluated in detail in Table 3.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 581


The annual rainfall for Graz in the period 1971–2010 is on average 819 mm, for the month of<br />

May it averaged at 86 mm (Provincial Government of Styria, 2015). In May 2013, 219 mm of<br />

precipitation were measured. An event between May 6, 2013 at 8 pm and 8 am the next day<br />

with a total amount of 82.3 mm is considered in the present study. The recurrence interval<br />

for this event ranges between five and ten years (Austrian Federal Ministry of Agriculture,<br />

Forestry, Environment and Water, 2015).<br />

METHODS<br />

General work flow<br />

An integrated approach to compute inundation depths H (cm) and their possible consequences<br />

is applied. H is derived through flow routing and applied to each building in the study area<br />

in order to derive the vulnerability V (-) through a vulnerability function. The risk R<br />

(expressed as the expected cost of reconstruction in €) is computed by combining V and the<br />

associated building values (exposure E in €). The results are scaled to postal code zones and<br />

evaluated against point observations of inundation depths and the documentation of<br />

damages.<br />

Inundation depth<br />

We use the flood routing software FloodArea developed by Geomer to compute spatially<br />

distributed values of H from an input pluviograph, a digital elevation model (DEM) and<br />

further derivatives of the data listed in Table 1. A detailed description of the software<br />

FloodArea is provided by Rodriguez et al. (2003); Assmann et. al. (2007) and Geomer & Ruiz<br />

Rodriguez+Zeisler+Blank (2014).<br />

A set of nine model runs is used to quantify the effects of every single determinant on the<br />

simulation results with regard to H (Table 2). For all model runs, the amount of the twelve<br />

hours rainfall event (82.3 mm) is evenly distributed over twelve equal time steps, each of<br />

them representing one hour with an amount of approx. 6.9 mm. The surface roughness is<br />

defined on the basis of the land use classes provided by the national digital cadastral map for<br />

Austria (Federal Office of Metrology and Surveying, 2012; Table 1) and Manning-Strickler<br />

roughness coefficients associated to each land use class (Fritsch, 2011; Rössert, 1996).<br />

A 2 m DEM is used as reference. As the pixel size strongly influences the computational<br />

times, we repeat the computation with a pixel size of 4 m (Model runs 1 and 2 in Table 2).<br />

The present paper only considers pluvial flooding. In order to exclude the influence of<br />

possible fluvial flooding and potential backwater effects, the stream network is deeply incised<br />

into the DEM. Fritsch (2011) already pointed out the advantage of this approach. We perform<br />

this step based on an automatically generated stream network (Model run 3 in Table 2).<br />

Model run 4 evaluates the influence of infiltration on the inundation depth (Table 2). In the<br />

model runs 1–3, inundation is neglected (runoff coefficient r = 1). For further improvement, r<br />

582 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Table 1: Key data used for the analyses.<br />

Description Source Inundation Consequences Evaluation<br />

depth<br />

Pluviograph for Austrian Federal Ministry of ● – –<br />

the event Agriculture, Forestry,<br />

Environment and Water<br />

Digital Elevation Federal Office of Metrology ● – –<br />

Model (DEM) and Surveying<br />

Official cadastre Federal Office of Metrology ● ● –<br />

(DKM)<br />

and Surveying<br />

Building register Statistik Austria – ● –<br />

(GWR)<br />

CORINE Land Environmental Agency ● – –<br />

cover<br />

Austria<br />

eBod<br />

Federal Research and ● – –<br />

Training Centre for Forests,<br />

Natural Hazards and<br />

Landscape (BFW)<br />

Photo<br />

Fire department of the city of – – ●<br />

documentation Graz<br />

Damage Austrian Insurance<br />

– – ●<br />

database Association<br />

Postal code<br />

zones<br />

Austrian Post – ● ●<br />

Table 2: Set of nine model runs. N = not considered; Y = considered; B = before; A = after; I = increased capacity of sewer system.<br />

Model run Pixel size (m) Automatic<br />

incision<br />

Infiltration Manual<br />

incision<br />

Sewer<br />

system<br />

1 2 N N N N<br />

2 4 N N N N<br />

3 4 Y N N N<br />

4 4 Y Y N N<br />

5 4 Y Y Y N<br />

6 4 Y Y Y A<br />

7 4 Y Y Y B<br />

8 4 Y Y Y A, I<br />

9 4 Y Y Y B, I<br />

in the range 0–1 is introduced, based on soil properties and vegetation cover. Building on the<br />

code of practice of the Federal Research and Training Centre for Forests, Natural Hazards and<br />

Landscape (Markart et al., 2011) a rough estimation of r is attempted. For this purpose we<br />

firstly use the Austrian soil map eBod (Federal Research and Training Centre for Forests,<br />

Natural Hazards and Landscape, 2013). The only free available release of this data set builds<br />

on raster of 1x1 km. For those raster cells where no data are available we assume r = 1.<br />

Secondly, we explore the CORINE land cover map (Environmental Agency Austria, 2012).<br />

Small water courses not depicted by the incised stream network layer can still cause unrealistically<br />

high modelled water levels when dammed by bridges or other flow obstacles. Manual<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 583


model run 5 (activation of the sewer system after flood routing), whilst in model run 7<br />

wer capacity is integrated in r (activation of the sewer system before flood routing).<br />

order to explore the effects of an increased sewer capacity (as it is available in some o<br />

deepening of the DEM is necessary at selected locations in order to avoid impoundments<br />

ties) the capacity of the sewer system is expanded to 73.5 what equals an event with a<br />

(model run 5).<br />

turn period of five years (Austrian Federal Ministry of Agriculture, Forestry, Environme<br />

In urban areas the sewer system represents a key factor for runoff. The capacity of the sewer<br />

d Water, 2015; model runs 8 and 9).<br />

system in Graz is designed for the discharge of an event with a return period of one year for<br />

15 minutes duration with 111 l/ha/s (pers. communication W. Sprung, 03.09.2015). In consequence<br />

a corresponding sewer discharge for an event of twelve hours with a return period of<br />

nsequences<br />

one year is estimated (Austrian Federal Ministry of Agriculture, Forestry, Environment and<br />

Water, 2015), leading to an assumed sewer capacity of 43.8 l/m². Two approaches are<br />

compared: in model run 6 the sewer capacity is subtracted from the results of model run 5<br />

(activation of the sewer system after flood routing), whilst in model run 7 the sewer capacity<br />

e possible consequences of pluvial flooding are computed separately for each of the n<br />

is integrated in r (activation of the sewer system before flood routing).<br />

odel runs summarized in Table 2.<br />

In order to explore the effects of an increased sewer capacity (as it is available in some other<br />

cities) the capacity of the sewer system is expanded to 73.5 what equals an event with a<br />

e extent return of period each of building five years (Austrian is extracted Federal Ministry from the of Agriculture, DKM, the Forestry, surface Environment area of each building<br />

and Water, 2015; model runs 8 and 9).<br />

2 ) from the GWR (Table 1). We use the sum of the areas of all floors. As a first estimat<br />

CONSEQUENCES<br />

sume a cost of reconstruction E0 of 2,000 €/m² (modified after Austrian Economic<br />

The possible consequences of pluvial flooding are computed separately for each of the nine<br />

model runs summarized in Table 2.<br />

ambers, 2014) independent on the function or building material. E is computed as E0<br />

The extent of each building is extracted from the DKM, the surface area of each building A<br />

(m 2 ) from the GWR (Table 1). We use the sum of the areas of all floors. As a first estimate we<br />

n approximation to the vulnerability function presented by Hsu et al. (2011) is used to<br />

assume a cost of reconstruction E 0<br />

of 2,000 €/m² (modified after Austrian Economic Chambers,<br />

2014) independent on the function or building material. E is computed as E 0<br />

· A.<br />

mpute V of each building:<br />

An approximation to the vulnerability function presented by Hsu et al. (2011) is used to<br />

compute V of each building:<br />

Equation 1<br />

1.5<br />

I <br />

0.575<br />

tan( R <br />

) <br />

2 <br />

V 0.8 e<br />

, Equatio<br />

here IR is the ratio between the relevant inundation depth HR (m) and the (in our case<br />

where I R<br />

is the ratio between the relevant inundation depth H R<br />

(m) and the (in our case<br />

estimated) height of the building (m) (relative intensity; Totschnig et al., 2011). H R<br />

is<br />

timated) height of the building (m) (relative intensity; Totschnig et al., 2011). HR is<br />

approximated by the mean value of H derived with the software FloodArea within a buffer<br />

area of five metres around each building. Finally, R of each building is computed as V · E.<br />

proximated by the mean value of H derived with the software FloodArea within a buf<br />

ea of<br />

SCALING<br />

five metres around each building. Finally, R of each building is computed as V · E<br />

An automated procedure building on the Python programming language and the R package<br />

for Statistical Computing (R Core Team, 2015) is employed for scaling the object-based values<br />

aling<br />

584 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


of H R<br />

, E, V and R to any desired spatial unit (large pixels, administrative units, catchments<br />

etc.). Diagrams displaying for defined threshold levels of each variable the fraction of objects<br />

equal or above the value of the variable are produced for each spatial unit. Further, the<br />

number and the fraction of objects with H R<br />

, E, V or R > 0 are displayed as well as the<br />

zone-specific averages and (for E and R) sums. Ranges are given for E and R. In the present<br />

study we scale the results to postal code zones.<br />

EVALUATION<br />

To verify the results of the simulation, we qualitatively compare the modelled inundation<br />

depths to observed inundation depths documented by photographs (Table 1). Further, we use<br />

damages related to the simulated event reported to the insurance business in order to validate<br />

the expected cost of recovery at the level of postal code zones.<br />

RESULTS AND DISCUSSION<br />

The key results for the nine model runs – inundation depths at four selected points, and the<br />

sums of R for two selected districts – are summarized in Table 3. H displays a certain degree<br />

of levelling when increasing the pixel size rather than a general change of the results. The<br />

calculation time for a single model run can be reduced from 6 days to 36 hours. In contrast,<br />

the incision of the stream channels significantly reduces H, and the values of R drop from<br />

severe overestimates to fairly realistic estimates. Whilst infiltration appears to exert a rather<br />

moderate effect on the results, the manual removal of artefacts at selected locations signifi-<br />

Figure 2: Modelled sums of R and documented damages for the postal code zones of Graz. Left: Sum of R for each zone yielded with<br />

model run 6; Right: sum of documented damages. The labels of the zones considered in detail in Table 3 are highlighted.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 585


cantly reduces the inundation depth at point 4 whilst it does not affect R in the central city<br />

and in the district of Andritz (Figure 1). Assuming the sewer system to alleviate flooding leads<br />

to significant reductions of both H and R. Particularly with regard to R, this effect dramatically<br />

increases when (i) activating the system before instead of after the flood routing or (ii)<br />

increasing the capacity of the sewer system. In summary, the incision of the stream network<br />

and the activation of the sewer system exert the most significant impacts on H and R for the<br />

event under investigation.<br />

Figure 2 illustrates the documented damages and the modelled distribution of R aggregated to<br />

the level of postal code zones. The summed values of R, as displayed in Figure 2, are<br />

problematic for model evaluation as they are strongly influenced by the number of objects in<br />

a given postal code zone, so that a certain level of correspondence with the documented<br />

damages is likely. Figure 3 therefore shows the average (out of all buildings properly<br />

registered in the DKM and the GWR) of the documented damages and the modelled<br />

Figure 3: Modelled averages (out of all buildings properly registered in the DKM and the GWR) of R and documented damages for the<br />

postal code zones of Graz. (a) Average of R for each zone yielded with model run 6; (b) average of documented damages. Note that also<br />

those buildings with R = 0 or with no documented damages are included in the averaging procedure.<br />

distribution of R. Both figures refer to the model run 6 yielding the most realistic results for<br />

the central city. From a visual comparison we deduce that the model results show some<br />

reasonable correlation with the documented patterns in general, but that there are a number<br />

of postal code zones with significant disagreements.<br />

586 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Table 3: Key results of the nine model runs. H = inundation depth (cm), the subscripts in the column headers indicate the dots shown in<br />

Figure 1 the numbers refer to. R = risk (expected cost of recovery in million Euro) for the central district of Graz (postal code 8010) and<br />

Andritz (postal code 8045). The numbers given in brackets in the header refer to the documentation.<br />

Model<br />

run<br />

H 1 (≤6) H 2 (≤7) H 3 (≤12) H 4 (-) R 8010 (0.18) R 8045<br />

(0.24)<br />

1 10 184 1.5 854 23.64 79.03<br />

2 11 105 1.4 770 48.43 44.24<br />

3 3.5 0.1 0.3 770 0.86 0.04<br />

4 6.0 0.1 0.5 737 0.80 0.06<br />

5 6.0 0.1 0.6 193 0.80 0.06<br />

6 4.7 0.1 0.3 155 0.26 0.01<br />

7 2.9 0.1 0.3 93 0.01 0.00<br />

8 2.5 0.1 0.1 119 0.00 0.00<br />

9 0.6 0.0 0.1 21 0.00 0.00<br />

Whilst the modelled inundation depth corresponds reasonably well to the depth observed at<br />

point 1 (except for model run 9 where it is rather underestimated), it is underestimated at<br />

point 3 and obviously strongly governed by the stream network at point 2 (Table 3). The<br />

tendency of the model to underestimate H at the points 2 and 3 represents an unwanted local<br />

effect of the incision of the stream network (both points are located closely to incised<br />

streams). Further, the incision of the stream network is the likely cause for the underestimate<br />

of R for Andritz, where large buildings are located closely to a water course, compared to the<br />

central city (Table 3). Therefore, the usefulness of incising the stream network remains<br />

controversial. With regard to the modelled inundation depths (Table 3) one may conclude<br />

that the incision leads to a decreased quality of the results and other strategies have to be<br />

developed to separate the effects of fluvial and pluvial floods, as far as a clear separation is<br />

possible at all. A particular challenge consists in dealing with underground sections of water<br />

courses. In contrast, manual lowering of selected spots definitely leads to the disappearance of<br />

some artefacts in the model results.<br />

The sewer system appears to represent a key factor for flooding and its consequences (Ettrich,<br />

2007; Illgen and Niemann, 2011). It is therefore essential (i) to obtain more information on<br />

its real capacity to alleviate flooding and (ii) to develop improved generalization strategies to<br />

include its effects in flood routing algorithms. With regard to soil infiltration, Schumann et al.<br />

(2007) pointed out that it is certainly possible to reach locally acceptable results by generating<br />

clustered roughness parameters conditioned on remote sensing. However, the regionalization<br />

of infiltration remains a critical issue due to the poor spatial resolution of the eBod and<br />

CORINE data. Due to the possibly limited degree of validity for fine scales, the estimation of<br />

the runoff coefficient can be considered as a rather coarse approximation to reality only.<br />

However, surprisingly, infiltration seems not to affect the model results significantly under the<br />

assumptions taken.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 587


The interpretation of the modelled values of R requires utmost care. Firstly, not all the<br />

damages are necessarily reported to the insurance companies. Secondly, also the DKM and<br />

the GWR are not complete at all, so that the modelled values of R may represent underestimates.<br />

Strategies to deal with those issues of incompleteness have to be applied in the future.<br />

Thirdly, due to the exponential character of the function even a moderate misestimation of<br />

inundation depths may strongly affect the estimate of V and, therefore, R. Fourthly, we use<br />

the mean inundation depth as H R<br />

, and not the maximum which might be more appropriate.<br />

However, using the maximum, few artefacts in the raster map of H may result in very high<br />

vulnerabilities of selected buildings and cause extreme overestimates of R for the corresponding<br />

zone.<br />

Furthermore it has to be considered that the vulnerability function represents a generalization,<br />

considering some features of the vertical structure of a building, such as a cellar, only in<br />

an indirect way. Consequently, we build on the assumption that damages occur also at low<br />

inundation depths, which is often not the case in reality. The estimates of the buildings’<br />

values, in contrast, only affect the model results in a linear way and are therefore considered<br />

less critical.<br />

Finally it shall be emphasized that the displayed evaluation of R against the documented<br />

damages (Figs. 2 and 3) allows to draw conclusions at the level of postal code zones only. Due<br />

to the lacking availability of suitable reference data there is currently no possibility to<br />

evaluate the model results at the level of objects.<br />

CONCLUSIONS<br />

We have shown that the modelled inundation depths of pluvial floods and – in particular<br />

– their consequences in terms of the expected losses react in a highly sensitive and nonlinear<br />

way to changes in the model assumptions and parameter settings. Even though the suggested<br />

procedure shows a certain potential to reproduce the patterns in the documented damages at<br />

the level of postal code zones, it remains a challenge to back-calculate well-documented<br />

events in a satisfactory way. More parameter studies as well as the modification of some of<br />

the model functions and additional validation efforts will be necessary to allow reasonably<br />

reliable forward calculations of possible future events of defined frequency and magnitude,<br />

and the costs of such events. In this context it is highly important to provide uncertainty<br />

estimates associated to the results.<br />

ACKNOWLEDGEMENTS<br />

The support of the Austrian Federal Ministry of Agriculture, Forestry, Environment and<br />

Water, the Austrian Insurance Association (Dr. Thomas Hlatky), the fire department of the<br />

city of Graz and the Austrian Post is acknowledged.<br />

588 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


REFERENCES<br />

- Aronica G., Hankin B., Beven K. (1998). Uncertainty and equifinality in calibrating<br />

distributed roughness coefficients in a flood propagation model with limited data. Advances<br />

in Water Resources 22 (4): 349-365.<br />

- Assmann A., Schroeder M., Hristov M. (2007). High Performance Computing für die<br />

rasterbasierte Modellierung. Angewandte Geoinformatik: 19–24.<br />

- Austrian Economic Chambers (2014). Immobilienpreisspiegel. Wien.<br />

- Austrian Federal Ministry of Agriculture, Forestry, Environment and Water: eHyd, Kennwerte<br />

und Bemessung, under: http://ehyd.gv.at/# (link called 02.09.2015)<br />

- Casa A., Benito G., Thorndycraft V.R., Rico M. (2006). The topographic data source of digital<br />

terrain models as a key element in the accuracy of hydraulic flood modelling. Earth Surface<br />

Processes and Landforms 31 (4): 444-456.<br />

- Chormansky J., Van de Voorde T., De Roeck T., Batelaan O., Canters F. (2008). Improving<br />

Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates<br />

of Impervious Surface Cover. Sensors 8(2): 910-932.<br />

- Environmental Agency Austria (2012). CORINE Landbedeckung 2012, http://www.<br />

umweltbundesamt.at/umweltsituation/umweltinfo/opendata/oed_landbedeckung/?cgiproxy_<br />

url=http%3A%2F%2Fhttpapp5.umweltbundesamt.at%2Fdata%2Fdataset.jsf%3Bjsessionid%3D8AA5AF9639F75096A56D570685A8F3DE%3Fid%3D29<br />

(link called 11.09.2015).<br />

- Ettrich, N. (2007). Hydrodynamische Kanalnetzberechnung – Oberflächenabflussmodellierung<br />

bei Starkregenereignissen in urbanen Gebieten. DWA Landesverbandstagung<br />

Baden-WürttembergFrauenhofer-Institut für Techno- und Wirtschaftsmathematik, Kaiserslautern.<br />

- Federal Office of Metrology and Surveying (2012). Digitale Katastralmappe Österreich<br />

Stichtagsdaten 10/2012.<br />

Federal Research and Training Centre for Forests, Natural Hazards and Landscape (2013).<br />

Bodenkarte eBod, http://bfw.ac.at/rz/bfwcms2.web?dok=7066 (link called 03.09.2015).<br />

- Fritsch K. (2011). Framework for economic pluvial flood risk assessment considering climate<br />

change effects and adaptation benefits, am Beispiel von Teileinzugsgebieten an der Murr.<br />

Diplomarbeit, Institut für Geographie, Technische Universität Dresden.<br />

- Geomer GmbH / Ruiz Rodriguez+Zeisler+Blank (2014). FloodArea HPC-Desktop Anwenderhandbuch.<br />

Vers. 10.2.<br />

- Henonin J., Russo B., Mark O., Gourbesville P. (2013). Real-time urban flood forecasting<br />

and modelling – a state of the art. Journal of Hydroinformatics 15 (3): 717-736.<br />

Hsu W.K., Huang P.C., Chang C.C., Chen C.W., Hung D.M., Chiang W.L. (2011). An integrated<br />

flood risk assessment model for property insurance industry in Taiwan. Natural Hazards<br />

58(3): 1295–1309.<br />

- Illgen, M., Niemann, A. (2011). Urbane Überflutungsvorsorge – was die Siedlungsentwässerung<br />

vom gewässerseitigen Hochwasserschutz lernen kann; 10. Regenwassertage, 10./11. Mai<br />

2011, Bad Soden. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 589


- Leandro J., Chen A., Djordjević S., Savić D. (2009). Comparison of 1D/1D and 1D/2D<br />

Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation. Journal of Hydraulic<br />

Engineering 135 (6): 495–504.<br />

- Maksimović Č., Prodanović D., Boonya-Aroonnets S., Leitão J.P., Djordjević S., Allit R.<br />

(2009). Overland flow and pathway analysis for modelling of urban pluvial flooding. Journal<br />

of Hydraulic Research 47 (4): 512-523.<br />

- Markart G., Kohl B., Sotier B., Klebindert K., Schauert T., Bunza G., Pirkl H., Stern R.<br />

(2011). A Simple Code of Practice for the Assessment of Surface Runoff Coefficients for<br />

Alpine Soil-/Vegetation Units in Torrential Rain (Version 2.0). Department of Natural Hazards,<br />

Federal Research and Training Centre for Forests, Natural Hazards and Landscaper (BFW),<br />

Innsbruck.<br />

- Provincial Government of Styria: Klimadaten Graz-Universität (from January 2003<br />

onwards), under: http://www.statistik.steiermark.at/cms/dokumente/11682476_103034960/53afceaf/Graz-Universit%C3%A4t.pdf<br />

(link called 02.09.2015).<br />

- R Core Team (2015). R: A Language and Environment for Statistical Computing. R<br />

Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org (link called<br />

11.09.2015).<br />

- Richard S.J.T. (1995). The damage costs of climate change toward more comprehensive<br />

calculations. Inst. For Environmental Studies, Vrije Universiteit Amsterdam.<br />

- Rodriguez E.R., Zeisler P., Assmann A. (2003). GIS-Einsatz zur Gefahrenabwehr im<br />

Hochwasserfall. Hochwasserschutz und Katastrophenmanagement. Ernst & Sohn Spezial 4.<br />

Rössert R. (1996). Hydraulik im Wasserbau. 9. verbesserte Auflage, R. Oldenbourg Verlag<br />

München, Wien.<br />

- Sangati M., Borga M., Rabuffetti D., Bechini R. (2009). Influence of rainfall and soil<br />

properties spatial aggregation on extreme flash flood response modelling: An evaluation<br />

based on the Sesia river basin, North Western Italy. Advances in Water Resources 31:<br />

1090-1106.<br />

- Saul A., Djordjević S., Maksimović Č., Blanksby J. (2010). Integrated Urban Flood Modelling.<br />

In: Pender G., Faulkner H., (eds.). Flood Risk Science and Management: 258-288.<br />

Schumann G., Matgen P., Hoffmann L., Hostache R., Pappenberger F., Pfister L. (2007).<br />

Deriving distributed roughness values from satellite radar data for flood inundation modelling.<br />

Journal of Hydrology 334 (1-2): 96-111.<br />

Singh V. and Woolhiser D. (2002). Mathematical Modeling of Watershed Hydrology. Journal<br />

of Hydrologic Engineering 7 (4): 270-292.<br />

- Smith J.B., Schellenhuber H.-J., Mirza M.M.Q., Frankhauser S., Leemans R., Lin E., Ogallo<br />

L., Pittock B., Richels R., Rosenzweig C., Safriel U., Tol R.S.J., Weyant J., Yohe G. (2001).<br />

Vulnerability to climate change and reasons for concern: a synthesis: 913-967.<br />

- Sprung W., Holding Graz Services: Pers. Communication 03.09.2015.<br />

Sun S., Djordjević S., Khu S. (2011). A general framework for flood risk-based storm sewer<br />

network design. Urban Water Journal 8 (1): 13-27.<br />

590 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Totschnig, R., Sedlacek, W., Fuchs, S. (2011). A quantitative vulnerability function for<br />

fluvial sediment transport. Natural Hazards 58(2): 681-703.<br />

- Zhou Q., Mikkelsen P.S., Halsnæs K., Arnbjerg-Nielsen K. (2012). Framework for economic<br />

pluvial flood risk assessment considering climate change effects and adaptation benefits.<br />

Journal of Hydrology 414-415: 539-549.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 591


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Rockfall Susceptibility Maps in Styria considering the<br />

protective effect of forest<br />

Herwig Proske, Mag. 1 ; Christian Bauer, Dr. 2<br />

ABSTRACT<br />

The study presents a GIS-based approach aiming at the identification of rockfall propagation<br />

areas considering the protective effects of forests in the Province of Styria, Austria. An<br />

empirical approach was selected to identify potential rockfall source zones. Based on a Digital<br />

Terrain Model derived from LiDAR data, threshold slope values for potential release areas<br />

were attributed to geotechnical units. The run-out distances were estimated by velocity<br />

calculation based on a one parameter friction model. The method was applied for the first<br />

time in such large study area. Friction coefficients were attributed to forestal units based on<br />

the detailed characterisation of relevant forest parameters derived from laserscanning data.<br />

Finally, two scenarios based on different friction coefficients were modelled: one considering<br />

the current forest cover and one assuming no forest cover. The results demonstrate the strong<br />

protective effect of the forest cover. Furthermore, an indicative hazard map was generated by<br />

classifying the transition frequencies and kinetic energies of blocks.<br />

KEYWORDS<br />

Rockfall; Forest effects; GIS based modelling; Indicative hazard maps; Styria<br />

INTRODUCTION<br />

Within the frame of the project “Indicative Natural Hazard Maps in the Province of Styria”<br />

the applicability of a GIS-based approach aiming at the identification of areas which are<br />

potentially endangered by rockfall has been analysed. Furthermore, the protective effect of<br />

forests was taken into account. This work was performed at JOANNEUM RESEARCH,<br />

Institute for Information and Communication Technologies (Remote Sensing and Geoinformation).<br />

The study area is the Province of Styria, located in the southeastern part of Austria<br />

and covering approx. 16.400 km² (Fig. 1). The area is part of the Eastern Alps with peaks<br />

reaching approx. 3.000 m asl.<br />

Forests cannot stop the devastating effect of large magnitude rockfall events, but for low<br />

magnitude rockfall events, forests provide effective protection (Hétu and Gray, 2000). The<br />

maintenance of forest stands with a protection function is often more cost-effective and more<br />

sustainable than technical measures (Kienholz and Mani, 1994; Motta and Haudemand,<br />

2000). However, in many mountainous regions it is not known whether active forest<br />

management ensures effective protection against rockfall. Therefore, the main aim was to<br />

1 Joanneum Research Forschungsgesellschaft mbH, Graz, AUSTRIA, herwig.proske@joanneum.at<br />

2 Institute for Geography and Regional Science, University of Graz, AUSTRIA<br />

592 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP063


assess the protective functions of the forest cover at a regional scale, as more than 60 % of<br />

the Province of Styria is covered by forests.<br />

The results are visualized using the example of the Triebenstein region in Upper Styria (cf.<br />

Fig. 1).<br />

Figure 1: Study area. The red dot marks the location of the Triebenstein region from which results are shown in Figures 2, 3 and 4.<br />

METHODS<br />

Two main aspects had to be taken into account: (a) the identification of potential source<br />

zones, and (b) the estimation of rockfall propagation zones.<br />

(a) Identification of potential rockfall source zones<br />

An empirical approach was used for the identification of potential source areas. Due to the<br />

availability of a 1 m - Digital Terrain Model (DTM) based on Airborne Laserscanning (ALS)<br />

escarpments could be identified with high spatial resolution. With regard to data processing<br />

capacities, the spatial resolution was reduced to 2 m.<br />

All lithological units in the study area were assigned to 16 geotechnical units (GTU) according<br />

to geotechnical properties (e.g. stability of escarpments, bedding and schistosity, weathering<br />

resistance). Threshold slope values for potential rockfall release areas were attributed to these<br />

geotechnical units based on field observations and inclinometer measurements as well as<br />

analysis of remote sensed data (Orthophotos, ALS-DTM). Morphometric parameters (e.g.<br />

profile curvature) and the tectonic situation (large faults and boundaries of nappes) were<br />

taken into account by introducing correction factors with a maximum value of 2°. The<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 593


defined threshold slope angles cover values from 43° in tectonized carbonates up to 55° in<br />

massive granitic and gneissic rocks of the crystalline Central Alps.<br />

For the simulation, the mean block volumes of each GTU were classified in three volume<br />

classes representing the most probable event, according to field observations: (1) ≤0,008 m³;<br />

(2) >0,008 – ≤0,125 m³; (3) >0,125 – 3,375 m³. As the rockfall propagation zones were<br />

modelled area-wide, one average value for rock density had to be defined and was fixed with<br />

2,4 g/cm³ according to literature (e.g. Kobranova, 1989; Carmichael, 1984).<br />

Figure 2 displays the GTU and potential rockfall source areas of the Triebenstein region.<br />

The geological situation is characterized by rocks belonging to the paleozoic greywacke zone<br />

(Fig. 2a). The main rockfall source areas (Fig. 2b) are situated within carbonatic rocks,<br />

building steep cliffs up to 200 m height (cf. Fig. 3). The forested slopes below the cliffs<br />

(Fig. 3c) are mainly built by phyllites where large areas are covered by talus material.<br />

Figure 2: GTU (a) and modelled potential rockfall source areas (b) in the Triebenstein region.<br />

(b) Estimation of rockfall propagation zones<br />

The runout distances were estimated by velocity calculation based on a one parameter friction<br />

model (Scheidegger, 1975). With this method, the velocity of a rock particle is calculated<br />

along a profile line that is divided into a number of triangles.<br />

Depending on whether or not a rock breaks, 75–86% of the energy gained in the initial fall is<br />

lost in the first impact on the talus slope (Broilli, 1974; Dorren, 2003). The initial velocity on<br />

the talus slope is calculated by taking into account a factor K and in this way reducing the<br />

energy:<br />

594 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


vv ii = √2. gg. h ff . KK<br />

Formula 1<br />

where = initial velocity on talus slope [m/s]; = gravitational acceleration (9,81 m/s²); =<br />

height difference between start point and element I [m]; K = portion of energy which is<br />

reduced by impact.<br />

l r o oloa Formula Formula2o<br />

The further propagation velocity is calculated on the basis of energy conservation of a mass<br />

that is considered to move over a slope surface as defined by Scheidegger (1975). In this<br />

energy conservation approach, a friction coefficient is responsible for energy loss. For each<br />

cell in the falltrack, the velocity of the falling rock is calculated as follows:<br />

VV oooooo = √VV iiii 2 + 2gg (h − μμ ff + XX)<br />

Formula 2<br />

where: = outgoing velocity [m/s]; = incoming velocity [m/s]; = fall height [m]; = friction<br />

coefficient [–]; and = horizontal fall distance [m]. This velocity is calculated for each cell<br />

within the falltrack, starting at the rockfall source cell or at the impact cell on the talus slope,<br />

respectively (Dorren and Seijmonsbergen, 2002).<br />

Stopping occurs because energy is lost through friction forces and thus, velocity becomes<br />

zero. The value of the friction coefficient depends on the surface cover characteristics,<br />

including obstacles like vegetation and rocks.<br />

Basic friction coefficient values were defined according to literature (e.g. Meißl, 1998; Dorren<br />

and Seijmonsbergen, 2002; Wichmann, 2006). Small rocks retard more easily than bigger<br />

rocks; mainly, because during a rockfall the total kinetic energy of small rocks is lower than<br />

that of bigger rocks (Dorren, 2003). This was taken into account by the definition of different<br />

friction coefficients for each volume class. Forest cover characteristics were taken into account<br />

for the refined estimation of the friction coefficient. This step was based on a detailed<br />

characterisation of forest parameters on basis of ALS-data and satellite data which was<br />

performed within the frame of the same project (Schardt et al., 2015). According to the<br />

derived tree heights and their homogeneity, an automatic segmentation to forestal units was<br />

performed resulting in a GIS database with a total of 6.9 million polygons. The following<br />

forest parameters were selected as being relevant indicators of the surface roughness: (a)<br />

treetop number per unit area (4 classes), (b) crown coverage (3 classes), (c) height of upper<br />

layer (3 classes) and (d) vertical forest structure (2 classes). This resulted in the definition of<br />

24 forest types. The final refined friction coefficients are between 0,62 and 1,24 and were<br />

assigned to each of the forestal unit polygons. The friction coefficient values were calibrated<br />

by adjusting the modelled maximum runout distances to measured maximum runout<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 595


distances in selected test sites (field measurements and analysis of remote sensed data). This<br />

was done for each volume class and each forest type in an iterative process. Subsequently for<br />

each volume class a friction coefficient file has been generated (cf. Fig. 3b).<br />

Figure 3: Detail of the Triebenstein region. (a) Hillshade visualization (b) Friction coefficients for Volume class 1 to forestal units (c)<br />

photograph of the most relevant rockfall area<br />

Potential transition cells for velocity calculation are assigned by using a multiple flow<br />

direction algorithm, based on the work of Gamma (2000). This algorithm was adapted for<br />

rockfall and compiled in the SAGA module Rock HazardZone by Wichmann (2006), not<br />

provided free of charge.<br />

The algorithm takes the local relief into account in order to calculate the magnitude of<br />

divergence yielding more realistic results. The method is implemented as a random walk in<br />

596 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


conjunction with a Monte Carlo approach. Modelled divergence is calibrated by three<br />

parameters: (1) a slope threshold, above which no divergence is modelled. (2) a parameter for<br />

the magnitude of divergence controlling whether a neighbouring cell exhibits a sufficiently<br />

high gradient to be selected as potential pathway and (3) a persistence factor that allows to<br />

increase the probability of that neighbouring cell, which features the same direction like the<br />

centre cell (Wichmann and Becht, 2006).<br />

The number of iterations was fixed to 1000 after tests with a higher number of iterations had<br />

not resulted in significant improvements of the outcomes.<br />

Modelling outputs consist of: (1) the number of transit frequencies. Due to high number of<br />

iterations (1000), the transition frequencies can be interpreted as transit probabilities of<br />

blocks approximatively. (2) The maximum velocities for each cell of the simulated blocks.<br />

Considering the three volume classes of blocks, approximate kinetic energies were calculated.<br />

Table 1<br />

The process area was finally classified with three qualitative susceptibility l categories ee la (low, Table Tabl<br />

moderate, high) based on the transition frequency and the estimated kinetic energy (cf. Table<br />

1). The Swiss codes are applied with regard to the limits of the kinetic energy (cf. Jaboyedoff,<br />

2005).<br />

Table 1: definition of susceptibility categories<br />

transition<br />

frequencies<br />

energies [kj]<br />

> 0 ≤ 30 > 30 ≤ 300 > 300<br />

1-5000 low moderate high<br />

> 5000 moderate high high<br />

By choosing appropriate friction coefficients, two scenarios were modelled: (1) a “bare earth”<br />

scenario simulating a complete absence of forest and (2) taking into consideration the forest<br />

cover at the time of the ALS flight mission.<br />

RESULTS<br />

The area wide modelling resulted in a total of approx. 603 km² of potential rockfall source<br />

areas (3,67 % of the study area), most of it situated in the Calcareous Alps and in crystalline<br />

rocks of the Niedere Tauern range. Based on field verifications in representative rockfall<br />

prone areas there is evidence that the used method rather over-estimates the extension of<br />

source areas.<br />

In the bare earth scenario an overall of 2.171 km² is shown as endangered by rockfalls which<br />

is 13,2 % of the area of Styria. This number is composed of 1,3 % classified as low, 5,4 %<br />

classified as moderate, and 6,5 % classified as high susceptible.<br />

Considering the forest scenario an overall of 1.541 km² is shown as endangered by rockfalls<br />

which is 9,4 % of the area of Styria. The portion of low susceptible areas rises to 1,7 %<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 597


whereas the percentage of moderate susceptible areas decreases to 3,0 % and that of high<br />

susceptible areas decreases to 4,7 %. Field verifications of maximum runout distances in<br />

selected regions indicated that the results provided a high degree of accuracy.<br />

Due to different friction coefficients, the maximum runout distances between the bare earth<br />

scenario (low friction) and the forest scenario (higher friction) vary significantly. Especially<br />

multi-layered forest types with a high treetop density and with high (and therefore strong)<br />

trees reduce the propagation area. This can be interpreted as protective effect of forests<br />

(Fig. 4).<br />

Figure 4: Results of the rockfall modelling in the Triebenstein region: (a) “bare earth”-scenario; (b) scenario considering forest cover; (c)<br />

difference map; (d) and CIR orthophoto showing current forest cover and infrastructure).<br />

The protective effect of forests can be further visualized by calculating the difference of<br />

propagation areas between the forest scenario and the bare earth scenario (Fig. 4c). Thus the<br />

maximum reductions (three classes: from “high susceptible” to “not susceptible”) mainly can<br />

be found in the lowest parts of the rockfall runout zones and hence, in areas which are often<br />

used for infrastructure and settlements.<br />

598 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CONCLUSIONS<br />

The presented method describes a generally applicable approach to model rockfall propagation<br />

areas. The approach is also suitable for large areas, which was done for the first time<br />

within the frame of the presented project. However, computing times up to several months<br />

have to be expected in large areas.<br />

High importance has to be given to the detailed identification of potential rockfall source<br />

areas, as the whole propagation modelling procedure is based on the results of this work step.<br />

Input parameters have to be calibrated in the field taking into account representative<br />

geological conditions that can be transferred over a wide area. In this context, additional<br />

efforts have to be made with regard to the generation of more detailed and reliable geological<br />

base maps.<br />

The modelling results of the presented method for the estimation of runout distances allow<br />

the classification into three susceptibility classes which can be used as indicative hazard map<br />

at a regional scale.<br />

Furthermore, different scenarios with regard to forest cover (e.g. reduced or missing forest<br />

cover) can be calculated, thus demonstrating the protective functions of forests. It is however<br />

required to have detailed information about relevant forest parameters and its effects on<br />

coefficients of friction. Here, again, extensive fieldwork is a fundamental precondition for<br />

receiving plausible results.<br />

ACKNOWLEDGEMENTS<br />

The project was funded by the European Agricultural Fund for Rural Development and<br />

supported by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water<br />

Management, the Styrian Forestry Board and the Forest Association Styria.<br />

REFERENCES<br />

- Broilli L. (1974). Ein Felssturz im Großversuch. Rock Mechanics 3: 69–78.<br />

Carmichael R.S. (1984). Handbook of physical properties of rocks, Vol. III. CRC Press, Florida.<br />

- Dorren L.K.A. (2003). A review of rockfall mechanics and modelling approaches. Progress<br />

in Physical Geography 27 (1): 69–87.<br />

- Dorren L.K.A., Seijmonsbergen A.C. (2002). Comparison of three GIS-based models for<br />

predicting rockfall runout zones at a regional scale. Geomorphology 56: 49-64.<br />

- Gamma P. (2000). dfwalk - Ein Murgang-Simulationsprogramm zur Gefahrenzonierung.<br />

Geographica Bernensia G66. 144 p.<br />

- Hétu B., Gray J.T. (2000). Effects of environmental change on scree slope development<br />

throughout the postglacial period in the Chic-Choc Mountains in the northern Gaspé<br />

Peninsula, Québec. Geomorphology 32 (3-4): 335-355.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 599


- Jaboyedoff M., Dudt J. P., Labiouse V. (2005). An attempt to refine rockfall hazard zoning<br />

based on the kinetic energy, frequency and fragmentation degree. Natural Hazards and Earth<br />

System Sciences 5: 621–632.<br />

- Kienholz H., Mani P. (1994). Assessment of geomorphic hazards and priorities for forest<br />

management on the Rigi north face, Switzerland. Mountain Res. Dev. 14 (4): 321–328.<br />

Kobranova V.N. (1989). Petrophysics. MIR Publishers, Springer Verlag, 375 p.<br />

- Meißl G. (1998). Modellierung der Reichweite von Felsstürzen. Innsbrucker Geographische<br />

Studien 28. 249 p.<br />

- Motta R., Haudemand J.C. (2000). Protective forests and silvicultural stability. An example<br />

of planning in the Aosta Valley. Mountain Res. Dev. 20: 180–187.<br />

- Schardt M., Granica K., Hirschmugl M., Deutscher J., Mollatz M., Steinegger M., Gallaun H.,<br />

Wimmer A., Linser S. (2015). The assessment of forest parameters by combined LiDAR and -<br />

Satellite data over Alpine regions - EUFODOS Implementation in Austria, Forestry Journal,<br />

The Journal of National Forest Centre – Forest Research Institute Zvolen, Lesn. Cas. For. J.<br />

61: 3-11.<br />

- Scheidegger A.E. (1975). Physical aspects of natural catastrophes. 289 p.<br />

- Wichmann V. (2006). Modellierung geomorphologischer Prozesse in einem alpinen<br />

Einzugsgebiet – Abgrenzung und Klassifizierung der Wirkungsräume von Sturzprozessen und<br />

Muren mit einem GIS. Eichstätter Geographische Arbeiten 15. Profil Verlag München/Wien.<br />

231 p.<br />

- Wichmann V., Becht M. (2006). Rockfall modelling: methods and model application in an<br />

alpine basin (Reintal, Germany). In: Böhner J., McCloy K.R., Strobl J. (eds): SAGA – Analysis<br />

and Modelling Applications. Göttinger Geographische Abhandlungen 115: 105-116.<br />

600 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Sediment input from debris flows into mountain rivers:<br />

an event-based perspective<br />

Dieter Rickenmann, Dr. 1 ; Markus Gerber 2 ; Martin Böckli 3<br />

ABSTRACT<br />

Sediment transport in mountain streams is a function not only of upstream sediment input<br />

but also of sediment delivery from the steep lateral tributaries. In this study we analyzed a<br />

total of 32 debris-flow events which had occurred in the Swiss Alps. For 19 of the 32 studied<br />

events a sediment delivery occurred into the receiving stream. For the other 13 events no<br />

substantial part of the total event volume was transported into the receiving stream. We<br />

performed a statistical analysis to find a quantitative criterion for the question whether or not<br />

a debris flow with a given event magnitude will reach the confluence with the receiving<br />

stream. We developed a dimensionless index to respond to the above question. The index is<br />

based on the following three parameters: channel fan slope, length of the channel on the fan,<br />

and event volume.<br />

KEYWORDS<br />

debris flow; sediment input; mountain river; sediment connectivity; torrent fan<br />

INTRODUCTION<br />

Sediment transport in mountain streams is a function not only of upstream sediment delivery<br />

but also of sediment input from steep lateral tributaries. The amount of sediment potentially<br />

entering the main valley river from a tributary is likely to depend on the event magnitude of<br />

a debris flow in the torrent catchment as well as on the topographic conditions on the fan.<br />

These latter conditions may also be modified by man-made constructions such as bridges,<br />

houses, and protection structures.<br />

During a debris-flow event in a torrent catchment, the sediment transfer and deposition in<br />

the fan area depends primarily on the presence of sediment retention basins, the channel<br />

conveyance capacity in relation to the size of the debris flow, and potential clogging locations<br />

on the fan (e.g. narrow cross-sections under bridges crossing the channel). The sediment load<br />

transported to the fan apex can is often deposited on the fan outside of the channel, if the<br />

transport capacity in the channel is insufficient, for example in a flat reach upstream of the<br />

confluence. Streams with a catchment area of less than 25 km 2 and an average longitudinal<br />

slope greater than 5-10% can be classified as torrents (Rickenmann and Koschni, 2010;<br />

Rickenmann, 2014).<br />

1 Swiss Federal Research Institute WSL, Birmensdorf, SWITZERLAND, dieter.rickenmann@wsl.ch<br />

2 Züricher Hochschule für Angewandte Wissenschaften, Wädenswil and Swiss Federal Research Institute WSL, SWITZERLAND<br />

3 Swiss Federal Research Institute WSL and Holinger AG, Winterthur, SWITZERLAND<br />

IP_<strong>2016</strong>_FP066<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 601


For the quantification of solid transport in a mountain river, the potential sediment delivery<br />

from individual tributaries (torrents) must be known. For the estimation of the sediment<br />

delivery in debris-flow prone torrents there are several field-based methods (Marchi and<br />

D’Agostino, 2004; Jakob, 2005; Gertsch, 2009; Frick et al., 2008, 2011; Kienholz et al., 2010).<br />

Typically, with these methods an expected sediment load is estimated for the fan apex.<br />

There are many studies on the sediment connectivity of debris-flow fans with fluvial systems<br />

over longer time scales (Harvey, 2012). However, with regard to the important role of fans on<br />

the coupling or buffering of sediment cascades in the fluvial system, there are few quantitative<br />

investigations on the controlling factors of sediment delivery to the main valley river on<br />

an event-based time scale from debris flows in steep tributaries.<br />

For this study we analyzed the sediment input to mountain rivers from steep torrents based<br />

on 32 debris-flow events which had occurred from 1987 to 2009 in the Swiss Alps. Based on<br />

a statistical analysis we identified several parameters which can be used to estimate whether<br />

or not a debris flow (of a given event magnitude) delivers sediment into the receiving stream.<br />

Using some of the identified parameters, we developed a dimensionless index that can help to<br />

distinguish between the two cases.<br />

DATA AND METHOD<br />

The majority of the 32 case study events were taken from the PhD dissertation of Gertsch<br />

(2009) in steep torrents. The study catchments have surface areas mostly smaller than 20 km 2<br />

and mean channel gradients that are steeper than 10%. About a third of the study catchments<br />

have a sediment retention basin, mostly in the upper part of the fan near the apex.<br />

For the analysis, the 32 events were divided into the following two groups: (i) events and fan<br />

situations for which some of the total debris-flow material reached the receiving stream,<br />

labeled here as yes cases (YC), and (ii) events during which no sediment entered the receiving<br />

stream, labeled here as no cases (NC). For the first group, the available dataset did not,<br />

unfortunately, include sufficient information to quantify the amount of sediment which had<br />

entered the main stream. However, based on photo documents and on experience from other<br />

debris-flow events it is likely that for most events in group (i) only a relatively small fraction<br />

of the total sediment volume entered the receiving stream.<br />

In a first step, 18 parameters were determined for each event, characterizing the study catchment,<br />

the fan topography and the debris-flow event. Parameters characterizing the catchment<br />

and the fan were determined from the analysis of Digital Elevation Models (DEM 10m<br />

and DTM AV 2m of Swisstopo), the assessment of aerial photographs, and by field investigation.<br />

Event-related parameters were determined from the available event documentation and<br />

in some cases estimated with empirical formulas. The 18 parameters were: catchment area<br />

above fan apex, channel length from the apex to the confluence, mean fan slope, mean<br />

602 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


channel slope, mean channel slope according to Prochaska et al. (2008), mean channel slope<br />

until 25 m upstream of the confluence, mean channel slope for 100 m reach upstream of fan<br />

apex, Melton number (fan apex), Melton number (confluence), event volume, event volume<br />

without retention basin volume, maximum discharge (estimated from event volume), flow<br />

velocity (at maximum discharge), minimum cross-sectional area of channel on fan, estimated<br />

flow cross-sectional area, fan surface area, angle of fan channel to receiving stream (plan<br />

view), number of potential clogging sites.<br />

We then used statistical methods to search for a quantitative criterion or rule to distinguish<br />

between the two groups (i) and (ii). Some parameters were found to provide a reasonable<br />

differentiation between the YC and NC. Finally, using a subset of the most useful parameters,<br />

a dimensionless index was developed that can help to distinguish between the two cases.<br />

RESULTS<br />

Main processes on the fan during large debris-flow events<br />

For our dataset we compiled the main processes and fan situations which existed or occurred<br />

for large debris-flow events between the fan apex and the confluence with the main river<br />

(Fig. 1).<br />

Figure 1: Flowchart of the main processes on a fan during the debris-flow runout process. The line width is proportional to the number of<br />

observed cases. Out of 32 investigated events sediment entered the receiving stream in 19 cases (bottom line).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 603


Some important results can be described as follows:<br />

– For 19 of the 32 studied events a sediment delivery occurred into the receiving stream<br />

(YC). For the other 13 events no substantial part of the total event volume was transported<br />

into the receiving stream (NC).<br />

– For 21 events, an overtopping occurred out of the existing channel on the fan. Among<br />

these events there are 10 NC (not reaching the confluence) and 11 YC (reaching the<br />

confluence).<br />

– Although for 10 study catchments a sediment retention basin (SRB) exists on the fan,<br />

debris-flow material reached the confluence in some of these cases.<br />

A flow chart with the main processes occurring on the fan (see Fig. 1) could be used as a basis<br />

for the development of a decision tree that may eventually allow for a semi-quantitative<br />

estimation of the sediment delivery to the main stream. However, the number of possible<br />

sub-processes (many branching possibilities in the flow chart of Fig. 1) is very large in relation<br />

to the limited number of investigated events. Therefore, in the following analysis we mainly<br />

searched for criteria to distinguish between the two groups of events (i.e. YC and NC).<br />

Analysis of selected parameters<br />

Among the 19 pre-selected parameters we could identify five whose values allow a rough<br />

distinction between the NC and YC, in that there is no overlap of the quartiles of the value<br />

ranges (Fig. 2): (1) fan gradient, (2) channel gradient over 25 m horizontal distance upstream<br />

of the confluence, (3) mean flow velocity at maximum debris-flow discharge, (4) number of<br />

potential clogging locations, and (5) average channel gradient over 100 m horizontal distance<br />

upstream of the fan apex. Three of these parameters (2, 3, 5) are strongly correlated to the<br />

fan slope, and were therefore not used in the further analysis.<br />

Regarding the parameter length of the fan, Lf, we found that there were 5 NC with Lf > 1230<br />

m and 10 YC with Lf < 455 m, whereas the remaining 17 cases had intermediate LF values.<br />

This finding suggest that the longer is a torrential fan, the smaller is the probability that a<br />

debris flow reaches the receiving stream.<br />

All debris-flow events on a fan with a mean gradient, Sf, larger than 18 % or with a<br />

magnitude greater than 40,000 m 3 reached the receiving stream (Fig. 3). The more potential<br />

clogging locations are present on the fan, the lower is the probability that a debris flow<br />

reaches the receiving stream (Fig. 2). On fans with six or more potential clogging locations,<br />

only NC occurred. In contrast, if there were zero or one potential clogging location, there<br />

were only YC.<br />

We identified further parameters that may be suitable for a distinction between YC and NC:<br />

catchment area, mean channel gradient upstream of the fan, Melton number, ratio of<br />

calculated flow cross-section to minimum available flow cross-section, fan area, and angle of<br />

604 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


debris-flow channel to the receiving water. However, there is overlap of the quartiles of the<br />

value ranges between the two main groups (YC and NC).<br />

Figure 2: Range of values of five important parameters which may be related to the runout charac¬teristics. A = all events, B = no<br />

runout into the receiving stream (NC), C = runout into the receiving stream (YC), E =channel overtopping, F = no channel overtopping.<br />

Qmax is maximum debris flow discharge. A box includes the median value (thick line) and 50% of the data. It is limited by the upper<br />

and lower quartiles. Whiskers refer to the 5% and 95% values. Circles represent extreme values (not fully shown).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 605


Regarding the sensitivity to channel overtopping on the fan, we identified several parameters<br />

that may be useful for a delineation of this process: channel length (from apex to confluence),<br />

fan gradient, channel gradient over 25 m horizontal distance upstream of the confluence, and<br />

number of potential clogging locations.<br />

Dimensionless index<br />

Based on the above analysis, we searched for a quantitative criterion to distinguish between<br />

the two groups of events (YC and NC). Considering all the investigated parameters, some<br />

important correlation was identified among several of them, as for example between fan area<br />

and length of the fan channel or between the upstream channel gradient and the gradient of<br />

the channel on the fan. Among the following parameter pairs, however, no clear correlation<br />

could be identified: (i) fan gradient and fan length; (ii) fan gradient and event volume; (iii)<br />

event volume and fan length.<br />

Figure 3: Separation of YC and NC cases as a function of mean fan gradient (left panel) and event volume (right panel).<br />

As a result, we finally retained the three parameters fan gradient Sf, fan length Lf, and event<br />

volume Mexc for the development of a quantitative criterion. Here Mexc refers to the<br />

debris-flow event volume excluding the volume of the SRB if existing. By normalizing all<br />

1 i to onoa oua Eq1o<br />

three parameter values with the arithmetic mean of the parameter group (denoted by an<br />

overbar), a dimensionless index value was determined. By introducing a pre-factor of 0.42,<br />

the resulting range of index values lies between 0 and 1.<br />

IIIIIIIIII = 0.42 ∗ ( MM 0.33<br />

eeeeee<br />

∗ (<br />

MM̅̅̅̅̅̅)<br />

LL 0.5<br />

̅̅̅<br />

ff<br />

) ∗ SS<br />

eeeeee LL ff<br />

ff<br />

Equation 1<br />

The index permits a fairly good distinction between these events not reaching the confluence<br />

(NC) and those reaching the confluence (YC) (Fig. 4). Considering a fixed threshold of 0.06<br />

for the critical index value, only three YC events are not correctly classified (i.e. they would<br />

be incorrectly classified as NC events). The exponents of the different factors constituting<br />

606 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Eq. 1 were determined by trial and error to obtain the best distinction between YC and NC<br />

events.<br />

DISCUSSION<br />

The torrent catchments included in our study are all prone to debris-flow occurrence. A<br />

limitation of our dataset is that there were few YC catchments with a natural fan, i.e. with<br />

only few anthropogenic structures. Among the catchments with NC, there was a relatively<br />

large proportion (69%) with a sediment retention basin on the fan. These two limitations, in<br />

combination with the relatively small number of 32 cases in total, may have influenced and<br />

biased our findings.<br />

Figure 4: Dimensionless index to separate YC and NC cases. The proposed critical limit of 0.06 (dashed line) approach correctly<br />

identifies 16 out of 19 events of the YC cases, and all 13 events of the NC cases are correctly identified with this limit.<br />

The proposed index allows for a reasonably good separation for debris-flow events and fan<br />

situations with or without sediment entering the receiving stream. It is possible that a more<br />

robust method could be developed by including more parameters such as the number of<br />

potential clogging locations in a detailed quantitative analysis. The index should be reviewed<br />

on the basis of further independent data.<br />

An alternative approach could consist in developing a decision tree, which could eventually<br />

also allow to estimate the fraction of the total event volume that reaches the receiving stream.<br />

Such a decision tree could be largely based on the flow chart of the main processes as<br />

depicted in Figure 2. The decision tree would start with a given debris-flow volume at the fan<br />

apex, and this volume would be reduced due to partial deposition along the flow path down<br />

to the confluence with the receiving stream or it may be enlarged due to sediment entrainment<br />

by erosion on the fan. To develop and test such an approach, a more detailed data base<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 607


on debris-flow volumes entering receiving streams would be necessary to determine quantitative<br />

criteria at the branching points of the flow chart. A similar approach was developed in<br />

the context of a practice guide on "Estimation of the average annual sediment delivery into<br />

receiving streams" (BAFU, 2014).<br />

CONCLUSIONS AND OUTLOOK<br />

In this study we analyzed a total of 32 debris-flow events which had occurred in the Swiss<br />

Alps. For 19 of the 32 studied events a sediment delivery occurred into the receiving stream.<br />

For the other 13 events no substantial part of the total event volume was transported into the<br />

receiving stream. We performed a statistical analysis to find a quantitative criterion for the<br />

question whether or not a debris flow with a given event magnitude may reach the confluence<br />

with the receiving stream. We considered several topographic parameters which<br />

characterize the fan and channel properties, and we also included the event-based parameters<br />

in our analysis.<br />

We found that several of the pre-selected parameters were useful to discriminate between the<br />

two types of fan situations and events. We developed a dimensionless index, which is based<br />

on the following three parameters: channel fan slope, length of the channel on the fan, and<br />

debris-flow event volume. Selecting an optimal critical index value, this approach correctly<br />

identifies 16 out of 19 events in the first group (events with sediment entering the receiving<br />

stream); at the same time, all the 13 events in the second group (events without sediment<br />

reaching the receiving stream) are also correctly identified.<br />

The two topographic parameters of our index can be determined easily from digital elevation<br />

models. Additional compilations of comprehensive documentations of past debris-flow events<br />

including an estimate of the event volume and runout characteristics are important prerequisites<br />

for any further testing of the proposed index and for an improved development of a<br />

similar method. Other catchment or fan parameters could also be considered to possibly<br />

improve the discrimination method with an enlarged dataset.<br />

ACKNOWLEDGEMENTS<br />

This study was performed in the context of the project «Feststofftransport in Gebirgseinzugs-gebieten»<br />

(Contract no. 11.0026.PJ / K154-7241) of the Swiss Federal Office for the<br />

Environment. The main part of the analysis was performed for the Bachelor thesis of Markus<br />

Gerber (Gerber, 2014).<br />

REFERENCES<br />

- BAFU (2014). Abschätzung der mittleren jährlichen Geschiebelieferung in Vorfluter – Praxishilfe.<br />

Hunziker, Zarn & Partner, Aarau; Lehmann, Hydrologie-Wasserbau, Urtenen – Schönbühl;<br />

belop gmbh, Sarnen; im Auftrag des Bundesamtes für Umwelt (BAFU), Bern, 75S.<br />

608 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Frick, E., Kienholz, H., Roth, H. (2008). SEDEX - eine Methodik zur gut dokumentierten<br />

Abschätzung der Feststofflieferung in Wildbächen. Wasser Energie Luft 100 (2): 131-136.<br />

- Frick, E., Kienholz, H., Romang, H. (2011). SEDEX (SEDiments and EXperts), Anwender-Handbuch.<br />

Geographica Bernensia P42, Geographisches Institut der Universität Bern,<br />

128p., ISBN 978-3-905835-27-4.<br />

- Gartner, J.E., Cannon, S.H., Santi, P.M., Dewolfe, V.G. (2008): Models to predict debris flow<br />

volumes generated by recently burned basins. Geomorphology 96: 339–354.<br />

- Gertsch, E. (2009). Geschiebelieferung alpiner Wildbachsysteme bei Grossereignissen - Ereignisanalysen<br />

und Entwicklung eines Abschätzverfahrens. Dissertation ( unveröffentlicht),<br />

Geographisches Institut der Universität Bern, Bern.<br />

- Gerber, M. (2014). Entwicklung eines Klassifizierungsverfahrens für den Feststoffeintrag in<br />

den Vorfluter durch Murgänge. Bachelorarbeit (unveröffentlicht), Zürcher Hochschule für<br />

Angewandte Wissenschaften, Wädenswil und Eidg. Forschungsanstalt WSL, Birmensdorf.<br />

- Harvey, A.M. (2012). The coupling status of alluvial fans and debris cones: a review and<br />

synthesis. Earth Surface Processes and Landforms 37: 64–76.<br />

- Jakob, M. (2005). Debris flow hazard analysis. In Debris-flow Hazards and Related Phenomena,<br />

ed. M Jakob, O Hungr (Chichester: Springer Praxis Publishing, 2005), pp. 411–443.<br />

- Kienholz, H., Frick, E., Gertsch, E. (2010). Assessment tools for mountain torrents: SEDEX©<br />

and bed load assessment matrix. Proc. International Interpraevent Symposium, Taipei,<br />

Taiwan, pp. 245–256.<br />

- Marchi, L., D’Agostino, V . (2004). Estimation of debris-flow magnitude in the Eastern<br />

Italian Alps. Earth Surface Processes and Landforms 29: 207–220.<br />

- Rickenmann, D. (2014). Methoden zur quantitativen Beurteilung von Gerinneprozessen in<br />

Wildbächen. WSL Berichte, Nr. 9, 105p. (www.wsl.ch/publikationen/pdf/13549.pdf)<br />

- Rickenmann, D., Koschni, A. (2010). Sediment loads due to fluvial transport and debris<br />

flows during the 2005 flood events in Switzerland. Hydrological Processes 24: 993–1007.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 609


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Potential large wood-related hazards at bridges: the<br />

Długopole bridge in the Czarny Dunajec River, Polish<br />

Carpathians<br />

Virginia Ruiz-Villanueva 1,2 ; Bartłomiej Wyżga 3 ; Pawel Mikuś 3 ; Maciej Hajdukiewiczd 4 ; Markus Stoffel 1,2<br />

ABSTRACT<br />

Interaction between riparian vegetation and geomorphic processes in mountain streams can<br />

be amplified by abundant wood delivery to channels, high stream power and high sediment<br />

transport rates. At critical sections such as bridges, a quick succession of backwater can occur<br />

as a result of the reduction of the cross-sectional area. The aim of this work is to analyze<br />

wood transport and deposition during floods in the Czarny Dunajec River (Polish Carpathians)<br />

where it flows through the village of Długopole with a very narrow bridge cross-section.<br />

A numerical model which simulates the transport of large wood together with flow dynamics<br />

is applied and inlet and boundary conditions are determined based on field observations.<br />

Preliminary results showed that the bridge is easily clogged with wood under certain<br />

circumstances, although the blocking ratio and the probability of a log to be blocked depend<br />

on several factors. The final results will provide data to compute bridge clogging probability<br />

under the designed scenarios, and the potential impacts of the clogging on flood hazard.<br />

KEYWORDS<br />

driftwood, woody debris, clogging, flood, hazard<br />

INTRODUCTION<br />

The high potential risk associated with (flash) floods in mountain watercourses is a result of a<br />

rapid and complex hydrological catchment response (Borga et al., 2014). Besides high water<br />

levels in the drainage network, sediment transport and important morphological changes, the<br />

transport of large quantities of woody material must be considered an additional factor of<br />

flood risk in forested catchments (Mazzorana et al., 2011; Mao et al., 2013; Ruiz-Villanueva<br />

et al., 2014a). Interaction between riparian vegetation and geomorphic processes in mountain<br />

streams is amplified by abundant wood delivery to the channels, high stream power and high<br />

sediment transport rates. Recent floods across Europe highlighted some effects caused by<br />

large wood. An example can be the flood of August 2005 in Switzerland when, apart from<br />

flooding and enormous morphological changes in the streams, considerable amounts of wood<br />

1 Dendrolab.ch, Institute of Geological Sciences, University of Bern, SWITZERLAND, virginia.ruiz@dendrolab.ch<br />

2 Institute for Environmental Sciences, University of Geneva, SWITZERLAND<br />

3 Institute of Nature Conservation, Polish Academy of Sciences, Cracow, Poland; Faculty of Earth Sciences, University of Silesia,<br />

Sosnowiec, Poland<br />

4 Department of Environmental Engineering, Geomatics and Energetics, Kielce University of Technology, Poland<br />

610 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP109


were mobilized and deposited, resulting in high damage costs (Badoux et al., 2014; Rickenmann<br />

et al., 2015).<br />

Large wood (LW) in rivers has been described in the scientific literature since the 1970s<br />

(Swanson et al., 1976; Harmon et al., 1986; Montgomery et al., 2003). The presence of LW in<br />

river systems has been demonstrated to have very positive effects, for instance by enhancing<br />

the hydromorphological diversity of riverine habitats and representing a source of organic<br />

matter in channels (Gregory et al., 2003; Wohl, 2013; Beckman and Wohl, 2014). Therefore,<br />

management of LW has evolved in many regions and some forest management plans include<br />

guidelines to maintain riparian forest density (i.e. number of trees per unit area),buffer width<br />

and instream LW abundance (Spence et al., 1996).<br />

However, conflicts are usually greater in urban environments (Piégay and Landon, 1997),<br />

where the threat to infrastructure and public safety drives the most common management<br />

responses: to remove LW from the channel or to install debris racks to intercept LW transport<br />

(Bradley et al., 2005). Thus, LW management in urban areas implicitly assumes that wood is<br />

a problem and needs to be removed, with the practice resulting in degradation of aquatic<br />

habitats. It has been proved that wood removal often fails to prevent flooding, in part because<br />

of new input of LW during floods (Young, 1991; Gippel, 1995; Dudley et al., 1998). A more<br />

sustainable approach to manage LW in urban catchments is to redefine the problem as the<br />

inability of infrastructure to pass LW through the system (Lassettre and Kondolf, 2012). An<br />

alternative might be to modify the infrastructures. In addition the processes of LW input,<br />

storage and transport through the channel network might be accommodated by preserving<br />

zones of LW recruitment (forested hillslopes and riparian corridors) and areas of LW storage<br />

(gravel bars and floodplains) and maintaining pathways of LW transport, retaining the<br />

important ecological functions of LW (Lassettre and Kondolf, 2012).<br />

The first step in the improved LW management is therefore to identify the critical structures<br />

and the potential consequences in case of clogging. The partial clogging of bridges can cause a<br />

quick succession of backwater effects due to the reduction of cross-sectional area, which is<br />

accompanied by bed aggradation, channel avulsion and local scouring processes, which can<br />

ultimately lead to embankment/bridge collapse and floodplain inundation (Diehl, 1997;<br />

Comiti et al., 2007; Lyn et al., 2007; Mao and Comiti, 2010; Comiti et al., 2012; Badoux et al.,<br />

2015; Lucía et al., 2015). As a result, flooded areas are likely to be different from those<br />

predicted from models where the presence of wood is not considered (Ruiz-Villanueva et al.<br />

2013), and therefore, this may result in the incorrect/uncertain estimation of flood risk.<br />

The ongoing research project FLORIST (Flood risk on the northern foothills of the Tatra<br />

Mountains), funded by the Polish-Swiss Joint Research Programme, aims at improving flood<br />

risk analysis in the region, including the analysis of large wood (Kundzewicz et al., 2014).<br />

During recent floods in Poland, such as those from 2001, 2010 and 2014, large quantities of<br />

wood were transported by mountain rivers, and large deposits of wood accumulated at some<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 611


idge cross-sections, with adverse consequences (Hajdukiewicz et al, 2015). Wood deposits<br />

increased the hazardousness of the floods, with some of the above-mentioned effects.<br />

Therefore, the aim of this work is to analyse potential hazards related to wood transport and<br />

deposition at bridges during floods. We focused our investigations on the Czarny Dunajec<br />

River in the Tatra Mountains foreland (Polish Carpathians), where the river flows through<br />

the village of Długopole. Buildings in the village are located very close to the river and the<br />

bridge has a narrow cross-section (27 m) and is thus threatened by wood-related phenomena.<br />

This paper describes ongoing work within the FLORIST project and only preliminary results<br />

can be shown here.<br />

STUDY SITE<br />

The Czarny Dunajec (Figure 1) drains the Inner Western Carpathians in southern Poland. The<br />

river rises at about 1500 m above sea level (a.s.l.) in the high-mountain Tatra massif, with the<br />

highest peak in the catchment at 2176 m a.s.l. In the Tatra Mountains foreland, the river<br />

formed a non-cohesive alluvial plain consisting of resistant granitic and quartzitic particles<br />

Figure 1: (A) Location of the study area in the Polish Carpathians and location of the Czarny Dunajec River in relation to physiogeographic<br />

regions of southern Poland. Red rectangle indicates the study reach shown in panel B. 1 – high mountains; 2 – mountains of<br />

intermediate and low height; 3 – foothills; 4 – intramontane and submontane depressions; (B) Czarny Dunajec study reach upstream of<br />

the Długopole bridge; (C) view of the bridge from the left, upstream bank; (D) bank erosion and wood recruitment on the right bank a few<br />

tens of metres upstream of the bridge; (E) trees fallen to the river channel as a result of bank erosion (flow is from right to left).<br />

transported from the Tatras and sandstone gravel delivered to the Czarny Dunajec in the<br />

upper part of the foreland reach (Wyżga and Zawiejska, 2005).<br />

Characteristic features of the hydrological regime of the river are low winter flows and floods<br />

occurring between May and August due to heavy rainfall, sometimes superimposed on<br />

612 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


snow-melt runoff. Mean annual discharge of the river amounts to 4·4 m 3 s−1 at Koniówka,<br />

where the catchment area is 134 km 2 . The riparian forest is composed of alder and willow<br />

species with predominating young, shrubby forms of Alnus incana, Salix eleagnos, S. purpurea<br />

and S. fragilis, less frequent stands of older A. incana trees and occasional S. alba trees.<br />

The study reach is 1300 m long, with a channel width varying between 70 m and 20 m and<br />

amounting to 35 m on average, longitudinal slope of 0.006, and a drainage area of 145.7 km 2 .<br />

METHODS<br />

The numerical model developed by Ruiz-Villanueva et al. (2014a), called Iber-wood, is<br />

applied and inlet and boundary conditions are determined based on field observations. This<br />

model is fully coupled with a two-dimensional hydrodynamic model based on the finite<br />

volume method with a second-order Roe Scheme. Some of the parameters involved in the<br />

governing equations are wood density, angle of the log relative to flow, log length, log<br />

diameter, friction coefficient between the wood and the river bed, and the drag coefficient of<br />

the wood in water. The model includes two possible transport mechanisms for the movement<br />

of wood logs (floating or sliding/rolling) depending on wood density and water depth. In<br />

addition, translation and rotation (if one end of the wood piece is moving faster than the<br />

other) of logs are also included, based on flow velocity field. Interactions between logs and<br />

the channel boundaries and among logs themselves are also taken into account in the model.<br />

Therefore, log velocity and trajectory may change as a result of contacts with the banks or<br />

with other logs. The hydrodynamics and wood transport are coupled; thus, the hydrodynamics<br />

influence wood transport, but the presence of wood also influences hydrodynamics,<br />

adding a term to the bi-dimensional De Saint Venant equations (Ruiz-Villanueva et al.,<br />

2014a). The model reproduces interactions between wood and infrastructures, computing<br />

whether a log can pass under or above the bridge deck, or become trapped by the structure,<br />

depending on the gate opening and width, or the weir length, water depth and wood<br />

diameter and length. When logs are trapped at the bridge, the drag force represents an<br />

opposite action to water flow, producing a rise in water level and a decrease in velocity<br />

(Ruiz-Villanueva et al., 2014b). The model has been already applied in the same river for<br />

other purposes related to the analysis of large wood dynamics (Ruiz-Villanueva et al., 2015a<br />

and 2015b).<br />

Topography of the studied reach is available from a LIDAR data from 2012; in addition, 23<br />

channel cross-sections in the vicinity of the Długopole bridge (18 cross-sections upstream of<br />

the bridge and 5 downstream) were used to update and improve the geometry. As a result,<br />

we obtained a DEM with 0.5 m pixel size resolution. Data from the nearest stream gauge<br />

station Koniówka is used for the calculation of flood discharges of a given probability/<br />

recurrence interval, whereas the available rating curve was used for roughness (Manning’s n)<br />

calibration. In addition, water level observed during the flood of May 2014 was also used to<br />

validate model results.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 613


To characterize each piece of wood entering the reach, we established ranges of maximum<br />

and minimum lengths, diameters, and wood density based on the main types of trees re -<br />

cruited to this river. Stochastic variations of these parameters together with the position and<br />

angle with respect to the flow were used as well. We define a number of logs per minute to<br />

enter the simulation, assuming that wood recruitment is only occurring upstream of the<br />

study reach.<br />

The potential bridge clogging depends on many factors (Figure 2), such as (1) the approaching<br />

wood pieces (i.e. size and amount of wood transported in uncongested or congested<br />

manner, as defined by Braudrick et al., 1996), (2) the flow conditions (i.e. water level and<br />

flow velocity), (3) the geometry of the channel upstream the bridge (width, slope, curvature)<br />

and (4) the geometry of the bridge.<br />

Figure 2: Schematic sketch showing the three main factors influencing bridge clogging: (1) approaching wood (different size and<br />

different amount of wood); (2) flow conditions (in terms of water level and velocity field); (3) the geometry of the bridge (the one at<br />

Długopole has a single pier in the middle of the channel which is formed by a few steel columns linked with thinner steel elements)<br />

and the geometry of the channel.<br />

Running the model in a multiple scenario approach (to include the natural variability inherent<br />

to this process), we are analysing the three main factors affecting bridge clogging. We change<br />

the size and amount of wood pieces entering the river reach to determine the critical conditions<br />

in terms of wood. We also change the discharge to change the flow conditions.<br />

614 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


In further steps we will include a potential increase in bank erosion (see pictures D and E in<br />

Figure 1) which can also modify the flow conditions (by changing the flow velocity field).<br />

A probability of a bridge clogging can be computed with the ensemble from all the scenarios.<br />

PRELIMINARY RESULTS<br />

First run scenarios revealed the bridge as a critical section in the river if clogged. While for<br />

relatively high-magnitude floods (Q = 105 m 3·s-1, 10-year return period), the bridge capacity<br />

is enough to convey the flow, a reduction in the bridge cross-section caused by wood clogging<br />

significantly increases the flooding hazard for the nearby areas (Figure 3).<br />

Figure 3: Model results: flooded area and water depths (in metres) for a discharge of 105 m 3·s-1 in the study reach of the Czarny<br />

Dunajec River for the bridge cross-section at full capacity (A) and reduced by 90% (B). Flow is from left to right<br />

Preliminary results of the modelling of wood transport show that the bridge is easily clogged<br />

under certain circumstances, although the blocking ratio and the probability of a log to be<br />

blocked at the bridge depend on several factors. First of all, the size of the wood pieces,<br />

namely log length and diameter have a strong influence on the bridge clogging. Preliminary<br />

results show that the number of logs deposited at the bridge increases exponentially as log<br />

length and diameter increase (Figure 4). Log length seems to have a stronger effect on the<br />

entrapment than diameter.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 615


Figure 4: Model results: Percentage of deposited logs at the cross section upstream the bridge. Left: Simulated logs with fixed diameter<br />

of 0.2 m and different length values; right: Simulated logs with fixed length (equal to 10 m) and different diameters. In both graphs<br />

discharge is equal to 105 m 3·s-1.<br />

Flow conditions and the magnitude of the flood play an important role as well as the wood<br />

supply to the river reach and transport mechanism, and further scenarios will analyse these<br />

factors. Further results will provide data to compute the probability of bridge clogging under<br />

the designed scenarios, and the potential impacts of the clogging on hydrodynamics, flooded<br />

area and effects on the bridge stability. This information will be very useful for flood risk<br />

assessment and management of the river.<br />

ACKNOWLEDGEMENTS<br />

This work was supported by the project Polish-Swiss FLORIST (Flood risk on the northern<br />

foothills of the Tatra Mountains; PSPB no.153/2010). The lead author acknowledges Dr.<br />

Ernest Bladé, Dr. Georgina Corestein and Marcos Sanz Ramos (FLUMEN Institute) for their<br />

support.<br />

REFERENCES<br />

- Andreoli, A., Comiti, F. Lenzi, M.A. 2007. Characteristics, distribution and geomorphic role<br />

of large woody debris in a mountain stream of the Chilean Andes. 1692, 1675–1692.<br />

- Badoux, A., Böckli, M., Rickenmann, D., Rickli, C., Ruiz-Villanueva, V., Zurbrügg, S.,<br />

Stoffel, M. 2015. Large wood transported during the exceptional flood event of 24 July 2014<br />

in the Emme catchment (Switzerland). Proceedings of the Wood in World Rivers Conference,<br />

Padova, Italy, July 2015.<br />

- Badoux, A., Andres, N., Turowski, J.M. 2014. Damage costs due to bedload transport<br />

processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279–294.<br />

- Beckman, N.D. Wohl, E. 2014. Effects of forest stand age on the characteristics of logjams in<br />

mountainous forest streams. Earth Surface Processes and Landforms, 39, 1421–1431.<br />

- Borga, M., Stoffel, M., Marchi, L., Marra, F., Jakob, M. 2014. Hydrogeomorphic response to<br />

extreme rainfall in headwater systems: Flash floods and debris flows. Journal of Hydrology,<br />

518, 194–205.<br />

616 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Bradley J.B., Richards D.L., Bahner C.D. 2005. Debris Control Structures – Evaluation and<br />

Countermeasures. Report No. FHWA-IF-04-016, Hydraulic Engineering No. 9 (3rd edition),<br />

Federal Highway administration, Washington, D.C.<br />

- Diehl, T. 1997. Potential Drift Accumulation at Bridges. U.S. Department of Transportation<br />

Federal Highway Administration Research and Development Turner-Fairbank Highway<br />

Research Center, Georgetown Pike McLean, Virginia 22101-2296. Available: http://tn.water.<br />

usgs.gov/publications/FHWA-RD-97-028/FHWA-RD-97-028.pdf<br />

- Dudley, S., Fischenich, J. Abt, S. 1998. Effect of Woody Debris Entrapment on Flow<br />

Resistance. JAWRA Journal of the American Water Association 34, 1189–1197.<br />

- Gippel, C.J. 1996. Hydraulic Guidelines for the Re-Introduction and Management of Large<br />

Woody Debris in Lowland Rivers. Regulated Rivers: Research & Management, 12, 223–236.<br />

Gregory S.V., Boyer K.L., Gurnell A.M. (eds). 2003. The Ecology and Management of Wood<br />

in World Rivers, American Fisheries Society Symposium 37, Bethesda, MD.<br />

- Hajdukiewicz, H., Wyżga, B., Mikuś, P., Zawiejska J., Radecki-Pawlik, A. 2015. Impact of a<br />

large flood on mountain river habitats, channel morphology, and valley infrastructure.<br />

Geomorphology. In press. doi:10.1016/j.geomorph.2015.09.003<br />

- Harmon, M.E., Franklin, J.F., Swanson, F.J., Sollins, P., Gregory, S.V., Lattin, J.D., Anderson,<br />

N.H., Cline, S.P., Aumen, N.G., Sedell, J.R., Lienkaemper, G.W., Cromack Jr., K., Cummins,<br />

K.W. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 15,<br />

133-302.<br />

- Kundzewicz, Z. Stoffel, M., Kaczka, R., Wyżga, W., Niedźwiedź, T., Pińskwar, I., Ruiz-Villanueva,<br />

V., Łupikasza, E., Czajka, B. 2014. Floods at the northern foothills of the Tatra<br />

Mountains — A Polish-Swiss research project. Acta Geophysica, 62, 620–641.<br />

- Lassettre, N.S., Kondolf, G.M. 2012. Large woody debris in urban stream channels :<br />

redefining the problem, River Res. Applic., 28, 1477–1487.<br />

- Lucía, A., F. Comiti, M. Borga, M. Cavalli, L. Marchi. 2015. Dynamics of large wood during<br />

a flash flood in two mountain catchments. Natural Hazards and Earth System Sciences<br />

Discussions, 3,1643–1680.<br />

- Lyn, D., Cooper, T. Yi, Y.K. 2003. Debris Accumulation at Bridge Crossings: Laboratory and<br />

Field Studies. Available at: http://docs.lib.purdue.edu/jtrp/48.<br />

- Mao, L., Comiti, F. 2010. The effects of large wood elements during an extreme flood in a<br />

small tropical basin of Costa Rica. In: De Wrachien D, Brebbia CA (eds) Debris flow III. WIT<br />

Press, UK, pp 225–236.<br />

- Mao, L. Andreoli, A., Iroumé, A.,Comiti, F.,Lenzi, F.A. 2013. Dynamics and management<br />

alternatives of in-channel large wood in mountain basins of the southern Andes. Bosque<br />

(Valdivia), 3415–16.<br />

- Mazzorana, B., Comiti, F. Fuchs, S. 2011. A structured approach to enhance flood hazard<br />

assessment in mountain streams. Natural Hazards, 67, 991–1009.<br />

- Montgomery, D.R., Collins, B.D., Buffington, J.M., Abbe, T.B. 2003. Geomorphic effects of<br />

wood in rivers. In: Gregory, S.V., Boyer, K.L., Gurnell, A.M. (Eds.), The Ecology and Management<br />

of Wood in World Rivers. American Fisheries Society, Bethesda, MD, pp. 21–47.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 617


- Piégay H, Landon N. 1997. Promoting ecological management of riparian forests on the<br />

Drome River, France. Aquatic Conservation: Marine and Freshwater Ecosystems 7, 287–304.<br />

- Rickenmann, D., Waldner, P., Usbeck, T., Köchil, D., Sutter, F., Rickli, C., Badeaus, A. 2015.<br />

Large wood transported during the 2005 flood events in Switzerland. Proceedings of the<br />

Wood in world rivers Conference, Padova, Italy, July 2015.<br />

- Rigon, E., Comiti, F. Lenzi, M.A. 2012. Large wood storage in streams of the Eastern Italian<br />

Alps and the relevance of hillslope processes. Water Resources Research, 48, 1–18.<br />

- Ruiz Villanueva, V. Ernest Bladé Castellet, Andrés Díez-Herrero, José M. Bodoque, Martí<br />

Sánchez-Juny. 2014b. Two-dimensional modelling of large wood transport during flash<br />

floods. Earth Surface Processes and Landforms, 39,438–449.<br />

- Ruiz-Villanueva, V. Ernest Bladé, Martí Sánchez-Juny, Belén Marti-Cardona, Andrés<br />

Díez-Herrero, José María Bodoque. 2014a. Two-dimensional numerical modeling of wood<br />

transport. Journal of Hydroinformatics, 16,1077.<br />

- Ruiz-Villanueva, V., Bartłomiej Wyżga, Joanna Zawiejska, Maciej Hajdukiewicz, Markus<br />

Stoffel. 2015a. Factors controlling large-wood transport in a mountain river. Geomorphology,<br />

in press. doi:10.1016/j.geomorph.2015.04.004<br />

- Ruiz-Villanueva, V., Bodoque, J. M., Díez-Herrero, a., Eguibar, M. a., & Pardo-Igúzquiza, E.<br />

2013. Reconstruction of a flash flood with large wood transport and its influence on hazard<br />

patterns in an ungauged mountain basin. Hydrological Processes, 27, 3424–3437.<br />

- Ruiz-Villanueva, V., Wyżga, B., Hajdukiewicz, H., & Stoffel, M. 2015b. Exploring large wood<br />

retention and deposition in contrasting river morphologies linking numerical modelling and<br />

field observations. Earth Surface Processes and Landforms, in press. doi:10.1002/esp.3832<br />

- Spence, B.C., Lomnicky, G.A., Hughes, R.M., Novitzki, R.P. 1996. An Ecosystem Approach<br />

to Salmonid Conservation. Draft Report No. TR-450-96-6057. ManTech Environmental<br />

Research Services Corporation: Corvallis, Oregon.<br />

- Swanson, F.J., Lienkaemper, G.W. Sedell, J.R.. 1976. History, physical effects, and management<br />

implications of large organic debris in western Oregon streams. U.S. For. Serv. Gen.<br />

Tech. Rep. PNW-56.<br />

- Wohl, E. 2013. Floodplains and wood. Earth-Science Reviews 123, 194–212.<br />

- Wyżga, B. Zawiejska, J. 2005. Wood storage in a wide mountain river: case study of the<br />

Czarny Dunajec, Polish Carpathians. Earth Surface Processes and Landforms, 30, 1475–1494.<br />

- Young, W.J. 1991. Flume study of the hydraulic effects of large woody debris in lowland<br />

rivers. Regulated Rivers: Research and Management, 6, 203–211.<br />

618 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

ProtectBio - Evaluation of the effects of protection<br />

forests on natural hazards due to gravity<br />

Arthur Sandri, dipl. Ing. ETH 1 ; Benjamin Lange, Dr. phil. nat. 1 ; Stéphane Losey, dipl. Ing. ETH 1 ; Bernhard Perren, dipl. Ing. ETH 2<br />

ABSTRACT<br />

Assessing the impact of biological protective measures is a major challenge. The project<br />

"PROTECT" of the National Platform for Natural Hazards (PLANAT) defines principles and<br />

processes to evaluate the impact of technical protection works. Within the framework of<br />

"ProtectBio", the methodology of PROTECT was adapted to biological measures, notably<br />

protection forests. This article shows that the principles for technical measures according to<br />

PROTECT are applicable to protection forests if some peculiarities of biological systems are<br />

considered. Thus, the impact of protection forests is comparable with the effects of technical<br />

protection works with the same objectives. The assessment of biological protection measures<br />

include several steps: the preparation, the rapid assessment, the evaluation of measures and<br />

the evaluation of effects. Some open questions remain concerning the quantification of the<br />

impact of the forest on medium and deep landslides as well as on floods. Notwithstanding<br />

these limitations, the here presented approach enables the quantitative assessment of the<br />

protection forests' effect and, thus, allows including biological measures in the integrated risk<br />

management.<br />

KEYWORDS<br />

Protection forest; Evaluation of Protection Measures; Natural Hazard Management;<br />

Risk Management<br />

INTRODUCTION<br />

The Federal Council mandated the national platform for natural hazard (PLANAT) to<br />

establish the strategy “Protection against Natural Hazards” (PLANAT 2004) which required as<br />

a core element the application of an integrated risk management.<br />

Integrated means that<br />

– all natural hazards are considered<br />

– all stakeholders are involved in the planning and implementation<br />

– all types of measures are included<br />

– all aspects of sustainability are taken into account<br />

Including all types of measures means that the protection against natural hazards is assured<br />

with both measures of prevention (spatial planning, technical and biological measures,<br />

1 Federal Office for the Environment FOEN, Ittigen, SWITZERLAND, arthur.sandri@bafu.admin.ch<br />

2 Impuls AG, SWITZERLAND<br />

IP_<strong>2016</strong>_FP071<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 619


preparedness measures) as well as measures of response (warning, rescue, damage protection,<br />

emergency measures) and measures of recovery. Integrated risk management is based on a<br />

comprehensive hazard and risk assessment and on an active communication about risk,<br />

which enables the community to correctly assess the risks and to act accordingly. An<br />

important bases of this comprehensive risk assessment is an in depth hazard and risk analysis<br />

which enables to quantify natural hazards and determines its process area. Moreover, the<br />

reliability and the effect of existing protection measures must be assessed.<br />

At a workshop of experts in natural hazards (FAN) in 2002 it was found that – depending on<br />

the hazard process – protection measures are considered very different (Romang et al. 2003).<br />

Therefore, PLANAT launched the project “Assessment of the effect of protection measures<br />

against natural hazards as a basis for their integration in spatial planning” called “PROTECT”<br />

(Romang et al. 2008). In the framework of this project, an evaluation method was developed,<br />

which includes nine principles to be tested in a four step procedure (Figure 1).<br />

Figure 1: Procedure to assess technical protective measures according to PROTECT. ¹: see Table 1. ²: Recommendations for spatial<br />

planning are not considered in ProtectBio<br />

620 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


However, PROTECT uses test criteria derived from civil engineering and designed for technical<br />

protection measures (as e.g. structural safety, serviceability, durability). Thus, a common basis<br />

for a comprehensible assessment of protective measures was created. It must therefore be<br />

examined whether and how these criteria can be applied to other protective measures such<br />

as protection forests.<br />

For this reason, the Federal Office for the Environment FOEN has initiated the project<br />

“ProtectBio” which is presented in this paper. The main objective of this paper is to show<br />

whether and how the principles and procedures of PROTECT are adaptable to biological<br />

protective measures in order to assess and compare their reliability and effects to technical<br />

protective measures.<br />

METHODOLOGY<br />

According to PROTECT, the assessment of technical protection structures includes the<br />

preparation and four consecutive steps: the rapid assessment to evaluate if there is an impact<br />

of the measure on the hazard process, the evaluation of measures to assess its reliability, the<br />

evaluation of the effects of the measures to quantify its impact and recommendations for<br />

spatial planning (Figure 1). Opposed to PROTECT, recommendations for spatial planning<br />

were not discussed within the framework of ProtectBio. Thus, step 4 is not elaborated.<br />

PROTECT defines nine principles for the assessment according to Figure 1. Table 1 explains<br />

these principles for technical measures.<br />

Table 1: Nine principles to prove the general suitability of technical protective measures according to PROTECT<br />

Principles<br />

1 Quantifiable Effect: the effect on the hazard process can be<br />

quantified or is at least discernible<br />

2 Uncertainties: the quantified impact of the measure on the hazard<br />

process exceeds the uncertainties in the assessment<br />

3 Scenarios: the assessment considers usual scenarios<br />

4 System Delimitation: the measure is assessed both with regard to the<br />

individual system and to the entire process area<br />

5 Permanent Availability: the protective effect is ensured for at least 50<br />

years<br />

6 Monitoring and Surveillance: the monitoring, the surveillance and in<br />

case of defects, the replacing is ensured<br />

7 Temporary Measures: temporary measures are not considered.<br />

8 Planned Measures: after a measure is realized, it is verified if the<br />

realization is according to the planning<br />

9 Time: since both protective measures and processes change in the<br />

course of time, the hazardous situation is verified periodically<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 621


The preparation serves as a rough assessment to clarify whether these principles may be<br />

fulfilled and detailed analyses are appropriate. In-depth assessments of the nine principles are<br />

subsequently conducted in the framework of steps 1-3. One of the main goals of ProtectBio<br />

was to verify whether these principles and the procedure defined for technical protection<br />

structures are also usable for biological measures. In the context of this verification, some<br />

peculiarities of biological systems should be considered:<br />

1. Protection is a free service provided by the nature but only one of the functions of forests.<br />

2. Humans can influence the forest, but natural cycles and specific forest stand characteristics<br />

have to be considered. Forests cannot be planned to resist a specific impact of a certain<br />

event.<br />

3. The impact of the protection measure depends on natural cycles.<br />

4. The effect is area-wide.<br />

5. Forests and hazard processes interact with each other.<br />

Thus, due to these peculiarities, some deviations with regard to the interpretation of the<br />

principles are necessary when protection forests are assessed according to the procedure<br />

defined in PROTECT:<br />

Principles 1 and 2 (Quantifiable Effect and Uncertainties)<br />

It depends on the process to what extend the impacts of protection forests are quantifiable<br />

and whether the quantified impact exceeds the uncertainties. For avalanches, fall processes<br />

and shallow landslides, these principles are normally fulfilled.<br />

Principle 3 (Scenarios)<br />

Scenarios refer to events with differing probabilities of occurrence. The risk for an overload in<br />

forests may exceed that of technical measures since a forest is not planned to resist an event<br />

of a certain return period.<br />

Principle 4 (System Delimitation)<br />

The entire system includes the whole process area including forest and technical measures.<br />

Single systems describe a certain forest stand in a subterritory, e.g. the forest in the starting<br />

zone of an avalanche.<br />

Principle 5 (Permanent Availability)<br />

According to PROTECT, the protective effect should be ensured for at least 50 years (on<br />

condition that the measure is maintained). The return period of damages relevant to<br />

protection as storms, harmful organisms or forest fires at a specific site exceed 50 years even<br />

on pessimistic assumptions. Thus, permanent availability can be assumed. This does not mean<br />

that relevant damages never occur, but relevant events are rare and the protective functions<br />

do not disappear completely after a damage since laying wood and resilience (ability for<br />

622 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


egeneration of protection forests in case of damaging events) is often able to compensate the<br />

damage partially.<br />

Principle 6 (Monitoring and Surveillance)<br />

The guideline “Sustainability and success monitoring in protection forests” (Frehner et al.<br />

2005) is a tool that enables the monitoring and surveillance of protection forests at minimal<br />

costs. The need for action is derived from comparing the current state of the forest with the<br />

target profile, taking into account natural forest development. Local experts are responsible<br />

for both monitoring and surveillance which are a part of the forest planning.<br />

Principle 7 (Temporary Measures)<br />

Temporary measures are not considered when assessing the impact of protection forests. In<br />

the event of damages relevant to protection, temporary measures as laying wood may gain in<br />

importance.<br />

Principle 8 (Planned Measures)<br />

With the exception of reforestations, planned measures are of no significance.<br />

Principle 9 (Time)<br />

Changes in both the protective measures and hazard processes are considered by updating the<br />

target profiles for hazard processes in the guideline NaiS (Frehner et al. 2005) periodically.<br />

Table 2: Relevance of the protection measure „forest“ and its assessability. Green: relevance is possible and assessable. Yellow:<br />

relevance is only partially possible or relevance is only partially assessable. Red: no relevance or relevant, but not assessable.<br />

Natural hazard process<br />

Relevance of protection measure “forest”<br />

possible<br />

assessable<br />

Avalanches ● Flowing avalanche yes yes<br />

● Powder avalanche yes yes<br />

● Snow glide yes yes<br />

● Ice avalanche no -<br />

Fall ● Rock fall yes yes<br />

● Rock slide yes (only small events) yes<br />

● Rock avalanche no -<br />

● Ice fall yes yes<br />

Water ● Flooding yes rarely<br />

● Debris flow yes yes<br />

● Erosion yes yes<br />

Spontaneous<br />

● Shallow yes yes<br />

landslides<br />

● Intermediate yes no<br />

● Deep yes no<br />

Permanent landslides ● Intermediate yes no<br />

● Deep yes no<br />

Sinkhole / Subsidence ● yes no<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 623


To sum up, the principles of PROTECT are applicable to protection forests when some<br />

pe culiarities of biological measures are taken into account. Thus, the procedure for technical<br />

measures according to Figure 1 (steps 1-3) is in principle transferable to protection forests.<br />

Furthermore, it was evaluated for which gravitational natural hazards a relevance of forests<br />

can be expected and, additionally, if this relevance is assessable. Table 2 gives an overview of<br />

this evaluation.<br />

RAPID ASSESSMENT<br />

The rapid assessment, as the first step after the preparation according to Figure 1, aims at<br />

giving a first overview of the situation and includes an estimation of the relevance of the<br />

protection measure. This evaluation reveals whether the measure has a relevant impact on<br />

the hazard and whether a more detailed investigation is appropriate.<br />

Thus, the rapid assessment should be practicable with minimal effort, i.e. as far as possible<br />

without fieldwork and complex calculations. Criteria used for the rapid assessment of a forest<br />

are, for example, the percentage of forest cover and its location in the process perimeter,<br />

stand characteristics like the canopy cover and the differentiation between stands that<br />

effectively have a protective effect and such which are presumably ineffective (e.g. young<br />

forests).<br />

Figure 2: Approach for the rapid assessment of protection forest in the starting zone of avalanches<br />

624 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Within the framework of ProtectBio, decision schemes for frequent natural hazard processes<br />

were developed to simplify the rapid assessment. An example of such a scheme, concerning<br />

the relevance of the forest in starting zones of avalanches, is shown in Figure 2.<br />

EVALUATION OF MEASURES<br />

In this step, the reliability of protective measures is assessed with regard to their impact on<br />

the hazard process. According to PROTECT, the reliability depends on the structural safety of<br />

the measure, its serviceability and durability. The structural safety is the ability to resist an<br />

impact. As an example, a forest in an avalanche starting zone should resist a certain snow<br />

load. Thus, tree species and the coefficient of slenderness determine the structural safety in<br />

this case.<br />

The serviceability is the capacity of a forest to guarantee its protective function and depends<br />

on both the protection aim for the damage potential and the resulting state of the forest. It is<br />

assumed that serviceability is given if the condition of the forest fulfills the minimum target<br />

profile according to the guideline “Sustainability and success monitoring in protection forests<br />

(NaiS)” (Frehner et al. 2005).<br />

Durability means that the structural safety and the serviceability of a protective measure are<br />

ensured for at least 50 years (on condition that the measure is monitored and maintained).<br />

Crucial is the current condition of the protection forest and the probable development over<br />

50 years according to NaiS (Frehner et al. 2005) as well as the probability of relevant<br />

Figure 3: Evaluation of measures: determination of the reliability based on structural safety, serviceability and durability (according to<br />

Wasser & Perren 2014)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 625


damages. Moreover, regeneration is of large importance and, thus, ungulate browsing as a<br />

factor that affects tree establishment, growth and mortality.<br />

To sum up, the reliability of a protection forest is determined according to Figure 3 based on<br />

the assessment of its structural safety, its serviceability and durability. Currently, the reliability<br />

is determinable for hazard processes whose relevance is assessable according to Table 2.<br />

EVALUATION OF EFFECTS<br />

The evaluation of effects quantifies the significance of the protection measure to the hazard<br />

process and therefore to the risk for the damage potential. Stand characteristics that cause<br />

protective function are natural hazard specific. Consequently, parameters allowing the<br />

quantification of the protective function of a forest such as canopy cover (avalanche) or basal<br />

area (rockfall) have to be known and methods to quantify this influence must be available.<br />

These methods range from physically or probabilistic based models to expert evaluations and<br />

calculations and indirect evaluations.<br />

Existing approaches evolve and new methods are developed. Thus, the here presented<br />

statements about the quantifiability of the forests’ protective function represent the current<br />

state of the art. Usable to good quality quantifications are possible for hazard processes whose<br />

relevance is assessable according to Table 2.<br />

Open questions remain especially regarding landslides and floods. Even though there is an<br />

impact of forests to the water cycle and therefore to flood protection, it is rarely possible to<br />

quantify this connection. In hydrological models the forest is sometimes incorporated by<br />

adjusting the discharge coefficient or discharge measurements in forested watersheds include<br />

the impact of the forest implicitly. For shallow landslides, there are some efforts to include the<br />

influence of roots on the stability of slopes into models (e.g. Schwarz et al. 2012). Thus,<br />

significant improvements to validate the impact of the forest on soil stability are expected in<br />

the near future.<br />

CONCLUSIONS AND OUTLOOK<br />

ProtectBio shows that the procedure for assessing the effect of technical protection measures<br />

is in principle applicable to biological measures such as protection forests.<br />

Wherever hazard and risk assessments are made, the protective effects of forests should be<br />

adequately addressed in the future. As part of a comprehensive variant study of different<br />

protection measures, biological systems should be considered as possible alternatives to<br />

technical measures. Often, the variant studies do not lead to a clear preference of either a<br />

technical or biological solution but rather an optimal combination of both. For example, the<br />

better the effects of rock fall protection forests are assessable, the more accurate additional<br />

rock fall protection nets can be planned and designed. This combination suits therefore the<br />

demands of the integrated risk management.<br />

626 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ProtectBio is not suitable for an area-wide application. The associated effort would be<br />

disproportional high. However, it makes sense to use it wherever detailed risk assessments<br />

and planning of protection measures are made. So far, ProtectBio has not been applicable as<br />

an automated processes, e.g. in a GIS, since georeferenced data of forest characteristics are<br />

rarely available. Moreover, the effect of protection forests on intermediate and deep landslides<br />

as well as on flooding is hardly quantifiable with existing approaches. Consequently, more<br />

research is needed in these areas. Furthermore, there are still open questions regarding the<br />

influence of gaps, openings and gullies in the forest cover. Not only size and number of<br />

openings and gullies are crucial for the resulting risk, but also their location in the transit<br />

area. Again, further work is necessary to gain simply applicable criteria. But overall, Protect-<br />

Bio enables the evaluation of the reliability and effectiveness of protection forests and their<br />

inclusion in the integrated risk management.<br />

LITERATURE:<br />

- Frehner M., Wasser B., Schwitter R. (2005). Nachhaltigkeit und Erfolgskontrolle im<br />

Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion, Vollzug<br />

Umwelt. Bundesamt für Umwelt, Wald und Landschaft, Bern, 564 p.<br />

- PLANAT (2004): Sicherheit vor Naturgefahren. Vision und Strategie. Nationale Plattform für<br />

Naturgefahren, Biel, 41 S.<br />

- Romang H., Margreth S., Kienholz H., Böll A. (2003). Berücksichtigung von Schutzmassnahmen<br />

bei der Gefahrenbeurteilung. Workshop der Forstlichen Arbeitsgruppe<br />

Naturgefahren (FAN) 29./30.10.2002, St. Gallen, FAN-Sekretariat, 53 S.<br />

- Romang H. (Ed.) (2008). Wirkung von Schutzmassnahmen. Nationale Plattform für<br />

Naturgefahren PLANAT, Bern, 289 S.<br />

- Schwarz M., Cohen D., Or D. (2012). Spatial characterization of root reinforcement at stand<br />

scale: Theory and case study. Geomorphology 171 – 172: 190 – 200.<br />

- Wasser B., Perren B. (2014). Wirkung von Schutzwald gegen gravitative Naturgefahren –<br />

Protect-Bio. Schweizerische Zeitschrift für Forstwesen 165: 275-283.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 627


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Backwater rise due to driftwood accumulation<br />

Isabella Schalko 1 ; Dieter Brändli 2 ; Lukas Schmocker, Dr. 1 ; Volker Weitbrecht, Dr. 1 ; Robert Michael Boes, Prof. Dr. 1<br />

ABSTRACT<br />

Transported driftwood during flood events can lead to accumulation at river infrastructures or<br />

intentionally be retained at driftwood retention structures. In both cases, the driftwood<br />

accumulation results in backwater rise upstream of the cross section and may consequently<br />

overtop the adjacent river embankments. During previous investigations various governing<br />

parameters for the estimation of the backwater rise were detected, but some findings are still<br />

contradictory. Within this study a series of hydraulic flume experiments were conducted to<br />

identify the decisive parameters on the backwater rise testing predefined driftwood accumulations.<br />

The effects of the approach flow condition (inflow flow depth and Froude number) as<br />

well as the driftwood accumulation characteristics (accumulation length, bulk factor and<br />

driftwood characteristics) were considered to enable the prediction of the expected backwater<br />

rise. The results of the experiments show that the backwater rise depends mainly on the<br />

Froude number and the driftwood accumulation characteristics (e.g. log diameter and<br />

driftwood accumulation compactness).<br />

KEYWORDS<br />

Backwater rise; bridge clogging; driftwood retention; flooding; large woody debris<br />

INTRODUCTION<br />

During the 2005 flood event in Switzerland approximately 30’000 t of driftwood were transported<br />

(Bezzola and Hegg 2007; VAW 2008; Waldner et al. 2010). The transported driftwood<br />

led to numerous accumulations and clogging of the flow cross section at river infrastructures<br />

such as bridges or weirs. This resulted in severe problems due to the backwater rise upstream<br />

of the blocked cross section and consequently flooding of the surrounding area.<br />

Engineering measures are necessary to reduce the destructive power of the interaction<br />

between transported driftwood and river infrastructures during flood events. They can be<br />

divided in (1) maintenance of the catchment area (e.g. removal of deadwood, erosion or<br />

landslide prevention and forest maintenance), (2) safe downstream conveyance of driftwood<br />

and (3) retention structures (e.g. racks or nets). The construction of retention structures is<br />

an essential measure to retain large driftwood volumes during flood events (Perham 1987;<br />

Wallerstein et al. 1996; Bradley et al. 2005; Hartlieb and Bezzola 2000). These retention<br />

structures also lead to a backwater rise and hence to decreasing flow velocity and increased<br />

sediment deposition (Bradley et al. 2005; Lange and Bezzola 2006), thereby intensifying the<br />

backwater rise.<br />

1 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, SWITZERLAND, schalko@vaw.baug.ethz.ch<br />

2 Formerly VAW, ETH Zürich, SWITZERLAND<br />

628 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP085


When planning a driftwood retention structure, the backwater rise is a relevant design parameter<br />

for the rack height and the adjacent river embankments. The backwater rise directly<br />

determines the required rack height to prevent the retained driftwood from getting flushed<br />

over the rack. Furthermore, the resulting backwater rise at a bridge or weir due to driftwood<br />

blocking is an important parameter to conduct flood hazard assessments.<br />

STATE OF THE ART<br />

In order to investigate the backwater rise due to driftwood accumulation various studies were<br />

conducted. Knauss (1995) tested four different driftwood rack configurations (diagonal,<br />

V-shaped in and against flow direction and straight rack) and investigated the impact of coarse<br />

and fine driftwood material on the backwater rise. He defined the backwater rise due to driftwood<br />

accumulation at a rack with the backwater parameter α:<br />

Equation 1: Backwater parameter α (Knauss 1995).<br />

With h 2<br />

= flow depth with driftwood accumulation [m], h 1<br />

= initial flow depth without<br />

driftwood accumulation [m], v 1<br />

= initial flow velocity without driftwood accumulation [m/s],<br />

and g = gravitational acceleration [m/s 2 ].<br />

The backwater parameter α depends mainly on the flow velocity and consequently on the<br />

specific discharge q, the driftwood characteristics as well as the rack configuration. For coarse<br />

driftwood α equals 1.5 and can increase up to α ≈ 2.3 for finer material. Compared to a<br />

straight rack, the V-shaped rack (V pointing in flow direction) results in a smaller backwater<br />

rise due to its larger rack length. The driftwood pile up at a V-shaped rack is reduced which<br />

favors the development of a driftwood carpet. Thus the driftwood placement is rather loose<br />

with a smaller backwater rise. In addition Knauss (1995) observed an increase of the<br />

backwater rise with increasing approach flow Froude number for the V-shaped rack.<br />

Rimböck (2003) studied the design of rope net constructions for driftwood retention. His<br />

experiments showed that the governing parameters affecting the backwater rise are the<br />

driftwood characteristics (mixture and wood type), discharge Q, bed slope J, as well as the<br />

channel roughness k st<br />

. The flow velocity at the upper end of the driftwood carpet should not<br />

exceed 0.8-1 m/s. Hence the driftwood is less compact and the risk of overtopping the<br />

retention structure can be reduced.<br />

A different rack configuration with the objective to reduce the backwater rise was introduced<br />

by Schmocker and Weitbrecht (2013). They presented the so-called bypass retention where<br />

the driftwood is retained parallel to the main stream in a bypass channel. The bypass channel<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 629


is located at the outer bend of a river and the rack is placed parallel to the river axis. Due to<br />

the secondary currents in the river bend the driftwood is transported at the outer bend and<br />

into the bypass channel. The approach flow is parallel to the driftwood rack, which leads to a<br />

smaller backwater rise. Since the bed load remains in the main channel, the bypass retention<br />

has only a reduced influence on the sediment transport capacity.<br />

Further experiments on the backwater rise were conducted by Schmocker and Hager (2013).<br />

To simplify small scale model tests, they identified F o<br />

and the loosely placed driftwood volume<br />

V L<br />

as the key parameters for the accumulation process.<br />

Hartlieb (2014) conducted a dimensional analysis to parameterize the backwater rise due to<br />

driftwood accumulation. He also identified F o<br />

and the bulk factor a as the relevant parameters.<br />

The bulk factor a = V L<br />

/V S<br />

can be described by the loosely placed driftwood volume V L<br />

and<br />

the solid driftwood volume V S<br />

. Therefore, it defines whether a driftwood accumulation is<br />

compact (low bulk factor) or loose (high bulk factor). He evaluated several test results of<br />

driftwood accumulation at hydraulic structures and concluded that an increase of F o<br />

and a<br />

decrease of a lead to a higher backwater rise.<br />

OBJECTIVE<br />

Despite recent research, the knowledge on the backwater rise due to driftwood accumulation<br />

is still limited and some results are contradictory. Tab. 1 summarizes the relevant parameters<br />

for the backwater rise due to driftwood accumulation identified in previous studies.<br />

Tab. 1: Summary of relevant parameters for the backwater rise due to driftwood accumulation.<br />

The few available formulae for the backwater rise were established for a limited number of<br />

tests and apply mostly to a specific rack placement. Hence, the objective of the present study<br />

was to systematically investigate the resulting backwater rise due to a driftwood accumulation<br />

630 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


and to expand the existing parameter range. The effects of the approach flow condition<br />

(inflow flow depth and Froude number) as well as the driftwood accumulation characteristics<br />

(accumulation length and bulk factor, driftwood characteristics) were considered. The<br />

findings of this study should enable the estimation of the expected backwater at a driftwood<br />

rack. This would allow for a more precise design of driftwood retention structures and<br />

consequently an improvement of flood hazard assessments.<br />

SCALE MODEL<br />

Hydraulic Flume<br />

The experiments were conducted in a glass-sided flume at the Laboratory of Hydraulics,<br />

Hydrology and Glaciology (VAW). The flume is 8 m long, 0.4 m wide, 0.7 m high and its slope<br />

can be manually adjusted. A flow straightener at the inlet generated undisturbed inflow. The<br />

inflow discharge can be automatically regulated with a valve. The approach flow hydraulics<br />

(subscript o) are characterized by the flow depth h o<br />

and the flow velocity v o<br />

= Q o<br />

/(Bh o<br />

), or the<br />

Froude number F o<br />

= v o<br />

/(gh o<br />

) 1/2 , with Q o<br />

= discharge, B = channel width and g = gravitational<br />

acceleration. Fig. 1 shows the test setup and notation.<br />

Figure 1: (a) Test setup and notation. Initial approach flow conditions (F o<br />

, h o<br />

) without driftwood accumulation. UDS = Ultrasonic<br />

Distance Sensor. (b) Picture from the model test.<br />

The backwater rise is mainly governed by the initial driftwood accumulation, whereas the<br />

subsequently developing driftwood carpet has only a minor effect (Schmocker and Hager<br />

2013). The accumulation was therefore simplified as a pre-installed driftwood volume V D<br />

placed in between two racks. These racks, placed 3 m downstream of the intake, consisted of<br />

seven steel poles with a diameter of d = 0.008 m and therefore had a negligible effect on the<br />

overall backwater rise. The driftwood contained logs of length L L<br />

and diameter d L<br />

. The<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 631


driftwood accumulation had a width of L A<br />

, a constant height of 0.4 m and a bulk factor of a =<br />

V L<br />

/ V S<br />

. The range of a = 2 - 5 was selected based on recent observations from WSL on<br />

driftwood accumulations in nature (Waldner et al. 2010). The approach flow depth h o<br />

and the<br />

resulting flow depth h = h o<br />

+ Δh (with Δh = backwater rise) were measured using two<br />

ultrasonic distance sensors, UDS 0<br />

placed 1 m upstream and UDS 1<br />

1 m downstream of the<br />

driftwood accumulation. Additional flow depths were measured using a manual point gauge.<br />

Model driftwood<br />

During the experiments the model driftwood without branches was divided in seven wood<br />

classes to represent a broad range of L L<br />

and d L<br />

(Fig. 2). The smallest class A consisted of<br />

matchsticks. While d L<br />

is rather constant for the classes A-D, it shows a wide range for classes<br />

E-G. Class G is a mixture of the smallest class A and class E. The model driftwood dimensions<br />

were scaled according to natural driftwood observed during the flood event 2005 (Waldner et<br />

al. 2010). Furthermore, the effect of fine material as small branches and leaves on the<br />

backwater rise was neglected.<br />

Figure 2: Wood classes used in the experiments with d L<br />

= log diameter, L L<br />

= log length and d Lc<br />

= characteristic log diameter.<br />

Another relevant aspect of the wood classes is the characteristic log diameter d Lc<br />

. It was<br />

calculated as a function of the mean circumference U m<br />

. In case of driftwood accumulation at a<br />

rack, water has to pass around the logs. Therefore the characteristic log diameter d Lc<br />

of the<br />

wood class can be calculated with Equation 2.<br />

632 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Equation 2: Characteristic log diameter d Lc<br />

.<br />

With d L<br />

= log diameter [m], N(d L<br />

) = number of logs with d L<br />

in wood class and N = total<br />

number of logs.<br />

Test program and procedure<br />

The experiments were conducted within four test series to identify the impact of various<br />

parameters on the backwater rise. In series I the effect of F o<br />

was tested for three different h o<br />

with all other parameters kept constant. Series II to IV investigated the effect of the parameters<br />

a, L A<br />

and d Lc<br />

for different F o<br />

with all other parameters kept constant. The test program<br />

with the investigated parameters is listed in Tab. 2.<br />

Tab. 2: Test program<br />

Previous studies at VAW investigated the effect of driftwood mixture on the backwater rise<br />

and showed that the driftwood mixture could be represented by the mean diameter of the<br />

mixture (Schmocker and Hager 2013). Therefore, the effect of a mixture of various driftwood<br />

classes was not tested herein. Furthermore, the log length and shape were not investigated as<br />

separate parameters, as this is accounted for with the bulk factor.<br />

The experimental procedure can be described by the following steps:<br />

1. Measurement of h o<br />

and F o<br />

without driftwood accumulation.<br />

2. Inserting the two bar racks in the flume and adding the respective driftwood class and<br />

volume for the driftwood accumulation.<br />

3. Measurement of Δh in front of the driftwood accumulation for the respective ho and F o<br />

.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 633


RESULTS<br />

The Test series I has been conducted to identify the effect of F o<br />

on the backwater rise for<br />

various h o<br />

. Fig. 3a shows Δh for h o<br />

= 50, 100 and 150 mm, wood class G, a = 3.6 and L A<br />

=<br />

100 mm. F o<br />

was varied from 0.2 to 1.4. For h o<br />

= 150 mm only F o<br />

from 0.2 to 0.6 were tested,<br />

since the resulting backwater rise for F o<br />

≥ 0.8 overtopped the maximum driftwood accumulation<br />

height of 0.4 m. The results show that the backwater rise Δh increases linearly with<br />

increasing F o<br />

(Fig. 3a). The backwater rise Δh for h o<br />

= 100 mm and F o<br />

= 1.2 is 6.5-times higher<br />

than for F o<br />

= 0.2. In order to identify the effect of the approach flow depth on the backwater<br />

rise, the relative backwater rise Δh/h o<br />

was plotted on the ordinate (Fig. 3b). The data for all<br />

three approach flow depths h o<br />

collapse, hence the relative backwater rise is independent from<br />

h o<br />

.<br />

Figure 3: (a) Δh and (b) Δh/h o<br />

for three different h o<br />

various F o<br />

, wood class G, L A<br />

= 100 mm and a = 3.6. (c) Δh for h o<br />

= 100 mm,<br />

various F o<br />

, three different a, L A<br />

= 100 mm and wood class C. (d) Δh for h o<br />

= 100 mm, various F o<br />

, three different L A<br />

, wood class F and<br />

a = 3.8.<br />

The bulk factor a describes the compactness of the driftwood accumulation. During the<br />

experiments a certain bulk factor was established by placing the respective driftwood volume<br />

V D<br />

between the two racks. Fig. 3c shows the backwater rise for test series II with a = 2.4, 3.2,<br />

3.6, F o<br />

= 0.2-1.4, L A<br />

= 100 mm, h o<br />

= 100 mm and the wood class C. The experiments for a =<br />

2.4 were limited to F o<br />

= 0.2-0.8 to avoid an overtopping of the maximum driftwood accumulation<br />

height. The backwater rise Δh for F o<br />

= 0.8 equals 317 mm for a = 2.4 compared to<br />

634 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Δh = 150 mm for a = 3.6. Therefore, the backwater rise is decreasing with increasing bulk<br />

factor (i.e. loose driftwood accumulation). A compact driftwood accumulation represents a<br />

higher flow resistance compared to a loose driftwood accumulation, leading to a higher<br />

backwater rise. These findings were observed for all wood classes. As expected the bulk factor<br />

acts like the porosity factor in groundwater flows.<br />

The impact of the driftwood accumulation length on the backwater rise (Test series III) is<br />

plotted in Fig. 3d. The experiments were conducted for F o<br />

= 0.2-1.4, h o<br />

= 100 mm, a = 3.8 and<br />

wood class F. The driftwood accumulation length was varied between L A<br />

= 50, 100 and 200<br />

mm. As plotted in Fig. 3d, the backwater rise increases with increasing L A<br />

. A higher accumulation<br />

length represents a greater flow resistance and consequently leads to an increased<br />

backwater rise.<br />

The geometric driftwood characteristics can be described by the characteristic log diameter d Lc<br />

of the respective wood class. A small d Lc<br />

allows for a more dense driftwood accumulation.<br />

Figure 4: (a) Δh for h o<br />

= 100 mm, L A<br />

= 100 mm and a = 3.6, (b) Δh for d Lc<br />

= 14 mm and F o<br />

= 1.2, (c) ∆h for d Lc<br />

= 2.3 mm<br />

and F o<br />

= 1.2.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 635


Therefore the driftwood accumulation contains a higher number of logs, which leads to a<br />

higher flow diversion when water is passing through. Test Series IV for the impact of d Lc<br />

on<br />

Δh were conducted for F o<br />

= 0.2-1.4 and wood classes A, B and D (Fig. 2). The backwater rise<br />

for d Lc<br />

= 2.3 mm, 8.5 mm and 14 mm (i.e. wood classes A, B, D) with a = 3.6, L A<br />

= 100 mm<br />

and h o<br />

= 100 mm is plotted in Fig. 4a. Two pictures from the model tests for class A, F o<br />

= 1.2,<br />

a = 3.6, L A<br />

= 100 mm, d Lc<br />

= 14 mm and d Lc<br />

= 2.3 mm are shown in Fig. 4b and Fig. 4c. The<br />

backwater rise Δh for F o<br />

= 0.8 equals 236 mm for d Lc<br />

= 2.3 mm compared to Δh = 153 mm for<br />

d Lc<br />

= 14 mm. Consequently, Δh increases with decreasing d Lc<br />

.<br />

CONCLUSIONS<br />

Hydraulic flume experiments were conducted to identify the relevant parameters affecting<br />

the backwater rise due to driftwood accumulation. During the experiments the approach flow<br />

conditions as well as the driftwood accumulation characteristics were systematically varied.<br />

The results show that the backwater rise increases with increasing Froude number F o<br />

and<br />

driftwood accumulation length L A<br />

as well as with decreasing characteristic log diameter d Lc<br />

and bulk factor a. Recently, numerical models have been developed to simulate driftwood<br />

transport, the accumulation processes and the resulting backwater rise. The results of this<br />

study may be used to validate these numerical models.<br />

The fine material like branches and leaves in the driftwood accumulation was neglected<br />

within this study. Further work at VAW aims to model the effect of fine material on the<br />

backwater rise and to combine all results in a design diagram for the expected backwater rise.<br />

This allows to estimate the backwater rise and consequently to design the height of a planned<br />

driftwood retention rack. Regarding bridge clogging, the estimated backwater rise helps to<br />

assess the hazard potential of existing bridges or river crossing structures during flood events<br />

with high driftwood transport.<br />

REFERENCES<br />

- Bezzola G.R. and Hegg C. (2007). Ereignisanalyse Hochwasser 2005 Teil 1: Prozesse,<br />

Schäden und erste Einordnung (Analysis of 2005 flood event, Part 1: Processes, damages and<br />

classification). Federal Office for the Environment FOEN, Swiss Federal Institute for Forest,<br />

Snow, and Landscape Research WSL. Umwelt-Wissen: 0825 (in German).<br />

- Bradley J.B., Richards D.L., Bahner C.D. (2005). Debris control structures: Evaluation and<br />

countermeasures. Report No.: FHWA-IF-04-016. U.S. Dept, Transportation, Federal Highway<br />

Administration, Washington, D.C.<br />

- Hartlieb A. and Bezzola G.R. (2000). Ein Überblick zur Schwemmholzproblematik (Overview<br />

of problems associated with driftwood). Wasser, Energie, Luft 92 (1/2): 1-5 (in German).<br />

- Hartlieb A. (2014). Maßgebende Parameter für den Aufstau durch Schwemmholz-verklausungen<br />

(Decisive parameters for backwater effects caused by floating debris jams). Proc. Intl.<br />

Symposium "Wasser- und Flussbau im Alpenraum", VAW-Mitteilung 228 (R. Boes, ed.), ETH<br />

Zurich: 485-493 (in German).<br />

636 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Knauss J. (1995). Von der oberen zur unteren Isar (From the upper to the lower Isar).<br />

Report 76: 23-66. TU Munich, Germany (in German).<br />

- Lange D. and Bezzola G.R. (2006). Schwemmholz: Probleme und Lösungsansätze (Driftwood:<br />

problems and countermeasures). VAW-Mitteilung 188 (H.-E. Minor, ed.), ETH Zurich<br />

(in German).<br />

- Perham R. E. (1987). Floating debris control: A literature review. Rep. REMR-HY-3, U.S.<br />

Army Corps of Engineers. Washington, DC.<br />

- Rimböck A. (2003). Schwemmholzrückhalt in Wildbächen (Driftwood retention in<br />

mountain torrents). Report 94. TU Munich, Germany (in German).<br />

- Schmocker L. and Weitbrecht V. (2013). Driftwood: Risk analysis and engineering measures.<br />

Journal of Hydraulic Engineering 139 (7): 683-695.<br />

- Schmocker L. and Hager W.H. (2013). Scale modelling of wooden debris accumulation at a<br />

debris rack. Journal of Hydraulic Engineering 139 (8): 827–836.<br />

- Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW). (2008). Ereignisanalyse<br />

Hochwasser 2005: Teilprojekt Schwemmholz (Analysis of the 2005 flood event: Sub-project<br />

drift). Bericht 4240. ETH Zurich, Switzerland (in German).<br />

- Waldner P., et al. (2010). Schwemmholz des Hochwassers 2005 (Driftwood during the 2005<br />

flood event). Final Rep., Federal Office for the Environment FOEN, Swiss Federal Institute for<br />

Forest, Snow and Landscape Research WSL. (in German).<br />

- Wallerstein N.P., Thorne C.R., Abt S.R. (1996). Debris control at hydraulic structures - management<br />

of woody debris in natural channels and at hydraulic structures. Report prepared for<br />

the U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 637


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Natural hazard induced risk: a dynamic individualised<br />

approach for calculating hit probability on networks<br />

Esther Schönthal, MSc 1 ; Margreth Keiler, PD Dr. 2<br />

ABSTRACT<br />

In the context of natural hazard and risk assessment in Switzerland, it is common to identify<br />

the collective and individual fatality risk (Bründl 2009). However, this approach is a static<br />

perspective. Consequently, the deduced results for the individual mortality risks on transport<br />

networks (street, railway), only describe the additive independent risk for any person on the<br />

endangered network section. Being aware of this limitation, it is the aim of this study to<br />

calculate the total hit probability for a specific single person, who is driving on a network<br />

section from A to B. Therefore, the calculation of individual risk is adapted and integrated in<br />

a model, whereby dynamic calculations for different scenarios are possible. The results shows<br />

that despite the changing of input parameters (speed, simulation time frame, …) the<br />

differences between the static and the dynamic approach mainly varies related to the hit<br />

probability.<br />

KEYWORDS<br />

natural hazards; risk analysis; hit probability; network analysis; GIS<br />

INTRODUCTION<br />

In the context of natural hazard and risk assessment in Switzerland, it is common to identify<br />

the collective and individual fatality risk (Bründl 2009). This approach, however, is a static<br />

perspective of the exposure to natural hazards (Bründl et al. 2010, Fuchs et al. 2013). The<br />

results of this approach, particularly for the fatality risks on transport networks (street,<br />

railway), only describe the additive independent risk for any person in general on the<br />

endangered network section. Being aware of this limitation, it is the aim of this study to<br />

quantify the consequences of a change in perspective from a static to a dynamic individualised<br />

perspective. Consequently, the objective is to calculate the total hit probability for a<br />

specific person who is driving on a network section from A to B (Fig. 1).<br />

The following main aspects are used as a framework for the study: The first step, starting from<br />

the static approach, is the analysis of how the calculations of hit probability have to be<br />

adapted to simulate the dynamic individualised perspective, and the subsequent implementation<br />

of this adapted modelling approach. Accordingly, the second focus lies on the assumed<br />

difference between the two approaches (static vs. dynamic individualised) by comparing the<br />

results providing the same baseline. In addition, the influence of the driving direction to the<br />

1 geo7 AG, Bern, SWITZERLAND, esther.schoenthal@geo7.ch<br />

2 University of Bern, Institute of Geography, Bern, SWITZERLAND<br />

638 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP058


esults of modelling the hit probability for the dynamic individualised perspective will be<br />

clarified. Finally, the system dynamic and sensitivity of the results according to the variability<br />

of the input parameters is tested. In this paper, only a selection of the overall results is<br />

presented.<br />

Fig. 1: Scheme of the static and dynamical individualised approach.<br />

METHODS<br />

In a first step, the mathematical formulas will be adapted with the concept of conditional<br />

probability. Secondly, a network data model system will be constructed for the modelling of<br />

the different aspects as outlined above. Finally, the planned analysis of sensitivity will be<br />

realised by variation of the different input parameters.<br />

1) Adaption of hit probability calculation<br />

The common calculation of hit probability related to natural hazards for individuals is a<br />

function of the following input parameters: the spatial appearance probability of the process<br />

(p(sa) j<br />

) , the probability of an event (p j<br />

), the length of the endangered section (g j<br />

), the speed<br />

of the individual (v i<br />

), and the probability of rear-end collision accident p(reca). Furthermore,<br />

in the case of a risk analysis on a network, two scenarios are defined, namely the direct hit<br />

(DH) and the ride-into-accident (RA) (Bründl 2009). Because the focus is on the aspects of<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 639


the individual driver on the network, the influence of other decision-makers, who are<br />

causing closures or early-warning etc., will be ignored. Based on this aspect, the two<br />

probabilities are calculated per endangered section g j<br />

and per year (Formula 1).<br />

Formula 1: Calculation of the probability of direct hit and ride-into-accident out of Bründl (2009).<br />

All these parameters are also integrated into the adapted calculation for the dynamic<br />

individualised approach. In order to take the dynamic aspect better into consideration within<br />

the constructed calculation model, the probability of the ride-into-accident (RA) is completed<br />

with two elements. First, the spatial appearance probability of the process (p(sa) j<br />

) is integrated<br />

into the formula. Second, the probability of rear-end collision accident p(reca) is calculated<br />

depending on the speed of the individual (vi) deduced from the physical relation between the<br />

distance of braking deceleration and the speed, and by following the recommended values in<br />

ASTRA (2012) (Fig. 2). The blue function represents the physical connection of the braking<br />

distance and the speed of a car with a braking deceleration of 8 m/s 2 .<br />

Fig. 2: Derivation of the connection between the speed of the individual (v i<br />

) and the probability of rear-end collision accident p(reca).<br />

In addition, the assumption was taken; that a probability in the class “intermediate” of the<br />

classification after ASTRA (2012) nearly corresponds to a speed between 40 km/h and 60<br />

km/h. Based on these considerations, the relation between speed and the probability of<br />

rear-end collision accident is deduced.<br />

640 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Subsequently, based on these formulas for the dynamic calculation, a norm probability for<br />

each scenario for one meter per hour is formed (Formula 2). The general determination is<br />

that for this unit the static and dynamic hit probability is identical.<br />

Formula 2: The deduced norm probabilities of the two scenarios direct hit and ride-into-accident.<br />

Afterwards the hit probability is calculated for each meter along the simulated path from A to<br />

B with the integration of the converse probability (the odds that the individual has travelled<br />

the path before without being hit) (Formula 3).<br />

Formula 3: The calculation of the hit probability of the dynamic approach.<br />

The reason for integrating the converse probability into the calculation is to consider the<br />

aspect that a specific individual moving on the section cannot exceed a hit probability above<br />

1. Thereby the variable X j<br />

represents the amount of the different natural hazard processes (z),<br />

which endangered the specific metre, and the variable l j<br />

is the length of the part in an<br />

endangered section with the same combination of natural hazard processes.<br />

2) Network data model system<br />

The main aim of the constructed network data model is the possibility to simulate different<br />

scenarios. In this context, the main requirement is that the data model is adaptable to any<br />

combinations of the above-mentioned input parameters and usable for any section in reality.<br />

The simulation model is built in Python, a programming language for geoprocessing (Python<br />

2015). Basically, the model calculates the hit probability for each metre by passing the path<br />

between A and B. Thereby, the smallest distance unit in the simulation model is one metre.<br />

First of all, the real section from A to B is imported in the calculation system. During this<br />

process a list with the endangered sections and their specific parameters is created. Afterwards,<br />

a simulation path as a sorted list of metres from A to B is constructed. Thereby each<br />

metre has the information of which processes endangered it. Finally the hit probability of the<br />

complete path is simulated through.<br />

The specific baseline for this study is represented by the section between Interlaken and<br />

Brienz in Switzerland. This course has a length of 18 kilometres and, overall, is endangered<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 641


y 75 natural hazard processes. Table 1 shows an overview of the situation of exposure by<br />

natural hazards.<br />

Table 1: Overview of the situation of exposure by natural hazards for the simulation baseline between Interlaken and Brienz (CH).<br />

Thereby the endangered sections have been deduced from the natural hazard information<br />

maps of the canton of Berne (AGI 2015). The verification and further description and<br />

assessment of these sections are not subject of this study.<br />

3) Analysis of the results and their sensitivity to input parameters<br />

Based on the created simulation model, the results have been compared with the static<br />

approach and the influence of the direction of travel has been quantified. Furthermore, the<br />

sensitivity of the results dependent on the different parameters has been tested. For this<br />

purpose, a simple testing workflow has been defined. In a first series of simulations, some of<br />

the parameters that are dependent on the natural hazard have been varied, while, in a second<br />

series, the same was done with those parameters that are dependent on the individual. As a<br />

result, the dependency and the impact of the input parameters on the results have been<br />

evaluated.<br />

RESULTS<br />

For the initial situation S 0<br />

to compare the two approaches and testing the sensitivity of results,<br />

the parameters are defined as mentioned in Table 2.<br />

Table 2: Parameters setting of the initial situation S0 (adapted from Bründl (2009)).<br />

For the spatial appearance probability of the process, the standard values recommended in<br />

Bründl (2009) are applied. The probability of an event and the speed of the individual are<br />

fixed. Furthermore, the individual is passing the course of Interlaken to Brienz twice a day<br />

(once in each direction) and every day per year (one year = 365 days). That means that the<br />

simulation is running over a period of one year.<br />

642 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Fig. 3: The growth of hit probability over one year for the static and dynamic perspectives.<br />

1) Comparison of the two approaches<br />

If we compare the results of the two approaches for one year (Fig. 3), it appears that the<br />

longer the simulation is running the range of the difference increase.<br />

The hit probability of the static approach shows a continuous growth, which means the rate<br />

of increase is constant and could theoretically exceed the value 1. In contrast, applying the<br />

dynamic approach, the rate of increase of hit probability decreases and, over time, it<br />

approximates the value 1. This behaviour is explained by the increasing converse probability<br />

factor, which is fed into the calculation of the dynamic approach and prevents the value from<br />

exceeding the value 1. If we compare the hit probabilities for the two approaches for one day<br />

and for one year (Table 3), the results indicate that the difference for one day is insignificant.<br />

However, by simulating over one year the difference is about 17 percent.<br />

Table 3: Comparison of the results of hit probability for the two approaches for the periods of one day and one year<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 643


Correspondingly, the value of the norm probability plays an important role: The smaller the<br />

value of the norm probability, the smaller the difference will be after one year. This implies<br />

that the converse probability factor is growing slower. Furthermore, this connection is also<br />

reflected by the two different scenarios “direct hit” and “ride-into-accident”, whose values of<br />

hit probability per day differ by a factor of about 720.<br />

2) Influence of the direction of travel<br />

Figure 4 schematically visualise the results of the analysis regarding the influence of the<br />

direction of travel. Thereby the parameter V x<br />

represents the incidental costs if something<br />

happens (red cross). The coloured boxes stand for two different hazardous sections with a<br />

probability that something happens (p x<br />

). In the case, that we have no valuation of the event<br />

(V x<br />

= 1), only the probabilities are relevant. In this situation the results for driving from A to B<br />

or from B to A will be the same. Also in the two special cases if the valuation or the probability<br />

that something happens for the different sections are the same, the driving direction has no<br />

influence (as mentioned in the calculation in Fig. 4).Yet, if the various hazardous sections are<br />

evaluated differently (for example in the calculation of risks), then the different values will<br />

emerge for the two directions of travel.<br />

Fig. 4: Scheme of the influence of the driving direction for the results.<br />

3) Sensitivity<br />

Following the results for the two parameters, the probability of an event (p j<br />

) and the speed of<br />

the individual (v i<br />

) are presented. The speed is varied between 30 and 100 km/h. Figure 5 A<br />

shows the plotted results from a simulation period over one year. The lower the speed, the<br />

flatter is the graph of the result. The higher the speed, the more the curvature of the graph<br />

increases.<br />

644 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The parameter probability of an event (p j<br />

) is varied with the common values in Switzerland<br />

between one event per year and one event per 300 years. Figure 5 B, presents the plotted<br />

results about a simulation period over one year. The more probable the event is, the steeper<br />

the graph of hit probability is growing before it is flattening by reaching the value 1. The rarer<br />

an event is, the flatter the hit probability is growing. Clearly apparent is that the hit probability<br />

of one individual cannot exceed the value of 1. In contrast, calculating the static individual<br />

hit probability for the different values of p j<br />

, the results may exceed 1.<br />

Fig. 5: A: The growth of hit probability over one year for different individual speed values. B: The growth of hit probability over one year<br />

for different event probabilities. Blue value: initial situation S 0<br />

.<br />

CONCLUSIONS<br />

Generally, the hit probability for an individual with the dynamic approach is limited to the<br />

value of 1. A value greater than 1, does not make sense for a probability. This means that the<br />

dynamic approach generates more realistic results for an individual person. The benefit of this<br />

approach is that it allows making a statement for the hit probability for a single specific<br />

commuter and not only for a group of individuals moving on the section.<br />

The larger the norm probability and the longer the simulation period, the differences increase<br />

between the static and dynamic approaches. At the level of probabilities, the driving direction<br />

has no influence. However in situations, where a valuation of the different probabilities is<br />

condacted, different values result for both directions of travel.<br />

This study proposes a change to a more dynamic perspective in risk analysis, starting with the<br />

hit probability on networks. The results according to the dynamic individualised perspective<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 645


will also stimulate a new dimension for the discussion of risk management. Furthermore, the<br />

developed method features applications for further routing services and other mobile devices,<br />

and could additionally be applied to questions concerning the insurance sector. Finally, the<br />

benefit for road operators is the possibility to make more precise statements for single<br />

commuter with different usage behaviours on their roads. This paper presents an overview<br />

and some results from an ongoing study. More information and details were published in<br />

early <strong>2016</strong> (Schönthal, <strong>2016</strong>).<br />

REFERENCES<br />

- AGI (2015): GK5, Naturgefahrenkarte des Kantons Bern 1:5‘000. Amt für Geoinformation<br />

(AGI) des Kantons Bern, Bern.<br />

- ASTRA (Ed.) (2012): Naturgefahren auf den Nationalstrassen: Risikokonzept. Methodik für<br />

eine risikobasierte Beurteilung, Prävention und Bewältigung von gravitativen Naturgefahren<br />

auf Nationalstrassen. Ausgabe 2012 V2.10. Bundesamt für Strassen ASTRA, Bern.<br />

- Bründl M., Bartelt P., Schweizer J., Keiler M., Glade T. (2010): Snow avalanche risk analysis<br />

- Review and future challenges. In: Alcántara-Ayala I., Goudie A. (eds.): Geomorphological<br />

hazards and disaster prevention. Cambridge University Press: 49-61.<br />

- Bründl M. (Ed.) (2009): Risikokonzept für Naturgefahren - Leitfaden. Nationale Plattform<br />

für Naturgefahren PLANAT, Bern.<br />

- Fuchs S., Keiler M., Sokratov S., Shnyparkov A. (2013): Spatiotemporal dynamics: the need<br />

for an innovative approach in mountain hazard risk management. Natural Hazards 64 (3):<br />

2083-2105.<br />

- Python (2015): Welcome to Python.org. www.python.org. last accessed 23. November 2015<br />

- Schönthal E. (<strong>2016</strong>): Naturgefahrenbedingte Risiken: ein individualisierter dynamischer<br />

Berechnungsansatz der Trefferwahrscheinlichkeit auf Netzwerken. Masterarbeit UNIGIS,<br />

Universität Salzburg.<br />

646 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Flood Risk Map for the Canton of Zurich<br />

Hochwasser Risikokarte für den Kanton Zürich<br />

Christian Schuler 1 ; Thomas Egli²; Mirco Heidemann³; Manuela Häni 4<br />

ABSTRACT<br />

With the flood risk map, the Office of Waste, Water, Energy and Air (WWEA) and the GVZ<br />

(Buildings Insurance of the Canton of Zurich) present a tool which enables the identification<br />

and prioritisation of areas for risk-reducing measures. The risk map closes the gap between<br />

hazard mapping and the action plan. With increasing risks and ever tighter budgets, it offers<br />

a fundamental basis for all players working in the field of natural hazards. The tool combines<br />

various risk types and, for the first time, provides an overview of the effective flood risks in<br />

the canton of Zurich.<br />

ZUSAMMENFASSUNG<br />

Mit der Risikokarte Hochwasser legen das Amt für Abfall, Wasser, Energie und Luft AWEL<br />

und die GVZ Gebäudeversicherung Kanton Zürich ein Instrument vor, mit dem sich der<br />

Handlungsbedarf zur Reduktion von Risiken erkennen und priorisieren lässt. Die Risikokarte<br />

schliesst die Lücke zwischen der Gefahrenkartierung und der Planung möglichst effektiver<br />

Schutzmassnahmen – angesichts steigender Risiken und immer knapperer Budgets eine<br />

elementare Grundlage für alle Akteure im Naturgefahrenbereich. Das Instrument verknüpft<br />

verschiedene Risiko-Arten und verschafft erstmals den Überblick über die Hochwasser-<br />

Risiken im Kanton Zürich.<br />

KEYWORDS<br />

risk analysis; flood risk; Risk Map<br />

AUSGANGSLAGE<br />

Der Kanton Zürich hat ab 1998 die gemeindeweise Gefahrenkartierung in Angriff genommen,<br />

ab 2006 nach einem erweiterten Konzept. Die Gefahrenkarten sind mehr und mehr als<br />

wichtige Arbeitsgrundlage für Kantone und Gemeinden etabliert. Sie zeigen auf, wo eine<br />

Gefährdung besteht und wo mit welcher Wahrscheinlichkeit und welcher Stärke ein<br />

Hochwasser oder eine Massenbewegung (Hangmure, Rutschung, Steinschlag etc.) auftreten<br />

kann.<br />

Unmittelbar nach Abschluss der Gefahrenkartierung folgt die Umsetzung durch die Gemeinde.<br />

Einer der ersten Umsetzungsschritte ist die Erstellung einer Maßnahmenplanung. Ist das<br />

1 Office of Waste, Water, Energy and Air (WWEA), Zurich, SWITZERLAND, christian.schuler@bd.zh.ch<br />

2 Egli Engineering AG, St. Gallen, SWITZERLAND<br />

3 GVZ Gebäudeversicherung Kanton Zürich, Zürich, SWITZERLAND<br />

4 AWEL Amt für Abfall, Wasser, Energie und Luft, Zürich, SWITZERLAND<br />

IP_<strong>2016</strong>_FP068<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 647


Risiko für eine Gemeinde nicht tragbar, müssen Maßnahmen getroffen werden. Die Gefahrenkarten<br />

liefern keinen Hinweis, wo mit welchen Schäden zu rechnen ist. Daher werden für<br />

die Maßnahmenplanung und die damit verbundene Priorisierung der Maßnahmen als<br />

ergänzende Beurteilungsgrundlage Risikoanalysen benötigt.<br />

Bislang fehlte eine systematische Grundlage für die Beurteilung des Handlungsbedarfs für den<br />

Hochwasserschutz bei den zuständigen Behörden (Kanton für kantonale und Gemeinden für<br />

kommunale öffentliche Gewässer).<br />

METHODIK<br />

Für die Erarbeitung einer umfassenden Risikoübersicht haben das AWEL und die GVZ<br />

zusammen mit Experten aus verschiedenen Fachbereichen georeferenzierte Parameter resp.<br />

Themen nach ihrer vermuteten Auswirkung im Schadenfall eingeordnet. Auf diese Weise<br />

entstand eine quantitative nicht monetäre Risikoanalyse für den Kanton Zürich, die konkrete<br />

Hinweise für die Priorisierung und die Maßnahmenplanung liefert. Der Risikoanalyse zu<br />

Grunde gelegt sind die erarbeiteten Gefahren- und Intensitätskarten für die Hochwassergefährdung<br />

im Kanton Zürich.<br />

Fünf übergeordnete Risiko-Arten wurden betrachtet: Versorgungsrisiko, Personenrisiko,<br />

Kulturgutrisiko, Umweltrisiko und Sachrisiko. Untergeordnet wurden 56 Themenbereiche<br />

(Schutzgüter) erfasst und bewertet. Dazu gehören Denkmalschutz, Energie, Verkehr,<br />

Versorgung (Spitäler, Werkhöfe usw.), Kommunikationsinfrastruktur, Bevölkerungsdichte,<br />

Fruchtfolgeflächen, Schulhäuser, Gebäudeversicherungswert und weitere. Berücksichtigt<br />

wurden Themen, für welche georeferenzierte Daten vorliegen. 14 Themen konnten aufgrund<br />

ungenügender Datenqualität nicht berücksichtigt werden.<br />

Um die Vergleichbarkeit der verschiedenen Risiko-Arten zu gewährleisten, wurden die<br />

Themenbereiche nach ihrer Bedeutung klassiert. Damit wird das Risiko nicht direkt in<br />

Franken ausgedrückt. Dieser Ansatz ermöglicht es, alle einbezogenen Risiken miteinander zu<br />

verknüpfen. Das Berechnungsmodell wurde modulartig aufgebaut. Es kann flexibel erweitert<br />

und angepasst werden.<br />

Die Risikokarte zeigt als Resultat pro Hektar, wie groß das Hochwasserrisiko über alle<br />

einbezogenen Themen ist: groß, mittel, klein oder vernachlässigbar. Wo viele Rasterzellen mit<br />

mittlerem und großem Risiko beieinander sind, liegt ein so genannter Hotspot vor. Hier<br />

besteht Handlungsbedarf.<br />

GEFAHRENGRUNDLAGEN<br />

Die Gefährdung durch Hochwasser wurde anhand der Daten der Gefahrenkartierung im Kanton<br />

Zürich (Intensitätskarten HQ 30<br />

, HQ 100<br />

, HQ 300<br />

) sowie der Flächen der Restgefährdung<br />

(EHQ) gemäß Gefahrenkartierung, Datenstand 31. Juli 2015 ermittelt.<br />

648 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Risiko-Arten<br />

Den Risikoarten untergeordnet sind folgende Parameter (Auszug):<br />

Tabelle 1: Zuordnung einiger Parameter zu den übergeordneten Risiko-Arten.<br />

Risiko-Art<br />

Versorgungsrisiko<br />

Personenrisiko<br />

Kulturgutrisiko<br />

Umweltrisiko<br />

Sachrisiko<br />

Parameter<br />

Leitungen und Netze (Strom, Gas, Kommunikation etc.)<br />

Wasserfassungen, Gewässerschutzbereiche<br />

Infrastruktur der Feuerwehr, Polizei, Zivilschutz<br />

Spitäler, Gefängnisse<br />

Straßen, Bahnen, Flughafen<br />

Sendeanlagen<br />

Schulgebäude, Universitäten<br />

Campingplätze, Familiengärten<br />

Sportanlagen, Freizeitanlagen<br />

Einkaufszentren, Multifunktionskomplexe<br />

Beschäftigte und Bevölkerungsdichte<br />

Denkmalschutz<br />

Chemie- und biologische Risiken<br />

Tankanlagen<br />

Gebäudewerte<br />

Fruchtfolgeflächen<br />

Für eine synoptische Risikokarte müssen die verschiedenen georeferenzierten Daten<br />

vergleichbar gemacht werden. Die Einordnung der Parameter erfolgte auf einer linearen,<br />

10-stufigen Skala, die je nach Thema eine unterschiedliche Bedeutung hat. Die zugeordnete<br />

Klassierung ersetzt in der Risikoberechnung den monetären Wert des Schutzgutes.<br />

Verletzlichkeit<br />

Nicht alle Themen weisen bezüglich Hochwasser die gleiche Verletzlichkeit auf. Während zum<br />

Beispiel bei einer schwachen Intensität Gasleitungen nicht beeinträchtigt werden, ist beim<br />

Verkehr bereits mit erheblichen Versorgungsengpässen zu rechnen. Den Themen wurden je<br />

nach Hochwasser-Intensitätsstufe (gering, mittel, stark) Verletzlichkeiten mit einem Wert von<br />

0 – 1 zugeordnet. Dabei bedeutet 1, dass Hochwasser das Thema komplett beeinträchtigt und<br />

0, dass für dieses Thema Hochwasser keine Wirkung hat. Wo keine Information zur Hochwasserintensität<br />

vorhanden war (EHQ), wurde eine pauschale Verletzlichkeit gewählt, welche<br />

normalerweise derjenigen der mittleren Intensität entspricht. Wo vorhanden, wurden die<br />

Werte für die Verletzlichkeit aus dem Risikotool des Bundes "EconoMe" verwendet (Quelle:<br />

BAFU 2013: EconoMe 1.0 Objektparameter, Stand 1.10.2013)<br />

Schadengrenze<br />

Durch die Einteilung in die Wiederkehrperioden 30, 100 und 300 Jahre entstehen große<br />

Sprünge. Ist bekannt, dass ein Fluss bereits bei einem 15-jährlichen Ereignis über seine Ufer<br />

tritt, erscheint diese Überflutungsfläche trotzdem erst in der Intensitätskarte der Wiederkehrperiode<br />

‚30 Jahre‘. Mittels einer manuell definierten Schadengrenze wird präzisiert, wann der<br />

erste Schaden auftritt, also beispielsweise bei 15 Jahren. Somit können für einzelne geografi-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 649


sche Gebiete unterschiedliche Schadengrenzen definiert werden. Die einheitlichen Schadengrenzen<br />

wurden wie folgt definiert:<br />

Tabelle 2: Definition der einheitlichen Schadengrenzen.<br />

Wiederkehrperiode Schadengrenze<br />

30 Jahre 15 Jahre<br />

100 Jahre 30 Jahre<br />

300 Jahre 100 Jahre<br />

EHQ (500 Jahre) 300 Jahre<br />

Damit wird gegenüber dem Risikokonzept der PLANAT (Nationale Plattform Naturgefahren<br />

der Schweiz) berücksichtigt, dass Schäden ab einer sogenannten Schadengrenze bis zum<br />

ersten in der Intensitätskarte dargestellten Ereignis ansteigen.<br />

Abbildung 1: Schadenkurve (blau) als Funktion der Schadensumme und der Wiederkehrperiode sowie Definition der unteren<br />

Schadengrenze.<br />

Die blaue Kurve ist die angenommene natürliche Schadenkurve. Das Risiko entspricht dem<br />

Integral unter der blauen Kurve. In der Berechnung wird diese Fläche mit der Treppenfunktion<br />

angenähert (grüne Balken). Jede Treppenstufenfläche entspricht dabei einem Risikobeitrag<br />

und berechnet sich aus dem gemittelten Schaden und der Differenz der Überschreitungswahrscheinlichkeiten.<br />

Mobiler Hochwasserschutz<br />

Es gibt Gebiete mit ortsfesten, mobilen Hochwasserschutzmaßnahmen (z.B. Dammerhöhungen<br />

mit Dammbalken). Gemäß Bundesempfehlung werden mobile Schutzmaßnahmen in der<br />

Gefahrenkartierung nicht berücksichtigt. Es macht aber Sinn, diese Schutzmaßnahmen bei<br />

einer Risikoanalyse zu berücksichtigen. Ähnlich wie bei der Schadengrenze wird der<br />

Einflussbereich dieser Schutzmaßnahmen geografisch definiert. Dazu wird die Wahrscheinlichkeit<br />

pro Wiederkehrperiode festgehalten, bei welcher das System korrekt funktioniert. Bei<br />

650 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Faktor 0 resultiert dasselbe Risiko, wie wenn keine Maßnahme eingesetzt würde, bei Faktor 1<br />

wird kein Risiko mehr ausgegeben.<br />

PROZESSING<br />

Die gesamte Datenverarbeitung wurde in ArcGIS 10.2 for Desktop Basic durchgeführt. Für<br />

sämtliche Prozessierungsschritte wurden im ModelBuilder Modelle erstellt, damit die<br />

Arbeitsschritte einfach reproduzierbar sind. Für einzelne Verarbeitungsschritte ist die<br />

Erweiterung Spatial Analyst notwendig. Ergänzend wurden, insbesondere für die Risikoberechnung,<br />

Scripte in Python erstellt. Für die Erstellung und das Debugging wurde PyScripter,<br />

Version 2.7 verwendet. Die Aufbereitung von Linien- und Flächengeometrien in Punkteobjekte<br />

wurde mittels XTools Pro, Version 10.0 durchgeführt.<br />

Aufbereiten der Gefahrengrundlagen<br />

Dieser Prozessschritt muss nur einmal für alle Themen durchlaufen werden. Hierbei werden<br />

die Daten der Intensitätskarten mit der pro Jährlichkeit unteren Schadengrenze ergänzt.<br />

Damit wird berücksichtigt, dass ein Prozess häufiger auftreten kann als die entsprechende<br />

Intensitätskarte angibt (Beispiel: 150 anstatt 300 Jahre). Weiter kann der Einfluss mobiler<br />

Hochwasserschutzmaßnahmen einbezogen werden (siehe Formel 1).<br />

Umwandlung der Geodaten in Hektarraster<br />

Ziel ist es, alle Daten in Punktinformationen zu überführen. Punktdaten (z.B. Sendemasten)<br />

können direkt berechnet werden. Linienobjekte (z.B. Versorgungsleistungen) werden in<br />

Segmente unterteilt, die durch einen Schwerpunkt repräsentiert werden. Flächendaten (z.B.<br />

Flughafen) werden in Hektarflächen zerschnitten, die ebenfalls mit ihrem Schwerpunkt in die<br />

Berechnung einfließen können.<br />

Risikoberechnung<br />

Alle Parameter werden mit den aufbereiteten Grundlagendaten verknüpft und erhalten ihre<br />

Attribute wie Gefährdung, Auftretenswahrscheinlichkeit undSchadengrenze Danach werden<br />

die Verletzlichkeiten zugeordnet. Diese Schritte werden einzeln pro Thema und Wiederkehrperiode<br />

durchlaufen. Die Berechnung des Gesamtrisikos ist die Summe der pro Hektarzelle<br />

berechneten Einzelrisiken.<br />

Algorithmus<br />

Ein Risiko berechnet sich aus einem Schaden und der Wahrscheinlichkeit, dass dieser<br />

Schaden eintrifft. Die Wahrscheinlichkeiten eines (Hochwasser-) Ereignisses ist der Kehrwert<br />

der Jährlichkeit und bezeichnet, wie häufig im statistischen Mittel ein Ereignis auftritt. Das<br />

gesamt Risiko setzt sich aus den Risikobeiträgen der einzelnen Ereignissen zusammen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 651


Berechnungsansatz:<br />

Formel 1: Ansatz für die Berechnung des Risikos.<br />

wobei:<br />

SE<br />

W<br />

Aw ij<br />

i<br />

j<br />

p i<br />

S ij<br />

R ij<br />

Verletzlichkeit<br />

Wert (Klassierung)<br />

Faktor zur Anpassung der Wahrscheinlichkeit<br />

Wiederkehrperiode<br />

Objekt<br />

Überschreitungswahrscheinlichkeit (Häufigkeit)<br />

Schaden für Objekt j bei Wiederkehrperiode i<br />

Risiko<br />

Aufbereitung und Darstellung<br />

Die Datenaufbereitung erfolgt für jede Hektarzelle mit dem Gesamtrisiko. Je nach Höhe des<br />

Wertes wird die Hektarzelle einer Farbe zugeordnet (Ziel war es, dass aus der Risikokarte<br />

Hochwasser für den gesamten Kanton 10 - 20 Hotspots herausstechen. Daraus folgt, dass die<br />

obersten 15 % der Hektarflächen dunkelrot sind).<br />

Tabelle 3: Festgelegte Definition der Risikoklassen (klein, mittel, groß).<br />

Wert / Quantil Aussage Farbe<br />

Zellen ohne Nach aktuellem Kenntnisstand keine weiß<br />

berechnetes Risiko Gefährdung vorhanden oder keine Werte<br />

analysiert. Kein oder vernachlässigbares<br />

Risiko.<br />

60 % - 85 % Großes Risiko vorhanden dunkelrot<br />

ERGEBNISSE<br />

Die „Risikokarte Hochwasser Kanton Zürich“ verschafft einen Überblick des Hochwasserrisikos<br />

auf kantonaler Ebene. Wo sich von Hochwasser gefährdete Gebiete mit einem untersuchten<br />

Schutzgut überschneiden, wird die Rasterzelle in hellrot, rot oder dunkelrot dargestellt.<br />

Erkennbar werden neben dem Schadenpotenzial an Sachwerten, wie viele Menschen<br />

betroffen sind, ob wichtige Verkehrsverbindungen beeinträchtigt sind, ob und in welchem<br />

652 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Ausmaß mit Versorgungsunterbrechungen zu rechnen ist oder inwiefern wichtige Einrichtungen<br />

der öffentlichen Infrastruktur geschädigt werden könnten. Damit zeigt die Risikokarte<br />

nebst monetären Risiken auch schwer quantifizierbare Risiken, auch für die Umwelt und<br />

Kulturgüter.<br />

Die Berechnungen zur Risikoanalyse sind in einem Modell für ArcGIS von ESRI verfügbar.<br />

Ausgegeben werden berechnete Risiko-Werte zwischen 0 und 1.5. Die Resultate können als<br />

Datentabelle (Ranking von Themen in den Gemeinden) oder als Karte (strategisches<br />

Hilfsmittel) genutzt werden.<br />

Bis zu einem Wert von 0.00081742 (entspricht 60 % der Anzahl Rasterzellen) werden die<br />

Rasterzellen hellrot dargestellt.<br />

Tabelle 4: Abgrenzung der Risikoklassen.<br />

Wert Farbe Aussage<br />

0 weiß vernachlässigbares oder kein Risiko<br />

0 - 0.0081742 hellrot geringes Risiko<br />

0.0081742 - 0.00708 rot mittleres Risiko<br />

0.00708 - 1.5 dunkelrot großes Risiko<br />

Die Risikokarte zeigt, dass in einem Großteil der gefährdeten Gebiete gemäß Gefahrenkarte<br />

auch ein Schadenpotenzial vorhanden ist und somit ein Risiko resultiert. Die Ausprägung<br />

unterscheidet sich jedoch an vielen Stellen von der Gefahrenkarte.<br />

Trotz geringer Auflösung können die Gemeinden von der Risikokarte profitieren. Die<br />

Hotspots bilden die Basis um Prioritäten zu setzen und nach einer genaueren Betrachtung<br />

resp. detaillierteren Analyse Schutzmaßnahmen zu planen.<br />

Für die Maßnahmenplanung ist es notwendig sich ein genaues Bild der Situation zu machen<br />

und folgende Fragen zu klären: Welche Risiken bestehen in diesem Gebiet? Welches sind die<br />

Ursachen? Erst die detaillierte Analyse macht deutlich, wo tatsächlich Bedarf für einen<br />

besseren Schutz besteht.<br />

Eine wichtige Erkenntnis der Risikokarte ist, dass die Höhe des Risikos vor allem von der<br />

Nutzung und weniger von der Gefahr bestimmt wird. Hohe Risiken liegen nicht nur in den<br />

Bereichen, die auf der Gefahrenkarte mit einer mittleren oder hohen Gefahrenstufe ausgewiesen<br />

werden. Häufig treten hohe Risiken in Gebieten geringer Gefährdung oder sogar in<br />

Flächen der Restgefährdung auf.<br />

Diskussion<br />

Mit der vorliegenden Analyse ist es gelungen, für den Prozess Hochwasser eine Risikoübersicht<br />

über den ganzen Kanton Zürich zu erstellen. Sie steht der Allgemeinheit als Layer im<br />

Kantonalen Web-GIS und als Webdienst (wfs und wms) zur Verfügung.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 653


Abbildung 2: Der Hauptbahnhof der Stadt Zürich (grüner Punkt) ist ein bedeutender Verkehrsknotenpunkt. Auf der Gefahrenkarte<br />

(Abbildung links) weist er eine geringe Gefährdung auf (gelbe Flächen). Gemäß Risikokarte (Abbildung rechts) besteht hingegen eine<br />

Häufung großer Risiken (Quellen: www.maps.zh.ch/naturgefahren; www.maps.zh.ch/risikokarte).<br />

Die Risikokarte Hochwasser schließt für den Kanton Zürich die Lücke zwischen der Gefahrenkarte<br />

und der Maßnahmenplanung und verschafft eine systematische Übersicht über die<br />

Hotspots.<br />

Die Höhe des Risikos in jeder Rasterzelle ist die Summe von 42 berechneten Einzelrisiken<br />

(siehe Themen). Werden die Grenzen der qualitativen Einteilung in der Risikokarte geändert,<br />

kann das Gesamtbild stark beeinflusst werden.<br />

SCHLUSSFOLGERUNGEN<br />

Die Risikokarte zeigt mit den Hotspots auf, wo große Risiken resultieren und somit besonders<br />

hoher Handlungsbedarf für den Hochwasserschutz besteht. Eine konkrete Kosten-Nutzen-Analyse<br />

kann mit den Daten der Risikoanalyse jedoch nicht durchgeführt werden, weil<br />

die Resultate nicht in CHF/Jahr sondern in qualitativer Form vorliegen.<br />

Verantwortungsträger haben konkret folgenden Nutzen:<br />

– Visualisierung, wo der größte Handlungsbedarf besteht<br />

– Möglichkeit zur systematischen Priorisierung über die Ortung von Hotspots<br />

– Transparente, reproduzierbare und objektive Kriterien für Entscheidungen<br />

Um genaue Aussagen machen zu können (z.B. auf Gemeindeebene), muss die Analyse auf<br />

lokaler Ebene entsprechend verfeinert werden. Lokale Kenntnisse müssen einfließen und<br />

insbesondere die effektive Verletzlichkeit von einzelnen Objekten mit hohem Wert /<br />

Bedeutung sollte verifiziert werden. Hinzu kommen eventuell lokal wichtige Risiken, welche<br />

in der vorliegenden Analyse nicht berücksichtigt wurden.<br />

654 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 3: Der Hauptbahnhof der Stadt Zürich (grüner Punkt) ist ein bedeutender Verkehrsknotenpunkt. Auf der Gefahrenkarte<br />

(Abbildung links) weist er eine geringe Gefährdung auf (gelbe Flächen). Gemäß Risikokarte (Abbildung rechts) besteht hingegen eine<br />

Häufung großer Risiken (Quellen: www.maps.zh.ch/naturgefahren; www.maps.zh.ch/risikokarte).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 655


HERAUSFORDERUNGEN<br />

Um dem Anspruch einer gesamtheitlichen Risikoanalyse gerecht zu werden, wurden<br />

verschiedene Risiko-Arten in die Berechnung integriert und auf einer einzigen Karte<br />

dargestellt. Da einige Themen nur schwer monetarisierbar sind, wurde zusammen mit den<br />

Fachverantwortlichen eine Klassierung der Themen vorgenommen. Diese Einteilung erfolgte<br />

nach subjektiven Kriterien, die vermutlich schwer reproduzierbar ist.<br />

Bei der Beschaffung und Sichtung der Daten hat sich gezeigt, dass deren Qualität sehr<br />

unterschiedlich ist. 14 interessante Datensätze konnten deswegen nicht berücksichtigt<br />

werden (z.B. Bodenbedeckung und Haltestellen).<br />

Die jetzt vorliegende Risikoübersicht erhebt keinen Anspruch auf Vollständigkeit. Weitere<br />

Themen können in eine spätere Version der Risikoanalyse integriert werden.<br />

Mit jeder neuen Gefahrenkarte kann auch die Risikokarte nachgeführt werden. Andere<br />

Risikoanalysen können mit der Risikokarte Hochwasser Kanton Zürich verglichen werden.<br />

LITERATUR<br />

- Egli Engineering AG (2014). Risikoanalyse Hochwasser Kanton Zürich, Schlussbericht.<br />

«Zürcher UmweltPraxis» ZUP (2014): Risikokarte Hochwasser Kanton Zürich, zur Naturgefahrenprävention.<br />

- PLANAT (2009): Risikokonzept für Naturgefahren, Leitfaden, www.planat.ch<br />

656 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

A probabilistic approach to flood hazard assessment<br />

and risk management in floodplains considering levee<br />

failures<br />

Silvia Simoni, Ph.D. 1 ; Gianluca Vignoli, PhD 2 ; Bruno Mazzorana, PhD 3 ; Claudio Volcan, M.S. 4 ; Francesco Maria Cesari, M.S. 5<br />

ABSTRACT<br />

Levees were originally built to confine rivers to a narrow straight path and to protect the<br />

surrounding territories from floods. Those territories which originally consisted mainly of<br />

rural areas, now have become productive areas. Levees can be a defence measure against<br />

flood as well as a threat when they fail. For this reason a comprehensive flood hazard<br />

assessment in floodplains can not proceed ignoring levee failures.<br />

Failures can occur through several mechanisms; a deterministic approach limits the result<br />

robustness, because the number of variables is high compared to available data. A probabilistic<br />

approach allows for a better handling of uncertainty, providing a robust frame to build<br />

flood scenarios.<br />

A methodology to tackle levee failures in flood hazard assessment is proposed within a<br />

semi-probabilistic framework and applied to a 53km-section of the Adige river in South Tyrol,<br />

Italy. This methodology encompasses a probabilistic levee stability analysis, a deterministic<br />

propagation of the flood and the probabilistic combination of possible scenarios. The results<br />

are a useful tool for hazard assessment and flood risk management.<br />

KEYWORDS<br />

Levee failure; flood hazard; flood mitigation; semi-probabilistic approach<br />

INTRODUCTION<br />

Floods have recently and historically occurred in European floodplains causing damaging and<br />

casualties (Foster, 2000; Barredo, 2009). Furthermore, recently, in the Po plain, in Italy,<br />

levees have failed with serious social and economical consequences (Govi and Turitto, 2000;<br />

Moasero et al 2012; Domeneghetti et al., 2013). Embankments and levees were originally<br />

built to confine rivers to a narrow straight path and to protect the surrounding territories<br />

from floods (Aschbacher et al., 2014). Those lands which originally consisted mainly of rural<br />

areas, now have become productive and industrialized areas, where cities and infrastructures<br />

have been built. From an economical and social perspective it is clear that those areas carry a<br />

1 Mountain-eering srl, Bolzano, ITALY, silvia@mountain-eering.com<br />

2 CISMA srl, Bolzano, ITALY<br />

3 Universidad Austral de Chile - Faculdad de Ciencias - Instituto de Ciencias Ambientales y Evolutivas, CHILE<br />

4 Hydraulic Engineering Autonomous Province of Bozen, ITALY<br />

5 hydro's - ingegneri associati, Bolzano, ITALY<br />

IP_<strong>2016</strong>_FP053<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 657


significant wealth which must be protected. Unfortunately experience shows that levees can<br />

be a defense<br />

measure against flood as well as a threat when they fail (Apel et al., 2009). For this reason a<br />

comprehensive flood hazard assessment in floodplains can not proceed ignoring levee failures.<br />

This involves the development of a methodology able to detect levee weaknesses and accounting<br />

for them. The physical processes to investigate are twofold: geotechnical and hydraulic.<br />

The breach development and formation within the levee body is determined by two factors:<br />

the hydraulic forcing and the geotechnical structure of the levees themselves, in terms of soil<br />

types and characteristics and layering conditions. (Morris et al. 2007; Morris, 2009) The first<br />

can be acquired by field investigations, such as boreholes through which soil samples can be<br />

collected and analyzed. Grain size distribution and hydraulic permeability are important<br />

parameters to assess levee stability. The latter can be investigated using in-situ penetration<br />

tests. Failures can occur through several mechanisms, such as piping, overtopping, erosion,<br />

slide of a portion of the slope, etc (Nagy and Tòth, 2005; Flor et al., 2010). In modeling the<br />

breaching process a challenge is related to understand the mechanisms with which the breach<br />

originates and how this relates to the discharge rate in the floodplain. In nature the breach<br />

failure is not an instant process, however in the modeling process this can be an assumption<br />

when the focus is on its effect on the floodplain. Given the complex reasnobable nature of the<br />

process, a deterministic approach strongly limits the robustness of the results, simply because<br />

the number of variables is too high compared to to the knowledge normally available for<br />

practical purposes (Mazzorana et al., 2009). On the contrary, a probabilistic approach would<br />

allow for a better handling of uncertainty, providing a robust frame for building scenarios.<br />

Here a methodology is proposed to tackle levee failures in flood hazard assessment within a<br />

probabilistic framework; the methodology is then applied to a 53km-long reach of the Adige<br />

river between Terlano, Bolzano and Salorno in South Tyrol. The results proved to be a useful<br />

tool not only for hazard assessment, but also for flood risk management.<br />

METHODOLOGY<br />

In this section we outline the theoretical framework for the proposed methodology. In<br />

general, breaching phenomena may be triggered by several physical processes which are<br />

highly unpredictable; for this reason deterministic approaches fail to describe them appropriately.<br />

This is due to several factors, among which: the difficult assessment of the geotechnical<br />

properties of the embankment and of the subjacent soil layers, the saturation condition of the<br />

embankment, the duration of the flood event and hydrograph’s shape. A probabilistic<br />

approach allows for uncertainty to be accounted for. The goal of the outlined methodology is<br />

the production of a reliable semi-probabilistic flood intensity map in a flood plain protected<br />

by earthen levees, given the hydrologic forcings and the levee characteristics (geometry and<br />

geotechnical properties), to be used as a tool for planning purposes. The semi-probabilistic<br />

flood intensity is given in terms of the maximum possible values of water depth and water<br />

658 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


velocities on the flood plain, obtained taking into account the occurrence probability of the<br />

flood, the occurrence probability of the levee failures and deterministic informations, such as<br />

the digital elevation model, levee geometry etc. The methodology is based on some reasonable<br />

assumptions: 1) breaches are statistically independent of each other; this implies that the<br />

occurrence of a breach will not influence the occurrence probability of breaches in other<br />

places along the river. This hypothesis accounts for the difficulty predicting a priori where the<br />

first breach occurs, in the context of scenarios made up of more breaches. 2) The width of the<br />

breach is assumed to be known. This parameter is estimated from statistical analyses of real<br />

breaches occurred during historical flood events (Nagy, 2006) 3) The breach is assumed to be<br />

instantaneous since for long-term maps (maximum flooding surface) short-time scale breach<br />

dynamics are not relevant (Fujita, 1987). 4)The flood hydrograph is assumed to be deterministically<br />

known in its essential characteristics, i.e. shape and peak which are estimated from<br />

data for a given return period. (Autonome Provinz Bozen, 2008 )<br />

The methodology is applied to the river of interest and to its surrounding floodplain; it<br />

requires several input data, such as the hydrological forcing (i.e. 1-in-K-flood hydrograph),<br />

the digital elevation model of the flood plain, the levee geometry and geotechnical characterization.<br />

Levees can fail as a result of structural damage to levee itself (or to its foundation) and/or to<br />

hydraulic forces. Among all failure mechanisms two are particularly likely to occur in rivers<br />

running in floodplains and confined by earthen levees: overtopping and underseepage.<br />

Failures due to overtopping can occur when the overspilling flow erodes the levee's crest;<br />

PROBABILISTIC + LSD APPROACH<br />

Resistance<br />

(R)<br />

Forcing (F) =<br />

applied force<br />

likely failure<br />

Resistance and applied force [kN]<br />

Figure 1: Probabilistic approach to compute levee failure using the LSD method.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 659


failures due to underseepage can occur when the difference in hydraulic head between the<br />

waterside and the landside of the levee increases; as a consequence water starts to flow<br />

through the permeable foundation materials forming internal channels through erosion<br />

processes. These two mechanisms have been investigated in details and several approaches<br />

have been developed to compute the critical conditions for levees failure. In this work we<br />

chose the Vrouwenvelder (2001a) model to describe the critical overtopping discharge, the<br />

Bligh-Lane (1935) approach to identify the most critical cross sections along the river, in<br />

terms of proneness to underseepage processes, and the more detailed USACE (2000) and<br />

Sellmeijer (2006) (see Figure 3) methods to investigate those sections in details. Since<br />

geotechnical and hydraulic parameters necessary to apply the aforementioned methods are<br />

affected by uncertainty, the methodological setting was modified accordingly.<br />

The methodology requires the computation of fragility curves for the two described mechanisms.<br />

These curves define the breaching probability for a certain cross section, given the<br />

hydraulic forcings. Fragility curves for discrete levee cross sections and for the most likely<br />

failure mechanisms are computed based on a geotechnical model built for the levee body and<br />

its foundations from available data. Fragility curve calculations are based on a resistance<br />

analysis for the earthen levee identifying a critic state beyond which the levee loses its<br />

functionality. According to the limit state design approach (LSD), the critical state is a<br />

function of the resistance force R and the applied load F. These variables (R, F) are treated as<br />

stochastic variables described by probability distribution functions (Gaussian), characterized<br />

by a mean value and by a given variance. According to this approach the critical state, i.e. the<br />

levee failure, is more likely to occur when the curves describing the probability distribution of<br />

the two variables F and R partially overlap (Figure 1). The failure probability P is thus<br />

computed as P(Z


3<br />

h c = 3 √<br />

2.78 · q 2 c<br />

g<br />

equation 2<br />

The meaning of the parameters is the following: c g<br />

(ms) is a coefficient representing the<br />

erosion endurance of grass, P t<br />

is a percentage indicating the ratio overtopping time to flood<br />

duration, t s<br />

(hours) is the flood duration, k is a roughness Strickler-type-factor of the riverside<br />

slope and α (degree) is the riverside slope angle. hc in equation 3 is the critical head corresponding<br />

to the critical overtopping flow q c<br />

. The model is built on a classification of the<br />

levee's mechanical features (e.g. presence and quality of grass coating, root depth, thickness<br />

of the fine material layer) and geometry. Assigning each parameter a probability distribution<br />

function (in terms of mean and variance) instead of a deterministic value and applying the<br />

propagation error theory, a failure probability due to overtopping was calculated for each<br />

section of the levees.<br />

For the underseepage case Z=i c<br />

-i A<br />

, Z[-] is the difference between the critical gradient i c<br />

[-] and<br />

i A<br />

which is the hydraulic forcing gradient evaluated applying the USACE (2000) or Sellmeijer<br />

(2006) formulation. Uncertainties associated to the aforementioned hydraulic variables, i.e.<br />

h c<br />

, h A<br />

, i c<br />

and i A<br />

, originate from the simplifications adopted in the modeling approach, such as:<br />

P3<br />

R3<br />

scenario S1: P(S1)=P 1 *P 2 *P 3 *P Q<br />

1-P3<br />

P2<br />

R2<br />

no R3<br />

scenario S2: P(S2)=P 1 *P 2 *(1-P 3 )*P Q<br />

P3<br />

1-P2<br />

R3<br />

scenario S3: P(S3)=P 1 *(1-P 2 )*P 3 *P Q<br />

P1<br />

no R2<br />

1-P3<br />

R1<br />

no R3<br />

scenario S4: P(S4)=P 1 *(1.P 2 )*(1-P 3 )*P Q<br />

PQ<br />

HQ Tr<br />

1-P1<br />

P3<br />

no R1<br />

P2<br />

R3<br />

scenario S5: P(S5)=(1-P 1 )*P 2 *P 3 *P Q<br />

R2<br />

1-P3<br />

no R3<br />

scenario S6: P(S6)=(1-P 1 )*P 2 *(1-P 3 )*P Q<br />

1-P2<br />

no R2<br />

P3<br />

R3<br />

scenario S7: P(S7)=(1-P 1 )*(1-P 2 )*P 3 *P Q<br />

1-P3<br />

no R3<br />

scenario S8: P(S8)=(1-P 1 )*(1-P 2 )*(1-P 3 )*P Q<br />

Figure 2: Sketch for the calculation of scenarios probability.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 661


estimation of the channel roughness, approximations in the topography, estimation of the<br />

grass root depth, and spatial variability of soil parameters . Uncertainties associated to<br />

dependent variables have been computed through the propagation of independent variable<br />

errors.<br />

For the computed N breaches, M failure scenarios are built by combining the breach<br />

formation in all possible manners (i.e. M = 2N). Given the N possible breaches, the scenario Si<br />

is characterized by the occurrence of Bi breaches and the nonoccurrence of (N-Bi) breaches.<br />

The probability of each scenario is then computed by multiplying the corresponding breach<br />

failure/non-failure probabilities, as shown in figure 2. The non-failure probability is the<br />

complement to 1 of the relative failure probability.<br />

To compute the corresponding flow depth and the velocity components within the floodplain,<br />

for each scenario hydrodynamic simulations carried out. From a practical and operational<br />

standpoint N+1 numerical simulations have to be performed considering the N levee failures<br />

separately, the “+1” simulation refer to the case of no failure.<br />

Since each point of the floodplain can be flooded by water coming from different breaches,<br />

the flood intensity (flow depth and velocity) is computed as the maximum water depth (and<br />

velocity) value among all simulation results which can cause a flood in that point. For<br />

example, if in the s-th scenario (out of M) a point in the floodplain (Point A) is flooded by<br />

water coming from two breaches (B1 and B2 out of N) the resulting flood map in point A is<br />

calculated as the maximum between the water depth values determined by each of the<br />

breach considered singularly (the calculation is repeated twice, first for the water depth and<br />

then for the flow velocities).<br />

h (s)<br />

(i,j) = max[h(b) (i,j) ]<br />

equation 4<br />

where h {s} is the water depth evaluated at point (i,j) of the floodplain, s, refers to the s-th<br />

(i,j)<br />

scenario, h {b} is the water depth at the point (i,j) due to the bth breach, and YsBreaches is<br />

(i,j)<br />

the number of breaches, which characterizes the s-th scenario, The resulting maps displaying<br />

flow depths and water velocities, obtained by taking into account the whole set of possible<br />

scenarios, are computed as a weighted average of the local water depths (and velocity) and<br />

the associated scenario probabilities.<br />

b =1,...Y(s) Breaches<br />

where H{i,j} is the water depth in the (i,j) point of the flood plain and Ps is the sth scenario<br />

probability. The same procedure is used for local velocity computations.<br />

∑ s=M<br />

s=1<br />

H (i,j) =<br />

h(s) (i,j) · T (s)<br />

(i,j) · P (s)<br />

T (s)<br />

equation 5<br />

∑ s=M<br />

s=1 T (s)<br />

(i,j) · P (s)<br />

(i,j) = {<br />

0<br />

if h<br />

(s)<br />

(i,j) =0<br />

1 if h (s)<br />

(i,j) > 0<br />

662 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


A CASE STUDY<br />

The methodology was applied to a 53-km-long reach of the Adige river between Terlano,<br />

Bolzano and Salorno in South Tyrol, Italy. The Adige river was artificially altered in the XIX<br />

century and now it runs almost straight along the Adige valley. Artificial earthen levees have<br />

been built and reinforced several times during the last century; in some parts they are 7m<br />

height. In the seventies along the Adige valley a highway was built partially on embankments<br />

that sometimes run parallel to river levees. At the gauging station of Bronzolo (15 km south<br />

of Bolzano) the watershed area is 6923 km², its elevation ranges from 3905 m a.s.l to 220 m<br />

a.s.l.. The peak discharge ranges from 1400 m³/s (1-in-30-year-flood) to 1832 m³/s (1-in-200-<br />

year-flood). The flood waves typically last for 90 hours. The hydrodynamic model was<br />

calibrated for roughness using historical series of flow data.<br />

The geometry of the Adige river had been previously surveyed and cross sections every 250 m<br />

were available. The topography of the floodplain was accurately described in order to<br />

reproduce topographical elements that can interfere with the flood, such as road and railway<br />

embankments, underpasses, etc. A good deal of data is available for the geotechnical<br />

characterization of the levees since in the last 15 years the Hydraulic Department of the<br />

Province of Bolzano (HDPB) carried out hundreds of boreholes, DPH, SPT tests and in-situ<br />

permeability tests. Furthermore laboratory analyses were carried out to obtain grain size<br />

distributions from several soil samples. The 23-km-long stretch between Terlano and Bolzano<br />

(North reach) is characterized by earthen levees with a maximum height of 3 m, whereas the<br />

30-km-long stretch between Bolzano and Salorno (South reach) is characterized by taller<br />

levees, with a maximum elevation of nearly 7m. Observed levee failure data, collected during<br />

the last two centuries along the Adige river, suggest that in the North reach overtopping is the<br />

major cause of levee failure, on the contrary underseepage processes are predominant along<br />

the South reach.<br />

From the available data a resistance model for both left and right levees was applied to<br />

calculate the critical overtopping flow triggering the erosion of levee crest, q c<br />

, using equation<br />

2 and 3 (Vrouwenvelder 2001a-b). Assigning each parameter a probability distribution<br />

function, in terms of mean and standard deviation) instead of a deterministic value and<br />

applying the propagation error theory, a failure probability due to overtopping was calculated<br />

for each section of the levees. A total of 11 levees segments were identified subjected to<br />

overtopping. Similarly, a geotechnical profile for the levees was built using data from DPH,<br />

SPT, boreholes and grain size distribution curves (Figures 4 and 5) to assign appropriate<br />

parameters to the the Bligh-Lane equation, translated into a probabilistic approach, with the<br />

aim of identifying the reaches more prone to underseepage. To those reaches the models of<br />

Sellmeijer (2006) and USACE (2000) (Figure 3 and 7) were applied, according to the<br />

sequence of subsoil layering. Hydraulic permeability values were derived from Lefranc tests.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 663


USACE (2000)<br />

L x 3<br />

H<br />

A<br />

1<br />

M<br />

B<br />

z<br />

d<br />

k<br />

k f<br />

b<br />

S<br />

L 2<br />

SELLMEIJER<br />

(2006)<br />

Figure 3: Sketch for the application of USACE 2000 and Sellmeijer 2006 models.<br />

Figure 4: Geotechnical profile built on borehole and DPH data provided by HDPB for a longitudinal section along the river (failure SX2).<br />

664 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


●<br />

●<br />

P_rotta per piping<br />

P_piping<br />

●<br />

●● ● ● ●● ● ●<br />

●●●<br />

●● ●<br />

●●<br />

● ●●● ●<br />

● ● ● ● ●●<br />

● ●<br />

● ● ● ● ● ● ●<br />

● ● ● ●●● ● ●<br />

●● ● ●● ● ● ●<br />

●<br />

●<br />

●<br />

● ●<br />

●<br />

Curva di fragilità − sifonamento Q200<br />

● ●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

● ● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

● ● ●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

● ●<br />

● ●<br />

●●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

● ●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●●●●<br />

● ●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

● ● ● ●●<br />

●● ●<br />

●<br />

●<br />

●<br />

● ●●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●●<br />

● ●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●●●<br />

● ●●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●● ●<br />

● ● ●● ● ●<br />

● ●●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Figure 5: Geotechnical profile built on borehole and DPH data provided by HDPB for a cross section within the transect of depicted in<br />

figure 4 (failure SX2).<br />

failure probability [-]<br />

Probabilita di rottura [−]<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

cantilever + road<br />

embankment<br />

● ●<br />

● ●● ●●● ●<br />

● ●<br />

● ●<br />

no reinforcement<br />

●<br />

● ● ● ●<br />

● ●<br />

● ● ●<br />

cantilever<br />

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7 6.0 6.3 6.6 6.9<br />

dislivello di carico idraulico [m]<br />

hydraulic head [m]<br />

TR30 TR100 TR200<br />

DX3 16% DX2 58% DX2 75%<br />

SX1 7% DX3 25% DX3 26%<br />

SX2 15% DX4 75% DX4 80%<br />

DX5 80% DX5 81%<br />

SX1 17% SX1 18%<br />

SX2 45% SX2 46%<br />

<br />

<br />

<br />

<br />

<br />

<br />

Figure 6: Fragility curves for all the cross sections along the left reach of the studied river Adige portion. The three curves indicate<br />

groups of sections where the levees was reinforced with cantilevers, other where a road embankment was also present in addition to the<br />

cantilever and other which were no reinforced. Overview of the weakest points along the Adige river, South of Bolzano. Failure probability<br />

for return period of the flood and for each weak point along the South reach of the Adige river.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 665


x WSE TR30 WSE TR100 WSE TR200 Z pc L D p [%] p [%] p [%]<br />

[km] [m s.l.m.] [m s.l.m.] [m s.l.m.] [m s.l.m.] [m] [m] TR30 TR100 TR200<br />

118.423 219.90 220.67 220.75 214.82 33.4 12.2 7 17 18<br />

118.473 219.85 220.62 220.70 214.71 35.7 12.2 5 12 13<br />

118.519 219.81 220.58 220.66 214.63 35.7 12.2 5 13 14<br />

118.564 219.78 220.55 220.62 214.50 37.2 12.1 4 11 12<br />

118.609 219.74 220.50 220.58 214.65 37.0 12.0 3 9 10<br />

118.655 219.70 220.45 220.52 214.66 36.9 12.0 3 8 9<br />

118.711 219.66 220.41 220.48 214.53 35.2 11.9 5 12 13<br />

118.721 219.61 220.35 220.42 214.52 36.1 11.8 4 10 11<br />

118.731 219.61 220.35 220.41 214.63 36.4 11.8 3 8 9<br />

118.756 219.61 220.35 220.42 214.64 36.3 12.3 3 9 9<br />

118.791 219.61 220.35 220.41 214.45 36.0 12.8 5 12 13<br />

118.837 219.55 220.29 220.36 214.52 35.2 13.3 5 13 14<br />

118.882 219.54 220.27 220.33 214.54 34.1 13.4 6 15 16<br />

.13.: Probabilità Figure 7: di Summary rotta arginale of the parameters in corrispondenza and the probability della of failure rotta computed SX1-Egna. for the Il failure significato SX1 for dei three simboli return period è il seguente: (RP 30, 100, 200 x chilometrica, WSE<br />

forzante<br />

year).<br />

idraulica<br />

x: position<br />

(livello<br />

of the cross<br />

della<br />

section,<br />

superficie<br />

WSE: water<br />

libera<br />

surface<br />

in alveo),<br />

elevation,<br />

Z<br />

Zpc: elevation of the floodplain, L: width of the left levee, D:<br />

pc quota del piano campagna (al piede dell’argine), L larghezza dell’argine,<br />

thickness of the foundation beneath the levee, p: failure probability.<br />

D spessore del terreno di fondazione e p probabilità di rotta.<br />

An example of longitudinal section of the geotechnical model is shown in Figure 4 for a reach<br />

along the left levee in southern part of the study area (named SX2, see Figure 6). An example<br />

of cross section along the same reach is shown in Figure 5. Applying the limit state design and<br />

a probabilistic approach, i.e. considering the limit state variables described by a pdf, fragility<br />

curves where computed for each cross section of the study stretch (Figure 6). In this analysis<br />

reinforcements of the levees were accounted for, such as cantilevers and lateral road<br />

embankment. Figure 7 displays a summary of the parameters and the probability of failure<br />

computed for the reach illustrated in Figure 5 for three return period (1 in 30, 100, 200 year<br />

flood). Figure 6 provides also an overview of the weakest points along the Adige river, South<br />

of Bolzano assigning each probable failure its probability (DX stands for right levee, SX stands<br />

for left levee). For 1-in-30-year flood failures due to underseepage can occur at 3 locations,<br />

for 1-in-100-year flood and 1-in-200-year flood the weak points are 6. The corresponding<br />

scenarios are 8 for 1-in-30-year flood, 64 for 1-in-100 and 1-in-200-year flood.<br />

Flood map calculations have been performed applying the described methodology, considering<br />

the hydrologic forcing for each return period of the flood, the levee failure characteristics<br />

and probability. Each numerical simulation refers to a state characterized by the presence of<br />

only one levee failure at a time (b in equation 4); numerical results were then combined<br />

using equation 4 in order to evaluate flow depth and flow velocity in the floodplain for each<br />

scenario. Finally the 1-in-K-year depth and velocity maps in the floodplain were computed<br />

using equation 5 over the M scenarios identified for the 1-in-K-year-flood. These maps<br />

summarize information related to the combination of M failure scenarios. Deterministic<br />

information comes from flooding patterns, which have been analyzed in details applying a<br />

hydrodynamic model, while probabilistic information comes from the levee failures probability.<br />

The final maps represent a synthetic set of information related to the expected effects on<br />

the flood plain for a given return period of the flood.<br />

666 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


±<br />

Water depth [m]<br />

0.04 - 0.25<br />

0.26 - 0.50<br />

0.51 - 0.75<br />

0.76 - 1.00<br />

1.01 - 1.50<br />

1.51 - 2.00<br />

2.01 - 2.50<br />

2.51 - 3.00<br />

3.01 - 3.50<br />

3.51 - 4.00<br />

4.01 - 4.50<br />

4.51 - 5.00<br />

Figure 8: Semi-probabilistic water depth [m] for the Adige floodplain due to 1-in-200-year flood.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 667


CONCLUSIONS<br />

The evaluation of flood hazard in a urbanized floodplain is a challenge due to both the<br />

complexity of the processes involved and a shortage of detailed data often experienced in<br />

applications. Firstly, the determination of hydrological forcing relies on the availability and on<br />

the completeness of historical series of data; secondly, the evaluation of the resistance of earth<br />

embankments to high flow conditions is difficult when only few data are available to<br />

characterize geomechanical parameters; thirdly, the propagation of flooding waves due to<br />

overtopping and breach formation requires highly detailed hydraulic models. Finally, the<br />

identification of a set of scenarios able to describe a good amount of possible flood configurations<br />

is unfortunately only a simplification of the reality. The semi-probabilistic approach<br />

described in this work attempts to tackle this challenge by taking into account uncertainties<br />

hidden in the aforementioned complexity. It provides a tool to compute the flood hazard in a<br />

floodplain by synthesizing the available data and yielding maps useful for risk management<br />

and urban planning.<br />

Results (water depth and velocity) relative to each return period of the flood, have been<br />

computed accounting for the joined occurrence of the flood and the levee failures. In contrast<br />

to a purely deterministic approach, which links effects to their own cause, these results<br />

provide a more reliable information on the actual hazard of the floodplain due to causes<br />

affected by non negligible uncertainties. The obtained flood intensity maps allow for the<br />

investigation of several levee failure scenarios in a robust manner; this provides a useful tool<br />

for flood hazard mapping and allows for appropriate risk mitigation strategies to be undertaken.<br />

It can also support decision makers and stakeholders to carry out cost benefit analysis.<br />

REFERENCES<br />

- Apel, H., Merz, B., Thieken, A.H., Influence of dike breaches on flood frequency estimation.<br />

Computers & Geosciences, 35, 5, 907-923, 2009.<br />

- Aschbacher, M., Hecher, P., Mazzorana, B. ,Development plan for rivers in South Tyrol. 6th<br />

Errc Conference, Vienna, 2014.<br />

- Autonome Provinz Bozen-Südtirol IHR—informationssystem zu hydrogeologischen Risiken.<br />

Methodischer Endbericht, Bozen, 2008<br />

- Barredo, J.I., Normalised flood losses in Europe: 1970–2006. Nat. Hazards Earth Syst. Sci., 9,<br />

97–104, 2009.<br />

- Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., and Brath, A.: Probabilistic<br />

flood hazard mapping: effects of uncertain boundary conditions, Hydrol. Earth Syst. Sci., 17,<br />

3127-3140, doi:10.5194/hess-17-3127-2013, 2013.<br />

- Faeh R.; Mueller R.; Rousselot P.; Vetsch D.; Volz C.; Vonwiller L.; Veprek R.; Farshi D.,<br />

BASEMENT- Basic Simulation Environment for Computation of Environmental Flow and<br />

Natural Hazard Simulation. Program manuals v 2.3. ETH, Zurich, 2012.<br />

- Fujita, Y., and T. Tamura, Enlargement of breaches in flood levees on alluvial plains. Journal<br />

of Natural Disaster Science, 9(1), pp. 37-60, 1987.<br />

668 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Flor, A., Pinter, N., Remo, J W.F, Evaluating levee failure susceptibility on the Mississippi<br />

River using logistic regression analysis, Engineering Geology, 116, (1–2), 139-148, 2010.<br />

- Foster, M.A., Fell, R., and Spannangle, M., The statistics of embankment dam failures and<br />

accidents. Canadian Geotechnical Journal, 37(5), pp. 1000-1024, doi: 10.1139/cgj-37-5-1000,<br />

2000.<br />

- Govi M., and Turitto O., Casistica storica sui processi d’interazione delle correnti di piena del<br />

Po con arginature e con elementi morfotopografici del territorio adiacente. Istituto Lombardo<br />

Accademia di Scienze e Lettere, 2000.<br />

- Masoero, A., Claps P., Asselman N. E. M,Mosselman E. and Di Baldassarre G, Reconstruction<br />

and analysis of the Po River inundation of 1951 Hydrological Processes, Wiley Online Library<br />

DOI: 10.1002/hyp.9558, 2012.<br />

- Mazzorana, B., Hübl, J., and Fuchs, S.: Improving risk assessment by defining consistent and<br />

reliable system scenarios. Natural Hazards and Earth System Sciences, 9, 145–159, 2009.<br />

- Morris, M., M. Dyer, and P. Smith, Management of flood embankments. A good practice<br />

review, Defra/Environment Agency, R&D Technical Report FD2411/TR1, 2007.<br />

- Morris, M., Breaching processes: a state of the art review, FLOODsite Project Report<br />

T06-06-03, FLOODsite, www.floodsite.net, 2009.<br />

- Lane E. W., Security from under-seepage: Masonery Dams on earth foundation. Trans.<br />

A.S.C.E., 100, 1935.<br />

- Nagy, L., Estimating dike breach length from historical data, Periodica Polytechnica, Serial<br />

Civil Engineering, 90(2), pp. 125-139, 2006.<br />

- Nagy, L., and S. Tòth, Detailed Technical Report on the collation and analysis of dike breach<br />

data with regards to formation process and location factors, Tech. rep., H-EURAqua Ltd.,<br />

Hungary, 2005<br />

- Sellmeijer J., Numerical computation of seepage erosion below dams (piping). InProceedings<br />

of Third International Conference on Scour and Erosion, pp. 596–601, 2006.<br />

USACE, Design and Construction of Levees. US Army Corps of Engineers. Manual No.<br />

1110-2-1913, 2000.<br />

- Vrouwenvelder A. C. W. M., Steenbergen H. M. G. M., Slijkhuis K. A. H. (a). Theoretical<br />

manual of PC-Ring, part A: descriptions of failure models. Tech-report Nr. 98-CON- R1430,<br />

TUDelft, Delft. in Dutch, 2001.<br />

- Vrouwenvelder A. C. W. M.; Steenbergen H. M. G. M.; Slijkhuis K. A. H. (b). Theoretical<br />

manual of PC-Ring, part B: descriptions of failure models. Tech-report Nr. 98-CON- R1431,<br />

TUDelft, Delft. in Dutch, 2001.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 669


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Landslide, flood and snow avalanche risk assessment<br />

for the safety management system of the railway<br />

Trento - Malè - Marilleva<br />

Gherardo Sonzio 1 ; Fulvio Bassetti 1 ; Ezio Facchin 1 ; Ettore Salgemma 1 ; Lucia Simeoni, Ph.D. .2<br />

ABSTRACT<br />

This paper defines the Criticality to identify sites that need further assessment or mitigation<br />

works for the safety of the Trento-Malè - Marilleva railway (Northern Italy). The railway is a<br />

typical example of a mountain railway exposed to natural hazards due to landslides, flooding<br />

and snow avalanches. In 2011 Trentino trasporti S.p.A., that is the quango responsible for the<br />

overall management of the railway, recognized the need of defining a systematic approach in<br />

the planning of the inspection activities, site-specific studies and mitigation works of natural<br />

hazards, and for this purpose has developed a classification method based on the concept of<br />

risk. The method defines five classes of "Criticality" C (none, mild, moderate, high or very<br />

high), to which the whole rail has been categorized. Criticality C is the product of the hazard<br />

H and the "works" O (C = H x O), where the factor O is greater than one in case of obsolete<br />

or even of absent substructures.<br />

KEYWORDS<br />

railway; landslide; flood and snow avalanche; safety management; risk assessment<br />

INTRODUCTION<br />

The railway line Trento - Malè - Marilleva in Trentino (Northern Italy) is 65 km long, 1,0<br />

meter gauge line, connecting the town of Trento to Marilleva (Figure 1). The railway line has<br />

generally a single track and it is equipped with the safety system ATP (Automatic Train<br />

Protection), which automatically stops the trains in case of they exceed the speed limit, or do<br />

not respect a signal. The average rail traffic is of 49 trains/day, the commercial speed is<br />

approximately of 35,0 km/h and the maximum speed is of 90 km/h.<br />

The line is passing within mountainous terrain through the Rotaliana plain, the Non Valley<br />

and Sole Valley. It was opened to the public in 1909, completely reconstructed in its own<br />

place at the end of the 1950s, and extended by 10 km to the current configuration at the<br />

beginning of the present century. It is a typical example of a mountain railway: it has a total<br />

rise of 700 m (from elevation 220 m a.s.l. in Trento to 900 m a.s.l. in Marilleva), a path made<br />

partly along hillsides, hairpin bends, 5783 m of tunnels (of which 2670 m in one single<br />

tunnel), 2580 m of bridges and viaducts, curve radius of 80 m and track gradients up to 50 ‰.<br />

1 Trentino trasporti S.p.a. Trento, ITALY, gherardo.sonzio@ttspa.it<br />

2 University of L’Aquila, ITALY<br />

670 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP065


Since 2009, Trentino trasporti S.p.A. (Tt) is the quango to which the Autonomous Province of<br />

Trento (PAT) has delegated the responsibility for the overall management of the railway<br />

including the operation and maintenance of the railway and its fixed infrastructures. The<br />

environmental context of the railway demands Tt to carry out the monitoring of risk<br />

conditions that can interfere with the line, among its various functions to ensure safe<br />

operation of the railway. Such risk conditions are those typical of an alpine environment, i.e.<br />

the risk of landslide, avalanche and flooding; furthermore, Tt is responsible for the construction<br />

and management of the identified risk mitigation works.<br />

From an operational point of view, Tt uses a group of dedicated employees (about 18 people),<br />

which are currently divided into three teams based locally and each coordinated by the<br />

Technical Head. Every day, each team carries out maintenance and surveillance of the track,<br />

its structures and of the lineside neighbourhood. The constant presence of the workers on the<br />

line, supported by the drivers on trains, allows the immediate identification of potential<br />

hazards. In particular, just before, during or after exceptional events (such as heavy rain,<br />

floods, heavy snowfalls, earthquakes, etc.) the workers are required to intensify the inspec-<br />

Figure 1: Location of the railway line Trento-Malè-Marilleva (Northern Italy).<br />

tions on the line. On some sites identified by Tt as "sensitive" due to greater hazard potential<br />

(either natural or related to the structures), the workers are asked to intervene before the<br />

passage of the first morning train (no night trains are operated on the line). If necessary, they<br />

have to adopt appropriate measures, such as the enforcement of slowdowns or interruption<br />

of train rides and the subsequent implementation of works aimed at risk mitigation, always in<br />

order to ensure the safety of the railway. In relation to the causes and severity of events that<br />

have originated the hazard, the workers are supported by the service personnel of Tt and<br />

consulting technical experts.<br />

In 2011 Tt recognized the need of defining a systematic approach in the planning of the<br />

inspection activities, site-specific studies and mitigation works of natural hazards, and for this<br />

purpose in the biennium 2011-2012, with its internal Technical Service resources, it has<br />

developed a classification method based on the concept of risk. The method defines five<br />

classes of "Criticality" C (none, mild, moderate, high or very high), to which the whole rail<br />

has been categorized. At that time, the Alpine Space project PARAmount (2015) dealing with<br />

risk management strategies for infrastructures was being carried out, and Tt had a few<br />

meetings with some partners, in particular with the Austrian Federal Railways, to exchange<br />

experiences in the management of natural hazards. This exchange would be more effective if<br />

Tt had been involved as an Observer and could participate to more meetings.<br />

Even though quantitative risk assessment (QRA) is increasingly encouraged in the geotechnical<br />

engineering community (see for example Lacasse S., 2013; Maciotta et al., 2015),<br />

qualitative procedures providing risk levels are still adopted with the purpose to identify sites<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 671


ula 1<br />

that need further assessment or mitigation works, and do prioritize the activities (Bidwell<br />

et al, 2010; Winter et al, 2013).<br />

This paper describes the method, how it was implemented by reviewing the data already<br />

available to the company (from previous studies or maps carried out by PAT at large scales<br />

– accordingly the classification by Fell et al., 2008 large scales are intended from 1:5000 to<br />

1:10000) and how in some cases the Criticality values were updated after site-specific inspections<br />

and studies carried out at a detailed scale (1:500 to 1:1000). l r o oloa Formula <br />

1 oo alF 1r<br />

METHODS<br />

The method defines the criticality C as the product of an “hazard factor” H and a "work factor”<br />

O. The hazard factor H derives from the well-known formula to evaluate the total risk<br />

(Varnes D.J., 1984):<br />

Formula 1<br />

R=HEV<br />

Formula 1<br />

where R is the total risk, H the hazard, E the elements at risk and V the vulnerability.<br />

Only natural (geogenic) events were taken into account and specifically they were landslides<br />

(including: rock falls, slides, Deep Seated Gravitational Slope Deformations-DSGSDs), floods<br />

(distinguishing in: debris flows in the stream channels on the slopes of the valley, quick or<br />

slow flooding at the bottom) and snow avalanches. Moreover, an unique level of risk<br />

exposure equal to one along the whole line was assumed, in the sense that for example no<br />

distinction was made for the presence of one or two tracks (generally at the stations), rail<br />

station or stop, with the consequence that the vulnerability, referred to as the degree of loss<br />

ula 2 caused by the occurrence of an event of given intensity, was assumed l equal r to one o independently<br />

on the characteristics of the exposed element and of the intensity 2 oo I of the event. alF<br />

oloa Formula 2<br />

2r<br />

These two assumptions on the elements at risk and on the vulnerability actually prevent the<br />

estimation of risk and accordingly the definition by Fell et al. (2008) would reduce this<br />

method to an evaluation of the hazard. The hazard H was assumed as the product of the<br />

frequency F of occurrence of the natural event and the intensity I:<br />

Formula 2:<br />

H=FI<br />

formula 2<br />

Frequency F and intensity I were classified independently of the presence of mitigation works<br />

(e.g. rockfall protection fence, slides stabilized with retaining walls and drainage, etc) that<br />

may reduce the intensity or even avoid the occurrence of the event. In fact, since the<br />

planning and scheduling of construction and maintenance of mitigation works is one of the<br />

specific tasks that Tt has been asked to pursue for the safety of the railway line, it was decided<br />

not to reduce the hazard H due to the presence of mitigation works, but to amplify it with a<br />

672 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Formula 3<br />

l r o oloa Form<br />

oo alF<br />

work factor O every time the structures were evaluated not to be either effective or functional<br />

to mitigate the risk. The product C:<br />

Formula 3:<br />

C=PO<br />

formula 3<br />

was defined Criticality. The purpose of the method was to obtain a ranking of criticality in<br />

order to appropriately manage, mitigate or prevent the consequences of an hazardous event.<br />

Scores were then given to frequency F, intensity I and works O, with the general rule that the<br />

larger the score the more critical the event to be prevented or mitigated with proper activities<br />

and works. More specifically, the absolute values of the scores, especially for the work factor<br />

O, were assigned by “trial and error” in order to be able to identify classes of criticality that<br />

were coherent with the planning based on the engineering judgment and successfully<br />

experienced in Tt for past events.<br />

Table 1: Intensity The frequency I scores. F scores were 0, 1 or 2. Based on the occurrence evaluated lic ere by analyzing to onloa the Table In<br />

databases published by national or local geological services and by alT reviewing the 1.oc data stored<br />

in the archive of the company, score 0 means that the event is impossible (no slope, cliff or<br />

stream are present) or not likely to occur, score 1 was for an event that had occurred rarely<br />

(once) or supposed possible, score 2 for an event that had already occurred more often than<br />

once.<br />

Table 1<br />

Table 1: Intensity I scores.<br />

Landslides<br />

Floods<br />

A<br />

B<br />

Rock Fall<br />

Slide<br />

Event<br />

Intensity<br />

A1 Boulders and large boulders 2<br />

A2 Cobbles 1<br />

B1 First-time failure 2<br />

B2 Active 1.5<br />

C Deep Seated Gravitational Slope Deformation - DSGSD 2<br />

D Debris flow in stream channels 2<br />

E Quick flooding 1.5<br />

F Slow flooding 1<br />

Snow Avalanche G Snow Avalanche 2<br />

Intensity I scores varied between 1 and 2 (Table 1). Score 2 was given to rapid and extremely<br />

rapid (Cruden et al., 1996) landslides, such as rock falls and first-time slides, and to DSGSDs.<br />

Even though these landslides may be inactive, quiescent or moving very slowly, they were<br />

scored 2 because of their large volumes and of a generally poor knowledge of the failure<br />

mechanisms that were acting. The score 2 to DSGSDs could be then reduced after specific<br />

studies. Snow avalanches and debris flow in stream channels were also scored by 2, given<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 673


their rapid evolution and the tremendous consequences that would result from an impact<br />

with a passing train or simply with the tracks. Reactivated slides and quick flooding were<br />

given score 1.5, while the smallest score 1 was for slow flooding and falls of small rocks that<br />

can cause only minor damages to the trains without altering their normal cruise speed.<br />

e 2: Criticality The hazard C factor scores. H was then amplified by the work factor O, which Clic was ere equal to to oloa 3 in the Table terrae<br />

case of obsolete structures (i.e. not effective and/or not-functional alT for the purpose 2.oc of risk<br />

mitigation) and even to 4.5 if structures were absent.<br />

The resulting criticality C was then classified in 5 classes (Table 2) from nil (C0, C=0), which<br />

corresponds to the absence of dangerous phenomena, to very high (C4, C>18), which<br />

corresponds to very intense phenomena without mitigation works.<br />

Table 2<br />

Table 2: Criticality C scores.<br />

Criticality C0-Nil C1-Mild C2-Moderate C3-High C4-Very high<br />

Score 0 1-4 4-8 8-18 >18<br />

The high weight given to the work factor O in determining the criticality C level invites Tt<br />

to assume the role of controller of the safety of the railway line. Namely, Tt cannot cancel the<br />

natural hazard, but can mitigate its consequences with works, monitoring, inspections or<br />

maintenance activities, depending on the budgets. The ranking of C makes Tt constantly<br />

aware of the hazard conditions present along the line, as well as of the presence, the effectiveness<br />

and functionality of the remedial works. According to the C classification, Tt can<br />

manage and mitigate the consequences as budgets permit.<br />

The mild criticality C1 includes C scores ranging between 1 and 4, and then includes also<br />

the events of high intensity (I=2) and high frequency (F=2) with effective and functional<br />

mitigation (O=1). On the other hand, as soon as the aging of the works reduces their<br />

effectiveness (obsolete works such as old wood crib walls) C increases by a factor of three.<br />

For each C class, Tt has defined the actions to be carried out by the Transport Service, Work<br />

Service and Teams of Workers. For example, when criticality C4 occurs, the Transport Service<br />

Director, in agreement with the Technical Head, orders a temporary rail service interruption<br />

until the Team Workers have adopted short-term countermeasures. The rail service will then<br />

be reactivated with a continual monitoring by the workers, and meanwhile the Work Service<br />

will involve geotechnical engineers and engineering geologist for planning and designing the<br />

long-term mitigation works. In the case of criticality C0, the rail service is regular, no actions<br />

are required by the Work Service and Team Workers carry out the regular inspection of the<br />

line with a 15-day interval.<br />

RESULTS<br />

To date, along the entire railway line, 34 critical situations have been recognized, from mild<br />

to high, for a total length of about 7 km (i.e. more than 10% of the track). Figure 2 classifies<br />

the 34 critical situations in terms of type and criticality C score. Thirteen of the 34 critical situations<br />

are due to first-time slides, and ten of them are classified highly critical (C=C3,<br />

674 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


etween 8 and 18). The other ten C3 critical situations includes rock falls (3 C3 out of a total<br />

of 4 critical situations due to rock fall), one DSGSD, debris flows (5 out of 6) and snow<br />

avalanches (1 out of 2).<br />

Figure 2: Classification of the Criticalities. A1: large dimension-rock falls; A2: small dimension-rock falls, B1: first-time slides, B2:<br />

active slides, C: DSGSDs, D: Debris flows, E: Quick flooding, F: Slow flooding, G: snow avalanches.<br />

Table 3: Work It is worth factor noting values in for Table the 3 that C3 criticalities.<br />

the absence of mitigating works Click (O=4.5) here is the to major oloa cause Table <br />

alT 3.oc<br />

of the high criticality, and it should be borne in mind that in presence of DSGSD, due to its<br />

general large volume of soil, it is usually impossible to plan stabilization works, but monitoring<br />

or minor and local mitigating works, such as to align, restore or replace tracks, are the<br />

more effective actions.<br />

Table 3<br />

Table 3: Work factor values for the C3 criticalities.<br />

A1 B1 C D G<br />

O=3 1 2 0 1 0<br />

O=4.5 2 8 1 4 1<br />

In 2014, for 9 of the 34 critical situations, Tt charged geotechnical engineers and geologists to<br />

carry out site-specific analyses with the double aim of studying the most critical sites and of<br />

validating the method. For this purpose 5 high, 1 moderate and 3 mild critical sites were<br />

selected. Results are shown in Table 4.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 675


It is clear that the site-specific studies investigated the hazards at a larger scale (1 to 500,<br />

1000) and then many sites could be divided in sub-sites with different hazard scores. In three<br />

ble 4: Method cases Validation. the moderate or high criticality classes were confirmed, li hee to in donload one case Table it reduced nteaeent due to onio et<br />

the presence of effective works, in two cases it reduced alT only 4.do partially. In four cases the C<br />

classes increased because the works were actually recognized to be obsolete or absent, but<br />

fortunately for only a part of the investigated area.<br />

Table Table 4: Method 4 Validation. C class: “” increased, or “=” unchanged after the site-specific study.<br />

Before site-specific study<br />

After site-specific study<br />

Case Type I F O C Type I F O C C class change<br />

1 A1 2 2 4.5 18 A1 2 2 1 4 <<br />

2 A1 2 2 3 12 B2 1.5 2 4.5 13.5 =<br />

A2 1 2 3 6 <<br />

A1 2 2 4.5 18 =<br />

B2 1.5 2 4.5 13.5 =<br />

3 A2 1 2 1 2 A2 1 1 4.5 4.5 ><br />

B2 1.5 2 1 3 =<br />

A2 1 1 4.5 4.5 ><br />

4 B1 2 2 3 12 B1 2 2 3 12 =<br />

5 B2 1.5 1 4.5 6.75 B2 1.5 1 4.5 6.75 =<br />

6 B1 2 1 4.5 9 B1 2 2 4.5 18 =<br />

E 1.5 2 4.5 13.5 =<br />

7 B1 2 2 3 12 A2 1 1 1 1 <<br />

B1 2 2 3 12 =<br />

8 B1 2 2 1 4 A2 1 1 1 1 =<br />

B1 2 1 4.5 9 ><br />

B2 1.5 1 1 1.5 =<br />

B1 2 2 3 12 ><br />

9 A1 2 2 1 4 A1 2 2 3 12 ><br />

CONCLUSIONS<br />

The proposed method provides Tt with a systematical tool to identify and manage the critical<br />

situations due to natural hazards. In particular, it gives a major role to the work factor,<br />

because it represents the factor which Tt may control by planning the monitoring, inspections<br />

and mitigation works. The validation of the method by means of site-specific studies revealed<br />

that the work factor must be supported by a design of the structures in order to assess their<br />

effectiveness and that the type of the natural event must be identified by geomorphological<br />

surveys carried out at a detailed scale, according to Fell et al (2008). With these improvements<br />

the criticality could be computed by means of deterministic analyses (for example by<br />

slope stability analyses) instead of using scores based on engineering judgment and experience.<br />

So far the results have been obtained by using a spreadsheet that calculates the C-score<br />

676 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


to each interval of track, but it would be desirable to implement the criticality assessment in a<br />

GIS in order to facilitate the visualization and the real-time update.<br />

REFERENCES<br />

- Bidwell A., Cruden D., Skirrow R. (2010). Geohazard Reviews of Highway Corridors<br />

Through Mountainous and Foothills Terrain, Southwestern Alberta. Proc. of the 63 Canadian<br />

Geotechnical Conference, Calgary, Volume 1: 27-34.<br />

- Cruden D.M., Varnes D.J. (1996). Landslides Types and Processes. In: Turner AK, Schuster<br />

RL (eds). Landslides: investigation and mitigation (Special Report). Washington, DC, USA:<br />

National Research Council, Transportation and Research Board Special Report 247: 36–75.<br />

Fell R., Corominas J., Bonnard C., Cascini L., Leroi E. and Savage W.Z. (2008). Guidelines for<br />

landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology,<br />

102: 85-98<br />

- Lacasse S. (2013). Protecting society from landslides – the role of the geotechnical engineer.<br />

Proc. of the 18th International Conference on Soil Mechanics and Geotechnical Engineering,<br />

Paris, September 2-6 2013, 8th Terzaghi Oration: 15-34.<br />

- Maciotta R., Martin C.D., Morgenstern N.R., Cruden D.M. (2015). Quantitative risk<br />

assessment of slope hazards along a section of railway in the Canadian Cordillera—a<br />

methodology considering the uncertainty in the results. Landslides 1/2015. DOI:10.1007/<br />

s10346-014-0551-4<br />

- PARAmount (2015). http://www.paramount-project.eu (accessed 02/09/2015).<br />

Varnes D.J. (1984). Landslide hazard zonation: a review of principles and practice. Natural<br />

Hazard Series, UNESCO, Volume 3:<br />

- Winter M.G., Harrison M., Macgregor F., Shackman L. (2013). Landslide hazard and risk<br />

assessment on the Scottish road network. Proceedings of the Institution of Civil Engineers<br />

Geotechnical Engineering 166 (6): 522–539.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 677


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Efficient risk assessment of Norwegian railways<br />

combining GIS and field studies<br />

Heidi Hefre, M.Sc. 1 ; Kjetil Sverdrup-Thygeson, M.Sc. 1 ; Unni Eidsvig, M.Sc. 1 ; Øyvind Armand Høydal, M.Sc. 1<br />

ABSTRACT<br />

A GIS-based methodology for regional scale assessment of hazard and risk along railway<br />

corridors has been developed at NGI for the Norwegian National Rail Administration.<br />

Field investigation of hundreds of kilometres of railway is time-consuming and thus expensive<br />

to conduct. An assessment of risk along railway corridors is accomplished through<br />

substantial use of Geographical Information System (GIS), combining detailed Digital Elevation<br />

Models (DEM) and relevant railway data. The mapping method use advanced GIS analyses to<br />

identify potential high-hazard areas to closer inspect in field.<br />

A relative quantification of hazard and consequence level is carried out for the complete<br />

stretch of railway and combined to identify low, medium and high-risk areas. The results are<br />

presented in a series of detailed maps, showing the decision-makers where further investigations<br />

and mitigation measures are most needed.<br />

The GIS-based methodology is a time- and cost- efficient way to conduct continuous assessment<br />

of railway corridors, allowing fieldwork to be focused on inspection and evaluation of<br />

problem areas.<br />

KEYWORDS<br />

GIS; risk assessment; hazard mapping; railway; Norway<br />

INTRODUCTION<br />

Regional scale risk assessments along railway corridors using conventional mapping methods<br />

is time-consuming and thus expensive to conduct. Inspection of tens to hundreds of kilometres,<br />

obstructed by train traffic and often steep and densely vegetated terrain, make hazard<br />

assessment in the field challenging.<br />

This paper presents a new time- and cost-effective methodology for landslide hazard and risk<br />

assessment along railway corridors at a regional scale. The methodology combines advanced<br />

analyses using Geographical Information System (GIS) with field studies. The hazards<br />

included in this study are soil slides, embankment failure caused by insufficient drainage<br />

capacity and slope failures caused by river erosion.<br />

The presented methodology is developed by NGI through risk mapping of a total of 935 km<br />

of railway (nearly 23 % of all railway lines in Norway) for the Norwegian National Rail<br />

Administration. The purpose of the methodology is to provide a screening tool at the regional<br />

scale for problems involving linear infrastructures, to identify potential high-risk areas for<br />

detailed field investigations and future mitigation measures.<br />

1 Norwegian Geotechnical Institute, Oslo, NORWAY, kst@ngi.no<br />

678 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP061


METHODS<br />

The methodology applies GIS for estimating the natural hazard, consequence and risk level<br />

along the railway line, with the following aims:<br />

– Initial assessments to identify potential high-risk areas for soil slides, embankment failures<br />

and river erosion to be closer inspected in field<br />

– Classification of low and medium risk areas not to be inspected in field<br />

– Calculation of severity of consequence in case of a derailment along the railway corridor<br />

– Combining hazard assessment (as calculated using GIS or evaluated in field) and calculated<br />

consequence for a continuous risk assessment along the railway line<br />

– Present the results by producing risk maps for every kilometre of the mapped railway line<br />

The method combines a number of relevant information in order to perform an integrated<br />

analysis in GIS. The input data to the analyses are listed below. The availability and quality of<br />

these data will affect the results.<br />

– Digital elevation model (DEM)<br />

– Metered railway line<br />

– National landslide inventory<br />

– Culvert database with information on the drainage system<br />

– Quaternary geology maps<br />

– Rivers, streams and lakes<br />

– Existing river embankments<br />

– Train speed limits<br />

– Roads, train stations, crossings and bridges<br />

A high resolution DEM is of key importance, as the main purpose of the GIS-analyses is to<br />

analyse the terrain along the railway. The DEM is used for calculating distances, slope angles,<br />

slope directions, embankment- and slope-heights, and drainage paths for water and watershed<br />

areas. LiDAR data are preferred, but also elevation contours with 1 m interval are<br />

acceptable for producing a high resolution DEM of 1 or 2 m grid size. The railway line is<br />

divided into segments of 10 m unit lengths for analysis purposes.<br />

HAZARD ANALYSIS USING GIS<br />

The hazard analyses are performed to produce relative classifications of hazard level to<br />

identify potential high-hazard areas. Different parameters believed to be critical for each of<br />

the hazard types are analysed through GIS. In the analyses each railway segment receives a<br />

hazard score between 0 and 1 for each hazard type, where 0 represents no hazard and 1<br />

represents a high hazard level. The analyses for each hazard type are presented below.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 679


SOIL SLIDE AGAINST RAILWAY<br />

Soil slides in Norway are commonly triggered in slopes varying between 25° and 40°,<br />

depending on soil type. Exposed slopes are analysed in the soil slide hazard assessment using<br />

the following parameters:<br />

– The average slope angle within the exposed slope, H_soil1<br />

– Slope fall direction relative to railway, H_soil2<br />

– Soil type, H_soil3<br />

– Area of exposed slope, H_soil4<br />

GIS is used to identify all slopes with a slope angle between 25° and 40° and fall direction<br />

towards the railway, within 30 m to each side of the railway centre line (Figure 1). The<br />

analysis verifies that the slopes are soil slopes, by checking against quaternary geology maps,<br />

and ensures that the slope is of a significant extent.<br />

Figure 1: Soil slide hazard analysis using GIS: The terrain 30 m to each side of the railway is analysed to calculate average slope angle,<br />

fall direction and slope area.<br />

680 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


mula 1<br />

l r o o<br />

For each parameter a score between 0 and 1 is given according to predefined classes, and they<br />

together provide the soil slide hazard score according to Formula 1<br />

SSSSSSSS ssSSSSssss haaaaaaaass ssssSSaass = HH_ssSSSSSS 1 xx HH_ssSSSSSS 2 xx HH_ssSSSSSS 3 xx HH_ssSSSSSS 4<br />

Formula 1: Calculation of final hazard score for soil slide towards railway<br />

The soil slide hazard score is calculated for both sides of the railway, and the railway segment<br />

receives the highest of the two scores.<br />

INSUFFICIENT DRAINAGE CAPACITY CAUSING EMBANKMENT FAILURES<br />

Embankment failures along Norwegian railways are most often related to poor drainage and<br />

insufficient culvert capacity. An assessment of culverts along the railway is therefore<br />

conducted, by analysing the following parameters using GIS:<br />

– Expected discharge HQ 50<br />

, H_drain1<br />

– Culvert capacity, H_drain2<br />

– Upstream slope angle, H_drain3<br />

The expected discharge (H_drain1) is analysed by generating a hydrological correct DEM, and<br />

estimating the catchment area for all rivers and streams crossing the railway using the<br />

GIS-tool flow accumulation. The potential volume of discharge is then found by using a<br />

regression formula combining 50-years discharge and the associated catchment area.<br />

Each culvert is given the greatest calculated discharge within a radius of 30 m of the culvert.<br />

The expected discharge found for each culvert is then related to the culvert capacity (H_<br />

drain2), which is calculated in m 3 /s from the given culvert dimensions based on capacity<br />

charts assuming inlet control. Possible blockage of the culvert is not accounted for.<br />

rmula 2<br />

The upstream slope angle (H_drain3) is used to express the sediment transport capacity.<br />

Sediment transport towards the culvert is associated with a higher probability of insufficient<br />

capacity. The upstream slope angle is found for every culvert by calculating the average Click slope here to do<br />

of the upstream waterway within the 10x30 m buffer. Slopes greater than 12° receives the<br />

highest score of 1.<br />

The drainage capacity hazard score for all culverts are calculated as shown in Formula 2:<br />

DDDDDDDDDDDDDDDD ccDDccDDccDDcccc hDDaaDDDDaa ssccssDDDD = HH_aaDDDDDDDD 1<br />

HH_aaDDDDDDDD 2<br />

xx HH_aaDDDDDDDD 3<br />

Formula 2: Calculation of final hazard score for embankment failures caused by insufficient drainage capacityy<br />

The relationship between the given culvert capacity and the estimated potential discharge will<br />

express whether the culvert capacity is sufficient. Values higher than 1 is set equal to 1, and<br />

implies that the culvert capacity is insufficient.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 681


SLOPE FAILURES CAUSED BY RIVER EROSION<br />

The critical parameters with respect to river erosion and associated slope failures included in<br />

the GIS-analyses are:<br />

– Distance between toe of railway embankment and river, H_erosion1<br />

– Height difference between toe of railway embankment and river, H_eroison2<br />

The first step is to locate the toe of the railway embankment and find the elevation using<br />

terrain analyses in GIS. This information is used for finding the distance and height difference<br />

between the toe of the embankment and the river. A distance of 30 m or more, or a height<br />

difference of 4 m or more, is regarded as a neglectable hazard level. Whereas a distance of 15<br />

m or less, and a height difference of 2 m or less, result in the highest hazard level. The values<br />

3 in between will result in an intermediate hazard value.<br />

l r o oloa<br />

The parameters are multiplied as shown in Formula 3, giving every railway segment a hazard<br />

score for slope failures caused by river erosion. The hazard score is compared to a national<br />

dataset with existing riverbank-stabilisation measures<br />

EEEEEEEEEEEEEE haaaaaaEEaa EEssEEEEss = HH_ssEEEEEEEEEEEE 1 xx HH_ssEEEEEEEEEEEE 2<br />

Formula 3: Calculation of final hazard score for slope failures caused by river erosion<br />

CONSEQUENCE ANALYSIS USING GIS<br />

For a continuous assessment for severity of consequence in the case of a derailment, a fully<br />

GIS-based methodology is applied. The consequence methodology is based on a methodology<br />

developed by Sweco (Sweco, 2012). This method was developed for risk assessments of rock<br />

cuts along the railway, based on traditional registration in the field. It was thus not well<br />

suited for regional scale risk mapping of several geohazards.<br />

After experiences gained in the first few years with these projects, NGI modified the existing<br />

consequence methodology to be fully based on GIS-analyses and with new classifications of<br />

the parameters. Three parameters are included in the consequence analyses and explained in<br />

more detail in the next paragraphs.<br />

ACCESSIBILITY FOR RESCUE<br />

The accessibility for rescue (C_access) is calculated by first finding the distance to the nearest<br />

railway station, level crossing and platform for every railway segment. Secondly, the<br />

accessibility from the nearest road is calculated using a "cost-analysis" in GIS. In this analysis,<br />

distance, slope and barriers, such as rivers and cliffs, are taken into account. The results of the<br />

cost-analysis are evaluated in order to choose suitable limits for defining accessibility into the<br />

three categories easy, intermediate and difficult (figure 2).<br />

682 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Example of cost-analysis in GIS, used to define accessibility from road into “easy”, “intermediate” and difficult”. The green<br />

colour represents “easy access” to the railway, and surrounds the road in different width, depending on terrain slope and natural<br />

barriers.<br />

At stations, level crossings and platforms, it is assumed that rescue vehicles can access the<br />

railway track fast and easily. A short distance to these locations is thus regarded as a better<br />

alternative than reaching the track from a nearby road. The calculated distance is combined<br />

with the accessibility from road to express the Accessibility for rescue. The parameter is<br />

divided into seven classes with scores ranging from 1 to 8.<br />

TERRAIN AT PLACE OF DERAILMENT<br />

The shape of the terrain (C_terrain) within 30 m to each side of the railway is calculated<br />

using GIS through analyses of slope height, slope fall direction and distance to body of water.<br />

The higher the slope, the higher consequence score is achieved. If the slope ends in a body of<br />

water, the score is increased. If there is no slope (the railway goes through a two-sided<br />

cutting), the lowest score is achieved. The parameter is classified into six different classes with<br />

the associated scores ranging between 1 and 12.<br />

IMPACT SPEED<br />

Potential impact speed (C_speed) is calculated by using the sight distance together with the<br />

train speed limit. Sight distance is found using GIS based on the curvature of the railway line<br />

assuming a limited field of view, simulating dense vegetation 5m from the railway line. The<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 683


train velocity is assumed to be constant during the reaction time and the duration of break<br />

application, and to decrease linearly during the retardation time. This means that in practice<br />

in curves the impact speed equals the speed limit.<br />

The speed limit and the sight distance will differ according to which direction the train is<br />

travelling. The potential impact speed is thus calculated in both directions, and the higher of<br />

the two results is chosen. The classification of impact speed is set to five different classes, with<br />

an impact speed less than 10 km/h resulting in the lowest score of 0, and an impact speed<br />

l r o oloa Formula ormula4o<br />

more than 80 km/h achieve the highest score of 10.<br />

The achieved scores for each of the three consequence parameters are finally summarised<br />

according to Formula 4, giving every railway segment a consequence score.<br />

CCCCCCCCCCCCCCCCCCCCCC CCCCCCssCC = CC aaaaaaaaaaaa + CC ttaattttaatttt + CC aassaaaass<br />

Formula 4: Calculation of final consequence score<br />

The consequence score is normalized to values between 0 and 1 for purposes of the risk<br />

analysis.<br />

FIELD INVESTIGATIONS<br />

Field investigations were carried out for potential problem areas, identified in the initial stages<br />

of the project. The railway sections to include for field investigations are identified from the<br />

following sources:<br />

– All sections identified with high-risk potential from GIS-analyses<br />

– Interviews with railway supervisors<br />

– One day overview inspection of the entire mapping area using designated slow-moving<br />

train<br />

– Information about historical slides on or near the railway<br />

– Documents describing problem areas<br />

The focus of the field investigations is to evaluate the condition and characteristics of steep<br />

side terrain, culverts, railway embankments and river embankments identified as potential<br />

hazards.<br />

All segments achieving the highest hazard score of 1 and segments classified with high-risk<br />

from GIS-analyses are subjected to a closer inspection in field. The results of the hazard<br />

analyses are updated after field investigations, with the hazard scores evaluated in field<br />

replacing those calculated by GIS-analyses. In potential risk areas, the GIS-analyses are thus<br />

always complemented and adjusted by expert opinion.<br />

684 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RESULTING RISK ASSESSMENT<br />

Risk scores are calculated for all railway segments by multiplying the hazard and consequence<br />

score, and categorised into "low", "medium" and "high" risk level, according to Figure 3. This<br />

method provides a relative value of risk level for the analysed stretch of railway, allowing for<br />

comparison between the railway segments.<br />

Figure 3: The final hazard and consequence score for every railway segment are plotted together and categorised into “low”, “medium”<br />

and “high” risk level<br />

By counting the number of high-risk segments per kilometre railway, one can clearly<br />

illustrate where along the railway mitigation measures should be focused (Figure 4).<br />

Figure 4: The distribution of high-risk areas per kilometre of railway clearly shows where to prioritise detailed investigations and<br />

mitigation measures<br />

All final results are presented in a series of risk maps, covering the complete stretch of<br />

railway, each map displaying 1 km of the railway (figure 5). High-risk areas are highlighted<br />

in red, showing the decision makers where further investigations are most needed. This is a<br />

clear way to communicate information to the end user.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 685


Figure 5: Example of final risk map produced for every 1 km of the analysed railway. The hazard, consequence and risk level along the<br />

railway are shown continuously, in addition to risk level of culverts and location of historical slides.<br />

686 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CONCLUSIONS<br />

Advanced analyses through GIS make it possible to conduct a continuous assessment of<br />

railway corridors, while fieldwork is focused on closer inspection and evaluation of problem<br />

areas. The selection process of these areas is supplemented by information from railway<br />

supervisors and other relevant sources. Regional scale mapping of landslide hazard and risk<br />

along railway corridors using a GIS based methodology have proven to be a time- and<br />

cost-efficient method. The quality of the GIS-analyses is highly dependent on a detailed<br />

terrain model of the proximity of the railway. The developed GIS-analyses provide a good<br />

indication of the location of potential problem areas, both with regard to the investigated<br />

hazards and the consequences of a derailment. It should however be underlined that the GIS<br />

analyses serve as a supplement to and not a substitution for field studies.<br />

FURTHER WORK<br />

There are parts of the GIS analysis that could be improved. First and foremost, we see a need<br />

to improve the calculation of the expected discharge in connection to culverts by a refined<br />

method for estimating the catchment area and extraction of associated parameters. This<br />

improvement is planned to be implemented in <strong>2016</strong>. Furthermore, the method for estimating<br />

collision speed could be refined by taking into account the gradient of the railway line. The<br />

accessibility for rescue could take into consideration other factors, especially the type of<br />

ground (forest, farmland, bog, etc.).<br />

It is our opinion that the combination of methods presented in this paper identifies possible<br />

high-risk areas in a satisfactory manner, with the exception of the hazard relating to<br />

insufficient culvert capacity. This hazard type is particularly challenging, as it cannot be<br />

properly evaluated using detailed terrain models, overview mapping from inspection train or<br />

other available data sources. Performing capacity can only be revealed by a detailed inspection<br />

of culvert inlet and outlet. In order to verify the methods regarding culverts, some lowand<br />

medium-risk culverts could be randomly selected and examined in field, in order to<br />

detect possible underestimations of risk.<br />

REFERENCES<br />

Sweco (2012). Jernbaneverket, Veileder til verktøy for skredfarekartlegging. Report no.<br />

575012/01.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 687


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

Periglazial Hazard Indication Map: A Basic Instrument<br />

in Prospective Hazard Management<br />

Gefahrenhinweiskarte Periglazial: Instrument in der<br />

prospektiven Gefahrenbeurteilung<br />

Daniel Tobler, dipl. natw. ETH, Geologe 1 ; Peter Mani, lic. phil. nat., Geograph 2 ; Rachel Riner, lic. phil. nat, Geologin 1 ; Serena<br />

Liener, dr. phil. nat. 2 , Geographin; Nils Hählen, dipl. natw. ETH, Forstingenieur 3 ; Ricarda Bender-Gàl, Wasserbauingenieurin 4<br />

ABSTRACT<br />

Based on glacier retreat and degrading permafrost in high alpine regions across the Bernese<br />

Oberland (central to western Switzerland), several new source areas for natural hazard<br />

processes became evident within the last years. The evaluation of susceptible periglacial areas<br />

and the assignment of resulting processes by modelling will be one of the major tasks to be<br />

solved in near future. The prediction of those processes and their consequences is an<br />

interdisciplinary question. Meteorological scenarios for the next 50 years derived from<br />

climate change scenarios stand at the beginning of the decision chain. The susceptible<br />

periglacial areas which act as starting zones for mass movements (rockfall, landslides, debris<br />

flows) or new sediment sources can be calculated through sophisticated permafrost and<br />

glacier retreat models.<br />

Well established simulation tools have been used within the project. The result is a so-called<br />

periglacial hazard indication map visualizing endangered areas in the year 2060 for mass<br />

movement processes as well as other natural hazards like floods or subglacial lake outburst.<br />

ZUSAMMENFASSUNG<br />

Anhand von Klimaszenarien wurde die zukünftige Entwicklung der Einzugsgebiete sowie das<br />

Zusammenspiel der Veränderung der Gletscherausdehnung und des Permafrostes mit den<br />

Sturz- und Rutschprozessen, der Murgangauslösung, dem Geschiebetrieb sowie möglichen<br />

Folgeprozessen (z.B. Flutwelle) analysiert und modelliert. Die Resultate basieren auf einer<br />

neu entwickelten Methodik. Generell sind die einzelnen Prozessmodellierungen umfassend<br />

auf aktuellen, wissenschaftlichen Arbeiten abgestützt und mittels einer Sensitivitätsanalyse<br />

(vgl. separater Bericht) geprüft. Die Ergebnisse präsentieren die mögliche Gefahrensituation<br />

im Berner Oberland im Jahre 2060 unter Berücksichtigung der klimatischen Veränderungen.<br />

Die Modellresultate der einzelnen Prozesse verdeutlichen die mögliche Problematik im<br />

Zusammenhang mit degradierendem Permafrost, sich zurückziehenden Gletschern und damit<br />

1 GEOTEST AG, Zollikofen, SWITZERLAND, daniel.tobler@geotest.ch<br />

2 Geo7 AG 3012 Bern, SWITZERLAND<br />

3 Amt für Wald des Kantons Bern, Abteilung Naturgefahren, Interlaken, SWITZERLAND<br />

4 Tiefbauamt des Kantons Bern, Oberingenieurkreis 2, SWITZERLAND<br />

688 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP110


einhergehenden Destabilisierungen der Talflanken. Die am stärksten betroffenen Regionen<br />

sind Kandersteg, das Haslital sowie die hinteren Lütschinentäler.<br />

KEYWORDS<br />

process chains, permafrost, mass movements, climate change, process modelling<br />

EINFÜHRUNG<br />

In den hochalpinen Gebieten des Berner Oberlandes treten seit Jahren immer wieder neue<br />

Naturgefahrenherde auf, die durch den Rückgang von Gletschern und Permafrost entstehen.<br />

Sie bedrohen teilweise die Sicherheit von Siedlungen und Infrastrukturen. Die kantonalen<br />

Fachstellen des Kantons Bern haben aus diesem Grund die Studie Gefahrenhinweiskarte<br />

periglazial (kurz GHKperiGlazial) initiiert. Die Studie soll aufzeigen, wo sich infolge degradierenden<br />

Permafrosts und Gletscherrückzugs eine Veränderung der Naturgefahrenprozesse<br />

ergibt.<br />

BEARBEITUNGSGEBIET<br />

Der Untersuchungsperimeter umfasst sämtliche hydrologischen Einzugsgebiete im Berner<br />

Oberland, welche im Einflussbereich periglazialer Prozesse liegen (Figur 1). Der Perimeter<br />

reicht vom Simmental im Westen bis zum Gadmen- und Gental im Osten. Südlich verläuft<br />

der Perimeter entlang der hohen Alpengipfel an der Grenze zum Wallis; nördlich bilden<br />

Thuner- und Brienzersee sowie das Gental die Begrenzung.<br />

Figur 1: Der Untersuchungsperimeter Berner Oberland wurde für die Bearbeitung in vier Teilgebiete unterteilt. TG1 (Hasliaare), TG2<br />

(Lütschine), TG3 (Kander), TG4 (Simme) (Kartengrundlage: Swisstopo).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 689


VORGEHEN<br />

In einem ersten Schritt wurden die Klimaszenarien sowie Kenngrössen künftiger prozessauslösender<br />

Wetterereignisse, die bis 2060 im Berner Oberland zu erwarten sind, bestimmt.<br />

Basierend auf den prognostizierten Temperaturveränderungen wurde die künftige Ausdehnung<br />

von Gletscher- und Permafrostgebieten hergeleitet.<br />

Die Klimaveränderungen haben Auswirkung auf die Häufigkeit und die Magnitude der<br />

Naturgefahrenprozesse. Für die Erstellung einer Hinweiskarte ist nur die Veränderung der<br />

Magnitude entscheidend. Basierend auf diesen Rahmenbedingungen wurden die Wirkungsräume<br />

sowie die potenziellen Ablagerungskubaturen von Sturz-, Rutsch- und Murgangprozessen<br />

modelliert. Weiter wurden glaziale Prozesse wie Gletscherhochwasser, Eisabbrüche<br />

sowie Sekundärprozesse in Form von Impulswellen und Dammbrüchen analysiert (Figur 2).<br />

Die Bearbeitungstiefe der Prozessmodellierungen erfolgte auf Stufe „Gefahrenhinweis“,<br />

Massstab 1:25‘000. D.h. von den modellierten Prozessräumen wurden deren Umhüllende<br />

ausgeschieden.<br />

Figur 2: In der GHKperiGlazial modellierte Prozessketten.<br />

690 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


KLIMASZENARIEN<br />

Wichtigste Grundlage für die Herleitung der Klimaszenarien sind die Szenariendaten CH2011<br />

(2011), wobei die Daten des Emissionsszenarios A1B für den Szenarien-Zeitpunkt 2060<br />

verwendet wurden. Zwar entspricht die aktuelle Emissionsentwicklung eher dem pessimistischen<br />

Szenario A2. Da für das Szenario A1B detailliertere Daten vorliegen und sich die<br />

Auswirkungen der beiden Szenarien bis zum Zeitpunkt 2060 noch nicht wesentlich unterscheiden,<br />

wurde dieses verwendet. Für den Szenarienzeitpunkt 2085 zeigt das Szenario A2<br />

dann jedoch deutlich stärkere Auswirkungen als das Szenario A1B.<br />

Basierend auf diesen Daten wurden Szenarien für die Temperatur und den Niederschlag<br />

definiert. Bei den Temperaturen wurden neben den saisonalen Mitteltemperaturen auch<br />

Hitzeperioden und die Anzahl von Tautagen ausgewertet. Für den Niederschlag wurden<br />

neben den saisonalen Niederschlagssummen die Veränderungen der Intensivniederschläge<br />

betrachtet (Rajczak et al. ,2013).<br />

GLETSCHER UND PERMAFROST<br />

Das Szenario für den Gletscherrückzug wurde entsprechend dem Temperaturszenario aus den<br />

Daten von Linsbauer et al. (2013) abgeleitet. Zusätzlich zur zukünftigen Gletscherausdehnung<br />

wurden auch die Topographie des freigelegten Gletscherbetts und dessen Charakteristik<br />

hergeleitet.<br />

Grundlage für die Beurteilung der Veränderungen im Permafrost bildet die Karte der<br />

potenziellen Permafrostverbreitung (APIM) (Boeckli et al., 2012). Der darin abgebildete Index<br />

kann vereinfacht als anteilmässige Verbreitung von Permafrost interpretiert werden. Der<br />

Index liefert jedoch keine Angaben zur Mächtigkeit und Temperatur des Permafrosts. Deshalb<br />

wurde für die Abschätzung der Permafrostdegradation und deren Auswirkungen ein<br />

vereinfachter Ansatz entwickelt.<br />

Ausgehend von der heutigen mittleren jährlichen Lufttemperatur wurde die heutige<br />

Oberflächentemperatur abschätzt. Die Temperaturoffsets konnten aus der Oberflächencharakteristik,<br />

der Hangneigung und der Exposition abgeleitet wurden. In einem weiteren Schritt<br />

wurden für das Temperaturszenario die Offsets berechnet, wobei wiederum eine materialabhängige<br />

Sensitivität berücksichtigt wurde. Aus diesem Offset und dem Permafrostindex<br />

wurde ein Veränderungsfaktor abgeleitet, der in den Prozesssimulationen als Parameter für<br />

die Materialverfügbarkeit verwendet wird.<br />

MASSENBEWEGUNGSPROZESSE<br />

Die Simulation der betrachteten Massenbewegungsprozesse erfolgte für das Jahr 2060 in zwei<br />

verschiedenen Wahrscheinlichkeiten (gross, klein). Dabei wurden für sämtliche Prozessräume<br />

die möglichen Ablagerungskubaturen (Rutsch- und Sturzprozesse) respektive die maximalen<br />

Abflüsse (Flutwellen) und Geschiebefrachten (Murgänge) in Grössenordnungen von 10er<br />

Potenzen abgeschätzt.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 691


STURZPROZESSE<br />

Die Prozessräume potentieller Blockschläge und kleinerer Felsstürze wurden ausgehend von<br />

der Felsmaske (Swiss-TLM) sowie den ausgeaperten Felsbereichen in Gletscherrückzugsgebieten<br />

mit dem 3D-Sturzprogramm GEOTEST+Zinggeler (Tobler et al. 2009) modelliert.<br />

Basierend auf der Geologie und dem Durchtrennungsgrad des Gesteins (Kluftanalyse mit<br />

ColTop 3D (Bouissou 2011)) wurden die Ausbruchgebiete klassiert und Blockgrössen für die<br />

Modellierung festgelegt. Nach der Simulation wurden die Endpunkte der Sturztrajektorien<br />

mit den Informationen des Ausbruchgebietes attributiert (Permafrostverhältnisse, Klüftungsgrad<br />

des Gesteines, Blockgrösse), um die gesamte Ablagerungskubatur im Ablagerungsraum<br />

zu berechnen. Diese ergab sich aus der Summe in einer Rasterzelle abgelagerter Sturzblöcken<br />

resp. deren Volumina.<br />

RUTSCHPROZESSE<br />

Die Anrissgebiete spontaner Rutschungen wurden mit dem Modell SliDisp+ (Tobler et al.,<br />

2013) modelliert, deren Auslaufbereiche mit dem GIS-Modell SliDepot (Tobler et al, 2013).<br />

Für die resultierenden Prozessflächen wurde pro Zelle die potenzielle Ablagerungskubatur<br />

kalkuliert, indem die mobilisierbare Mächtigkeit (Salciarini et al., 2006) mit der Rasterzellengrösse<br />

multipliziert wurde. Die mobilisierbare Mächtigkeit wird in den periglazialen Bereichen<br />

im Wesentlichen von der Permafrostveränderung dominiert. Für das Jahr 2060 wurden<br />

zusätzlich neue Anrissflächen in den Gletscherrückzugsgebieten berücksichtigt.<br />

Die Auswirkung der Klimaszenarien auf die permanenten Rutschungen ist nur schwer zu<br />

erfassen. Die Rutschungen liefern einen kontinuierlichen Geschiebeeintrag in die Gerinne.<br />

Diese Eigenschaft wurde über die Erhöhung der materialspezifischen Erodierbarkeit innerhalb<br />

der Rutschungen berücksichtigt, wobei die Parameter Rutschaktivität, Hangneigung,<br />

Permafrostveränderungen nach einer empirischen Klassierung in die Berechnung einflossen.<br />

Für die Erhöhung wurden die Parameter Rutschaktivität, Hangneigung und Permafrostveränderung<br />

nach einer empirischen Klassierung berücksichtigt. Die Abgrenzungen des permanenten<br />

Prozesses basierte auf bestehenden Grundlagen sowie InSAR-Daten. Lagen in zukünftigen<br />

Gletscherrückzugsgebieten deutliche Indikatoren vor, welche auf eine Aktivierung einer<br />

permanenten Rutschung hinweisen könnten, wurden diese ebenfalls erfasst (z.B. Hangfussentlastung<br />

im Bereich einer übersteilten Seitenmoräne, Übersteilte Rutschfront gekoppelt<br />

mit Murganggerinne, dokumentierte Ereignisse spontaner Rutschungen).<br />

MURGANGPROZESSE<br />

In einem ersten Schritt wurden die potenziellen Murganganrissgebiete ausgeschieden. Dabei<br />

wurden auch diejenigen Gebiete berücksichtigt, in welchen durch Gletscherrückzug oder als<br />

Folge von verstärkten Bergsturzablagerungen neue Murganganrisse entstehen können.<br />

Zur Bestimmung der potenziellen Murgangfracht wurde für jeden Punkt entlang der<br />

Trajektorie definiert, wieviel Material durch einen Murgang erodiert werden kann. Dies<br />

entspricht der Erosionsleistung eines Murganges auf den entsprechenden Laufmetern an der<br />

692 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


entsprechenden Stelle. Diese Erosionsleistung hängt im Wesentlichen von den geschieberelevanten<br />

Grundlagen sowie sämtlichen geschiebeliefernden Prozessen ab. Bei Murgängen aus<br />

Gletscherrückzugsgebieten oder aus auftauendem Permafrost wurde dabei von einer<br />

erhöhten Erosionsleistung ausgegangen. In den Permafrostdegradationsgebieten wurde dazu<br />

der Veränderungsfaktor verwendet.<br />

Ausgehend von den Anrissgebieten wurden die Murgangtrajektorien mit dem Modell<br />

MGSIM/dfwalk (Gamma 2000) modelliert. Entlang des Fliessweges jeder Trajektorie konnte<br />

die Erosion pro Gerinneabschnitt entsprechend der Erosionsleistung sowie in Abhängigkeit<br />

der Murganggeschwindigkeit bestimmt und fortlaufend zur Geschiebefracht aufsummiert<br />

werden. Beim Kegelhals wurden die Geschiebekubaturen durch das Modell RAMMS<br />

(Christen et al., 2012) abgenommen, um die Ausbreitung auf dem Kegel zu simulieren.<br />

Sehr seltene Ereignisse mit grossem Impakt<br />

Zu den sehr seltenen Ereignissen mit grossem Impakt zählen: Bergstürze, Gletscherabbrüche,<br />

Gletscherseeausbrüche. Gebiete mit einer Disposition für solche Grossereignisses wurden<br />

lediglich im periglazialen Raum für die kleine Wahrscheinlichkeit ausgeschieden und in der<br />

weiterführenden Prozesskette nicht weiter berücksichtigt.<br />

RESULTATE<br />

In den folgenden Abschnitten werden die Resultate der Modellierungen sowie die Veränderungen<br />

der Prozesse erläutert. Ein Darstellungsbeispiel findet sich Figur 3.<br />

Periglazial: Die Veränderungen im Periglazialgebiet werden im Wesentlichen durch den<br />

Rückgang der Gletscher sowie degradierendem resp. verschwindendem Permafrost verursacht.<br />

Der Anteil an Permafrostflächen und entsprechenden Veränderungen ist in den<br />

Teilgebieten Hasliaare und Lütschine am grössten. Westlich des Kandertals nehmen die<br />

Permafrostflächen und somit deren Relevanz deutlich ab. Insgesamt sind rund 12 % des<br />

Berner Oberlandes von Permafrostflächen bedeckt.<br />

Gletscherseen: Insbesondere im östlichen Berner Oberland kann durch den Rückzug von<br />

grossen und flachen Talgletschern eine hohe Anzahl neuer Gletscherseen entstehen, deren<br />

Volumina über 10 Mio. m 3 liegen können. In den zentralen und westlichen Gebieten des<br />

Berner Oberlandes ist mit geringerer Gletscherseebildung zu rechnen.Viele dieser potenziellen<br />

Gletscherseen entwickeln sich in sehr abgelegenen Lagen und tangieren Siedlungsraum<br />

kaum. Wenn jedoch Massenbewegungsprozesse in einer Prozesskette in einen Gletschersee<br />

stossen und so zu einem Seeausbruch führen, können weit entfernte Schadenpotenziale<br />

plötzlich bedroht werden.<br />

Gletscherabbrüche: Im östlichen Berner Oberland gibt es viele Gebiete mit steiler Vergletscherung,<br />

was beim Gletscherrückzug grundsätzlich zu einer hohen Anzahl von potentiellen<br />

Abbruchgebieten führt, die generell weit entfernt vom Schadenpotential liegen. Im zentralen<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 693


Teil des Untersuchungsgebietes sind zwar weniger Gebiete gletscherbedeckt, der Siedlungsraum<br />

befindet sich jedoch vielerorts näher an steilen Gletschergebieten. Daher existiert in<br />

diesen Gebieten eine grössere Anzahl von Abbruchgebieten, deren Eisabbrüche direkt<br />

Siedlungsraum und wichtige Infrastrukturen treffen können. Im westlichen Berner Oberland<br />

gibt es aufgrund der geringen und wenig steilen Vergletscherung ein geringeres Ereignispotenzial.<br />

Die Entwicklung von potenziellen Eisabbruchgebieten ist stark mit Gletscherveränderungen<br />

verbunden. Gletscher, welche heute kein Eisabbruchpotential aufweisen, können in<br />

Zukunft jedoch durch Rückzug und veränderte Gletschergeometrie ein Gefährdungspotenzial<br />

entwickeln.<br />

Sturzprozesse: Die Ablagerungskubaturen aus Sturzprozessen sind im östlichen Berner<br />

Oberland aufgrund des grösseren Anteils von Felsgebieten höher als im Westen. Die<br />

angewandte Methodik, rohe Modellierung als Basis, Erhöhung der Ablagerungskubaturen<br />

aufgrund vermehrter Ausbrüche aus tektonischen Störzonen (Kluftsystemen) sowie<br />

Permafrostzonen führt insgesamt etwa zu einer Verdoppelung der modellierten Ablagerungskubaturen<br />

im Jahr 2060. Nebst der regionalen Variabilität zeigt sich auch im Kleinräumlichen<br />

ein eindeutiges Muster der Ablagerungen: Die Trajektorien aus den höherliegenden Ausbruchgebieten<br />

sammeln sich in den Runsen und Rinnen. Nur ein kleiner Teil der Blöcke<br />

reicht bis in den Talboden und damit in den Bereich des Schadenpotenzials. Die beträchtlichen<br />

Ablagerungen in den Rinnen bilden ein wichtiges Geschiebepotential für Murgänge.<br />

Rutschprozesse: Grundsätzlich kann festgehalten werden, dass alle Typen von Rutschungen<br />

ein massgebliches Geschiebepotential für Murgänge bilden. Spontane Rutschungen in<br />

Gerinnen können teilweise direkt Murgangprozesse auslösen. Die grossen permanenten<br />

Rutschungen in Gerinnenähe bilden bei Reaktivierungen enorme Geschiebeherde. Bei den<br />

permanenten Rutschungen werden stärkere resp. häufigere Reaktivierungen gegenüber der<br />

heutigen Situation in jenen Bereichen erwartet, wo sie bereits heute zu Reaktivierungen<br />

neigen und/oder im Einflussbereich des Periglazials liegen.<br />

Murgangprozesse: Veränderungen gegenüber der heutigen Situation sind v.a. dort zu<br />

erwarten, wo Murganganrisse im Permafrost oder in den Gletscherrückzugsgebieten liegen.<br />

Hier können einerseits neue Anrisse entstehen und andererseits deutlich grössere Geschiebefrachten<br />

verlagert werden. Dies wiederum führt zu grösseren Fliesshöhen (und damit<br />

Prozessintensitäten) sowie zu ausgedehnteren Ablagerungsflächen. Besonders betroffen sind<br />

das Haslital, die Lütschinentäler und das Kandertal. Im Engstligental sowie im Simmental sind<br />

grössere Veränderungen eher in den siedlungsfernen Gebieten zu erwarten.<br />

694 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figur 3: Detailausschnitt der modellierten Murgangprozessräume (violett) und Sturzablagerungen (blau und gelb). 167<br />

FAZIT<br />

Die GHKperiGlazial gibt für das Berner Oberland einen Überblick, wo als Folge der Klimaänderung<br />

am ehesten mit Veränderungen der Naturgefahren zu rechnen ist und welche<br />

Prozessarten davon betroffen sind. Die am stärksten betroffenen Regionen sind Kandersteg,<br />

das Haslital sowie die hinteren Lütschinentäler (Figur ).<br />

Die Studie beschreibt die massgeblichen Prozessketten und das Ineinandergreifen der<br />

einzelnen Teilprozesse. Am Anfang der Prozesskette liegen die Permafrostdegradation und der<br />

Gletscherrückzug. Je grösser die Veränderung, desto stärker die Reaktion des gesamten<br />

Systems. Der Norsektor umfasst rund ein Drittel der gesamten Permafrostflächen. Diese<br />

reichen hier in tiefere Höhenlagen. Mit dem Wissen, dass tieferliegende Gebiete von der<br />

Erwärmung generell stärker betroffen sind als höhere Lagen, ist es kaum erstaunlich, dass die<br />

Prozesse in den nordexponierten Gebieten im Jahre 2060 im Allgemeinen besonders verstärkt<br />

werden.<br />

Sehr viele Veränderungen laufen weit entfernt von den für die vorliegende Studie relevanten<br />

Siedlungsräumen ab und tangieren daher kaum Schadenpotenzial. Bergstrassen, Wanderwege,<br />

Alphütten und Seilbahnmasten stellen in diesem Zusammenhang kein relevantes<br />

Schadenpotential dar. Durch die Klimaänderung sind im Siedlungsgebiet keine neuen<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 695


Figur 4: Zusammenfassende Übersicht zu den mutmasslich betroffenen Regionen im Berner Oberland. 173<br />

Gefahrenflächen zu erwarten. Hingegen kann die Häufigkeit oder die Intensität von einzelnen<br />

Ereignissen gegenüber der Vergangenheit zunehmen.<br />

Die GHKperiGlazial kann keine räumlich konkrete Aussage dazu machen, in welchen<br />

Gebieten effektiv Konflikte durch veränderte Gefahrenprozesse auftreten werden. Sie zeigt<br />

auf, wo grundsätzlich ein Potential dazu besteht. Auch Prozesse, die als Einzelereignis kein<br />

Problem darstellen, sondern erst in einer Häufung Schäden verursachen, lassen sich mit der<br />

gewählten Methode nicht bestimmen.<br />

Der Hauptnutzen der GHKperiGlazial liegt darin, die potentiell heiklen Gebiete zu identifizieren<br />

und zu priorisieren. Darauf basierend wird in den nächsten Jahren ein systematisches<br />

Monitoring aufgebaut, welches sicherstellen soll, dass ungünstige Entwicklungen frühzeitig<br />

erkannt werden und somit mehr Reaktionszeit für präventive Massnahmen zur Verfügung<br />

steht.<br />

696 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


LITERATUR<br />

- AG NAGEF Arbeitsgruppe Naturgefahren des Kantons Bern (2015): Klimawandel und<br />

Naturgefahren – Veränderungen im Hochgebirge des Berner Oberlandes und ihre Folgen.<br />

Linsbauer A., Paul F., Machguth H., Haeberli, W. (2013). Comparing three different methods<br />

to model scenarios of future glacier change for the entire Swiss Alps. Annals of Glaciology, 54<br />

(63), 241-253.<br />

- Rajczak J., Pall P., Schär C. (2013). Projections of extreme precipitation events in regional<br />

climate simulations for Europe and the Alpine Region. J. Geophys. Res.-Atmos., 118,<br />

3610-3626, doi: 10.1002/jgrd.50297.<br />

- Tobler D., Riner R., Pfeifer R. (2013). Modelling potential shallow landslides over large areas<br />

with SliDisp+. C. Margottini et al. (eds.), Landslide Science and Practice, Vol. 3, DOI<br />

10.1007/978-3-642-31310-3_6, Springer-Verlag Berlin Heidelberg 2013<br />

- Tobler D. Riner R., Pfeifer R. (2013). Runout modelling of shallow landslides over large<br />

areas with SliDepot. C. Margottini et al. (eds.), Landslide Science and Practice, Vol. 3, DOI<br />

10.1007/978-3-642-31310-3_32, Springer-Verlag Berlin Heidelberg 2013<br />

- Boeckli L., Brenning A., Gruber S., Noetzli J. (2012). Permafrost distribution in the<br />

European Alps: calculation and evaluation of an index map and summary statistics. The<br />

Cryosphere, 6(4), S. 807-820.<br />

- Christen, M.; Gerber, W.; Graf, Ch.; Bühler Y.; Bartelt, P.; Glover, J.; McArdell, B.; Feistl, T.;<br />

Steinkogler, W. 2012: Numerische Simulation von gravitativen Naturgefahren mit "RAMMS".<br />

Wildbach-, Lawinen-, Erosions- und Steinschlagschutz. 169, 282 - 293.<br />

- CH2011 (2011). Swiss Climate Change Scenarios CH2011. Published by C2SM, MeteoSwiss,<br />

ETH, NCCR Climate, and OcCC. Zurich, Switzerland.<br />

- Bouissou S., B. T. (2011). Influence of structural heterogeneities and of large scale topography<br />

on imbricate gravitational rock slope failures. Tectonophysics 526-529, S. 147-156.<br />

- Tobler, D., Graf, K., Krummenacher, B. (2009). Rockfall assessment of natural hazards by<br />

3D-simulation potential. Geophysical Research Abstracts, Vol. 11, EGU2009-6666-1, 2009,<br />

EGU General Assembly 2009<br />

- Gamma, P. (2000). dfwalk - Ein Murgang-Simulationsprogramm zur Gefahrenzonierung.<br />

Bern: Geographica Bernensia G66, Verlag des Geogr. Inst. Univ. Bern.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 697


HAZARD AND RISK ASSESSMENT (ANALYSIS, EVALUATION)<br />

The case study of Badouzih rockfall in northern Taiwan:<br />

mechanism, numerical simulation and hazard<br />

assessment<br />

Ching-Fang Lee, Ph.D 1 ; Ting-Chi Tsao, M.E. 1 ; Lun-Wei Wei, M.S. 1 ; Wei-Kai Huang, M.S. 1<br />

ABSTRACT<br />

The aim of this study is to reconstruct the rockfall movement trajectory and runout distance<br />

for understanding the falling dynamics in northern Taiwan. The Badouzih rockfall was<br />

triggered by rainfall on August 31st, 2013 in Keelung City in northern Taiwan. A 43 m 3<br />

volume rock was detached from the summit of the hillslope by toppling failure near 68K,<br />

Highway Route 2. The rockfall hazard caused road closure and car crush with the giant falling<br />

boulder. The field survey showed that the weathering process led to the extension of joint,<br />

during the heavy rainfall, the infiltration and the surface runoff washed the weathered<br />

material away, lead to the unstable and the fallen of the rock. The process can be divided into<br />

roll, fall and bounce, taking about 23 seconds in total. With the video record and the field<br />

investigation, a three dimensional numerical model (RAMMS::ROCKFALL) characterized by<br />

irregular block shape was adopted and verified in this study.<br />

KEYWORDS<br />

Rockfall; Badouzih; RAMMS; rock shape; trajectory<br />

INTRODUCTION<br />

Rockfall and debris slide are geologic hazard which occur in the costal mountainous area and<br />

usually been triggered by intense weathering and heavy rainfall. Rockfall can be categorized<br />

as a failure behavior of rock mass at a steep slopeland and weak joint plane (slope >55 [deg.];<br />

Central Geological Survey). The moving type of rockfall is consist of fast free falling, toppling,<br />

rolling (with an obvious trajectory), and bouncing based on the landform, fragmentation<br />

condition, and strength of rock mass. The literature reveals the number of rockfall events<br />

between 82K-139K of Highway Route 2 (or called Northern Coastal Highway) reached 84<br />

during the period between 1994-1996 (total volume: 25,500 m 3 ). The spatial distribution of<br />

historical rockfall (1994-2003) on Highway Route 2 demonstrates it has a highly dependence<br />

on the seasonal climate, especially in autumn and winter.<br />

So far, a large number of computer numerical approaches have been developed for quantitative<br />

and modelling rockfall behavior based on different mechanical frameworks. The common<br />

numerical program for rockfall hazard analysis includes the following four methods: (1)<br />

Lumped mass approach (LMA); (2) Rigid body approach (RBA); (3) Discrete element method<br />

1 Disaster Prevention Technology Research Center, Sinotech Engineering Consultants, INC. Taipei, TAIWAN, tctsao@sinotech.org.tw<br />

698 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP054


(DEM); (4) Discontinuous deformation analysis (DDA). The approaches mentioned above<br />

provide the user the information of energy, trajectory, moving velocity, and jumping height<br />

of dangerous rockfalls, so the corresponding analysis of rockfall hazard can be performed for<br />

both advanced engineering practice and protective measures (Agliardi et al.,(2009); Cottaz<br />

et al.,(2010); Chen et al.,(2013); Leine et al., (2014); Giovanni et al.,(2015). We therefore use<br />

the RAMMS (RApid Mass Movement System) for reconstructing the 3D rockfall behavior and<br />

runout distance for understanding the characteristic of Badouzih rockfall event on August<br />

31st, 2013 (Figure 1, inset). In the paper, the available video record from dashboard camera<br />

(source: YouTube), remote sensing interpretation, geologic parameter collection, and field<br />

survey are summarized to reconstruct the failure mechanism of the rockfall. The approach<br />

allows us to build an irregular rock shape similar to the one in question instead of the typical<br />

spherical particle shape. The result of the 3D numerical simulation was compared with 2D<br />

Rocfall studies (Wei et al., (2014)). As a result a rockfall hazard map for this study site is<br />

produced and validated.<br />

Figure 1: Study area and geological setting of Badouzih, Keelung (Central Geological Survey, 1988, scale: 1/50,000).<br />

STUDY AREA AND METHODOLOGY<br />

The study area is located near Badouzih Harbor, about 10 km northeast of downtown<br />

Keelung City, northern Taiwan. The annual mean rainfall and averaged rainy days are<br />

3,772 mm and 197.6 days, respectively (Central Weather Bureau, from 1981-2010). The<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 699


toe of the hillslope is encircled by Highway Route 2 (Figures 1, red rectangular area). The<br />

study area consists mainly of calcareous massive sandstone belonging to the Taliao Formation<br />

which features ridges and escarpments along the northern rocky coast. Apparently, as shown<br />

in Figure 1, the Taliao formation of rockfall area includes two types: one is sandstone (S.S),<br />

and another one is sandstone and shale interbedded (S.S & Sh. Interbedded). The attitude of<br />

the bedding plane is approximately N81°E/8°S and the attitude of the slope surface at the<br />

source area is approximately N70°W/35°N, forming an anaclinal slope. Regarding to the<br />

regional landforms, both intense erosion and weathering processes along the northern<br />

coastline forms a landform which characterized by steep cliffs (slope: 35°-80°). In addition,<br />

the environmental geological map published by the Central Geology Survey also indicated<br />

that the study area is situated in a high rockfall susceptibility zone. The highest rainfall<br />

intensity of 94.5 mm/h (August 31, 2013 15:00-16:00) occurred in the Keelung area during<br />

the influencing period of the Typhoon Kongrey. The rockfall disaster was triggered at 16:19<br />

after orographically rainfall. The intensity-duration-frequency analysis demonstrated that the<br />

short-term rainfall of approximately a 100-yr recurrence period plays a dominant role for<br />

triggering the rockfall event.<br />

To analysis the Badouzih rockfall event, aerial image interpretation (produced in 2004),<br />

digital terrain model (resolution: 5 m), field investigation, and rainfall data in the region were<br />

prepared and analyzed to understand the triggering mechanism and dynamic process firstly.<br />

Secondly, the parameter of environmental geology and dimension of rockfall were extracted<br />

to input in the numerical simulation. Three dimensional numerical simulation RAMMS was<br />

employed to study the dynamic characteristics of the rockfall event. RAMMS is a numerical<br />

modelling tool which developed by the WSL Institute for Snow and Avalanche Research SLF,<br />

and is used to predict and assess the natural hazard such as snow avalanche, debris flow, and<br />

rockfall. The RAMMS:: ROCKFALL module suggests a hard rigid-body approach and involves<br />

many types of contact drag force on complex terrain (for detailed theoretical background<br />

please see Leine et al., (2014) and Glover et al., (2015)). RAMMS can compute runout<br />

trajectory over terrain, including jump heights, velocity, rotational velocity, total kinetic<br />

energy and contact-impact force with 3D visualization. We defined a similar rock by using<br />

rock builder while measuring the size of the rock deposited on the highway (Table 1). To<br />

ensure the appropriate simulation for Badouzih rockfall event, the different geological setting<br />

and forest roughness were considered to describe the rockfall dynamic characteristics (Table<br />

2). The initial condition of release rock was set by trial and error method to trigger the rock<br />

sliding based on the interpretation of video record. Furthermore, the batch of numerical runs<br />

for rockfall simulation was performed for the purpose of assessing the influence area in this<br />

study.<br />

700 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


l ee la Table Tab<br />

Table 1: Parameter used for reconstructing the rockfall shape in the study.<br />

le 2<br />

Parameter value reference<br />

size of rockfall [m] 4.54 * 4.09 * 3.84 m in-situ measuring<br />

elevation of source area [m] 119 in-situ measuring<br />

density [kg/m 3 ] 2,650 experimental result<br />

release point (x, y) (329028, 2781980) aerial image(TWD97)<br />

initial rotational velocity (X, Y, Z)<br />

(rad/s)<br />

(0.3, 0.5, 0) video record<br />

rock type<br />

Equant_1.3<br />

rock mass [ton] 115.44<br />

rock volume [m 3 ] 42.75<br />

l calculated ee la by Table Table<br />

RAMMS<br />

Table 2: Geologic parameters used in the RAMMS simulation<br />

No. terrain material friction reference<br />

1 TI (S.S) colluvium 0.25 (soft) in-situ measuring<br />

2 TI(S.S and Sh. interbedded) colluvium 0.25 (soft) in-situ measuring<br />

3 Road and Fishery Harbor concrete 0.40 in-situ measuring<br />

4<br />

Forest type Height [m] Drug [kg/s]<br />

medium 1.5-3.0 1500 in-situ measuring<br />

RESULTS AND DISCUSSIONS<br />

With respect to the failure mechanism of rockfall, field investigation shows the event is<br />

composed of four successive movement behavior from source area to the toe, including<br />

rolling, falling, bouncing, and rolling (Figure 2). Evidently, one can observe the collapsed rock<br />

leaves a long trace on the gentle slope, and falls at the breakpoint on the cross-sectional<br />

profile (point a in Figure 2(a)). A falling vertical height of 40 m impacted and made a deep pit<br />

in the soft talus material (point b in Figure 2(b)). The following bouncing down the slope<br />

Figure 2: (a) Analysis of rockfall trajectoryon the cross-sectionalprofile (revised form Wei et al., (2014)) and (b) field survey verification<br />

displayed on aerial image taken by UAV (source: GIS Center, FCU, Taiwan).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 701


crashed into the houses situated along the rockfall path. The rock was rolling in the lower<br />

part of the talus before it stopped on the highway.<br />

Figure 3(a) shows 3D rockfall trajectory, contact points, and velocity as a function of horizontal<br />

distance. In comparison with the observed rockfall path (erosion marks) on the aerial image,<br />

both rockfall trajectory and stopping point in RAMMS simulation is much similar to the<br />

mapping result (Figure 3(c), (d)). The post-disaster mapping form the aerial image confirmed<br />

the exactly trajectory of rockfall and was compared with the simulation. The simulated result<br />

indicates the rolling motions of rock occurs on the upper part of the the gentle slope (H=55 to<br />

120 m), then it increases the moving velocity at the steep slope with bouncing until it impact<br />

the talus (H=25 to 55 m). As shown in Figure 3(b), the RAMMS::ROCKFALL model predicts a<br />

maximum rockfall speed of 20.5 m/s at the breakpoint of the slope during the bouncing stage<br />

of the rockfall trajectory. The contact points and movement patterns predicted by the model<br />

match with field observations and preliminarily demonstrate that the RAMMS::ROCKFALL<br />

model accurately depicts the rockfall disasters.<br />

Figure 3: The results of numerical simulation RAMMS-Rockfall: (a) 3D rockfalltrajectory and (b) velocity and contact points for Badouzih<br />

rockfall event; (c) the real rockfalltrajectory on the aerial image and (d) simulation trajectory in RAMMS.<br />

702 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 4 shows rockfall speed and trajectory predicted by RAMMS compared to 2D model<br />

results reported by Wei et al. (2014). In general, both speed and trajectory predicted by the<br />

3D model are less than 2D model predictions. However the distribution of speed and kinetic<br />

energy is similar. Differences between the models may be due to (1) Rock shape: in the 2D<br />

rockfall model, rocks are represented as particles and have few contact points with the slope;<br />

therefore the resistance to movement is lower. (2) Topographic model accuracy: a DTM of<br />

the actual landslide terrain is used in the RAMMS model and rockfall is affected by the three<br />

dimensional characteristics of the terrain. Consequently, the travel path of the particles in<br />

the three dimensional model differ from the travel path affected by a single two dimensional<br />

profile and resistance to movement resulting from topography is more evident. (3) Forest<br />

drag: using parameters that describe the vegetative cover of the terrain, RAMMS applies<br />

a corresponding drag and rock fall is subjected to an additional energy dissipation effect.<br />

Figure 4: Comparison of velocity and kinetic energy for the simulation results between 3D RAMMS and 2D Rockfall.<br />

The accuracy of the DTM affects the surface roughness applied to the rockfall. As the accuracy<br />

of the DTM is increased to levels typical of LiDAR measurements, the detailed representation<br />

of the topography causes surface roughness to increase. Crosta et al., (2015) modeled rockfall<br />

using a 2, 6 and 20 m resolution DTM. The high resolution DTM caused dispersion of the<br />

particle trajectories. To better understand the distribution and “hotspot” of rockfall predicted<br />

by RAMMS::ROCKFALL model, applying the same initial conditions, the calculations were<br />

repeated 100 times. Results are shown in Figure 5 for a 5 meter resolution DTM. Within the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 703


study area, there are two zones which have a high potential for rock fall. The gully at the left<br />

of the source area has a 55% probability of rockfall and is near the travel path of rockfall that<br />

has historically caused rock fall disasters. Additionally, 30% of the rockfall travels along the<br />

right gully and the last 15% of the rockfall volume remains suspended on the slope. In this<br />

study, the rockfall energy classification methodology described in Wei et al., (2014) was<br />

applied to categorize the hazard level of the modeled rockfall trajectories. Results demonstrate<br />

that Highway Route 2 and parts of the fishing port are within the rockfall hazard area. Mean<br />

velocity and kinetic rockfall energy are predicted to be 6.9 m/s and 5,968 KJ and deposition<br />

occurs 40 to 80 m (52%) from the actual rockfall location associated with the rockfall disaster.<br />

These results demonstrate that the RAMMS::ROCKFALL model is more effective than the 2D<br />

model for identifying rockfall disaster extent. Therefore, RAMMS may be suitable for warning<br />

and evacuation planning analysis.<br />

Figure 5: The kinetic rock energy map generated from batch runs in RAMMS: Rockfall (grid cell: 5x5 m).<br />

CONCLUSIONS<br />

The well-known Badouzih rockfall hazard triggered by rainfall on August 31st, 2013 in<br />

Taiwan was explored by 3D numerical approach in the study. RAMMS::ROCKFALL is able to<br />

integrate the detailed block shape, terrain material, and initial condition to modelling<br />

three-dimensional rockfall event. With comparing to the 2D numerical simulation in<br />

Badouzih rockfall event, the 3D simulation reveals the resolution of input DTM (surface<br />

roughness) and rock shape are main influenced factors to control the moving trajectory under<br />

704 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


the same initial and boundary conditions. However, the rolling, slipping and bouncing<br />

trajectory in Badouzih rockfall simulation presents a similar result in comparison with field<br />

survey. For the demand of reducing disaster consequences, the hazard map which associated<br />

with rock mass strength assessment (frequency) and numerical simulation (intensity) around<br />

alpine region can help predicting future rockfall occurrence.<br />

REFERENCES<br />

- Agliardi F., Crosta G.B., Frattini P. (2009). Integrating rockfall risk assessment and counter<br />

measure design by 3D modeling techniques. Nat Hazards Earth Syst Sci 9:1059-1073.<br />

- Chen G.Q., Zhen L., Zhang Y.B., Wu J. (2013). Numerical simulation in rockfall analysis: a<br />

close comparison of 2D and 3D DDA. Rock Mech Rock Eng 46:527-541.<br />

- Cottaz Y., Barnichon J.D., Badertscher N., Gainon F. (2010). PiR3D, an effective and<br />

userfriendly 3D rockfall simulation software: formulation and case-study application. Rock<br />

Slope Stability Symposium, Paris.<br />

- Crosta G.B., Agliardi F., Frattini P., Lari S. (2105). Key issues in rock fall modeling, hazard<br />

and risk assessment for rockfall protection. G. Lollino et al. (eds.), Engineering Geology for<br />

Society and Territory 2: 43-57.<br />

- Glover J., Bartelt P., Christen M., Gerber W. (2015). Rockfall-simulation with irregular rock<br />

blocks. G. Lollino et al. (eds.), Engineering Geology for Society and Territory 2: 1729-1733.<br />

- Leine R.I., Schweizer A., Christen M., Glover J., Bartelt P., Gerber W. (2014). Simulation of<br />

rockfall trajectories with consideration of rock shape. Multibody Syst Dyn 32(2): 241-271.<br />

- Wei L.W., Chen H., Lee C.F., Huang W.K., Lin M.L., Chi C.C., Lin H.H. (2014). The mechanism<br />

of rockfall disaster: A case study from Badouzih, Keelung, in northern Taiwan. Engineering<br />

Geology 183: 116-126.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 705


706 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

Leben<br />

mit<br />

Naturrisiken


Hazard and Risk Mitigation<br />

(structural, nonstructural measures, insurance)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 707


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Integrated bed-load and driftwood retention in Kien -<br />

Findings from model-based testing and the 2011 flood<br />

Geschiebe- und Schwemmholzrückhalt Kien -<br />

Erkenntnisse aus den Modellversuchen und dem<br />

Hochwasser 2011<br />

Guido Lauber, Dr. 1 ; Jürg Speerli, Prof. Dr. 2 ; Warin Bertschi, M.D. 1 ; Armin Hemmi 1<br />

ABSTRACT<br />

During the 2005 flood,prolonged rainfall and high peak flows led to large quantities of bedload<br />

and driftwood causing overtopping at several locations. Following the events a protection<br />

project was launched which included a driftwood rack as well as a sediment retention<br />

basin. These solutions were designed and optimised using a hydraulic model. Between<br />

2007-2010 the various phases of the project were executed,including the expansion of an<br />

existing channel in the village. Throughout the flood of 2011, with peak flows matching a<br />

1/100-year event, hardly any driftwood was collected when compared to the flood in 2005.<br />

Such a scenario was considered unlikely and would have led to a large sediment discharge<br />

(lower efficiency of the sediment retention system). During the latter stages of the flood,<br />

the sediment discharge remain low as sufficient small-sized deadwood blocked the openings<br />

of the retention system. The design of these openings as well as the prediction and significance<br />

of driftwood are linked to the interaction of the floods as well as the bed-load and<br />

driftwood movement, remaining very complex and limited by uncertainties.<br />

ZUSAMMENFASSUNG<br />

Das Hochwasser vom 20.-22. August 2005 führte im Alpenraum zu grossräumigen Überschwemmungen.<br />

Im Kanton Bern war vor allem das Berner Oberland stark betroffen.<br />

Die Chiene beförderte sehr grosse Geschiebe- und Schwemmholzmengen zu Tal, was in den<br />

Dörfern Kien und Reichenbach im Kandertal zu massiven Ausuferungen führte. Auf der<br />

Grundlage einer detaillierten Ereignisanalyse wurden die Schutzprojekte entlang der Chiene<br />

in Kien und weiter oben im Kiental Boden erarbeitet. In Kien wurden u.a. eine Aufweitung<br />

des Gerinnes und ein Geschiebe- und Schwemmholzrückhalt projektiert. Das komplizierte<br />

Zusammenspiel von Geschiebe und Holz im Rückhaltebecken wurde in Modellversuchen an<br />

der HSR Hochschule für Technik Rapperswil untersucht und die daraus gewonnenen<br />

Erkenntnisse in der Projektierung berücksichtigt. Die verschiedenen Schutzbauwerke wurden<br />

in Etappen zwischen 2007 und 2010 realisiert. So war das Gesamtprojekt zum Zeitpunkt des<br />

Hochwassers im Oktober 2011 fertiggestellt und wurde einem ersten 1:1 Stresstest unterzo-<br />

1 Emch+Berger AG, Spiez, SWITZERLAND, spiez@emchberger.ch<br />

2 HSR Hochschule für Technik Rapperswil, Switzerland<br />

708 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP081


gen. In diesem Bericht werden kurz die Kernaussagen aus der Projektierung und Modellierung<br />

zusammengefasst, um daraus die Erkenntnisse aus dem Hochwasser 2011 aufzuzeigen.<br />

KEYWORDS<br />

flood protection; hydraulic modeling; event documentation; driftwood; bedload retention<br />

GEFAHRENSITUATION UND SCHUTZKONZEPT<br />

Während dem Sommerhochwasser 2005 hat die Chiene in Kien eine Abflussspitze von<br />

120-140 m 3 /s (HQ 100<br />

: 120 m 3 /s) erreicht. Insgesamt wurden während dem Ereignis 80‘000-<br />

100‘000 m 3 Geschiebe und 4‘000-6‘000 m 3 Schwemmholz mobilisiert und ein Grossteil davon<br />

auf dem Schwemmkegel in Kien abgelagert (s. Abbildung 1).<br />

Im Rahmen der Lokalen Lösungsorientierten Ereignisanalyse (Emch+Berger et al., 2006)<br />

wurden zum Schutz der Siedlungsgebiete Kien und Reichenbach eine Vielzahl unterschiedli-<br />

Abbildung 1: Aufnahmen vom Chiene-Hochwasser 2005 im Dorf Kien. Linkes Bild: Luftaufnahme vom Dorf Kien mit dem Standort der<br />

Dorfbrücke (roter Kreis). Rechtes Bild: Holzablagerungen bei der Dorfbrücke nach dem Hochwasser.<br />

cher Schutzmassnahmen geprüft. Die Bestvariante wurde im Rahmen eines Wasserbauplans<br />

(Emch+Berger et al., 2006) weiterbearbeitet und genehmigt. Sie sieht oberhalb von Kien<br />

auf dem Kegelhals die Realisierung einer Geschiebesperre mit vorgelagertem Schwemmholzrechen<br />

(s. Abbildung 2) sowie im Unterlauf (Schwemmkegel) eine Aufweitung des Gerinnes<br />

mit Erosionsschutz mittels Blocksteinschwellen und Blocksteinrampen bis zur Mündung in<br />

die Kander vor (Ausbauwassermenge plus Freibord). Der Dimensionierung wurde das<br />

Hochwasserereignis vom August 2005 zugrunde gelegt mit 70‘000 m 3 Geschiebe, 5‘000 m 3<br />

Schwemmholz und einer Abflussspitze von 120 m 3 /s.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 709


Abbildung 2: Linkes Bild: Hochwasserschutzmassnahmen Chiene in Kien - Übersicht Gesamtkonzept mit Rückhaltebecken (grün), Gerinneaufweitung<br />

und –stabilisierung mittels Blocksteinschwellen (orange), Blocksteinrampen (gelb), neue Dorfbrücke (pink), Damm<br />

Überlastkorridor (orange Linie). Rechtes Bild: Bau des vorgelagerten Schwemmholzrechens (2010) mit dahinterliegender Geschiebesperre.<br />

FUNKTION VON GESCHIEBESAMMLERN<br />

Die wichtigste Funktion eines Geschiebesammlers ist der Rückhalt von Geschiebe.<br />

Die Geometrie des Abschlussbauwerkes beeinflusst den Geschieberückhalt in grossem Masse<br />

(Zollinger 1983). Folgende Mechanismen führen zu einer Geschiebeablagerung im Sammlerraum<br />

(s. Abbildung 3):<br />

– (1) Reduktion der Abflusstiefe durch Gerinneaufweitung<br />

– (2) Reduktion des Sohlengefälles<br />

(3) Wasseraufstau und Seebildung im Geschiebesammler<br />

– (4) direkte Behinderung des Geschiebetriebes durch das Abschlussbauwerk<br />

Abbildung 3: Ablagerungsmechanismen in einem Geschiebesammler im Grundriss a) und Schnitt b): Gerinneaufweitung (1),<br />

Gefällsknick (2), Wasseraufstau (3), direkte Behinderung des Geschiebetriebs durch Abschlussbauwerk (4) (Zollinger 1983).<br />

Mit einer dem Abschlussbauwerk vorgelagerten Rechenkonstruktion wird das Schwemmholz<br />

im Zustand der Seebildung durch den Rechen zurückgehalten (Lange und Bezzola 2006).<br />

710 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


MODELLVERSUCHE GESCHIEBE- UND SCHWEMMHOLZRÜCKHALT<br />

Zur Überprüfung der Interaktion von Schwemmholz- und Geschieberückhalt wurden vorab<br />

an der HSR Versuche am hydraulischen Modell (Mstb. 1:35) durchgeführt (Speerli und<br />

Stucki, 2009). Abflüsse mit freier Oberfläche stehen unter dem Einfluss der Trägheits- und<br />

Schwerkraft, womit die Froude-Zahl massgebend wird. So können mit dem Massstabsfaktor<br />

= 35 und dem Ähnlichkeitsgesetz nach Froude die Werte aus dem Modell in Naturwerte<br />

umgerechnet werden.<br />

Als Eingangsgrössen dienten einerseits das Hochwasser 2005 mit unterschiedlichen<br />

Schwemmholzmengen sowie das EHQ Ereignis. Von einem Schwemmholzaufkommen in<br />

der Chiene kann aufgrund der Einzugsgebietsverhältnisse grundsätzlich ausgegangen werden.<br />

Deshalb stellt ein grosses geschiebeführendes Hochwasser ohne Holz ein eher unwahrscheinliches<br />

Extremereignis dar.<br />

Der Geschieberückhalt ist so konzipiert, dass sich ab einem Abfluss von 45 m 3 /s bzw. einer<br />

Verklausung der Durchlässe im Geschiebesammler ein See bildet und Schwemmholz an der<br />

Wasseroberfläche in Richtung Schwemmholzrechen schwimmt.<br />

LAGE UND DIMENSION DES RECHENS<br />

Bei grossen Holzmengen, wie sie vor allem im Überlastfall zu erwarten sind, bildet der vorgelagerte<br />

Schwemmholzrechen quasi einen zweiten, vorgelagerten höheren Geschieberückhalt.<br />

Einerseits können dadurch im Überlastfall auch beträchtlich grössere Geschiebemengen<br />

als die Dimensionierungsmengen zurückgehalten werden, andererseits steigen aber auch<br />

die Sohle und damit der Wasserspiegel im Rückhaltebecken entsprechend an (s. Abbildung<br />

4). Das rechnerische Bestimmen dieser Effekte ist mit einigen Unsicherheiten behaftet.<br />

Im hydraulischen Modell konnten unterschiedliche Szenarien untersucht und entsprechende<br />

Wasserspiegelkoten bestimmt werden (Sensitivitätsanalyse). Es sollte ein möglichst robustes<br />

Rückhaltesystem gefunden werden, welches unabhängig von diesen Unsicherheiten für<br />

grosse und kleine Geschiebe- und Schwemmholzmengen zuverlässig funktioniert.<br />

Abbildung 4: Linkes Bild: Schwemmholzrechen Varianten mit kurzem und langem Rechen. Rechtes Bild: Prinzipskizze: Einfluss Standort<br />

des Rechens auf Dammhöhe Geschiebesammler.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 711


Bei der Variante „kurzer Rechen“, welcher an den linksseitigen Erddamm des Sperrenbauwerks<br />

anschliesst, führt der Auflandungsprozess im Geschiebesammler zu einem sehr hohen<br />

seitlichen Damm (s. Abbildung 5): Eine der Hauptströmungen im Geschiebesammler erfolgte<br />

mehrheitlich entlang der linksseitigen natürlichen Berandung und des anschliessenden<br />

Erdammes. Dies führte dazu, dass sich das Geschiebe oberhalb des Rechens in hohem Masse<br />

in diesem Bereich ablagerte. Dies ist einerseits aus ästhetischen Gründen nicht erwünscht<br />

und andererseits bezüglich der Befahrbarkeit ungünstig, weil die Zufahrtstrasse über den<br />

Damm geführt werden muss (Platzbedarf, Steigungen).<br />

Abbildung 5: Linkes Bild: Prinzipskizze Variante kurzer Rechen, rechtes Bild: Modellversuch.<br />

Deshalb wurde eine etwa 15 m stromaufwärts verschobene Variante mit „langem Rechen“<br />

geprüft, welche nicht an den Damm, sondern direkt an das neben der Strasse steil ansteigende<br />

natürliche Terrain anschliesst (s. Abbildung 6). Dadurch verteilt sich der enorme Holzteppich<br />

besser über den Rechen und vor allem bleibt der linksseitige Damm des Sperrenbauwerks<br />

praktisch unbeeinflusst von der Höhe des Schwemmholz-Rückstaus, was sich auch<br />

sehr positiv auf die Überlastsicherheit desselben auswirkt.<br />

Der lange Schwemmholzrechen ist 80 m lang, die Rechenstäbe 10 m hoch über der Flusssohle,<br />

die Rechenstäbe 1 m dick mit einem lichten Stababstand von 2.7 m dazwischen.<br />

Abbildung 6: Linkes Bild: Prinzipskizze Variante langer Rechen, rechtes Bild: Modellversuch am langen Rechen.<br />

712 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


GESCHIEBEAUSTRAG MIT UND OHNE SCHWEMMHOLZ<br />

Wie erwähnt, wird der Geschieberückhalt durch grosse Mengen Schwemmholz am Rechen<br />

erhöht. Wenn genügend Holz im Rechen verklaust, passiert praktisch kein Geschiebe den<br />

Rechen, dies gilt aber nur bis zum Erreichen der Hochwasserspitze (HQ 100<br />

). Beim abklingenden<br />

Hochwasser wird auch bei einem noch so mächtigen Holzteppich am Rechen eine nicht<br />

zu vernachlässigende Menge an Geschiebe unter dem Holzteppich hindurch ausgetragen,<br />

natürlich vorausgesetzt, der Sperrendurchlass ist nicht verklaust. Dies ist vor allem damit zu<br />

erklären, dass (sobald keine Seebildung mehr vorhanden ist) die Strömung im Geschiebesammler<br />

das abgelagerte Lockermaterial ohne Deckschicht und Verfestigung sehr einfach<br />

mobilisieren kann und der Gradient am Ende der Ablagerungen zur Sperre hin sehr steil ist<br />

(s. Abbildung 7).<br />

Abbildung 7: Linkes Bild: Geschiebeaustrag beim abklingenden Hochwasser ohne See, rechtes Bild Situation bei Seebildung.<br />

Im Versuch HQ 100<br />

, lang<br />

mit Schwemmholz betrug die Austragsrate von Geschiebe immerhin<br />

35‘000 m 3 von insgesamt 60‘000 m 3 (s. Abbildung 8 links).<br />

Wenn gar kein Schwemmholz vorhanden ist, breiten sich die Geschiebeablagerungen aufgrund<br />

der Seebildung deltaförmig von der Stauwurzel bis zur Geschiebesperre aus und der<br />

Geschiebeaustrag beginnt, sobald das Geschiebe die Sperre erreicht hat. Im absteigenden Ast<br />

der Hochwasserganglinie verschwindet die Seebildung und die Geschiebeaustragungsrate<br />

Abbildung 8: Linkes Bild: Geschiebeaustrag im hydraulischen Modell H Q100 lang<br />

mit Schwemmholz, rechtes Bild: HQ 100 lang<br />

ohne<br />

Schwemmholz. Der Geschiebeaustrag wurde während dem Ganglinienversuch insgesamt über 8 Zeitintervalle gemessen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 713


steigt massiv an, falls kein Schwemmholz vorhanden ist. Dies führte zu einer Austragsrate<br />

von 50‘000 m 3 der insgesamt 60‘000 m 3 . Der Geschiebesammler wird also praktisch wieder<br />

entleert (s. Abbildung 8 rechts).<br />

Der Geschiebeaustrag kann durch eine Verkleinerung der Durchlassöffnungen reduziert<br />

werden. Dadurch werden aber auch kleinere Hochwasser zu Geschiebeablagerungen im<br />

Becken führen, was wiederum aufgrund der steigenden Unterhaltskosten (häufigere Ausbaggerungen)<br />

nicht erwünscht ist. Hier musste ein Optimum gefunden werden zwischen<br />

Sicherheit und Unterhalt.<br />

Wesentliche Erkenntnisse aus den Modellversuchen:<br />

– Die hydraulischen Modellversuche zeigen, dass ohne Schwemmholz und bei der Realisierung<br />

von zu grossen Durchlassöffnungen der Wirkungsgrad des Geschiebesammlers stark<br />

reduziert wird.<br />

– Mit kleinen Durchlassöffnungen und einem minimalen Holzeintrag von 1'000 m 3 konnte<br />

ein deutlich höherer Wirkungsgrad erreicht werden als ohne Schwemmholzbeigabe<br />

(Schwemmholzteppich am Rechen verzögert bzw. reduziert den Geschiebeaustrag).<br />

– Die Abmessungen der Durchlassöffnungen, die Lage und Dimension des Schwemmholzrechens<br />

sowie die Höhe des linksseitigen Dammes konnten ermittelt werden. Die beiden<br />

Durchlassöffnungen weisen eine Höhe von 0.75 m auf. Die ursprüngliche Öffnungsbreite<br />

wurde von je 7.5 m auf je 5.0 m reduziert. Die Grösse der Durchlassöffnungen kann durch<br />

Entfernen oder Hinzufügen von Stahlbalken verändert werden, so dass diese später nach<br />

Bedarf an die Erkenntnisse und Erfahrungen angepasst werden können.<br />

– Im Überlastfall (EHQ = 200 m 3 /s) wird die Strasse über den Rückhaltedamm mit mobilen<br />

Dammbalken versperrt. So kann bei einem Holzeintrag von 10‘000 m 3 knapp 137‘000 m 3<br />

Geschiebe zurück gehalten werden. Das entspricht mehr als dem doppelten potentiellen<br />

Rückhaltevolumen.<br />

HOCHWASSER 2011<br />

Am 10. Oktober 2011 hat das Zusammentreffen von intensiven Niederschlägen mit der<br />

Schmelze von Neuschnee ein starkes Hochwasser im Kandertal und insbesondere im Teileinzugsgebiet<br />

der Chiene verursacht. Für die Chiene in Kien wurde eine Abflussspitze von<br />

ca. 80-110 m 3 /s rekonstruiert. Insgesamt wurden im Geschiebesammler von Kien 25‘000-<br />

30‘000 m 3 Geschiebe aber lediglich 100-150 m 3 loses Schwemmholz abgelagert (s. Abbildung<br />

9). Das Ereignis vom Oktober 2011 war im Vergleich zum Hochwasser 2005 kleiner bzw. es<br />

handelte sich um ein kurzes Ereignis mit hoher Abflussspitze. Dadurch wurden eine deutlich<br />

kleinere Geschiebemenge und praktisch kein Schwemmholz (ausser geringe Mengen Totholz)<br />

mobilisiert. Die kleinen Mengen sind auch dadurch zu erklären, dass beim Ereignis 2005<br />

bereits sehr viel Material ausgeräumt wurde, bzw. die Bacheinhänge im Nachgang an das<br />

Ereignis ausgeholzt wurden.<br />

714 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 9: Fotos vom Hochwasser vom 10. Okt. 2011 (oben links) Schwemmholzrechen (oben rechts) Überfall Geschiebesperre (unten<br />

links) aufgeweitete Chiene oberhalb der Dorfbrücke (unten rechts) Geschiebe- und Schwemmholzablagerungen oberhalb des Rechens.<br />

ERKENNTNISSE UND DISKUSSION<br />

Nachfolgend sind die wesentlichen Erkenntnisse der hydraulischen Modellversuche und<br />

der während dem Hochwasser 2011 gemachten Beobachtungen aufgeführt:<br />

– Ein zuverlässiger und robuster Geschieberückhalt wird durch die Seebildung und eine<br />

entsprechend dimensionierte Durchlassöffnung gewährleistet.<br />

– Aber auch bei Seebildung beginnt ab dem Zeitpunkt, ab welchem der Sammler mit<br />

Geschiebe gefüllt ist, ein nicht unbedeutender Austrag von Geschiebe.<br />

– Dieser Austrag wird durch allfälliges Schwemmholz im Rechen reduziert (wie die Modellversuche<br />

zeigten).<br />

– Die Bandbreite der bei einem Ereignis angeschwemmten Schwemmholzmenge kann sehr<br />

gross sein, wie die Ereignisse 2005 (4‘000-6‘000 m 3 ) und 2011 (100-150 m 3 ) gezeigt haben.<br />

– In Kien wurden die Durchlassöffnungen so dimensioniert, dass bei einem Abfluss von<br />

45 m 3 /s die Seebildung einsetzt. Mit diesen Öffnungen wird im Modell ohne Schwemmholz<br />

ein Geschiebeaustrag erreicht, welcher an der obersten akzeptierbaren Grenze liegt<br />

(Optimierung zwischen Unterhaltskosten und Sicherheit).<br />

– Beim Ereignis 2011 war der Schwemmholzanfall sehr gering, so dass das wenige Schwemmholz<br />

am Rechen für den Geschiebeaustrag ohne Bedeutung blieb.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 715


– Weil aber bereits geringe Mengen an Totholz genügten, um die kleinen Durchlassöffnungen<br />

an der Sperre zu verklausen, wurde der Geschiebeaustrag beim abklingenden<br />

Hochwasser reduziert.<br />

– Der Rechen ist nun so konzipiert, dass grössere Baumstämme zurückgehalten werden,<br />

gröbere Äste und kleinere Stämme aber bei einem ansteigenden Hochwasser den unteren<br />

Bereich des Rechens möglichst passieren können, bis schliesslich bei vollständiger<br />

Seebildung im oberen Bereich (durch ein grobes Netz) sämtliches Holz zurückgehalten<br />

werden soll. Damit soll ein Verklausen der Durchlässe durch kleinere Holzteile beim<br />

ansteigenden Hochwasser bewusst ermöglicht werden (Reduktion des Geschiebeaustrags<br />

beim abklingenden Hochwasser).<br />

ZUSAMMENFASSUNG<br />

Beim Hochwasser 2005 führten lang anhaltend starke Niederschläge neben hohen Abflussspitzen<br />

vor allem zu sehr grossen Geschiebe- und Schwemmholzmengen, welche schliesslich<br />

grossflächige Ausuferungen verursachten. Der daraufhin projektierte Geschiebesammler<br />

mit Schwemmholzrechen wurde im hydraulischen Modell überprüft und optimiert.<br />

Zwischen 2007 - 2010 wurden die Schutzmassnahmen umgesetzt, d.h. in Etappen wurden<br />

der Geschiebesammler und der Schwemmholzrückhalt gebaut sowie das Gerinne im Dorf<br />

aufgeweitet. Während dem Hochwasser 2011, mit der Abflussspitze eines knapp<br />

100-jährlichen Ereignisses, wurde im Gegensatz zu 2005 kaum Schwemmholz mobilisiert.<br />

Ein derartiges Ereignis wurde während der Konzeption des Schutzprojektes als eher unwahrscheinliches<br />

Extremereignis betrachtet, welches zu einem erhöhten Geschiebeaustrag führen<br />

könnte (tieferer Wirkungsgrad Geschieberückhalt).<br />

Der Geschiebeaustrag beim abklingenden Hochwasser 2011 war trotzdem klein, weil klein -<br />

formatiges Totholz genügte, um die relativ schmalen Durchlassöffnungen zu verklausen.<br />

Die Dimensionierung der Durchlassöffnungen von Geschiebesammlern sowie die Prognose<br />

und Berücksichtigung von Schwemmholz bei der Auslegung einer Schutzmassnahme sind<br />

durch die Interaktion der Prozesse Hochwasser, Geschiebe- und Schwemmholztransport<br />

komplex und mit Unsicherheiten behaftet. Hydraulische Modellversuche können dazu<br />

beitragen, das Prozessverständnis massgeblich zu erhöhen.<br />

716 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


LITERATUR<br />

- Emch+Berger AG Bern, Hunziker, Zarn & Partner AG und Geotest AG (2006).<br />

Lokale Lösungs-orientierte Ereignisanalyse (LLE) Reichenbach.<br />

- Emch+Berger AG Bern und Hunziker, Zarn & Partner AG (2006). Wasserbauplan<br />

Hochwasserschutz Chiene in Kien.<br />

- Speerli J., Stucki A., HSR Hochschule für Technik Rapperswil, Institut für Bau und Umwelt<br />

(2009). Modellversuche Chiene.<br />

- Lange D., Bezzola G.R., VAW ETH Zürich (2006), VAW Mitteilung Nr. 188, Schwemmholz -<br />

Probleme und Lösungsansätze.<br />

- Zollinger, F., ETH Zürich (1983), Die Vorgänge in einem Geschiebeablagerungsplatz.<br />

Ihre Morphologie und die Möglichkeit einer Steuerung. Dissertation an der Eidgenössischen<br />

Technischen Hochschule Zürich, Diss. ETH Nr. 7419.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 717


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Freeboard calculation of near critical flow<br />

Calcul de la revanche pour les écoulements proche<br />

d'un écoulement critique<br />

Niki Antonina Beyer Portner, Dr 1 ; Patrick Fellay, Bachelor of science in Civil Engineering 2 ; Karim Laribi, Master of science in<br />

Civil Engineering 3 ; Jean-Louis Boillat, Dr 4<br />

ABSTRACT<br />

The hazard assessment of the Vièze River crossing the city of Monthey showed that larges<br />

zones in the city could be flooded due to hydraulic capacity limitation of bridges.<br />

The authorities of Monthey thus decided to elaborate a flood protection project. In this<br />

context, a group of specialists was appointed to evaluate possible protection measures.<br />

In 2013, when the project was practically achieved, the Commission for Flood Protection<br />

of Switzerland published new recommendations concerning the freeboard of rivers.<br />

The required freeboard takes into account the uncertainty related to hydraulic and sediment<br />

transport computations as well as to drift blockage at bridges. The proposed conceptual<br />

approach is commonly applicable but requires to be completed in particular cases. For the<br />

Vièze River, the strict application of the guidelines leads to an unexpected over sizing,<br />

justifying the implementation of an adequate optimization process. The main focus was put<br />

on the water surface oscillations due to near-critical flow conditions.<br />

RESUME<br />

La carte des dangers de la Vièze qui traverse Monthey montre que de larges zones de la ville<br />

peuvent être inondées suite à une sous-capacité hydraulique de certains ponts.<br />

Les autorités de la ville ont par conséquent décidé de faire élaborer un projet de protection<br />

contre les crues. Un groupement de spécialistes a été mandaté pour développer des mesures<br />

de protections.<br />

En 2013, alors que le projet était pratiquement terminé, la Commission pour la Protection<br />

contre les Crues (CIPC) a publié des recommandations pour la détermination de revanche<br />

applicable aux aménagements de rivières. La revanche doit tenir compte des incertitudes dans<br />

le calcul de la ligne d’eau et des sédiments et du blocage de flottants aux ponts. Cette méthode<br />

permet de traiter la plupart des cas pratiques. Dans des cas particuliers elle doit être complétée<br />

ou étendue. Dans le cas de la Vièze, une application stricte conduit à un surdimensionnement,<br />

ce qui justifie une optimisation.<br />

L’accent est mis sur les ondulations de surface pour les écoulements proche d’un écoulement<br />

critique.<br />

1 HydroCosmos SA, Billens, SWITZERLAND, niki.beyer@hotmail.ch<br />

2 Ville de Monthey<br />

3 CERT ingénierie SA<br />

4 Hydro Boillat<br />

718 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP077


KEYWORDS<br />

Flood protection, freeboard, surface undulations<br />

INTRODUCTION<br />

La Vièze traverse la ville de Monthey, située dans la plaine du Rhône dans le Canton du<br />

Valais. Elle a donc une pente faible d’environ 1 %. La carte des dangers de 2002 (GILAT –<br />

ETEC, 2002) montre que la ville est menacée d’inondations, souvent d’intensité moyenne<br />

avec des profondeurs d’écoulement entre 0.5 et 2.0 m, dues principalement à la sous-capacité<br />

hydraulique de certains ponts. La Ville de Monthey a alors décidé de lancer un projet de<br />

protection contre les crues.<br />

Un groupement d’ingénieurs, d’urbanistes et de spécialistes en environnement a été mandaté<br />

pour évaluer les mesures possibles de protection contre les crues. Les objectifs concernent la<br />

protection contre les crues de la ville et l’intégration de la Vièze dans le réseau écologique de<br />

la plaine du Rhône. Les mesures de protection en ville requièrent une intégration harmonieuse<br />

dans le paysage urbain.<br />

L’analyse économique du projet (optimum des dommages potentiels par rapport aux coûts<br />

de construction) a confirmé que la condition de dimensionnement correspond à une crue<br />

centennale de 200 m 3 /s. Le projet élaboré consiste en une combinaison de différentes mesures :<br />

surélévation des digues en ville, rehaussement de certains ponts, abaissement du lit sur le<br />

Figure 1 : Situation de la Vièze et aménagements proposés.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 719


dernier kilomètre avant la confluence avec le Rhône et un élargissement de 500 m de long<br />

sur le secteur aval (cf. figure 1). Cet élargissement est dédié à la revitalisation du cours d’eau,<br />

au développement de la dynamique morphologique du lit et au rétablissement d’une<br />

connectivité pour la faune terrestre et aquatique. Les coûts du projet de construction sont<br />

évalués à 12 millions d’Euro.<br />

RECOMMANDATIONS CIPC<br />

En 2013, alors que le projet était pratiquement terminé, la Commission pour la Protection<br />

contre les Crues (CIPC) de l’Association Suisse pour l’Economie des Eaux a publié des<br />

recommandations pour la détermination de revanche applicable aux aménagements de<br />

rivières (CIPC, 2013). Ces recommandations visaient à standardiser la détermination de la<br />

revanche en Suisse en lien avec des paramètres spécifiques au projet, tenant compte du<br />

comportement hydraulique, du transport sédimentaire et du blocage de flottants contre les<br />

tabliers des ponts. Selon les recommandations, la revanche est ainsi composée de plusieurs<br />

éléments (cf. tableau 1), combinés par addition géométrique. En outre, la revanche doit être<br />

de 0.3 m au minimum et de 1.5 m au maximum pour les rivières du type de la Vièze.<br />

Pour la CIPC et les autorités de surveillance des aménagements de rivières, il est clair que ces<br />

recommandations doivent être appliquées aux projets cours d’eau, mais qu’elles peuvent être<br />

complétées ou étendues de cas en cas. Des dérogations sont ainsi possibles dans des situations<br />

particulières, si elles sont justifiées et étayées.<br />

Tableau 1 : Eléments composant la revanche selon les recommandations CIPC (CIPC, 2013).<br />

Dans le cas de la Vièze, l’écoulement de la rivière est proche de la condition critique (nombre<br />

de Froude, F=1) et la prise en compte de la hauteur d’énergie équivaut à systématiquement<br />

fixer la revanche à sa valeur maximale. Pour la géométrie actuelle, en considérant 1.5 m de<br />

revanche, la capacité actuelle de la Vièze se réduit à 80 m 3 /s, alors qu’elle a été dimensionnée<br />

en 1941 à ras-bord pour 200 m 3 /s environ (cf. figure 2). Le rehaussement des berges<br />

720 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


permettant de satisfaire une revanche de 1.5 m transformerait le cours d’eau en canal,<br />

confiné de part et d’autre par des hauts murs perchés au-dessus de la plaine habitée. Ceci<br />

impliquerait un impact important sur le paysage et induirait un risque potentiel supplémentaire<br />

en cas de rupture de digue. La stricte application des recommandations CIPC conduit<br />

ainsi à un surdimensionnement inattendu du profil en travers.<br />

Figure 2 : Capacité de la Vièze avec un écoulement à ras-bord et avec une revanche selon CIPC.<br />

MÉTHODOLOGIE<br />

Un modèle unidimensionnel avec transport solide a été utilisé pour analyser les écoulements<br />

de la Vièze à l’état actuel et à l’état de projet. Le modèle a été établi à l’aide du logiciel Dupiro,<br />

développé par HydroCosmos SA (www.hydrocosmos.ch) et la rugosité a été calée à l’aide<br />

d’observations lors de crues récentes. Le diamètre moyen a été déterminé sur la base d’un<br />

levé en ligne. Deux crues ont été analysées pour l’état de projet : une crue centennale avec<br />

200 m 3 /s de débit de pointe et une crue extrême avec 300 m 3 /s de débit de pointe. Le volume<br />

des sédiments transportés correspond à la capacité de transport à la limite amont du modèle.<br />

Pour la crue centennale, le volume correspond au volume annuel de sédiments estimé pour<br />

la Vièze. Il est encore supérieur à ce dernier pour la crue extrême.<br />

La Vièze est un cours d’eau canalisé entre l’entrée en ville et la confluence au Rhône. Elle<br />

est caractérisée par un tracé pratiquement rectiligne, une section quasi prismatique et par<br />

l’absence d’obstacles susceptibles de perturber l’écoulement.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 721


Toutefois, avec un nombre de Froude F variant entre 0.9 et 1.9 avec une moyenne de 1.2,<br />

la Vièze présente un écoulement systématiquement proche de la condition critique, F=1.<br />

La nature des écoulements qui en résulte est particulièrement instable car soumise à une<br />

alternance répétée de régimes fluviaux et torrentiels. Cette condition favorise la formation<br />

de ressauts hydrauliques, caractérisés par le passage d’un écoulement torrentiel (F>1) à un<br />

écoulement fluvial (F


où F1 est le nombre de Froude de l’écoulement amont et h1 et h2 les hauteurs d’eau aux<br />

limites amont, respectivement aval, du ressaut.<br />

RÉSULTATS<br />

Il est ainsi proposé de calculer l’amplitude des vagues de surface en application de la formule<br />

de Bélanger (équation 1). Les calculs effectués montrent que la revanche nécessaire associée<br />

à la formation de vagues est de l’ordre de fv = 0.5 m pour la crue de dimensionnement,<br />

respectivement fv = 0.6 m pour la crue extrême de 300 m 3 /s.<br />

En intégrant les autres éléments de la revanche selon les recommandations CIPC (cf. tableau<br />

2), la revanche nécessaire varie entre le minimum de 0.3 m et 1.1 m (cf. figure 4). Sur la<br />

figure 4, les endroits où l’écoulement est proche de l’écoulement critique sont visibles car la<br />

revanche est supérieure au minimum. Le pic vers le kilomètre 1400 est dû à un changement<br />

de section. La figure 4 montre également que la revanche peut être garantie sur de longs<br />

tronçons pour la crue de dimensionnement. Il reste un tronçon d’un kilomètre où les berges<br />

doivent être rehaussées. Ces interventions restent cependant modestes et peuvent être<br />

intégrées dans le paysage urbain. Cette réduction de la revanche est complétée par une<br />

analyse des cas de surcharge afin d’adapter les aménagements de protection pour garantir<br />

une gestion des risques résiduels pour les crues supérieures à la crue de dimensionnement<br />

(probabilité de blocage aux ponts, débordements favorisés dans des zone précises afin d’en<br />

protéger d’autres, résistance des digues à la submersion).<br />

Tableau 2 : Eléments composant la revanche selon les recommandations CIPC (CIPC, 2013) – Application à la Vièze.<br />

CONCLUSIONS<br />

Les nouvelles recommandations CIPC pour le calcul de la revanche conduisent, dans le cas<br />

de la Vièze, à un surdimensionnement des profils en travers. Tout en conservant l’esprit des<br />

recommandations, il est proposé de remplacer la revanche partielle correspondant à la<br />

hauteur d’énergie par la différence des hauteurs conjuguées d’un ressaut associé au nombre<br />

de Froude de l’écoulement. Les résultats issus de la littérature montrent que les ondulations<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 723


Figure 4 : Revanche nécessaire calculée sur le cours d’eau de la Vièze et revanche minimale imposée au projet pour la crue de<br />

dimensionnement. L’origine du kilométrage se trouve à la confluence avec le Rhône.<br />

de surface, à considérer pour la revanche, atteignent au maximum la valeur proposée et que<br />

la hauteur d’énergie surestime largement le phénomène.<br />

Selon cette méthodologie, une revanche variant entre 0.3 et 1.1 m donne un ratio raisonnable<br />

avec la profondeur d’écoulement de la Vièze. Elle permet un rehaussement des berges<br />

intégrable dans le paysage urbain de la ville de Monthey.<br />

724 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


REFERENCES<br />

- Castro-Orgaz O. and Hager W. H. (2011). Turbulent near-critical open channel flow:<br />

Serre's similarity theory. Journal of Hydraulic Engineering ASCE, May 2011, p. 497-503.<br />

- CIPC (2013).La revanche dans les projets de protection contre les crues et de l’analyse de<br />

dangers. Recommandations de la Commission pour la protection contre les crues. Revue<br />

«Eau énergie air» – Cahier 2, Baden, Suisse.<br />

- Chanson H. (1996). Free-surface flow with near-critical flow conditions. Canadian Journal<br />

of Civil Engineering, Vol. 23, No 6, p. 1272-7284.<br />

- GILAT – ETEC (2002). Concept de protection contre les crues et concept de renaturation<br />

des cours d’eau sur la commune de Monthey – Rapport technique.<br />

- Keulegan G. H. and Patterson G. W. (1940). Mathematical theory of irrotational translation<br />

waves. Journal of Research of the National Bureau of Standards, RP 1273, US Department<br />

of Commerce, 24 (1), p. 47-101.<br />

- Mandrup-Anderson V. (1978). Undular hydraulic jump. Journal of Hydraulics Divison,<br />

104 (8), P. 1185-1188.<br />

- Sinniger R. O. et Hager W. H. (1989). Constructions hydrauliques. Ecoulements stationnaires.<br />

Traité de Génie Civil, Vol. 15, PPUR, Lausanne, Suisse.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 725


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Planning of risk-based rockfall mitigation measures<br />

using 3D rockfall simulations<br />

Risiko-basierte Massnahmenplanung gegen<br />

Steinschlag mittels 3D Steinschlagsimulationen<br />

Thomas Bickel, Dipl.- Ing. 1 ; Markus Hodel, Dipl. Geograph, Akademischer Geoinformatiker 1<br />

ABSTRACT<br />

In Switzerland, in the past decades, natural hazard events caused repeatedly substantial<br />

damages to society. But limited financial resources necessitate risk-based mitigation strategies<br />

in order to fulfil the economic criteria of positive benefit-cost ratio.<br />

Meanwhile, official software tools provided by the federal authority are available for risk<br />

assessment (e.g. EconoMe, RoadRisk). Since these online-tools are initially developed for the<br />

evaluation of project prioritization and subsidization, they use standardized routines to<br />

sustain comparability.<br />

This paper presents a new approach to extend the established methodology of risk management<br />

that, however, allows a more realistic risk analysis for cost-effective rockfall mitigation<br />

measures on roads. After subdividing the investigated road section into appropriate subsections,<br />

the risk analysis is carried out for each subsection individually based on three-dimensional<br />

rockfall simulations.<br />

The implementation and results of this approach and its potential for risk analysis is illustrated<br />

on a virtual case study and compared with EconoMe 3.0.<br />

Finally, the feasibility, challenges and benefits of the extended approach are discussed with<br />

respect to mitigation project planning.<br />

ZUSAMMENFASSUNG<br />

In den vergangenen Jahrzehnten war die Schweiz wiederholt von Naturgefahrenereignissen<br />

betroffen, die erhebliche Schäden verursachten. Um die potentiell gefährdeten Personen- und<br />

Sachwerte nachhaltig zu schützen, müssen die knappen finanziellen Ressourcen priorisiert<br />

und in nachweislich Nutzen-Kosten-effiziente, risikoreduzierende Schutzmassnahmenkonzepte<br />

investiert werden.<br />

Zur Beurteilung der Projektpriorisierung und Subventionierung durch die öffentliche Hand,<br />

wurden vom Bund Berechnungsprogramme entwickelt (bspw. EconoMe, RoadRisk), die auf<br />

dem Ansatz der Nutzen-Kosten-Analyse basieren und ein wirtschaftliches Optimum<br />

1 Louis Ingenieurgeologie GmbH, Weggis, SWITZERLAND, thomas.bickel@louis-weggis.ch<br />

726 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP086


anstreben. Um die Vergleichbarkeit von Massnahmenprojekten zu gewährleisten, verwenden<br />

die Programme standardisierte und verallgemeinernde Routinen.<br />

Basierend auf der etablierten Risikostrategie präsentiert dieser Artikel eine Methodenerweiterung,<br />

die eine realitätsnahe Risikoanalyse für die Nutzen-Kosten-optimierte Massnahmenplanung<br />

gegen Steinschlag auf Linienobjekten vorschlägt. Dabei wird das zu untersuchende<br />

Linienobjekt in zweckmässige Abschnitte unterteilt und die Risikoanalyse unter Berücksichtigung<br />

der Möglichkeiten von 3D-Steinschlagsimulationen separat für jeden Teilabschnitt<br />

durchgeführt.<br />

Die Umsetzung und die Resultate dieses Ansatzes sowie das Potential für die Risikoanalyse<br />

werden an einem virtuellen Fallbeispiel vorgestellt und mit EconoMe 3.0 verglichen.<br />

Schlussendlich werden die Praxistauglichkeit und Vorteile mit Bezug auf die Schutzmassnahmenplanung,<br />

sowie zukünftige Herausforderungen diskutiert.<br />

KEYWORDS<br />

risk assessment; Rockfall; EconoMe; Risk Mitigation; Measures<br />

AUSGANGSLAGE UND ZIELSETZUNG<br />

Die schweizerische Kommission «Nationale Plattform Naturgefahren» (PLANAT) definiert<br />

Naturgefahren als hydrologische, meteorologische, geologische oder biologische Prozesse, die<br />

schädlich auf den Menschen sowie auf Sachwerte einwirken können. Somit rücken die von<br />

der Gesellschaft als Siedlungs- oder Industriegebiete genutzten oder mit Infrastrukturanlagen<br />

bebauten Räume in den Fokus der Naturgefahrenbearbeitung.<br />

Neben der ausschliesslichen Gefahrenbetrachtung (bspw. in Gefahrenkarten) hat unter dem<br />

Eindruck der Unwetterereignisse seit Ende der 1980er Jahre, die Analyse der aus Naturgefahren<br />

resultierenden Risiken an Bedeutung gewonnen (vgl. Bründl, 2015; Bründl et al., 2009).<br />

So wird das Risiko, definiert durch das Produkt der Faktoren «Schadenwahrscheinlichkeit»<br />

und «Schadenausmass», als Mass für die Gefährdung herangezogen und für die Abklärung<br />

eines Handlungsbedarfes eingesetzt.<br />

Für die Planung von Schutzmassnahmen gegen Naturgefahren wurden nach 2005 unter<br />

Federführung des Bundes Berechnungsprogramme zur Bewertung der Massnahmeneffektivität<br />

und Wirtschaftlichkeit auf der Basis der Risikooptimierung entwickelt. Die heute gebräuchlichen<br />

Programme «EconoMe» und «RoadRisk» weisen aber zugunsten der Projektvergleichbarkeit<br />

einen hohen Standardisierungsgrad auf, da sie als Entscheidungsgrundlage<br />

für die Projektpriorisierung und Mittelzuteilung durch den Bund gedacht sind (BAFU, 2015;<br />

ASTRA, 2015). Dem gestiegenen Anspruch in der Massnahmenplanung an eine realitätsnahe<br />

und robuste Ermittlung sowie Abbildung der Risikoverteilung im Schadenperimeter kann die<br />

einfache Standardanwendung der genannten Programme nicht genügen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 727


Der hier vorgestellte Ansatz basiert auf dem Risikokonzept gemäss Strategie Naturgefahren<br />

Schweiz der PLANAT (Bründl, 2009) und zielt auf die detailliertere Analyse der Sturzrisiken<br />

auf beliebigen Teilabschnitten (TA) entlang linienförmiger Schadenobjekte (z.B. Verkehrsachsen).<br />

Die Auswirkungen dieser Methodenerweiterung auf die modellierte Risikoverteilung<br />

werden anhand eines fiktiven Beispiels vorgestellt und mit „EconoMe 3.0“ verglichen. Auf<br />

den Vergleich mit „RoadRisk“ wird dagegen verzichtet, da dieses Programm auch betriebswirtschaftliche<br />

Aspekte einbezieht.<br />

METHODENERWEITERUNG UNTER BERÜCKSICHTIGUNG VON 3D-STURZMODELLIERUNGEN<br />

Die Umsetzung des Risikokonzepts Naturgefahren in „EconoMe“ (Bründl et al., 2015) bildet<br />

die Ausgangslage für die hier vorgestellte punktuelle Methodenerweiterung. Das grundsätzliche<br />

methodische Vorgehen bleibt dabei unbeeinflusst.<br />

Grundgedanke und Motivation für die Erweiterung der bestehenden Methodik ist die<br />

stärkere Gewichtung der 3D-Sturzmodellierungen zur detaillierten Beschreibung potentieller<br />

Sturzprozesse in der Wirkungsanalyse (Analyse von Art, Ausdehnung und Intensität einer<br />

Gefährdung durch die zugrundeliegenden Szenarien). Gleichzeitig wird die Risikoanalyse<br />

um einen Faktor N(Fr) zur Berücksichtigung einer möglichen Fragmentierung des Ausbruchvolumens<br />

erweitert (in Anlehnung an den in „RoadRisk“ verwendeten „Ereignistyp ET“).<br />

Die Anzahl fragmentierter Sturzkörper N(Fr) ist abhängig vom Verhältnis der Volumina der<br />

Ausbruchs- und Wirkungsszenarien und ist im Rahmen der Feldaufnahmen gutachterlich<br />

zu bestimmen.<br />

Nach der Wirkungsanalyse ist in der Expositionsanalyse (Analyse von Lage, Anzahl, Art,<br />

Präsenz und Wert potentiell gefährdeter Objekte im Beurteilungsperimeter) eine Unterteilung<br />

des zu beurteilenden Strassenperimeters in eine Anzahl gleich langer Teilabschnitte N(TA)<br />

notwendig, wobei deren Länge zweckmässig zu wählen ist. Die Sturzintensitäten auf Höhe<br />

der Verkehrsachse werden nicht über den ganzen Projektperimeter gemittelt, sondern über<br />

die einzelnen Teilabschnitte. Folglich müssen auch die mit der Sturzintensität verknüpften<br />

Parameter der Konsequenzenanalyse (Analyse des Schadenausmasses durch Verschnitt der<br />

Erkenntnisse aus Wirkungs- und Expositionsanalyse) pro Teilabschnitt abgeleitet werden.<br />

Gemäss dem Leitfaden zum Risikokonzept kann die räumliche Auftretenswahrscheinlichkeit<br />

p(rA) verschieden abgeschätzt werden (vgl. Bründl, 2009, Kap. 3.4.1.3):<br />

– 1) Es kann für jede Prozessart und jedes Szenario ein Faktor bestimmt werden, der festlegt,<br />

welcher Flächenanteil im Mittel bestrichen wird. Diese Vorgehensweise ist in den bestehenden<br />

Berechnungsprogrammen umgesetzt, wobei dem Anwender Richtwerte zur standardisierten<br />

Verwendung vorgeschlagen werden.<br />

– 2) Die p(rA) kann mit Hilfe eines Ereignisbaumes abgeschätzt werden. Diese Variante wird<br />

im vorgestellten Ansatz verfolgt, wobei die drei verwendeten Kriterien A bis C in Abbildung<br />

1 dargestellt sind.<br />

728 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Kriterium A im Ereignisbaum ist die gutachterlich festzulegende Anzahl an Sturzkörpern je<br />

Ereignis N(Fr). Das Kriterium B stellt die Erreichenswahrscheinlichkeit der Teilabschnitte p(E)<br />

TA (Wahrscheinlichkeit, dass ein betrachteter Teilabschnitt von einem Sturzereignis erreicht<br />

wird) dar. Deren Höhe wird aus 3D-Sturzmodellierungen abgeleitet und errechnet sich zu<br />

p(E)TA = n(Sk)TA/N(Sk), wobei n(Sk)TA die Anzahl Sturzkörper, welche den jeweiligen<br />

Teilabschnitt erreichen, und N(Sk) die Summe aller modellierten Sturzkörper der betrachteten<br />

Prozessquelle ist. Das Kriterium C des Ereignisbaumes berücksichtigt den effektiv vom<br />

Ereignis bestrichenen Anteil des Teilabschnittes und wird durch die räumliche Auftretenswahrscheinlichkeit<br />

innerhalb eines einzelnen Teilabschnittes p(rA)TA = d1/lTA beschrieben,<br />

wobei d1 die grösste Kantenlänge des fragmentierten Sturzkörpers und lTA die Länge eines<br />

Teilabschnittes ist.<br />

Abbildung 1: Ereignisbaum zur Herleitung der räumlichen Auftretenswahrscheinlichkeit p(rA)*TA für Sturzprozesse im Teilabschnitt TA<br />

Unter Berücksichtigung der oben aufgeführten Kriterien errechnet sich die erweiterte räumliche<br />

Auftretenswahrscheinlichkeit für Sturzprozesse pro Teilabschnitt p(rA)*TA folglich zu:<br />

Formel 1: Formel zur Abschätzung der erweiterten räumlichen Auftretenswahrscheinlichkeit p(rA)*TA für Sturzprozesse im<br />

Teilabschnitt TA.<br />

Formel 2: Formel zur Abschätzung der erweiterten räumlichen Auftretenswahrscheinlichkeit p(rA)*TA für Sturzprozesse im<br />

Teilabschnitt TA unter Berücksichtigung der Teilfaktoren.<br />

Unter Einbezug der Teilfaktoren ergibt sich:<br />

Mit der Verwendung von p(rA)*TA können Risiken in Anlehnung an die bestehende<br />

Methodik differenziert nach Teilabschnitten errechnet werden. Das wahrscheinliche<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 729


Schadenausmass für Personen auf Strassen Aw(PS)TA (vgl. Bründl, 2009, Formel 3.14)<br />

errechnet sich neu pro Teilabschnitt und Szenario j zu:<br />

Formel 3: Formel zur Abschätzung des wahrscheinlichen Schadenausmasses für Personen auf Strassen und mechanischen<br />

Aufstiegshilfen im Teilabschnitt TA.<br />

wobei (S)TA die gemittelte Letalität von Personen im Teilabschnitt in Abhängigkeit des<br />

Prozesses und der Intensität, β der durchschnittliche Besetzungsgrad der Strassenfahrzeuge<br />

und DTV der durchschnittliche tägliche Verkehr sind. Der Faktor gj entspricht der Länge des<br />

Teilabschnittes lTA und v der durchschnittlichen Geschwindigkeit von Fahrzeugen.<br />

Der beschriebene Ansatz kann sinngemäss in allen Arbeitsschritten der Risikoberechnung<br />

(inkl. Berechnung der Sachrisiken) entsprechend umgesetzt werden.<br />

RANDBEDINGUNGEN DES FALLBEISPIELS<br />

Als Fallbeispiel wurde ein 750 m langer Strassenabschnitt gewählt, und in 30 Teilabschnitte<br />

von 25 Metern Länge unterteilt (vgl. Abbildung 2). Die Sturzgefährdung der Strasse sowie der<br />

Verkehrsteilnehmer resultiert aus drei Prozessquellen. PQ1 grenzt unmittelbar bergseits an die<br />

Strasse an, wohingegen PQ2 und PQ3 durch einen weitläufigen Transitbereich von der Strasse<br />

getrennt sind. Im Fallbeispiel wurden die Blockgrössen gutachterlich und zur Vereinfachung<br />

ohne Berücksichtigung einer Fragmentierung (d.h. N(Fr) = 1) im Ausbruchsbereich bestimmt<br />

(Tabelle 1) und bilden die Grundlage für die 3D-Sturzmodellierungen mit Rockyfor3D (V5.1).<br />

Betrachtet werden lediglich die Risiken infolge seltener Ereignisse (WP 30–100 Jahre).<br />

Tabelle 1: Prozessquellen PQ1–3. Die aufgelisteten Werte beziehen sich auf das seltene Ereignis (WP 30–100 Jahre). d1 = grösste<br />

Kantenlänge des fragmentierten Sturzkörpers; L = Länge des potentiell gefährdeten Strassenabschnittes; p(rA) = räumliche<br />

Auftretenswahrscheinlichkeit.<br />

RESULTATE UND DISKUSSION<br />

In Abbildung 2a sind die drei Prozessquellen, die modellierten Sturzbahnen, der betrachtete<br />

Strassenabschnitt sowie dessen potentiell gefährdete Bereiche inklusive der einwirkenden<br />

Sturzintensitäten abgebildet. Es zeigt sich die Abhängigkeit der errechneten Sturzverläufe von<br />

der jeweiligen Hangmorphologie im Transitbereich (besonders von Mulden, Runsen, Kuppen,<br />

730 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 2: Situation im Beispielperimeter für die seltenen Sturzereignisse (WP 30–100 Jahre) inkl. Lage der Prozessquellen, der<br />

Sturzbahnen, qualitativer Darstellung der errechneten Risiken je Teilabschnitt und der relativen Prozessquellenanteile je Teilabschnitt.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 731


etc.). Erwartungsgemäss werden potentielle Sturzkörper in Runsen kanalisiert und es ergeben<br />

sich dort die Blockdurchgangsmaxima, wo Kanalisierungs- und Überlagerungseffekte verschiedener<br />

Prozessquellen zusammen kommen. Des Weiteren ist ersichtlich, dass in allen<br />

potentiell gefährdeten Teilabschnitten mit starken Sturzintensitäten (Ekin > 300 Kilojoule)<br />

infolge seltener Sturzereignisse gerechnet werden muss.<br />

Nicht dargestellt sind die prozentualen Anteile aller Sturzkörper, welche die Strasse gemäss<br />

Modellierung erreichen. Diese wurden für die Prozessquellen PQ1, PQ2 bzw. PQ3 zu 66%,<br />

44% bzw. 20% errechnet, wobei gesamthaft 37% aller Sturzkörper bis auf die Strasse<br />

stürzen.<br />

Abbildung 2b stellt die einzelnen 25 m-Abschnitte der Strasse inkl. der mittels erweiterter<br />

Methodik errechneten kollektiven Risiken (Personen und Sachrisiken) dar. In den Kreisdiagrammen<br />

sind sowohl die Summen je Teilabschnitt als auch die relativen Prozessquellenanteile<br />

je Teilabschnitt dargestellt. In den Teilabschnitten mit hohen Blockdurchgängen werden<br />

die grössten Risiken errechnet. Sturzkörper aus der Prozessquelle PQ1 wirken flächig auf eine<br />

Vielzahl von Teilabschnitten. Demgegenüber wirken die Ereignisse aus den Prozessquellen<br />

PQ2 und PQ3 nur auf wenige Teilabschnitte, tragen dort jedoch massgeblich zum hohen<br />

Risiko bei und eine Überlagerung der Wirkungsbereiche führt zu deutlichen Risikospitzen.<br />

Die Teilabschnitte TA01–TA03, TA26, TA27 und TA30 sind nicht gefährdet. Die einzelnen<br />

Prozessquellen tragen 61%, 35% bzw. 4% zum gesamten kollektiven Risiko im Perimeter bei.<br />

Die errechneten Risiken der erweiterten Methodik (Variante 3) werden den Resultate des<br />

Standardvorgehens nach EconoMe3.0 gegenübergestellt, wobei für dieses zwei Varianten<br />

unter Verwendung der standardisierten p(rA)-Richtwerte (Variante 1) bzw. mit angepassten<br />

p(rA)-Werten (Variante 2) betrachtet werden (vgl. Tabelle 1).<br />

Die Resultate sind in Abbildung 3 zusammenfassend dargestellt. Die errechneten Risiken der<br />

Varianten unterscheiden sich sowohl ihrem Betrag nach als auch bzgl. ihrer Verteilung auf<br />

die Teilabschnitte deutlich, wobei die Variante 3 in der Summe die niedrigsten Werte liefert.<br />

Hinzu kommt, dass nur die Variante 3 eine realitätsnahe Verteilung auf die Teilabschnitte<br />

errechnen kann. In den Varianten 1 und 2 werden die Risiken als Summe über den gesamten<br />

Strassenabschnitt errechnet und auf die potentiell gefährdeten Teilabschnitte verteilt.<br />

Die Variante 1 errechnet für die PQ1 im Ereignisfall einen bestrichenen Strassenabschnitt<br />

von 17 m (=560 m*0.03), was der massgebenden Kantenlänge von 2 m widerspricht.<br />

Eine standardmässige Verwendung der Richtwerte führt, insbesondere bei langen bestrichenen<br />

Strassenabschnitten, zu nicht nachvollziehbar hohen Risikobeiträgen. Dem trägt die<br />

Variante 2 Rechnung, indem der p(rA)-Wert auf Basis der effektiven Kantenlängen hergeleitet<br />

wird. In der Folge reduzieren sich die errechneten Risiken um den Faktor 4 (Abbildung 3).<br />

Die Variante 3 berücksichtigt mittels der Modellierungen als einzige die morphologischen<br />

Charakteristika des Transitbereiches umfassend. Dies führt zu einer differenzierten Risikoverteilung<br />

innerhalb des gesamten betrachteten Strassenabschnittes. Ausserdem wird der Anteil<br />

732 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


der oberhalb der Strasse abgelagerten Blöcke quantitativ abgeschätzt. Es fällt auf, dass die<br />

Risikodifferenz zwischen Varianten 2 und 3 (57%) in etwa dem in den Modellierungen<br />

errechneten Anteil an abgelagerten Sturzkörpern (63%) entspricht.<br />

Abbildung 3: Kollektives Risiko in den Teilabschnitten infolge seltener Sturzereignisse (WP 30–100 Jahre) abhängig von der<br />

Berechnungsmethodik bzw. den jeweiligen Eingabeparametern.<br />

SCHLUSSFOLGERUNGEN<br />

Die hier vorgestellte Methodenerweiterung eignet sich besonders zur Analyse einer Sturzgefährdung<br />

auf ein linienförmiges Schadenobjekt. Die bestehende Methodik nach EconoMe zur<br />

Abschätzung und Darstellung von Risiken kann im Grundsatz beibehalten werden. Vorsicht<br />

ist bei der standardisierten Verwendung von p(rA)-Richtwerten geboten (Variante 1), deren<br />

Plausibilität in jedem Fall zu prüfen ist.<br />

Über den gesamten Perimeter liefert die Risikoabschätzung mit angepassten p(rA)-Werten<br />

(Variante 2) mit nur geringem Zusatzaufwand plausible Risikowerte. Hinsichtlich der Massnahmenplanung<br />

auf dieser Grundlage ist eine gutachterliche Priorisierung der zu schützenden<br />

Teilabschnitte notwendig. Die erweiterte Methodik (Variante 3) liefert teilabschnittsscharfe<br />

Risikowerte und nutzt unter Umständen bereits vorhandene Daten aus 3D-Modellierungen.<br />

Die Resultate liefern eine gute Datengrundlage zur Priorisierung und Optimierung<br />

allfälliger Schutzmassnahmen innerhalb eines Projektperimeters nach den Kriterien vorgängig<br />

definierter Projektziele. Unter Voraussetzung robuster Grundlagen können mit dem<br />

vorgestellten Ansatz Kanalisierungs-, Überlagerungs- und Ablagerungseffekte ortsspezifischer<br />

Eigenschaften des Geländes quantitativ erfasst und daraus resultierende Risikospitzen im<br />

Hinblick auf eine risikobasierte Massnahmenplanung aufgezeigt werden. Dies führt idealer-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 733


weise zu einer verbesserten Nutzen-Kosten-Effizienz, wodurch der entstandene Mehraufwand<br />

während der Projektbearbeitung gerechtfertigt werden kann.<br />

Unsicherheiten der notwendigen Grundlagendaten (z.B. bei der Beurteilung der relevanten<br />

Naturgefahrenszenarien) reduzieren die Qualität der Resultate und können durch eine<br />

gewissenhafte Ausführung / Dokumentation sowie durch eine Plausibilisierung der Feldaufnahmen<br />

minimiert werden. Dies betrifft insbesondere die Festlegung von Anzahl und Grösse<br />

der Prozessquellen in Kombination mit den jeweiligen Szenarien, wodurch der Projektperimeter<br />

hinsichtlich der Steinschlagaktivität beschrieben wird.<br />

DANKSAGUNG<br />

Vielen Dank an Klaus Louis, der die Ausarbeitung des vorliegenden Artikels ermöglichte<br />

sowie an Conradin Zahno für seine Unterstützung. Ausserdem an Patrizia Köpfli und Raphael<br />

Zurfluh für ihre fachlichen Beiträge und an Michael Bründl für die aufschlussreiche Diskussion<br />

zum bestehenden Risikokonzept.<br />

LITERATUR<br />

- Bundesamt für Umwelt BAFU, 2015. Wirksamkeit und Wirtschaftlichkeit von Schutzmassnahmen<br />

gegen Naturgefahren. Online Tool. www. econome.admin.ch.<br />

- Bundesamt für Strassen ASTRA (Ed.), 2012. Naturgefahren auf den Nationalstrassen:<br />

Risikokonzept. Version V2.10 vom 19.12.2013. Dokumentation. 95 S.<br />

- Bundesamt für Strassen ASTRA, 2015. Wirksamkeit und Wirtschaftlichkeit von Schutzmassnahmen<br />

gegen Naturgefahren. Online Tool. www.roadrisk.admin.ch.<br />

- Bründl, M. (Ed.), 2009. Projekt A1.1 Risikokonzept für Naturgefahren: Leitfaden. 420 S.<br />

- Bründl, M., 2015. Umsetzung des Risikokonzepts in die Praxis. FAN Agenda 2015(2):<br />

15–16.<br />

- Bründl, M., Romang, H.E., Bischof, N., Rheinberger, C.M., 2009. The risk concept and its<br />

application in natural hazard risk management in Switzerland. Natural Hazards and Earth<br />

System Sciences 9: 801–813.<br />

- Bründl, M., Ettlin, L., Burkard, A., Oggier, N., Dolf, F. und Gutwein, P., 2015. EconoMe –<br />

Wirksamkeit und Wirtschaftlichkeit von Schutzmassnahmen gegen Naturgefahren: Formelsammlung.<br />

56 S.<br />

734 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Protection structures against natural hazards: from<br />

failure analysis to effectiveness assessment<br />

Simon Carladous, PhD Student, MSc. Eng. 1 ; Jean-Marc Tacnet, Dr, MSc. Eng. 1 ; Mireille Batton-Hubert, Prof. 2<br />

ABSTRACT<br />

Protection structures aim to protect areas exposed to natural hazards. For instance, several<br />

clusters of check dams are located in the headwaters of a watershed, each having specific<br />

functions. Their structural, functional, and economic effectiveness must be assessed to assist<br />

decision makers in deciding on maintenance actions. Nevertheless, expert assessment<br />

generally focuses on a single check dam. It is based on the evaluation of several field<br />

indicators that are aggregated by experts. This paper aims to show how methods extracted<br />

from industry, such as dependability analysis and decision-making approaches, can be used<br />

to help formalize expert assessment with expert knowledge taken into account. For this<br />

purpose the formal methods are reviewed and their potential application introduced.<br />

This paper focuses on the use of indicators and criteria in various objective decision-making<br />

tools. For example, it compares the Analytic Hierarchic Process and the ELECTRE TRI<br />

methods to assess the functional effectiveness of a cluster of check dams.<br />

KEYWORDS<br />

check dams; effectiveness; functional analysis; Multi-Criteria Decision Methods<br />

INTRODUCTION<br />

In mountainous areas, torrential floods are sudden and destructive. Protection systems have<br />

specific functions to protect exposed elements from them. For instance, check dams control<br />

material volume and flow through stabilization of bed scouring and banks. More than 21,000<br />

old protection works, including 14,000 check dams, are registered in French public forests<br />

(Piton et al. 2015). Assessing their actual effectiveness is a key issue in maintenance decisionmaking.<br />

The effectiveness of a system may be defined as the level of objective achievement and takes<br />

into account three features: structural, functional, and economic. Its assessment is based on<br />

its capacity in relation to the objectives that were set. For instance, a check dam structure has<br />

to be stable under a debris-flow with a given intensity discharge. Nevertheless, while nominal<br />

capacity may be defined through functional and structural design, the real capacity of a<br />

structure may be reduced, depending on its condition. When analyzing structural pathology,<br />

field practitioners focus on structural and functional features. Degradation criteria that can<br />

1 Irstea - ETGR, Univ. Grenoble Alpes, Ecole Nationale des Mines de Saint-Etienne, AgroParisTech Saint-Martin-d'Hères, FRANCE,<br />

simon.carladous@irstea.fr<br />

2 Ecole des Mines de Saint-Etienne<br />

P_<strong>2016</strong>_FP078<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 735


affect structural stability and the functional service of each structure or cluster of structures,<br />

are identified and qualitatively assessed. Following this, structural degradation, overall<br />

condition and emergency actions required on each structure are established through predefined<br />

qualitative classes. Pathology analysis is used by experts to propose adapted actions in<br />

order to maintain a structure in good working condition (Suda 2013).<br />

Assessing effectiveness is a multicriteria, multi-feature (structural, functional, and economic)<br />

and multiscale (check dam, device, and watershed) analysis. In practice, practitioners<br />

qualitatively assess the effectiveness of individual structures; there is no integrative method<br />

for this assessment.<br />

Current developments based on decision-aid methods (DAMs) aim to take into account<br />

expert knowledge in a formal integrative framework. This paper initially introduces the main<br />

principles from functional analysis to multi-criteria decision methods (MCDMs). We then<br />

assess the effectiveness of three clusters of check dams, as regards their given objectives and<br />

criteria, using two MCDMs. Finally, we review the main steps in assessing the effectiveness<br />

of a protection system and discuss remaining gaps.<br />

Figure 1: Multiscale and multicriteria aggregation to assess effectiveness of a cluster of check dams.<br />

736 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


METHODS<br />

This paper aims to show how DAMs can help to assess the effectiveness of protection systems.<br />

Accordingly, we do not go into great detail but provide the main principles.<br />

First, we use the safety and reliability analysis framework (Tacnet et al. 2012). This helps to<br />

specify the system components, their objective functions, the failure mechanisms, the criteria<br />

gj and the indicators Im that explain them (Fig. 1). Each Im assessment is related to the<br />

achievement of a function and is specified through a formal evaluation scale (Curt et al.<br />

2010). A list of Im indicators is an example of the results of a check dam pathology analysis<br />

(Suda 2013). In this paper we propose to use examples of these Im to directly show how they<br />

can be aggregated.<br />

Whatever the feature and system scale (check dam, a cluster of check dams), assessing the<br />

level of effectiveness is a decision-making problem (DMP). From a range of alternatives Ai,<br />

it may be necessary to choose the most effective one, sort them into predefined effectiveness<br />

classes, or rank them from the most to the least effective (Carladous et al. 2015; Roy 1985).<br />

As for any other DMP, the evaluation is based on the aggregation of the evaluations of several<br />

gj, assessed through Im (Fig. 1). This process is generally called the “expert judgement” and<br />

in our example remains focused on a single check dam as Ai. Nevertheless, several DAMs<br />

exist to perform this type of task.<br />

Figure 2: Adaptation of rule-based systems to the assessment of check dam effectiveness. a: An example of the structure of a<br />

hierarchical model used to assess the level of structural performance of a hydraulic dam, detailing the internal erosion failure mode<br />

(Curt 2010). b: Potential structure of a similar model to assess the level of performance of a torrential check dam.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 737


Rule-based systems are one such DAM. They are used to assess the structural performance<br />

level of flood dikes or hydraulic dams. Several failure mechanisms, MRj,, can affect them, e.g.<br />

internal erosion. Failure depends on the achievement of technical functions, Fk, such as<br />

drainage. The notations μMRj and μFk are the respective performance levels for MRj and Fk<br />

(Fig. 2a). Each μFk is assessed through several indirect (e.g. slab cracking) or direct (e.g. clear<br />

water leakage) indicators Im.(Fig. 2a). For hydraulic dams, a common discrete scale with a<br />

decreasing preference from 0 (excellent) to 10 (unacceptable) has been defined for all values<br />

of Im. In order to assess μFk, μMRj and the global performance level, several evaluations are<br />

aggregated according to rules such as “MAX” or “IF-ELSE” (Curt et al. 2010). For example, an<br />

expert has to assess the structural performance level of two dams, A1 and A2. For A1 he<br />

evaluates all values of Im: I2, I3, I5, I6, I8, I12, I13 and I14 = 0; I1 = 5; I7, I9, I10 and I11 = 7;<br />

I4 = 10. For A2 he produces another set of evaluations: I1, I4, I5, I8, I11, I12 and I13 = 0; I6,<br />

I9 and I10 = 2; I14 = 3; I2 = 5; I3 and I7 = 7. He obtains μMR4(A1) = 7 and μMR4(A2) = 2<br />

(Fig. 2a). The dam A2, which is in good condition, is more structurally sound regarding<br />

internal erosion than dam A1, which is in bad condition. Even if rule-based systems are easily<br />

understood by practitioners, establishing such a system needs expert elicitation and validation,<br />

which can be very time consuming.<br />

MCDMs can also help aggregate several gj criteria. Total aggregating methods are single<br />

synthesizing criterion approaches, based on the principle of preference transitivity. Outranking<br />

methods do not aim to give a single synthetizing criterion to help in decision making<br />

(Schärlig 1985).<br />

The Analytical Hierarchic Process (AHP) is an aggregation-based method (Saaty 1980; Tacnet<br />

2009). It consists of evaluating possible Ai according to preferences (represented by weights<br />

ula arlaou1rraoFormula1o<br />

ωj) expressed by the decision makers (DMs) on the different gj. The preference . The problem<br />

is first broken down from an overall goal to criteria and sub-criteria. At the lowest sub-criteria<br />

level (e.g. gj), alternatives Ai are compared in pairs providing their . Finally, for each Ai, the<br />

synthesizing criterion xi is given by Formula 1.<br />

xx ii = ∑ ωω jj . ωω iijj<br />

jj<br />

Formula 1: Calculation of the synthesizing criterion xi for the AHP method.<br />

ELECTRE TRI is a progression of the outranking ELECTRE methods introduced in the 1960s<br />

(Yu 1992). It aims to sort a number of Ai into predefined categories Ch, according to several<br />

gj. The lower and upper limits, respectively bh-1 and bh, of each Ch, have to be specified<br />

previously by the DMs, through corresponding evaluations for each gj. A fuzzy preference<br />

scale is defined through three thresholds: indifference (qj), strict preference (pj) and veto (vj).<br />

Following this, the set of evaluations xij is used to define the outranking relation of each Ai<br />

with limits bh. It is based initially on the calculation of partial concordance and credibility<br />

indices. Global concordance and credibility indices are then derived based on an arbitrary<br />

-cut strategy ( in [0,1]). The final binary assignment of each Ai to a given category Ch, is<br />

based on an arbitrary selected attitude choice (optimistic or pessimistic).<br />

738 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3: Three clusters of check dams (cd) considered as alternatives and the criteria taken into account to formalize the DMP example.<br />

RESULTS<br />

In this part, we compare the AHP method with the ELECTRE TRI method on the same DMP.<br />

THE ACTUAL DMP<br />

The functional effectiveness of three clusters of check dams is assessed: A1 is a cluster of<br />

28 check dams, A2 contains 25 check dams and A3 contains 3 check dams (Fig. 3). Their<br />

purpose is to stabilize the longitudinal profile and limit lateral erosions. Debris flows are<br />

considered as the scenario of reference. We propose seven gj (Fig. 3). For each of them, the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 739


DMs have to give the evaluation xij for each Ai in addition to its weight ωj (Table 1).<br />

The preference order of the evaluation scale has to be specified. For example, the structural<br />

effectiveness assessment introduced in Fig. 2 is assessed through decreasing preference;<br />

indicator evaluation has lower preference while structural evaluation has higher preference.<br />

– g1 (increasing preference): free spillway dimensions, i.e., the rates (0–100%) between the<br />

smallest dimensions of all check dam free spillways and the reference scenario discharge.<br />

– g2 (decreasing preference): the orientation of the check dams, i.e., the mean of absolute<br />

angle of deviance (0–90 degrees) for all check dams. For each check dam, the angle of<br />

deviance is the absolute angle between the actual and the optimal orientations.<br />

– g3 (decreasing preference): the longitudinal implantation of check dams, i.e., the mean<br />

difference (in meters) between the optimal and actual implantation of each check dam.<br />

The difference can be technically assessed as the height difference between the calculated<br />

elevation of the next upstream check dam abscissa and its actual elevation for the lowest<br />

compensation slope.<br />

– g4 and g5 (decreasing preference): the mean structural effectiveness of the most significant<br />

check dams (g4) and of the others (g5). For each of them, structural effectiveness can be<br />

defined as the resistance to stresses due to the reference scenario. We propose an integer<br />

rating from 0 (stable) to 10 (unstable). In general, downstream check dams are the most<br />

significant.<br />

– g6 (decreasing preference): active longitudinal erosion, i.e., the rate (%) between the<br />

length of longitudinal erosion and the objective length of longitudinal stabilization.<br />

– g7 (decreasing preference): active lateral erosion, i.e., the rate (%) between the volume of<br />

active lateral erosion and the objective volume of lateral volume stabilization.<br />

Table 1: Data needed to apply the AHP and the ELECTRE TRI to the DMP.<br />

in general for AHP for ELECTRE TRI<br />

g j ω j x 1j x 2j x 3j ω 1j ω 2j ω 3j b 0 b 1 b 2 b 3 b 4 q j p j v j<br />

g 1 0.1 80 100 100 0.14 0.43 0.43 0 25 50 90 100 10 20 40<br />

g 2 0.2 0 -10 -20 0.54 0.30 0.16 -90 -25 -10 -5 0 5 10 30<br />

g 3 0.1 -1<br />

-<br />

0.5<br />

0 0.11 0.26 0.63 -10 -3 -1.5 0 10 0.5 1 2<br />

g 4 0.15 9 1 7 0.08 0.79 0.13 10 8 5 1 0 1 3 5<br />

g 5<br />

0.0<br />

5<br />

7 3 9 0.17 0.74 0.09 10 8 5 1 0 1 3 5<br />

g 6 0.2 -30 0 0 0.10 0.45 0.45 -100 -80 -50 -10 0 10 20 40<br />

g 7 0.2 -10 -20 -50 0.65 0.29 0.06 -100 -80 -50 -10 0 10 20 40<br />

1<br />

740 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


PROPOSITION OF A RULE-BASED SYSTEM<br />

For the evaluation criteria g4 and g5, the structural effectiveness of each check dam has to<br />

be assessed. A rule-based system based on expert knowledge is proposed, in order to allow<br />

assessment according to the foundation scouring failure mechanism (Fig. 2b). Foundations<br />

may be endangered by a regressive scouring (2), which depends on the geology (I1) and<br />

hydraulic conditions (I2, I3). Check dams with anti-scouring components (I4) are protected,<br />

but scouring can occur under foundations (I7) due to design (I5) or condition (I6) problems<br />

(μF1). If it occurs, it can affect the external stability of check dams (μF2). Its general<br />

movement (I8) is a direct indicator. Even if the unsupported foundation area is significant<br />

(I9), check dams with an external anchorage (I10) or with beam-support (I11) are externally<br />

stable. Specific visible cracks are a direct indicator of stability failure (I13). If no cracks are<br />

visible, structures are more or less vulnerable to scouring, e.g., gravity check dams in<br />

dry-stone are more vulnerable than gravity check dams in masonry, which in turn are more<br />

vulnerable than self-supporting check dams in concrete (I12).<br />

For the example under consideration, all check dams of A1 are in masonry without any<br />

scouring protection. A regressive scouring affects those downstream (Fig. 3). The structural<br />

performance level is consequently bad. Evaluation of g4 (for the most important check dams)<br />

is worse than for g5 (x14 = 9 and x15 = 7). By making assessments for each Ai, we obtain<br />

evaluations for g4 and g5 (Table 1).<br />

RESULTS FOR THE AHP METHOD<br />

Comparing alternatives in pairs provides ωij for each gj, e.g. g4, according to x14, x24,and<br />

x34 (Table 1), one prefers A2 to A1 with a level of 9, one prefers A3 to A1 with a level of 5,<br />

and one prefers A2 to A3 with a level of 7. It gives ω14 = 0.08, ω24 = 0.79, and ω34 = 0.13<br />

through the preferences matrix. Doing this for each gj, one fills in the Table 1. For each Ai,<br />

Formula 1 gives x1 = 0.3035, x2 = 0.4325, and x3 = 0.2640. It is possible to assess the<br />

functional effectiveness of each cluster of check dams on a continuous evaluation scale from<br />

0 to 1. Moreover, they can also be compared: A2 is strictly more effective than A1, which is<br />

equivalent/more effective than A3.<br />

RESULTS FOR THE ELECTRE TRI METHOD<br />

The DM sorts each Ai into one of the four effectiveness classes: C1 = ‘Not effective’;<br />

C2 = ‘Slightly effective’; C3 = ‘Moderately effective’; C4 = ‘Highly effective’. For each gj,<br />

the DMs must give the lower and upper limits (bh-1 and bh respectively) of each class, and<br />

also the thresholds pj, qj, and vj representing the fuzzy preferences on each gj evaluation<br />

scale (Table 1). In this example, the same thresholds are considered for each bh limit.<br />

Taking into account = 0.7 and the elements from Table 1, whatever the pessimistic or<br />

optimistic attitude of the DM, A1 is in the moderately effective class, whereas A2 is in the<br />

highly effective class. The A3 assignment depends on the attitude of the DM: in the pessimis-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 741


tic view it is in the slightly effective class, whereas in the optimistic view it is in the moderately<br />

effective class.<br />

CONCLUSIONS<br />

This paper shows how DAMs can help DMs assess the effectiveness of a protection system,<br />

such as a cluster of check dams. Several analysis steps are proposed: 1) specification of the<br />

DMP, 2) analysis of function, failure mode and pathology in order to extract effectiveness<br />

indicators (Suda 2013; Tacnet et al. 2012), 3) specification of the assessment scale and<br />

preference order of each indicator and criteria (Curt et al. 2010; Suda 2013), 4) elicitation<br />

of aggregation modes (rule-based system, criteria weights) (Curt et al. 2010; Schärlig 1985).<br />

This paper integrates results from a hypothetical rule-based system into MCDMs. Two<br />

MCDMs are compared demonstrating the data needed (matrices of preferences, thresholds<br />

to describe the limitations of classes, , etc.) which can actually be difficult to specify.<br />

This paper does not take into account imperfections in the evaluations of each indicator and<br />

criterion. Extended decision-support methods have recently been developed to take such<br />

features into account (Carladous et al. 2015; Tacnet 2009).<br />

This paper shows how safety and reliability analysis can be complementary to decision-support<br />

methods such as MCDMs, allowing expert knowledge to be taken into account in<br />

assessments of effectiveness. Actual derivation of expert knowledge for each DMP (systems,<br />

scales, effectiveness features), the combination of DAMs, imperfect information, and the<br />

validation of results remain challenging.<br />

742 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


REFERENCES<br />

- Carladous S. et al. (2015). Belief function theory based decision support methos: Application<br />

to torrent protection work effectiveness and reliability assessment. In Safety and Reliability of<br />

Complex Engineered Systems: 3643–3652.<br />

- Curt C. et al. (2010). A Knowledge Formalization and Aggregation-Based Method for the<br />

Assessment of Dam Performance. Computer-Aided Civil and Infrastructure Engineering, 25:<br />

171–184.<br />

- Piton G. et al. (sub.). Why do we build check dams? An historical perspective from the<br />

French experience. (Sub. to) Earth Surface Processes and Landforms.<br />

- Roy B. (1985). Méthodologie Multicritère d’Aide à la Décision, Paris, France.<br />

- Saaty T.L. (1980). Multicriteria Decision Making - The Analytic Hierarchy Process: Planning,<br />

Priority Setting, resource Allocation.<br />

- Schärlig A. (1985). Décider sur plusieurs critères. Panorama de l’aide à la décision multicritère,<br />

Presses polytechniques et universitaires romandes.<br />

- Suda J. (2013). Schutzbauwerke der Wildbachverbauung - Handbuch zur Durchführung<br />

einer Bauwerkskontrolle, Vienna, Austria.<br />

- Tacnet J.-M. et al. (2012). Efficiency assessment for torrent protection works: an approach<br />

based on safety and reliability analysis. In 12th international conference Interpraevent.<br />

Grenoble, France.<br />

- Tacnet J.-M. (2009). Prise en compte de l’incertitude dans l’expertise des risques naturels<br />

en montagne par analyse multicritères et fusion d’information. PhD Thesis,Ecole Nationale<br />

supérieure des Mines de Saint-Etienne.<br />

- Yu W. (1992). Aide multicitère à la décision dans le cadre de la problématique du tri:<br />

Concepts, méthodes et applications. Paris, France.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 743


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Study of landslide run-out and impact on protection<br />

structures with the Material Point Method<br />

Francesca Ceccato 1 ; Paolo Simonini, Prof. 1<br />

ABSTRACT<br />

Reliable estimates of the impact forces induced by flow-like landslides on existing structures is<br />

of great importance for hazard assessment. This is customarily obtained by means of<br />

empirically based relationships but, significant differences may be encountered using the<br />

existing approaches. Large scale experimental studies are expensive and difficult to set up; for<br />

this reason a numerical technique able to simulate the material flow and its interaction with<br />

structures would be helpful for the hazard assessment as well as for the design of mitigation<br />

measures. This paper shows the applicability of the Material Point Method (MPM), a meshless<br />

method specifically developed to describe large deformations of bodies, to the study of<br />

granular flow propagation and impact forces on rigid structures. Complex shapes of the<br />

structure as well as different soil-structure interface properties are considered. It is shown that<br />

the MPM may represent a suitable tool to support the design of landslide mitigation measures.<br />

KEYWORDS<br />

MPM; granular flow; impact forces<br />

INTRODUCTION<br />

Several studies carried out in the past focused on the determination of the impulsive force<br />

produced by debris flows on vertical rigid structures, e.g. Armanini & Scotton (1993), Hübl et<br />

al. (2003), Moriguchi et al. (2009), but only a few have considered the shape of the structure<br />

(e.g. Shieh et al. 2008; Zanuttigh & Lamberti, 2006) or its flexibility (e.g. Canelli et al. 2012;<br />

Leonardi et al. 2014). Moreover, there are significant differences between the proposed<br />

approaches which render their practical use rather difficult.<br />

A numerical technique able to capture the key features of the debris flow and its interaction<br />

with a complex structure can contribute to assess the damage to existing structures and guide<br />

the design of protection measures. To this end, this paper investigates the potentiality of the<br />

Material Point Method (MPM) for these applications.<br />

The MPM has been specifically developed for large deformations of history dependent<br />

materials. It simulates large displacements by Lagrangian points moving through an Eulerian<br />

grid as shortly described in the next section.<br />

1 DICEA - University of Padua, ITALY, francesca.ceccato@dicea.unipd.it<br />

744 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP015


A 3D MPM code is applied in this study, thus complex geometries can be handled with ease.<br />

It features a specific algorithm to model soil-structure interaction and frictional sliding.<br />

The non-linear behaviour of soil is simulated by an elastoplastic model with Mohr-Coulomb<br />

failure criterion. The description of the flow propagation with a geomechanical model is quite<br />

unusual. Its use is customarily limited to small deformations such as the study of the landslide<br />

trigger mechanism, when the failure surface develops. Most of the numerical studies of flow<br />

propagation uses rheological models but it is important to note that it is very difficult to link<br />

geomechanical and rheological parameters under both small and large deformations. The<br />

MPM might close the gap between these approaches.<br />

In the following sections, it is shown that the MPM can reproduce the run out of a dry<br />

granular flow with good agreement with experimental results leading to the estimate of the<br />

impact forces on a vertical rigid wall, that are shown to be in good agreement with empirical<br />

observations. In addition to this, alternative shapes and surface characteristics of the structure<br />

are considered.<br />

THE MATERIAL POINT METHOD<br />

The MPM is a particle-based method developed since the 90’s for large deformations of history<br />

dependent materials (Sulsky et al. 1994). Recently, the method has been extended to coupled<br />

problems in order to simulate the soil-water interaction (Bandara & Soga, 2015; Jassim et al.<br />

2013) and unsaturated conditions (Yerro et al. 2015). The MPM has been successfully applied<br />

to the simulation of a number of geotechnical problems such as landslides (Andersen &<br />

Andersen, 2010), collapse of dams (Alonso & Zabala, 2011) and river-banks (Bandara & Soga,<br />

2015).<br />

The continuum body is discretized by a set of Lagrangian points, called material points (MP).<br />

They carry all the information of the continuum such as density, velocity, acceleration, stress,<br />

strain, material parameter as well as external loads. The MP do not represent single soil<br />

grains, as in Discrete Element Methods (DEM), but a portion of the continuum body. Large<br />

deformations are simulated by MP moving through a fix computational finite element mesh<br />

which covers the entire region of space into which the solid is expected to move. This grid is<br />

used to solve the system of equilibrium equations, but does not deform with the body like in<br />

Lagrangian Finite Element Method.<br />

The MPM code used in this study is being developed to solve 3D dynamic large deformation<br />

problems in geotechnical and hydromechanical engineering (Vermeer et al. 2013). The code<br />

features a contact formulation as presented by Bardenhagen et al. (2001) to model soil-structure<br />

interaction and frictional sliding.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 745


SIMULATION OF A GRANULAR FLOW<br />

The capability of the MPM to simulate the propagation of a dry granular flow is evaluated<br />

considering the result of a physical model test by Denlinger and Iverson (2001). The ex periment<br />

used a small flume with a bed surface inclined 31.4° adjoined to a horizontal runout<br />

plane.<br />

The non-linear soil behavior of loose sand is described with an isotopic elastic-perfectly plastic<br />

model with Mohr-Coulomb failure criterion. The input parameters are summarized in Table<br />

1. A static friction angle =40° and a static basal friction angle b<br />

=29° were measured by<br />

Denlinger and Iverson. However, the dynamic values of these parameters can be significantly<br />

lower. Sensitivity analyses showed that the displacements decrease by increasing and b,<br />

but the latter has a greater effect on the final run-out (Fig. 1). The best agreement with the<br />

experimental results is obtained with a basal friction angle of 26.6°.<br />

Figure 1: Run-out as function of the basal friction angle (left) and sand friction angle (right) for different time<br />

After material release, the flow accelerates gradually spreading and reaching the end of the<br />

inclined plane with a maximum velocity of 0.88 m/s, then the sand mass decelerates and<br />

stops. Figure 2 compares the propagation of the granular flow predicted by the MPM with<br />

that observed in the experiment. The maximum runout is observed after 1.50 s and the<br />

numerical prediction is in good agreement with the experiment.<br />

Table 1: Material properties of sand<br />

Bulk density [kg/m 3 ] ρ 1600 Dilatancy [°] ψ 0<br />

Initial porosity [-] n 0.4 Young’s modulus [kPa] E 1<br />

Friction angle [°] φ 40 Poisson’s ratio [-] ν 0.3<br />

746 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Granular flow at t=0.32s (a), t=0.53s (b), t=0.93s (c) and t=1.50s (d): front view, top view and comparison with experimental<br />

results<br />

SIMULATION OF THE IMPACT ON A RIGID STRUCTURE<br />

This section discusses the impact of a granular flow on a structure in terms of forces and<br />

amount of material passing beyond the structure. The slope geometry and soil material<br />

parameters coincide with the previous section. The structure is placed at the end of the<br />

inclined plane and the basal friction angle is zero, thus maximizing the impact velocity.<br />

The discretization of the numerical model has been determined through preliminary analyses<br />

as a compromise between accuracy and computational cost. The maximum size of the<br />

elements is 8 mm along the sliding surface and 3 mm on the structure surface, 6880 MP<br />

are used to discretize the sand.<br />

Three different shapes of the structure are investigated: vertical dam, slanted dam and curved<br />

dam. For each shape, three values of the structure friction coefficient are considered to<br />

simulate various revetment materials: μ s<br />

=0, 0.3 and 0.6.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 747


Considering the free granular flow without any obstruction, at a cross section at the location<br />

of the structure, a maximum velocity of 1.96 m/s and a maximum flow height of 8.7 mm are<br />

observed, thus a Froude number Fr = v/(gh) 1 / 2 = 6.7 characterizes the flow. Fr>2 characterizes<br />

most of the small-scale tests, while real debris-flows usually show Fr


Figure 4: Fraction of san mass overtopping (not retained by) the wall (a), horizontal forces (b) and vertical forces (c) for different shapes<br />

of the dam<br />

Figure 5: Maximum impact pressure as function of Froude-number; comparison between MPM results and other experimental results<br />

collected by Hübl et al. (2009)<br />

reported by Hübl et al. (2009). The obtained p max<br />

=Fx, max<br />

/h (h=height of the dam) for the<br />

vertical wall is in good agreement with reference values for similar Froude numbers.<br />

The vertical and curved dam show similar values of the horizontal force, but the latter with<br />

a significant vertical force whereas the slanted dam shows similar values of the horizontal<br />

and vertical forces. The vertical component improves the stability of the dam against sliding<br />

and toppling.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 749


Increasing the structure friction coefficient the impact forces reduce. This effect is small for<br />

the vertical wall, but very important in case of slanted dam. In particular, F y<br />

decreases, thus<br />

reducing its stabilizing effect (Fig. 6). Because of the friction between the soil and the dam,<br />

the flow loses energy and the fraction of mass retained by the dam increases with μ s<br />

.<br />

Figure 6: Effect of structure friction coefficient on overtopping mass (left column) and forces (central and right colums) for different<br />

shapes<br />

CONCLUSIONS<br />

The MPM is a powerful tool to study landslides of the flow type and their interaction with<br />

structures. The method reproduces with good agreement the runout of a granular flow<br />

observed in a small scale experiment.<br />

750 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The impact forces on structures of different shape can be calculated; moreover, the roughness<br />

of the surface can be included. This makes the MPM a valuable tool to support the design of<br />

mitigation measures. Indeed, simplified methods cannot evaluate the impact forces taking<br />

into account the 3D structure geometry and surface properties.<br />

For the considered example, it is shown that the vertical wall is the most effective shape in<br />

limiting soil overpassing, but the high horizontal impact forces might compromise its stability.<br />

In contrast, the curved and the slanted dam benefit of a stabilizing vertical component of the<br />

impact force.<br />

This study considers dry granular flows interacting with rigid structures, further developments<br />

of the research will include the soil-water interaction in saturated flow as well as<br />

flexible and permeable structures.<br />

REFERENCES<br />

- Alonso, E. E., & Zabala, F. (2011). Progressive failure of Aznalcóllar dam using the material<br />

point method. Géotechnique, 61(9), 795–808.<br />

- Andersen, S., & Andersen, L. (2010). Modelling of landslides with the material-point<br />

method. Computational Geosciences, 14(1), 137–147.<br />

- Armanini, A., & Scotton, P. (1993). On the dynamic impact of a debris flow on structures.<br />

In Proceedings Of The Congress-international Association For Hydraulic Research.<br />

- Bandara, S., & Soga, K. (2015). Coupling of soil deformation and pore fluid flow using<br />

material point method. Computers and Geotechnics, 63, 199–214.<br />

- Bardenhagen, S. G., Guilkey, J. E., Roessig, K. M., Brackbill, J. U., & Witzel, W. M. (2001).<br />

An Improved Contact Algorithm for the Material Point Method and Application to Stress<br />

Propagation in Granular Material, 2(4), 509–522.<br />

- Canelli, L., Ferrero, a. M., Migliazza, M., & Segalini, a. (2012). Debris flow risk mitigation<br />

by the means of rigid and flexible barriers - Experimental tests and impact analysis. Natural<br />

Hazards and Earth System Science, 12(5), 1693–1699.<br />

- Denlinger, R. P., & Iverson, R. M. (2001). Flow of variably fluidized granular masses across<br />

three-dimensional terrain: 2. Numerical predictions and experimental tests. Journal of<br />

Geophysical Research, 106(B1), 553.<br />

- Hübl, J., Holzinger, G., & Wehrmann, H. (2003). Entwicklung von Grundlagen zur<br />

Dimensionierung kronenoffener Bauwerke für die Geschiebebewirtschaftung in Wildbächen:<br />

Kleinmaßstäbliche Modellversuche zur Wirkung von Murbrechern. WLS Report 50 Band 3.<br />

Im Auftrag Des BMLFUW VC 7a.<br />

- Hübl, J., Suda, J., Proske, D., Kaitna, R., & Scheidl, C. (2009). Debris Flow Impact Estimation.<br />

International Symposium on Water Management and Hydraulic Engineering, 137–148.<br />

- Jassim, I., Stolle, D., & Vermeer, P. (2013). Two-phase dynamic analysis by material point<br />

method. International Journal for Numerical and Analytical Methods in Geomechanicsnumerical<br />

and Analytical Methods in Geomechanics, 37, 2502–2522.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 751


- Leonardi, A., Wittel, F. K., Mendoza, M., Vetter, R., & Herrmann, H. J. (2014). Particlefluid-structure<br />

interaction for debris flow impact on flexible barriers. Computer-Aided Civil<br />

and Infrastructure Engineering, in press.<br />

- Moriguchi, S., Borja, R. I., Yashima, A., & Sawada, K. (2009). Estimating the impact force<br />

generated by granular flow on a rigid obstruction. Acta Geotechnica, 4(1), 57–71.<br />

- Shieh, C. L., Ting, C. H., & Pan, H. W. (2008). Impulsive force of debris flow on a curved<br />

dam. International Journal of Sediment Research, 23(2), 149–158.<br />

- Sulsky, D., Chen, Z., & Schreyer, H. L. (1994). A particle method for hystory-dependent<br />

materials. Computer Methods in Applied Mechanics and Engineering, 118(1-2), 179–196.<br />

- Vermeer, P. A., Sittoni, L., Beuth, L., & Wieckowski, Z. (2013). Modeling soil-fluid and<br />

fluid-soil transitions with applications to tailings. In Taylings and Mine waste (pp. 305–315).<br />

Banff, Alberta, Canada.<br />

- Yerro, A., Alonso, E. E., & Pinyol, N. M. (2015). The material point method for unsaturated<br />

soils. Geotechnique, 65(3), 201–217.<br />

- Zanuttigh, B., & Lamberti, A. (2006). Experimental analysis of the impact of dry avalanches<br />

on structures and implication for debris flows. Journal of Hydraulic Research, 44(4), 522–534.<br />

752 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Property protection against flooding shown on a<br />

complex practical example<br />

Objektschutz Hochwasser dargestellt an einem<br />

komplexen Praxisbeispiel<br />

Thomas Egli 1 ; Daniel Sturzenegger 1 ; Pierre Vanomsen 1<br />

ABSTRACT<br />

The canton of St. Gallen runs an integrated rescue centre. It receives all emergency calls to<br />

the police, fire brigade and ambulance and coordinates their operations. In reference to the<br />

hazard mapping the centre is subject to frequent flooding (Annuality of 30). Expected<br />

damages will concern the operational capability, the working staff and massive property<br />

damage.<br />

To reduce the high risk effectively, different protecting measures are proposed and evaluate<br />

due to feasibility, suitability for daily use, architecture, investment costs and maintenance<br />

costs. The proposed protecting measures may reduce the initial risk from 710'715 CHF/year<br />

to 66'000 CHF/ year.<br />

ZUSAMMENFASSUNG<br />

Die Kantonale Notrufzentrale (KNZ) des Kantons St. Gallen ist eine integrierte Notrufzentrale.<br />

Sie empfängt sämtliche Notrufe der Bevölkerung an die Polizei, Feuerwehr und Sanität<br />

und koordiniert die Einsätze. Aufgrund der Gefahrenkartierung ist davon auszugehen, dass<br />

bereits bei einem häufigen Hochwasser (Jährlichkeit 30) das Gebäude überschwemmt wird<br />

und neben den betrieblichen Störungen und Personenschäden auch massive Sachschaden im<br />

Rahmen von CHF 20 Mio. entstehen können.<br />

Damit das grosse Risiko wirksam gesenkt werden kann, werden verschiedene Schutzmassnahmen<br />

vorgestellt und aufgrund der technischen Machbarkeit, Praxistauglichkeit, Beeinflussung<br />

der gegebenen Architektur, Investitions- und Unterhaltskosten evaluiert. Mit den<br />

gewählten Schutzmassnahmen kann das Ausgangsrisiko von ursprünglich 710‘715 CHF/Jahr<br />

auf 66‘000 CHF/Jahr gesenkt werden.<br />

Mit Hilfe des risikobasierten Ansatzes lassen sich die effizienten Massnahmen für den<br />

Objektschutz ermitteln. Schliesslich sind neben den rein wirtschaftlichen Faktoren auch<br />

weitere Aspekte von gleichbedeutender oder sogar höherer Wichtigkeit und somit für<br />

den erfolgreichen Objektschutz gegen Hochwasser zu berücksichtigen.<br />

KEYWORDS<br />

property protection; risk; risk-based planning of measures; flooding<br />

1 Egli Engineering AG, St. Gallen, SWITZERLAND, egli@naturgefahr.ch<br />

IP_<strong>2016</strong>_FP083<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 753


EINFÜHRUNG<br />

Die Kantonale Notrufzentrale (KNZ) des Kantons St. Gallen liegt an den alten Stadtmauern<br />

von St. Gallen und ist ein Werk des Architekten Santiago Calatrava. Die KNZ steht im<br />

potentiellen Überflutungsgebiet der Steinach, siehe dazu auch Abbildung 3.<br />

Abbildung 1: Die Kantonale Notrufzentrale (KNZ) in St. Gallen. Der muschelförmige Bau ist umgeben von den historischen Bauten der<br />

Klosteranlage (Quelle: Egli Engineering AG).<br />

Die KNZ ist eine integrierte Notrufzentrale; hier werden sämtliche Notrufe der Bevölkerung<br />

an die Polizei, Feuerwehr und Sanität aus dem Kanton St. Gallen sowie teilweise aus<br />

Appenzell Innerrhoden und Ausserrhoden empfangen. Die KNZ alarmiert die Einsatzkräfte<br />

der Blaulichtorganisationen. Zusätzlich ist die KNZ die Alarmierungsstelle für den kantonalen<br />

Führungsstab und dient als Verkehrsleitstelle.<br />

Die für das kantonale Sicherheitsdispositiv ausserordentlich wichtige Funktion der KNZ<br />

verlangt auch den Betrieb während eines Elementarereignisses. Dies erfordert die Kenntnis<br />

der Eindringstellen des Wassers und den darauf basierenden Schutz der Infrastruktur mittels<br />

Objektschutzmassnahmen.<br />

METHODEN<br />

Die Methodik orientiert sich an bestehenden Grundlagen der Risikoanalyse, Risikobewertung<br />

und der Massnahmenevaluation und folgt grundsätzlich dem Risikokonzept für Naturgefahren<br />

(siehe Abbildung 2, Bründl M. (Ed.) (2009)).<br />

754 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 2: Methodisches Vorgehen für die risikobasierte Planung von Schutzmassnahmen gemäss Bründl M. (Ed.) (2009)<br />

ERGEBNISSE<br />

Risikoanalyse<br />

Die Risikoanalyse hat zum Ziel die Sach- und Personenrisiken quantitativ zu bestimmen<br />

und eine qualitative Einschätzung des Betriebsrisikos zu geben.<br />

Risikoanalyse: Gefahrenanalyse<br />

Wie in Abbildung 3 ersichtlich, zeigt die Gefahrenbeurteilung bereits bei einem Hochwasser<br />

mit einer 30 – jährlichen Wiederkehrdauer eine Überflutung an. Das Wasser fliesst über den<br />

ehemaligen Bachlauf längs der Strassen ab. Auch bei einem seltenen (HQ 100<br />

) und sehr<br />

seltenen Hochwasser (HQ 300<br />

und EHQ) entlastet der Vorfluter (die Steinach) auf dieselbe<br />

Weise.<br />

Aufgrund der Multiplikation von Fliesstiefe [m] und Fliessgeschwindigkeit [m/s] des Wassers<br />

wird die Intensität definiert. Die starke Intensität ist grösser 2 m 2 /s, die mittlere Intensität<br />

bewegt sich zwischen 0.5 und 2 m 2 /s und die schwache Intensität ist kleiner 0.5 m 2 /s.<br />

Bei Fliessgeschwindigkeiten kleiner 1 m/s ist nur die Fliesstiefe massgebend.<br />

Risikoanalyse: Expositionsanalyse<br />

Die möglichen Eintrittstellen des Wassers in das Gebäude sind in Abbildung 4 dargestellt:<br />

Die Eintrittstelle 1 umfasst ein Tor und die beiden Personaleingänge. Die Stelle 2 sind zwei<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 755


Abbildung 3: Fliesstiefe und Fliessgeschwindigkeit bei der Kantonale Notrufzentrale (KNZ) (Naturgefahrenkommission des Kantons<br />

St. Gallen (2008).<br />

Aussentüren des Nachbargebäudes, welches mit der KNZ verbunden ist. Die Eintrittstelle 3<br />

sind Kanalisationsleitungen, welche im Hochwasserfall rückgestaut werden. Bei hohen<br />

Fliesstiefen kann Wasser über das Fenster in das Gebäude eindringen (Eintrittstelle 4) oder<br />

über die Leitungsdurchbrüche in das Gebäude gelangen (Eintrittsstelle 5).<br />

756 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 4: Eintrittstellen an der Kantonale Notrufzentrale (KNZ)<br />

Im Falle einer Überschwemmung der KNZ besteht für die Personen im Untergeschoss eine<br />

Gefährdung, im Obergeschoss sind die Personen sicher. Die durchschnittliche Aufenthaltsdauer<br />

der Einsatzdisponenten im Untergeschoss sind während eines Tages 166 Personenstunden;<br />

dies entspricht einer durchschnittlichen Belegung von 6.9 Personen während 24 Stunden.<br />

Risikoanalyse: Konsequenzensanalyse<br />

Sind die Eintrittstellen eingestaut, kommt es zur vollständigen Flutung des Untergeschosses<br />

(Betriebsraum, Apparateraum, Technikraum, Lüftung/Sänitär und Leitstelle) und zu Schäden<br />

im Erdgeschoss (Garageraum, Garderobe Uniform, Liftanlage, Korridor, Lager) und der<br />

Galerie (Garderobe, Dusche/WC, Aufenthaltsraum, Schleuse). Dabei ist von einem Totalschaden<br />

der Gebäudeinfrastruktur und -technik auszugehen, was einem gesamten Sachschaden<br />

von schätzungsweise CHF 20 Mio. entspricht. Die Kosten setzen sich zusammen aus<br />

den getätigten Renovationen im Jahre 2008 mit Investitionen in die Elektrotechnik, Lüftung<br />

und Stromverteilung im Umfang von CHF 12 Mio. Weiter werden bei einer Überflutung<br />

Heizungsanlage, Funk- und Telefonanlage, sowie Mobiliar beschädigt und im geringen<br />

Umfang werden auch Gebäudeschäden auftreten. Diese Schäden werden auf CHF 8 Mio.<br />

geschätzt. Der gesamte Sachschaden von CHF 20 Mio. beinhaltet keine weiteren Schäden,<br />

z. B. durch Verformungen infolge Gebäudeauftriebs.<br />

Die Wahrscheinlichkeit eines Todesfalls (Letalität) bei einer Überschwemmung in der KNZ<br />

wird wie folgt angenommen: Schwache Intensität: 0, mittlere Intensität 0.025, starke<br />

Intensität 0.24. Die Letalität ist hoch, da der Fluchtweg auf den Brandschutz ausgerichtet<br />

ist und unglücklicherweise dem Fliessweg des Wassers folgt.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 757


Risikoermittlung: Sachrisiko<br />

Es ist davon auszugehen, dass bereits bei einem 30 – jährlichen Hochwasser der Steinach<br />

der gesamte Sachschaden entstehen kann. Bei einem extremeren Ereignis (HQ 100<br />

, HQ 300<br />

und<br />

EHQ) steigt der Sachschaden kaum mehr an.<br />

Tabelle 1: Sachrisiko der Kantonale Notrufzentrale (KNZ)<br />

Wiederkehrperiode [Jahre] Sachschaden [CHF] Häufigkeit Sachrisiko [CHF/Jahr]<br />

30 20'000’000 0.023 460’000<br />

100 20'000’000 0.007 140’000<br />

300 20'000’000 0.002 40’000<br />

1’000 20'000’000 0.001 20’000<br />

Total 660’000<br />

Risikoermittlung: Personenrisiko<br />

Das Schadenausmass wird in Anzahl Todesfälle ausgedrückt und ist das Produkt aus der<br />

Anzahl anwesender Personen in der KNZ (6.9 Personen) und der Letalität. Der Todesfall<br />

kann als Geldwert ausgedrückt werden, dazu wird er monetarisiert. Wie hoch ein Todesfall<br />

monetarisiert wird, hängt ab von der gesellschaftlichen Zahlungsbereitschaft zur Verhinderung<br />

eines Todesfalles; in der Schweiz werden in der Regel CHF 5 Mio. verwendet<br />

(Bründl M. (Ed.) (2009)).<br />

Tabelle 2: Schadenausmass Personen<br />

Intensität Letalität Personen Monetarisierung [CHF]<br />

schwach 0 6.9 0<br />

mittel 0.025 6.9 862’500<br />

stark 0.24 6.9 828’0000<br />

Es wird angenommen dass bei der Wiederkehrperiode 30 und 100 Jahre eine mittlere Intensität<br />

und bei einem 300- und 1‘000-jährlichen Hochwasser starke Intensität im Gebäude<br />

vorliegt. Das Produkt der Jährlichkeit und des Schadenausmasses ergibt das Personenrisiko<br />

und beträgt 50'716 CHF/Jahr:<br />

Risikoermittlung: Betriebsrisiko<br />

Der technische Ausfall der KNZ lässt sich dank den redundanten Systemen (Einsatzleit- und<br />

Informationssystem der Kantons- und Stadtpolizei St. Gallen, ELIS) mit Einschränkungen<br />

bewältigen. Die Kosten für eine Betriebsverlegung werden nicht beziffert und fliessen nicht<br />

in die Risikoanalyse ein.<br />

758 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Tabelle 3: Personenrisiko der Kantonale Notrufzentrale (KNZ)<br />

Wiederkehrperiode [Jahre] Personenschaden [CHF] Häufigkeit Personenrisiko [CHF/Jahr]<br />

30 862’500 0.023 19‘838<br />

100 862’500 0.007 6’038<br />

300 828’0000 0.002 16’560<br />

1’000 828’0000 0.001 8’280<br />

Total 50’716<br />

Risikobewertung<br />

Das Massnahmenziel von Schutzvorkehrungen an bestehenden Bauten wird so festgelegt,<br />

dass der jährliche Nutzen (Risikominderung) die jährlichen Kosten übersteigt. Im vorliegenden<br />

Fall führt dies zur Konsequenz, dass für Schutzmassnahmen Kosten von CHF 644‘715<br />

investiert werden können. Das Massnahmenziel entspricht im vorliegenden Fall einem<br />

300-jährlichen Ereignis.<br />

Massnahmenplanung<br />

Das hohe Risiko soll mit geeigneten Massnahmen wirksam reduziert werden (Egli T. (2005)).<br />

In der Folge werden einige Massnahmen genauer vorgestellt. Die Bemessung der Massnahme<br />

richtet sich nach der Wiederkehrperiode des Hochwassers (Schutzziel), der Fliesshöhe aus der<br />

Intensitätskarte und einer Reserve (Freibord) von 0.25 m. Daraus ergibt sich eine Höhe der<br />

Objektschutzmassnahme von 1.75 m.<br />

Massnahmenplanung: Vorschlag ‘Sperre’ bei der Eintrittstelle 1<br />

Auf der Länge von 6.1 m schützt ein Dammbalkensystem vor Hochwasser. Fix eingebaut und<br />

permanent sichtbar sind die seitlichen Führungsschienen und die im Boden versenkten<br />

Ankerpunkte. Falls aus architektonischer Sicht die Führungsschienen nicht akzeptabel sind,<br />

können diese auch ausgehängt werden, so verbleiben nur die Fixationspunkte im Mauerwerk.<br />

Entscheidend für die Funktionssicherheit ist ein rechtzeitiger und fachgerechter Aufbau<br />

des Systems. Dazu braucht es Personal, das permanent zur Verfügung steht und ein Warnsystem,<br />

das die Aktivitäten auslöst.<br />

Tabelle 4: Zusammenstellung der Kriterien zum Dammbalkensystem<br />

Umsetzung<br />

Praxistauglichkeit<br />

Architektur<br />

Unterhalt<br />

Investition<br />

Grundsätzlich einfach. Aufwendig im Fall der Datenübermittung mit<br />

Kabel.<br />

Keine Einschränkung zum heutigen Betrieb im Normalzustand. Doch<br />

unter Umständen ist mit häufigem Aktivierungsalarm zu rechnen<br />

und der Zutritt in die KNZ ist verwehrt.<br />

Kleiner Eingriff (seitliche Führungsschienen)<br />

Jahreskontrolle und periodische Reinigung<br />

- Dammbalken CHF 30'000.- inkl. bauliche Umsetzung<br />

- Warnsystem CHF 30'000.- inkl. bauliche Umsetzung<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 759


Massnahmenplanung: Vorschlag ‘Barriere und abdichten Türen‘ bei der<br />

Eintrittstelle 1<br />

Hinter dem bestehenden Tor soll eine automatische Barriere den Wasserzutritt verhindern.<br />

Die Barriere ist innerhalb der Garage und damit äusserlich nicht sichtbar. Die Barriere wird<br />

nur im Ernstfall geschlossen und ist im Ruhezustand hochgefahren.<br />

Die beiden Personaleingänge müssen mit je einer zusätzlichen Drucktüre vor dem Wasser<br />

geschützt werden. Die Drucktüren müssen auf der Aussenseite angebracht werden, damit<br />

erhöht die Wassermasse den Anpressdruck auf den Türrahmen und die Dichtigkeit steigt.<br />

Massnahmenplanung: Schutzmassnahmen bei den restlichen Eintrittstellen<br />

Die restlichen Eintrittsstellen werden mit Hochwasserschutztüren (Stelle 2, siehe Abbildung<br />

4), Rückstauklappen (Stelle 3), Hochwasserschutzfenster (Stelle 4) und Leitungsabdichtungen<br />

(Stelle 5) abgedichtet.<br />

Massnahmenwahl<br />

Um die Eintrittstelle 1 zu schützen, wurden neben den oben genannten Vorschlägen auch<br />

ein Klappschott und ein Schlauchwehr vorgeschlagen. Beide Massnahmen sind jedoch bei<br />

der Detailplanung nicht weiter verfolgt worden, da die beengenden Verhältnisse im Torbereich<br />

nicht genügend Platz für diese beiden Varianten boten.<br />

Der Auftragsgeber entschied sich für den Einsatz eines Dammbalkensystems mit Alarmierung,<br />

wasserdichte Türen, Fenster, Rückstauklappen und Leitungsabdichtungen.<br />

Risikoanalyse nach Massnahmen<br />

Mit den ausgeführten Objektschutzmassnahmen ist die KNZ bei einem 300-jährlichen<br />

Hochwasser der Steinach geschützt mit einem Risiko nach Massnahmen von 66‘000 CHF /<br />

Jahr. Die Risikoanalyse nach Massnahmen geht von einer Wirksamkeit der Objektschutzmassnahmen<br />

von 90% aus. Dieser Wert ist hoch, besonders für mobile Massnahmen wie der<br />

Einsatz des Dammbalkensystems. Doch mit dem Alarmierungssystem und der permanenten<br />

Anwesenheit der Disponenten kann eine hohe Zuverlässigkeit erreicht werden. Entsprechend<br />

reduzieren sich die Sachschäden auf 10% zum ursprünglichen Wert. Personenschäden sind<br />

keine mehr zu erwarten da die Disponenten gewarnt sind.<br />

Es ergibt sich somit eine Risikoreduktion von ursprünglich 710‘715 CHF/Jahr auf 66‘000 CHF<br />

/Jahr, der Nutzen ist entsprechend 644‘715 CHF/Jahr<br />

FAZIT<br />

Die Kantonale Notrufzentrale (KNZ) liegt im Überflutungsbereich bei einem Hochwasser<br />

der Steinach. Die durchgeführte Risikoanalyse zeigt ein sehr hohes Risiko für die KNZ von<br />

710‘715 CHF/Jahr. Mit den aufgezeigten Objektschutzmassnahmen kann dieses Risiko<br />

reduziert werden auf 66‘000 CHF/Jahr. Die Schutzmassnahmen können somit das Risiko<br />

sehr effizient verringern.<br />

760 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 5: Das eingebaute Dammbalkensystem vor dem Tor der KNZ<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 761


LITERATUR<br />

- Bründl M. (Ed.) (2009): Risikokonzept für Naturgefahren – Leitfaden. Nationale Plattform<br />

für Naturgefahren PLANAT, Bern.<br />

- Egli T. (2005): Wegleitung Objektschutz gegen gravitative Naturgefahren, Vereinigung<br />

Kantonaler Feuerversicherungen VKF, Bern.<br />

- Naturgefahrenkommission des Kantons St. Gallen (2008): Naturgefahrenanalyse Steinach.<br />

Projektverfasser Bänzinger Partner AG, Oberriet; Basler und Hofmann AG, Esslingen.<br />

762 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Flood corridors to handle residual risk<br />

Markus W. Klauser, Dr. sc. ETH, Dipl.Ing. 1 ; Christian Willi, Dipl. Forsting. ETH 2 ; Werner Fessler, Dipl. Kult. Ing. ETH 3 ;<br />

Josef L.A. Eberli, Dipl. Kult. Ing. ETH 3<br />

ABSTRACT<br />

Settlements are spreading in the floodplains of rivers as a result of economic development<br />

and the rising demand for land. By means of structural and organizational measures, it is<br />

possible to reduce the integrated risk (in terms of expected loss per year, aggregated over all<br />

investigated scenarios). However, it should be noted that only spatial planning measures like<br />

the elimination of flood corridors (i.e. areas with reduced or no damage potential) as part of<br />

the urban planning measures of municipalities can guarantee a forward-looking, controlling<br />

effect.<br />

In the «Stanser Talboden, Switzerland», structural and organizational measures have already<br />

been implemented to protect settlements. These measures were part of the flood protection<br />

project «Engelberger Aa» and have shown a positive efficiency in the past. This study focuses<br />

on additional spatial planning instruments and shows that the flood protection can be further<br />

developed by creating a flood corridor, in a cost-effective and trend-setting way.<br />

KEYWORDS<br />

floods, hydraulic engineering - organizational - spatial planning measures, emergency<br />

planning, flood corridors, climate change, damage potential, effect-cost analysis<br />

INTRODUCTION<br />

Sustainable spatial planning is a key component in the integrated risk management of natural<br />

hazards. It is implemented by taking into account the hazard zones in the land-use plans of<br />

municipalities. These measures, such as building bans or the set-up of physical protection<br />

measures help to mitigate the negative effects of flood hazards, but do not provide an<br />

adequate solution to control settlement evolution.<br />

Flood corridors allow the reduction of settlement evolution in certain areas. In addition, the<br />

instrument is very flexible, allowing a certain worsening of the natural hazard situation due<br />

to e.g., climatic changes. The present study examines the instrument of flood corridors at the<br />

economic level using the example of the flood protection system «Engelberger Aa». We show<br />

that the implementation of such spatial instruments can be cost-effective measures complementing<br />

both existing hard (hydraulically engineered) and soft (organizational) measures.<br />

1 Tiefbauamt Kanton Nidwalden, Stans, SWITZERLAND, markus.klauser@nw.ch<br />

2 Ernst Basler + Partner AG<br />

3 Tiefbauamt Kanton Nidwalden<br />

IP_<strong>2016</strong>_FP012<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 763


The planning and design of the «Engelberger Aa» flood protection project started in 1987.<br />

The first four stages were completed at the end of 2007. The main elements of the project<br />

included four flood dikes to control excess load (flood dikes A-D, see Figure 1). These were<br />

created in locations where, in the case of excess load, the excess water with a low hazard<br />

potential can be discharged outside the river channel but in a controlled way. In traditional<br />

flood protection management, «excess load» would typically result in the uncontrolled<br />

breaching of structures (such as banks) and, in most cases, extensive damage as observed<br />

during flood events of the recent past.<br />

The flow path used in our case for the discharged water is called a flood corridor. Buildings<br />

or settlements located in the flow path are protected to the level of their protection objective<br />

and through the implementation of local measures. Thus it is guaranteed that the maximum<br />

volume of water that remains in the channel at each discharge point corresponds to the<br />

capacity of the next river section. As soon as the flood hydrograph returns to a level below<br />

the dimensioning-based water volume, flood water will again be discharged through the river<br />

channel. After the raising of the dikes, the maximum flow rate in the main settlement area<br />

between Dallenwil and Ennerberg has been 300m 3 /s. After the construction of the fourth<br />

flood dike, a maximum flow rate of 150 m 3 /s will remain in the river bed; this is the<br />

maximum discharge which can be channeled into the lake without causing any damage to<br />

the settlement of Buochs (Kanton Nidwalden, 2009)<br />

This study focuses on the flood corridor of the «Stanser Talboden» which affects the municipalities<br />

of Dallenwil, Oberdorf, Stans, and Stansstad (Figure 1). The corresponding excess load<br />

dike D deviates excess waters of the Engelberger Aa into the «Stanser Talboden» in the case<br />

of very rare event (extreme flood, EHQ), which in turn will result in a residual flooding risk<br />

(noteworthy, parallel acting torrent processes are not covered in this study and therefore not<br />

considered further). A weir edge secures flood dike D (EHQ excess overload) from failure.<br />

In organizational terms, the functionality of the flood corridor is guaranteed by a documented<br />

and practiced emergency planning.<br />

Settlement pressure at the «Stanser Talboden» is high and growth will likely continue in the<br />

future. Due to the current flood situation, it is therefore essential to guide settlement pressure<br />

and to align it within the flood corridors in a sustainable manner. Therefore, it is important to<br />

incorporate flood corridors in zoning plans of municipalities and to be able to control<br />

construction activity within this corridor through suitable provisions in zoning regulations.<br />

METHODS<br />

As part of the efforts to improve flood protection on the Engelberger Aa, various measures<br />

have been implemented in recent years or are currently under investigation. Based on the<br />

reference condition of the Engelberger Aa (before 2003), the following three measures have<br />

been realized or are planned:<br />

764 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Lake<br />

Ennetbürgen<br />

Lake<br />

Stansstad<br />

Flood Corridor<br />

Buochs/Ennetbürgen<br />

60m 3 /s<br />

Flood dikes A and B<br />

45 m 3 /s<br />

45m 3 /s<br />

Buochs<br />

Flood Corridor<br />

Stanser Talboden<br />

Stans<br />

Flood dike C<br />

Oberdorf<br />

Engelberger Aa<br />

< 100 m 3 /s<br />

Flood dike D<br />

(EHQ-excess load)<br />

Dallenwil<br />

Figure 1: Schematic layout of the flood corridor within the „Stanser Talboden“<br />

– Hydraulic Engineering: all hydraulic engineering measures within the flood protection<br />

project of the Engelberger Aa, such as spillways, dam remediation, bank protection, or<br />

flood proofing have been realized between 2003 and 2008. The associated calculations<br />

describe the risk-reduction achieved by hydraulic engineering measures.<br />

– Organization: the existing emergency planning complements the hydraulic engineering<br />

measures and is used by the emergency services to reduce flood impacts. The associated<br />

calculations describe the risk reduction achieved by organizational measures.<br />

– Spatial Planning: it is assumed on a notional basis that the flood corridor in the «Stanser<br />

Talboden» is spatially established in 2015 and able to control settlement evolution over the<br />

coming 70 years. It is important to mention that the flood corridor (which was built as part<br />

of the hydraulic engineering measures for very rare events) is already operational and<br />

functional. However, future settlement evolution is not yet guided by a forward-looking<br />

management like a flood corridor, which is simulated in this study.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 765


During the investigation, we started by defining the study area within the «Stanser Talboden».<br />

The actual risk situation was then determined based on existing risk assessments (Kanton<br />

Nidwalden, 2012). As a result, settlement evolution in the municipalities of the «Stanser<br />

Talboden» was then estimated based on data from the Canton’s agglomeration program<br />

(Kanton Nidwalden, 2011) for the next 70 years (i.e. until 2085). This was done as follows:<br />

– Assumption of an average increase in population by 0.55% per year over the next 70 years.<br />

– Definition and spatial localization of the necessary building zones.<br />

– Combination of the investigated settlement situation in 2085 with the flood hazard<br />

situation (i.e. intensity map). Determination of process intensities.<br />

– Conversion of potentially constructed areas into property categories.<br />

The assumed growth scenario results in a total settlement area requirement of about 200 ha<br />

within the four municipalities. Two-thirds of this land would be required as residential land;<br />

whereas one third was defined as land for public, commercial, or industrial buildings. Within<br />

the flood corridor about 70 ha of land are defined as construction land. Noteworthy, only<br />

one-third of this surface will not be flooded by the extreme flood of the Engelberger Aa.<br />

Residential development can be controlled through the introduction of a flood corridor zone.<br />

By refining the flood corridor zone through a definition of different sectors, the guiding effect<br />

of land-use development can be optimized as follows:<br />

– Sector A: Absolute construction ban.<br />

– Sector B: Designation and development of building zones is not possible – especially not yet<br />

constructed areas between buildings have to be removed. No possibility to add new<br />

buildings (except for replacement).<br />

– Sector C: Consolidation and realignment of existing building zones is possible (non-constructed<br />

areas between buildings, etc.). Existing building zones remain intact.<br />

Commercial and industrial as well as public areas will be planned and realized outside the<br />

flood corridor – but not inside. New residential buildings will be restricted to sector C. These<br />

measures result in a reduction of the damage potential in the flood corridor, but also in a<br />

reduction of land surface suitable for construction from 70ha to about 2ha which corresponds<br />

to roughly 90 housing units which can still be realized within sector C.<br />

We also considered property protection measures within the flood corridor, to be undertaken<br />

in the context of building renovations.<br />

The costs for the implementation of the flood corridor can be categorized as follows:<br />

– Compensation: costs related to the removal of building zones from the flood corridor were<br />

estimated at ca. 1,500,000.— CHF.<br />

– Property protection measures: a contribution of 5,000.— CHF was taken into account per<br />

building which needs to be renovated.<br />

– Procedural and administrative costs: it was assumed that administrative costs will be in the<br />

order of CHF 75’000.— CHF.<br />

766 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– The costs for flood dikes, protection gates, terrain adjustments or excess load protection<br />

have been attributed to the hydraulic engineering measures for the flood protection project<br />

«Engelberger Aa».<br />

RESULTS<br />

The hydraulic engineering, organizational and planning measures can be evaluated based on<br />

two parameters, namely effect and efficiency.<br />

The effect can be investigated by comparing the integrated risk before and after the implementation<br />

of measures. Previous studies (Kanton Nidwalden, 2012) provide the results of the<br />

hydraulic engineering and organizational measures (Table 1). They show an overall reduction<br />

in integrated risk from ca. 4,261,000. to 1,292,000.— CHF/yr (-77%) as a result of the<br />

structural measures (Figure 1). Through the addition of organizational measures the<br />

integrated risk was reduced by an additional 400,000.— CHF/yr (or -16%).<br />

Table 1: Effect-cost ratios of the structural and organizational measures (Kanton Nidwalden, 2012).<br />

Risk<br />

Integrated risk<br />

Effect:<br />

Reduction of integrated risk<br />

Cost<br />

Costs of measures<br />

Efficiency<br />

Effect/Costs<br />

none<br />

Measure<br />

Hydraulic<br />

Engineering<br />

Hydraulic<br />

Engineering +<br />

Organisation<br />

[CHF/yr] 5,553,000.-- 1,292,000.-- 400,000.--<br />

[CHF/yr] -- 4,261,000.-- 5’153,000.--<br />

[CHF/yr] -- 332,000.-- 438,000.--<br />

[-] 13 12<br />

Efficiency is achieved by comparing the effects of measures with their annual cost. The annual<br />

costs include investment costs as well as operation and maintenance costs. It can be shown<br />

that the hydraulic engineering measures account for ca. 332,000— CHF/yr. Additional cost<br />

for the organizational measures (ca. 106,000.— CHF/yr) increase the total coast to ca.<br />

438,000.– CHF/yr.<br />

Table 2 shows the effect of the spatial planning measures studied in this paper (Kanton<br />

Nidwalden, in preparation). First it can be seen that settlement activity in the following years<br />

will increase risk significantly – followed by an increase in integrated risk from ca. 400,000.–<br />

CHF/yr today to ca. 478,000.– CHF/yr in 2085. The implementation of the flood corridor can<br />

not only compensate this increase, but also reduce it to ca. 366,000.– CHF/yr, which means a<br />

reduction of 23% by 2085.<br />

The above effect and efficiency calculations for the spatial measures were derived with<br />

EconoMe (Bundesamt für Umwel BAFU, 2015), a tool especially designed for risk calcula-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 767


tions, and show that the implementation of a flood corridor will result in a effect-cost ratio<br />

of approximately 3 by 2085 (Table 2). Noteworthy, annual cost of 40,000.– CHF/yr for spatial<br />

planning measures have been divided into compensation of land being removed from<br />

building zones (and thus reclassified, also in monetary terms), property protection as well as<br />

administrative costs. By far the largest proportion of costs (ca. 90%) is attributed to the<br />

compensation for land being removed from the building zone. Ignoring these costs leads to<br />

a effect-cost ratio of about 26. The efficiency (effect-cost) ratio is also shown in Figure 2.<br />

Table 2: Effect-cost ratios of the structural-organizational and structural-organizational+spatial planning measures (Kanton Nidwalden,<br />

in preparation) for the reference year 2085.<br />

Risk<br />

Integrated risk<br />

Effect:<br />

Reduction in integrated risk<br />

Cost<br />

Cost of measures<br />

Efficiency<br />

Effect/Costs<br />

Hydraulic<br />

Engineering +<br />

Organization<br />

(2085)<br />

Measure<br />

Hydraulic<br />

Engineering +<br />

Organization +<br />

Spatial planning<br />

(2085)<br />

[CHF/yr] 478,000.-- 366,000.--<br />

[CHF/yr] -- 112,000.--<br />

[CHF/yr] -- 40,000.--<br />

[--] -- 3<br />

6'000'000<br />

5'000'000<br />

no measures<br />

(before 2003)<br />

500'000<br />

400'000<br />

Integrated Risk [CHF/yr]<br />

4'000'000<br />

3'000'000<br />

2'000'000<br />

300'000<br />

400'000 450'000 500'000<br />

1'000'000<br />

Hydraulic Engineering<br />

(since 2008)<br />

Hydraulic<br />

Engineering+Organization<br />

(since 2008)<br />

Hydraulic<br />

Engineering+Organization<br />

(2085)<br />

Hydr.Engineering+<br />

Organization+<br />

Spatial Planning<br />

(2085)<br />

0<br />

0 100'000 200'000 300'000 400'000 500'000 600'000<br />

Annual Cost [CHF/yr]<br />

Figure 2: Effect-cost diagram.<br />

768 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CONCLUSIONS<br />

The results of the structural and organizational risk analysis show a clearly positive effect-cost<br />

ratio of 13 for the hydraulic engineering and 12 for hydraulic engineering + organizational<br />

measures, respectively. The calculations are based on existing databases and are considered to<br />

be reliable.<br />

To determine the efficiency with the spatial planning measures, we used data that we<br />

predicted for the year 2085. However, such a long-term prediction must be interpreted with<br />

caution. Furthermore, different methodological approaches of risk analysis in studies (Kanton<br />

Nidwalden, 2012 on one hand side and study Kanton Nidwalden, in preparation on the other<br />

hand side) may have led to certain inaccuracies.<br />

Sensitivity considerations made clear that the effect-cost ratio of the definition of a flood<br />

corridor is significantly influenced by the expected construction activity and the compensation<br />

that potentially needs to be paid for land being removed from building zones. The quality<br />

of the calculated effect-cost ratio of 3 can therefore be classified as «indicative» under the<br />

above criteria.<br />

As a conclusion, the following principles can be described:<br />

– The designation of flood corridors form a meaningful and cost-effective complement to<br />

hydraulic engineering and organizational measures.<br />

– The effectiveness of structural measures is continually reduced, due to the progressive<br />

housing development, thereby leading to a continuous increase in damage potential.<br />

The designation of flood corridors counteracts this effect in an economic way.<br />

– A flood corridor is a very flexible tool which can be used to deal with future problems<br />

including climate change.<br />

REFERENCES<br />

- Bundesamt für Umwelt BAFU, Bundesamt für Bevölkerungsschutz BABS (2009).<br />

Adapt Alp – Case Study Nidwalden. Kurzdokumentation, erarbeitet durch die Ernst<br />

Basler+Partner AG. 13. Januar 2009<br />

- Bundesamt für Umwelt BAFU, Bundesamt für Bevölkerungsschutz BABS (2011).<br />

RiskPlan – IT Tool fürs Risikomanagement. http://www.riskplan.admin.ch. Zugriff Mai 2012.<br />

- Bundesamt für Umwelt BAFU (2015). EconoMe 3.0. Wirtschaftlichkeit von Schutzmassnahmen<br />

gegen Naturgefahren. www.econome.admin.ch. Zugriff 9.6.2015.<br />

- Bundesamt für Wasser und Geologie BWG (2002). Excel Tool für die Abschätzung des<br />

Schadenpotentials Überschwemmung und Übermurung, SchaPo 2.1.<br />

- Kanton Nidwalden (2009): Integrales Risikomanagement am Beispiel der Engelberger Aa.<br />

http//www. nw.ch. Zugriff August 2015.<br />

- Kanton Nidwalden (2011). Agglomerationsprogramm Nidwalden 2011. Bericht.<br />

www. nw.ch.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 769


- Kanton Nidwalden (2012). Wirksamkeit der Notfallplanung als Beitrag zum integralen<br />

Risikomanagement. Schlussbericht, erarbeitet durch die Ernst Basler+Partner AG.<br />

18.Oktober 2012<br />

- Kanton Nidwalden (2012). Gefahrenbeurteilung Überflutung durch Engelberger Aa.<br />

Gemeinden Dallenwil, Oberdorf, Stans, Stansstad. Technischer Bericht und Karten, erarbeitet<br />

durch die Niederer und Pozzi AG, 1. September 2012.<br />

- Kanton Nidwalden (in Erarbeitung). Risikoanalyse. Prozess Engelberger Aa im Perimeter<br />

Stanser Talboden. Technischer Bericht.<br />

770 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Flood protection concept against enourmous debris<br />

flow scenarios<br />

Hochwasserschutzkonzept für Wildbach mit sehr<br />

grossen Murgangszenarien<br />

Rolf Künzi 1 ; Martin Amacher 1 ; Oliver Markus Hitz 3 ; Serena Liener 4 ; Christian Tognacca 5 ; Markus Zimmermann 6<br />

ABSTRACT<br />

In the last 500 years several large debris flow events of the Lammbach torrent in the Bernese<br />

Oberland with casualties were recorded. Since 22 check dams have been erected in 1896<br />

a huge amount of debris has been accumulating behind the check dams. A recent hazard<br />

analysis takes the failure of the old check dams into consideration. Flood scenarios vary<br />

from probable events with a total load of 40'000 m 3 to extreme events with a total load of<br />

750'000 m 3 . The consequent hazard situation on the alluvial fan demands for protective<br />

measures.<br />

In the frame of a flood protection concept the efficiency of four alternatives „Retain",<br />

„Convey", „Divert" and "Corridor" was examined. The analysis revealed that large events<br />

could be handled best with a combination of „Retain" and „Corridor". As a consequence of<br />

a participatory process an additional alternative „Decentralised Retention" was elaborated.<br />

This alternative is most effective during small and medium events. It was finally chosen<br />

as the best alternative although its measures are less effective during extreme events.<br />

ZUSAMMENFASSUNG<br />

Beim Lammbach im Berner Oberland wurden in den letzten 500 Jahren mehrere grosse<br />

Murgangereignisse mit Todesfällen dokumentiert. Seit dem Bau von 22 Sperren nach dem<br />

Ereignis 1896 wird hinter den Sperren des Lammbachs sehr viel Geschiebe zurückgehalten.<br />

In einer Gefahrenbeurteilung, welche einen möglichen Bruch der alten Sperren berücksichtigt,<br />

werden Hochwasserszenarien mit Geschiebefrachten auf dem Schwemmkegel zwischen<br />

40'000 m 3 bei einem häufigen Ereignis und 750’000 m 3 bei einem Extremereignis definiert.<br />

Daraus resultiert eine Gefährdung auf dem Schwemmkegel, welche Schutzmassnahmen<br />

erfordern.<br />

1 Flussbau AG SAH, Bern, SWITZERLAND, rolf.kuenzi@flussbau.ch<br />

2 Mätzener & Wyss Bauingenieure AG, Hauptstrasse 21, CH-3800 Unterseen<br />

3 Tiefbauamt des Kantons Bern, Oberingenieurkreis I, Schlossberg 20, CH-3601 Thun<br />

4 Büro geo7 AG, Neufeldstrasse 5 - 7, CH-3012 Bern<br />

5 beffa togniacca sagl, A San Rocch, CH-6702 Claro<br />

6 NDR Consulting GmbH, Riedstrasse 5, CH-3600 Thun<br />

IP_<strong>2016</strong>_FP082<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 771


Im Rahmen der Massnahmenplanung wurde der Nutzwert von vier Varianten “Rückhalten”,<br />

“Durchleiten”, “Umleiten” und “Korridor” analysiert. Es zeigte sich, dass mit einer Kombination<br />

der Varianten “Rückhalten” und “Korridor” eine Überlast am besten bewältigt werden<br />

kann. Aufgrund von Rückmeldungen aus der Mitwirkung der Bevölkerung wurde eine<br />

zusätzliche Variante “dezentraler Rückhalt” erarbeitet. Diese Variante erzielt die grösste<br />

Wirkung bei häufigen und mittleren Hochwasserereignissen und wurde schliesslich als<br />

Bestvariante gewählt, obwohl sich die Massnahmen der ursprünglich favorisierten Variante<br />

bei Überlast stabiler verhalten würden.<br />

KEYWORDS<br />

case study; torrent; debris flow; flood protection; high bed load potential<br />

AUSGANGSSITUATION<br />

Beim Lammbach im Berner Oberland auf dem Gemeindegebiet von Brienz, Schwanden und<br />

Hofstetten, wurden in den letzten 500 Jahren mehrere grosse Murgangereignisse mit<br />

Todesfällen dokumentiert. Im Mai 1499 wurde der Ortsteil Kienholz vollständig zerstört.<br />

Dabei waren 400 Todesopfer zu beklagen. 1824 führten Murgänge im Lamm-, Schwanderund<br />

Glyssibach zu 6 Todesopfern. 1896 verursachten zwei grosse Ereignisse mit einem mobilisierten<br />

Volumen von mindestens 250’000 m 3 grosse Schäden. Nach dem Ereignis von 1896<br />

wurden im Lammbach 22 Sperren errichtet. Davon wurden im Laufe der Zeit drei zerstört.<br />

Mit dem Bau der Sperren wurde die Bachsohle je nach Abschnitt um bis zu 20 m erhöht.<br />

Im Weiteren wurden im oberen Einzugsgebiet Hangstabilisierungsmassnahmen in Form von<br />

Aufforstungen mit über 8 Mio. Pflanzen und rund 80'000 m 3 Trockensteinmauern erstellt.<br />

Beim Zusammenfluss von Lamm- und Schwanderbach wurde zudem ein Ablagerungsraum<br />

mit einem Rückhaltevolumen von bis zu 70’000 m 3 geschaffen.<br />

Im 20. Jahrhundert sind keine ausserordentlichen Murgangereignisse mehr aufgetreten.<br />

Auch im Jahr 2005, als sich in den benachbarten Bächen Tracht- und Glyssibach zwei<br />

verheerende Murgangereignisse ereigneten, blieb der Lammbach ruhig. Dies dürfte unter<br />

anderem auch auf die Massnahmen im Einzugsgebiet zurück zu führen sein. Die Lammbachsperren<br />

wurden gebaut um eine Sohleneintiefung zu verhindern. Diese Funktion haben sie<br />

erfüllt. Hinter den Sperren des Lammbachs wurde in den vergangen rund 100 Jahren sehr<br />

viel Geschiebe zurückgehalten (> 1 Mio. m 3 ). Das Rückhaltevolumen der Sperren ist mittlerweile<br />

ausgeschöpft. Da die Sperren bereits über 100 Jahre alt sind, stellte sich bei der Überarbeitung<br />

der Gefahrenkarte die Frage, wie sich die Sperrentreppe bei zukünftigen Ereignissen<br />

verhalten würde. Aus diesem Grund wurden die Standfestigkeit und die Gebrauchstauglichkeit<br />

der Sperren untersucht und die Entwicklung ihres Zustandes unter der Annahme<br />

prognostiziert, dass die Bauwerke nicht mehr unterhalten und Instand gestellt würden<br />

(Kister et al. 2012).<br />

772 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Unter Berücksichtigung all dieser Faktoren wurden für die Gefahrenbeurteilung Szenarien<br />

mit grossen Geschiebefrachten definiert. Die daraus resultierenden Intensitäten der Murgänge<br />

in Kombination mit der Nutzung des Wildbachkegels führen zu einer Gefährdung auf dem<br />

Schwemmkegel, welche Schutzmassnahmen erfordern.<br />

EINZUGSGEBIET VON LAMM- UND SCHWANDERBACH<br />

Das Einzugsgebiet vom Lamm- (3.6 km 2 ) und Schwanderbach (2.6 km 2 ) ist in nördlicher<br />

Richtung durch den Brienzergrat (höchster Punkt Brienzer Rothohrn mit 2'350 m ü. M.)<br />

und gegen Süden durch den Brienzer See (558 m ü. M.) begrenzt.<br />

Das obere Einzugsgebiet des Lammbachs ist geprägt durch den steilen, von Verwitterung<br />

geprägten Gipfelaufbau des Arnihaaggen mit besonders ausgeprägten Rutschhängen auf der<br />

Ostseite. Ganz allgemein muss der im Lammbachgraben anstehende Fels aufgrund von<br />

Sackungsbewegungen als nicht sehr verwitterungsresistent und ausgesprochen erosionsfähig<br />

bezeichnet werden. Im Projektgebiet wird das Festgestein nicht nur auf der Talsohle, sondern<br />

auch über grosse Strecken an den Talflanken von Lockergestein bedeckt. Der Lammbach hat<br />

seit dem Rückzug des würmeiszeitlichen Aaregletschers sein Bett mehrere 100 m tief in die<br />

anstehenden Felsschichten eingeschnitten und dabei im Aaretal einen mächtigen Schuttkegel<br />

aufgeworfen, welcher bis zum Brienzersee reicht.<br />

Der Schwanderbach ist in seinem oberen Einzugsgebiet ein typischer Jungschuttbach mit<br />

relativ bescheidenen Geschiebeherden. Er weist steile, aber grösstenteils grasbewachsene<br />

Hänge in der Südflanke des Brienzer Rothorns auf. Der einzig grosse Geschiebeherd im<br />

Schwanderbach stellt der Rutschkomplex von Ägerdi dar. Der Schwemmkegel des Schwanderbachs<br />

ist nur schwach ausgeprägt.<br />

Abbildung 1: Sperre V im Lammbach<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 773


SZENARIEN<br />

Die Hochwasserabflüsse sind in der Tabelle 1 ersichtlich.<br />

Tabelle 1: Hochwasserabflüsse Lamm- und Schwanderbach<br />

Ereignis<br />

Hochwasserspitzen<br />

Schwanderbach Lammbach Lammbach inkl.<br />

Schwanderbach<br />

HQ 30 13 m³/s 8.3 m³/s 21 m³/s<br />

HQ 100 24 m³/s 15 m³/s 40 m³/s<br />

HQ 300 36 m³/s 23 m³/s 60 m³/s<br />

EHQ 46 m³/s 30 m³/s 77 m³/s<br />

Das enorme Geschiebepotential und die Interaktion von Witterung, Erosion, Rutschungen<br />

und bestehenden Schutzbauwerken machen den Geschiebehaushalt des Lammbachs zu<br />

einem komplexen System. Die Schätzungen für das Geschiebeaufkommen sind in der Tabelle<br />

2 dargestellt. Als Extremereignis wird im Lammbach das Versagen der Sperrentreppe<br />

angesehen. Sollten in Folge einer sehr grossen Rutschung und eines entsprechend grossen<br />

Murgangs ein Grossteil der Sperren versagen, würden die dahinter zurückgehaltenen<br />

Schuttmengen erodiert. Die Murgänge im Lammbach treten sowohl bei starken Gewitterniederschlägen<br />

als auch bei längeren Nässeperioden auf. Wegen der grossen Speicherkapazität<br />

der Sackungsmasse braucht es allerdings ein jeweils grosses Ereignis. Die Mergelschichten<br />

liefern viel Feinmaterial (siltiges und toniges Material). Dadurch können die Murgänge bei<br />

bescheidenem Wasserangebot langsam und bei hohem Wasserangebot aber auch schnell<br />

fliessen. Grosse Blöcke fehlen im Einzugsgebiet fast vollständig. Das abgelagerte Murgangmaterial<br />

besteht deshalb primär aus Steinen, Sand und Feinmaterial. Beim Schwanderbach<br />

können insbesondere nach längeren Nässephasen durch eine Aktivierung der Rutschung<br />

Ägerdi grössere Geschiebemengen ins Gerinne und bis zum Kegelhals gelangen (vgl. Tabelle 2).<br />

Tabelle 2: Geschiebeszenarien Lamm- und Schwanderbach<br />

Schwanderbach<br />

Lammbach<br />

Jährlichkeit Geschiebepotential Sperren Rutschung<br />

30-jährlich 15'000 m 3 40'000 m 3 alle intakt<br />

100-<br />

jährlich<br />

300-<br />

jährlich<br />

Extremereignis<br />

30'000 m 3 110'000 m 3 alle intakt<br />

65'000 m 3 210'000 m 3 einzelne<br />

versagen<br />

750'000 m 3 Grossteil<br />

versagt<br />

kleinere Rutschung(en)<br />

(5'000 - 10'000 m 3 )<br />

Rutschung 30'000 m 3 bis zu<br />

50'000 m 3 ; davon fliessen ca.<br />

10'000 m 3 als Murgang ab.<br />

Grossrutschung bis zu 100'000 m 3<br />

(evtl. sogar mehr); davon fliessen<br />

ca. 50'000 m 3 als Murgang ab<br />

Grossrutschung deutlich über<br />

100'000 m 3<br />

774 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Bei beiden Wildbächen führen ähnliche Niederschlagsereignisse zur Mobilisierung von<br />

grösseren Murgangereignissen . Da die Einzugsgebiete der beiden Bäche direkt nebeneinander<br />

liegen, muss mit dem gleichzeitigen Auftreten von Ereignissen in beiden Bächen<br />

ge rechnet werden. Diesem Umstand wurde bei der Szenarienbildung Rechnung getragen.<br />

VARIANTENSTUDIUM<br />

In einem ersten Schritt wurde eine grosse Auswahl an möglichen Einzelmassnahmen in<br />

Bezug auf die technische Machbarkeit und Schutzwirkung überprüft.<br />

Die Wirkung der Massnahmen wurde auf dem Schwemmkegel mit einer 2d-Modellierung<br />

mit dem Programm Flumen und zusätzlich einer unabhängigen gutachterlichen Beurteilung<br />

im Feld abgeschätzt. Die Murgangsimulationen mit FLUMEN (vgl. www.fluvial.ch, Beffa<br />

2003) löst die instationären, tiefengemittelten Flachwassergleichung mit der Methode der<br />

finiten Volumina und ist geeignet für die Untersuchung von Einphasenströmungen. Das<br />

Programm ermöglicht die numerische Nachbildung von Fliess- und Ablagerungsprozessen<br />

von Murgängen unterschiedlicher Rheologien. Für die Murgangsimulationen im Lammbach<br />

wurde ein "turbulent-yield" Ansatz (vgl. Naef et al. 2006) angewendet.<br />

Aufgrund der grossen mobilisierbaren Geschiebemengen im Einzugsgebiet und den durch<br />

das Siedlungsgebiet eingeschränkten Platzverhältnissen auf dem Schwemmkegel wurde rasch<br />

erkannt, dass zumindest einer teilweisen Erhaltung/Erneuerung der Sperrentreppe eine<br />

grosse Bedeutung zukommt. Um die Geschiebeeinträge im oberen Einzugsgebiet nicht zu<br />

vergrössern, sollen die forstlichen Massnahmen auch in Zukunft fortgesetzt werden, auch<br />

wenn deren Wirkung nicht eindeutig quantifizierbar ist. Aus den untersuchten Einzelmassnahmen<br />

wurden schliesslich folgende vier Grundvarianten gebildet:<br />

Variante 1 „Rückhalten“<br />

Mit neuen Leitdämmen auf dem Schwemmkegel wird sichergestellt, dass sämtliches Geschiebe<br />

bis in den bestehenden Rückhalteraum transportiert wird. Das Rückhaltevolumen des<br />

Sammlers wird mit einer Sohlenabsenkung und durch die Erhöhung der bestehenden<br />

Abbildung 2: Variante 1 „Rückhalten“<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 775


Begrenzungsdämme des Geschiebesammlers vergrössert. Die Wirksamkeit der Massnahmen<br />

konnte durch die numerische Modellierungen bestätigt werden.<br />

Für den Bereich unterhalb des Rückhalteraums verblieben jedoch unzulässige Gefährdungen<br />

und das Verhalten bei Überlast ist konzeptbedingt problematisch.<br />

Variante 2 „Durchleiten“<br />

Oberhalb des bestehenden Rückhalteraums sind analog zur Variante 1 neue Leitdämme<br />

vorgesehen. Zusätzlich soll das bestehende Rückhaltevolumen weniger stark vergrössert und<br />

mit Leitmauern unterhalb des bestehenden Rückhalteraums möglichst viel Material in den<br />

See geleitet werden.<br />

Aufgrund des relativ flachen Gefälles bis zum See muss mit einem Rückstau in den Korridor<br />

ausgehend vom Delta gerechnet werden. Die technische Machbarkeit des „Durchleitens“ ist<br />

somit nicht gegeben, weshalb diese Variante nicht weiter in die Überlegungen mit einbezogen<br />

wurde.<br />

Variante 3 „Umleiten“<br />

Variante 3 sieht auf dem Schwemmkegel eine vollständige Umleitung des Lammbachs vor.<br />

Das neue Gerinne führt über heute landwirtschaftlich genutzte Flächen in einen 150'000 –<br />

200'000 m 3 fassenden Sammler und weiter in den Brienzersee.<br />

Abbildung 3: Variante 3 „Umleiten“<br />

Die Kosten für die Variante 3 „Umleiten“ sind doppelt so hoch wie für die Variante 4 „Korridor“.<br />

Ein Umleitgerinne erfordert grosse Anpassungen an bestehenden Infrastrukturanlagen.<br />

Trotz der aufwändigen Massnahmen blieben bewohnte Gebiete entlang des neuen Gerinnes<br />

immer noch durch Murgänge mit starker Intensität gefährdet. Die Kostenwirksamkeit ist<br />

deutlich kleiner als 1 und somit die Subventionierbarkeit des Projektes durch Kanton und<br />

Bund nicht gegeben.<br />

776 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Variante 4 „Korridor“<br />

Die Variante „Korridor“ sieht eine Entlastung des bestehenden, aber vergrösserten Rückhalteraumes<br />

über einen durch seitliche Begrenzungsdämme definierten Korridor vor. Leitdämme<br />

am Anfang des Schwemmkegels begrenzen die Ausuferungen und Ablagerungen so dass<br />

die Murschübe bis in den Rückhalteraum oder Korridor geleitet werden können.<br />

Abbildung 4: Variante 4 „Korridor“<br />

Die numerischen Modellierungen zeigten eine gute Wirksamkeit der Massnahmen. Es konnte<br />

aber nicht ausgeschlossen werden, dass unerwünschte Ablagerungen das Anspringen des<br />

Korridors erschweren und zu viel Material in den Rückhalteraum abfliesst und bewohnte<br />

Gebiete weiterhin mit starken Intensitäten gefährdet sind.<br />

Bei den verbleibenden drei Varianten 1, 3 und 4 wurden die Schutzwirkungen untersucht<br />

und die Varianten im Rahmen einer Nutzwertanalyse mit einander verglichen. Bei der<br />

Variante „Umleiten“ wirkten sich die schlechte Kostenwirksamkeit und die in Frage gestellte<br />

Subventionierbarkeit negativ auf die Bewertung und Rangierung aus. Die besser platzierten<br />

Varianten 1 „Rückhalten“ und 4 „Korridor“ wiesen praktisch identische Summen bei der<br />

quantitativen Bewertung auf. Beide Varianten hatten jede für sich relevante Nachteile. Bei<br />

der Variante „Rückhalten“ war die Restgefährdung unterhalb des Sammlers noch zu gross,<br />

eine weitere Vergrösserung der Rückhaltemassnahmen auf dem Schwemmkegel hätte<br />

wiederum Probleme mit der Landschaftsverträglichkeit verursacht. Die Variante „Korridor“<br />

wurde in Bezug auf die Kriterien „Eingriff in die Landschaft“ und „Akzeptanz“ schlecht<br />

beurteilt. Aus dem Prozess des Variantenstudiums hat man am Schluss eine Kombination<br />

der Varianten „Rückhalten“ und reduzierten „Korridor“ als neue Variante „Rückhalt mit<br />

reduziertem Korridor“ entwickelt, welche sich als Bestvariante erwies.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 777


Abbildung 5: Variante „Rückhalten mit reduziertem Korridor“<br />

PARTIZIPATION MIT PROJEKTAUSWIRKUNGEN<br />

Die Variante „Rückhalt mit reduziertem Korridor“ wurde im Rahmen des gesetzlich vorgegebenen<br />

Mitwirkungsverfahrens öffentlich aufgelegt. Während der Auflage konnten sich alle<br />

interessierten Personen zum Projekt äussern. Die Mitwirkung hat gezeigt, dass bei der<br />

Bevölkerung eine grosse Skepsis gegenüber einem Überlastkorridor besteht. Man äusserte<br />

Befürchtungen, dass ein Überlastkorridor in der Gemeinde Brienz zukünftige Siedlungsentwicklungen<br />

einschränken könne. Zudem wurde bemängelt, dass bei der Variante „Rückhalten“<br />

keine Rückhaltemassnahmen im Lammbach oberhalb des Schwemmkegels untersucht<br />

worden sind.<br />

Die Überprüfung eines ergänzenden Geschieberückhaltes oberhalb des Schwemmkegels<br />

mit einem Abschlussbauwerk von 15 m Höhe ergab ein zusätzliches Rückhaltevolumen von<br />

70'000 m 3 . Aufgrund der grossen Wirkung wurde dieser Vorschlag als zusätzliche Variante<br />

„dezentraler Rückhalt“ in die weitere Planung aufgenommen. Dabei wurde auf die Ausbildung<br />

eines Überlastkorridors mit Leitdämmen verzichtet.<br />

Ein Vergleich der Varianten „Rückhalt mit reduziertem Korridor“ und „dezentraler Rückhalt“<br />

zeigt, dass die Kosten je CHF 20 Mio. betragen. Die Wirkung auf die Gefahrenkarte nach<br />

778 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 6: Variante „dezentraler Rückhalt“<br />

Massnahmen ist durch den zusätzlichen Rückhalt bis zu sehr seltenen Ereignissen (HQ 300<br />

)<br />

bedeutend (vgl. Abbildung 7).<br />

Wegen der riesigen mobilisierbaren Geschiebemengen beim Extremereignis (EHQ) unterscheiden<br />

sich die Intensitätskarten der beiden Varianten nach einem EHQ nicht. Bei der<br />

Variante „Rückhalt mit reduziertem Korridor“ wird ein Teil des anfallenden Materials via<br />

Korridor in Richtung See geleitet, bis auch dieser überlastet und schliesslich der gesamte<br />

Schwemmkegel betroffen ist. Bei der Variante „dezentraler Rückhalt“ bestehen zwei<br />

unabhängig voneinander funktionierende Rückhaltemassnahmen (oberer und unterer<br />

Abbildung 7: Gefahrenkarte nach Massnahmen Variante „Rückhalt mit reduziertem Korridor“ links, Variante „dezentraler Rückhalt“<br />

rechts<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 779


Rückhalt) bei welchen bei Extremereignissen am Ende ebenfalls der gesamte Schwemmkegel<br />

übermurt wird. Zusammengefasst kann gesagt werden, dass die Schutzwirkung der Variante<br />

„dezentraler Rückhalt“ bis zu sehr seltenen Ereignissen (HQ 300<br />

) besser beurteilt wird, die<br />

Variante „Rückhalt mit reduziertem Korridor“ bei extremen Ereignissen (HQ 300<br />

) gewisse<br />

Vorteile aufweist, welche sehr schwer zu quantifizieren sind. Ob sich z.B. eine Siedlungsentwicklung<br />

in den Bereich des Korridors mehr auf die Risiken auswirkt als eine Verdichtung<br />

derbestehenden Siedlungsstruktur ist nur sehr schwer zu beantworten und wurde nicht<br />

detaillierter untersucht.<br />

In Anbetracht all dieser Überlegungen und unter Berücksichtigung der Tatsache, dass der<br />

für den ursprünglich vorgesehenen Überlastkorridor beanspruchte Raum für die nächsten<br />

10 – 15 Jahre auch ohne Projekt durch Siedlungsbegrenzungslinien behördenverbindlich<br />

freigehalten wird, hat man sich auf der Basis einer Nutzwertanalyse für die Variante<br />

„dezentraler Rückhalt“ entschieden.<br />

Die Variante soll nun zum Bauprojekt weiter bearbeitet und bis 2017 planrechtlich sichergestellt<br />

werden.<br />

FAZIT<br />

Der Planungsprozess hat gezeigt, dass das Definieren von raumplanerischen und baulichen<br />

Schutzmassnahmen, welche bei extrem seltenen Ereignissen ausserhalb unserer Erfahrungswelt<br />

und trotz grossen Dimensionen immer noch eine Schutzwirkung haben, ausserordentlich<br />

schwierig und anspruchsvoll ist. Dies hauptsächlich in Bezug auf die Akzeptanz für<br />

Massnahmen, welche in Anbetracht des gewaltigen Ausmasses eines Extremereignisses nur<br />

eine begrenzte Wirkung aufweisen, sich aber auf das Landschaftsbild und die Siedlungsentwicklung<br />

auswirken. Diese Problematik verschärft sich im alpinen Raum, wo die Siedlungsflächen<br />

in ihrer Ausdehnung durch die Topografie beschränkt sind. Durch den partizipativen<br />

Prozess ist schlussendlich ein Projekt entstanden, das zwar nicht alle Probleme gänzlich zu<br />

lösen vermag, unter Berücksichtigung aller Bedürfnisse aber eine optimale Lösung darstellt.<br />

780 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


LITERATUR<br />

- Amacher, Martin, Christian Kaufmann, David Hodel (alle Mätzener&Wyss Bauing. AG),<br />

Markus Zimmermann (NDR Consulting GmbH), Serena Liener (geo7) und Christian Tognacca<br />

(beffa tognacca gmbh) 2014: Wasserbauplan Lamm- und Schwanderbach Mitwirkungsdossier<br />

- Zimmermann, Markus (NDR Consulting GmbH) 2015: Szenarien und Ereignisabläufe bei<br />

der Variante „dezentraler Geschieberückhalt“<br />

- Kister, Bernd, Markus Zimmermann, Gabi Hunziker, Bruno Zimmerli und Walter Fellmann<br />

2012: Analysis of torrent protective structures as a basic element of the hazard mapping<br />

process. Determining the as-is-state of 100 years old check dams made of natural stone<br />

masonry. Grenoble: 12th Congress Interpraevent. 729 – 740<br />

- Beffa, Cornel: 2D-Strömungssimulation mit FLUMEN, Wiener Mitteilungen (2003) Band<br />

18, BOKU-Wien<br />

- Naef, D., D. Rickenmann, P. Rutschmann, B.W. McArdell, 2006: Comparison of flow<br />

resistance relations for debris flows using a one-dimensional finite element simulation model,<br />

Nat. Hazards Earth Syst. Sci., 6, 155–165<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 781


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

The impact of debris flows on structures: practice<br />

revisited in light of new scientific results<br />

Dominique Laigle 1 ; Mathieu Labbé, PhD 2<br />

ABSTRACT<br />

Our study aims at determining values of the pressure in the vicinity of a structure subjected<br />

to a debris flow impact, and their evolution in time and space, for a given incident flow. We<br />

used a numerical model based upon the SPH (smoothed particles hydrodynamics) numerical<br />

method and simulated the flow features upstream of an obstacle impacted by a viscoplastic<br />

fluid wave. We focus interest on the pressures developed on the structure during the impact.<br />

The results are analyzed in view of the incident flow features, characterized by its Froude<br />

number Fr. We evidence a transition between what we name the dead-zone impact regime<br />

and the jet impact regime. We establish that this transition occurs for values of the Froude<br />

number between Fr ≈ 1.3 and 1.5. We evidence the respective roles of the gravitational and<br />

kinetic components of the pressure. Finally, we study the spatial distribution of the pressure<br />

applied to the obstacle and its evolution with time depending on the impact regime.<br />

KEYWORDS<br />

debris-flow; SPH; Protection structures; impact pressure<br />

INTRODUCTION<br />

The understanding and quantification of mudflow and debris flow – structure interactions in<br />

terms of modification of the incident flow and impact force applied to the obstacle are of<br />

paramount importance for the conception and design of structural countermeasures. In this<br />

context, the present study aims at determining local values of the flow velocity and pressure<br />

in the vicinity of a structure subjected to a debris-flow impact, as well as the changes in these<br />

variables over time and space, for a given incident flow. We use a 2D vertical numerical<br />

model based upon the SPH (smoothed particles hydrodynamics) numerical method. SPH is a<br />

particular method of treatment of fluid mechanics equations which is suitable for computing<br />

highly transitory free surface flows of complex fluids (viscoplastic, granular, etc.) in complex<br />

geometries. Thus, it is suitable for the treatment of debris-flow waves – structure interactions.<br />

We present our numerical experiments setup aiming at simulating a viscoplastic fluid wave<br />

impacting a simple obstacle. We notably focus interest on the pressures developed on the<br />

structure during the impact, on their evolution with the incident flow features, and on their<br />

spatial distribution over the obstacle. We also analyze our results in terms of physical<br />

phenomena explaining the observed pressures.<br />

1 Irstea, Grenoble, FRANCE, Dominique, dominique.laigle@irstea.fr<br />

2 Irstea, UR ETGR Snow avalanche and torrent control, Grenoble center, F-38402 St-Martin-d’Hères, France Univ. F-38041 Grenoble,<br />

France<br />

782 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP080


METHOD<br />

The SPH method<br />

The SPH (smoothed particle hydrodynamics) method is a mesh-free numerical method<br />

initially introduced by Gingold and Monaghan [1977]. It has since found many applications<br />

in fluid dynamics. Because of its mesh-free nature, it can handle large deformations of the<br />

simulated fluid. It also handles free surfaces naturally. This makes this method particularly<br />

well-suited for the simulation of the propagation of mudflows [Rodriguez-Paz and Bonet,<br />

2004], granular materials [Chambon et al., 2011] and their impact on a wall [Laigle et al.,<br />

2007; Huang et al., 2011b].<br />

Virtual experiments layout<br />

Our simulation domain (Figure 1) is derived from the experiments described in Tiberghien et<br />

al. [2007]. The experimental setup was designed to generate unsteady flows constituted of a<br />

steep front followed by a steady flow of constant depth h. It consisted of a 4 m long 30 cm<br />

wide flume with an inclination angle ranging from 0° to 10°. A tank was located upstream of<br />

the flume and stored the viscoplastic sample material. This tank was closed by a gate which<br />

could be instantaneously removed to release the fluid. A rectangular obstacle of height H was<br />

located downstream of the flume. The height H was adjusted from one experiment to another<br />

so as to maintain a constant aspect ratio h/H = 0.86. This value was arbitrarily chosen but is<br />

the order of magnitude of the ratio encountered in the field when considering real debris<br />

flows and protection structures. Simulations were carried out using an improved version of<br />

the SPH code presented in Laigle et al. [2007]. The fluid was modelled using about 60000 to<br />

80000 particles, resulting in about 20 particles along the vertical axis in the sheared region of<br />

the fluid. Each simulation was run on four cores on dual Xeon computers. The computation<br />

time for a single simulation ranged from one to two weeks depending on the number of SPH<br />

particles.<br />

Figure 1: Snapshot of a simulation showing the main features and dimensions of the virtual experiment.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 783


Our objective is to study the evolution of the local flow features in the vicinity of the obstacle<br />

for several values of the inclination angle. All other parameters of the virtual experiments<br />

(rheological parameters, height of the gate, and fluid level in the tank) are kept constant. This<br />

way, each inclination angle is related to a unique incident flow. In order to get a comparative<br />

criterion between numerical experiments and field flows, the following results will be<br />

presented not only on the basis of the inclination angle. We’ll indicate also the value of the<br />

Froude number of the incident flow. We adopt here the non-classical definition proposed by<br />

Tiberghien et al. [2007] in the framework of their experiments:<br />

Formula 1: definition of the Froude number adopted in the framework of the present study<br />

where ufront is not the fluid velocity but an average velocity of the front between the gate<br />

and the obstacle. h is the depth of the steady flow following the front propagation and θ is<br />

the inclination angle. The studied inclination angles in the simulations range from 3° to 16°,<br />

which corresponds to Froude number values ranging from 0.52 to 2.88, thus of the same<br />

order of magnitude as field debris flows.<br />

Virtual pressure sensors<br />

One of the goals of this work is to compute the pressure of the fluid in the vicinity of an<br />

obstacle. To this effect, we use virtual sensors [Laigle et al., 2007]. These sensors (Figure 2)<br />

are constituted of rectangular areas of the simulation domain over which various properties<br />

of the fluid are recorded. These properties include the average pressure, velocity, density and<br />

depth of the fluid. This is the method we use to compute the pressure on the wall, either at a<br />

given location (in which case the height of the sensor is equal to 1 cm, according to the flume<br />

experiments by Tiberghien et al. [2007]), or on the whole obstacle (the vertical extent of the<br />

sensor matches the height of the wall).<br />

Figure 2: location of the virtual pressure sensors off the upstream face of the obstacle<br />

784 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RESULTS<br />

Preliminary results<br />

After Labbé [2015], the observation of general flow features during the impact shows that for<br />

gentler slopes, between 3° and 7°, the fluid level goes up gradually along the upstream wall of<br />

the obstacle and finally overflows with permanent contact with the upper face of the obstacle.<br />

A surface wave looking like a hydraulic bore propagates upstream and a roughly triangular<br />

zone of fluid at rest, we name the dead-zone, forms upstream of the obstacle. These observations<br />

are coherent with previous experimental results obtained by Tiberghien et al. [2007]<br />

among others. For steeper slopes, above 8°, a vertical jet forms immediately when the fluid<br />

impacts the obstacle. A dead-zone forms upstream of the obstacle but it is much smaller than<br />

at gentle slopes. After the first impact a jet is still present over the obstacle and its angle with<br />

the horizontal direction diminishes with time and stabilizes when the steady regime is<br />

reached. The jet presents no contact with the upper face of the obstacle. This kind of impact<br />

will be referred to as the jet impact regime. At intermediate inclination angles, between 7°<br />

and 8°, we observe a transition. While at gentler slopes the size of the dead-zone gets bigger<br />

when the inclination reduces, its size is almost constant at steeper slopes.<br />

Time evolution of the pressure on the obstacle<br />

In this section, we aim at examining the pressure applied by the fluid to the upstream wall of<br />

the obstacle. The height of the sensor is identical to the obstacle height. Figure 3 shows the<br />

evolution of the pressure versus time for a series of simulations carried out with an increasing<br />

flume inclination. We note that a pressure peak is systematically present when the fluid<br />

impacts the obstacle as well as a pressure plateau when the steady regime is established. The<br />

respective values of these pressures strongly evolve with the flume inclination. On gentle<br />

slopes, in the dead-zone regime, a small peak with duration about 0.01 s is observed at the<br />

impact followed by a slow increase of the pressure lasting a few seconds. Between 3° and 6°,<br />

the first pressure peak, whose intensity is lower than the pressure of the plateau, grows up<br />

with increasing inclination. In parallel, the pressure of the plateau diminishes with increasing<br />

inclination. From 7° onwards, the peak intensity overcomes the pressure of the plateau. The<br />

local minimum in the curve connecting the peak to the plateau disappears at 8°. The duration<br />

of the peak increases with slope to reach values about 0.1 s.<br />

Figure 3: Evolution of the simulated pressure applied to the upstream wall of the obstacle versus time for several values of the virtual<br />

flume inclination angle<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 785


These results, combined with those of previous section, evidence two different impact regimes<br />

(dead-zone regime / jet regime). For the first one the maximum pressure is reached during<br />

the plateau when the steady regime is established. For the second one the maximum pressure<br />

is reached at the peak which immediately follows the impact. The transition between these<br />

regimes is observed between 6° (Fr = 1.12) and 7° (Fr = 1.31).<br />

Maximum pressures versus Froude number of the incident flow<br />

In this section we present the maximum pressures recorded by 4 sensors: 3 sensors 1 cm high<br />

located at the bottom, centre and top of the upstream face of the obstacle, and 1 global sensor<br />

covering all the obstacle height. These data are analyzed in reference to the Froude number<br />

(Figure 4). Between Fr = 0.5 en Fr = 1.2 pressures do not vary much for each sensor taken<br />

individually and curves are almost parallel. Higher pressures are observed at the bottom and<br />

pressures observed at the centre and global sensors are very similar. Between Fr = 1.2 and Fr<br />

= 1.6, the global sensor, bottom sensor, centre sensor and upper sensor respectively show a<br />

transition. Beyond a Froude value Fr = 1.6, the pressures increase almost linearly with the<br />

Froude number and the curves diverge. The pressure is systematically higher at the bottom<br />

and lower at the top of the obstacle. Once again, this evidences a transition in the impact<br />

regime with some additional information: the transition slightly depends on the position on<br />

the obstacle.<br />

Figure 4: Maximum pressure Pmax recorded by the sensors versus Froude number<br />

Analysis in terms of gravity and kinetic pressures<br />

In order to better understand the physics of the impact and to try to deduce rules for a better<br />

estimation of impact pressures in the field, we analyse here the respective contributions of<br />

the gravity pressure Pg and kinetic pressure Pkin. The kinetic pressure is given by:<br />

Formula 2<br />

786 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Where u is the flow velocity, ρ the material density and β is a correcting coefficient which<br />

value is close to unity. The gravity pressure is given by:<br />

Formula 3<br />

These formulas constitute the basis of the models of evaluation of debris-flow impact pressure<br />

which can be found in the literature according to a synthesis proposed by Proske et al. (2011).<br />

In this section, we consider the maximum mean pressure applied to the whole obstacle<br />

Pmax,global (computed using the global sensor) but also the plateau pressure Pplateau<br />

(corresponds to the maximum pressure only in the dead-zone regime) and the peak pressure<br />

Pp (corresponds to the maximum pressure only in the jet regime).<br />

One can see in Figure 5 that the ratio Pplateau/Pg varies gently and almost linearly with the<br />

Froude number. For values of the Froude number higher than 1.2, the Pplateau and the<br />

Pmax,global curves diverge and this latter no longer varies linearly with the gravity pressure<br />

Pg. For Froude number values lower than 1.2, the ratio Pmax,global/Pg takes values from 2.8<br />

to 3.5.<br />

Figure 6 shows that the ratio Pp/Pkin varies quite quickly with the Froude number when the<br />

latter is lower than 1.0 and that the maximum pressure value Pmax,global is higher than the<br />

kinetic pressure Pkin. For values of the Froude number higher than 1.2, the Pp and Pmax-<br />

,global curves superpose and the ratio Pmax,global /Pkin is almost constant and equals 2. This<br />

value is coherent with the theoretical case of a perfect fluid impacting a plate perpendicular to<br />

the flow direction. In their synthesis, Proske et al. [2011] note that authors who adopt the<br />

kinetic model also propose values of the correcting coefficient from 2.0 for fine slurries to 5.0<br />

for coarse materials.<br />

Figure 5: Maximum pressure recorded by the global sensor to gravity pressure ratio Pmax, global/Pg and plateau pressure to gravity<br />

pressure ratio Pplateau/Pg versus Froude number<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 787


Figure 6: Maximum pressure recorded by the global sensor to kinetic pressure ratio Pmax, global/Pkin and peak pressure to kinetic<br />

pressure ratio Pp/Pkin versus Froude number<br />

Spatial distribution of the pressure<br />

In this section we investigate the spatial distribution of the pressure applied to the upstream<br />

face of the obstacle and its evolution with time considering the impact regime. Whatever the<br />

regime, we can observe in Figures 7 and 8 that the first impact takes place at the bottom of<br />

the obstacle and the pressure spreads afterwards on the whole obstacle. After a sufficient<br />

time, the pressure profile is linear meaning that the plateau is reached and that the gravity<br />

pressure is the only contribution at work. One can see in Figure 7 that in the dead-zone<br />

regime, the first impact is not very strong and the maximum pressure at any point of the<br />

obstacle is clearly observed when the plateau pressure is reached. On the contrary, one can<br />

see in Figure 8 that in the jet regime, the first impact is very strong and the maximum<br />

pressure, at least at the bottom of the obstacle, is observed during the first impact phase.<br />

Figure 7: Distribution of the pressure applied to the upstream face of the obstacle at different times of the simulation carried out with Fr<br />

= 0.71, θ = 4° (first time of contact is at 3.187 s)<br />

788 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 8: Distribution of the pressure applied to the upstream face of the obstacle at different times of the simulation carried out with Fr<br />

= 2.22, θ = 12° (first time of contact is at 1.354 s)<br />

CONCLUSIONS<br />

The present study aimed at determining local values of the pressure in the vicinity of a<br />

structure subjected to a debris-flow impact, as well as its evolution in time and space, for a<br />

given incident flow. To carry out this study, we used a numerical model based upon the SPH<br />

numerical method. After briefly presenting SPH, we introduced our numerical experiments<br />

setup. In the presence of an obstacle, we simulated the local flows upstream of the obstacle at<br />

several times of the impact of a viscoplastic fluid wave. We focused interest on the time<br />

evolution and spatial distribution of pressures developed on the structure during the impact.<br />

The results were analyzed in view of the features of the incident flow characterized by its<br />

Froude number. We evidenced the existence of 2 impact regimes respectively named<br />

dead-zone and impact regime with a transition for Froude number values around 1.3 to 1.5.<br />

We evidenced the respective contributions of the gravity and kinetic pressures during the<br />

impact phase, depending upon the impact regime. We finally analyzed the spatial distribution<br />

of the pressure on the obstacle depending on the impact regime.<br />

REFERENCES<br />

- Chambon, G., Bouvarel, R., Laigle, D. and Naaim, M. (2011): Numerical simulations of<br />

granular free-surface flows using smoothed particle hydrodynamics. Journal of Non-Newtonian<br />

Fluid Mechanics, 166(12-13): 698-712.<br />

- Gingold, R. and Monaghan, J. (1977): Smoothed particle hydrodynamics-theory and<br />

application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181:<br />

375-389. ISSN 0035-8711.<br />

- Huang, Y., Dai, Z., Zhang, W. and Chen, Z. (2011): Visual simulation of landslide fluidized<br />

movement based on smoothed particle hydrodynamics. Natural Hazards, 59(3): 1225-1238.<br />

ISSN 0921-030X.<br />

- Labbé, M. (2015) : Modélisation numérique de l’interaction d’un écoulement de fluide<br />

viscoplastique avec un obstacle rigide par la méthode SPH. Application aux laves torrentielles.<br />

PhD thesis. Université Grenoble Alpes. (in French)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 789


- Laigle, D., Lachamp, P. and Naaim, M. (2007): SPH-based numerical investigation of<br />

mudflow and other complex fluid flow interactions with structures. Computational Geosciences,<br />

11(4): 297-306. ISSN 1420-0597.<br />

- Proske, D., Suda, J., and Hübl, J., (2011): Debris flow impact estimation for breakers.<br />

Georisk, 5(2): 143-155.<br />

- Rodriguez-Paz, M. and Bonet, J. (2004): A corrected smooth particle hydrodynamics<br />

method for the simulation of debris flows. Numerical Methods for Partial Differential<br />

Equations, 20(1): 140-163. ISSN 1098-2426.<br />

- Tiberghien, D., Laigle, D., Naaim, M., Thibert, E. and Ousset, F. (2007): Experimental<br />

investigations of interaction between mudflow and an obstacle. In C. Chen and J. J. Major<br />

Eds., Proceedings of the International Conference on Debris-Flow Hazards Mitigation:<br />

Mechanics, Prediction, and Assessment, Chengdu, China. 281-292.<br />

790 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

People and buildings vulnerability to floods in<br />

mountain areas<br />

Marco Pilotti, Ph.D. 1 ; Luca Milanesi, Ph.D. 1 ; Roberto Ranzi, Ph.D. 1<br />

ABSTRACT<br />

Risk assessment needs rational and quantitative methodologies to describe hazard, vulnerability<br />

and exposure. This paper focuses on physical vulnerability functions based on mechanical<br />

schemes representing human stability and building structural resistance in a flow. These<br />

instruments were used to model the Gleno dam break event that occurred in 1923 in Valle di<br />

Scalve (Northern Italy). An innovative modelling approach adapting the domain bathymetry<br />

to the potential building collapse is proposed and positively tested.<br />

KEYWORDS<br />

2D model; Buildings vulnerability; Dam break; Flood mapping; People's vulnerability<br />

INTRODUCTION<br />

Hydraulic risk is a combination of hazard, exposure and vulnerability. Accordingly, quantitative<br />

procedures are needed to calculate the flow features, to identify the exposed targets<br />

(e.g., people, buildings, cars, etc.) and define the potential damage associated to each flow<br />

condition. Only this rational roadmap provides objective results so that the related legislative<br />

planning instruments can be understood, accepted and shared among stakeholders. The<br />

criteria used to assess exposure and vulnerability are still poorly discussed and this study<br />

focuses on people’s and buildings vulnerability to floods.<br />

Several models of people’s vulnerability to floods are available in the literature from both<br />

conceptual and experimental studies (e.g., Xia et al., 2014). They are useful to estimate the<br />

potential loss of life due to floods (Jonkman et al., 2008). Anyway, these models are mostly<br />

empirical and a satisfactory treatment of physical aspects such as the role of local slope and<br />

fluid density is still missing. Milanesi et al. (2015) proposed a weakly parametric conceptual<br />

model that includes a detailed treatment of these issues. The model, briefly summarized in<br />

the following, best matches the available experimental data.<br />

Although the most common method for the estimation of direct damage to buildings is still<br />

the application of stage-damage functions (Jongman et al., 2012), structural vulnerability<br />

models are available (e.g., Clausen & Clark, 1990) and worth to be investigated . The current<br />

study provides a conceptual scheme comparing the actions exerted by the flow on a simplified<br />

masonry building with the resistance of the structure itself, considering the potential<br />

failure mechanisms of a partly confined wall.<br />

1 Università degli Studi di Brescia, ITALY, luca.milanesi@unibs.it<br />

IP_<strong>2016</strong>_FP014<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 791


These criteria have been applied to the Gleno dam break event which occurred in 1923 with<br />

catastrophic consequences in Valle di Scalve, a right tributary of Valle Camonica, drained<br />

respectively by the Dezzo and Oglio rivers. The flood took about 45 min to flush the 21<br />

km-long stretch from the dam to the confluence of the rivers at Corna (Darfo). Pilotti et al.<br />

(2011) studied the event by a 1D model of the Dezzo river as far as the alluvial fan of Corna.<br />

Here a 2D code has been applied to model the flood on the fan, including a dynamic<br />

procedure accounting for building collapse. The preliminary results of the model are<br />

compared to observed data derived from historical documents.<br />

PEOPLE’S VULNERABILITY TO FLOODS<br />

As proposed by Lind et al. (2004), the human body is represented by a set of cylinders in<br />

vertical position on an inclined slope (Fig. 1) and impacted frontally by a steady uniform flow.<br />

The body weight W is decomposed in direction normal W N<br />

and parallel W P<br />

to the slope.<br />

Considering the pressure distribution of a parallel flow, the buoyancy force B N<br />

is normal to<br />

the bed. Since the body stands in vertical position on the slope, it is not normal to the flow<br />

field. Neglecting skin friction, the fluid dynamic force R is normal to the body frontal area and<br />

it can be decomposed in direction parallel and normal to the slope, giving drag D and lift L<br />

forces respectively. Friction T between the soles and the bed is the product of the coefficient μ<br />

(0.46, after calibration) and the effective weight w that is the algebraic sum of the forces<br />

normal to the slope: W N<br />

, B N<br />

and L<br />

Figure 1: Acting forces and their application points: (a) weight, (b) dynamic actions, and (c) buoyant and friction forces. Partial lateral<br />

view of the body. See Milanesi et al. (2015) for details on the symbols.<br />

Slipping instability occurs if the sum of the drag force and of the component of weight W P<br />

overcomes friction. Toppling instability occurs if the moment calculated with respect to the<br />

pivot point P, in this case the heel, of the component of the weight W N<br />

is exceeded by the<br />

destabilizing moments due to lift, drag, buoyancy and the component of the weight W P<br />

. A<br />

third condition is introduced to consider drowning by imposing a maximum admissible water<br />

depth as a function of the height of the neck. The depth safety limit, as a function of the flow<br />

velocity U, is given by the minimum among slipping, toppling and drowning depths (Fig. 2).<br />

792 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2; Stability curves for adults (m=71 kg, Y a<br />

=1.71 m, thin line) and children (m=22.4 kg, Y c<br />

=1.21 m, thick line): (a) slipping (b)<br />

toppling (c) drowning; combined in Fig. (d) (ρ=1000 kg/m 3 and =0°). A, B, and C influence areas in (d) represent respectively the<br />

drowning, toppling and slipping controlled areas for children. Fig. (e) shows literature experimental data and the curves by Xia et al.<br />

(2014) (dashed). High, medium and low vulnerability are respectively identified by red, orange and yellow. See Milanesi et. al. (2015)<br />

for details on the cited studies.<br />

BUILDINGS STRUCTURAL VULNERABILITY TO FLOODS<br />

Alpine traditional masonry buildings are modelled using a simple structure with weight-bearing<br />

walls. Accordingly, it is subdivided in elementary modules independent from each other,<br />

whose stability is assessed with respect to the wall impacted by the flow. Under the action of<br />

a horizontal acceleration normal to the wall, the wall flexes out-of-plane, rotating around a<br />

horizontal or vertical joint, depending on the constraint exerted by the surrounding walls.<br />

The loading force F per unit width is made of a hydrostatic F st<br />

and a dynamic F d<br />

term, the<br />

latter amplified to represent the impulsive behaviour of the impact (Cross, 1967).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 793


Figure 3: Scheme of the building (a) and detail of the impacted wall with tracks of the failure joints (b). Horizontal (c) and vertical (d)<br />

joint failure mechanisms.<br />

The first failure mechanism is modelled considering a vertical strip of the wall of unit width,<br />

thickness t, and height Y as a simply supported beam loaded by a trapezoidal pressure<br />

distribution. It fails along a horizontal joint of thickness a (x-x’, Fig. 3b) if the maximum<br />

moment M max-h<br />

caused by the flow pressure is greater than the stabilizing moment M u-h<br />

due<br />

to the vertical loads N.<br />

MM mmmmmm−h ≥ MM uu−h → MM mmmmmm−h ≥ NN ( tt 2 − mm 2 )<br />

Formula 1<br />

The second failure mechanism is modelled by considering the portion of the wall of height h<br />

and width L as a laterally simply supported beam. The pressure distribution is uniform and<br />

the stability is provided by a resisting arch that transfers the load F 0<br />

on the sidewalls and by<br />

the friction force per unit width F μ<br />

at the interface at height h. The vertical joint (y-y’, Fig. 3b)<br />

triggers if the maximum moment on the beam M max-v<br />

is greater than the resisting moment<br />

M u-v<br />

.<br />

MM mmmmmm−vv ≥ MM uu−vv → MM mmmmmm−vv ≥ FF oo (tt − mm ) + FF LL 2<br />

2<br />

μμ<br />

8<br />

Formula 2<br />

794 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The limiting stability condition is represented by the horizontal joint mechanism.<br />

Figure 4: Stability thresholds associated to the described mechanisms calculated for a 2.5 storey building with walls 0.45 m thick.<br />

THE GLENO DAM BREAK TEST CASE<br />

The Digital Terrain Model (DTM) of the domain was derived from LIDAR data, filtered from<br />

buildings and vegetation, with 1 m resolution (Source: Italian Ministry of the Environment<br />

and Protection of Land and Sea). It was averaged at uniform sized cells of 7.5 m in order to<br />

represent buildings and limit the computational effort. The urban area and the path of the<br />

Dezzo river in 1923 were reconstructed through historical maps. Because of the lack of<br />

quantitative and reliable information regarding the original geometry of the Dezzo river, a<br />

rectangular approximation was assumed. The original path was derived from historic maps.<br />

Figure 5: a) Location of the study area. b) Input hydrograph (Pilotti et al., 2011). c) Discretization of the hydrograph for the dynamic<br />

approach.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 795


The code used to compute local flow depth and velocity (FLO-2D) solves the full two<br />

dimensional (2D) shallow water equations (SWE) on a Cartesian grid using an explicit,<br />

central, finite difference numerical scheme along eight flow directions. This software, already<br />

applied successfully to the dam break study of Cancano (Pilotti el al., 2014), was chosen also<br />

for its compliance with the requirements of the Federal Emergency Management Agency<br />

(FEMA) in USA about hydraulic modelling.<br />

Urban flooded domains have uneven roughness and traditional a priori estimates of roughness<br />

are not feasible in case of impulsive flood waves affecting significantly the domain<br />

morphology and roughness. Accordingly, roughness was assumed constant and calibrated<br />

(k s<br />

=30 m 1 /3 /s) with reference to the depth observed in several points of the domain.<br />

It was shown (e.g., Soares-Frazão & Zech, 2008) that the presence of buildings as well as their<br />

alignment influence the flow field and the flood extent. This is especially true as far as<br />

impulsive floods are concerned since their destructive impact on buildings can dynamically<br />

alter the bathymetry. Accordingly, in the following two different modelling approaches will<br />

be compared: a static one, keeping the buildings in their initial position during the entire<br />

simulation based on the hydrograph in Fig. 5b, and a dynamic one, provided by a series of<br />

Figure 6: Differences in maximum flow depth (a) and velocity (b). Blue indicates that the dynamic simulation provides values greater<br />

than the ones from the static model; red colour indicates the opposite situation. White indicates substantial equality between the results<br />

of the two approaches. GREEN: flooded buildings; YELLOW: submerged buildings; ORANGE: partly destroyed buildings; RED: destroyed<br />

buildings.<br />

796 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 7: (a) Validation of the structural vulnerability model; the red dots indicate where, according to the presented model (section 2),<br />

buildings would be destroyed by the flow in the dynamic approach. Risk to people maps from the static (b) and dynamic (c) approaches.<br />

simulations of partial hydrographs (Fig. 5c). At the end of each partial simulation, the<br />

buildings destroyed according to the structural vulnerability model are removed from the<br />

domain and a roughness value k s<br />

=10 m 1/3 /s is assigned to the area previously covered by the<br />

structure to represent the presence of debris. The following simulation is then run from the<br />

beginning of the hydrograph with the updated bathymetry.<br />

RESULTS AND CONCLUSIONS<br />

The main difference between the two simulations is related to the lateral spread of the flow<br />

due to the interaction with the buildings (Fig. 6). The static simulation estimates greater<br />

depths and velocities in the lateral areas of the fan because of the diffusion caused by<br />

buildings. On the contrary, with the dynamic approach the flow is more concentrated along<br />

the centre of the domain because of the gradual removal of the destroyed structures based on<br />

the vulnerability model, whose reliability is demonstrated in Fig. 7a. The comparison of the<br />

estimated flow depths with data from historical images proves that the dynamic approach is<br />

more accurate than the static one (RMSE=0.69 m and 0.78 m respectively). Risk was<br />

classified by the vulnerability criterion for people, whose exposition was considered unitary.<br />

As usual in extreme events, Figs. 7b and 7c show a strong polarization toward high risk areas.<br />

The main advantages of the model of people vulnerability is the direct dependency of the<br />

thresholds from fluid density and local slope that are key parameters especially in mountain<br />

areas. Similarly, on the contrary of empirical formulae (e.g., Clausen & Clark, 1990), the<br />

physically based model of buildings structural vulnerability can be adapted to different<br />

structural typologies. Finally, the dynamic modelling of extreme events allows a more realistic<br />

hazard assessment and an accurate estimate of the consequences on structures. The simple<br />

physically based procedures presented in this study allow a reliable reproduction of flood<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 797


events and a more objective representation of risk that might guarantee comprehensibility<br />

and acceptability of the related plans and constraints to the stakeholders.<br />

REFERENCES<br />

- Clausen L., Clark P. (1990). The development of criteria for predicting dam break flood<br />

damages using modeling of historical dam failures. Proc. Int. Conf. on River Flood Hydraulics,<br />

W. White (ed.), Wiley, U.K, 369–380.<br />

- Cross, R.H. (1967). Tsunami Surge Forces. Journal of the Waterways and Harbors Division<br />

93(4): 201-231.<br />

- Jongman B., Kreibich H., Apel H., Barredo J. I., Bates P. D., Feyen L., Gericke A., Neal J.,<br />

Aerts J.C.J.H., Ward P.J. (2012). Comparative flood damage model assessment: towards<br />

a European Approach. Nat. Hazards Earth Sys. 12: 3733–3752.<br />

- Jonkman S.N., Vrijling J.K., Vrouwenvelder A.C.W.M. (2008). Methods for the estimation<br />

of loss of life due to floods: a literature review and a proposal for a new method. Nat Hazards<br />

46: 353-389.<br />

- Lind N., Harftord D., Assaf H. (2004). Hydrodynamic models of human stability in a flood,<br />

J. Am. Water Resour. As. 40(1): 89–96.<br />

- Milanesi L., Pilotti M., Ranzi R. (2015). A conceptual model of people’s vulnerability to<br />

floods. Water Resour. Res. 51(1):182-197.<br />

- Pilotti M., Maranzoni A., Tomirotti M., Valerio G. (2011). The 1923 Gleno dam-break:<br />

case study and numerical modelling. J. Hydraul. Eng. 137(4): 480-492.<br />

- Pilotti M., Maranzoni A., Milanesi L., Tomirotti M., Valerio G. (2014). Dam-break modeling<br />

in alpine valleys. J. Mt. Sci. 11(6): 1429-1441.<br />

- Soares-Frazão S., Zech Y. (2008). Dam-break flow through an idealized city. J. Hydraul.<br />

Res. 46(5): 648-658.<br />

- Xia J., Falconer R.A., Wang Y., Xiao X. (2014). New criterion for the stability of a human<br />

body in floodwaters. J. Hydraul. Res. 52(1): 93-104.<br />

798 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Modern flood protection and rehabilitation concepts<br />

at pre-alpine alluvial rivers<br />

Michael Müller, Ph.D. 1 ; Peter Billeter, Ph.D. 1 ; Matthias Mende, Ph.D. 1 ; Manuel Zahno, MSc. 1 ; Adrian Fahrni 2<br />

ABSTRACT<br />

In Switzerland, the big pre-alpine alluvial river corridors are embedded in urban, industrial,<br />

agricultural or recreational zones. Planning and construction of flood protection and<br />

restoration measures on these rivers require consideration of various interests and is strongly<br />

influenced by restrictive constraints in time and space.<br />

Three examples of flood protection projects reveal challenges met during planning and<br />

construction stages. All measures presented were subject to various actors' opinion and<br />

implemented under particular site conditions. A large flood plain was exploited for widening<br />

the Aare River upstream of Berne, enhancing wetlands of national interest. Residential and<br />

industrial zones at the Kleine Emme River at Littau only allowed increasing flood capacity<br />

by heightening the cross section. However, the ecological and recreational environment was<br />

enhanced by instream restoration measures such as flow structures, low flow channels as<br />

well as micro groins. The Linth Channel project included both river widening and instream<br />

restoration. In each case, excess flood evacuation concepts guarantee the functionality of<br />

implemented protection structures under even more severe flow conditions.<br />

KEYWORDS<br />

Flood control; river restoration; river widening; instream river training; excess flood evacuation<br />

INTRODUCTION<br />

Today's flood protection measures aim at controlled and safe run-off of a specific design flood<br />

on one hand, and an enhancement of ecological conditions and fish habitats on the other<br />

hand. Thus, if on a given river reach civil engineering works for flood control are planned a<br />

detailed analysis of possible restoration measures has to be carried out simultaneously. If local<br />

conditions allow, river widenings present a very suitable solution for both flood protection<br />

and ecological diversification. If widening cannot be considered due to densely built or<br />

sensitive surroundings, specific local measures in the river section have to be considered such<br />

as flow structures created by instream restoration measures, low flow channels and micro<br />

groins. This is in accordance with the Federal Act on the Protection of Waters which defines<br />

the legal context for planning and construction on Swiss rivers.<br />

1 IUB Engineering AG, Belpstrasse 48, CH-3007 Bern, SWITZERLAND, michael.mueller@iub-ag.ch<br />

2 Tiefbauamt Kanton Bern, OIK II, Schermenweg 11, CH-3001 Bern, SWITZERLAND<br />

IP_<strong>2016</strong>_FP084<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 799


The environment in the Swiss Midland is dominated by urban areas and most of the big prealpine<br />

alluvial river corridors are embedded in urban, industrial, agricultural or recreational<br />

zones. Consequently, if a certain river reach is planned to be enhanced by flood protection<br />

and restoration measures, all these different parties become somehow involved in the project.<br />

Thus, during planning and construction phases of flood control measures for Swiss pre-alpine<br />

alluvial rivers, a big variety of actors, different and sometimes contradictory interests as well<br />

as multiple constraints in time and space have to be considered. Solutions and compromises<br />

have to be found to reduce flood damages, improve river habitats and, after all, achieve<br />

public acceptance and satisfaction of the involved partners.<br />

According to Swiss standards the design flood discharge Q dim<br />

depends on the potential of<br />

damage. For urban areas or relevant infrastructure the discharge Q dim<br />

often has annual<br />

probability of P = 0.01 and the dam heights account for a safety margin of typically 0.5 m<br />

to 1.0 m with regard to the water level at design discharge. In any case and in addition to<br />

a solution for the design flood, an evacuation concept has to be proposed for the case of an<br />

excess flood event. For such events either extreme discharge with an annual probability of<br />

occurrence of P < 2‰ (corresponding to a 500-years return period), extreme bedload or<br />

extreme driftwood transport are assumed. The excess flood evacuation concept includes the<br />

definition of an emergency and alerting concept as well as constructive measures to assure<br />

the functioning of the flood protection measure during the extreme event, for example by<br />

a controlled flooding of less populated river corridors.<br />

The paper focuses on two basically different approaches that can be adopted regarding flood<br />

protection measures and river restoration - solutions with and without river widening - based<br />

on three practical examples of executed or planned flood protection works on the Swiss Rivers<br />

Aare, Kleine Emme and Linth which were or are to be carried out under challenging site<br />

conditions and particular constraints. Furthermore, concepts and specific solutions to handle<br />

the subject of excess flood control are discussed.<br />

FLOOD CONTROL INVOLVING RIVER WIDENING AND RESTORATION<br />

In the beginning of the 20th century, flood protection concepts often included straightening<br />

and channelizing of river reaches. Nowadays and based on new laws on water protection and<br />

hydraulic engineering the idea consists in giving back terrain to the rivers, allowing them<br />

to regain their meandering or braided character and to flood specific areas where a certain<br />

degree of damage can be accepted. The challenge consists in controlling the effects of the<br />

morphological processes to reach a sustainable situation for both nature and civilization.<br />

Constructive measures include protection of eroding banks, stabilization and structuring<br />

of the cross section invert as well as increasing flow diversity to reach optimum ecological<br />

conditions.<br />

800 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Over the last two decades, several flood events of the Aare River affected the Selhofen-<br />

Zopfe region (Switzerland, Figure 1a), a zone involving agriculture, drinking water supply,<br />

protected wetlands of national interest as well as a small international airport. The flood<br />

event in 1999, when the discharge of the Aare river reached about Q = 610 m 3 /s corresponding<br />

to a 500-years-flood, caused considerable damages to the local communities and<br />

infrastructure. In addition, the existing levee as well as the concrete groin structures built in<br />

the early 20th century were in need of reconstruction. Therefore, a flood mitigation project<br />

was launched by the Canton of Berne. Various actors and interests had to be considered<br />

during planning phase; on the left river bank, flood protection measures had to be compatible<br />

with zones of important drinking water wells for the city of Berne as well as a recreational<br />

zone including the protected wetlands. The right river bank also hosts two drinking water<br />

wells, a very popular walking path along the river as well as a public swimming pool.<br />

The flood mitigation measure thus had to satisfy multiple technical, environmental and<br />

also public requirements.<br />

On the outer bank, the existing damaged longitudinal concrete groins (Figure 1b) were<br />

dismantled and replaced by riprap to increase the river cross section. Three new micro groins<br />

were built to guide the main flow back into the center of the cross section to increase flow<br />

diversity and to prevent outer bank erosion (Figure 1c). This rough and permeable waterfront<br />

protection allows both stabilizing the outer bend and protecting the drinking water supply<br />

zones. The excavation of a new secondary channel (Figure 1d) and the implementation of<br />

new longitudinal gravel bars enhance the natural fluvial environment and assure the<br />

conservation of the attractive walking path with direct access to the river for the local<br />

population. Punctually, flood-proofing measures were taken to protect existing infrastructure<br />

Figure 1. Overview of flood mitigation and restoration measures on the Aare River upstream of Berne, b) old longitudinal concrete groins<br />

and c) new enhanced erosion bank protection with micro groins and gravel bank, d) new natural secondary channel, inner bank widening<br />

during normal (e) and flood conditions (f), and g) enhanced Giesse Channel.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 801


Figure 1b: Flood mitigation and restoration project Aare River:<br />

right bank initial state<br />

Figure 1c: Flood mitigation and restoration project Aare River:<br />

right bank enhanced state<br />

Figure 1d: Flood mitigation and restoration project Aare River:<br />

right bank natural secondary channel<br />

Figure 1e: Flood mitigation and restoration project Aare River: left<br />

bank widening normal discharge<br />

Figure 1f: Flood mitigation and restoration project Aare River: left<br />

bank widening flood discharge<br />

Figure 1g: Flood mitigation and restoration project Aare River: left<br />

bank natural Giesse Channel<br />

such as a small restaurant on the river side or the already enhanced confluence between the<br />

Gürbe and the Aare River.<br />

The existing flood protection levees on the inner bank were removed and rebuilt at the very<br />

possible limits of the most sensitive drinking water zone. Such, the river could be widened<br />

by up to 200 m (Figure 1e and f). Stream barbs along the new levee as well as small stream<br />

islands form a rough and permeable element against erosion. Within the widened zone the<br />

so called Giesse Channel, a small side channel fed by groundwater, was also partially moved<br />

and given a new meandering course with instream structures for fish shelter and wooden<br />

protection at the outer bank (Figure 1g). Most of the construction works, clearing and truck<br />

802 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


transports took place in the nature conservation area and were therefore restricted to a<br />

very minimum.<br />

The flood mitigation works were completed in June 2015. One month earlier, in beginning of<br />

May 2015, the passage of a flood with Q max<br />

= 510 m 3 /s, corresponding to a 50-years return<br />

period, confirmed the adequate functioning of the almost terminated flood protection system.<br />

The Linth Channel between Lake Walen and Lake Zürich presented insufficient flood<br />

capacity, deficits regarding excess flood evacuation possibilities as well as damaged bank<br />

protection. Therefore, the Linth Channel flood protection project including a series of flood<br />

mitigation and restoration measures was implemented (Billeter and Keller 2013). The<br />

historical Glaner Linth was meandering directly to Lake Zurich before being deviated to Lake<br />

Walen by Conrad Escher at the beginning of the 19th century with the purpose of flood<br />

protection. This major river correction resulted in a deficit of natural alluvial banks in the<br />

so-called Escher Channel. At Klein Gäsischachen, where topography and situation allowed<br />

for some flexibility regarding the flood protection along the right river bank, it was decided to<br />

remove the right levee partially in order to achieve a local widening that re-substitutes the<br />

alluvial bank structures lost by the 19th century river correction. During construction works,<br />

the water was led through a previously excavated diversion channel which served as initial<br />

secondary channel of the widening section once the existing right flood protection levee was<br />

removed and initial breaches allowed flooding of the widening area.<br />

Figure 2: River widening at Klein Gäsischachen (Lindth Channel), a) picture taken during physical modelling tests, b) result from<br />

physical modelling tests: river morphology after passage of a flood event (river bed erosion = positive values, redish colours, sediment<br />

deposition = negative values, blueish colours), and c) protoype behavior.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 803


The development of river morphology was studied in hydraulic modelling tests at VAW, ETHZ<br />

(Figures 2a and b) and the same behavior could be observed under prototype conditions<br />

during flood events occurring relatively shortly after the completion of construction works<br />

(Figure 2c).<br />

At Hänggelgiessen, a local widening was realized aiming the creation of a new regularly<br />

flooded wetland, including a natural secondary channel on one hand and offering a small<br />

retention volume of 1.0 Mio. m 3 on the other hand (Figure 4a). In this particular case, the<br />

river widening was thus combined with an excess flood evacuation system, presented later<br />

on in this paper.<br />

FLOOD CONTROL AND RESTORATION WITHIN A GIVEN RIVER WIDTH<br />

In cases where the local environment is either densely built or exploited in a way that no<br />

river widening can be realized, other constructive measures have to be considered to increase<br />

flood capacity and flow diversity in the given reach. In August 2005, the Kleine Emme River<br />

which is characterized by a mean annual discharge of 16 m 3 /s carried some Q = 650 m 3 /s in<br />

combination with a lot of sediment and driftwood. This flood event corresponding to a<br />

70-years return period caused inundations in the adjacent zones with damages estimated<br />

to about 65 Mio. CHF to hydraulic structures and about 200 Mio. CHF to buildings in the<br />

vicinity of the river. Therefore, planning of flood mitigation measures was started by the<br />

Canton of Lucerne with the objective of both sustainable flood protection and river restoration.<br />

Today, the flood protection project is in authorization phase and includes various<br />

measures along some 23 km of the Kleine Emme River. River widening as presented in the<br />

preceding paragraph is also planned in less populated areas, but upstream of the confluence<br />

with the Reuss River at Littau-Emmen (Switzerland) residential and industrial zones close<br />

to the river restrict widening possibilities to a very minimum.<br />

Consequently, flood capacity in this river reach will be increased by the implementation of<br />

new dams, side walls and local river bed excavation to heighten the existing trapezoidal<br />

channel-like cross section. The design flood at the corresponding reach is Q dim<br />

= 700 m 3 /s<br />

which equals to a 100-years flood. The width and bank height of the enlarged cross section<br />

accounts for a safety margin added to water level at design flood allowing a flood up to 1.3 to<br />

1.5×Q dim<br />

to discharge without overtopping (Billeter et al. 2014). However, for environmental<br />

purpose and to meet the requirements of the Federal Act on the Protection of Waters, the<br />

river bed will be enhanced to improve morphological variability. Instream restoration<br />

measures such as flow structures, induced low flow channels as well as micro groins aim at<br />

an increased variability of flow characteristics (flow velocity and water height) and a stabilization<br />

of the river bed (Mende 2012, Figure 3). At the same time, they allow to enhance fish<br />

habitat conditions and the overall ecological and recreational environment.<br />

804 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3: Instream restoration measures at the Kleine Emme in the urban area of Littau-Emmen, a) schematic drawing, b) example<br />

of wooden groins at the Kander River (Märkt, Germany, photo courtesy of Erich Linsin), c) example of rootstock structures at the Emme<br />

River (Switzerland).<br />

The confluence with the Reuss River, the so called "Reusszopf" is designed with two river<br />

branches to dissolve the strongly channelized character of the flow. Thanks to the future flow<br />

diversity and the possibility to bypass the present confluence sill, the two rivers will be<br />

connected and allow fish migration in both upstream and downstream direction.<br />

Where the existing width of the Linth Channel had to be maintained two different concepts<br />

were applied to reach an ecological enhancement of the river banks. Initially, the channel was<br />

protected by steep and partially solidified riprap (slope 1:1). The restoration project included<br />

channel reaches with stream barbs on one hand and reaches with shallow banks on the other<br />

hand, allowing a diversification of the strongly channelized flow conditions (Figure 4a).<br />

EVACUATION OF EXCESS FLOOD EVENTS<br />

The planning of flood control is effectuated for a given design discharge. However, some of<br />

the implemented protection structures must resist even more severe flow conditions, the so<br />

called excess flood. To guarantee the functionality of the overall flood protection concept at<br />

a long term, solutions for a secure evacuation of this extreme event have to be planned and<br />

built. For the examples described above, excess discharge is released into extended flood<br />

corridors.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 805


Upstream of the Selhofen-Zopfe area, the flood protection levees are built to a level which<br />

allows lateral overtopping along a very specific bank reach if the discharge in the Aare River<br />

is higher than the design flood for the downstream protection structures. The additional<br />

discharge is evacuated through a specific excess flood corridor protecting the local airport<br />

from flooding.<br />

The same method has been applied at various other rivers e.g. the Kleine Emme River and<br />

the Linth Channel, where excess flood discharge is deviated into a specific corridor by an<br />

artificially controlled weir structure. Upstream of the widening Hänggelgiessen on the Linth<br />

Channel (Figure 4a), the enhanced channel presents a capacity of HQ 500years<br />

= 500 m 3 /s while<br />

the capacity of the downstream reach is limited to about HQ 300years<br />

= 420 m 3 /s. The remaining<br />

80 m 3 /s are discharged over a weir structure into the secondary channel which is normally<br />

draining the so called Schänner plain. If incidentally the extreme flood event coincides with<br />

a flood in this area, the proper Schänner plain still presents some topographical depressions<br />

with low damage potential assuring an additional accumulated retention volume of<br />

1.0 Mio. m 3 for peak flood routing.<br />

Figure 4: a) Local widening and excess flood evacuation system at Hänggelgiessen on the Linth Channel, and b) comparison between<br />

Linth Channel before (above, original cross section with steep bank slopes) and after the realization of the flood control and river<br />

restoration project (below, shallow banks).<br />

CONCLUSIONS<br />

Today, hydraulic and river engineers face two main controversial tendencies when planning<br />

and realizing flood control and river restoration on big rivers in the Swiss Midland. On one<br />

hand, the surroundings are often densely built and/or used for residential, industrial or<br />

agricultural purpose which results in a high damage potential during flood events and thus<br />

requires intervention. However, possibilities for flood mitigation are restricted due to the little<br />

space available. On the other hand, the law requires an enhancement of morphological and<br />

habitat conditions and local people often claim access to the river for recreational use,<br />

preferring natural river conditions instead of channelized streams.<br />

Whenever local conditions allow, river widening has proven to be very effective on flood<br />

mitigation and in connection with the implementation of secondary channels, stream islands<br />

and micro groins it allows diversifying flow characteristics to a very high level. This results in<br />

806 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


oth habitat enhancement for fauna and public attraction due to a restored natural river<br />

environment. Flood mitigation measures respecting the ecological aspects of river restoration<br />

must also be proposed for very confined river reaches. Instream restoration measures present<br />

very valuable tools to improve general ecological habitat and fish migration conditions and<br />

can be applied in both small and large channel-like cross sections. However, they will not<br />

fully restore natural braiding or meandering processes or wetland dynamics. In any of the<br />

afore given practical examples, specific solutions were found to guarantee a secure design<br />

flood passage on one hand and a habitat enhancement due to instream structures and low<br />

water or secondary channels on the other hand.<br />

REFERENCES<br />

- Billeter P., Keller Y. (2013). Das Projekt Linthkanal, Proceedings of the Symposium<br />

"Projekt Hochwasserschutz Linth 2000". June 2013, Linthverwaltung, Lachen, Switzerland.<br />

pp. 111-122<br />

- Billeter P., Mende M., Jenzer J. (2014). Flood Characteristics and Flood Protection Concepts<br />

in the Reuss Catchment Basin. Proceedings of the International Conference on Fluvial<br />

Hydraulics "River Flow", September 3-5, 2014, Lausanne, Switzerland.<br />

- Mende M. (2012). Instream River Training - Naturnaher Flussbau mit minimalem<br />

Materialeinsatz.<br />

- Korrespondenz Wasserwirtschaft, 5(10): 537–543.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 807


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Bedload trapping in open check dam basins - measurements<br />

of flow velocities and depositions patterns<br />

Guillaume Piton, Eng. 1 ; Ségolène Mejean, Eng. 2 ; Costanza Carbonari, Msc. 3 ; Jules le Guern, Msc. 2 ; Hervé Bellot, Msc. 2 ;<br />

Alain Rrcking, PhD 2<br />

ABSTRACT<br />

In steep slope streams, torrential-hazards mainly result from abrupt and massive sediment<br />

deposits. Open check dams are regularly used in natural hazard mitigation to trap sediment<br />

and driftwood. A good comprehension of the phenomena that occur in these structures is<br />

needed to optimize their design. In this paper, we present new results from small scale<br />

experiments addressing (i) a validation of water stage - discharge formula proposed in the<br />

literature for slit and slot dams; (ii) recommendations in the use of formula dedicated to<br />

deposition-thickness-estimation; (iii) geomorphic and hydraulics descriptions that seek to<br />

help field practitioners and numerical modelers to better understand what can be observed<br />

in labs and in the field and what kind of phenomena should be modeled. A special attention<br />

has been paid to highlight the implication of our results in the use of formula and in structure<br />

design and maintenance.<br />

KEYWORDS<br />

slot and slit dams; sediment trap; photogrammetry; Large Scale PIV; small scale model<br />

INTRODUCTION<br />

In steep slope streams and especially on their fan part, torrential–hazards mainly result from<br />

abrupt and massive sediment deposits. To curtail such phenomenon, soil conservation<br />

measures as well as torrent control works have been undertaken for decades. Since the 1950s,<br />

open check dams complement other structural and non-structural measures in watershedscale<br />

mitigation plans [Armanini et al., 1991; VanDine, 1996]. Hundreds of these structures<br />

have thus been built for about 60 years. Their design evolved with the improving comprehension<br />

of torrential hydraulics and sediment transport processes; however numerous open<br />

check dams have a general tendency to trap most of the sediments supplied by the headwaters<br />

and to weakly self-clean. Secondary effects such as channel incision downstream of<br />

the structures often occur after their creations. Sediment starvation trends tend to propagate<br />

to the main valley rivers and to disrupt past geomorphic and ecologic equilibriums.<br />

To minimize useless dredging operations and to promote sediment continuity, while maintaining<br />

the mitigation effect of open check dams, a better selectivity of sediment trapping<br />

must be sought in open check dams [Armanini et al., 1991; SedAlp, 2015]. To approach<br />

1 IRSTEA Saint-Martin-d’Hères, FRANCE, guillaume.piton@irstea.fr<br />

2 Irstea, centre de Grenoble, UR ETGR, St Martin d’Hères, France and Univ. Grenoble Alpes, F-38041 Grenoble, France<br />

3 Univ. Firenzi, Italy and Irstea, centre de Grenoble, UR ETGR, St Martin d’Hères, France and Univ. Grenoble Alpes, F-38041 Grenoble,<br />

France<br />

808 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP079


optimal structures that would trap sediments during dangerous floods and flush them<br />

partially during small floods, we must improve the scientific knowledge on hydraulic and<br />

deposition processes that occur in sediment traps during floods.<br />

Four trapping processes (TP) eventually act in sediment trap basins (Fig. 1 a): a decrease in<br />

transport capacity due to a milder energy slope in the basin (TP1); a decrease in transport<br />

efficiency due to flow spreading in a basin wider than the upstream channel (TP2); a drop<br />

in the shear stresses in the calm water area upstream of the dam (hydraulic control - TP3);<br />

and mechanical blockages against the dam openings (mechanical control - TP4).<br />

Figure 1: a) Trapping Processes (TP) resulting in sediment deposition in sediment trap basins: (TP1) slope decrease; (TP2) width<br />

increase; (TP3) delta-type hydraulic control; and (TP4) direct mechanical blockage and; Longitudinal and transverse view of flows<br />

through: b) a slot dam and c) a slit dam.<br />

The mechanical blockage process [Fig. 1 (TP4)] is relatively well understood [Piton and<br />

Recking, 2015a, 2015b]. On the contrary, case studies testing the existing criteria on (TPs 1-3)<br />

remain scarce. This paper addresses three scientific issues, two deal with (TP3): (i) How<br />

accurate are the current hydraulic approaches describing the water stage–discharge Eqs.? and,<br />

(ii) Do the approaches proposed for deposit thickness estimation give satisfying results? The<br />

last issue concerns (TPs 1-2): (iii) what are the flow conditions and the resulting geomorphic<br />

patterns that occur during sediment trap basin filling in a relatively wide and mild basin? We<br />

gather new elements on these questions, based on an experimental approach using a Froude<br />

scale model. The first runs were performed in pure water hydraulics to validate water<br />

stage-discharge Eqs.. Sediment was added in the subsequent runs to look at deposition<br />

processes.<br />

MATERIAL AND METHODS<br />

The small-scale sediment trap was built in a 6-m-long, 1.2-m-wide, 0.4-m-deep, 10%-steep<br />

tilting flume. The water was recirculated and measured by a flowmeter with a maximum<br />

discharge of 4 l/s. The sediment feeder was composed of a hopper, associated with a conveyor<br />

belt, with a maximum solid discharge capacity of 200 to 300 g/s depending on the grain size<br />

distribution of the sediment mixture. Two sediments mixtures were used, hereafter refer to as<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 809


GSD1 & GSD2, consisting in natural poorly sorted sediments with diameter from 0.2 to<br />

20 mm. The median grain size D 50<br />

of GSD1 and GSD2 are 3.8 and 2.4 mm, respectively; and<br />

the mean arithmetic diameters are of 6.4 and 4.9 mm, respectively.<br />

High quality pictures of the flume were taken with two CANON 100D cameras fixed on a<br />

trolley to the ceiling of the laboratory. Digital elevation model (DEM) of the deposits were<br />

reconstituted, with a 1-mm accuracy [Le Guern, 2014], using the Agisfost Photoscan<br />

software. Before each DEM measurement, a high speed camera Phototron FASTCAM took<br />

videos of the flow at 125 frames/s. The Fudaa software was used to obtain surface flow<br />

velocity fields by large scale Particle Image Velocimetry (PIV) [Carbonari, 2015]. A point<br />

gauge fixed on three graduated perpendicular rails allowed to measure flow surface and<br />

bed altitudes with a 2-mm-accuracy.<br />

RESULTS<br />

Open check dam pure water hydraulics<br />

The hydraulic control of the deposit [Fig. 1 (TP3)] is a characteristic delta dynamic, i.e. is<br />

controlled by the water level of the tranquil water area formed by the open check dam<br />

backwater effect. A large number of open check dam are designed as slit or slot types<br />

(Eq. 1-5) (Fig. 1 b & c). Table 1 gathers the existing water stage–discharge l Eqs. ee describing la the Table flow TE1-.<br />

conditions that may occur in these dams: free surface or pressure flow (Fig. 1 b & c).<br />

Table 1: Water stage – discharge formula for slot ant slit dams<br />

Flow type Source Equation Eqs. number<br />

Free surface Zollinger [1983] Q = 2⁄ 3<br />

μw 0√2g H 3 (1)<br />

Free surface Armanini and Larcher [2001] Q = w 0<br />

√g( 2HH (2)*<br />

⁄ )3<br />

3<br />

Free surface D’Agostino [2013] Q = w 0<br />

√g( 2HH ⁄<br />

3 ∗ 1.2<br />

) 3 (3)*<br />

Pressure flow Torricelli [1644] Q = μw 0 h 0 √2g(H − h 0 ⁄ 2) (4)<br />

Pressure flow Zollinger [1983] Q = 2⁄ 3<br />

μw 0 [√2gH 3 − √2g(H − h 0 ) 3 ] (5)<br />

Note: see Fig. 1 for parameter definition, with Q the discharge [m 3 /s], w0 the width of the opening [m], h0 the height of<br />

the opening [m], µ the contraction coefficients [-], g the gravitational acceleration [m/s²] and H, the hydraulic head [m]<br />

with H = h + V²/2g with h the water depth [m] and V the flow velocity in the upstream section [m/s] approximated by<br />

Q/Wh, with W the basin width [m].<br />

* Eqs. 2 and 3 are equivalent to Eq. 1 with values of µ = 0.577 and µ = 0.439, respectively.<br />

Eq. 2 and 3 are based on theoretical considerations. Zollinger [1983] proposed using a value<br />

of 0.65 for µ but did not provide the calibration data. We propose to use our measurements to<br />

discriminate which equation and which µ-value are the most relevant in typical torrential<br />

flows.<br />

810 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Height dam-configurations were tested, without sediment transport, to answer this question:<br />

3 slits w 0<br />

= [6;10;14cm] and 5 slots w 0<br />

xh 0<br />

= 10x6cm, 10x4cm, 10x2cm, 14x6cm, 14x4cm,<br />

14x2cm. The dam was made of a 7.5mm-thick PVC plate. The basin immediately upstream<br />

of the dam was 20cm-wide and its floor was covered with pebbles 14-18mm in diameter.<br />

64 measurements with Q [0.5;3.8 l/s] and h [16;140 mm] were taken at different stable<br />

states. The results are synthetized in Fig. 2 and more details on the experimental set-up, the<br />

data and an error analysis can be found in Mejean [2015].<br />

Figure 2: Water stage–discharge relationship analyses: calibration of µ, contraction coefficient for a) free surface flows in slits and slots<br />

using Eq. 1 and b) pressure flows in slot using Eq. 5 and; c) comparison between experimental data and computed water-stage<br />

discharge. Note: Eqs. 1, 4 and 5 were used taking into account the inertia term V²/2g in H the hydraulic head term of the formula<br />

The linear best fit (Fig. 2 a) confirms the µ-value of 0.65 in free surface flow. Eq. 1 is<br />

thus recommended, rather than Eqs. 2 and 3, for equivalent thin-dam-configurations, i.e. for<br />

h/e [0.05;0.47], with e the dam thickness in the flow direction (Fig. 1 b). The results still<br />

need to be confirmed for thicker dam configurations were the Eq. 2 may be more adapted.<br />

For pressure flows in slots (Fig. 2 b), the linear best fit shows a µ-value of 0.68, close<br />

to the 0.65 value also retained by Zollinger [1983]. Eqs. 4 and 5 are almost indistinguishable<br />

in our results (Fig.2 c) if the hydraulic head, in the Torricelli [1644] formula, is corrected by<br />

half the slot height as written in Eq. 4.<br />

For high H/h 0<br />

ratio, Eqs. 4 and 5 underestimate slightly h, and conversely they overestimate<br />

h for low H/h 0<br />

ratio (Fig. 2 c). It results from the use of a constant value of µ whereas the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 811


contraction effects increase with H/h 0<br />

. Complementary experiments should be performed to<br />

calibrate a variation of µ with the contraction, i.e. varying with H/h 0<br />

and W/w 0<br />

, this in<br />

torrential context, i.e. with steep slope, rough beds and sediment transport. In addition our<br />

results demonstrate that taking into account the inertia term V²/2g in H the hydraulic<br />

head is important: Using the sole h term in the Eqs. would result in an underestimation of<br />

the structure discharge capacity and consequently in overestimation of the deposition and<br />

trapping performance (see later), which is not conservative in hazard mitigation.<br />

Delta thickness estimation<br />

During a trap filling, when sediments reach the open check dam backwater area, where flow<br />

velocities are low, they deposit as a delta. ∆Z, the delta thickness at the front (Fig. 1 a),<br />

directly controls the trapped sediment volume, e.g., a lower ∆Z means a lower trapped<br />

l r o oloa Formula 6<br />

volume. ∆Z estimation is thus a key step in the trap design. Armanini and Larcher [2001] and<br />

Jordan et al. [2003] proposed formulas to estimate ∆Z that can be rearranged as follow<br />

[Mejean, 2015]:<br />

92<br />

[Armanini and Larcher, 2001]<br />

l r o oloa Formula 7<br />

∆Z(T) = h(TT) ( W−w 0<br />

) [1 + ( W−w 0<br />

⁄ )]<br />

(6)<br />

w 0 w 0<br />

Equation 6<br />

[Jordan et al., 2003]<br />

[Jordan et al., 2003] T<br />

EQUATION 7<br />

0<br />

∆Z(T) = 1 T ∫ h(tt)dt<br />

93 Equation With 7W, the basin-width upstream of the open check dam; w 0, the slit-width, T the duration since the<br />

94 beginning of the flood and h(T) the flow-depth upstream of the structure at time T (Fig. 1 b & c),<br />

With W, the basin-width upstream of the open check dam; w 0<br />

, the slit-width, T the duration<br />

95 varying in time during the flood and computed using Eq. 1 and µ=0.65.<br />

since the beginning of the flood and h(T) the flow-depth upstream of the structure at time T<br />

(Fig. 1 b & c), varying in time during the flood and computed using Eq. 1 and µ=0.65.<br />

96 It is worth stressing that Eq. 6 has been calibrated in laterally confined flows, i.e. the flow covered all<br />

97 It is the worth deposit stressing due to that the Eq. flume 6 has relatively been calibrated narrow width in laterally (0.4 m). confined On the contrary, flows, i.e. Eq. the 7 has flow been<br />

98 covered calibrated all the in laterally deposit unconfined due to the flows, flume i.e. relatively the deposit narrow showed width a more (0.4 classical m). On delta the contrary, pattern with Eq.<br />

99 7 has few been mobile calibrated active channels in laterally narrower unconfined than the flows, total basin i.e. the width. deposit In addition, showed the a more authors classical of Eq. 6<br />

delta pattern with few mobile active channels narrower than the total basin width. In addition,<br />

100 assumed that the delta thickness is always equilibrated with the flow constraints and thus only<br />

the authors of Eq. 6 assumed that the delta thickness is always equilibrated with the flow<br />

101 depends on the instantaneous water depth h(T). On the contrary, Eq. 7 takes into account all the<br />

constraints and thus only depends on the instantaneous water depth h(T). On the contrary,<br />

102<br />

Eq.<br />

water<br />

7 takes<br />

depth<br />

into<br />

evolution<br />

account<br />

during<br />

all the<br />

the<br />

water<br />

flood<br />

depth<br />

through<br />

evolution<br />

the integral.<br />

during the flood through the integral.<br />

103<br />

To test<br />

To test<br />

these<br />

these<br />

Eqs.,<br />

Eqs.,<br />

five<br />

five<br />

flood<br />

flood<br />

experiments<br />

experiments<br />

were<br />

were<br />

performed<br />

performed<br />

in<br />

in<br />

the<br />

the<br />

aforementioned<br />

aforementioned<br />

flume,<br />

flume,<br />

under<br />

with<br />

104 constant solid solid concentration, C =<br />

Qs<br />

, varying from 1 1 to to 5%, 5%, with with Qs, the Qs, solid the discharge. solid discharge. Triangular<br />

Qs+Q<br />

Triangular hydrographs hydrographs were used were with water used discharge with water reaching discharge 2.75 l/s reaching at the peak 2.75 for l/s all at runs. the The peak cumulated for all<br />

105<br />

106<br />

sediment supply was the same in the all runs (500 kg). The hydrograph duration was thus inversely<br />

812 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

107 proportional to the concentration (see Mejean [2015] for more details).<br />

(7)


uns. The cumulated sediment supply was the same in the all runs (500 kg). The hydrograph<br />

duration was thus inversely proportional to the concentration (see Mejean [2015] for more<br />

details).<br />

In our experimental conditions, the flows were laterally unconfined, i.e. sediment entering<br />

the open check dam-backwater-area was transported in an active channel narrower than the<br />

basin width and flowing between deposit terraces. Several photogrammetric measurements<br />

were taken on each experiment at different times on the hydrographs, thus for various<br />

instantaneous discharges and water depths. Taking it into account and, as could be expected<br />

from Eqs. 6 and 7, ∆Z evolved between measurements. Width-averaged-deposit-longitudinal<br />

profiles were extracted from the DEMs [Mejean, 2015]. The delta-thickness was identified at<br />

the break in the slope and measured from the bottom of the open check dam (Fig. 1 a). Fig. 3<br />

shows the comparison between measured and calculated values of ∆Z, using Eq. 6 and 7.<br />

Figure 3: Comparisons between measured values of delta thickness, ∆Z, and predicted values by a) Eq. 6 and b) Eq. 7, in pure water<br />

hydraulics and with ∆Hsed. Taking into account ∆Hsed in the h estimation is necessary to achieve a satisfying estimation of ∆Z.<br />

One can notice in Fig. 3 that, all other parameters being geometrically fixed, Eqs. 6 and 7<br />

underestimate ∆Z when using the pure water hydraulics described by the unique<br />

Eq. 1 to estimate h(t). To estimate the total water depth l of sediment-laden r o oloa flows in Formula slits and <br />

slots, Piton and Recking [2015a] recommend to take into account an additional head loss<br />

related to the sediment transport, Δ sed<br />

= 1.5D MAX,<br />

, with D MAX<br />

the maximum transported<br />

sediment diameter [m]. Using this adaptation to the clear water hydraulics, the water depth is<br />

computed using:<br />

h(tt) = h pppppppp wwwwwwpppp (tt) + 1.5D MAX (8)<br />

Equation 8<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 813


Taking into account this additional head loss, Eqs. 6 and 7 give a rather good<br />

approximation of ∆Z, though some scattering remains (Fig. 3 a & b, grey dots). This<br />

scattering is probably due to ∆Z-measurement uncertainties (the transversal profiles at the<br />

delta fronts were not flat, thus their representative height, here taken as the median altitude<br />

on the profile, are subject to interpretation) combined to a natural variability of the phenomenon,<br />

e.g., high deposition or incision preceding the measurement. In addition, the hypothesis<br />

that the delta-front-shape is always equilibrated with the flow constrains rapidly fall in<br />

defect during the hydrograph recession, as supposed initially by Armanini and Larcher<br />

[2001], explaining the low ∆Zs computed in Fig. 3 a. Eq. 6 is thus not adapted to compute ∆Z<br />

in wide basins during the hydrograph recession. Eqs. 7 give thus a good approximation<br />

of ∆Z if the water depth is correctly computed, i.e. taking into account all additional<br />

head losses related to torrential hydraulics (strong sediment transport, driftwood<br />

accumulation).<br />

GEOMORPHIC DESCRIPTION OF A SEDIMENT TRAP FILLING<br />

When entering the basin, flows and sediment pass from a steep-laterally-confined to a<br />

milder-laterally-unconfined situation. In this situation, Zollinger [1983] observed both<br />

mono-channelized and braided fan-shape deposits. The transition from confined to unconfined<br />

flows raises complex issues in field observations and in numerical modeling [Piton and<br />

Recking, 2015a]; e.g. does channelized and braided patterns come from different flood-types?<br />

or how to compute the deposition slope of an unconfined massive bed-load supply?<br />

13-experiments, 5 with a slit-dam (analyzed before) and 8 with a basin without open-checkdam<br />

(same concentration and hydrographs feedings, two sediment mixtures [Mejean, 2015]),<br />

were performed to observed deposition-processes and hydraulics’ conditions of bed-load<br />

trapping. Cycles of channelized and braided-like-patterns were systematically observed (e.g.<br />

Fig. 4). These patterns are simply different phases of a basin-filling, which is not a deposits-continuous-progression<br />

but rather jerky-sediment-propagations occurring after reconstitution<br />

of sufficient sediment stocks in the inlet-vicinity. Grain size sorting and deposit armoring<br />

play key roles in these cycles: braided patterns were observed to be steep and paved while<br />

channelized pattern to be milder, with a bed smoothed by the finer subsurface materials<br />

released during the channelization.<br />

There is thus not a unique value of deposit-slope but rather a range of slope in which a<br />

dynamic-equilibrium fluctuates. A method to estimate the slope range should be developed in<br />

further analysis. In addition, laterally-confined complementary experiments demonstrated<br />

that the deposition-slope increases in unconfined configurations (see Mejean [2015]).<br />

As a method to estimate deposition slope is still lacking, it is generally recommended in new<br />

sediment trap design to measure deposition slopes in the field, for example upstream of<br />

existing check dams, to estimate the deposition slope in the future trap. Our results demonstrate<br />

that deposition slopes measured above check dams, i.e. in quite confined configura-<br />

814 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


tions, must be considered as minimum values of the possible bedload deposit slopes in<br />

sediment trap basins. One must note that it is not the case for mud flows which may deposit<br />

with very gentle slopes [Piton and Recking, 2015a].<br />

Partial self-cleaning was also observed systematically: (i) during the hydrograph recession in<br />

slit-dam experiments and conversely (ii) during the peak-flows in dam-less experiments.<br />

Slit dams prevent peak-flow-releases due to the delta-like dynamics [Fig. 1 (TP3)], which is<br />

maximum at the peak flows. The volumes that were stored in the delta-front were subsequently<br />

re-eroded and partially flushed during the flow-recession, leaving terraces’-like<br />

patterns. The observation of a clear-incised-channel in the downstream part of the deposits is<br />

thus an evidence of partial self-cleaning. Adding a slit-grill or driftwood would have created<br />

a jam on the slit and prevented this self-cleaning phenomenon [Piton and Recking, 2015a,<br />

2015b].<br />

Figure 4: Photos of flows, DEM representation of deposit thickness and surface velocity fields of a) braided like-patterns during the<br />

initial filling of the inlet-vicinity; b) armor breaking leading to a channelization transferring sediment to the basin central part; c) new<br />

braided like patterns followed by d) another channelization, whose channel connect the inlet to the outlet, leading to a partial<br />

self-cleaning. Flow from the top to the bottom of the pictures.<br />

HYDRAULICS ON MASSIVE DEPOSITS<br />

PIV and DEM measurements were analyzed to deduce the slope, Froude and Shields numbers<br />

on massive-bed-load deposits (Fig. 5). Before each DEM and LSPIV measurements, the water<br />

depth, h gauge<br />

, has been measured using the point gauge. At the same coordinates, the<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 815


171<br />

Hydraulics on massive deposits<br />

ts s zed to deduce the slope, Froude and Shields numbers on<br />

172 PIV and DEM measurements were analyzed to deduce the slope, Froude and S<br />

re d to each deduce DEM the and slope, LSPIV Froude measurements, and Shields numbers the<br />

173<br />

water on massive-bed-load<br />

depth,<br />

were analyzed to deduce the slope, Froude and Shields numbers on<br />

deposits (Fig. 5). Before each DEM and LSPIV measurements<br />

t ig. each gauge. 5). Before DEM At and each the LSPIV same DEM and measurements, coordinates, LSPIV measurements, the the topographical water the 174 depth, water hdepth,<br />

gauge,<br />

profile, has been measured using the point gauge. At the same coordinates, the to<br />

ing o auge. measured. the point At the gauge. same The At coordinates, surface the same velocity coordinates, the topographical was the interpolated topographical 175 profile, transverse profile,<br />

on a 1- to the flow direction, was also measured. The surface velocity was i<br />

topographical profile, transverse to the flow direction, was also measured. The surface<br />

ion, measured. was also The measured. surface The velocity surface was velocity interpolated was interpolated velocity was interpolated on a 1-mm-transversal 176 on a 1- on a 1-<br />

alues/profile). The mean value of the interpolated mm-transversal surface step on step the on profiles the profiles (N (N values/profile). The The mean value of the i<br />

profiles (N values/profile). The lues/profile). mean The value mean of value the of interpolated the interpolated surface 177 surface<br />

velocities, = <br />

<br />

ough estimation of = mean value of the interpolated surface<br />

, the profile mean velocity. The<br />

, gives a rough estimation of = , the profile<br />

<br />

, gives a rough estimation gh estimation of , the of = of = , the profile mean velocity. The<br />

, profile the profile<br />

mean mean velocity. The deposition slope S has been measured on the DEM<br />

178<br />

The<br />

deposition slope S has been measured on the DEM along a longitudinal pro<br />

on measured the<br />

along<br />

DEM the a<br />

along DEM along longitudinal<br />

a a longitudinal profile profile passing passing by by the transversal<br />

by the<br />

the<br />

profile. Rough estimation of, Fr and<br />

n the DEM along a longitudinal profile passing 179 by the<br />

timation transversal profile. Rough estimation of Fr and , the Froude and the Shield<br />

Fr and of Fr with and the Shield stress for the D 84<br />

,respectively, were computed using:<br />

r and , and the <br />

Froude , the Froude and and the the Shield stress for the the D 84 D,<br />

84 ,<br />

, the Froude and the Shield stress for the D 84 ,<br />

respectively, sediment were computed density taken using: as 1.65. <br />

<br />

<br />

All and <br />

180<br />

, with<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

and <br />

dimensionless and <br />

<br />

d using: <br />

<br />

and <br />

, with ∆ the submerged<br />

<br />

, with ∆ the submerged<br />

number , with analyzed ∆ the submerged hereafter are representative of local values of flow features in<br />

<br />

65. All dimensionless number analyzed hereafter are representative 181 sediment of<br />

density taken as 1.65. All dimensionless number analyzed hereafter ar<br />

active channels. They are not averaged on the basin width.<br />

n nsionless active channels. number number They analyzed are analyzed not hereafter averaged hereafter on are the representative basin are representative width.<br />

182 of of<br />

local values of flow features in active channels. They are not averaged on the basi<br />

nnels. They They are are not not averaged averaged on the on basin the width. basin width.<br />

Figure 5: Rough estimation of main flow dimensionless numbers: a) deposition slope vs inlet solid concentration; b) Froude number vs<br />

inlet solid concentration and; c) Froude number vs Shield number<br />

The absolute values illustrated in Fig. 5 are rough estimations because of the high uncertainties<br />

on h gauge<br />

, however some general trends of interactions between geomorphology and<br />

hydraulics can be observed: (i) the deposition slope strongly fluctuates for a given solid<br />

concentration (Fig. 5 a) highlighting the geomorphic cycles' magnitude and that armoring<br />

process lead to various equilibrium slope despite a constant solid concentration at the inlet.<br />

(ii) The Froude number also strongly fluctuates (Fig. 5 b) which is likely to be mainly related<br />

to the varying velocities related to varying bed roughness within the geomorphic and<br />

armoring cycles. (iii) Interestingly an unintuitive inverse correlation seems to appear between<br />

the Froude number and the Shields number (Fig. 5 c): Low Shields numbers were computed<br />

on the milder slopes observed during chenalisations but where the smooth bed allowed high<br />

velocities and Froude numbers. Conversely, steep paved braided fan-patterns showed high<br />

slopes (and thus Shield numbers) and low velocities (and thus Froude numbers) due to their<br />

rough and paved beds. Local measurements of sediment diameter should be done to compute<br />

more accurate value of Shields numbers and to confirm this inverse correlation. These<br />

preliminary results need to be more deeply analyzed to specify the autogenic fluctuating<br />

hydraulics of massive bed-load deposits related to grain size sorting and to define which<br />

friction law and transport formula are the most relevant to compute such phenomena.<br />

816 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


CONCLUSIONS<br />

The new elements listed in this paper will help designers to more accurately design and<br />

numerically model the structures, specifically slot and slit dams, so to better adapt them to<br />

each site and their natural-hazard-specificities and mitigation-objectives. They also highlight<br />

the varying nature of sediment transport of poorly sorted mixtures and the necessity to push<br />

further the research on this subject, which, so far, is not enough understood to provide<br />

accurate design methods to practitioners.<br />

ACKNOWLEDGMENTS<br />

This study was funded by Irstea, the INTEREG-ALCOTRA European RISBA project, and the<br />

ALPINE SPACE European SEDALP project. The authors would like to thank Matjaž Mikoš for<br />

his editorial work and two reviewers who help us to improve this paper.<br />

REFERENCES<br />

- Armanini et al., 1991. From the check dam to the development of functional check dams.<br />

Fluvial Hydraulics of Mountain Regions 37, 331–344.<br />

- Armanini & Larcher, 2001. Rational criterion for designing opening of slit-check dam.<br />

J. of Hydr. Eng. 127, 94–104.<br />

- Carbonari, C., 2015 Experimental observations on the functioning of sediment trap basins:<br />

LSPIV measurements of low submersion flows, Msc. Thesis.<br />

- D’Agostino, V., 2013. Filtering-retention check dam design in mountain torrents, in:<br />

Check Dams, Morphological Adjustments Erosion Control Torrential Streams., pp. 185–210.<br />

- Jordan et al., 2003. Modélisation physique d’un piège à graviers, le cas du Baltschiederbach.<br />

Wasser Energie Luft 95, 283–290.<br />

- Le Guern, J., 2014. Modélisation physique des plages de dépôt : analyse de la dynamique<br />

de remplissage, Msc. Thesis.<br />

- Mejean, S., 2015. Caractérisation des conditions hydrauliques du piégeage de la charge<br />

sédimentaire grossière des torrents, Msc. Thesis.<br />

- Piton & Recking, 2015a. Design of sediment traps with open check dams I: hydraulic and<br />

deposition processes. J. of Hydr. Eng. In press.<br />

- Piton, G., Recking, A., 2015b. Design of sediment traps with open check dams II:<br />

woody debris. J. of Hydr. Eng. 142(2).<br />

- SedAlp, 2015. Work Package 6 Final report - Interactions with structures. Alpine Space<br />

European project<br />

- Torricelli, E., 1644. Opera geometrica, Firenze.<br />

- VanDine, D.F., 1996. Debris Flow Control Structures for Forest Engineering. Res. Br., B.C.<br />

Min. For., Victoria, BC.<br />

- Zollinger, F., 1983. Die Vorgänge in einem Geschiebeablagerungsplatz (ihre Morphologie<br />

und die Möglichkeiten einer Steuerung), ETH Zurich PhD Thesis.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 817


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Sediment Management in Alpine Catchments: Area of<br />

conflicts between protection needs, complexity of<br />

waste law and quality goals for water bodies<br />

Sedimentmanagement in Alpinen Einzugsgebieten:<br />

Konfliktfeld zwischen Schutzbedarf, abfallrechtlicher<br />

Komplexität und Qualitätszielen für Fließgewässer<br />

Florian Rudolf-Miklau, Priv. Doz. Dr. 1 ; Susanne Mehlhorn, Dipl.-Geogr. 2<br />

ABSTRACT<br />

Flood related sediment management has to take into account as well the protection function<br />

as the morphologic, ecological and chemical quality goals according to the EU WFD. Sediment<br />

materials, for which disposal is intended (in particular after floods or debris flow) or contamination<br />

is proved, are subject to the regime of waste law. In this paper a 5-phase-model for the<br />

sediment management in torrential watersheds is presented, which primarily aims at the goal<br />

to keep sediments as fare as possible in the water course (relocation, dotation into water<br />

body) or use it for the purpose of flood (torrent) control. Only in evitable cases sediment shall<br />

be used for other purposes (raw or building material, agricultural use) or deposited as these<br />

options are combined with a complex legal framework and higher expenses. A guideline is<br />

the state of elaboration, which will provide concepts for a structured and efficient sediment<br />

management in torrent watersheds.<br />

ZUSAMMENFASSUNG<br />

Das schutzwasserwirtschaftliche Sedimentmanagement hat neben der Schutzwirkung auch<br />

den morphologischen, ökologischen und chemischen Qualitätszielen der EU WRRL zu<br />

entsprechen. Feststoffe, für die eine Entledigungsabsicht besteht (insbesondere nach<br />

Hochwasser oder Muren) oder deren Kontamination nachgewiesen wird, fallen unter das<br />

Regime des Abfallrechts. Der Beitrag behandelt ein 5-Phasen-Modell des Sedimentmanagements<br />

in Wildbacheinzugsgebieten, dessen primäres Ziel die Belassung der Sedimente im<br />

Gewässeregime (einschließlich Umlagerung und Wiedereinbringung) oder in schutzwasserwirtschaftlicher<br />

Verwendung ist. Nur in unvermeidlichen Fällen ist eine sonstige Verwendung<br />

(Rohstoff, Baustoff, landwirtschaftliche Verwertung) oder Deponierung des Materials<br />

angezeigt, da diese Optionen in einem komplexen Rechtrahmen erfolgen und mit höheren<br />

wirtschaftlichen Aufwendungen verbunden sind. Ein Leitfaden des Österreichischen<br />

Wasser- und Abfallwirtschaftsverbandes (ÖWAV) ist im Stadium der Ausarbeitung, der die<br />

1 BMLFUW Vienna, AUSTRIA, florian.rudolf-miklau@die-wildbach.at<br />

2 Austrian Torrent and Avalanche Control Service<br />

818 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP013


Grundlage für ein strukturiertes und effizientes Sedimentmanagements in Wildbacheinzugsgebieten<br />

bilden soll.<br />

KEYWORDS<br />

sediment management; torrent control; waste law; sediment continuum; contamination.<br />

VORBEMERKUNG<br />

Der Beitrag gibt den Stand eines interdisziplinären Expertendiskurses wieder, der <strong>2016</strong> in<br />

der Erstellung einer Richtlinie des Österreichischen Wasser- und Abfallwirtschaftsverbandes<br />

(ÖWAV) münden soll. Es wird auf europäisches und nationales österreichisches Recht Bezug<br />

genommen.<br />

BEGRIFFSBESTIMMUNG UND BEDEUTUNG FLUVIATILER SEDIMENTE<br />

Sedimente bilden einen elementaren Bestandteil von Fließgewässern und umfassen gemäß<br />

DIN 4049-1 klastische, chemische und biogene Komponenten. Der Begriff „Feststoff“ iSd<br />

ÖNORM 2400 beschreibt die Gesamtheit der vom Fließgewässer transportierten festen Teile,<br />

also Geschiebe (gleitend, rollend oder springend fortbewegte Gesteinsteile), Schwebstoffe<br />

(durch Turbulenz in Schwebe gehaltenen Partikel) und Schwimmstoffe (insbesondere Holz).<br />

Feststoffe gelangen überwiegend durch Erosionsprozesse ins Gewässer, werden je nach<br />

Wassermenge, Fließgeschwindigkeit und Kornspektrum unterschiedlich weit transportiert,<br />

zerkleinert und schließlich zur Ablagerung gebracht (sedimentiert). Das Grundmodell der<br />

Feststoffbilanzierung eines Fließgewässerabschnitts (Abbildung 1) ist im Wesentlichen eine<br />

Funktion des Ein- und Austrags sowie der räumlichen und zeitlichen Veränderung der<br />

Verlagerungsprozesse und der Morphologie in der Gerinnesohle. Das Ausmaß des Eintrags<br />

aus dem Oberlauf oder aus Zubringern kann sich durch natürliche oder anthropogene<br />

Einflüsse verändern. Sedimentation und damit verbundene Sohlauflandung tritt auf, wenn<br />

die Transportkapazität der Wasserwelle nicht ausreicht, um das eingetragene Sediment weiter<br />

zu transportieren. Ein die Transportkapazität nicht auslastender Feststoffeintrag führt meist<br />

zur Erosion im Fließgewässerabschnitt, wodurch die Sohlneigung sowie mittelbar die<br />

Schleppspannung und Transportkapazität reduziert werden. (DWA 2012, 23) Weiters tritt<br />

natürliche Umlagerung auf, wenn in einem Abschnitt Feststoffe wiederholt erodiert und<br />

deponiert werden (ONR 24800, 4.1.9). Die Sedimententnahme durch Baggerung führt meist<br />

zu einem Austrag, eine Rückgabe des Materials an anderer Stelle ins Gewässer (Wiedereinbringung)<br />

bewirkt einen Sedimentinput (künstliche Umlagerung). (DWA 2012, 23)<br />

Aus der Perspektive des Hochwasserschutzes führt der Sedimenthaushalt in Fließgewässern<br />

(Überschuss, Gleichgewicht oder Mangel) zu bedeutenden morphologischen Effekten,<br />

insbesondere zur Tiefenerosion, zur Auflandung, zur Verklausung oder zur Gerinneverlagerung,<br />

denen durch „klassische“ Maßnahmen der Wildbachverbauung wie die Konsolidierung<br />

der Gewässersohle, die Regulierung des Gewässerlaufs, den Geschieberückhalt oder die<br />

Räumung begegnet wird (Rudolf-Miklau 2009, 148). Andere Funktionen von Sedimenten,<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 819


Abbildung 1: Grundmodell der Fließgewässerbilanzierung in Gewässerabschnitten<br />

vor allem die ökologische Bedeutung als Lebensgrundlage von Fischen und Makrozoobenthos,<br />

die morphologische Wirkung für die Formung und Rauigkeit des Gewässerbetts sowie<br />

die Verwendung als Rohstoff und Baumaterial, müssen in einem gesamtheitlichen Sedimentmanagement<br />

ebenfalls berücksichtigt werden. Aus rechtlicher Sicht können Sedimente dem<br />

Charakter nach Ressource, Schutzgut oder Schadensfaktor sein (Bergthaler et al. 2015, 5).<br />

Sediment besitzt außerdem die Eigenschaft, „eine Reihe von schwer löslichen und schwer<br />

abbaubaren Umweltchemikalien und Abfallstoffen anzureichern“ (Geoakkumulation), wobei<br />

die Konzentration bis zu tausendfach höher als in der Wasserwelle sein kann (Müller 1986,<br />

110). Auf die Eigenschaft von Sediment als Schadstoffträger zielen insbesondere die Umweltqualitätsnormen<br />

des Art 2 Z 35 der EU-WRRL (2000/60/EG) ab, wobei die entsprechenden<br />

nationalen Qualitätszielverordnungen (AT: QZV Chemie OG 2006; D: OGewV 2011) bisher<br />

konkret nur wenige Schadstoffe ansprechen. Neben der Geoakkumulation kommt auch ein<br />

Eintrag von anthropogen abgelagerten Schadstoffen – etwa aus Deponien, Bergbauhalden<br />

oder der Landwirtschaft – durch Abschwemmung, Lösung oder Erosion als Kontaminationsquelle<br />

in Frage.<br />

Schutzwasserwirtschaftliches Sedimentmanagement umfasst Maßnahmen zur Aufrechterhaltung<br />

des Sedimentkontinuums oder der Wiedereinbringung von Sedimenten ins Gewässer,<br />

die Schaffung von Sedimentationsräumen (-becken), die Verbesserung der Transportkapazität<br />

durch bauliche Maßnahmen, die Räumung von Sedimenten (nach Ereignissen), die künstliche<br />

Umlagerung und Zwischenlagerung, die wirtschaftliche Verwertung der Räumgutes, die<br />

Schaffung von Deponieflächen sowie die Entsorgung.<br />

820 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


SEDIMENTMANAGEMENT IN WILDBACHEINZUGSGEBIETEN: AUFGABEN UND FUNKTIONEN<br />

Wildbacheinzugsgebiete (in AT: ca. 12.500) sind in besonderem Maße durch fluviatile oder<br />

murartige Verlagerungsprozesse von Feststoffen geprägt (vgl. Legaldefinition „Wildbach“ nach<br />

§ 99 Abs 1 ForstG). Meist handelt es sich um Einzugsgebiete außerhalb der intensiv von<br />

Menschen genutzten Gebiete, in denen natürlich anstehende Fest- und Lockergesteine<br />

abgetragen werden. Die primären Sedimentationsflächen der Wildbäche sind Schwemm- oder<br />

Murkegel, in denen große Teile der abgetragenen Massen aus den Einzugsgebieten über<br />

Jahrhunderte gespeichert werden. (Bergmeister et al. 2008, 5). Durch die Errichtung von<br />

Siedlungen und entsprechende Schutzbauwerke sind in den in den Alpen zahlreiche<br />

Schwemmkegelflächen als natürliche Sedimentationsräume ausgeschaltet und das Feststoffregime<br />

alpiner Wildbäche nachhaltig verändert worden.<br />

In den letzten Jahrzehnten hat sich die Technologie der Feststoffbewirtschaftung in Wildbacheinzugsgebieten<br />

durch Retention, Dosierung oder Filterung (ONR 24800, Tabelle 5, 40) mit<br />

großen Sperrenbauwerken rasch entwickelt. Gleichzeitig wurde dadurch der Erhaltungsaufwand<br />

für die Räumung der Rückhaltebecken stark erhöht. In Österreich existiert in Wildbacheinzugsgebieten<br />

nach groben Schätzungen ein räumbares Feststoffretentionsvolumen von<br />

60 Mio. m³. Diese Retentionsbecken müssen zur Aufrechterhaltung der Schutzfunktion<br />

regelmäßig, jedenfalls aber nach Hochwasser und Muren geräumt werden. In „normalen“<br />

Jahren ist ein Räumvolumen von 0,5 – 1,5 Mio. m³ zu bewältigen, welches in Katastrophenjahren<br />

noch wesentlich höher liegen kann. Alleine im Bundesland Salzburg waren im<br />

Hochwasserjahr 2013 345.000 m³ aus Rückhaltebecken zu räumen. Die durchschnittlichen<br />

Räumungskosten einer Baggerung einschließlich Deponie sind in den letzten Jahren<br />

dramatisch gestiegen und erreichen ca. € 10,-/m³ (für dislozierte kommerzielle Bodenaushubdeponien<br />

sogar bis zu € 35,-/m³). Die jährlichen Investitionen in Räumung von Rückhaltebecken<br />

liegt zwischen € 5 und 10 Mio.<br />

Sowohl die stark angestiegenen Räumvolumina als auch die mit der Europäischen Abfallrichtlinie<br />

(EU-ARL, 2008/98/EG) verbundenen Anforderungen an die Deponierung oder<br />

Behandlung kontaminierter Sedimente stellen die Wildbachverbauung vor neue Herausforderungen<br />

und haben das Potenzial, bewährte Schutz- und Managementkonzepte in Frage zu<br />

stellen. Es ist daher erforderlich, das Sedimentmanagement in Wildbacheinzugsgebieten unter<br />

Berücksichtigung der morphologischen, ökologischen, rechtlichen und wirtschaftlichen<br />

Perspektiven zu einem umfassenden System weiterzuentwickeln. Grundlage dafür bildet eine<br />

aus der Nomenklatur der feststoffwirksamen Schutzmaßnahmen (ONR 24800, 4.6.3) sowie<br />

den Rechtsbegriffen des Forst-, Wasser- und Abfallrechts entwickelte Systematik der<br />

Managementfunktionen.<br />

PROBLEMSTELLUNG: SEDIMENTMANAGEMENT UNTER DEM REGIME DES ABFALLRECHTS<br />

Feststoffe aus Wildbacheinzugsgebieten stammen fast ausschließlich aus natürlich anstehenden<br />

Lockergesteinsherden ohne erhebliche anthropogene Beeinflussung, sodass grundsätzlich<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 821


von der Eigenschaft des „nicht kontaminierten Sediments“ gemäß § 3 Abs 1 Z 7 AWG<br />

ausgegangen werden kann. Allerding kann ohne Nachweis der Kontaminationsfreiheit nicht<br />

abschließend angenommen werden, dass keine Verunreinigung der Sedimente aus anthropogenen<br />

oder geogenen Ursachen gegeben ist. In diesen Fällen wäre nämlich die Abfalleigenschaft<br />

des Sediments anzunehmen.<br />

Die EU-ARL schließt gemäß Art 2 Abs 3 „Sedimente, die ua. zum Zweck der Bewirtschaftung<br />

von Gewässern oder der Vorbeugung gegen Überschwemmungen oder der Abschwächung<br />

der Auswirkung von Überschwemmungen umgelagert wurden und erwiesenermaßen nicht<br />

gefährlich sind“, aus ihrem Anwendungsbereich explizit aus. Eine ähnliche Ausnahmebestimmung<br />

enthält § 3 Abs 1 AWG für „nicht kontaminierte Sedimente“. Der Begriff „Kontamination“<br />

bezieht sich ausschließlich auf anthropogen verursachte Verunreinigungen. Geogene<br />

Hintergrundbelastungen gelten nicht als Kontamination im Sinne der zitierten Rechtsnormen.<br />

Die Verpflichtung des Nachweises der Kontaminationsfreiheit ist jener Person auferlegt,<br />

die sich auf die betreffende Ausnahme berufen will. (Bergthaler et al. 2015, 14) Das Ausmaß<br />

und die Methode der Nachweisführung (Augenschein oder analytische Laborprüfung)<br />

ergeben sich aus den nationalen Beweisregeln der ÖNORM S 2126. Bei Sedimenten aus<br />

naturnahen Wildbächen, bei denen im Oberlauf keine maßgeblichen Direkteinleiter oder<br />

sonstige potenziell kontaminierenden Einwirkungen auf das Gewässer bekannt sind, wird<br />

man mit einem Augenschein das Auslangen finden. Bei bekannter gewerblicher oder<br />

bergbaulicher Nutzungsgeschichte im Einzugsgebiet wird hingegen hinsichtlich der in Frage<br />

kommenden Belastungen eine ergänzende analytische Untersuchung indiziert sein.<br />

Die Ausnahme des Sediments von der Abfalleigenschaft nach Art 2 Abs 3 EU-ARL ist an den<br />

Begriff „Umlagerung innerhalb von Oberflächengewässern“ gekoppelt, konstatiert also einen<br />

unabdingbaren Gewässerbezug. Die Auflistung der möglichen Maßnahmen in den Leitlinien<br />

der Kommission zeigt aber, dass sich diese nicht auf das Bett des Fließgewässers beschränken<br />

müssen, sondern dass auch im Landbereich durch gewässerbezogene Maßnahmen noch<br />

zulässige Verwendungszwecke (insbesondere im Bereich des Hochwasserschutzes und der<br />

Wildbachverbauung) bestehen (Bergthaler 2015, 20). Eine weitere anwendbare Ausnahmemöglichkeit<br />

besteht gemäß § 3 Abs 1 Z 8 AWG, wenn geräumte Sedimente den „nicht<br />

kontaminierten Böden und anderen natürlich vorkommenden Materialien“ zugeordnet<br />

werden. Hier ist zwar eine räumliche Einschränkung des Materials auf den "Ort, an dem es<br />

ausgehoben wurde" (Bodenaushub) formuliert. Als Abgrenzungskriterium gilt der Bereich,<br />

der von der jeweiligen Baugenehmigung umfasst ist, und daher nach der jeweiligen Umschreibung<br />

des Bauprojekts durchaus weitreichend auszulegen ist. (Bergthaler 2015, 20) Dies<br />

bedeutet, dass bei schutzwasserwirtschaftlichen Baumaßnahmen die ausgehobenen Sedimente<br />

an allen bautechnischen Einsatzbereichen entlang der projektgegenständlichen Fließstrecke<br />

verwendet werden können und immer noch vom Abfallbegriff ausgenommen bleiben.<br />

In diesem Kontext ist in Österreich auch an eine Reaktivierung des Rechtsinstituts des<br />

822 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Perimeters (Arbeitsfeldes) nach § 1 WLV-G zu denken, welches dem hier verwendeten<br />

Baustellenbegriff entsprechen dürfte.<br />

Liegen die Voraussetzungen des § 3 Abs 1 Z 7 und 8 AWG nicht vor, wird davon auszugehen<br />

sein, dass es sich bei Sedimenten im Falle der Räumung um Abfall handelt. Dies gilt in jedem<br />

Fall, wenn das Material entsorgt und außerhalb des Gewässers endgültig deponiert werden<br />

soll. In diesem Fall sind in Österreich die Maßstäbe des Bundesabfallwirtschaftsplanes<br />

(BMLFUW 2006) bzw. bei einer Beseitigung die Bestimmungen der Deponieverordnung<br />

(DVO 2008) anzuwenden. Auch wenn hier nur Auszüge aus der viel umfangreicheren<br />

rechtlichen Analyse des Sedimentmanagements (Bergthaler et al. 2015) wiedergegeben<br />

wurde, so kann doch der Schluss gezogen werden, dass bei der Behandlung von geräumten<br />

Sedimenten ein planmäßiges und strukturiertes Vorgehen obligatorisch ist, um nicht<br />

unbeabsichtigte Rechtsfolgen und wirtschaftliche Mehrbelastungen zu generieren.<br />

PHASENMODELL DES SEDIMENTMANAGEMENTS UND VERWERTUNGSREGIME<br />

Als Basis für das Ziel der Entwicklung eines strukturierten und rechtlich fundierten Konzepts<br />

für das Sedimentmanagement in Wildbacheinzugsgebieten wurde – aufbauend auf dem<br />

Grundmodell nach Abbildung 1 – ein 5-Phasen-Modell entwickelt, welches mit den für die<br />

Sedimente in Frage kommenden Behandlungs- und Verwertungsregimen (Schutzwasserwirtschaftliches<br />

Regime, Land- und forstwirtschaftliches Verwertungsregime, Rohstoffverwertungsregime,<br />

Abfallregime) gekoppelt wurde. Das Modell umfasst folgende Phasen:<br />

– Phase 0: Sedimentkontinuum oder schutzwasserwirtschaftliche Maßnahmen im Gewässer<br />

– Phase 1: Anfall und erste Disposition<br />

– Phase 2: Zwischenlagerung<br />

– Phase 3: Weitere Verwendung (Verwertung) und Entsorgung (Deponierung)<br />

– Phase 4: Wiedereinbringung in Gewässer<br />

Abbildung 2 zeigt den Materialfluss bezogen auf die möglichen Arten der Behandlung der<br />

Sedimente und der abfallrechtlichen Qualifikation des Materials. Als Grundprinzip des<br />

Modells gilt, dass aus ökologischen und morphologischen Gründen nach Möglichkeit die<br />

Feststoffe im Sedimentkontinuum des Wildbaches belassen oder im Gewässer umgelagert<br />

werden sollen. Wenn jedoch eine Räumung erforderlich ist, soll die Verwertung für schutzwasserbauliche<br />

Zwecke angestrebt werden. Aufgrund der rechtlichen und wirtschaftlichen<br />

Lasten ist eine sonstige Verwertung außerhalb des Gewässers oder eine Deponierung nur in<br />

unvermeidbaren Fällen anzustreben.<br />

Ein durchgängiges Feststoffregime oder Schutzkonzepte, die den Sedimentfluss aufrecht<br />

erhalten, stellen im Sinne des “River Continuum Concepts“ (Vanote et al. 1980, 130f) sowie<br />

der Qualitätsziele der EU-WRRL (2000/60/EG) den Optimalzustand dar (Phase 0) und sind<br />

auch aus schutzwasserbaulicher Sicht am kosteneffizientesten. Allerdings kann in Wildbächen<br />

ein natürliches Feststoffregime nur in den Grenzen der Sicherheit des menschlichen<br />

Lebens- und Wirtschaftsraums aufrechterhalten werden. Einige Funktionstypen der Wild-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 823


Abbildung 2: Flowchart des Sedimentmanagements in Wildbacheinzugsgebieten<br />

bachverbauung – insbesondere die Konsolidierung, Dosierung, Filterung oder Ablenkung<br />

(ONR 24800, 4.6.3) – zielen auf den Feststofftransport bei Hochwasser und begünstigen das<br />

Sedimentkontiunuum bei Normalwasserführung sowie die morphologische Balance des<br />

Wildbaches. Die kleinräumige Umlagerung von Sedimenten (im engeren schutzwasserwirtschaftlichen<br />

Sinne) wird zur Überbrückung einer abschnittweise nicht ausreichenden<br />

Transportkapazität eingesetzt.<br />

Kommt es zu massiven Feststoffablagerung und stellen diese ein Abflusshindernis der freien<br />

Fließstrecke dar, ist eine Räumung (Sedimententnahme) durchzuführen (Phase 1). Gesetzliche<br />

Räumpflichten bestehen nach §§ 39 und 47 WRG sowie in Form der Wildbachräumung<br />

nach § 101 Abs 6 ForstG. Eine verwaltungsrechtliche Bewilligungspflicht für Räumungen<br />

besteht nur bei nutzungs- oder gewinnorientierter Sedimentgewinnung (z.B. Schotterabbau<br />

iSd § 1 Z 8 MinroG; Entnahme als Wassernutzung iSd § 9 WRG), nicht jedoch in Erfüllung<br />

gesetzlich normierter Räumungs- und Instandhaltungspflichten. In dieser Phase besteht<br />

weiterhin ein räumlicher Gewässerbezug, da das geräumte Sediment unter der Annahme<br />

einer schutzwasserwirtschaftlichen Verwertung im Nahbereich zwischengelagert und sortiert<br />

wird.<br />

Von einer Zwischenlagerung (Phase 2) ist zu sprechen, wenn das Sedimentmaterial iSd § 2<br />

Abs 7 Z 4 AWG für den Weitertransport nicht länger als 1 Jahr bereitgehalten oder vor einer<br />

824 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Verwertung nicht länger als 3 Jahre gelagert wird und daher keine Deponie (endgültige<br />

Ablagerung) vorliegt. Die Zwischenlagerung verschafft zeitlichen Spielraum, um den<br />

Sedimentanfall zu puffern und eine schutzwasserwirtschaftliche Verwendung, Wiedereinbringung<br />

ins Gewässer oder sonstige Verwertung des Materials sicher zu stellen. Allerdings sind<br />

dafür geeignete Lagerflächen im ausreichenden Umfang vorzuhalten, für die verwaltungsrechtliche<br />

Bewilligungstatbestände bestehen (z.B. HQ-30 nach § 38 WRG, befristete forstliche<br />

Rodung nach § 18 ForstG, naturschutzrechtliche Bewilligungs- und Anzeigepflicht). Abfalleigenschaft<br />

ist für nicht kontaminierte Sedimente mangels Entledigungsabsicht in der Phase 1<br />

und 2 nicht anzunehmen.<br />

Phase 3 umfasst alle Arten der Verwertung außerhalb des Gewässers, als Baumaterial (z.B.<br />

Straßenbau), als produktgleicher Rohstoff (Schotter- und Kiesgewinnung) oder für landwirtschaftliche<br />

Zwecke (Geländegestaltungen, Rekultivierung, Einarbeitung in den Boden). Bei<br />

der Weitergabe (Verkauf) der Sedimente sind insbesondere eigentumsrechtliche und<br />

gewerberechtliche Aspekte zu beachten. Besteht kein neuer Verwendungszweck für das<br />

zwischengelagerte Sedimentmaterial und liegen die Ausnahmetatbestände nach § 3 Abs 1<br />

AWG 2002 nicht vor, so ist durch die Weitergabe des Sediments wohl Entledigungsabsicht<br />

indiziert und ist mit der Übergabe an einen Abfallbehandler dieser explizit mit der umweltgerechten<br />

Verwertung und Beseitigung zu beauftragen. Als Deponietypen für nicht kontaminierte<br />

Sedimente kommen definitionsgemäß Bodenaushubdeponien in Frage, für Sedimente,<br />

die mit Fremdbestandteilen verunreinigt sind, ist die Kategorie der Baurestmassendeponie<br />

einschlägig. (Bergthaler 2015, 142) Das Einbringen von Abfällen in einen Deponiekörper<br />

unterliegt grundsätzlich der Altlastenbeitragspflicht, im Falle von Katastrophenereignissen ist<br />

eine Deponierung aber nach § 3 Abs 4 AlSAG nach Bestätigung durch die Gemeinde<br />

beitragsfrei (Altlastensanierungsabgabe) möglich.<br />

Als Phase 4 wurde die Wiedereinbringung von Sedimentmaterial in ein Gewässer definiert,<br />

die grundsätzlich nur für nicht kontaminiertes Material möglich ist. Eine wasserrechtliche<br />

Bewilligungsfähigkeit nach § 32 Abs 2 lit a WRG ist nur unter bestimmten Rahmenbedingungen<br />

gegeben, beispielsweise nur bei größeren Gewässern mit ausreichender Transportkapazität<br />

an geeigneten Orten und zum passenden Zeitpunkt.<br />

SCHLUSSFOLGERUNGEN UND AUSBLICK<br />

Schon aufgrund der ökologischen und morphologischen Bedeutung des Sediments in Fließgewässern,<br />

ebenso jedoch wegen der rechtlichen Komplexität und wirtschaftlichen Aufwendungen<br />

ist das in diesem Beitrag dargestellte 5-Phasen-Modell auf die weitgehende Belassung<br />

oder kleinräumige Umlagerung der Sedimente im Feststoffregime der Wildbäche ausgerichtet.<br />

Wenn eine Räumung aus technischen oder rechtlichen Gründen geboten ist, soll das Sedimentmanagement<br />

eine möglichst wirtschaftliche Verwendung des Materials sicherstellen.<br />

Dabei ist der schutzwasserbaulichen Verwertung oder der Wiedereinbringung ins Gewässer<br />

der Vorzug einzuräumen. Das zeitliche und mengenmäßige Auseinanderfallen des Sediment-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 825


anfalls und Materialbedarfs kann in bestimmten Fristen (3 Jahre) oder räumlich begrenzten<br />

Bereichen (Baustellen, Perimeter) durch Zwischenlagerung gepuffert werden. In Wildbacheinzugsgebieten<br />

sind daher entsprechende Zwischenlagerflächen sicherzustellen und ein<br />

Konzept für die mittelfristige Materialverwendung zu erstellen. Dieses Konzept soll auch<br />

konkrete Optionen für andere Verwertungsmöglichkeiten (landwirtschaftliche Verwertung,<br />

Schottergewinnung, Baumaterial) mit einschließen. Ist die Deponierung des Materials wegen<br />

des extremen Überschusses (nach Hochwasserereignissen) unausweichlich, so wird die<br />

vorausschauende Schaffung von bewilligten Bodenaushubdeponien als Teil von Schutzprojekten<br />

oder im Nahbereich der Wildbacheinzugsgebiete empfohlen.<br />

Das vorgestellte Modell versucht, die komplexen rechtlichen und technischen Zusammenhänge<br />

des Sedimentmanagements für die Praxis im Sinne einer effizienten und strukturierten<br />

Vorgehensweise umsetzbar zu machen. Es bestehen allerdings weiterhin erhebliche Rechtsunsicherheiten<br />

im Kontext des Abfallrechts, die das etablierte System der Wildbachverbauung<br />

in der Behandlung von Feststoffen erheblich hemmen oder gar in Frage stellen. Der in<br />

Ausarbeitung befindliche Leitfaden des Österreichischen Wasser- und Abfallwirtschaftsverbande<br />

(ÖWAV) soll hier eine rechtliche Klärung und Handlungssicherheit für die Praxis<br />

herbeiführen.<br />

LITERATUR<br />

- Bergmeister K., Suda J., Hübl J., Rudolf-Miklau, F. (2008). Schutzbauwerke der Wildbachverbauung.<br />

Ernst und Sohn Berlin.<br />

- Bergthaler W., Wagner E., Jandl C. (2015). Sedimentmanagement – Rechtliche Aspekte.<br />

Johannes Kepler Universität Linz. Studie iA des BMLFUW, unveröffentlicht.<br />

- BMLFUW (2006). Bundesabfallwirtschaftsplan. Bundesministerium für Land- und Forstwirtschaft,<br />

Umwelt und Wasserwirtschaft Wien.<br />

- Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA) (2012). Sedimentmanagement<br />

in Fließgewässern: Grundlagen, Methoden, Fallbeispiele. Merkblatt DWA<br />

M-526.<br />

- Müller G. (1986). Schadstoffe in Sedimenten – Sedimente als Schadstoffe. Mitteilungen der<br />

österreichischen geologischen Gesellschaft (Umweltgeologie Bd. 79).<br />

- Rudolf-Miklau F. (2009). Naturgefahren-Management in Österreich. Lexis Nexis Orac.<br />

- Vannote R. L., Minshall G. W., Cummins K. W., Sedell J. R., Cushing, C. E. (1980). The river<br />

continuum concept. Canadian journal of fisheries and aquatic sciences 37(1): 130-137.<br />

RECHTSQUELLEN<br />

Abfallwirtschaftsgesetz 2002, idF österr BGBl. I Nr. 193/2013 (AWG).<br />

Altlastensanierungsgesetz 1989, idF österr BGBl. I Nr. 103/2013 (AlSAG).<br />

Forstgesetz 1975, idF österr BGBl. I Nr. 102/2015 (ForstG).<br />

Mineralrohstoffgesetz 1999, idF österr BGBl. I Nr. 80/2015 (MinroG).<br />

Deponieverordnung 2008, idF österr BGBl. II Nr. 104/2014 (DVO).<br />

826 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Wildbachverbauungsgesetz, RGBl. Nr. 117/1884 (WLV-G).<br />

Qualitätszielverordnung Chemie Oberflächengewässer, österr BGBl. II Nr. 96/2006 (QZV<br />

Chemie OG).<br />

Verordnung zum Schutz der Oberflächengewässer (Oberflächengewässerverordnung vom 20.<br />

Juli 2011, dt BGBl. I S. 1429 (OGewV).<br />

Richtlinie 2008/98/EG des Europäischen Parlamentes und des Rates vom 19. November 2008<br />

über Abfälle (EU-ARL).<br />

Richtlinie 2000/60/EG des Europäischen Parlamentes und des Rates vom 23. Oktober 2000<br />

zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der<br />

Wasserpolitik (EU-WRRL).<br />

Wasserrechtsgesetz 1959, idF österr BGBl. I Nr. 98/2013 (WRG).<br />

NORMATIVE VERWEISUNG<br />

DIN 4049-1 – Hydrologie, Grundbegriffe. Ausgabe: 1992-12.<br />

ÖNORM B 2400 - Hydrologie - Hydrographische Fachausdrücke und Zeichen - Ergänzende<br />

Bestimmungen zur ÖNORM EN ISO 772. Ausgabe: 2003-01-01.<br />

ÖNORM S 2126. Grundlegende Charakterisierung von Aushubmaterial vor Beginn der<br />

Aushub- oder Abräumtätigkeit. Ausgabe: 2010-08-15.<br />

ONR 24800. Schutzbauwerke der Wildbachverbauung - Begriffe und ihre Definitionen<br />

sowie Klassifizierung. Ausgabe: 2009-02-15.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 827


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Physical modelling optimization of a filter check dam<br />

in Switzerland<br />

Sebastian Schwindt, MSc 1 ; Giovanni De Cesare, Dr. 2 ; Jean-Louis Boillat, Dr. 3 ; Anton J. Schleiss, Prof. Dr. 1<br />

ABSTRACT<br />

After a major flood with a peak discharge of 177 m³/s in the city of Martigny (Valais, Switzerland)<br />

by the alpine river Drance in October 2000, the local authorities are strengthening<br />

efforts for the protection of the urban area. The Drance has an annual average discharge of 10<br />

m³/s and the most important floods occur in the late summer. Two lateral torrents potentially<br />

supply the Drance with debris flow directly upstream of the urban area, where the installation<br />

of a filter check dam is foreseen for the retention of sediments in case of flood events.<br />

The functionality of the structure was analyzed on a physical model at a geometric scale of<br />

1:42 for different scenarios, i.e. clear water conditions, regular bedload and driftwood<br />

transport. The flow pattern and the sediment retention upstream of the filter check dam were<br />

analyzed and the energy dissipation downstream was optimized by modifications of the<br />

stilling basin.<br />

KEYWORDS<br />

filter check dam; physical model; retention of bedload; flood protection; driftwood.<br />

INTRODUCTION<br />

After a major flood event in the city of Martigny (Lower Rhone Valley, Switzerland) in<br />

October 2000, the local authorities are strengthening efforts for the protection of the urban<br />

area, like recently in the neighboring municipality of Riddes (Bianco et al. 2014). Martigny is<br />

crossed by the alpine river Drance, whose catchment area is under the influence of several<br />

hydropower reservoirs and which suffer from floods mainly in late summer, due to superimposed<br />

glacier melting and rainfall runoff.<br />

As indicated in Figure 1, the upper branch of the Drance River is flowing from south-east to<br />

north-west. Downstream of the village of Les Valettes, a canyon stretch with steep hill slopes<br />

receives five lateral torrents just upstream of the urbanized area of Martigny-Croix and<br />

Martigny.<br />

In the framework of the flood protection program, the trapping of sediment is foreseen at<br />

the downstream end of the canyon stretch by means of a filter check dam. The project site is<br />

confined laterally by steep hill slopes which impede the excavation of a retention basin.<br />

Therefore the height of the filter check dam is designed to retain the sediments in the canyon<br />

1 Ecole Polytechnique Federale de Lausanne, SWITZERLAND, sebastian.schwindt@epfl.ch<br />

2 Laboratoire de Constructions Hydrauliques - École Polytechnique Fédérale de Lausanne, Switzerland<br />

3 formerly Laboratoire de Constructions Hydrauliques - École Polytechnique Fédérale de Lausanne, Switzerland<br />

828 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP008


for a 100-year flood. In this study, the hydraulic behavior of the pre-designed filter check<br />

dam was analyzed and optimized by means of a physical model.<br />

Figure 1: Map of the region of interest, indicating the modelled river reach. Reproduced with the authorization of Swisstopo JA100120.<br />

METHODS<br />

Hydrological, geomorphological framework<br />

The river has been reproduced on an 850 m long reach with bed slopes varying between<br />

2.4 % and 3.1 %. The part upstream of the sediment control dam is about 600 m long and<br />

includes the inflows of the Lavanchy and St. Jean Torrents. The downstream part serves for<br />

the analysis of energy dissipation. The range of discharges tested in the experiments is shown<br />

in Table 1, where Qd denotes the design discharge for clogging of the orifice.<br />

Table 1: Range of discharges analyzed in the experiments in m³/s at prototype dimensions. Qd denotes the design discharge of opening<br />

clogging.<br />

Q mean Q d<br />

HQ 2.33 HQ 5 HQ 10 HQ 20 HQ 50 HQ 100 HQ 300 HQ 500 (EHQ)<br />

10 30 86 105 119 130 175 230 280 345<br />

Two different grain size distributions are applied in order to account for the differences<br />

between the coarser channel bed and the finer sediment supply of debris flow from the lateral<br />

torrents. The bed mixture is characterized by D30 = 29 mm, D50 = 92 mm and D90 = 435 mm,<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 829


where the mean diameter is Dm = 165 mm. The supply mixture is characterized by<br />

D30 = 25 mm, D50 = 43 mm and D90 = 156 mm, where the mean diameter is Dm = 75 mm.<br />

Driftwood<br />

Since the catchment area of the Drance is partially covered by alpine forests, driftwood is<br />

likely to occur during floods. The blockage of hydraulic structures like the filter check dam<br />

and the bridges through the town of Martigny during floods have to be avoided. The behavior<br />

of driftwood and retention measures is studied by injecting piles of wood at the model<br />

entrance with different structural setups. The driftwood samples consist of 15 trunks of 10 m<br />

of length, 10 trunks of 15 m of length and 2 rootstocks.<br />

Scaling and model setup<br />

The model has a geometric scale of 1:42 and is about 21 m long and 2.8 m wide. In order to<br />

promote the participation of local stakeholders and the inhabitants of Martigny, the model<br />

was built in the neighborhood of the future establishment site. The geometric scale was<br />

chosen due to spatial limitations (upper size limit) and the respect of Froude and sediment<br />

transport similarities (lower size limit).<br />

The model is shown on Figure 2 with the upstream and downstream basins for water storage<br />

of 0.75 m³ and 4 m³ respectively, the two pumps and the chutes for the lateral torrents.<br />

Figure 2: View of the model with the lateral torrents, the supply pumps as well as the upstream and downstream water storage basins.<br />

The transported sediments, supplied at the upstream end of the channel, are captured in<br />

industrial filter bags which are suspended in the downstream basin.<br />

830 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Layout of the filter check dam<br />

The initial configuration of the filter check dam implies two 10 m wide standard crest spillways,<br />

a stilling basin furnished with 1.5 m large blocks and a 4 m large central pile for the<br />

placement of a sluice gate covering the 4 m wide orifice of the filter check dam (prototype<br />

dimensions). The shape of the stilling basin is orientated at the standard design of a stilling<br />

basin. As the structure will be located in a right hand curve of about 24°, the crest axis of<br />

the spillways is inclined by 12° with respect to the upstream river axis for guiding the flow<br />

towards the downstream river axis.<br />

The geometry of the orifice is crucial because a too large opening will lead to excessive<br />

sediment transit during floods, i.e. self-flushing, offering therefore insufficient protection<br />

downstream. A too small opening on the contrary will retain too much sediments, leading to<br />

early or even permanent backfilling of the retention volume. The elements of the structure,<br />

described in Figure 3, were designed for a 100-year flood.<br />

Figure 3: Elements of the filter check dam: opening, central pile, crest spillways and stilling basin with 1.5 m large blocks (prototype<br />

dimension): a) dry model from upstream and b) lateral view during a 100-year flood.<br />

The effects of the structure on energy dissipation were analyzed with respect to the central<br />

pile (placed / suppressed), the implementation of a sluice gate in front of the orifice for the<br />

flushing control (opened / closed), the shape and length of the stilling basin (standard stilling<br />

basin / pear-shaped) and sediment transit through the filter check dam.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 831


Measurements<br />

The water level was recorded by means of ten ultrasonic probes and the water discharges<br />

were controlled individually for each pump by two flow meters. The sediment output was<br />

measured at the end of each experiment by means of an industrial scale. Video and picture<br />

documentation was constituted to highlight dynamic processes like the behavior of driftwood,<br />

the development of flow patterns and the sediment transport.<br />

Scenarios<br />

Combined with modifications of the layout, different discharge scenarios and solid transport<br />

events were studied. The whole range of discharges according to Table 1 was tested for the<br />

initial layout configuration with large central pile and standard-shaped stilling basin, under<br />

steady flow conditions without bedload. The focus of interest is the behavior of the structure<br />

in case of ordinary flow conditions (about 10 m³/s), frequent floods i.e. HQ 2.33 with 86<br />

m³/s, 100-year flood with 230 m³/s and extreme flood event with 345 m³/s which comply<br />

with 0.87 l/s, 7.52 l/s, 20.12 l/s and 30.18 l/s at model scale, respectively.<br />

For the 100-year and the extreme flood scenarios, the functioning of the structure must be<br />

guaranteed for ordinary bedload transport as well as with debris flow from the lateral<br />

torrents. The hydrograph and the corresponding sediment curve which apply for a 100-year<br />

flood event are shown in Figure 4.<br />

Figure 4: Showcase hydrograph and sediment curve of a 100-year flood, based on the flood from the year 2000.<br />

The sediment curve is based on the evaluation of bedload from the results of a 1D numerical<br />

simulation with Gesmat code at the model entrance. The peak of the solid discharge is about<br />

3.5 t/s, which correspond to about 18.5 kg/min at model scale.<br />

832 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RESULTS<br />

Hydraulic control and sluice gate<br />

The hydraulic effects of the structure for the initial configuration with central pile and active<br />

orifice were studied experimentally and theoretically by means of a stage-discharge relation.<br />

The small width of the orifice (less than 50 % of the river width) imposes backwater for<br />

nearby all discharge conditions.<br />

Central Pile and Driftwood<br />

The central pile influences the backwater and induces driftwood clogging on the right bank<br />

spillway in 10 % of the tests. The presence of the pile has only minor effects on energy<br />

dissipation in the stilling basin. Initially, flow deflectors were foreseen for deviating the flow<br />

towards the left river bank directly upstream of the filter check dam, where the driftwood<br />

was intended to be retained in case of floods, according to Schmocker and Weitbrecht (2013).<br />

The authors propose to install vertical piles between the main channel bed and the river<br />

banks longitudinally to the river axis in an outer river bend, where vertically oriented<br />

vortices occur during floods and push the driftwood towards the outer bank. Thus, the<br />

driftwood can be trapped behind the barrier of piles. In the present case, due to the influence<br />

of backwater, the solution with flow deflectors cannot establish the suggested flow conditions.<br />

Another promising position for a pile structure was identified in an outer right hand bend<br />

about 350 to 450 meters upstream of the filter dam. Here, driftwood can be retained, but only<br />

if the pile structure also crosses the river axis.<br />

Stilling basin<br />

The key parameter for the evaluation of the efficiency of the stilling basin is the energy<br />

dissipation by means of water surface level and flow velocity measurements upstream and<br />

downstream of the stilling basin. The initial shape according to a “standard” stilling basin had<br />

the poorest performance in terms of energy losses. The energy dissipation was improved by<br />

adapting the geometry of the stilling basin to a pear-shape with the narrowing towards the<br />

downstream direction. Further improvements were achieved by increasing the depth of the<br />

basin by about 1.5 m and elongating the stilling basin by about 10 m in prototype dimensions.<br />

As the structure is situated in a right hand bend, the energy dissipation was even more<br />

pronounced by applying an asymmetric deepening of about 1 m more along the right river<br />

bank, as this measure makes the velocity profile more uniform at the downstream end of the<br />

stilling basin. The stages of improvement of the energy dissipation are illustrated in Figure 5,<br />

based on the energy head of a 100-year flood.<br />

The experiments have shown that the 1.5 m large boulders are mobilized during floods, thus<br />

requiring stabilization measures.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 833


Figure 5: Improvement of the stilling basin by adapting the shape, pool depth, length and 183 symmetry with respect to the longitudinal<br />

river axis based on the energy head during a 100- 184 year flood (HQ100).<br />

Sediment Transfer<br />

The sediment transfer through the filter check dam, notably the opening, is strongly linked<br />

to the flow pattern along the structure which was analyzed by injecting tracer color. The observations<br />

are documented in Figure 6 for a discharge of 30 m³/s.<br />

Figure 6: Flow pattern upstream of the filter check dam for a discharge of about 30 m³/s.<br />

834 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Within the range of the tested discharges (minimum 10 m³/s), a quiet water zone established<br />

at all discharges upstream of the dam towards the left river bank. As shown in Figure 6,<br />

sediment deposits at the outer bound of the recirculation zone close the main current.<br />

The behavior of the structure during floods was studied by reproducing the hydrograph of<br />

Figure 4 by incremental steps and without closing the weir. The experiment was stopped at<br />

the flood peak for the analysis of the depositions. A large part of the sediment was retained<br />

upstream of the filter dam with a deposition slope of about 0.7 %. However, about 1/3 of the<br />

injected sediment passed the structure and was captured in the sediment bag. In prototype<br />

dimensions, about 20’000 m³ of sediments would have been directed towards the town of<br />

Martigny.<br />

CONCLUSIONS<br />

The initial layout of the filter check dam included standard spillways and a stilling basin<br />

designed for a 100-year flood (HQ 100<br />

) with a 4 m large central pile and orifice. The design of<br />

the basin was experimentally improved stepwise by adaptations of its shape, the length and<br />

the depth. An additional improvement was achieved by increasing the pool depth asymmetrically<br />

along the right bank, as the structure is situated in a right hand bend.<br />

The experiments have shown that about 2/3 of the sediments are retained by the structure<br />

during a 100-year flood. The rest can be safely transported through the channelized section in<br />

the town of Martigny.<br />

The actual design of the orifice probably requires a control measure, i.e. a sluice gate to avoid<br />

self-flushing in the falling limb of a flood event. Alternative remedy measures are conceivable,<br />

like the installation of vertical poles or horizontal beams in shape of a mechanical barrier<br />

upstream of the orifice. This alternative will be examined on the model too.<br />

Driftwood is partially blocked when the central pile applies. However, a retention zone about<br />

350 m to 450 m upstream of the filter check dam was identified for the installation of a<br />

driftwood retention device.<br />

Many of the existing open check dams were designed based on the own experience of the<br />

responsible engineer (Armanini and Larcher, 2001). For safety reasons, it was considered that<br />

it is more convenient for the filter check dam at the Drance River to design a narrow opening<br />

with a gate. However, the installation and the handling of a sluice gate during floods are<br />

critical issues. As an alternative, the enlargement of the opening with the implementation of<br />

a grid rack has to be considered but was not yet implemented in the framework of this study.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 835


REFERENCES<br />

- Armanini A., Larcher M. (2011). Rational criterion for designing opening of slit-check dam.<br />

Journal of hydraulic engineering 127: 94-104.<br />

- Bianco M., Bianco P., De Cesare G. (2014). Design of a bed load trap and driftwood filtering<br />

dam, analysis of the phenomena and hydraulic design. Proceedings of the Symposium CIPC<br />

KOHS 2014, Swiss Competences in River Engineering and Restoration: 129-139.<br />

- Piton G., Recking A. (2015). Design of Sediment Traps with Open Check Dams. I:<br />

Hydraulic and Deposition Processes. Journal of Hydraulic Engineering: 1-16.<br />

- Rickenmann D. (1997). Schwemmholz und Hochwasser. Wasser Energie Luft 89(5/6):<br />

115-119.<br />

- Schmocker, L., Weitbrecht, V. (2013). Driftwood: Risk Analysis and Engineering Measures.<br />

Journal of Hydraulic Engineering 139: 683-695.<br />

- Zollinger F. (1983). Die Vorgänge in einem Geschiebeablagerungsplatz: ihre Morphologie<br />

und ihre Möglichkeiten einer Steuerung. Dissertation Eidgenössische Technische Hochschule<br />

Zürich 7419: 264.<br />

836 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Settlement dynamics in floodplains: from assessing<br />

future flood hazard exposure to developing spatial<br />

adaptation measures<br />

Walter Seher, Ph.D. 1 ; Lukas Löschner 1<br />

ABSTRACT<br />

Based on empirical research from three Austrian flood-prone municipalities, this contribution<br />

discusses the impact of settlement dynamics in floodplains on future changes in flood hazard<br />

exposure. The authors present a methodological framework for a GIS-based assessment of<br />

settlement dynamics in 300-year flooding areas and reflect options of implementing a<br />

risk-oriented approach in flood-related spatial planning. Findings indicate the following: i)<br />

increases in flood hazard exposure are to a large extent determined by the kind of building<br />

land (residential, commercial etc.) displayed in local land use plans; ii) the supply of building<br />

land (i.e. vacant lots and development areas) in floodplains is a key driver of future flood<br />

hazard exposure; iii) "context matters", i.e. flood-related options in spatial planning are<br />

strongly influenced by topographic conditions (e.g. the amount of land available for permanent<br />

settlement) and iv) there is further scope to specifically use zoning or local development<br />

plans for implementing a risk-oriented approach in flood-related planning.<br />

KEYWORDS<br />

Flood hazard exposure; settlement development; exposure assessment; risk-based spatial<br />

planning.<br />

INTRODUCTION<br />

In the past years flood policy in Austria gradually shifted from a structural, security-based<br />

approach of flood protection towards an integrated, risk-based approach of flood risk management.<br />

Whereas the 'traditional' approach was informed by a firm belief in controlling rivers<br />

via engineering solutions, Austrian flood policy increasingly aims at reducing the vulnerability<br />

to flooding (Nordbeck, 2014). Due to its pivotal importance for flood risk prevention,<br />

spatial planning is assuming a more central role within the nascent paradigm of an integrated<br />

management of flood risks. Spatial planning is operative in reducing vulnerability by<br />

minimizing the exposure to flood hazards. Hazard exposure can be effectively reduced by<br />

allocating demands for future land uses according to the suitability of locations. Evaluating<br />

suitability focuses on the question whether the flood risk for the location concerned is<br />

tolerable and acceptable. Existing zoning regulations in state spatial planning laws provide the<br />

necessary regulatory framework (Kanonier, 2005). Flood risk evaluation and the subsequent<br />

1 University of Natural Resources and Life Sciences, Vienna Institut of Spatial Planning and Rural Development, Vienna, AUSTRIA<br />

walter.seher@boku.ac.at<br />

IP_<strong>2016</strong>_FP011<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 837


land use decisions are usually based on the spatial extension of flood events with a defined<br />

level of occurrence (e.g. 100-year flood), thus regarding hazards rather than vulnerabilities.<br />

Despite significant progress to halt the continuous upward trend in the exposure of people<br />

and assets in flood-prone areas, settlement development, however, remains the strongest<br />

driver of flood-related economic damage and losses (Elmer et al., 2012). In particular the<br />

unchecked increase in damage potential in extreme hazard areas beyond the regulated<br />

flooding zones (e.g. 300-year flooding areas where land development is not regulated by<br />

statutory provisions in spatial planning laws) provides a fundamental challenge for policy<br />

makers and illustrates the need to anticipate settlement development in floodplains and to<br />

develop risk-based spatial planning approaches (see among others Hess, 2011; Greiving,<br />

2002). Risk-based spatial planning not only refers to hazards but also to vulnerability and<br />

potential damages when considering future land uses. A risk-based approach to spatial<br />

planning is calling for additional information, not only about hazards but also concerning<br />

hazard exposure, sensitivity and adaptive capacity.<br />

Against this background the authors present an analytical framework for a GIS-based<br />

assessment of settlement dynamics in 300-year flooding areas. Based on empirical findings<br />

from three Austrian case studies the paper discusses options of implementing a risk-oriented<br />

approach in flood-related spatial planning. The contribution addresses the following research<br />

questions:<br />

– What is the influence of settlement change in floodplains on future flood hazard exposure?<br />

– What are the main driving factors of settlement growth in floodplains?<br />

– What are (spatial planning) options to coordinate settlement development in floodplains<br />

and minimize the increase in damage potentials?<br />

METHODS<br />

This paper is based on empirical findings which were developed in the research project<br />

“RiskAdapt – Anticipatory Flood Risk Management under Climate Change Scenarios: From<br />

Assessment to Adaptation”. In the course of this project the authors conceptualised and<br />

applied a framework for tracing settlement trajectories in floodplains and assessing future<br />

flood hazard exposure (for the year 2030). Combining elements of scenario-planning, zoning<br />

and hazard exposure mapping and integrating different forms of knowledge (scientific, local,<br />

practical) on floodplain development, the framework was empirically tested in the following<br />

three Austrian case study municipalities to assess future changes in hazard exposure:<br />

Gleisdorf (Styria), Altenmarkt im Pongau (Salzburg) and Perg (Upper Austria). The results<br />

were presented in stakeholder workshops (involving academics and practitioners from spatial<br />

planning and water management as well as local and regional decision makers) and used as<br />

inputs for the discussion of anticipatory adaptation measures.<br />

838 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


To assess future changes in flood hazard exposure, the current exposure of risk elements<br />

needs to be known. Therefore, in a first step, the calculated flooding areas and inundation<br />

depths for 100-year flood events (HQ 100<br />

) and 300-year flood events (HQ 300<br />

) were intersected<br />

in ArcGIS with the (geo-referenced) federal building and housing register (2013). Based on<br />

the attributes “type of building” and “built-up area” it was determined to which extent e.g.<br />

residential, commercial, industrial or public buildings are exposed to the respective flood<br />

hazard scenarios.<br />

In a second step a scenario of settlement development (in potentially flood-prone areas) was<br />

generated for each case study until the year 2030. Based on the analysis of census and economic<br />

data as well as spatial planning instruments (i.e. municipal zoning plans and regional<br />

development plans) we calculated population and household trends, the availability of<br />

building land reserves and the expected demand for housing and commercial or industrial<br />

land uses. The settlement scenarios were complemented by in situ knowledge of local decision<br />

makers (mayors, chief officers and heads of the municipal building authorities) and the<br />

municipalities’ spatial planning consultants. In the course of in-depth interviews they were<br />

asked i) to comment on expected trajectories of land use change in their municipality, ii) to<br />

identify priority areas of settlement development and iii) to specify the development of vacant<br />

building plots or the expected demolition of buildings until the year 2030. Their input was<br />

used to check the plausibility of the scientific assumptions and to increase the robustness of<br />

the exposure scenarios.<br />

In a third step, the settlement scenarios were mapped in ArcGIS (see Figure 1) based on the<br />

nomenclature of the building and housing register (i.e. each new point feature was assigned<br />

attributes regarding the expected building type and built-up area). The digital cadastral map<br />

was used as a reference frame to ensure the best possible localisation of the new buildings<br />

within the building lot.<br />

The above-outlined assessment of future exposure was presented as part of an integrated<br />

flood risk assessment in each case study area in the form of scientist-stakeholder workshops<br />

(see Löschner et al., 2015). The aim of the workshops was to discuss the assessment and<br />

management of current and future flood risks, in particular by i) reflecting determinants of<br />

risk based on different scenarios (maps), ii) identifying/verifying local context conditions and<br />

pre-existing policy processes, and iii) developing and prioritizing adaptive measures for<br />

extreme flooding scenarios.<br />

To stimulate discussion, the workshops began with a presentation of the quantifiable results<br />

of the flood risk assessment. This scientific input was delivered in an interactive setting via<br />

plotted maps and aimed at providing an impetus for the discussion and development of<br />

adaptation measures in a World Café setting. Accordingly, the discussion was grouped into<br />

three roundtables (with three to five representatives) each having a different focal point<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 839


Figure 1: GIS-based land development scenario in potentially flood-prone areas.<br />

(based on the cycle of flood risk management): structural measures of flood protection;<br />

planning measures of flood prevention and coping measures to increase flood preparedness.<br />

At the end of the World Café, the moderators presented all adaptive measures from the<br />

roundtable discussions in the plenum. In a next step, the participants prioritized the different<br />

measures according to their own preferences.<br />

RESULTS<br />

This section presents key results of the exposure assessment as well as findings from the three<br />

stakeholder workshops concerning proposed planning measures of flood prevention. Based<br />

on the respective land development scenarios, the GIS-based assessment of future changes in<br />

flood hazard exposure indicates that all three case studies can expect an increase in potentially<br />

affected buildings until the year 2030 (see figure 2).<br />

Specifically, the following findings can be derived from the analysis:<br />

– Current protection against 100-year flood events: The current (2015) number of buildings<br />

in 100-year flooding areas reflects the effectiveness of the local flood-protection scheme.<br />

In the case of Gleisdorf current building stock is only marginally affected (due to a<br />

retention basin and linear flood protection measures). In Perg, on the other hand, where<br />

flood protection infrastructure is largely missing, more than 175 buildings with a total area<br />

of around 4 ha are flooded in HQ 100<br />

.<br />

840 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 2: Buildings located currently (2015) and in the year 2030 in 100- and 300-year flooding areas<br />

– Current exposure to 300-year flood events: All three cases have large building stock (2015)<br />

in 300-year flooding areas. In Gleisdorf, the exposed buildings consist mainly of large-scale<br />

commercial and industrial buildings which are located adjacent to the flood-protected<br />

areas. In the other two case studies the potentially affected buildings are overwhelmingly<br />

residential buildings (i.e. single-family homes or apartment buildings).<br />

– Future settlement development in 100-year flooding areas: Depending on state planning<br />

law and local zoning plans, the three municipalities can expect varying land development<br />

in 100-year flooding areas until the year 2030. According to the scenario in Gleisdorf no<br />

new buildings will be erected in these areas. In Perg around fifteen new (apartment)<br />

buildings shall be built until 2030, in Altenmarkt around eighteen (residential, commercial<br />

and industrial buildings) shall be developed, leading to a sharp future increase in flood<br />

hazard exposure in 100-year flooding areas.<br />

– Future settlement development in 300-year flooding areas: In all municipalities high<br />

settlement dynamics can be expected in 300-year flooding areas until 2030. In Perg, future<br />

land development in these areas (50 buildings/ca. 9.400 m 2 ) is mainly due to the construction<br />

of small-scale residential buildings. In Gleisdorf, on the other hand, a total of nine new<br />

large-scale manufacturing and commercial buildings (total area of around 10.400 m 2 ) can<br />

be expected; whereas in Altenmarkt future land development (30 buildings/ca. 11.300 m 2 )<br />

reflects a mix of both residential and commercial/industrial uses.<br />

Despite differences in topography, land use and hazard potential, two general conclusions<br />

regarding the driving factors of future flood hazard exposure can be drawn from the comparison<br />

of the three case studies. First, the different type and dynamic in future land development<br />

in flood hazard areas indicates that increases in flood hazard exposure are to a large<br />

extent determined by the kind of building land (residential, commercial etc.) displayed in the<br />

zoning plans. This becomes evident from the average area affected per building (see figure 2),<br />

as it shows that the three municipalities set different priorities (e.g. commercial/industrial<br />

vs. residential land uses) in land development. Secondly, findings indicate that future flood<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 841


hazard exposure depends on the supply of suitable building land (i.e. the amount of vacant<br />

lots and development areas). While some municipalities have the possibility to provide<br />

building land in areas outside of flood hazard zones, others are constrained i.a by alpine<br />

topography and thus have no alternative but to develop valley basins all the while keeping<br />

the hazard exposure and the flood risk as low as possible.<br />

These constraints were also partly reflected in the stakeholder workshops. Along with<br />

structural measures of flood protection as well as coping measures to increase flood preparedness,<br />

the stakeholders proposed a range of planning measures to mitigate the likely future<br />

increase in flood hazard exposure. In sum there was a strong consensus to display 300-year<br />

flooding zones in local land use plans in order to improve the information base for extreme<br />

flood events. To reduce an increase in damage potential in hazard zones many participants<br />

also demanded that extreme flood events should be considered in issuing building permits, in<br />

order to foster flood-proof building adaptations in these areas. Finally, workshop participants<br />

advocated a harmonization of hazard data available, more widespread application of local<br />

land use plans to better allocate land for retention basins or flooding corridors and to allow<br />

for a gradual land development, from low to high flood hazard areas. Generally the proposed<br />

planning measures can complement existing flood-related statutory provisions in spatial<br />

planning laws.<br />

CONCLUSIONS<br />

The findings presented were generated on the basis of case study analyses. As all case studies<br />

can expect high population, economic and settlement growth until the year 2030 they each<br />

face an increase in flood hazard exposure. However, the different levels in increase indicate<br />

that “context matters”. Development options are strongly influenced by topographic<br />

conditions. The amount of land suitable for permanent settlement is a limiting factor for<br />

spatial planning in general and flood-related planning in particular. Besides topography the<br />

availability of suitable building land, i.e. vacant lots and development areas, inside and<br />

outside of potential floodplains is a key driver of future flood hazard exposure. Where<br />

alternatives to floodplain development are rare an increase in flood hazard exposure can be<br />

expected, especially in areas where building bans are not in force due to low probability and<br />

intensity of flooding. Finally, increases in flood hazard exposure are to a large extent<br />

determined by the kind of development intended. As the three cases were chosen to reflect<br />

different spatial types (i.e. alpine, peri-urban, urban) the results concerning the drivers of<br />

settlement growth in floodplains seem to be generally applicable to other floodplain situations.<br />

The respective characteristics of flood hazard, however, are unique to each case.<br />

Despite fundamentally different spatial contexts, the results of the stakeholder workshops<br />

show that preventing an increase in damage potential is a challenge common to flood-prone<br />

municipalities. The proposed planning options, however, only partially reflect the increase of<br />

flood hazard exposure caused by settlement growth both in areas with low flooding probabili-<br />

842 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ty (i.e. 300-year flooding areas) and in areas of residual risk (i.e. areas protected up to a<br />

certain degree of flooding). Proposed measures, like harmonizing hazard data or allocating<br />

land for retention basins or flooding corridors focus on flood hazards rather than on vulnerabilities.<br />

A risk-based approach in flood-related spatial planning calls for an adjustment of land<br />

use intensities (influencing flood hazard exposure) according to the probability and intensity<br />

of flood hazards. Land use adjustment in floodplains is reflected in proposed measures like<br />

considering extreme flood events in issuing building permits or zoning land use intensities<br />

according to the level of flood hazards. Furthermore, local development planning fits into the<br />

requirements of a risk-based planning approach. Local development plans are implemented<br />

to specify the layout of building land in areas to be developed, thus enabling regulations to<br />

ensure flood-adapted buildings and infrastructure. Participatory development planning is able<br />

to spread information about existing flood risks and thus contributes towards increasing risk<br />

awareness of people involved. Collaborative approaches integrating flood protection and<br />

development planning offer possibilities to reduce an increase in damage potential by<br />

reducing hazard exposure and raising adaptive capacity.<br />

In order to cope with settlement dynamics in floodplains flood managers will have to broaden<br />

their portfolio and have to move beyond flood protection (via technical measures) and risk<br />

prevention (via the allocation of land uses) and strengthen (local) adaptive capacities, including<br />

the leverage of spatial planning instruments to develop flood-adapted buildings and<br />

land uses. The EU Flood Directive (2007/60/EC) provides a strong impetus for the shift towards<br />

an integrated flood risk management. The directive is currently in the final stage of<br />

implementation with flood risk management plans being completed. As flood risk management<br />

plans aim to reduce the likelihood and the adverse consequences of flooding measures<br />

of risk-based spatial planning should be considered in order to correspond to the demand of<br />

White (1942) to “readjust land occupance and floodplain phenomena in a harmonious<br />

relationship”.<br />

REFERENCES<br />

- Directive 2007/60/EC of the European parliament and of the council of 23 October 2007<br />

on the assessment and management of flood risks.<br />

- Elmer, E., Hoymann, J., Düthmann, D., Vorogushyn, S., Kreibich, H. (2012): Drivers of<br />

flood risk in residential areas. Natural Hazards and Earth System Sciences 12: 1641-1657.<br />

Greiving, S. (2002): Räumliche Planung und Risiko. Gerling Akademie Verlag, München.<br />

- Hess, J.T. (2011): Schutzziele im Umgang mit Naturrisiken in der Schweiz. vdf Hochschulverlag<br />

AG, Zürich.<br />

- Kanonier, A. (2005): Naturgefahren im österreichischen Raumordnungsrecht. In:<br />

Österreichische Raumordnungskonferenz (ÖROK) (Hrsg.): Präventiver Umgang mit Naturgefahren<br />

in der Raumordnung. Materialienband, Schriftenreihe der Österreichischen<br />

Raumordnungs- konferenz Nr. 168, Wien.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 843


- Löschner, L., Nordbeck, R., Scherhaufer, P., Seher, W. (2015): Scientist-stakeholder<br />

workshops: a collaborative approach for integrating science and decision-making in Austrian<br />

flood-prone municipalities. Environmental Science and Policy. Available online at:<br />

http://www.sciencedirect.com/science/article/pii/S1462901115300575<br />

(accessed 10 September 2015).<br />

- Nordbeck, R. (2014): Klimawandel und vorsorgender Hochwasserschutz in Österreich: eine<br />

entwicklungsdynamische Analyse der Anpassungskapazitäten (2002-2012). InFER Discussion<br />

Paper 2-2014, Vienna.<br />

- White, G.F. (1942): Human adjustment to floods. Research Paper No. 29, University of<br />

Chicago.<br />

ACKNOWLEDGEMENTS<br />

The findings presented in this paper were developed in the project RiskAdapt (Anticipatory<br />

Flood Risk Management under Climate Change Scenarios: From Assessment to Adaptation;<br />

grant number: KR11AC0K00275). The project was funded within the Austrian Climate<br />

Research Program (ARCP) by the Austrian Climate and Energy Fund. For more information,<br />

see https://riskadapt.boku.ac.at/.<br />

844 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Flood losses in Switzerland compared with<br />

hazard maps<br />

Überschwemmungsschäden in der Schweiz im<br />

Vergleich mit Gefahrenkarten<br />

Luzius Thomi, PhD, MA 1 ; Matthias Künzler, MSc 1 ; Raoul Kern, MSc 1<br />

ABSTRACT<br />

This paper compares spatial claim data of the Swiss Mobiliar Insurance Company with flood<br />

hazard maps. We analyse the locations of inundation claims as a function of flood hazard<br />

zones. Moreover, we quantify the ratios of claims caused by floods, backwater in the<br />

canalisation, and groundwater.<br />

About 40 % of the analysed claims are due to floods (including surface runoff). Groundwater<br />

and, to a much higher extent, backwater are responsible for the remaining claims. One of two<br />

flood claims occurs in the so called white or "no danger" zone. These claims are supposed to<br />

be caused by surface runoff.<br />

To improve flood risk management, more knowledge is needed about the processes of surface<br />

runoff and backwater. Additionally, the affected areas have to be identified and mapped.<br />

Moreover, raising the awareness of surface runoff and backwater is necessary.<br />

ZUSAMMENFASSUNG<br />

Dieser Beitrag vergleicht Schadendaten der Schweizerischen Mobiliar Versicherungsgesellschaft<br />

mit Hochwassergefahrenkarten. Er geht der Frage nach, in welchen Gefahrenzonen<br />

sich die Überschwemmungsschäden befinden und in welchem Verhältnis Schäden durch<br />

Hochwasser, Rückstau aus der Kanalisation und Grundwasser stehen.<br />

Nur rund 40 % aller Überschwemmungsschäden sind durch Hochwasser (inkl. Oberflächenabfluss)<br />

bedingt. Grundwasser und hauptsächlich Rückstau sind für die restlichen Schäden<br />

verantwortlich. Von den eigentlichen Hochwasserschäden wiederum befindet sich die Hälfte<br />

in der weissen, gefahrenfreien Zone. Hierbei dürfte es sich um Schäden durch Oberflächenabfluss<br />

handeln.<br />

Für einen umfassenden Schutz vor Überschwemmungen müssen die Gefährdungen durch<br />

Oberflächenabfluss und Rückstau besser verstanden und z. B. in Form einer Karte bezeichnet<br />

werden. Zudem muss das Bewusstsein für Oberflächenabfluss und Rückstau gesteigert<br />

werden.<br />

KEYWORDS<br />

floods; losses; hazard maps; surface runoff; insurance<br />

1 Swiss Mobiliar Insurance Company, Bern, SWITZERLAND, luzius.thomi@mobiliar.ch<br />

IP_<strong>2016</strong>_FP009<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 845


EINFÜHRUNG<br />

In den letzten zehn Jahren haben Hochwasser und Murgänge in der Schweiz Sachschäden<br />

von mehr als CHF 4 Milliarden (WSL 2014) verursacht. Die Schweizerische Mobiliar Versicherungsgesellschaft<br />

(kurz Mobiliar) versichert rund jeden dritten Haushalt und ist damit<br />

grösster Sachversicherer der Schweiz. Sie war deshalb von diesen Unwettern besonders<br />

stark betroffen.<br />

Überschwemmungsschäden werden nicht nur durch hochwasserführende Gewässer<br />

verursacht, sondern auch durch Rückstau in der Kanalisation und hohe Grundwasserspiegel.<br />

Nachfolgend werden die Resultate einer schweizweiten Auswertung von Überschwemmungsschäden<br />

dargestellt und diskutiert. Durch die Verknüpfung mit Gefahrenkarten können<br />

Aussagen zur Verteilung der Überschwemmungsschäden gemacht werden.<br />

BEGRIFFE UND FRAGESTELLUNG<br />

Überschwemmungen können direkte Schäden (z. B. an Gebäuden, Fahrzeugen, landwirtschaftlichen<br />

Kulturen) und indirekte Schäden (z. B. Betriebsausfälle, temporäre Schliessung<br />

wichtiger Verkehrsachsen) verursachen. Der vorliegende Artikel beschränkt sich auf direkte<br />

versicherte Überschwemmungsschäden an Gebäuden und Gebäudeinhalt (Fahrhabe), wobei<br />

folgende Definitionen verwendet werden (Abweichungen zu anderen Definitionen in den<br />

Bereichen Naturgefahren oder Versicherungswirtschaft sind möglich):<br />

– Überschwemmungsschäden:<br />

Oberbegriff für alle Schäden durch hochwasserführende Gewässer, Oberflächenabfluss,<br />

Rückstau aus der Kanalisation und Grundwasser.<br />

– Hochwasserschäden:<br />

Dabei handelt es sich um Schäden, die durch oberirdisch eintretendes Wasser verursacht<br />

werden, d. h. durch ausufernde Gewässer und Oberflächenabfluss. Die beiden Prozesse<br />

werden in der Sachversicherung nicht unterschieden. Die Verordnung über die Beaufsichtigung<br />

von privaten Versicherungsunternehmen (Aufsichtsverordnung, AVO; SR 961.011)<br />

vom 9.11.2005 zählt die Hochwasserschäden zu den so genannten Elementarschäden (Art.<br />

173 Abs. 1).<br />

– Rückstauschäden:<br />

Schäden durch Wasser, das aufgrund eines Rückstaus aus der Kanalisation ins Gebäude<br />

eintritt. Gemäss der AVO sind Schäden durch Rückstau von Wasser aus der Kanalisation<br />

keine Elementarschäden, egal welche Ursache sie haben (Art. 173 Abs. 3 lit. b).<br />

– Grundwasserschäden:<br />

Schäden, die durch einen hohen Grundwasserspiegel entstehen. Sie gelten gemäss AVO<br />

ebenfalls nicht als Elementarschäden (Art. 173 Abs. 3 lit. a).<br />

Während in 19 von 26 Kantonen Elementarschäden an Gebäuden – und damit auch<br />

Hochwasserschäden – durch kantonale Gebäudeversicherungen abgegolten werden, sind<br />

Schäden an der Fahrhabe (ausser in den Kantonen Waadt und Nidwalden, in denen ebenfalls<br />

846 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ein staatliches Monopol gilt) wie auch die Gebäudeschäden in den restlichen sieben Kantonen<br />

und im Fürstentum Liechtenstein durch private Versicherungen gedeckt. Bei Rückstau<br />

und Grundwassersaufstoss besteht kein staatliches Monopol. Entsprechende Schäden werden<br />

somit mehrheitlich durch die Privatassekuranz versichert.<br />

Der vorliegende Artikel geht der Frage nach, wie Überschwemmungsschäden in Bezug auf<br />

Gefahrenzonen verteilt sind und wie sie sich zusammensetzen:<br />

– Wie sind die Überschwemmungsschäden bezüglich der Gefahrenzonen verteilt?<br />

– Wie lässt sich diese Verteilung erklären?<br />

– Welches Verhältnis besteht zwischen Schäden durch Hochwasser, Rückstau und Grundwasser?<br />

METHODEN<br />

Für die Auswertung der Überschwemmungsschäden wurden folgende Datensätze verwendet:<br />

– Schadendaten der Mobiliar:<br />

– Ausgewertet wurden alle Überschwemmungsschäden an Gebäuden und Fahrhabe<br />

zwischen 2003 und Ende Juni 2015 in der Schweiz und im Fürstentum Liechtenstein, die<br />

adressgenau vorliegen und geocodiert werden können (insgesamt rund 68‘000). Schäden<br />

an Fahrzeugen wurden nicht berücksichtigt.<br />

– Gefahrenkarten für Hochwasser:<br />

Die Karten wurden bei den Kantonen bezogen (Stand: Juni 2015) und zusammengeführt.<br />

Ausser für den Kanton Waadt standen für jeden Kanton Gefahrenkarten für die Auswertung<br />

zur Verfügung, zumindest für einen Teil des besiedelten Gebiets. Die Gefahrenkarten<br />

bezeichnen die durch Ausuferung von Gewässern überschwemmbaren Flächen in fünf<br />

Gefahrenstufen (siehe Tabelle 1; zur Machart der Schweizer Gefahrenkarten, siehe<br />

PLANAT 2012). Überschwemmungsflächen durch Oberflächenabfluss sind in der Regel<br />

nicht abgebildet.<br />

– GeoPost Coordinates der Schweizerischen Post AG:<br />

Das koordinatengenaue Adressverzeichnis umfasst alle postalisch bedienten Gebäude der<br />

Schweiz und beinhaltet u. a. Angaben zur Anzahl Haushalte pro Adresse (Stand des<br />

Datensatzes: Juli 2015).<br />

– Landschaftsmodell „swiss TLM3D“ des Bundesamts für Landestopografie swisstopo (Version<br />

1.3), Topic Bauten. Es umfasst u. a. sämtliche Gebäude der Schweiz und des Fürstentums<br />

Liechtenstein in vektorieller Form.<br />

– Mithilfe einer GIS-Applikation wurden die Schaden- und Adressdaten (Punktdatensätze)<br />

sowie die Gebäude (Polygondatensatz) mit den Gefahrenkarten räumlich verknüpft.<br />

Dadurch konnten Erkenntnisse gewonnen werden, wie sich die Schäden, Adressen und<br />

Gebäude auf die Gefahrenzonen verteilen. Gebäude, die in mehr als einer Gefahrenzone<br />

liegen, wurden der höchsten Gefahrenzone zugeordnet.<br />

Die Schadenorte wurden mit den Adressdaten der Post geocodiert. Der Punkt liegt in der<br />

Regel beim Gebäudeeingang. Für die Beurteilung der Gefährdung ist aber nicht der Gebäude-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 847


eingang relevant, sondern der Gebäudegrundriss. Um Verzerrungen zu verhindern, wurde<br />

geprüft, wo die Punkte in den jeweiligen Gefahrenzonen liegen. Dabei zeigte sich, dass die<br />

Verteilung der Schadenorte innerhalb der Gefahrenzonen vergleichbar ist. Einzig in der<br />

weissen Zone liegen die Punkte im Schnitt etwas weiter weg von der nächsten Gefahrenzone,<br />

was sich durch die grosse räumliche Ausdehnung der weissen Zone erklärt. Die Auswertung<br />

von Punktdaten wird somit als aussagekräftig beurteilt. Zwar gibt es Fälle, in denen ein Teil<br />

eines Gebäudes nicht in derselben Gefahrenzone liegt wie der Adresspunkt. Über die grosse<br />

Anzahl an Schadendaten und die ähnliche Verteilung der Punkte in den Gefahrenzonen<br />

dürfte sich dies aber ausgleichen. Ganz abgesehen davon weisen die Gefahrenkarten in der<br />

Regel keine metergenaue Präzision auf.<br />

ERGEBNISSE<br />

Die verfügbaren Hochwassergefahrenkarten decken 64 % aller Gebäude und 68 % aller<br />

Haushalte der Schweiz ab (siehe Tabelle 1). Die Verteilung nach Gefahrenzone der bei der<br />

Mobiliar versicherten Haushalte und Firmen ist im Wesentlichen mit jener von Gebäuden<br />

und Haushalten vergleichbar.<br />

Tabelle 1: Prozentualer Anteil der Gebäude (n = 2.56 Mio.) und Haushalte (n = 4.27 Mio.) nach Gefahrenzone (zur Definition der<br />

Gefahrenzonen, siehe PLANAT 2012).<br />

Gefahrenzone Bedeutung Gebäude Haushalte<br />

Nicht untersucht Keine Gefahrenkarte vorhanden 36 % 32 %<br />

Weisse Zone Keine oder vernachlässigbare Gefährdung 48 % 53 %<br />

Gelbweisse Zone Restgefährdung: Gefährdung bei sehr seltenen Ereignissen 4 % 5 %<br />

Gelbe Zone<br />

Blaue Zone<br />

Geringe Gefährdung: mittelhäufige Gefährdung mit geringer<br />

Intensität<br />

Mittlere Gefährdung: häufige Gefährdung mit geringer<br />

Intensität bzw. mittelhäufige Gefährdung mit mittlerer Intensität<br />

7 % 6 %<br />

4 % 3 %<br />

Rote Zone Erhebliche Gefährdung: generell starke Intensität 1 % 1 %<br />

Die Hälfte aller Schäden und etwa ein Viertel der verursachten Kosten liegen in der weissen<br />

Zone. Zudem sticht die gelbe Zone heraus, in der die Schäden punkto Anzahl und Kosten<br />

deutlich über jenen der roten und blauen Zone zusammen liegen (siehe Tabelle 2).<br />

Tabelle 2. Prozentualer Anteil der Hochwasserschäden nach Gefahrenzone. Schäden in nicht untersuchten Gebieten (ohne Gefahrenkarte)<br />

sind nicht berücksichtigt.<br />

Gefahrenzone Anzahl Schäden Kosten<br />

Weisse Zone 50 % 24 %<br />

Gelbweisse Zone 10 % 16 %<br />

Gelbe Zone 23 % 34 %<br />

Blaue Zone 15 % 22 %<br />

Rote Zone 2 % 4 %<br />

848 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Unter der Annahme, dass die Gefahrenkarten korrekt erstellt worden sind, heisst das, dass die<br />

Schäden in der weissen Zone vermutlich durch Oberflächenabfluss (z. B. aus landwirtschaftlichen<br />

Flächen oder aufgrund unzureichender Siedlungsentwässerung) entstanden sind. Auch<br />

wenn man bedenkt, dass rund ein Fünftel der Schäden in der weissen Zone weniger als 10 m<br />

von einer Gefahrenzone entfernt liegt, dürfte die Grössenordnung von 50 % Schäden durch<br />

Oberflächenabfluss stimmen: Auch in gelben, blauen und roten Zonen kann es zu Schäden<br />

durch Oberflächenabfluss kommen. Diese können aber anhand der zur Verfügung stehenden<br />

Daten nicht quantifiziert werden.<br />

Hochwasserschäden kosten zwar am meisten, Rückstauschäden treten aber am häufigsten<br />

(47 %) auf, vor Hochwasserschäden (40 %) und Grundwasserschäden (13 %). Es fällt auf,<br />

dass Hochwasser- und Rückstauschäden oft gleichzeitig entstehen. Dies ist insofern nicht<br />

erstaunlich, als Rückstau und Hochwasser häufig dieselbe Ursache haben, nämlich langanhaltende<br />

und/oder intensive Niederschläge. Trotz Monopol der kantonalen Gebäudeversicherungen<br />

für die Deckung von Hochwasserschäden an Gebäuden in 19 von 26 Kantonen dürfte die<br />

Grössenordnung der oben genannten prozentualen Anteile der Überschwemmungsschäden<br />

stimmen. Denn wird ein Gebäude durch Hochwasser beschädigt, ist in vielen Fällen auch die<br />

Fahrhabe betroffen. Damit ist der Schadenfall in der vorliegenden Auswertung berücksichtigt.<br />

FALLBEISPIELE<br />

Die schweizweiten Ergebnisse werden nachfolgend anhand von drei konkreten Fallbeispielen<br />

illustriert.<br />

Altstätten (Kanton St. Gallen):<br />

Am 28. Juli 2014 führten in der St. Galler Gemeinde Altstätten Starkniederschläge zu hohen<br />

Abflüssen und in der Folge zu Ausuferungen. Weit über 90 % aller durch die Mobiliar<br />

getragenen Überschwemmungsschäden sind auf Hochwasser zurückzuführen. Schäden durch<br />

Rückstau oder Grundwasser gab es kaum (siehe Abbildung 1). Die Hochwasserschäden<br />

wurden grösstenteils durch die Ausuferung des Stadtbachs verursacht. 92 % davon befinden<br />

sich in der roten, blauen, gelben oder gelbweissen Zone, wobei knapp die Hälfte der Schäden<br />

in der blauen Zone liegt. Die Schadenorte stimmen also gut mit der Hochwassergefahrenkarte<br />

überein.<br />

Marly (Kanton Freiburg):<br />

Die Freiburger Gemeinde Marly war in den letzten Jahren mehrmals von Unwettern<br />

betroffen. Zwar ist das Siedlungsgebiet durch mehrere Bäche bedroht. Dennoch machen die<br />

Schäden in den Gefahrenzonen – die mit grosser Wahrscheinlichkeit auf die Bäche zurückzuführen<br />

sind – nur etwa einen Drittel aller Hochwasserschäden aus. Zwei Drittel befinden sich<br />

abseits von Gewässern und sind somit vermutlich durch Oberflächenabfluss verursacht<br />

worden. Die Hochwasserschäden wiederum machen nur etwa die Hälfte aller Überschwemmungsschäden<br />

aus (siehe Abbildung 1). Der Fall der Gemeinde veranschaulicht die Proble-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 849


matik also sehr deutlich: Mit den heutigen Gefahrenkarten lässt sich nur ein Teil möglicher<br />

Überschwemmungsgebiete erkennen.<br />

Rubigen (Kanton Bern):<br />

Am 20. Juli 2007 haben intensive Niederschläge in der Gemeinde Rubigen zu starkem Oberflächenabfluss<br />

geführt. 90 % aller Hochwasserschäden liegen in der weissen Zone. Nur eine<br />

kleine Anzahl an Schäden ist durch einen hochwasserführenden Bach verursacht worden.<br />

Abbildung 1: Aufteilung der Überschwemmungsschäden in Hochwasser- bzw. Rückstau- und Grundwasserschäden.<br />

DISKUSSION<br />

Die Gefahrenkarte gilt heute als die wichtigste Grundlage, was die Erkennung von Überschwemmungsgebieten<br />

angeht. Dass sie sich auf Ausuferungen von Gewässern beschränkt,<br />

dürfte ausserhalb von Fachkreisen kaum bekannt sein. Daraus ergibt sich ein lückenhafter<br />

Umgang mit Überschwemmungsgefahren und somit ein ungenügender Schutz vor Schäden.<br />

Problem gelbe Zone: Zwar sind die Überschwemmungsintensitäten in der gelben Zone<br />

meist gering, trotzdem gibt es hier mehr Schäden als in der blauen und roten Zone zusammen.<br />

Heute sind raumplanerische (z. B. Ausscheidung neuer Bauzonen) und baurechtliche<br />

Massnahmen (z. B. Bauauflagen) – zum Teil sogar ganze Hochwasserschutzprojekte – in der<br />

Regel auf die Beseitigung des Risikos in der blauen und roten Zone ausgerichtet. Dies ist<br />

insofern sinnvoll, als damit Schäden durch Prozesse mit hohen Intensitäten (d. h. hohe<br />

Fliessgeschwindigkeiten oder grosse Überschwemmungstiefen) vermindert werden, insbeson-<br />

850 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


dere auch Personenschäden. Im Sinne einer wirksamen Schadenminderung reicht es aber<br />

nicht aus, gelbe Zonen als reine Hinweiszonen (vgl. ARE et al. 2005) zu bezeichnen, also als<br />

Zonen, in denen etwa Grundeigentümer lediglich auf die Gefährdung aufmerksam gemacht<br />

werden, ohne konkrete Einschränkungen zu erlassen. Es braucht adäquate planerische,<br />

organisatorische und/oder bauliche Massnahmen, um das Risiko zu senken, z. B. durch<br />

bauliche Auflagen, freihalten von Abflusskorridoren, risikobasierte Raumplanung (vgl. ARE<br />

et al. 2005, Camenzind & Loat 2014) usw.<br />

Problem Oberflächenabfluss: Der Oberflächenabfluss macht rund die Hälfte aller Hochwasserschäden<br />

aus, wird jedoch in den meisten Gefahrenkarten nicht ausgewiesen. Als<br />

Konsequenz daraus wird die weisse Gefahrenzone als gefahrenfrei verstanden, was de facto<br />

vielerorts nicht der Fall ist. Um dem Problem Herr zu werden, braucht es ein besseres<br />

Verständnis des Prozesses Oberflächenabfluss und eine Übersichtskarte, welche die betroffenen<br />

Gebiete ausweist. Zudem müssen Gemeinden, Architekten und Grundeigentümer stärker<br />

sensibilisiert und geeignete Anreize geschaffen werden, damit Massnahmen gegen Oberflächenabfluss<br />

auch umgesetzt werden.<br />

Problem Rückstau: Schäden durch Rückstau in der Kanalisation übersteigen anzahlmässig<br />

die Hochwasserschäden. Sie sind nicht ein rein technisches Problem der Siedlungsentwässerung,<br />

sondern stehen oft in direktem Zusammenhang mit hohen Niederschlagsintensitäten<br />

und grossen Abflüssen. Um Massnahmen ergreifen zu können, müssen die Gebiete identifiziert<br />

werden, in denen es zu Rückstauschäden kommen kann. Denkbar sind etwa Übersichtskarten,<br />

wie sie z. B. der Kanton Zürich erstellt hat (vgl. Schuler 2014).<br />

Problem Kommunikation: Gefahrenkarten berücksichtigen in der Regel weder Oberflächenabfluss<br />

noch Rückstau in der Kanalisation. Weisse Zonen werden gleichgesetzt mit<br />

„keine oder vernachlässigbare Gefährdung“ (vgl. Bundesamts für Umwelt BAFU,<br />

http://www.bafu.admin.ch, Thema Naturgefahren, konsultiert am 21.8.2015). Auch wenn<br />

dies bei einer eingeschränkten Betrachtungsweise auf die untersuchten Prozesse – nämlich<br />

die hochwasserführenden Gewässer – korrekt ist, ist es irreführend. Es braucht eine umfassendere<br />

Kommunikation, insbesondere für Gemeinden und die betroffene Bevölkerung,<br />

damit Überschwemmungsgefahren in ihrer Ganzheit erkannt und Schäden frühzeitig<br />

verhindert werden.<br />

FAZIT<br />

Die Auswertung von rund 68‘000 Schäden durch Hochwasser, Rückstau und Grundwasser<br />

zeigt, dass nur 40 % aller Schäden durch Hochwasser bedingt sind und davon wiederum nur<br />

etwa die Hälfte durch die Ausuferung von Gewässern. Hochwasserschäden in der gelben<br />

Gefahrenzone sind anzahl- und kostenmässig bedeutender als in der blauen und roten Zone<br />

zusammen. Am meisten Schäden entstehen durch Rückstau in der Kanalisation. Allerdings<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 851


ist der Durchschnittsschaden durch Rückstau und Oberflächenabfluss deutlich geringer als<br />

jener durch Ausuferung von Gewässern.<br />

Für einen nachhaltigen Umgang mit Überschwemmungsrisiken leiten sich folgende Schlussfolgerungen<br />

ab:<br />

– Die Gefahrenkarten müssen auch das Gefahrenpotenzial von Oberflächenabfluss sowie von<br />

Rückstau und Grundwasseraufstoss aufzeigen. Zudem muss das Prozessverständnis von<br />

Oberflächenabfluss verbessert werden.<br />

– Massnahmen raumplanerischer und baurechtlicher Art dürfen sich nicht auf die blaue und<br />

rote Zone beschränken. Es braucht Anreize zur Reduktion der Verletzlichkeit von<br />

Gebäuden gegenüber Überschwemmungen in der gelben, gelbweissen und weissen Zone.<br />

– Die Kommunikation, insbesondere gegenüber Nicht-Fachleuten, muss angepasst werden.<br />

Gefahrenkarten zeigen nicht abschliessend, ob eine Überschwemmung möglich ist oder<br />

nicht. Ohne eine entsprechende Sensibilisierung wird insbesondere in der weissen Zone<br />

ein Gefühl falscher Sicherheit vermittelt.<br />

LITERATUR<br />

- ARE, BWG, BUWAL (2005). Raumplanung und Naturgefahren. Empfehlung. Bern,<br />

Bundesamt für Raumentwicklung (ARE), Bundesamt für Wasser und Geologie (BWG),<br />

Bundesamt für Umwelt, Wald und Landschaft (BUWAL).<br />

- Camenzind R., Loat R. (2014). Risikobasierte Raumplanung – Synthesebericht zu zwei<br />

Testplanungen auf Stufe kommunaler Nutzungsplanung. Bern, Nationale Plattform Naturgefahren<br />

(PLANAT), Bundesamt für Raumentwicklung (ARE), Bundesamt für Umwelt (BAFU).<br />

- PLANAT (2012). Lesehilfe für gravitative Gefahrenkarten. Bern, Nationale Plattform<br />

Naturgefahren (PLANAT).<br />

- Schuler Ch. (2014): Gefahrenkarten Kanton Zürich, Lesehilfe. Zürich, Amt für Abfall,<br />

Wasser, Energie und Luft (AWEL).<br />

- Verordnung über die Beaufsichtigung von privaten Versicherungsunternehmen (Aufsichtsverordnung,<br />

AVO) vom 9. November 2005 (Stand am 1. Januar 2013), SR 961.011.<br />

- WSL (2014): Development of damage 1972 2013 (taking inflation into account). Website:<br />

http://www.wsl.ch/fe/gebirgshydrologie/HEX/projekte/schadendatenbank/index_EN, last<br />

update: 13.03.2014, accessed 03.03.2015. Swiss Federal Institute for Forest, Snow and -<br />

Landscape Research (WSL)<br />

852 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Controlled and efficient bed load management<br />

by means of variable drain locks embedded in a<br />

crownclosed large drain sediment control dam<br />

Aktive und effiziente Geschiebebewirtschaftung<br />

mit Hilfe variabler Dolenverschlüsse an einer<br />

kronengeschlossenen großdoligen Bogensperre<br />

Arthur Vogl, DI 1 ; Mathias H. Luxner, DI Dr.techn. 2 ; Hubert Agerer, DI 1<br />

ABSTRACT<br />

In 1991 - 1992, a crownclosed large drain arch dam, having a height of 17 meters, was built<br />

in the middle course of "Schnannerbach". Three weeks upon completion the sediment<br />

control dam already proved its functionality when a debris flow event of approximately<br />

30000m³ of bed load was retained by the dam so that damage to the village in the lower<br />

course was prevented. However, in 2005, during a steady rain and flood event, which<br />

resulted in huge bed load transport, the sediment control dam did not operate as intended.<br />

It failed because the drains blocked only partially. The result was massive damage to a village.<br />

As a makeshift, the flow through the drain penning was limited by means of rakes. The<br />

consequence of this modification was that even during snowmelt flood, bed load was retained<br />

by the sediment control dam. This was not the original intention and led to increased cost in<br />

terms of excavating the sedimentation basin. Since 2005 the basin had to be excavated six<br />

times.<br />

ZUSAMMENFASSUNG<br />

In den Jahren 1991 und 1992 wurde eine kronengeschlossene großdolige Bogensperre im<br />

Mittellauf des Schnannerbaches errichtet. Drei Wochen nach deren Fertigstellung wurde<br />

diese Sperre durch einen Murgang beaufschlagt. Bei diesem Ereignis konnten mit Hilfe der<br />

Geschiebedosiersperre rund 30.000m³ Material schadlos abgelagert werden. Im August 2005<br />

fand ein weiteres Schadereignis statt. Im Gegensatz zu 1992 gab es keinen murartigen<br />

Schwall, bei dem die Großdolen verklausten, sondern über mehrere Stunden war ein<br />

Hochwasser mit sehr viel Geschiebetrieb zu beobachten. Prozessbedingt funktionierte die<br />

großdolige Sperre nicht. Es kam nur kurzzeitig zu einem Rückstau. Die Folge waren große<br />

Schäden am dicht besiedelten Schwemmkegel.<br />

Als Sofortmaßnahme wurde das vorhandene Durchflussprofil der Großdolen verkleinert.<br />

Infolge dessen lagerte sich in den Jahren nachher bereits während der Schmelzhochwässer<br />

1 Austrian Service for Torrent and Avalanche Control, Imst, AUSTRIA, arthur.vogl@die-wildbach.at<br />

2 Luxner Engineering ZT GmbH<br />

IP_<strong>2016</strong>_FP115<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 853


egelmäßig Geschiebe im Becken hinter der Bogensperre ab. Diese Anlandungen verursachten<br />

hohe jährliche Räumungskosten. Mit Hilfe eines variablen Dolenverschlusses, der sowohl<br />

automatisch als auch manuell bedienbar ist, soll zukünftig sichergestellt werden, dass die<br />

Sperre bei Murgängen sowie bei Hochwasser mit Geschiebetrieb funktioniert und damit die<br />

Räumungskosten massiv gesenkt werden können.<br />

KEYWORDS<br />

bed load management; rubber dam; sediment control dam<br />

EINLEITUNG<br />

Seit dem Jahr 1852 wurden am Schnannerbach in der Gemeinde Pettneu am Arlberg im Tiroler<br />

Stanzertal insgesamt elf Schadereignisse dokumentiert, siehe Abb.1. Mit den ersten<br />

technischen Verbauungsmaßnahmen begann die Wildbach- und Lawinenverbauung im Jahr<br />

1914. Ende der 70-iger und anfangs der 80-iger Jahre des letzten Jahrhunderts wurde der<br />

Schnannerbach im gesamten Schwemmkegelbereich mit einer Grundschwellenstaffelung und<br />

beidseitigen Leitwerken in Zementmörtelmauerwerk verbaut. Die Errichtung eines Geschieberückhaltes<br />

war aus Platzgründen bzw. wegen des damals nicht erschließbaren Mittellaufs<br />

nicht möglich.<br />

Abbildung 1: Geographische Übersicht mit Gefahrenzonen am Schwemmkegel.<br />

854 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Am 29. Juli 1990 fand in diesem Einzugsgebiet das bis dato größte Ereignis statt. Ein Mur -<br />

stoß - ausgelöst durch ein Starkniederschlagsereignis mit Hagelschlag - verursachte am dicht<br />

besiedelten Schwemmkegel Schäden an insgesamt 12 Wohn- und 2 Wirtschaftsgebäuden<br />

sowie Straßen und landwirtschaftliche Flächen. Das Unterlaufgerinne war infolge massiver<br />

Anlandungen nicht in der Lage, das anfallende Wasser und Geschiebe abzuführen. Weitere<br />

Schadereignisse folgten in den Jahren 1991, 1992 und 2005, siehe Abb. 2.<br />

Abbildung 2: Die linke Abbildung zeigt das Ereignis vom 23. August 2005. Rechts das Ereignis vom 29. Juli 1990.<br />

Nach dem folgenschweren Ereignis von 1990 wurde in den Jahren 1991 und 1992 im unteren<br />

Mittellauf eine rd. 17 Meter hohe kronengeschlossene großdolige Bogensperre mit<br />

einem Geschieberückhaltebecken, das ein Fassungsvermögen von bis zu 35 000m³ aufweist,<br />

errichtet, siehe Abb. 3. Diese großdolige Bautype ergab sich aus der Tatsache, dass in diesem<br />

Einzugsgebiet bis damals nur Murereignisse stattfanden. Um den Sperrenstandort bzw. das<br />

Geschieberückhaltebecken oberhalb einer rd. 100 m langen und bis zu ebenso hohen, nur<br />

wenige Meter breiten Schluchtstrecke zu erreichen, war die Errichtung von zwei, insgesamt<br />

265 m langen Zufahrtstunneln notwendig.<br />

Bereits drei Wochen nach Fertigstellung der Bogensperre fand ein weiteres Ereignis statt;<br />

auch dieses Mal infolge eines konvektiven Starkniederschlages. Bei diesem Murgang konnte<br />

die gesamte Geschiebemenge aus dem Einzugsgebiet oberhalb der Bogensperre schadlos<br />

hinter dem Sperrenbauwerk zurückgehalten werden.<br />

Während eines advektiven Niederschlagereignisses im August 2005 gab es in Westösterreich<br />

große Sachschäden im Bereich von Siedlungen sowie Infrastruktureinrichtungen und landwirtschaftlichem<br />

Kulturland. Überwiegend waren davon der Inn und seine großen Zubringer,<br />

wie beispielsweise die Trisanna und die Rosanna betroffen. Aber auch in kleineren<br />

Einzugsgebieten verursachte dieses Ereignis Schäden. Am Schnannerbach waren insgesamt<br />

10 Wohnhäuser, drei Fremdenverkehrsbetriebe, zwei Gewerbebetriebe, zwei öffentliche<br />

Gebäude sowie landwirtschaftliches Kulturland betroffen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 855


Abbildung 3: Die 17 Meter hohe kronengeschlossene großdolige Bogensperre.<br />

Bis zum August 2005 wurden im Schnannerbach nur Schadereignisse durch Murgänge<br />

infolge konvektiver Starkniederschläge dokumentiert. Während des lang anhaltenden<br />

Landregens am 22. und 23. August 2005 wurden sehr große Mengen von Kalk/Dolomitgrus<br />

sowie Mergel mobilisiert und im Gerinne abtransportiert. Das 1991 bis 1992 errichtete<br />

Geschieberückhaltebecken war nur in sehr geringem Ausmaß verlandet bzw. in der Lage<br />

das Schadgeschiebe zurückzuhalten. Nach Analyse des Ereignisses wurde ersichtlich, dass die<br />

Dolen der Bogensperre, welche auf einen Murgang ausgelegt waren, nur über einen kurzen<br />

Zeitraum des mehrtägigen Ereignisses verschlossen waren. Gründe dafür waren vor allem die<br />

fehlenden Grobgeschiebekomponenten sowie das fehlende Wildholz.<br />

PROBLEMSTELLUNG<br />

Nach diesem Ereignis forderte die betroffene Bevölkerung vehement die Verkleinerung der<br />

Dolen, damit Geschiebe unabhängig vom Prozesstyp Murgang oder Hochwasser mit Geschiebetransport<br />

immer im Rückhaltebecken zurückgehalten werden kann. Dies wäre jedoch mit<br />

den gravierenden Nachteil verbunden, dass auch bei kleineren Ereignissen, wie beispielsweise<br />

den jährlichen Schmelzhochwässern nicht wenig Geschiebe im Becken abgelagert wird und<br />

man damit unweigerlich mit höheren Räumungskosten rechnen müsste.<br />

Die gewünschten Anforderungen an das Sperrenbauwerk sind daher sehr konträr: einerseits<br />

soll der Stauraum der Sperre so lange wie möglich leer bleiben, um Rückhaltekapazitäten so<br />

lang wie möglich verfügbar zu haben sowie um Kosten (Räumung) zu sparen und anderer-<br />

856 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


seits muss der Geschieberückhalt sowohl bei einem Murgang als auch bei einem Hochwasser<br />

mit Geschiebetransport funktionieren, sodass im Schwemmkegelbereich bzw. im Unterlauf<br />

keine Schäden entstehen.<br />

Um das vorhandene Geschiebeablagerungsbecken bestmöglich ausnutzen zu können,<br />

müssten also, je nachdem ob es sich um einen Murgang oder um ein langanhaltendes<br />

Hochwasserereignis mit Geschiebetransport handelt, unterschiedliche Sperrenöffnungstypen<br />

vorhanden sein.<br />

Im Rahmen einer Vorstudie wurde nach Möglichkeiten gesucht, die bestehenden Dolenöffnungen<br />

derart zu adaptieren, dass der Spagat zwischen Sicherheit und Minimierung der<br />

Räumungskosten bzw. der zu gewährleistenden Schutzfunktionalität bei den beiden<br />

vorerwähnten Prozesstypen geschaffen wird.<br />

Aufgrund der Tatsache, dass die Bogensperre schon seit 1992 besteht, ergaben sich neben den<br />

vorerwähnten Hauptanforderungen noch Rahmenbedingungen für die Umsetzung der<br />

Maßnahmen. So war zum einen der für die Adaptierungsarbeiten verfügbare Raum durch die<br />

Dolengröße sowie -lage bereits vorgegeben und zum anderen sollte in den Sperrenbestand -<br />

nicht zuletzt aus statischen Gründen - möglichst wenig eingegriffen werden. Eine weitere<br />

Anforderung war, dass die neue Anlage im Extremfall die wichtigsten Funktionen auch ohne<br />

externe Energiequelle, nur durch menschliche Kraft, ausführen kann. Zudem ist der Bereich<br />

um die Bogensperre inklusive Zugang/fahrt im Ereignisfall extrem steinschlaggefährdet.<br />

Aus diesem Grund muss die neue Anlage auch aus der Ferne bedienbar sein.<br />

Für die Überwachung bzw. die Analyse von Ereignissen sowie um für die Abwicklung<br />

künftiger Ereignisse zu lernen bzw. Erfahrungen zu sammeln soll die Anlage zusätzlich<br />

umfangreiche Datenaufzeichnungen ermöglichen.<br />

Abbildung 4: Entscheidungsmatrix der Vorstudie (grün- gut, orange - neutral, rot - schlecht).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 857


PROBLEMLÖSUNG<br />

Im Rahmen der Problemlösungsphase wurde eine umfangreiche Variantenstudie durchgeführt.<br />

Dabei wurden vier Möglichkeiten eines variablen Dolenverschlusses entwickelt und<br />

bewertet. Anhand verschiedener Kriterien stellte sich im vorliegenden Fall schließlich ein<br />

Schlauchwehr als variabler Dolenverschluss als am besten geeignet dar. Abb. 4 zeigt die<br />

Gegenüberstellung anhand der gewählten Bewertungskriterien im direkten Vergleich zwischen<br />

einem klassischen Schütz- und einem Schlauchwehr.<br />

Abbildung 5: Fotomontage mit den wichtigsten Anlagenteilen im Bereich der Bogensperre.<br />

Das Konzept der Anlage besteht darin, dass in den obersten drei der vier derzeit bestehenden<br />

und im Zuge des Umbaus geringfügig adaptierten Großdolen der Bogensperre jeweils ein<br />

Schlauchwehr integriert wird, welches im Ausgangszustand offen ist. Jedes derartige Wehr<br />

besteht im Wesentlichen aus einem flexiblen Schlauch, ähnlich dem häufig bei Wasserfassungen<br />

für Kleinwasserkraftwerke verwendeten, welcher durch das Befüllen/Ablassen von<br />

Wasser und der damit verbundenen Volumenzu- und abnahme die Querschnittsfläche der<br />

Dole variieren kann. Jedes Wehr fasst im gefüllten Zustand ca. 6 m³ Wasser.<br />

Die zum Befüllen der Schlauchmembranen erforderliche Wassermenge befindet sich in<br />

einem betonierten Hochbehälter der 30 m³ fassen kann und ca. 30 Höhenmeter über dem<br />

858 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


untersten Wehr liegt. Durch die Höhendifferenz wird der im Betrieb erforderliche Innendruck<br />

von 275 kPa in den Membranen sichergestellt. Weiters ist dadurch ein Befüllen aller Wehre<br />

nahezu ohne externe Energiezufuhr, nur durch manuelles Öffnen eines Schiebers, möglich,<br />

was eine Anforderung für Notsituationen darstellt.<br />

Der Hochbehälter und die Wehre bilden zusammen mit dem Tiefbehälter, welcher als<br />

Zwischenspeicher bei der Entleerung dient, der Pumpe und dem Rohrleitungssystem einen<br />

geschlossenen Wasserkreislauf, siehe Abb. 5. D.h. das bei der Entleerung eines Wehres<br />

anfallende Wasser gelangt zuerst in den Tiefbehälter und wird von dort mittels der Pumpe<br />

wieder in den Hochbehälter gefördert. Um mögliche Frostschäden zu verhindern, wird der<br />

Wasserkreislauf über den Winter entleert.<br />

Die Anlage wird über eine elektronische Steuerung bedient und überwacht. Diese befindet<br />

sich in einem Gebäude im luftseitigen Bereich der Bogensperre. Das Öffnen und Schließen<br />

der Dolen sowie die Interpretation der Messwerte erfolgt durch eine örtliche Kommission<br />

unter dem Vorsitz des Bürgermeisters.<br />

Im Bereich der Mündung des Schnannerbaches in die Rosanna ist ein elektronischer<br />

Messpegel installiert, welcher mit der Steuerung der Anlage verbunden ist. Zusätzlich<br />

befindet sich im gleichen Bereich eine färbige Pegelmarkierung welche die visuelle Einschätzung<br />

des Wasser-/Geschiebepegels in Form von Ampelfarben ermöglicht. Beides dient als<br />

Entscheidungshilfe für die Kommission.<br />

Wie bereits erwähnt, soll die bestehende Bogensperre baulich möglichst wenig verändert<br />

werden. Diese Vorgabe schließt eine in die Mauer integrierte Zu- und Ableitung zum Befüllen<br />

und Entleeren der Schlauchmembrane aus. Aus diesem Grund ist jedes Wehr in einen<br />

Stahlrahmen integriert, welcher als Ganzes in die Dole eingebaut wird. Die Zu- und Ableitung<br />

ist ebenfalls in diesen Rahmen integriert. Diese Konstruktionsweise bietet zudem den Vorteil,<br />

dass jedes Wehr in der Werkstätte als Ganzes vorgefertigt werden kann und somit die<br />

Montagezeit auf der Baustelle wesentlich reduziert sowie den Montageablauf dort deutlich<br />

vereinfacht und auch verbilligt wird. An der Bogensperre sind durch diese Konstruktionsweise<br />

somit nur Bohrungen für die Verankerung der Wehre sowie kleinere Ausbrüche<br />

notwendig.<br />

Um die hohen Anforderungen an die Anlage sowie deren ständige Verfügbarkeit zu gewährleistet,<br />

ist die Steuerung im Industriestandard ausgeführt. Sie besteht im Wesentlichen aus<br />

Messtechnik, Automatisierungsebene und Prozessebene. Die Prozessabläufe werden hier in<br />

der Feldebene programmiert und dann ans Leitsystem übermittelt. Ein zentrales Leitsystem<br />

steuert und überwacht die gesamten Anlagenkomponenten und ist die zentrale Anlaufstelle<br />

der Prozessdaten. Die Visualisierungen, die Archivierung, das Reporting sowie das Alarm-<br />

Management werden vom Prozessleitsystem verwaltet und geregelt.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 859


Zum Einsatz kommt, aufgrund der Priorität der Anlage, ein Alarmsystem mittels Sprachprozessor<br />

(Sprachalarmierung); dieses bietet ein hohes Maß an Sicherheit im Störfall.<br />

Mittels PC, iPad oder Laptop kann die Anlage vollwertig aus der Ferne bedient und überwacht<br />

werden. Die hohe Verfügbarkeit der Anlage ist auch bei Stromausfall (Notstromaggregat)<br />

oder einer defekten Internetverbindung (W-Lan-Access-Point) garantiert.<br />

Die Eigenverantwortung der Entscheidungsträger ist sehr groß, da über die Steuerung des<br />

mobilen Dolenverschlusses (vergl. Abb. 6) direkt in den Ablauf des Katastrophenszenarios<br />

eingegriffen wird.<br />

Abbildung 6: Organisationsorganigramm während eines Hochwasserereignisses mit Geschiebetransport.<br />

860 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


FAZIT<br />

Der mobile Dolenverschluss soll die intelligente Antwort auf die unterschiedlichen Anforderungen<br />

aufgrund der Prozesstypen Murstoß und Hochwasser mit Geschiebetransport<br />

darstellen. Die Dolen sollen so spät wie möglich geschlossen werden, um den schadlosen<br />

Geschiebetrieb so lang wie möglich zu gewährleisten bzw. so bald wie möglich wiederum zu<br />

ermöglichen und dadurch das Geschiebeablagerungsbecken so gut und so lang wie möglich<br />

zu nutzen. Im Idealfall soll die abklingende geschiebeentlastete Hochwasserwelle genutzt<br />

werden, um allfällige Anlandungen im Unterlauf des Schnannerbaches wieder auf natürlichem<br />

Weg zu räumen. Diesen geschiebeentlasteten Hochwasserabfluss soll auch durch das<br />

Schließen einer zusätzlichen Dole künstlich initiiert werden.<br />

Der mobile Dolenverschluss soll eine umfassende Möglichkeit darstellen, in die Prozessdynamik<br />

eines Wildbaches, im konkreten Falls des Schnannerbaches variabel sowie situationsbezogen<br />

einzugreifen. Er bietet damit die Chance, den Spagat zwischen Sicherheit und<br />

Ökonomie, dh. Minimierung der Räumungskosten zu schaffen.<br />

Im Gegensatz zu herkömmlichen Schutzmaßnahmen in der Wildbach-, Lawinen- und<br />

Steinschlagverbauung, deren Funktionalität während eines Ereignisses im Zusammenhang<br />

mit dem Prozesstyp in der Regel nicht aktiv beeinflussbar ist, ist dies bei der, in diesem<br />

Aufsatz vorgestellten Anlage möglich, ja sogar erforderlich. Dies setzt jedoch eine hohe<br />

Eigenverantwortung und auch Einsatzbereitschaft jener Personen voraus, die diese Anlage<br />

warten, betreuen und im Ereignisfall auch bedienen. Diese hohe Eigenverantwortung und<br />

Einsatzbereitschaft müssen durch entsprechende Schulungen und Katastrophenübungen<br />

sowie den Lehren und Erfahrungen aus abgelaufenen Ereignissen permanent unterstützt<br />

werden.<br />

Wie auch bei anderen aktiven Schutzmaßnahmen mit temporärer Wirkung (z.B. künstlicher<br />

Lawinenauslösung) auch, werden die variablen Dolenverschlüsse in der Gefahrenzonenabgrenzung<br />

nicht berücksichtigt.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 861


HAZARD AND RISK MITIGATION (STRUCTURAL, NONSTRUCTURAL MEASURES, INSURANCE)<br />

Actions for the Maintenance and Lifespan prolongation<br />

of SABO Facilities<br />

Hisashi Watanabe, Professional engineer 1 ; Toshio Mori<br />

ABSTRACT<br />

Japan is one of the countries most prone to sediment-related disasters in the world. For<br />

centuries, various SABO works, which are measures to counter erosion and control sediment,<br />

have been constructed in Japan. In the modern era, countermeasures that protect people<br />

from localized sediment-related disasters, such as debris flows or cliff failures, have been<br />

emphasized, considering how such disasters actually occur.<br />

Many locations in Japan are prone to sediment-related disasters. Therefore, It is very<br />

important to maximize the functionality and extend the lifespan of existing SABO facilities.<br />

Our organization, The Sabo Frontier Foundation, evaluates the soundness of SABO facilities<br />

and reviews measures to counter sediment-related disasters based on our research.<br />

In fiscal 2015, the Erosion and Sediment Control Department of the Ministry of Japan issued<br />

the Manuals, to maintain the functions of existing structures and ensure the future use of<br />

those structures. Nation-wide efforts are now being taken in this respect. This paper outlines<br />

the two manuals and introduces the actions taken.<br />

KEYWORDS<br />

National Resilience; Maintenance and Lifespan prolongation of SABO facilities; effective use<br />

of existing SABO facilities; inspection; soundness evaluation<br />

INTRODUCTION<br />

Japan is one of the countries most prone to sediment-related disasters in the world. For<br />

centuries, various SABO works, which are measures to counter erosion and control sediment,<br />

have been constructed in Japan. In the modern era, countermeasures that protect people<br />

from localized sediment-related disasters, such as debris flows or cliff failures, have been<br />

emphasized, based on how such disasters occur.<br />

Many locations in Japan are prone to sediment-related disasters and little progress has been<br />

made in the countermeasures taken using SABO facilities, which are at about 20% capacity.<br />

It is very important to maximize the functionality and extend the lifespan of existing SABO<br />

facilities. Our organization, The Sabo Frontier Foundation, evaluates the soundness of SABO<br />

facilities and reviews measures to counter sediment-related disasters based on our research.<br />

The issues of maintenance and prolongation of the lifespan of SABO facilities are important<br />

globally; some countries have already implemented countermeasures to the problem. In fiscal<br />

1 SABO FRONTIER FOUNDATION (SFF), TOKYO, JAPAN, kenkyu2@sff.or.jp<br />

862 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP010


2015, the Erosion and Sediment Control Department of the Ministry of Land, Infrastructure,<br />

Transport and Tourism (MLIT), Japan, issued the “Planning Manual for Maintaining and<br />

Prolonging the Lifespan of SABO Facilities” and the “Inspection Procedure Manual for SABO<br />

Facilities”, to maintain the functions of existing structures and ensure the future use of those<br />

structures (these manuals are currently available only in Japanese). Nationwide efforts are<br />

now underway in this respect. This paper outlines the two manuals and introduces the<br />

actions taken.<br />

PROBLEMS FACING JAPAN<br />

1) Climate of Japan and aggravation of natural phenomena<br />

Japan is part of the Pacific Ring of Fire and much of the terrain is steep and complex.<br />

Geologically, volcanic and sedimentary rocks are distributed in a diverse mosaic with many<br />

faults. Since the beginning of the Holocene (from approximately 10,000 years ago until the<br />

present), Japan has experienced the fourth greatest number of eruptions globally, accounting<br />

for 7.3% of all volcanic eruptions. In addition, about 20.5% of all earthquakes with a<br />

magnitude of 6.0 or higher have occurred in Japan.<br />

Analysis of the source waters and routes of typhoons, including hurricanes, in the Northern<br />

Hemisphere shows that their routes are concentrated in three tracks, one of which leads from<br />

Southeast Asia towards the eastern part of the Sea of Okhotsk via the waters near Japan.<br />

In Japan, mountains comprise 61.0% of the total land area, while less than 40% of Japan is<br />

habitable. As a result, the population density in the habitable area exceeds 900 people per<br />

km 2 . Considering the topography, geology, climate, and lack of inhabitable land, it is<br />

understandable that Japan is prone to sediment-related disasters.<br />

Recently, typhoons, earthquakes, and volcanic eruptions have increased in scale. In addition,<br />

the frequency of localized torrential rain from continuously generated clouds, the so-called<br />

“back-building phenomenon”, has increased. This has led to large-scale sediment-related<br />

disasters, such as those observed in the Niigata Prefecture Chuetsu Earthquake (2004; Fig. 1)<br />

Figure 1: Overview of the damage caused The Niigata Prefecture Chuetsu Earthquake<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 863


and extensive sediment-related disasters in the Kii Peninsula (2011, Fig. 2) and Hiroshima<br />

(2014; Fig. 3). Consequently, appropriate countermeasures are required to ensure regional<br />

safety.<br />

Figure 2: Overview of sediment-related disaster in Kii Peninsula, and Period rainfall distribution (August 30 ~ September 5)<br />

2) Decrease in investment capacity<br />

In Japan, SABO works have been built for a long time. Since 1875, some 90,000 check dams<br />

and 10,000 km of channel works have been constructed. Nevertheless, more than 1,000<br />

sediment-related disasters occur annually. Therefore, more structural and non-structural<br />

measures need to be taken. Structural measures to deal with natural phenomena include<br />

maintaining the “function and performance" of SABO facilities, reinforcing and improving<br />

them, and developing new facilities. (here, the “performance of a SABO facility” is defined as<br />

the structural safety of the SABO facility, while the “function of a SABO facility” is defined<br />

as its ability to prevent sediment-related disasters.) Of those existing, increasing numbers are<br />

over 50 years old and it is essential to counteract damage or deterioration of these facilities.<br />

864 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 3: Overview of sediment-related disaster in Hiroshima, and 60 minutes accumulated rainfall (13:00 August 19–13:00 August 20)<br />

There is also an urgent need to update the technical standards of any SABO facility that is<br />

“incompatible with the latest technical standards”.<br />

However, the increasing costs of social security in Japan make it difficult to increase capital<br />

maintenance costs. Therefore, to reduce the total cost of SABO facilities, i.e., the cost of<br />

maintaining the installations in an era of limited budgets, SABO facilities must be developed<br />

and maintained efficiently and effectively. Their maintenance and lifespan are very important,<br />

together with evaluations of their function and performance (see chapter 2 ”Evaluating<br />

the soundness of a SABO facility” below) and making appropriate repairs and reinforcement<br />

when needed.<br />

INSPECTION METHODS<br />

1) The contents of manuals<br />

The Erosion and Sediment Control Department of the MLIT issued the “Planning Manual for<br />

Maintaining and Prolonging the Lifespan of SABO Facilities”, which outlines how to maintain<br />

and preserve the functionality of existing SABO facilities. In particular, the sections on the<br />

“Inspection of a SABO facility” and “Evaluation of the soundness of a SABO facility” are<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 865


important considerations in the “Inspection Procedure Manual for SABO Facilities”, which<br />

outlines inspection methods.<br />

2) Evaluating the soundness of a SABO facility<br />

First, the soundness and fitness (here, “fitness” is defined as the soundness against aging by<br />

weathering) of the SABO facility of interest is evaluated visually. This inspection determines<br />

whether any damage or deterioration has occurred in the SABO facility. The effect that the<br />

observed damage or deterioration has had on the function of the SABO facilitiy is categorized<br />

into one of three grades (e.g., Fig. 4); SABO facilities in the “Anomaly level a” category are<br />

excluded from further measures at this stage.<br />

Figure 4: Example of an evaluation of the level of anomaly by part (source: Inspection Procedure manual for SABO Facilities)<br />

In addition to quantitative information on anomalies detected in the evaluation, factors that<br />

may cause damage or deterioration to the facility (such as the structure, material, model or<br />

characteristics of the catchment area) are observed, evaluated, or analyzed (Fig. 5). The<br />

overall soundness of the facility is evaluated comprehensively based on all this information<br />

(Fig. 6).<br />

For example, if the same kind of abrasion of the levee crown has occurred at multiple<br />

facilities, an evaluation is made based on the types of internal material (e.g., concrete or<br />

rubble concrete). If the same kind of cracking has occurred at multiple facilities, an evaluation<br />

is made based on the direction of cracking (e.g., vertical, horizontal, diagonal, etc.). The<br />

immediate surroundings of the SABO facility, for example the location and volume of<br />

deposited sediment, the stability of the facility site, and the stability of the substrate near the<br />

wing of the facility are also evaluated.<br />

866 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 5: Example of the evaluation corresponding to the facility structures, materials, and types (Abrasion or Corruption of levee crown,<br />

in Concrete dam and Masonry dam)<br />

Figure 6: Comprehensive evaluation of SABO facilities<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 867


"The Performance of SABO Facilities" will be used to evaluate the suitability of technical<br />

standards (safety standards) and as a reference when deciding a measure’s priority, such as<br />

the placement of conservation targets and SABO facilities, the importance of SABO facilities,<br />

the recommended size of facilities, the cost of the countermeasures, and the ease of construction<br />

of countermeasures. This will help to prioritize the measures to be taken.<br />

3) In-need-of-repair SABO facilities and follow-up observations<br />

SABO facilities are being classified as those that require urgent repairs (hereinafter “in-needof-repair”<br />

SABO facilities) and those that need follow-up observation (hereinafter “follow-up<br />

observation” SABO facilities), based on the soundness evaluation. This classification is used to<br />

identify factors that lead to a loss of function and performance of SABO facilities. The<br />

personnel undertaking this classification work must have relevant experience or qualifications<br />

related to SABO.<br />

For in-need-of-repair SABO facilities, effective repair measures need to be developed based<br />

on the characteristics of any damage or deterioration (structure, model, material, catchment<br />

area characteristics, etc.). Follow-up observations of SABO facilities will include the implementation<br />

of an inspection that can monitor the progress of damage or deterioration (e.g.,<br />

abrasion of the levee crown, increase or decrease in crack width) and recording of the<br />

inspection results. In this way, SABO facilities will be classified into those requiring observation<br />

and those requiring immediate measures, so that the limited budget can be allocated<br />

efficiently to protect the safety of the region.<br />

Figure 7: Result of analyzed and evaluation about the soundness of the SABO facilities in five under the direct control SABO works office<br />

868 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


In 2014, we evaluated the soundness of SABO facilities under the direct control of five SABO<br />

works offices. These investigations showed “abrasion of the levee crown” and “scouring of the<br />

foundation of the dam”, typical damage or deterioration that leads to loss of function and<br />

performance of the facility. On average, approximately 12% of SABO facilities were “in-needof-repair”<br />

and 58% required “follow-up observations” (Fig 7).<br />

4) A case example<br />

SABO facilities are being repaired to maintain their functions. In addition, their structures are<br />

being reinforced and function improved to achieve effective utilization of facilities from the<br />

viewpoint of maintenance and prolonging the lifespan of SABO facilities (a reduction of total<br />

cost) (Fig. 8).<br />

For example, when a SABO facility suffers from repeated abrasion of the levee crown, it is<br />

repaired with granolithic concrete to reduce the repair frequency (L). When an apron and<br />

counter dam are constructed to prevent scouring at the foundation (S), appropriate measures<br />

are taken using a variety of actions, including widening the dam to improve stability (s1),<br />

increasing the crown and wing widths to confer greater protection against debris flow (s2),<br />

and raising the dam height to increase the sediment trap capacity of the SABO facility (s3).<br />

Figure 8: Example of measures in light of Maintenance and Lifespan-keeping of SABO facilities (reduction of total cost)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 869


BUDGET AND SYSTEM<br />

The MLIT established a system that provides for a SABO facility manager who implements<br />

a “Maintenance and Lifespan-prolongation Plan” according to the manuals, with a national<br />

subsidy to cover part of the work costs in 2015. To take advantage of this system, the<br />

prefecture began to create a “Maintenance and Lifespan-prolongation Plan”, with a deadline<br />

of fiscal 2018. In addition, facilities under the direct control of SABO works undergoing<br />

construction and maintenance must be investigated by the end of fiscal <strong>2016</strong>, and measures<br />

should then be implemented. To contribute to these plans, our organization will study the<br />

soundness of SABO facilities and countermeasures for various types of SABO facility.<br />

REFERENCES<br />

- Planning Manual for Maintaining and Prolonging the Lifespan of SABO Facilities:<br />

The Erosion and Sediment Control Department of the Ministry of Land, Infrastructure,<br />

Transport, and Tourism of Japan (Currently available only in Japanese.)<br />

- Inspection Procedure Manual for SABO Facilities: The Erosion and Sediment Control<br />

Department of the Ministry of Land, Infrastructure, Transport and Tourism of Japan<br />

(Currently available only in Japanese.)<br />

- Analysis of the as-is-state of old natural stone barriers in the Bernese Alps: Bernd Kister,<br />

Lucerne University of Applied Science and Arts, Horw, Switzerland<br />

870 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Emergency Management<br />

(emergency planning, early warning, intervention, recovery)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 871


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Outflow forecast on a mountain river!<br />

(Emergency Management in the Canton of Nidwalden)<br />

Werner Fessler, Dipl. Kult. Ing. ETH 1 ; Markus Klauser, Dr. sc. ETH 1 , Dipl.Ing.; Peter Seitz, Dipl. Ing. 1 ;<br />

Josef Eberli, Dipl. Kult. Ing. ETH 1<br />

ABSTRACT<br />

Emergency management in the Canton of Nidwalden ensures timely and targeted intervention<br />

in case of a flood event on the Canton's main river, the „EngelbergerAa". In case of an<br />

event, the emergency planning includes the definition of processes and responsibilities as<br />

well as monitoring. It provides necessary resources and basis for decision making. In addition,<br />

a reliable forecast of the expected development is fundamental for an effective intervention.<br />

However, customary rainfall-outflow models do not represent the EngelbergerAa, a river<br />

characterized by steeply rising hydrographs with pronounced peaks. The Canton Nidwalden<br />

developed for that reason a customized rainfall-outflow model, based on a simple three-storage-reservoir-system<br />

as a function of time. The developed model for outflow-prediction in the<br />

EngelbergerAa has proven its steadiness during various incidents and generated valuable<br />

services. Despite the simple architecture of the applied algorithms, the tool allows to trigger<br />

and control the necessary measures at the right time. Though, the experience and assessment<br />

of management staff as well as task forces have to complete the resulting forecasts.<br />

Durch die Notfallorganisation wird im Kanton Nidwalden sichergestellt, dass bei Hochwasser<br />

an der Engelberger Aa gezielt und rechtzeitig interveniert wird. In der Notfallplanung<br />

werden, in Berücksichtigung relevanter Kennwerte, für den Ereignisfall Abläufe, Überwachungen<br />

und Zuständigkeiten festgelegt, sowie die erforderlichen Hilfsmittel und Entscheidungsgrundlagen<br />

bereitgestellt. Entscheidend für eine wirkungsvolle Intervention ist aber<br />

auch eine zuverlässige Vorhersage der zu erwartenden Entwicklung.<br />

Gebräuchliche Niederschlag-Abfluss-Modelle werden dem Gebirgsbach-Charakter der<br />

Engelberger Aa mit einer steil ansteigenden Abflussganglinie und einer ausgeprägten Spitze<br />

jedoch kaum gerecht. Für die Vorhersage des erwarteten Abflusses wird deshalb ein - beim<br />

Tiefbauamt des Kantons Nidwalden entwickeltes - Niederschlags- Abflussmodel eingesetzt.<br />

Das "N-A-Modell Engelberger Aa" simuliert grundsätzlich ein integrales Drei-Speicher-System<br />

in Funktion der Zeit. Das für die Vorhersage an der Engelberger Aa entwickelte Niederschlag-Abfluss-Modell<br />

hat sich während verschiedenen Ereignissen bewährt und wertvolle<br />

Dienste geleistet. Trotz der einfachen Architektur der Simulationsalgorithmen erlaubt die<br />

Abflussvorhersage - ergänzt durch Erfahrungen und Beurteilungen von Führung und<br />

1 Tiefbauamt Kanton Nidwalden, Stans, SWITZERLAND, werner.fessler@nw.ch<br />

872 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP033


Einsatzkräften - die notwendigen Massnahmen der Notfallplanung rechtzeitig auszulösen<br />

und zu steuern.<br />

KEYWORDS<br />

Emergency management, Krisen-Management; Emergency planning, Notfallplanung;<br />

outflow forecast, Abfluss-Vorhersage; integral rainfall-outflow model with three storage<br />

reservoirs, integrales Niederschlag-Abfluss-Modell mit drei Speichern; Excel routine<br />

mountain stream, Excel-Routine Gebirgsbach<br />

EINFÜHRUNG<br />

Hochwasserschutz ist dann wirksam, wenn vorausschauende, organisatorische Massnahmen<br />

der Notfallplanungen optimal mit raumplanerischen und baulichen Massnahmen korrespondieren.<br />

Dabei wird das Risiko durch die kombinierte Umsetzung der Massnahmenelemente<br />

deutlich reduziert und Schäden können verhindert bzw. vermindert werden. Entscheidend<br />

für eine rechtzeitige und wirkungsvolle Intervention ist aber auch eine frühzeitige und<br />

zuverlässige Alarmierung.<br />

Im Kanton Nidwalden obliegt die Verantwortung für die Engelberger Aa dem Kanton. In den<br />

Jahren 1998 bis 2007 wurden von Dallenwil bis Buochs - als Schlüsselelemente des integralen<br />

Risikomanagements - verschiedene bauliche Massnahmen am Gewässer realisiert. Die<br />

Anforderungen an ein robustes Systemverhalten und vorliegende Platzverhältnisse begründen<br />

eine sukzessive Entlastung. Hierbei werden Wassermassen, welche die Gerinnekapazität<br />

übersteigen, an festgelegten Entlastungsstellen ausgeleitet. Dadurch kann eine Überlastung<br />

des Gewässer-Systems ausgeschlossen werden und dessen Funktionalität bleibt jederzeit<br />

gewährleistet. Die resultierenden Abflüsse ausserhalb des Gerinnes werden in Abflusskorridoren<br />

mit möglichst geringem Schadenpotential flächig zum See geleitet.<br />

Mit den baulichen Massnahmen wurde gleichzeitig eine Notfallplanung erarbeitet und<br />

umgesetzt. Durch die Notfallplanung wird sichergestellt, dass bei Hochwasser gezielt und<br />

rechtzeitig interveniert wird. In Berücksichtigung relevanter Kennwerte werden für den<br />

Ereignisfall Abläufe, Überwachungen und Zuständigkeiten festgelegt sowie die erforderlichen<br />

Hilfsmittel und Entscheidungsgrundlagen für eine zielgerichtete, speditive und zeitnahe<br />

Reaktion bereitgestellt.<br />

Das resultierende Krisenmanagement stellt - in Zusammenarbeit mit den örtlichen Interventionskräften<br />

- eine Verbundaufgabe der relevanten kantonalen und kommunalen Kompetenzen<br />

dar. Ein Stab aus Fachleuten beurteilt kritische Situationen laufend, ergreift Massnahmen<br />

und gewährleistet eine rechtzeitige Alarmierung der Einsatzkräfte und der Bevölkerung.<br />

Die Alarmierung der Führungskräfte bezüglich der Engelberger Aa erfolgt basierend auf den<br />

automatisch übermittelten Abflussmessungen der Messstelle Buochs. Ergänzend werden bei<br />

kritischen Wetterentwicklungen entsprechende Warnungen abgesetzt. Die Abläufe orientie-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 873


en sich an den „Pegel-Marken" 80m 3 /s (=> Beobachtung), 100m 3 /s (=> Vorbereitung) und<br />

125m 3 /s (=> Intervention).<br />

Damit fundierte Entscheide gefällt und zweckmässige Massnahmen ergriffen werden können,<br />

ist auch eine zuverlässige Vorhersage erforderlich. Die „Zentrale Wasserbau" - eine dem<br />

kantonalen Führungsstab unterstellte Fachinstanz - ist für die hydraulische Vorhersage der<br />

erwarteten Entwicklung zuständig. Mit dem Ziel, den Entscheidungsträgern einen Vorsprung<br />

zu verschaffen, wird die Vorhersage der Abflussentwicklung fortlaufend aufbereitet. Hierfür<br />

wurden einfache Algorithmen entwickelt und als Berechnungsroutine in Excel bereitgestellt.<br />

In Berücksichtigung der Abflusssituation und in Anwendung von Niederschlagsmessungen /<br />

Niederschlagsprognosen werden mit Hilfe der Berechnungsroutine insbesondere nachfolgende<br />

Fragestellungen fokussiert:<br />

– Wann werden voraussichtlich die Kennwerte der Notfallplanung erreicht?<br />

– Wie wird sich die Abflussdynamik der Engelberger Aa entwickeln?<br />

– Welche mutmasslichen Abflussspitzen sind zu erwarten?<br />

– Wann muss voraussichtlich mit der Abflussspitze gerechnet werden?<br />

METHODEN<br />

Gebräuchliche, grossräumige Niederschlag-Abfluss-Modelle werden dem Gebirgsbach-Charakter<br />

der Engelberger Aa mit einer steil ansteigenden Abflussganglinie und einer kurzen,<br />

ausgeprägten Spitze kaum gerecht. Für die Vorhersage des erwarteten Abflusses wird deshalb<br />

ein beim Tiefbauamt des Kantons Nidwalden entwickeltes Niederschlags-Abflussmodell<br />

eingesetzt. Als Input berücksichtigt das "N-A-Modell Engelberger Aa" erhältliche Messungen<br />

von Abfluss und Niederschlag ergänzt mit verschiedenen Niederschlags-Prognosen.<br />

Die verfügbaren Daten werden fortlaufend, manuell in eine „Excel-Routine" eingepflegt.<br />

Das "N-A-Modell Engelberger Aa" simuliert grundsätzlich ein integrales Drei-Speicher-System<br />

in Funktion der Zeit (vgl. Abbildung 1). Jeder der drei Speicher nimmt das zugehörige<br />

Niederschlagsvolumen auf (Speicherfüllung), speichert es (Retention) und gibt die Wassermassen<br />

sukzessive an den Abfluss weiter (Speicherentleerung). In Anlehnung an das Reaktionsverhalten<br />

werden die virtuellen Speicher mit Fern (=> langsam); Mittel und Nah (=> schnell)<br />

bezeichnet.<br />

Die einzelnen Speicher bzw. deren Reaktion werden durch „Speicherparameter" (vgl. Tabelle<br />

1) charakterisiert, welche das zugehörige Einzugsgebiet repräsentieren. Aufgrund der gegenseitigen<br />

Interaktion ist eine Anpassung der "Speicherparameter" während einem Ereignis<br />

kaum angezeigt. Die „Speicherparameter" wurden anhand bekannter Messreihen für die<br />

Engelberger Aa kalibriert. Da Extremereignisse für die Kalibrierung nur beschränkt zur<br />

Verfügung stehen, stellt das Ereignis 2005 bis dato das massgebende Extrem-Hochwasser-<br />

Referenz- Ereignis dar.<br />

874 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 1: Schematische Funktionsweise N-A-Modell Engelberger Aa (Drei-Speicher-Modell)<br />

Tabelle 1: Modellparameter N-A-Modell Engelberger Aa (Drei-Speicher-Modell)<br />

Die "Grundparameter" (vgl. Tabelle 1) dienen der Steuerung der berechneten Abflussganglinie.<br />

Durch Änderung der kalibrierten "Grundparameter" besteht die Möglichkeiten die<br />

Abflussvorhersage während einem Ereignis visuell zu justieren, gleichzeitig ist diese<br />

Manipulation der Grundparameter jedoch kritisch zu hinterfragen bzw. zu begründen:<br />

– QB: vertikale Verschiebung der Abflussganglinie (+ grösserer bzw. - kleinerer Abfluss)<br />

– ∆t': horizontale Verschiebung der Abflussganglinie (+ späterer bzw. - früherer Abfluss)<br />

– nA: Geografische Niederschlagsverteilung im Einzugsgebiet (ΣN < oder > ΣMessung/<br />

Prognose)<br />

– FEZG: Abflusswirksames Einzugsgebiet (z.B. < FEZG - Schneefall; > FEZG + Schneeschmelze)<br />

Das "N-A-Modell Engelberger Aa" berücksichtigt das gespeicherte Volumen als Grundlage<br />

für die abflussrelevanten Anteile der einzelnen Speicher. Die Berechnungsalgorithmen der<br />

„Excel-Routine" ermitteln pro Speicher zeitbezogen die integrale bzw. summarische Bilanz<br />

der anteilsmässigen Niederschlags- und Abflussvolumen (vgl. Tabelle 2).<br />

Der Vorgang der Speicherfüllung ist geprägt durch den im Einzugsgebiet gemessenen bzw.<br />

vorhergesagten Niederschlag. Die Berechnungsalgorithmen der „Excel-Routine" berücksichtigen<br />

eine anteilsmässige Verteilung des Niederschlags auf die einzelnen Speicher (vgl. Tabelle<br />

3). Die räumlichen Unterschiede werden durch die gewichtete Mittelwertbildung verschiede-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 875


Tabelle 2: Speichervolumen zum Zeitpunkt t als Bilanz im zugehörigen Berechnungszeitraum<br />

Tabelle 3: Berechnung der Speicherfüllung (aufgefangenes Niederschlagsvolumen) pro Speicher<br />

876 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ner Regenmessstationen abgebildet. Ergänzend oder alternativ kann der abflusswirksame<br />

Niederschlag erhöht bzw. reduziert werden. Diesbezüglich ist die gutachterliche Interpretation<br />

von verfügbaren Summendarstellungen (z.B. Niederschlagsradar kumuliert über 6h) im<br />

relevanten Einzugsgebiet erforderlich.<br />

Die aktuelle Speicherentleerung wird durch die im virtuellen Speicher zwischengelagerten<br />

Wassermassen gesteuert. Die Berechnungsalgorithmen der „Excel-Routine" berücksichtigen<br />

hierfür die relativen Füllstände (vgl. Tabelle 4). Bei der Engelberger Aa wird die resultierende<br />

Entleerungsrate mit einer linearen Abhängigkeit (f=1) von der relativen Speicherfüllung<br />

abgeleitet. Alternativ kann mit einer Funktionalitätspotenz (f 1) die Entleerungscharakteristik<br />

der Speicher beeinflusst werden (f>1 => grössere Retention => geringere Abflüsse; f< 1<br />

=> geringere Retention => grössere Abflüsse).<br />

Die Entleerung der virtuellen Speicher hängt vom aktuell gespeicherten Volumen ab, weshalb<br />

im Grundsatz eine iterative Berechnung erforderlich ist. Durch kleine Berechnungsintervalle<br />

lassen sich das abgeleitete Abflussvolumen bzw. das aktuell gespeicherte Volumen durch<br />

Tabelle 4: Berechnung der aktuellen Entleerung der Speicher zum Zeitpunkt t<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 877


Anwendung des vorgängigen Berechnungsschritts (t=t-∆t) annähern, womit auf die Iteration<br />

verzichtet werden kann.<br />

Mit den Rechenalgorithmen gemäss Tabellen 2 bis 4 lassen sich im zeitlichen Verlauf für jeden<br />

Berechnungspunkt sowie für die einzelnen Speicher die jeweiligen Speichervolumen sowie<br />

die resultierenden Entleerungen ermitteln. Die Aufsummierung der Entleerungen ergibt<br />

schlussendlich den voraussichtlichen Abfluss in der Engelberger Aa (vgl. Tabelle 5) und in<br />

der Zeitachse die mutmasslich zu erwartende Abflussganglinie.<br />

ERGEBNISSE<br />

Das für die Vorhersage des zu erwartenden Abflusses an der Engelberger Aa entwickelte<br />

Niederschlag-Abfluss-Modell wurde massgeblich am Ereignis 2005 entwickelt und kalibriert.<br />

Anwendungen in den Folgejahren führten vor allem zur Optimierung der Programmierung<br />

der Berechnungsroutinen. Gleichzeitig wurden auch die Eingabemöglichkeiten betreffend der<br />

verfügbaren Datengrundlagen (Messungen und Prognosen) angepasst. An den Kerninhalten<br />

des Modells waren jedoch aufgrund der Erfahrungen keine massgeblichen Anpassungen<br />

angezeigt. Ergänzend wird momentan die Anwendung für weitere Gewässer-Systeme abgeklärt,<br />

wobei erste Resultate vielversprechend sind.<br />

Tabelle 5: Berechnung des Abflusses in der Engelberger Aa als Summe der Speicherentleerungen<br />

Die Kalibrierungscharakteristik des Hochwasserereignisses vom August 2005 ist in Abbildung<br />

2 dargestellt (Berechnungsintervall 30 Min). Das Abflussdiagramm zeigt die gemessenen und<br />

die mit dem "N-A-Modell Engelberger Aa" berechneten Abflüsse, sowie die zugehörige<br />

Auf teilung auf die einzelnen Speicherentleerungen. Als Berechnungsgrundlage werden die<br />

regional gemittelten Niederschlagsmessungen berücksichtigt. Visuell kann festgestellt werden,<br />

dass die Abflussganglinien harmonieren, auch wenn einzelne Ausschläge nicht exakt<br />

abgebildet werden. Sowohl die Grössenordnung als auch der Zeitpunkt der Abflussspitze<br />

stimmen recht gut überein. Hingegen setzt der gemessene Anstieg in der zweiten Phase<br />

878 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 2: Abfluss und Kalibrierung an der Engelberger Aa für das Ereignis 2005<br />

(22.08) etwas früher ein als der Berechnete, was zweiter jedoch durch eine steilere Reaktion<br />

kompensiert.<br />

Die Abweichungen in der Differenzbetrachtung erscheinen auf den ersten Blick etwas gross.<br />

Allerdings ist zu berücksichtigen, dass die räumliche/zeitliche Variation des Niederschlags<br />

nur rudimentär berücksichtigt wird und die Auswertung keine zeitliche Variation beinhaltet.<br />

Entsprechend muss die Differenz in der Aussagekraft relativiert werden. Anderseits zeigt der<br />

Trend der Differenzen, dass die Kalibrierung den Abfluss in ihrer Gesamtheit recht gut<br />

wiederspiegelt. Auch die Korrelation der Berechnung mit der Messung berücksichtigt keine<br />

zeitlichen Varianzen. Dennoch kann festgehalten werden, dass der Abfluss tendenziell etwas<br />

unterschätzt wird, während die Abflussspitze eher überschätzt wird.<br />

Die Grafik zeigt auch die Problematik möglicher Modellanpassungen während einem<br />

Ereignis. Wird beispielsweise aufgrund der festgestellten Abweichung am 22.8 vormittags<br />

(ca. 30m 3 /s) durch Anpassung der "Grundparameter" (vgl. Tabelle 1) der berechnete Abfluss<br />

erhöht hat dies zur Folge, dass die Abflussspitze am Nachmittag und Abend noch stärker<br />

überschätzt wird.<br />

Die Abbildung 3 zeigt ein Beispiel einer Prognose für das Hochwasserereignis Anfang Juni<br />

2013 mit dem aktuell angewendeten Layout (Ausschnitt) des "N-A-Modells Engelberger Aa".<br />

Zur Illustration wurde der effektiv gemessene Abfluss ergänzt. Das Beispiel zeigt, dass der<br />

Anstieg der Abflussganglinie in Anwendung der Cosmo2-Prognosen sehr gut abgebildet wird.<br />

Mit der Cosmo7 Prognose wird der Abfluss etwas überschätzt. Allerdings ist der Zeitpunkt der<br />

vorhergesagten Abflussspitzen nahezu identisch, was darauf hindeutet, dass die Niederschlagsvorhersagen<br />

gleichartig verlaufen und entsprechend zuverlässig erscheinen. Aufgrund<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 879


Abbildung 3: Abflussprognose an der Engelberger Aa vom 31. Mai 2013 um 18:00Uhr<br />

der Cosmo7-Prognose ist damit zu rechnen, dass in der Nacht vom 2. auf den 3. Juni eine<br />

zweite Abflusswelle zu erwarten sein wird, welche jedoch aufgrund der effektiven Niederschläge<br />

nicht eingetreten ist. Auch diese Grafik lässt tendenziell eine Überschätzung des<br />

Abflusses vermuten, allerdings ist zu berücksichtigen, dass die effektiven Niederschläge etwas<br />

geringer ausfielen als prognostiziert.<br />

FAZIT<br />

Das für die Vorhersage an der Engelberger Aa entwickelte Niederschlag-Abfluss-Modell hat<br />

sich während verschiedenen Ereignissen bewährt und wertvolle Dienste geleistet. Trotz der<br />

einfachen Architektur der Simulationsalgorithmen erlaubt die Abflussvorhersage - ergänzt<br />

durch Erfahrungen und Lagebeurteilungen von Führung und Einsatzkräften - die notwendigen<br />

Massnahmen der Notfallplanung rechtzeitig auszulösen und zu steuern. Bei der Interpretation<br />

sind allerdings auch die Systemgrenzen zu berücksichtigen. Die verfügbaren Niederschlags-Prognosen<br />

unterliegen im Gebirge bezüglich zeitlicher und räumlicher Verteilung<br />

grossen Unsicherheiten. Insbesondere lokale Gewitter sind nach wie vor nur kurzfristig vor -<br />

hersehbar. Ein grosser Vorteil der manuellen Datenpflege ist der Umstand, dass man sich<br />

zeitnah und fortlaufend mit der aktuellen Wettersituation und der Entwicklung auseinander<br />

setzen muss, was die Interpretation der Ereignisse massgeblich begünstigt.<br />

880 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Im Kanton Nidwalden gewährleistet ein engagiertes Team rund um den kantonalen Führungsstab<br />

in Zusammenarbeit mit den örtlichen Interventionskräften ein risikobasiertes<br />

Krisenmanagement. Durch Erfahrungen aus vergangenen Ereignissen konnte das Krisenmanagement<br />

kontinuierlich verfeinert werden. Die Vorhersagen an der Engelberger Aa<br />

als kleines Puzzleteil werden vorliegend vorgestellt. Im Dienste der Bevölkerung soll eine<br />

zeitgemässe Risikokultur gelebt, vorgelebt und das diesbezügliche Bewusstsein sukzessive<br />

erweitert werden. Denn die absolute Sicherheit im Umgang mit Naturgefahren wird es<br />

nie geben. Die stetige Auseinandersetzung mit dem Risiko (Restrisiko) und den resultierenden<br />

Wirkungen, aber auch die zeitnahe Interpretation der mutmasslichen Entwicklung<br />

eines Ereignisses, sind entscheidend für eine wirkungsvolle Schadensminderung und<br />

bilden entsprechend eine Kernkompetenz des Krisenmanagements, nicht nur im Kanton<br />

Nid walden.<br />

LITERATUR<br />

- Tiefbauamt Kanton Nidwalden (2009), Integrales Risikomanagement am Beispiel<br />

Engelberger Aa<br />

- Tiefbauamt Kanton Nidwalden (2007), Notfallplanung Engelberger Aa, Revisionsstand 2014<br />

- Tiefbauamt Kanton Nidwalden (2015), NG_Berechnung_ProTool_E_Aa_NOTFALLVERSION,<br />

V12<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 881


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Intervention planning as a preventive tool for integral<br />

natural hazard management in South Tyrol/Italy<br />

Willigis Gallmetzer, Mag. 1 ; Martin Eschgfäller 2 ; Roland Fasolo 1 ; Peter Egger 1<br />

ABSTRACT<br />

Intervention planning plays an important and central role in an integrated natural hazard and<br />

risk management. Whereas previously active measures where realised to protect settlements<br />

and infrastructures from natural disasters nowadays urban planning instruments for natural<br />

risk prevention and intervention planning as an instrument for preparedness became more<br />

and more important and are increasingly applied.<br />

The Department for Hydraulic Engineering and the Department for Civil protection of the<br />

Autonomous Province of Bolzano-South Tyrol/Italy elaborated three instruments to improve<br />

the emergency preparedness.<br />

The first one a water hazard intervention handbook as a "roadmap" with responsibilities,<br />

activities and procedures in case of floods or debris flow.<br />

The second one is the so called intervention map for fire brigades to better manage the first<br />

emergency phase in the immediate aftermath of debris flow or avalanche events and the third<br />

on is the so called intervention plan.<br />

The following article describes the three preventive tools, their content and the first experiences<br />

of the task forces and involved person applying these two instruments.<br />

EINSATZPLANUNG ALS VORSORGEINSTRUMENT IM INTEGRALEN NATURGEFAHRENMANAGEMENT IN SÜDTIROL/<br />

ITALIEN<br />

Die Interventionsplanung spielt im integralen Naturgefahren und –risikomanagement eine<br />

wichtige und bedeutende Rolle. Während früher aktive Verbauungsmaßnahmen zum Schutz<br />

vor Naturgefahren errichtet wurden, werden heutzutage raumplanerische Elemente zur<br />

Prävention naturbedingter Risiken und die Einsatzplanung als Instrument zur Vorbereitung<br />

immer wichtiger und finden vermehrt Anwendung.<br />

Die Abteilung Wasserschutzbauten und die Abteilung Zivilschutz der Autonomen Provinz<br />

Bozen-Südtirol/Italien haben drei Hilfsinstrumente zur Verbesserung der Notfallplanung<br />

erarbeitet: das Einsatzhandbuch Wildbach als Anleitung im Ereignisfall bei Hochwasser und<br />

Muren mit Beschreibung von Verantwortlichkeiten, Tätigkeiten und Abläufen und als zweites<br />

Instrument die so genannte Einsatzkarte für die Feuerwehren zur besseren Bewältigung der<br />

Erstphase bei Einsätzen unmittelbar nach Murereignissen oder Lawinen und als drittes den so<br />

genannten Einsatzplan. Der schriftliche Beitrag beschreibt die drei Vorsorgeinstrumente,<br />

1 Autonomous Province of Bolzano South Tyrol, Civil Protection Agency, Bolzano South Tyrol ITALY, willigis.gallmetzer@provinz.bz.it<br />

2 ambio-alp forstingenieure, Expert in risk prevention planning<br />

882 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP076


deren Inhalt und die ersten Erfahrungen der Einsatzkräfte und Beteiligten bei deren<br />

Anwendung.<br />

KEYWORDS<br />

intervention planning; intervention map; hazard intervention handbook; natural hazard<br />

and risk management.<br />

1. EINFÜHRUNG<br />

Der Alpenraum ist immer wieder von Naturkatastrophen wie Hochwasserereignissen,<br />

Muren oder Lawinen betroffen. So haben in den Jahren 2008 bis 2014 allein in Südtirol<br />

666 Unwetterereignisse große Schäden angerichtet. Am häufigsten waren Verkehrswege<br />

und Landwirtschaftsflächen betroffen, aber auch an den Schutzbauten selbst waren in rund<br />

1/3 der Ereignisfälle größere Schäden zu verzeichnen (Autonome Provinz Bozen-Südtirol,<br />

Abteilung Wasserschutzbauten, 2015a). Zwar sind die Schäden an Gebäuden und Infrastrukturen<br />

von der Anzahl her geringer, dafür sind aber die monetären Schäden höher. Leider<br />

waren bei den Unwetterereignissen auch Todesopfer zu beklagen. Neben und auch in diesen<br />

Gefahrenzonen entwickeln sich Siedlungen, Landwirtschaft, Industrie, Tourismus, Handel<br />

und Infrastrukturen immer weiter. Mit der Veränderung des wirtschaftlichen Umfeldes verändert<br />

sich auch das Schadenspotential; dieses steigt stetig an. Dem gegenüber wächst gleichermaßen<br />

auch das Schutzbedürfnis der Bevölkerung. In der Vergangenheit waren die Schutzstrategien<br />

vor allem auf aktive Verbauungsmaßnahmen ausgerichtet, mit dem Ziel die<br />

Naturgefahrenprozesse direkt zu beeinflussen. So existieren derzeit in Südtirol rund 28.000<br />

Querbauwerke der Wildbachverbauung, das sind 3,8 Querbauwerke pro km² und auf die<br />

Bevölkerung Südtirols umgerechnet 1 Querbauwerk pro 18 Einwohner (Autonome Provinz<br />

Bozen-Südtirol, Abteilung Wasserschutzbauten, 2015b). Heute begegnen die zuständigen<br />

Behörden den Naturgefahren auf mehreren Ebenen. Neben den nach wie vor erforderlichen<br />

Verbauungsmaßnahmen zum Schutz von Siedlungen und Infrastrukturen spielen territoriale<br />

Planungsinstrumente wie Raumplanung unter Berücksichtigung der Gefahrenzonen, die<br />

Sensibilisierung der betroffenen Anrainer, Selbstschutzmaßnahmen und die Schulung der<br />

beteiligten Einsatzkräfte als vorbeugende Notfallmaßnahmen eine zentrale Rolle im integralen<br />

Naturgefahrenmanagement. Die Auswahl der Schutzstrategien für Risikozonen wird von<br />

den beteiligten Entscheidungsträgern in Abhängigkeit von einer Gefahrenstudie, Risikoanalyse,<br />

Kosten-Nutzen-Rechnung und zeitlichen und finanziellen Ressourcen getroffen.<br />

Drei Hilfsinstrumente, welche die präventive Notfallplanung der Einsatzkräfte in Südtirol<br />

unterstützen sind die Einsatzkarten und -pläne für Wasser- und Lawinengefahren für die<br />

örtlichen Feuerwehren und das Einsatzhandbuch Wildbach mit dem Sonderplan Hochwasserdienst<br />

für die Flüsse Etsch und Eisack.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 883


2. INSTRUMENTE DER INTERVENTIONSPLANUNG BEI NATUREREIGNISSEN<br />

In Südtirol werden zusätzlich zu den Zivilschutzplänen drei Instrumente zur Einsatzplanung<br />

im Bereich der Naturgefahren unterschieden: die Einsatzkarten, die Einsatzpläne und die<br />

Einsatzhandbücher. Für die Erstellung von Einsatzkarten haben die Landesabteilungen Zivil -<br />

schutz und Wasserschutzbauten mit einem Zivilschutzsachverständigen ein Handbuch erstellt.<br />

Die Einsatzkarten dienen den operativen Kräften als Einsatzstütze bei seltenen Er eignissen<br />

mit mäßig hohem Komplexitätsgrad sowie räumlich eng begrenzten Schadenswirkungsbereichen.<br />

Für räumlich ausgedehntere Ereignisse, sowie für Ereignisse mit erhöhtem Gefahrenpotential<br />

und erhöhtem Komplexitätsgrad im Einsatz ist das ausführlichere und umfangreichere<br />

Instrument des Einsatzplanes vorzusehen. Das Einsatzhandbuch dient zur Bewältigung<br />

von Naturereignissen von sehr hohem Komplexitätsgrad, einer weiträumigen Ausdehnung<br />

und mit sehr großen Schadenspotentialen.<br />

EINSATZKARTE<br />

Mit der Ausarbeitung von Einsatzkarten werden folgende Ziele verfolgt (Ernst Basler +<br />

Partner, 2008):<br />

– Verringerung der durch Naturereignissen bedingten Schäden an Menschen, Gütern,<br />

Umwelt sowie der wirtschaftlichen Tätigkeit<br />

– Optimierung des Personal- und Mitteleinsatzes<br />

– Sicherstellung des Informationstransfers während eines Ereignisses<br />

– Bereitstellung einer Entscheidungsgrundlage für situatives Handeln<br />

– Verbesserung der Sicherheit der Einsatzkräfte<br />

– Die Einsatzkarte dient stets dem aktiven Einsatzmanagement. Mit ihr wird ein Instrument<br />

zur Überbrückung des Zeitraumes vom Erkennen der Gefahr bis zur Umsetzung von<br />

technischen oder raumplanerischen Maßnahmen geschaffen. Darüber hinaus wird anhand<br />

der Einsatzplanung ein Management von Restrisiken möglich. Die Einsatzkarte ist ein<br />

Hilfsmittel und soll auf der Ebene der Einsatzleitung zur Unterstützung bei der Entscheidung<br />

über zu treffende Erstmaßnahmen verwendet werden. Durch die Vorwegnahme der<br />

Risikoanalyse und durch die präventive gedankliche Ausarbeitung möglicher Erstmaßnahmen<br />

verschafft die Einsatzkarte den Entscheidungsträgern einen Zeitgewinn und einen<br />

Wissensvorsprung. Einsatzkarten können prinzipiell für alle operativen Kräfte und für jedes<br />

Gefahrenszenario erstellt werden (Eschgfäller M., 2012).<br />

MÖGLICHKEIT UND GRENZEN BEI EINSÄTZEN<br />

Die Bandbreite der möglichen Szenarien, denen man bei Einsätzen in Folge von Naturereignissen<br />

wie Hochwasser, Muren, Lawinen begegnen kann, ist groß. Die Ereignisdokumentationen,<br />

Gefahrenhinweiskarten, Gefahrenstudien oder Gefahrenzonenpläne liefern realistische<br />

und wissenschaftlich fundierte Hinweise über die Entwicklungsmöglichkeit dynamischer<br />

Naturgefahrenprozesse und bilden die Basis der Einsatzkarten. Die darin festgehaltenen<br />

kartografischen Informationen sind wichtige Hinweise zu Gefahrenbereichen, die nur unter<br />

besonderen Vorsichtsmaßnahmen oder überhaupt nicht betreten werden dürfen und zu<br />

884 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


sicheren Räumen, welche z.B. für die Einrichtung von Bereitstellungsflächen verwendet<br />

werden können. Über die Vorabgrenzung von Gefahrenzonen ist eine erste Abschätzung der<br />

Handlungsmöglichkeiten im Raum möglich. Durch die Lageerkundung vor Ort werden die<br />

kartographischen Erstinformationen zur vermuteten Lage ergänzt, bestätigt oder korrigiert.<br />

Die meisten der Kleinst- und kleinen Einzugsgebiete (


EINSATZKARTE: Fartleisbach ID - G.230<br />

Ebenwieserhof<br />

Haselstauder Brücke<br />

Obereishof<br />

E-Werk Schwarz<br />

Fartleisbach<br />

Uhlen<br />

Untereishof<br />

E5<br />

Haselstauderhof<br />

Pfeiftalerhof<br />

Brücke Sportanlagen<br />

Sehr hohe Gefahr<br />

Hohe Gefahr<br />

Mittlere Gefahr<br />

<br />

Abbildung 1: Ausschnitt aus einer Einsatzkarte (Eschgfäller M., 2012)<br />

886 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Lawine) beschreibt. In der Karte selbst sind die Gefahrenbereiche, Risiken und Erstmaßnahmen<br />

anhand von taktischen Zeichen dargestellt (siehe Abbildung 1).<br />

Auf der Rückseite der Einsatzkarte findet sich eine Auflistung der Risiken. Die Klassifizierung<br />

der Risiken wurde von den Richtlinien zur Erstellung der Gemeindezivilschutzpläne der<br />

Autonomen Provinz Bozen in leicht abgeänderter Form übernommen. In der Beschreibung<br />

werden die erkannten Risiken analysiert, aufgelistet und in Risikokategorien gegliedert.<br />

Darauf folgt ein Abschnitt über Entscheidungsregeln im Einsatz und über Erstmaßnahmen.<br />

Die Entscheidungsregeln und Maßnahmen werden hierbei ebenfalls von den Feuerwehren<br />

ausgearbeitet und nach Prioritäten gereiht. Am Ende des textlichen Teils sind die zu benachrichtigenden<br />

Stellen und Personen aufgelistet. Ein Register mit den dazugehörigen Kontaktdaten<br />

wird von der Feuerwehr gesondert in der Einsatzzentrale aufbewahrt, oder ist Teil des<br />

Gemeindezivilschutzplans (Eschgfäller M., 2012).<br />

EINSATZPLAN<br />

Ist das Ereignis zu komplex, der Schadenswirkungsbereich zu groß oder nimmt das Gefahrenpotential<br />

zu, so tritt an die Stelle der Einsatzkarte, der Einsatzplan. Dieser besteht aus<br />

mehreren thematischen Kartenblättern und aus einer ausführlichen Risikoanalyse und aus<br />

einem detaillierten Handlungsschema. Hier können auch im Zuge eines Naturereignisses<br />

auftretende Dominoeffekte wie Ausfälle in der Strom- oder Wasserversorgung berücksichtigt<br />

und behandelt werden. Zudem wird das koordinierte Zusammenspiel mehrerer Einsatzorganisationen<br />

festgeschrieben.<br />

EINSATZHANDBUCH WILDBACH MIT SONDERPLAN HOCHWASSERDIENST<br />

Die Landesabteilung Wasserschutzbauten hat für Mur- und Hochwasserereignisse eine Art<br />

„roadmap“ ausgearbeitet, das so genannte „Einsatzhandbuch Wildbach“. Dieses legt die<br />

Zuständigkeiten, Tätigkeiten und Abläufe vor und während eines Ereignisses detailliert fest.<br />

In diesem Einsatzhandbuch ist auch der „Sonderplan Hochwasserdienst“ enthalten, welcher<br />

die Maßnahmen im Falle eines Hochwassers an Etsch und Eisack regelt. Es wurden Aufgaben<br />

formuliert, Abläufe durchgespielt und festgelegt und Kompetenzen zugewiesen – dies alles<br />

mit dem Ziel, klare Regeln für Katastrophenlagen festzuschreiben. Das Einsatzhandbuch<br />

Wildbach umfasst Kapitel zu Übersichten über Strukturen, Führungsorganisation, Aufgaben<br />

von Bereitschaftsdiensten, Aufgaben der Einsatzleitung und Aufgaben der Stabsarbeit. Als<br />

Führungssystem für die Bewältigung eines Einsatzes im Ereignisfall wird die „Dienstvorschrift<br />

100 (DV 100) zur Führung und Leitung im Einsatz“ angewandt, d.h. der Einsatz wird mit<br />

Hilfe der Stabsarbeit (S1-S6) abgewickelt: S1 Personal, S2 Lage, S3 Einsatz, S4 Versorgung,<br />

S5 Information und S6 Kommunikation. Das Einsatzhandbuch begleitet die Verantwortlichen<br />

Schritt für Schritt in ihrer Einsatztätigkeit. Alle wichtigen Informationen sind in knapper<br />

Form in einer Art Checkliste dargestellt. Für den speziellen Fall von Hochwasser an der Etsch<br />

greift der „Sonderplan Hochwasserdienst“. Dieser legt anhand einer Checkliste alle Abläufe<br />

der Bereitschaftsdienste der verschiedenen Landesabteilungen, der Einsatzleitung und der<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 887


Stabsarbeit im Detail fest. Die Einsatztätigkeit wird geografisch in neun „technische Wildbachbezirke“<br />

unterteilt, die den bestehenden Feuerwehrbezirken entsprechen. Die gesetzlich zugewiesenen<br />

Aufgaben der Abteilung Wasserschutzbauten gliedern sich in Vorhersage, Vorbeugung,<br />

Bereitschaftsdienst, Einsatz und Wiederinstandsetzung.<br />

Vorhersage: Durch die modernen Mittel der Meteorologie ist die Vorhersage von extremen<br />

Wetterlagen heute relativ zuverlässig. Im Ernstfall erörtern das Hydrographische Amt, die<br />

Abteilung Wasserschutzbauten und alle weiteren betroffenen Behörden und Organisationen<br />

im Rahmen von Bewertungskonferenzen die Lage.<br />

Vorbeugung: Das Hauptaugenmerk gilt der Erkennung von Gefahren, Vorbeugung von<br />

Schäden, Planungs- und Absicherungsmaßnahmen.<br />

Bereitschaftsdienst: Der rund um die Uhr erreichbare Bereitschaftsdienst aktiviert im<br />

Ereignisfall alle erforderlichen Dienste der Abteilung.<br />

Einsatz: Im Einsatzfall sind die Aufgaben der Abteilung:<br />

– die Vorhersage von Ereignissen<br />

– die Beratung der Zivilschutzbehörden der Landes- und Gemeindeverwaltungen<br />

– die Überwachung der Wasserläufe und Stauanlagen<br />

– der Hochwasserdienst an Etsch und Eisack<br />

– die direkte Intervention mit Mannschaften und technischem Gerät an Schadensorten<br />

– Erstellung einer Dokumentation all dieser Tätigkeiten<br />

Wiederinstandsetzung: Nach dem Ende der akuten Phase von Ereignissen, die Schäden an<br />

Wasserläufen oder anderen Einrichtungen verursacht haben, behebt die Abteilung in erster<br />

Linie die Schäden im eigenen Zuständigkeitsbereich.<br />

Für den Ernstfall sind die Abläufe in Flussdiagrammen detailliert festgehalten. Erreichen<br />

Etsch und/oder Eisack Pegelstände, die auf eine erhöhte Gefahr hinweisen, informiert das<br />

Hydrografische Amt den Bereitschaftsdienst der Abteilung Wasserschutzbauten. Steigen die<br />

Pegel weiter auf das Niveau der „Vorwarnstufe“, werden die Techniker des Hochwasserdienstes<br />

alarmiert und die Hochwasserzentrale besetzt. Eine Bewertungsgruppe bestehend aus<br />

Fachleuten der Abteilung Wasserschutzbauten und des Hydrographischen Amtes berät über<br />

die Lage. Gleichzeitig werden über die Landesnotrufzentrale die Bezirkseinsatzzentralen der<br />

Feuerwehren alarmiert, die ihrerseits die zuständigen lokalen Freiwilligen Feuerwehren zum<br />

Einsatz rufen. Bei Erreichen der „Warnstufe“ kontrollieren Deichwachen (Personal der<br />

Freiwilligen Feuerwehr) die Flussdämme. Nach weiterem Ansteigen des Wasserstandes<br />

müssen Pumpwerke der Abzugsgräben und eines E-Werk abgeschaltet werden. Für die<br />

Szenarien „drohender Dammbruch“ und „erfolgter Dammbruch“ sind weitere spezifische<br />

Mitteilungen und Maßnahmen vorgesehen. Sobald die Pegelstände wieder unter die<br />

„Warnstufe“ sinken, werden die Deichwachen an den Dämmen abgezogen und bei weiterem<br />

888 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Sinken des Pegels unter die „Vorwarnstufe“ wird auch die Besetzung der Pegelmessstellen<br />

aufgehoben und sodann der Hochwasserdienst beendet. Sämtliche Aktionen werden mit<br />

genau vordefinierten Formularen von der Hochwasserzentrale aus angeordnet. Nach<br />

Übungen und nach Einsätzen im Ernstfall wird in Nachbesprechungen der Ablauf noch<br />

einmal in allen Details besprochen und eventuelles Verbesserungspotential ermittelt<br />

(Egger P., 2014).<br />

6. ERGEBNISSE<br />

Durch das Verfassen eines Handbuches zum Erstellen von Einsatzkarten für die Bereiche<br />

Wasser- und Lawinengefahren ist dieses Einsatzinstrument landesweit in Südtirol/Italien auf<br />

eine einheitliche Basis gestellt. Somit wird eine uniforme Lesart und Interpretation der<br />

Karten erreicht. Darüber hinaus fügen sich künftig diese Einsatzinstrumente nahtlos in die<br />

übrigen planerischen Zivilschutzinstrumente, wie den Gemeindezivilschutzplänen und<br />

anderen Sonderplänen ein und stehen mit diesen nicht im Widerspruch.<br />

In Zusammenarbeit mit den örtlichen Feuerwehren wurden bereits mehrere Einsatzkarten<br />

und Einsatzpläne ausgearbeitet. Durch die Mitwirkung der Einsatzkräfte bei der Erstellung<br />

der Unterlagen erhalten sie einen professionellen Zugang zur Thematik und werden für<br />

besondere Gefahrensituationen und Risiken bei Hochwasser-, Muren- und Lawinenereignissen<br />

sensibilisiert. Kausale Zusammenhänge und mögliche Dominoeffekte in der Ereigniskette<br />

werden von ihnen erkannt und die Führungskräfte können sich auf die zu treffenden<br />

Entscheidungen und Maßnahmen vorbereiten. Zudem stellen die Einsatzkarten ein praktikables<br />

Übungsinstrument dar.<br />

Seit Bestand des Sonderplanes Etsch im Jahr 2000 wurden schon mehrere Male Hochwassereinsätze<br />

an der Etsch gemäß diesem Plan mit Erfolg abgewickelt, so z.B. im August 2014.<br />

Darüber hinaus werden sämtliche Abläufe einmal im Jahr im Rahmen einer groß angelegten<br />

Hochwasserübung an Etsch und Eisack beübt. Dabei werden in der Regel von einem<br />

Feuerwehrbezirk mehrere Szenarien durchgespielt, während in den übrigen Bezirken<br />

lediglich die Kommunikationswege getestet werden. Bei der Hochwasserübung im Herbst<br />

2014 wurden z.B. im Feuerwehrbezirk Brixen mehrere Hochwassersituationen simuliert.<br />

Insgesamt waren dabei an die 400 Personen im Einsatz. Das Einsatzhandbuch Wildbach<br />

wurde im Jahre 2007 eingeführt und seitdem wurden schon mehrere Einsätze bei Mur- und<br />

Hochwasserereignissen an Wildbächen damit abgearbeitet. So wurde bei den Ereignissen im<br />

Pfitschertal und im Sterzinger Raum im Sommer 2012 die Hochwasserzentrale besetzt und<br />

die Einsätze wurden von dort aus gemäß Handbuch koordiniert.<br />

7. FAZIT<br />

Für die Notfallplanung bei Wassergefahren liegen nun in Südtirol mit den Einsatzkarten, den<br />

Einsatzplänen und dem Einsatzhandbuch, den Zivilschutzdiensten drei Instrumente vor, die<br />

eine wesentliche Verbesserung der Notfallplanung ermöglichen und damit einen wichtigen<br />

Beitrag zum integralen Risikomanagement leisten.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 889


Mit den Einsatzkarten und -plänen werden den Feuerwehren für Mur- und Lawinenereignisse<br />

Planungsinstrumente zur Bewältigung der Erstphase bei Einsätzen an ausgewählten<br />

Wildbächen und Lawinenstrichen zur Verfügung gestellt. Es handelt sich hierbei um<br />

Siedlungsbereiche mit einem gewissen Risikopotential und/oder einem hohen Komplexitätsgrad<br />

im Einsatz. Mit diesen Einsatzhilfen wird eine Verbesserung der Sicherheit der Einsatzkräfte,<br />

eine Optimierung des Personal- und Mitteleinsatzes, die Sicherstellung der Informationsflüsse<br />

und eine Entscheidungsgrundlage für situatives Handeln zur Verfügung gestellt.<br />

Das dadurch verbesserte aktive Einsatzmanagement hat zum Ziel durch gezielte einsatztaktische<br />

und operative Vorbereitungen dem nahenden Naturereignis bestmöglich zu begegnen<br />

sowie ereignisbedingte Schäden an Menschen, Tieren, Gütern und Umwelt zu verringern und<br />

Wiederinstandsetzungszeiten so kurz wie nötig zu halten.<br />

7. LITERATUR<br />

- Autonome Provinz Bozen-Südtirol, Abteilung Wasserschutzbauten (2015a). Ereigniskataster<br />

ED30. Unveröffentlicht.<br />

- Autonome Provinz Bozen-Südtirol, Abteilung Wasserschutzbauten (2015b). Schutzbautenkataster<br />

Baukat30. Unveröffentlicht.<br />

- Egger P. (2014). Der Ernstfall – In: Geschichte der Etsch von Kurt Werth. Athesia Verlag:<br />

291-294.<br />

- Ernst Basler + Partner AG. (2008). TIMIS flood – Interventionskarte. Konzept 2008.<br />

Zollikon. Unveröffentlicht: 1<br />

- Eschgfäller M. (2012). Handbuch zum Erstellen von Einsatzkarten für die Bereiche<br />

Wasser- und Lawinengefahren. IREK – Integrales Raumentwicklungskonzept für ausgewählte<br />

Lebensräume des Wipptales, Modul 4 Schutz- und Raumentwicklungskonzepte. Im Auftrag<br />

der Abteilung Brand- und Zivilschutz – Bozen. unveröffentlicht.<br />

Gebäudeversicherung Graubünden; Amt für Wald Graubünden (2009): Kurzanleitung<br />

Einsatzkarte. Vom Wissen zum Handeln. With assistance of Markus Fischer, Reto Hefti.<br />

Davos: 3.<br />

- Romang H. (2006). Einsatzkarte – vom Wissen zum Handeln. Pilotprojekt Einsatzkarte<br />

Schlussbericht. Davos: 3, 10.<br />

- Romang H., Wilhelm Ch. (2008). Kurzanleitung Einsatzkarte – vom Wissen zum Handeln.<br />

Davos: 4.<br />

- Staffler H. et al. (2008). Organisation der Einsatzleitung in der Abteilung Wasserschutzbauten<br />

der Autonomen Provinz Bozen – Südtirol bei Hochwasserereignissen. Interpraevent 2008<br />

– Conference Proceedings, Vol. 2: 87-97.<br />

890 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Multiple early warning system on rock walls above<br />

a railway line in the Bernese Oberland (Switzerland)<br />

Multiples Früherkennungssystem an Felswänden<br />

oberhalb einer Eisenbahnstrecke im Berner Oberland<br />

(Schweiz)<br />

Ueli Gruner, Dr. phil. nat. 1 ; Hans-Heini Utelli 2<br />

ABSTRACT<br />

From the rock walls of a mountain section of the „Lötschberg" railway line between the<br />

Bernese Oberland and Valais (Switzerland), rockfall events have occurred repea-tedly, that<br />

are drastic for railway operations. That's why numerous and costly protective structures have<br />

been previously built and compemented steadily until today. However, these can not protect<br />

from large-volume falls. In order to further reduce the remaining death risk, a multiple early<br />

warning system was installed. The monitoring methods include simple manual measurements<br />

(distance detection between two pins) as well as best practices (such as tachymetry and Tele<br />

Joint meters) and most modern technology (laser and radar scanning). For the implementation<br />

of the results of this monitoring program, a detailed early warning dispositif was<br />

established, that indicates, which measures have to be taken in the case of relevant rock<br />

movements.<br />

ZUSAMMENFASSUNG<br />

Aus den Felswänden einer Bergstrecke der Lötschberg-Eisenbahnlinie zwischen dem Berner<br />

Oberland und Wallis (Schweiz) haben sich immer wieder für den Bahnbetrieb einschneidende<br />

Sturzereignisse ereignet. Deswegen wurden schon früher zahlreiche und aufwändige<br />

Schutzbauten erstellt und bis heute immer wieder ergänzt. Diese können jedoch grossvolumige<br />

Stürze nicht zurückhalten. Um das verbleibende Todesfallrisiko weiter zu reduzieren,<br />

wurde ein multiples Früherkennungssystem eingerichtet. Die Überwachungsmethoden<br />

reichen von einfachen Handmessungen (Abstandserfassung zwischen zwei Bolzen) über<br />

bewährte Verfahren wie Tachymetrie und Telejointmeter bis zur modernsten Technologie<br />

(Laser- und Radar-Scanning). Für die Umsetzung der Ergebnisse aus dieser Messüberwachung<br />

besteht ein detailliertes Frühwarndispositiv, das die einzelnen Handlungsschritte bei<br />

relevanten Felsbewegungen aufzeigt.<br />

KEYWORDS<br />

rock fall; rock monitoring; early detection; early warning; alert dispositif<br />

1 Kellerhals+ Haefeli AG Bern, SWITZERLAND, ueli.gruner@k-h.ch<br />

2 Impuls AG<br />

IP_<strong>2016</strong>_FP005<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 891


EINLEITUNG<br />

Die BLS Netz AG betreibt auf der Strecke zwischen Bern und Brig (Berner Oberland/Wallis,<br />

Schweiz; Fig. 1) seit über 100 Jahren die Lötschberglinie, welche Gebiete nördlich der Alpen<br />

mit Italien verbindet. Auch nach der Eröffnung des Lötschberg-Basistunnels im Jahr 2007<br />

wird die doppelspurige Bergstrecke zwischen Frutigen und Brig zum Transport von Personen<br />

und Gütern verwendet. Auf dem rund 17 km langen Abschnitt zwischen Frutigen und<br />

Kandersteg im Berner Oberland verläuft die Bahnlinie unter teilweise hohen Felswänden.<br />

Für die Bahnlinie besteht auf vielen Abschnitten ein grosses Gefahrenpotenzial. So kam es<br />

in der Vergangenheit immer wieder zu Felsstürzen, welche neben Sachschäden z.T. auch<br />

mehrtägige Bahnunterbrüche verursachten.<br />

Im Rahmen einer Gefahren- und Risikoanalyse wurden für die gravitativen Naturgefahrenprozesse<br />

auf der Bahnstrecke Frutigen - Kandersteg diejenigen Abschnitte ausgeschieden,<br />

bei welchen für Mensch und Anlage ein erhöhtes Risiko besteht (Utelli et al., <strong>2016</strong>).<br />

Figur 1: Situation des Überwachungsgebiets der Eisenbahnstrecke Frutigen – Kandersteg (Lötschberglinie, rot markiert) mit den rund 30<br />

Liefergebieten (Flächen) und den Gefahrengebieten (eingekreiste Flächen)<br />

Als Schutzziel wurde festgelegt, dass das durch Naturgefahren verursachte, zusätzliche<br />

individuelle Todesfallrisiko für Bahnreisende nicht mehr als 1 x 10-5/Jahr betragen soll. Um<br />

dies zu erreichen, wurde ein Massnahmenkonzept bzw. -plan erarbeitet. Dieser sieht neben<br />

den bereits weitgehend umgesetzten baulichen Massnahmen auch organisatorische Massnahmen<br />

vor. Dazu zählt nebst einer elektronischen Steinschlagüberwachung in den bestehenden<br />

892 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Schutznetzen (mit vorübergehendem Fahrleitungsunterbruch bei einem Input) ein in den<br />

letzten Jahren eingerichtetes, multiples Früherkennungssystem für Felsbewegungen. Mit<br />

diesem System (bzw. mit den bei signifikanten Bewegungen vorzunehmenden Massnahmen)<br />

kann das nach den baulichen Massnahmen verbleibende Personenrisiko nochmals um rund<br />

2/3 reduziert werden.<br />

Die Früherkennung beruht auf sieben verschiedenen Messmethoden (vgl. Tab. 1), die weiter<br />

unten näher beschrieben werden. Für das System gelten gewisse, vor allem geologisch<br />

bedingte Voraussetzungen, auf die im nachfolgenden Kapitel näher eingegangen wird.<br />

Tabelle 1: Zusammenstellung der Messmethoden für die Erfassung von Felsbewegungen oberhalb der Eisenbahnstrecke<br />

Frutigen – Kandersteg<br />

Messmethoden Anzahl Messpunkte Messrhythmus/Jahr Messgenauigkeit<br />

Tachymetrie 41 2 x ca. 1 mm<br />

Handmessstellen 70 2 x ca. 1 mm<br />

Siegel 32 2 x ca. 0.5 mm (Risse)<br />

Radar-Scanning 3 Gefahrengebiete 1 x ca. 1 mm<br />

Laser-Scanning 2 Gefahrengebiete 1 x ca. 2 cm bis 4 cm<br />

Telejointmeter 3 x 3 („Gstryfet Birg“) permanent 0.1 mm<br />

Inklino-/Extensometer 6 („Gstryfet Birg“) alle 3 Jahre 1 mm auf 10 m/0.1 mm<br />

VORAUSSETZUNGEN FÜR DAS FRÜHERKENNUNGSSYSTEM<br />

Bei einer Früherkennung von grösseren Felsbewegungen im Überwachungsgebiet gehen die<br />

Bearbeiter von folgenden Voraussetzungen aus:<br />

Grössere Felspartien brechen i.d.R. nicht spontan ab. Felsinstabilitäten entstehen nämlich<br />

durch einen häufig Monate oder sogar Jahre dauernden Entfestigungs- und Ablösungsprozess<br />

in Form eines Kohäsionsabbaus. Sie kündigen sich somit in erster Linie durch eine Beschleunigung<br />

der Felsbewegungen an. Diese fortschreitenden Ablösungsprozesse können durch eine<br />

gut instrumentierte und an den massgeblichen Stellen eingerichtete Felsüberwachung meist<br />

rechtzeitig erkannt werden.<br />

An die Messgenauigkeit sind unterschiedliche Anforderungen zu stellen. Bei grösseren Fels -<br />

massen sind Bewegungen in der Grössenordnung von cm bis dm möglich, ohne dass ein<br />

Absturz erfolgt. Eine Messgenauigkeit im mm-Bereich ist somit absolut genügend. Dies umso<br />

mehr, als sich infolge von Temperaturschwankungen Felsbewegungen ergeben können, die<br />

allein im Tagesverlauf Unterschiede von bis zu 1 mm und im Jahresverlauf solche von bis zu<br />

4 mm zeigen, ohne dass sich dabei eine generelle Veränderung der Felsstabilität ergibt<br />

(Gruner 2008, Gruner 2012).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 893


Bei einer frühzeitigen Erkennung von relevanten Bewegungen bleibt i.d.R. genügend Zeit,<br />

um entsprechende Massnahmen vor einem definitiven Absturz zu ergreifen (z.B. Sprengungen,<br />

bauliche Massnahmen etc.).<br />

GEOLOGIE UND LIEFERGEBIETE DER STURZPROZESSE<br />

Die Felswände oberhalb der Bahnlinie bestehen aus z.T. massigen Kalken und Kieselkalken<br />

der Kreide (Wildhorn-Decke des Helvetikums). Die ausgeprägten Verfaltungen und Verschuppungen<br />

der Schichtabfolgen führen dazu, dass das Gestein ein z.T. enges Trennflächengefüge<br />

aufweist. Diese Ausgangslage hat zur Folge, dass es im Untersuchungsgebiet immer wieder<br />

zu Stein-und Blockschlag sowie auch zu Felsstürzen (>100 m 3 ) gekommen ist.<br />

Im Rahmen der eingangs erwähnten Gefahren- und Risikoanalyse wurden im Untersuchungsgebiet<br />

rund 30 Liefergebiete für Sturzprozesse ausgeschieden. Einige davon stellen für die<br />

Bahnlinie jedoch keine Gefährdung dar (Tunnels, ausreichend dimensionierte Schutzbauten,<br />

geringe Reichweite der Sturzkörper etc.). Es verbleiben neun so genannte Gefahrengebiete,<br />

aus denen grobblockige Felsteile oder sogar grossvolumige Felspartien ausbrechen und trotz<br />

den errichteten Schutzwerken bis auf die Bahnlinie gelangen können (vgl. Fig. 1). Das Ziel<br />

des Früherkennungssystems ist es, diese potenziellen grossen Felsinstabilitäten messtechnisch<br />

möglichst vollständig und frühzeitig zu erfassen, um allfällig notwendige Massnahmen rechtzeitig<br />

ergreifen zu können.<br />

MESSMETHODEN<br />

Tachymetrie<br />

Drei Gefahrengebiete werden tachymetrisch überwacht (total 41 Reflektoren, Messdistanz<br />

ca. 600 bis 800 m). Die Reflektoren wurden an grösseren, potenziell instabilen Felspartien<br />

(meist > mehrere 10 m 3 ) montiert, wo klare Ablösungserscheinungen vom gesunden Felsverband<br />

festgestellt werden konnten. Vorteilhaft ist, dass die tachymetrische Fernüberwachung<br />

nebst der genügenden Genauigkeit von rund 1 mm auch kostengünstig ist und bei<br />

Bedarf problemlos um weitere Messpunkte ergänzt werden kann. Zudem können die<br />

Messpunkte, falls notwendig, auch permanent gemessen und mit Schwellenwerten (z.B. für<br />

eine Intervention) versehen werden. Nachteilig ist bei dieser Methode, dass sie bei schlechter<br />

Sicht (Nebel) keine brauchbaren Resultate liefert und zudem nur eine bedingte räumliche<br />

Aussagekraft hat.<br />

Handmessungen<br />

Die insgesamt 70 Handmessstellen (total 130 Messpunkte) und die 32 Siegel liegen verteilt<br />

auf alle neun Gefahrengebiete. Die Messstellen befinden sich an Felsklüften, d.h. es werden<br />

i.d.R. nur Teilbereiche einer Felsinstabilität gemessen. Dank der speziell konstruierten<br />

Messspitzen (aufgeschraubt auf in den Fels eingebohrten Bolzen) liegt die Messgenauigkeit<br />

im mm-Bereich. Die Messstellen wurden an mittelgrossen, potenziell instabilen Felspaketen<br />

eingerichtet (ca. 5 bis 50 m 3 ), bei welchen infolge der Vegetation kaum eine andere sinnvolle<br />

894 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Überwachungsmöglichkeit bestand. Vorteilhaft ist, dass die Handmessungen nebst der<br />

genügenden Genauigkeit auch kostengünstig sind und bei Bedarf problemlos um weitere<br />

Messstellen ergänzt werden können. Nachteilig ist bei dieser Methode, dass das Gefahrengebiet<br />

jeweils begangen werden muss; zudem besteht nur eine bedingte räumliche Aussagekraft.<br />

Siegel<br />

Die 32 eingerichteten Siegel aus Zement wurden meist als Ergänzung zu den Handmessstellen<br />

an den gleichen Gefahrenstellen angebracht. Es gelten die gleichen Merkmale wie bei der<br />

Handmessmethode.<br />

Radar-Scanning<br />

Mit einem Radar-Scanning (Radar Interferometrie) können von einem Geländestandort<br />

aus mittels eines mobilen Radargerätes ganze Felswände abgetastet werden (vgl. Wiesmann,<br />

Gruner 2011). Bei einer Messdistanz von rund 700 m bis 900 m beträgt die Messgenauigkeit<br />

rund 1 mm und die minimal detektierbare Felsfläche ca. 6 m 2 . Mit dem Radar-Scanning<br />

werden von einem Standort aus drei Gefahrengebiete überwacht. Vorteilhaft ist, dass das<br />

Radar-Scanning nebst der genügenden Messgenauigkeit eine grosse Felsfläche mit einer<br />

einzigen Messung erfasst und dass das Gerät auch permanent eingesetzt und mit einer<br />

Alarmierungsanlage kombiniert werden kann. Nachteilig ist bei dieser Methode, dass sie<br />

relativ teuer ist und dass die Vegetation in der Felswand falsche Signale übermitteln und<br />

so eine vermeintliche Bewegung darstellen kann.<br />

Laser-Scanning<br />

Mit dem mobilen Gerät für das Laser-Scanning kann ebenfalls eine Felswand als Ganzes<br />

erfasst werden. Die Messgenauigkeit ist bei dieser Methode jedoch mit 2 cm bis 4 cm<br />

bedeutend niedriger als bei allen übrigen Messverfahren. Diese Messmethode wird bei zwei<br />

Gefahrengebieten eingesetzt, wo die Messdistanzen relativ gering sind (ca. 300 m bis 500 m)<br />

und die Messgenauigkeit somit etwas besser ist. Die minimal detektierbare Felsfläche liegt bei<br />

wenigen m 2 . Die gegenüber dem Radar-Scanning geringere Messgenauigkeit wird durch die<br />

geringeren Kosten etwas aufgewogen. Auch beim Laser-Scanning kann das Gerät für eine<br />

permanente Überwachung eingesetzt werden. Nachteilig ist, dass auch hier die Vegetation<br />

in der Felswand falsche Signale bzw. eine vermeintliche Bewegung suggeriert.<br />

Telejointmeter<br />

Im zentralen Abschnitt der Strecke Frutigen – Kandersteg befindet sich, etwa 300 Höhenmeter<br />

über der Bahnlinie, eine grosse instabile Partie mit einer Kubatur von rund 100‘000 m 3<br />

(„Gstryfet Birg“). Die rund 100 m hohe Felswand ist bergseits zum grossen Teil durch eine<br />

weit offene Hauptkluft vom stabilen Wandbereich abgetrennt. Die felsmechanisch mögliche<br />

Kippbewegung der labilen Felsmasse wird – nebst tachymetrischen Messungen – mittels an<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 895


drei Standorten der Hauptkluft angeordneten Telejointmeter permanent, d.h. jede Minute,<br />

erfasst.<br />

Inklino-/Extensometer<br />

Gemäss dem geologischen Modell bewegt sich die instabile Gebirgsmasse des „Gstryfet Birg“<br />

entlang von mehreren Gleitebenen talwärts. Zur Früherkennung solcher Gleitbewegungen<br />

werden ergänzend in sechs Bohrlöchern periodisch Inklino- und Extensometermessungen<br />

gemacht.<br />

FRÜHWARN- UND ALARMDISPOSITIV<br />

Durch das grosse Spektrum von Messmethoden mit regelmässigen Messungen wird eine<br />

grosse Anzahl von Messwerten generiert. Um diese Resultate sinnvoll und praxistauglich zu<br />

verarbeiten, wurde im Jahr 2012 zusammen mit dem Früherkennungssystem ein Frühwarndispositiv<br />

mit einem detaillierten Verfahrensablauf entwickelt (vgl. Fig. 2).<br />

Figure 2: schematische Darstellung des Verfahrensablaufes beim Frühwarndispositiv der Eisenbahnstrecke Frutigen – Kandersteg<br />

Grundsätzlich wird mit der Festlegung von Schwellenwerten zurückhaltend umgegangen,<br />

dies v.a. auch, um vorsorgliche Sperrungen der Bahnlinie wegen unbegründeter Alarme<br />

möglichst zu vermeiden. Die Beurteilung erfolgt deshalb schrittweise in Bezug auf die relativen<br />

Bewegungen (Trendbeurteilung).<br />

Gemäss dem Dispositiv ist es die Funktion und Aufgabe des Gelogen, die Messergebnisse<br />

regelmässig zu beurteilen und zu interpretieren. Zeigen einzelne Messwerte signifikante<br />

Felsbewegungen, findet eine Feldbeurteilung statt, und das Messdispositiv wird gegebenenfalls<br />

ergänzt und/oder der Messrhythmus erhöht. Die Bahnbetreiberin – die BLS Netz AG –<br />

wird bei diesen Schritten jeweils informiert. Werden Schwellenwerte relevant überschritten,<br />

kann eine permanente Felsüberwachung eingerichtet werden (mit Alarmdispositiv).<br />

896 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Denkbar sind zudem sofortige bauliche Massnahmen wie z.B. Felssicherungen oder auch<br />

Sprengungen. Im Notfall kann die Strecke gesperrt werden. Bei diesen Schritten – als<br />

Intervention bezeichnet – wird die Bahnbetreiberin in die Entscheidung und auch in die<br />

Verantwortung eingebunden.<br />

Bei der grossen, rund 100‘000 m 3 umfassenden, labilen Felspartie „Gstryfet Birg“ wurde<br />

das Zeitfenster zwischen periodischen Einzelmessungen als (zu) lang betrachtet, d.h. die<br />

Felsbewegungen werden dort bereits seit längerer Zeit permanent mit Telejointmeter erfasst.<br />

Es besteht ein separates Alarmdispositiv mit definierten Schwellenwerten für die einzelnen<br />

Gefahrenstufen. Für jede der vier ausgeschiedenen Gefahrenstufe (Normalfall, Warn-,<br />

Alarm- und Interventionsstufe) gibt es einen Vorgehensplan mit jeweils einzelnen Vorgehensschritten<br />

und Meldeabläufen.<br />

ERGEBNISSE<br />

Seit der Einführung des integralen Früherkennungssystems im Jahr 2012 haben sich keine<br />

relevanten Felsbewegungen ergeben, welche eine wichtige Handlung im Sinne des Frühwarndispositivs<br />

ausgelöst hätten. Handmessungen, Siegelüberwachung, tachymetrische wie<br />

auch Inklino- und Extensometermessungen zeigten bisher keine beschleunigenden Felsbewe-<br />

Figure 3: Aufnahme eines Laser-Scanning mit festgestelltem Felsausbruch von rund 2 m 3 (Kreis; oben), Darstellung des Felsausbruchs<br />

als Punktewolke (Fläche, Profile; unten)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 897


gungen. Allerdings ist bei den bereits seit über 10 Jahren laufenden Messungen am „Gstryfet<br />

Birg“ ein klarer, talwärts gerichteter Trend der Bewegung erkennbar (jährlich<br />

jeweils ca. 1-2 mm); dies wird jedoch gemäss Frühwarndispositiv als „Normalfall“ betrachtet.<br />

Die permanenten Bewegungsmessungen mittels Telejointmeter am „Gstryfet Birg“ zeigen den<br />

erwähnten Trend der Bewegung ebenfalls. Allerdings sind hier die Temperatur bedingten bzw.<br />

jahreszeitlichen Einflüsse auf die Felsbewegungen erkennbar: Im Winter bei kalter Witterung<br />

erfolgt eine Kontraktion des Gesteins und somit eine leichte Öffnung der Kluft. Im Sommerhalbjahr<br />

weitet sich die Gesteinsmasse etwas aus und die Kluft schliesst sich leicht (vgl.<br />

Gruner 2008). Diese felsmechanische Erkenntnis dient auch zur Interpretation der Einzelmessungen<br />

bei den anderen Messmethoden.<br />

Das Radar-Scanning im Abschnitt Frutigen – Kandersteg hat bisher keine relevanten Felsbewegungen<br />

aufgezeichnet. Die Erfahrung aus einem benachbarten Überwachungsgebiet für<br />

eine Nationalstrasse hat jedoch gezeigt, dass dort auch bei kleinen Felsvolumina von wenigen<br />

10 m 3 Bewegungen im mm-Bereich erkannt und anschliessend im Feld eindeutig verifiziert<br />

werden konnten.<br />

Auch mittels Laser-Scanning konnten auf der Strecke Frutigen – Kandersteg bisher keine<br />

Felsbewegungen frühzeitig detektiert werden. Hingegen wurden kleinere Felsabbrüche<br />

festgestellt (Volumen bis ca. 5 m 3 ; vgl. Fig. 3), wo allerdings vorgängig keine entsprechenden<br />

Signale festgestellt wurden. Dies dürfte einerseits auf die eher schlechte Messgenauigkeit<br />

zurückzuführen sein, anderseits aber auch auf das Messintervall (jährliche Messung),<br />

innerhalb welchem es zu einer schnellen Ablösung aus dem Felsverband gekommen ist.<br />

Dank dem Hinweis aus dem Laser-Scanning wurden die einzelnen Stellen nach dem Ereignis<br />

jeweils besichtigt, um nach allfällig verbleibenden Felsinstabilitäten zu suchen (was aber<br />

nicht der Fall war).<br />

SCHLUSSFOLGERUNGEN<br />

Ein integrales Früherkennungssystem kann, falls es stufengerecht und massgeschneidert auf<br />

die Lokalverhältnisse eingerichtet wird, für die Sicherheit der Bahn einen wichtigen Beitrag<br />

leisten. Dabei ist eine Kombination von bewährten Messmethoden (z.B. Handmessungen)<br />

und moderner Technologie (z.B. Radar-Scanning) anzustreben. Entscheidend ist jedoch, dass<br />

die Messergebnisse durch erfahrene, mit den lokalen Verhältnissen vertraute Geologen<br />

ausgewertet und interpretiert werden. Dazu braucht es nicht nur Fachwissen, sondern auch<br />

eine auf Erfahrung aufgebaute Intuition, um die Signale eines kommenden Ereignisses<br />

rechtzeitig zu erkennen und entsprechend zu interpretieren. Dies bedeutet, dass der Geologe<br />

ein gewisses Mass an Gelassenheit aufweisen sollte, damit die Bahnstrecke nicht bereits bei<br />

kleinen Felsbewegungen gesperrt wird. Es bedeutet aber auch, dass er die Messresultate selbst<br />

in ruhigen Zeiten mit Aufmerksamkeit verfolgen sollte, damit er relevante Bewegungssignale<br />

– im Sinne der Frühwarnung – rechtzeitig erkennt.<br />

898 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


REFERENZEN<br />

- Gruner U. (2008). Klimatische und meteorologische Einflüsse auf Sturzprozesse.<br />

Proceed. Conf. <strong>INTERPRAEVENT</strong> 2008/2: 147-158.<br />

- Gruner U. (2012). Sturzereignisse in der Schweiz – eine statistische Auswertung.<br />

Swiss Bull. angew. Geologie 17/2: 63-71.<br />

- Utelli H.-H., Kuster F., Pfammatter Ch. (<strong>2016</strong>). Integrales Naturgefahrenmanagement<br />

der BLS AG. Proceed. Conf. <strong>INTERPRAEVENT</strong> <strong>2016</strong>.<br />

- Wiesmann A., Gruner U. (2011). Radar-Interferometrie im Einsatz für die Stabilitätsüberwachung<br />

von grossflächigen Felswänden. Swiss Bull. angew. Geologie 16/1: 51-55.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 899


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Applied flood-risk-management in the Machland-Nord,<br />

Upper Austria<br />

Angewandtes Hochwasser-Risikomanagement im<br />

Machland-Nord, Oberösterreich<br />

Raimund Heidrich, DI 1<br />

ABSTRACT<br />

Due to previous flood-events 7 communities in the Machland Nord have found a flood- protection-association<br />

in 1993. The association ordered a flood-protection-study, which followed<br />

an at this time innovative and integral approach. The result was a flood-protection-concept<br />

combining resettlement, building of linear flood-protection-systems and object-protection<br />

measures.<br />

During the construction of the flood-protection-system extensive preventive measures on<br />

identification and reduction of flood-risk (including residual risk) were implemented for the<br />

first time. Simultaneously the elaboration of organizational measures for a better coping of<br />

floods considering the new flood-protection-system were dictated. During all processing<br />

phases an intense networking process of all responsible authorities over different administration<br />

levels with the operator of the flood-protection-system was reached. Additional<br />

important players were integrated regularly. According to an integrative approach information<br />

of the affected public was also considered.<br />

The core components of the flood-risk-management in Machland Nord were hazard analysis<br />

using numerical 2d-modelling, preparation of operating regulations for the operator,<br />

preparation of emergency plans for the authorities and the preparation of evacuation plans<br />

for the communities.<br />

ZUSAMMENFASSUNG<br />

Aufgrund vergangener Hochwasserereignisse haben sich 7 Gemeinden im Machland Nord im<br />

Jahr 1993 zum Hochwasserschutzverband Machland-Nord zusammengeschlossen und eine<br />

Hochwasserschutzstudie in Auftrag gegeben. Diese verfolgte einen zum damaligen Zeitpunkt<br />

innovativen in Österreich einzigartigen integralen Ansatz. Es wurde ein Hochwasserschutzkonzept<br />

entwickelt, das eine Kombination aus Absiedlungsmaßnahmen, linearen Hochwasserschutzanlagen<br />

und Objektschutzmaßnahmen beinhaltet.<br />

Im Zuge der Errichtung der Hochwasserschutzanlage wurden erstmals umfangreiche vorbeugende<br />

Maßnahmen hinsichtlich der Erkennung und Verringerung des Hochwasser-Risikos<br />

(inkl. Restrisikos) gesetzt. Gleichzeitig wurde unter Berücksichtigung der neuen Schutzanlage<br />

die Ausarbeitung organisatorischer Maßnahmen zur besseren Bewältigung von Hochwässern<br />

1 riocom - consulting engineers for water management and environmental engineering, Vienna AUSTRIA,<br />

raimund.heidrich@riocom.at<br />

900 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP028


vorgeschrieben. In allen Phasen der Bearbeitung wurde eine intensive Vernetzung der zuständigen<br />

Behörden über die unterschiedlichen Verwaltungsebenen hinweg mit dem Betreiber<br />

der Hochwasserschutzanlage erreicht, unter regelmäßiger Einbindung weiterer wichtiger<br />

Akteure. Im Sinne eines integralen Ansatzes wurde auch die Information der betroffenen<br />

Bevölkerung berücksichtigt.<br />

Die Kernelemente des Hochwasser-Risikomanagements im Machland-Nord sind die Gefahrenanalyse<br />

durch numerische 2d-Modellierungen, Erstellung von Betriebsvorschriften für<br />

den Betreiber der Schutzanlage, die Erstellung von Notfallplänen für die Behörden sowie die<br />

Erstellung von Evakuierungspläne für die Gemeinden.<br />

KEYWORDS<br />

2D model; hazard-analysis; action plan; contingency plan; evacuation plan<br />

EINFÜHRUNG<br />

Als Reaktion auf vergangene Hochwasserereignisse haben sich 7 Gemeinden im Machland<br />

Nord (Bezirk Perg, Oberösterreich) Mauthausen, Naarn, Mitterkirchen, Baumgartenberg,<br />

Saxen, Grein und St. Nikola im Jahr 1993 zum Hochwasserschutzverband Machland-Nord<br />

zusammengeschlossen, mit dem Ziel, weite Teile der Region gegen die immer wieder<br />

auftretenden Donauhochwässer zu schützen. (Schwingshandl A., Liehr C., Heidrich R.<br />

(2013))<br />

Der Bezirk Perg liegt am linken Donauufer an der Grenze zu Niederösterreich (siehe<br />

Abbildung 1). Die geschützten Siedlungsbereiche von drei der sieben Gemeinden liegen<br />

direkt an der Donau, in den restlichen Gemeinden sind diese im Hinterland des linksufrigen<br />

Rückstaudammes des Donaukraftwerkes Wallsee-Mitterkirchen (siehe Abbildung 2) situiert.<br />

In einer Hochwasserschutzstudie und nachfolgenden Planungen wurde ein zum damaligen<br />

Zeitpunkt innovatives, in Österreich einzigartiges Hochwasserschutzkonzept entwickelt, das<br />

eine Kombination aus Absiedlungen, etwa 34km linearen Hochwasserschutzanlagen sowie<br />

36 Objektschutzmaßnahmen beinhaltet. Die aus diesen Maßnahmen bestehende Hochwasserschutzanlage<br />

„Machland-Nord“ wurde in den Jahren 2009 bis 2012 errichtet. Für den<br />

laufenden Betrieb wurde eine Betreibergesellschaft eingerichtet, die Machland-Damm<br />

Betriebs GmbH. (Machland-Damm Betriebs GmbH)<br />

Im Zuge der Errichtung der Hochwasserschutzanlage wurden erstmals umfangreiche<br />

vorbeugende Maßnahmen hinsichtlich der Erkennung und Verringerung des Hochwasser-<br />

Risikos (inkl. Restrisikos) in den Machlandgemeinden gesetzt. Gleichzeitig wurde in Abstimmung<br />

auf die neue Schutzanlage die Ausarbeitung organisatorischer Maßnahmen zur<br />

besseren Bewältigung von Hochwässern vorgeschrieben. In allen Phasen der Bearbeitung<br />

wurde dabei eine intensive Vernetzung der zuständigen Behörden (Gemeinden und Bezirkshauptmannschaft)<br />

über die unterschiedlichen Verwaltungsebenen hinweg mit dem Betreiber<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 901


der Hochwasserschutzanlage und einer regelmäßigen Einbindung weiterer wichtiger Akteure<br />

erzielt.<br />

Die Kernelemente des Hochwasser-Risikomanagements im Machland-Nord sind:<br />

– Gefahrenanalyse durch numerische 2d-Modellierungen von Überlastereignissen<br />

– Erstellung von Betriebsvorschriften für den Betreiber der Schutzanlage<br />

– Erstellung von Notfallplänen für die Behörden (auf Gemeinde- und Bezirksebene)<br />

– Erstellung von Evakuierungsplänen für die Gemeinden<br />

Die Bearbeitungen wurden durch zahlreiche Workshops und Informationsveranstaltungen<br />

auf Gemeinde- und Bezirksebene begleitet, um die unterschiedlichen Zielgruppen über die<br />

Bearbeitung dieser Themen und die für sie wesentlichen Ergebnisse zu informieren. Moderne<br />

Hochwasserschutzanlagen haben Auswirkungen auf verschiedenen Ebenen. Sie verhindern<br />

hochwasserbedingte Schäden in Siedlungsgebieten, an Infrastruktur, Gewerbe und Landwirtschaft.<br />

Sie tragen wesentlich dazu bei, die Gefährdung von Personen zu reduzieren. Gleichzeitig<br />

entstehen jedoch neue Gefährdungsszenarien – vor allem in Versagensfällen oder aufgrund<br />

der für die Betroffenen unbekannten Situation.<br />

Im Sinne eines integralen Risikomanagements ist bei Errichtung von Hochwasserschutzanlagen<br />

das Thema Restrisiko (z.B. durch ein Versagen der Schutzanlage) zu behandeln.<br />

In solche Risikoanalysen sind sämtliche handelnden Akteure einzubinden, um deren<br />

Fachwissen einzubringen und deren Akzeptanz der Ergebnisse und Produkte zu gewährleisten.<br />

Dann werden Betriebsvorschriften, Notfallpläne und Evakuierungspläne im Hochwassereinsatz<br />

auch verwendet.<br />

DIE HOCHWASSERSCHUTZANLAGE “MACHLAND-NORD”<br />

Die Hochwasserschutzanlage “Machland-Nord” besteht aus etwa 30,1km Erddämmen, 3,9km<br />

mobilen Hochwasserschutzelementen und einigen hundert Meter Hochwasserschutzmauern.<br />

Diese und die 24 Trafostationen, 76 Pumpwerke und 28 Absperrbauwerke bzw. Schieberschächte<br />

machen den Machlanddamm, so der in der Bevölkerung gebräuchliche Name für<br />

das Schutzbauwerk, zu einer der komplexesten und größten Hochwasserschutzanlagen in<br />

Österreich. (Machland-Damm Betriebs GmbH)<br />

Entlang der Hochwasserschutzanlage wurden insgesamt 13 Pegelmessstellen zur Beobachtung<br />

der Wasserspiegellagen errichtet. Die Messung erfolgt mittels redundant ausgeführter<br />

Drucksonden. Die Beobachtungen werden an die Leittechnikzentrale fernübertragen.<br />

Die Steuerung der Pumpstationen und Verschlussobjekte erfolgt autark an den einzelnen<br />

Objekten, die Überwachung ist zentral über die Leittechnikzentrale des Betreibers möglich.<br />

Der umfangreiche Einsatz von mobilen Hochwasserschutzsystemen stellt für alle Beteiligten<br />

eine große Herausforderung vor allem beim Aufbau und der Überwachung dieser Anlagenteile<br />

dar. Beispielhaft seien hier der etwa 1,6km lange mobile Hochwasserschutz der Gemeinde<br />

Mauthausen sowie der 750m lange Mobilschutz der Gemeinde Grein erwähnt. Ersterer weist<br />

902 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


eine maximale Höhe von 2,6m auf. In drei Aufbauphasen werden 218, 189 und 132<br />

Steher aufgestellt, zwischen denen 658, 2050 und 2698 Dammbalken einzulegen sind.<br />

In der Gemeinde Grein beträgt die maximale Höhe der Mobilschutzwand entlang der<br />

Donaulände sogar 4,4m. Diese wird in 5 Aufbauphasen von bis zu 4 parallel arbeitenden<br />

Trupps errichtet. Am aufbauintensivsten erweist sich hierbei die Phase 2 mit rund<br />

200 Stützen und gut 700 Dammbalken.<br />

GEFAHRENANALYSE MITTELS NUMERISCHER 2D-MODELLIERUNGEN<br />

Aufgrund unterschiedlicher Exposition der Gemeinden im Machland-Nord unterscheidet sich<br />

die Überflutungssituation bei Donauhochwasser in den 7 Gemeinden. Historisches Wissen<br />

über den Ablauf und das Auftreten von hochwasserbedingten Überflutungen wurde durch<br />

die Errichtung der Hochwasserschutzanlage „Machland-Nord“ obsolet. Daher war es notwendig,<br />

das Überflutungsgeschehen für den Bemessungsfall sowie den Verlauf von Überflutungen<br />

bei Überlastereignissen mittels numerischer hydrodynamischer 2d-Modellierungen<br />

abzubilden. Die untersuchten Überlastfälle umfassen die Überströmung der Schutzanlage<br />

aufgrund eines Ereignisses größer dem Bemessungsfall, Dammbrüche, Versagen mobiler<br />

Hochwasserschutzanlagen sowie Systemversagen (hier im speziellen den Ausfall von Pumpstationen).<br />

Je nach untersuchtem Szenario erfolgten die Modellierungen stationär oder<br />

instationär. Die Welle des Hochwassers vom August 2002 diente als Vorlage für die instationären<br />

Simulationen.<br />

Die Modellierungsergebnisse wurden für unterschiedliche Zwecke ausgewertet. Der Betreiber<br />

der Hochwasserschutzanlage benötigte vor allem Informationen über den Anstieg der<br />

Wasserspiegel zu Beginn des Hochwassers, zur Ausarbeitung von Zeit-Phasen-Plänen für den<br />

gestaffelten Aufbau der mobilen Hochwasserschutzanlagen. Für die behördlichen Einsatzleitungen<br />

der Gemeinden und des Bezirks waren die potentiellen Überflutungen, deren<br />

zeitlicher Verlauf sowie die zu erwartenden Wasserstände im geschützten Hinterland in<br />

Überlastfällen von Bedeutung, um eventuelle Evakuierungen bestmöglich vorbereiten zu<br />

können.<br />

Als Ergebnis der numerischen 2d-Modellierungen wurden Gefahrenkarten erstellt, die das<br />

potentielle Überflutungsgebiet und die zu erwartenden Wassertiefen sowie das Ausbreitungsverhalten<br />

zeigen. Die erstellten Planunterlagen unterstützen die Entscheidungsträger bei<br />

der Ermittlung potentieller Gefahren infolge von Versagensszenarien oder Überlastfällen,<br />

sie ermöglichen die Identifizierung betroffener Siedlungsgebiete und können dadurch als<br />

Planungsgrundlage für die Steuerung einer gezielten Information Betroffener dienen.<br />

BETRIEBSVORSCHRIFTEN FÜR DIE HOCHWASSERSCHUTZANLAGE<br />

Die Machland-Damm Betriebs GmbH hat als Betreiber der Hochwasserschutzanlage „Machland-Nord“<br />

den behördlichen Auftrag, die Schutzanlage jederzeit in einem voll funktions-<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 903


tüchtigen Zustand zu erhalten. Als Hilfestellung für den Betreiber wurden Betriebsvorschriften<br />

erstellt. Diese umfassen Betriebspläne für den Trockenwetterbetrieb, den Hochwasser -<br />

betrieb sowie den Überlastfall.<br />

Zur Erfüllung des behördlichen Auftrags ist es notwendig, regelmäßige Wartungs- und In -<br />

standhaltungsmaßnahmen im Trockenwetterbetrieb durchzuführen. Dazu geben die<br />

Betriebsvorschriften Art, Umfang und Intervall dieser Maßnahmen an. Beigelegte Formblätter<br />

dienen der lückenlosen Dokumentation der Arbeiten. Im Hochwasserbetrieb sind Kontrollund<br />

Überwachungsmaßnahmen zu setzen. Es sind Wasserstände und Freibordwerte an<br />

Lattenpegeln abzulesen. Entdeckte Schäden an der Schutzanlage sind umgehend zu melden.<br />

Für diese Tätigkeiten liegen den Betriebsvorschriften Formblätter zur Dokumentation und<br />

Meldung bei. Die Schutzanlage ist auch in Überlastfällen bestmöglich zu beobachten und –<br />

in Zusammenarbeit mit den Katastrophenschutzbehörden und Einsatzorganisationen - zu<br />

verteidigen.<br />

NOTFALLPLÄNE DONAUHOCHWASSER DER BEHÖRDEN<br />

Trotz der Errichtung der Hochwasserschutzanlage „Machland-Nord“ haben die behördlichen<br />

und technischen Einsatzleitungen der 7 Gemeinden im Machland Nord sowie des Bezirkes<br />

Perg im Hochwasserfall zahlreiche Maßnahmen zur Vorbereitung und Bewältigung eines<br />

Donauhochwassers in ihrem Zuständigkeitsbereich zu treffen. Eine Kernaufgabe dabei ist<br />

die Information der Betroffenen. Die Errichtung der Hochwasserschutzanlage hat für die<br />

zuständigen Katastrophenschutzbehörden sogar zu zusätzlichen Aufgaben geführt. Neben<br />

den Notfallplänen für den Hochwasserfall wurden auch Notfallpläne für die vorab analysierten<br />

Überlastfälle erstellt. Dabei werden zusätzlich Evakuierungsmaßnahmen berücksichtigt.<br />

Die Notfallpläne enthalten dazu Maßnahmen der Warnung / Alarmierung, Information und<br />

Verständigung sowie der Koordination mit den wesentlichen Akteuren.<br />

Die Notfallpläne Donauhochwasser beinhalten eine Sammlung wesentlicher Tätigkeiten,<br />

zusammengestellt in einem Maßnahmenkatalog und ergänzt um Maßnahmenblätter. Die<br />

Maßnahmen werden dabei konkreten Kriteriums-Wasserständen zugeordnet, bei deren<br />

Erreichen sie erstmals bzw. einmalig gesetzt werden. Der Maßnahmenkatalog stellt dadurch<br />

eine Liste zu setzender Maßnahmen und Tätigkeiten dar, die mit steigendem Wasserstand<br />

nach und nach abzuarbeiten sind. Ziel der Notfallpläne Donauhochwasser ist es, den<br />

handelnden Akteuren in den zuständigen Katastrophenschutzbehörden Leitlinien für deren<br />

Handeln im Hochwasserfall zu geben. Der Maßnahmenkatalog ist daher nicht als starre<br />

Vorgabe zu sehen, da Hochwässer stark unterschiedlich ablaufen können, was unterschiedliche<br />

Vorgehensweisen bezüglich der Vorbereitung, Bewältigung und Verteidigung notwendig<br />

macht. Die Maßnahmenblätter enthalten detaillierte Informationen zur Durchführung der<br />

geplanten Tätigkeiten, Lageskizzen und Verweise auf die jeweils gültigen Gesetzestexte.<br />

Die Kriteriums-Wasserstände beziehen sich primär auf lokale Pegel, die von den Gemeinden<br />

selbst beobachtet werden können bzw. über deren Pegelstände sie in regelmäßigen Abstän-<br />

904 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


den informiert werden. Ist dies nicht möglich kann auf allgemein zugängliche Beobachtungsdaten<br />

von 2 Pegelstationen des Landes Oberösterreich zurückgegriffen werden. Für diese<br />

stehen im Hochwasserfall zusätzlich Prognosewerte der Wasserstände zur Verfügung. Die<br />

Verwendung lokaler Pegel hat den Vorteil, dass Abweichungen infolge unsicherer Pegelrelationen<br />

ausgeschaltet werden. Dies ist vor allem in jenen Gemeinden wichtig, die im Hinterland<br />

liegen und für die eine direkte Umlegung eines Donauwasserstandes auf lokale Wasserstände<br />

meist nur ungenau möglich ist.<br />

EVAKUIERUNGSPLÄNE DER GEMEINDEN<br />

Die Evakuierungspläne der 7 Gemeinden im Machland Nord schließen thematisch direkt an<br />

die Notfallpläne der Gemeinden an. Wird gemäß Notfallplan Donauhochwasser eine<br />

Evakuierung eingeleitet, können die Behörden auf die Inhalte und Produkte der Evakuierungspläne<br />

als Informationsquelle zurückgreifen. Diese zeigen in Textdokumenten, Datenblättern<br />

und Lageplänen wer oder was, wann, von wem und womit, wohin evakuiert<br />

wird und von wem er/sie/es dort versorgt wird. Die Unterlagen sind dabei so gestaltet, dass<br />

sie leicht ins Feld mitgenommen werden können und beispielsweise ortsfremden Einsatzkräften<br />

als Arbeitsgrundlage und Informationsquelle dienen können.<br />

Ein wesentlicher Schritt im Zuge der Erstellung der Evakuierungspläne ist die Abgrenzung<br />

von Evakuierungszonen. Das sind Bereiche die hinsichtlich des Gefahrenpotentials als<br />

vergleichbar angesehen werden können. Für diese Evakuierungszonen wurde die Anzahl<br />

betroffener Personen und zu evakuierender Nutztiere zusammengestellt. Weiters wurden<br />

Evakuierungsrouten und Sammelpunkte für Personen ohne eigenem Fahrzeug definiert.<br />

Ergänzt werden die Evakuierungspläne durch Analysen und Erhebungen zu den Themen<br />

Transportlogistik (z.B.: wo kann ich Transportfahrzeuge anmieten) und Unterkunftsmanagement<br />

(Kriterien für Notunterkünfte; geeignete Standorte).<br />

FAZIT – ERFAHRUNGEN IM HOCHWASSER VON JUNI 2013<br />

Eine effektive Maßnahme zur Verringerung von Hochwasser-Risiko ist die Verringerung des<br />

Schadenspotentials, beispielsweise durch Absiedlung in hochwassersichere Bereiche. Dieser<br />

Ansatz wurde in der Planungsphase des Hochwasserschutzes im Machland Nord als Teil eines<br />

integrierten Hochwassermanagements in Österreich erstmals großflächig angewandt. Dabei<br />

wurden über 230 Wohnobjekte abgesiedelt. Die Bewohner erhielten eine entsprechende<br />

Ablöse für ihr Wohnobjekt und wurden von Seite der Gemeinden bei der Suche nach<br />

Ersatzstandorten unterstützt.<br />

Das Hochwasser von Juni 2013, das das Bemessungsziel der Hochwasserschutzanlage erreicht<br />

bzw. mancherorts leicht übertraf hat gezeigt, dass die frühzeitige Einbindung der zuständigen<br />

Akteure des Hochwasser- und Katastrophenschutzes dazu führt, Akzeptanz und einen hohen<br />

Informationsgrad die erstellten Unterlagen und Operate betreffend zu schaffen.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 905


Abbildung 1: Lage des Projektgebietes in Ost-Österreich<br />

Die Rollenverteilung der handelnden Akteure im Machland Nord ist durchaus komplex. Als<br />

Beispiel sind die örtlichen Feuerwehren zu nennen. Diese erhalten Anfragen und Aufträge<br />

von mehreren Stellen. Sie errichten den mobilen Hochwasserschutz und führen Dammwachen<br />

im Auftrag des Dammbetreibers durch, gleichzeitig setzen sie Verteidigungsmaßnahmen<br />

oder führen Evakuierungen im Auftrag der behördlichen Einsatzleitung durch. Umso<br />

wichtiger ist es gut koordiniert vorzugehen, um potentiellen Schwachstellen wie Personalengpässen<br />

frühzeitig entgegen zu wirken.<br />

Die notwendige enge Kooperation und Koordination zwischen der Machland-Damm Betriebs<br />

GmbH als Betreiber der Hochwasserschutzanlage, den behördlichen Einsatzleitungen auf<br />

Bezirks- und Gemeindeebene, der technischen Einsatzleitungen auf Bezirks- und Gemeindeebene,<br />

dem Bezirkspolizeikommando und den Polizeiinspektionen, dem Rotem Kreuz sowie<br />

906 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 2: Übersichtslagedarstellung der Hochwasserschutzanlage „Machland-Nord“<br />

den Straßenmeistereien hat während des Hochwassers von Juni 2013 vorbildlich und effektiv<br />

funktioniert. Die stets verfügbare Fachberatung und offene Kommunikation durch die vom<br />

Betreiber eingesetzten externen Experten hatten großen Mehrwert für die behördlichen<br />

Einsatzleitungen, vor allem zu fortgeschrittenem Zeitpunkt als der Überlastfall drohte.<br />

(Schwingshandl A., Liehr C., Heidrich R. (2013))<br />

Dank der Umsetzung der Maßnahmen des Trockenwetterbetriebs und Hochwasserbetriebs<br />

der Betriebsvorschriften wurden die Vorbereitungs- und Kontrollmaßnahmen des Betreibers<br />

zeitgerecht und korrekt umgesetzt. Dadurch bedingt waren die mobilen Hochwasserschutzanlagen<br />

rechtzeitig einsatzbereit, die erforderlichen Straßensperren und Umleitungsstrecken<br />

ordentlich eingerichtet sowie die elektromaschinellen Anlagenteile wie Pumpstationen,<br />

Schieberbauwerke und Energieversorgungspunkte betriebsbereit.<br />

Die vom Betreiber organisierten Dammwachen (Durchführung durch die örtlichen Feuerwehren)<br />

leisteten bei teilweise widrigen Wetterbedingungen ausgezeichnete Arbeit. Die<br />

aufmerksamen Dammwachen hatten durch ihre raschen Meldungen erheblichen Anteil<br />

daran, dass die aufgetretenen Problemstellen an den Erddämmen erfolgreich verteidigt<br />

werden konnten. (Schwingshandl A., Liehr C., Heidrich R. (2013)) Gleichzeitig standen die<br />

örtlichen Feuerwehren der betroffenen Bevölkerung im Zuge des Katastrophenhilfsdienstes<br />

im Auftrag der behördlichen Einsatzleitung zur Seite. Ein Hauptgrund für die ausgezeichnete<br />

Arbeit der örtlichen Feuerwehren waren die gute Schulung der Einsatzkräfte und die<br />

Teilnahme an den regelmäßig durchgeführten Montage- und Alarmübungen durch den<br />

Betreiber im Trockenwetterfall.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 907


Während des Hochwassers von Juni 2013 wurden einzelne Siedlungsgebiete aufgrund hoher<br />

Beaufschlagung der Schutzanlage oder beobachteter Schadstellen an den Erddämmen<br />

vorsorglich evakuiert. Die dabei gewonnenen Erfahrungen wurden bei der Erstellung der<br />

Evakuierungspläne berücksichtigt.<br />

Hochwasser-Risikomanagement ist ein andauernder Prozess mit zahlreichen Beteiligten.<br />

Neben der Schaffung von Fachgrundlagen ist es wichtig eine gute Vernetzung der handelnden<br />

Akteure und Beteiligten in diesem Prozess zu schaffen. Der Wissensstand um die<br />

Fachgrundlagen, Abläufe und erforderlichen Maßnahmen ist speziell in längeren Phasen<br />

ohne Hochwasser durch regelmäßige Stabs-, Alarm- und Einsatzübungen hoch zu halten.<br />

Dies erleichtert es auch neuen Akteuren z.B. nach Personalwechsel leicht in das bestehende<br />

System einzusteigen.<br />

Eine wesentliche Aufgabe im Hochwasser-Risikomanagement besteht in der Information der<br />

Betroffenen. Je höher deren Wissenstand über die eigene Gefährdung, mögliche Vorsorge-,<br />

Verteidigungs- und Evakuierungsmaßnahmen, desto eher werden diese Gruppen im<br />

Ereignisfall Verständnis für behördliche Anordnungen aufbringen und entsprechend positiv<br />

darauf reagieren. Vor Errichtung der Hochwasserschutzanlage „Machland-Nord“ waren große<br />

Gebiete des nun geschützten Raumes auch bei kleineren häufigeren Hochwässern von<br />

Überflutungen betroffen. In diesen Gebieten hat die Bevölkerung in den letzten Jahrzehnten<br />

gelernt mit dem Hochwasser zu leben und entsprechend darauf zu reagieren. Diese Situationen<br />

fallen zukünftig weg. Hochwasser wird nur mehr selten zu Überflutungen hinter der<br />

Schutzanlage führen. Vor allem ortsfremde, neu zugezogene Personen können die Gefährdung<br />

durch Hochwasser aufgrund der fehlenden kleineren häufigeren Überflutungen nicht<br />

erlernen. Daher ist es von besonderer Wichtigkeit, dass die zuständigen Katastrophenschutzbehörden<br />

hier in regelmäßigen Abständen informieren.<br />

Gut geschulte Entscheidungsträger und eine gut informierte Bevölkerung erleichtern die<br />

Arbeit im Hochwasserfall für alle Beteiligten und erhöhen die Chance Leben zu schützen und<br />

Schäden zu verringern.<br />

LITERATUR<br />

- Schwingshandl A., Liehr C., Heidrich R. (2013). „Hochwasserschutz Machland-Nord – Bewährungsprobe<br />

im Hochwasser Juni 2013“. Österreichische Wasser- und Abfallwirtschaft<br />

7-8/13: 273-279.<br />

- Machland-Damm Betriebs GmbH; www.machlanddamm.at<br />

908 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Flood forecasting system for the Tyrolean Inn River<br />

(Austria): current state and furtherenhancements of<br />

a modular forecasting system for alpine catchments<br />

Matthias Huttenlau, Dr. 1 ; Johannes Bellinger 1 ; Paul Schattan 1 ; Kristian Förster 1 ; Felix Oesterle 1 ; Katrin Schneider 1 ;<br />

Stefan Achleitner 2 ; Johannes Schöber 3 ; Georg Raffeiner 4 ; Robert Kirnbauer 5<br />

ABSTRACT<br />

Several severe flood events in Central Europe show the vulnerability of society living along<br />

water courses. On the one side, operational flood forecasting systems contribute to reduce<br />

vulnerability and increase resilience in flood risk management. On the other side, a runoff<br />

forecasting system used by energy providers also has an economic dimension in terms of their<br />

day-to-day business providing advanced planning capabilities used in the hydro-power plant<br />

operation. Combining these two aspects, the best way for its realization is a coordinated<br />

development, which is able to (i) fulfill its responsibility in the context of flood risk management<br />

and (ii) support the advanced hydro-power plant management of the energy provider.<br />

In this context, the following paper presents the current state and further enhancements of<br />

the flood forecasting system of the Tyrolean Inn River. Especially in its alpine catchments the<br />

operation of the forecasting system is challenging. Short times of runoff concentration times<br />

paired with a terrain of complex processes for runoff generation and flood wave propagation.<br />

KEYWORDS<br />

operational flood forecasting; hybrid hydrological/hydraulic system; Inn River; predictive<br />

accuracy; alpine hydrology<br />

INTRODUCTION<br />

The Austrian Province of Tyrol is a typical mountain region, where process dynamics are<br />

generally higher than in the low lands due to strong altitudinal gradients, which are relevant<br />

for flood forecasting at small spatial and temporal scales. Only a small proportion of the<br />

total area, which is concentrated in the valley floors in close vicinity to streams, is available<br />

for permanent human settlement. Tyrol is part of the Eastern Alps and covers an area of<br />

12,640 km 2 with an elevation range from 462 m up to 3,798 m a. s. l. Due to topographically<br />

controlled limits, only 12.8 % of the area is available for permanent settlement of which only<br />

0.4 % is declared as residential area populated by approximately 700,000 inhabitants (Amt<br />

der Tiroler Landesregierung, 2014). The circumstance that a very high proportion of the<br />

1 alpS Centre for Climate Change Adaptation, Innsbruck, AUSTRIA, huttenlau@alps-gmbh.com<br />

2 Unit of Hydraulic Engineering, University of Innsbruck (Austria)<br />

3 TIWAG - Tiroler Wasserkraft AG, Innsbruck (Austria)<br />

4 Hydrographic Service, Regional Government of Tyrol, Innsbruck (Austria)<br />

5 Institute for Hydraulic and Water Resources Engineering, Vienna University of Technology, (Austria)<br />

IP_<strong>2016</strong>_FP030<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 909


esidential areas are located in valley floors leads consequently to a high exposure to flooding.<br />

In Tyrol, 105,330 people and a cumulative asset exposure of buildings and their contents<br />

(e.g. residential, public, trade and industry) of approximately EUR 7.6 billion are exposed<br />

within floodplains with a recurrence interval of 300 years (Huttenlau et al. 2010).<br />

The vulnerability of society living along watercourses in general was clearly shown by the<br />

severe European flood events in the years 1999, 2002, 2005 and 2013. Currently no reliable<br />

information about changes in the characteristics or the return periods of future flood events<br />

in Austria is available, especially under climate change conditions (Nachtnebel et al., 2014).<br />

Irrespective of different future damage potentials and damage symptoms, a reliable increase<br />

of the flood damages, mainly caused by the population growth and socioeconomic development,<br />

can be expected (König et al., 2014). Flood forecasting as a central component of early<br />

warning and decision support systems is an efficient instrument to minimize false alarms and<br />

enables effective emergency response for decision making. Beside other preliminary measures<br />

in the framework of integrated flood risk management (IFRM) like flood protection and land<br />

use planning, emergency management is one of the major pillars to reduce flood risk and<br />

a matter of public policy. Energy suppliers also apply runoff forecast systems to advance<br />

decision making in their day-to-day business and to support management decisions with<br />

respect to flood control through hydropower plants (often a requirement of official decisions).<br />

Combining these two aspects, the best way for its realization is a coordinated development,<br />

which is able to fulfill its responsibility in the context of flood risk management and also<br />

support the advanced hydro-power plant management of energy suppliers. Such a development<br />

of an operational forecasting system for the Tyrolean part of the Inn River was realized<br />

in a joint public-private research initiative of the affiliated institutions. In detail, the development<br />

of the system was mainly located at the research center “alpS – Centre for Climate<br />

Change Adaptation”, which participates on the COMET-program of the Austrian Research<br />

Promotion Agency (FFG). The program builds a platform for jointly defined research<br />

programs in the field of science-industry cooperation. Besides the partitioning of the costs the<br />

close cooperation includes furthermore regular communications about practical experiences<br />

as well as the latest scientific knowledge to fulfil the requirements.<br />

Especially the operationalization and advancement of such forecasting systems, with respect<br />

to complexity of runoff generation and flood wave propagation, is challenging. This is<br />

especially true considering alpine catchments, which are characterized by very short times of<br />

runoff concentration, which in turn limits the response time. This contribution presents the<br />

current state of the operational forecasting system HoPI (“Hochwasserprognose für den<br />

Tiroler Inn”), describes some operational applications, and shows ongoing research activities.<br />

HISTORY AND SETUP OF THE FLOOD FORECASTING SYSTEM<br />

Following the flood event in 2002, the development of the presented flood forecasting system<br />

started with the prototype of the modular-based, hybrid hydrological/hydraulic system<br />

(Senfter et al., 2009) from 2003 to 2006. Unfortunately, the system was not yet available for<br />

the operational flood forecasting service at the Hydrographic Office of the Province of Tyrol,<br />

910 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


when a Vb (5b) track cyclone struck against the north side of the Alps in August 2005.<br />

This heavy precipitation event led to massive floods within the Alpine Ridge. In the Paznaun/<br />

Stanzer valley and the district Außerfern (see figure 1), floods were measured with return<br />

periods greater than 100 years. At the gauge Innsbruck, a return period of 200 years was<br />

observed (Godina, 2006). A verifiable reduction of the maximum instantaneous discharge of<br />

about 15 cm was attributable to the retention in several water reservoirs of the TIWAG and<br />

also to inter-basin diversion from the catchments of the Paznaun/Stanzer valley into water<br />

reservoirs of the Vorarlberger Illwerke. Thus, hydro-power plant operation helped to prevent<br />

the imminent overbank flooding in the city of Innsbruck (Schönlaub und Hofer 2009).<br />

Figure 1: Spatial extent of the HoPI system including the hydrologic/hydraulic model components. The models for the Inn headwaters in<br />

Switzerland are currently under preparation.<br />

After the successful integration into the operational flood forecasting service at the Hydrographic<br />

Office of the Province of Tyrol the developments of the subsequent project phase<br />

(2006-2009) were mainly characterized by further adaptations to requirements for practical<br />

use. This improvement ensured the reliability of the whole system and formed the basis for<br />

the current model optimization as well as the identification and quantification of system<br />

uncertainties. Achleitner et al. (2012) analyze the operational performance of the hydrological<br />

models and result in a strong dependency to the meteorological observations and<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 911


meteorological forecasts, respectively. Furthermore they propose the implementation of<br />

model state updating routines for further improving of the forecasting quality. The current<br />

operational forecasting system is set up as a permanently operating tool, running at hourly<br />

time steps, for the 200 km-long segment of the Austrian part of the River Inn between the<br />

Swiss-Austrian border and the Austrian-German border. The river catchment at the Austrian-German<br />

border covers an area of 9,700 km 2 in total. Forecasted discharges at the<br />

Austrian-German border are provided as input to the forecast model for Bavaria (Germany).<br />

The forecasting system HoPI comprises different types of deterministic models and data<br />

management software components. Its current implementation has a modular hybrid<br />

hydrological / hydraulic character (Achleitner et al., 2009) and is structured in (i) the data<br />

management and preprocessing, (ii) the hydrological simulation of tributary catchments and<br />

(iii) the hydraulic simulation of the Inn River. The procedure starts with the import of<br />

observed data since the last system run and the prognosis data for the upcoming forecast.<br />

Measured meteorological station data is interpolated and processed as input data for the<br />

models. For the forecasting period, the observed time series are extended with meteorological<br />

forecast data. Currently, the runoff generation from 10 glaciated sub-catchments, with an<br />

overall area of 620 km², is modelled with the fully distributed water-balance model SES<br />

(Snow and Icemelt Model) (Asztalos et al., 2007, Schöber et al., 2014). The accumulation and<br />

melt processes of snow, firn and ice are considered on basis of an energy-balance-equation on<br />

a 50 m grid. The simulated outflow of snow, firn, glacier ice, rock and subsurface flow to the<br />

catchments outlet is transformed via five Nash-Cascades. To run this model, data of precipitation,<br />

temperature, humidity, wind speed, and global radiation are required. Subsequently, the<br />

runoff modelled by SES is used as additional boundary conditions for the downstream<br />

hydrological model. By contrast, runoff generation from non-glaciated sub-catchments is<br />

modelled with the semi-distributed water balance model HQsim (Kleindienst, 1996) based on<br />

the HRU concept, which aggregate areas with similar soil type, aspect and elevation. At each<br />

HRU, processes of snow accumulation and melt (day-degree approach), evapotranspiration,<br />

interception, infiltration into the unsaturated zone as well as the saturated zone are included.<br />

Thereby the runoff is partitioned into surface flow, interflow and base flow. After calculation<br />

of runoff at each HRU, it is concentrated at the nearest point of the channel network and<br />

routed downstream by a non-linear storage cascade towards the catchment’s outlet. In total,<br />

50 tributary catchments, including 13 gauged catchments, are independently simulated.<br />

As before, the modelled runoff provides the boundary conditions for the commercial<br />

1D-hydraulic model FluxDSS/DESIGNER/FLORIS2000, which represents the Tyrolean Inn<br />

segment from the gauge Martinsbruck at the Swiss border to the gauge Kufstein at the<br />

German border (fig. 1).<br />

APPLICATION<br />

The briefly described hybrid model has a temporal forecast period up to 48 h and is driven by<br />

hydro-meteorological parameters of the Integrated Nowcasting through Comprehensive<br />

Analysis (INCA) System provided by the Austrian Meteorological Office (ZAMG) on hourly<br />

912 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


asis. At present, the models are initialized using online transmitted meteorological and<br />

hydrological data prior to the forecast, for which INCA provides all needed boundary<br />

conditions. Currently, HoPI is run every hour at the Hydrographic Office of the Province of<br />

Tyrol mainly for flood forecasts and also at TIWAG where it is used as well as decision support<br />

system for water management tasks. An additional instance is operated once a day at the<br />

research centre alpS, but to ensure the system safety the results are shared among the three<br />

stakeholders. However, further actions require decisions by a hydrologist on duty. For<br />

example, supported by HoPI predictions, the water level in the reservoirs of storage power<br />

plants can be lowered as early as possible by increased power generation, if an extreme event<br />

is expected to occur. In the case of a pumped-storage power station, water can be pumped<br />

from lower to upper stage reservoirs (Hofer et. al, 2013). In case of emergency the collaboration<br />

of relevant government departments (e. g. Tyrolean Regional Hazard Warning Centre,<br />

Tyrolean Fire Service Association) is legally predefined. The Hydrographic Office of the<br />

Province Tyrol informs, based on the runoff predictions of HoPI as well as expert assessments<br />

of the meteorological forecast, about the current flood risk and updates the situation by<br />

current measurements and predictions within the event. The hydro power plant management<br />

remains by the operators, who usually adapt the operating schedule to relieve the situation.<br />

If a danger to life and limb is foreseeable, the government agency could give eventual<br />

instructions to protect the general public interest. Since HoPI was implemented into the<br />

operational flood forecasting, no major flood event occurred at the River Inn in Tyrol. Within<br />

the extreme flooding in Central Europe in June 2013, an occluded front system reached the<br />

north side of the Alps (Hydrographischer Dienst Tirol, 2013). The heavy rainfall passed the<br />

HoPI catchments and hit the adjacent catchments. Nevertheless, floods with a return period<br />

of around 20/25 years were observed at the Inn tributary catchments “Brandenberger Ache”<br />

and “Brixentaler Ache”. Figure 2 (a) features the hydrograph of the gauge “Bruckhäusl” at<br />

the Brixental tributary. In May 2013 the runoffs were slightly overestimated using the<br />

measured data, but with the onset of the rainfall the model simulated the flood event very<br />

well. Solely the simulated peak runoff (173 m³/s) underestimates the observed value (190<br />

m³/s) by around 9 %. Figure 2 (c) shows the HoPI-prognoses obtained several hours before<br />

the event. Due to their strong relation to the meteorological forecasts, the prognoses<br />

estimated the observed runoff not earlier than 18 hours before the event. Besides its initially<br />

defined target the flood forecasting, the HoPI system is currently used for several water<br />

management tasks, such as the prognosis of appropriate runoffs for flushing sediments from<br />

river power plants. Figure 2(b) depicts the HoPI-simulation of such a situation: within the<br />

second and third week in July 2014 a cyclone lead to heavy thunderstorms in the north of<br />

Tyrol with an increasing runoff exceeding the flood mark of the yearly return period at the<br />

gauge “Bruckhäusl”. Due to satisfactory hydrological forecasts of the HoPI system (Fig. 2 (d)),<br />

this event was used to flush the local hydro power plant by the TIWAG.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 913


Figure 2: The figures (a) and (b) show observed and simulated hydrographs (with observed forcing data) of two exemplarily flood events<br />

at the “Bruckhäusl” gauge (Brixentaler Ache). Hydrographs in figures (c) and (d) show the accuracy of the HoPI-prognoses obtained<br />

several hours before the event.<br />

CONCLUSION AND FURTHER ADVANCEMENTS<br />

Overall, the presented forecasting system is a reliable and powerful tool for flood forecasting.<br />

Since nature is a very complex system, there will always be poorly predictable events, even if<br />

the presented applications deliver satisfactory results. To further increase the reliability and<br />

flexible use of the HoPI system for future tasks within the water resources management of<br />

Tyrol, different enhancements are planned such as:<br />

– An alternative online coupling of both applied hydrological models to benefit from their<br />

specific advantages: the power of the SES model is doubtless the snow simulation of<br />

914 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


unforested areas, whereas a more sophisticated concept of soil processes and runoff routing<br />

is implemented in HQsim.<br />

– Since the accuracy of the simulated runoff is mainly related to the input forcing data, the<br />

reliability of the predicted runoff up to 48 h depends as well as on the applied INCA data.<br />

Ensemble datasets for INCA, which became available recently, are to be used besides the<br />

main INCA run to introduce an uncertainty bandwidth in the forecast.<br />

– To provide an additionally medium-range forecast (up to 10 days), the current forecast<br />

period will be extended using statistically corrected Global Forecast System (GFS) data.<br />

– In alpine headwater catchments, both total solid precipitation and snow redistribution are<br />

major sources of uncertainty. Terrestrial laser scan campaigns and new methods for<br />

measuring snow water equivalent (SWE) at different spatial scales are applied to further<br />

develop snow-hydrological modelling.<br />

– To compensate for poor simulation of snow melt in spring periods (resulting from incorrect<br />

snow accumulation during winter), data assimilation from different snow data sets is<br />

planned. Remote sensing data from optical sensors (e.g. MODIS, Sentinell-2) will be used<br />

to provide information of the snow-covered area in daily or near daily temporal resolution.<br />

Synthetic Aperture Radar (SAR) based products will be used to assimilate areas where<br />

snow is melting. Despite few stations measuring SWE directly, an overall number of 100<br />

snow gauges, distributed over the whole tributary catchments, will be used as additional<br />

data to estimate SWE from snow depth (Schöber 2015), serving as an additional calibration<br />

dataset besides runoff and snow cover.<br />

LITERATURE<br />

- Achleitner, S., Rinderer, M., and Kirnbauer, R. (2009): Hydrological modeling in alpine<br />

catchments: sensing the critical parameters towards an efficient model calibration, in: Water<br />

Sci. Technol. 60(6), S. 1507–1514.<br />

- Achleitner, S., Schöber, J., Rinderer, M.,Leonhardt, G., Schöberl, F., Kirnbauer, R., and<br />

Schönlaub, H. (2012): Analyzing the operational performance of the hydrological models in<br />

an alpine flood forecasting system, in: J. Hydrol., 412-413, S. 90–100.<br />

- Amt der Tiroler Landesregierung (2014): Statistisches Handbuch Bundesland Tirol 2014,<br />

Innsbruck.<br />

- Asztalos, J., Kirnbauer, R., Escher-Vetter, H., and Braun, L. (2007): A distributed energy<br />

balance snow and glacier melt model as a component of a flood forecasting system for the Inn<br />

River, in: Proceedings of the Alpine Snow Workshop, 5-6. Oktober 2006, Berchtesgaden<br />

National Park research 53, S. 9–17.<br />

- Godina, R., Lalk, P., Lorenz, P., Müller, G., and Weilguni, V. (2006): Hochwasser 2005 –<br />

Ereignisdokumentation, in: Teilbericht des Hydrographischen Dienstes, Bundesministerium<br />

für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien.<br />

- Hofer, B., Schöber, J. and Perzlmaier, S. (2013): Flood control – Principles for the operation<br />

of existing and the planning of new storage power plants, in: International Conference and<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 915


Exhibition (Hydro 2013). Promoting the Versatile Role of Hydro. Sutton: Aqua-Media<br />

International, 18.06. Innsbruck<br />

- Huttenlau, M., Stötter, J., and Stiefelmeyer, H. (2010): Risk-based damage potential and loss<br />

estimation of extreme flooding scenarios in the Austrian Federal Province of Tyrol, in: Nat.<br />

Hazards and Earth Syst. Sci. 10(12), S. 2451–2473.<br />

- Hydrographischer Dienst Tirol (2013): Hochwasserereignis 31.5. bis 2.6.2013 im Tiroler<br />

Unterland. Hydrologischer Kurzbericht. URL https://www.tirol.gv.at/fileadmin/themen/<br />

umwelt/wasserkreislauf/downloads/Kurzbericht_Hochwasser_Juni_2013.pdf.<br />

Kleindienst (1996): H. Erweiterung und Erprobung eines anwendungsorientierten hydrologischen<br />

Modells zur Gangliniensimulation in kleinen Wildbacheinzugsgebieten. Master<br />

Thesis, Ludwig Maximilians Universität München.<br />

- König, M., Loibl,W., Steiger, R., Aspöck, H., Bednar-Friedl, B., Brunner, K. M., Höferl, K.<br />

M., Huttenlau, M., Walochnik, J., and Weisz, U. (2014): Der Einfluss des Klimawandels auf<br />

die Anthroposphäre, in: Österreichischer Sachstandsbericht Klimawandel 2014, APCC, S.<br />

641–704. Verlag der Österreichischen Akademie der Wissenschaften, Wien, Österreich.<br />

- Nachtnebel, H. P., Dokulil, M., Kuhn, M., Loiskandl, W., Sailer, R., and Schöner, W. (2014):<br />

Der Einfluss des Klimawandels auf die Hydrosphäre, in: Österreichischer Sachstandsbericht<br />

Klimawandel 2014, APCC, S. 411–466. Verlag der Österreichischen Akademie der Wissenschaften,<br />

Wien, Österreich. ISBN 978-3-7001-7699-2.<br />

- Senfter, S., Leonhardt, G., Oberparleiter, C., Asztalos, J., Kirnbauer, R., Schöberl, F., and<br />

Schönlaub, H. (2009): Flood Forecasting for the River Inn, in: Veulliet, E., Stötter, J., and<br />

Weck-Hannemann, H.: Sustainable Natural Hazard Management in Alpine Environments, S.<br />

35–67, Springer-Verlag, Berlin Heidelberg.<br />

- Schöber, J., Schneider, K., Helfricht, K., Schattan, P., Achleitner, S., Schöberl, F., Kirnbauer,<br />

R. (2014): Snow cover characteristics in a glacierized catchment in the Tyrolean Alps –<br />

Improved spatially distributed modelling by usage of Lidar data, J. Hydrol. 519, S. 3492–3510.<br />

- Schöber, J., Achleitner, S., Bellinger, J., Kirnbauer, R., Schöberl, F. (2015): Analysis and<br />

modelling of snow bulk density in the Tyrolean Alps, in: Hydrol. Res. (in press).<br />

- Schönlaub, H., Hofer, B. (2009): Die Hochwassersituation bei abgeleiteten Bächen, in:<br />

WasserWirtschaft 09, S. 23-29.<br />

916 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Advanced Flood Forecasting for Switzerland<br />

Erweiterte Hochwasservorhersagen für die Schweiz<br />

Karsten Jasper 1 ; Martin Ebel 1<br />

ABSTRACT<br />

Over the last few years the Federal Office for the Environment FOEN has put considerable<br />

effort into improving the quality and the range of their operational flood forecasts. Today<br />

the FOEN not only provides hydrological forecasts for the rivers and lakes of the Swiss Rhine<br />

catchment. It also produces and disseminates forecasts for the river systems of Rhone and<br />

Ticino. The underlying data basis has been significantly improved. This allows the implementation<br />

of detailed water balance models, yielding a higher modelling quality especially when<br />

modelling smaller and hydrologically complex catchments. Moreover different hydrological<br />

models are implemented in FOEN's forecasting system for a growing number of river basins.<br />

Hydrological forecasts thus can not only be compared on the basis of different numerical<br />

weather forecasts, but it is also possible to evaluate forecasts of up to 3 different hydrological<br />

models for several catchments. The use of these hydrological model ensembles will allow<br />

the comparison of the different modelling approaches and a calculation of the predictive<br />

uncertainty of a current forecast.<br />

ZUSAMMENFASSUNG<br />

In den letzten Jahren unternahm das Bundesamt für Umfeld (BAFU) erhebliche Anstrengungen,<br />

um den Umfang und die Qualität seiner operationellen Hochwasservorhersagen zu<br />

verbessern. Heute stellt das BAFU nicht nur für die Gewässer des schweizerischen Rhein-<br />

Einzugsgebietes hydrologische Vorhersagen zur Verfügung, sondern auch für die Gewässersysteme<br />

von Rhone und Ticino. Die Nutzung von verbesserten Datengrundlagen und der<br />

zunehmende Einsatz von detaillierten Flussgebietsmodellen führten zu einer allgemein<br />

höheren Qualität der hydrologischen Modellierung, insbesondere in komplexen oder kleineren<br />

Einzugsgebieten. Für immer mehr Flussgebiete werden am BAFU inzwischen nicht<br />

mehr nur meteorologische sondern auch hydrologische Modell-Ensembles gerechnet. Damit<br />

können im Einzelfall die Ergebnisse von bis zu drei verschiedenen Abflussmodellen miteinander<br />

verglichen und daraus ein Mass für die hydrologische Modellunsicherheit gewonnen<br />

werden. Aktuell werden regelmässig für mehr als 150 Flussabschnitte und Seen hydrologische<br />

Vorhersagen mit einem Vorhersagehorizont von bis zu 10 Tagen verbreitet.<br />

KEYWORDS<br />

operational flood forecasting; hydrological models<br />

1 Federal Office for the Environment FOEN, Ittigen, SWITZERLAND, karsten.jasper@bafu.admin.ch<br />

IP_<strong>2016</strong>_FP031<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 917


EINFÜHRUNG<br />

Operationelle Abfluss- und Wasserstandvorhersagen werden vom Bund seit Mitte der 80er<br />

Jahre durchgeführt. Bis vor wenigen Jahren waren diese Vorhersagen auf die Hauptgewässer<br />

im Einzugsgebiet des Rheins bis Rheinfelden beschränkt. Mit der operationellen Nutzbarmachung<br />

des Vorhersagesystems Delft-FEWS (Werner et al., 2013) und dem darin integrierten<br />

semi-distributiven Modell HBV-96 (Lindström et al., 1997) erweiterten sich jedoch in 2007<br />

die Möglichkeiten der Vorhersage am Bundesamt für Umwelt (BAFU). Von nun an waren am<br />

BAFU, dem hydrologischen Vorhersagezentrum der Schweiz, operationelle modellgestützte<br />

Vorhersagen für das gesamte Rhein-Gebiet bis Basel (etwa 36‘000 km 2 ) möglich. Die im<br />

HBV-96 verwendete Gebietsstruktur unterteilt das Vorhersagegebiet in mehr als 60 Teilgebiete<br />

mit Flächengrössen zwischen 100 und 3‘300 km 2 (Bürgi, 2008). Abflussvorhersagen sind<br />

jeweils für den Auslass eines jeden Teilgebietes möglich. Die Erfahrungen im operationellen<br />

Vorhersagebetrieb zeigten, dass mit dem eingesetzten Modell vor allem für grössere Flussgebiete<br />

qualitativ gute Abflussvorhersagen erreicht werden können. Für viele der mittleren und<br />

kleineren Zuflüsse waren hingegen oft keine zufriedenstellenden Vorhersagen möglich.<br />

Grund dafür sind vor allem modelltechnische Vereinfachungen in der Beschreibung von<br />

komplexen Einzugsgebieten. Hierzu gehören insbesondere eine zu geringe räumliche<br />

Auflösung der alpinen Gebiete und die Verwendung von stark vereinfachten Modellansätzen,<br />

z.B. zur Berechnung von Bodenfeuchte sowie von Schnee- und Gletscherschmelze.<br />

Im Rahmen des schweizerischen Aktionsplanes zur Optimierung von Warnung und Alarmierung<br />

vor Naturgefahren (OWARNA) wurden daher mit Sicht auf den hydrologischen<br />

Vorhersagebetrieb zwei Hauptziele formuliert: (a) Steigerung der Vorhersagequalität durch<br />

Berücksichtigung von verbesserten Datengrundlagen und dem Einsatz von detaillierten<br />

Flussgebietsmodellen sowie (b) Ausdehnung der hydrologischen Vorhersagen auf die<br />

mittleren und grösseren Gewässer der gesamten Schweiz (Hess, 2010). Mit der Inkraftsetzung<br />

der Alarmierungsverordnung (AV) in 2011 wurde zudem der gesetzliche Rahmen für die<br />

Arbeiten zur Zielerreichung gesetzt (Amiguet et al., <strong>2016</strong>).<br />

RÄUMLICHE AUSDEHNUNG DER HYDROLOGISCHEN VORHERSAGEN<br />

Die «hydrologische Schweiz» umfasst unter Berücksichtigung ihrer ausländischen Gebietsanteile<br />

eine Gesamtfläche von knapp 58‘000 km 2 . Sie übertrifft damit die Schweizer Landesfläche<br />

um mehr als 40%. Das Rhein-Gebiet stellt mit etwa 63% den grössten Flächenanteil<br />

dar. Ihm folgen die Flussgebiete Rhone (18%) und Ticino (11%). Weniger als 8% der Gesamt -<br />

fläche entfallen auf die restlichen Flussgebiete (Inn, Doubs, Adda, Etsch).<br />

Das Vorgehen für den weiteren modellgestützten Ausbau der Hochwasservorhersage orientierte<br />

sich an der Grösse des bisher noch nicht erfassten Gebietes, aber auch an dessen<br />

Gefahrenpotenzial bei Hochwasser. Folgerichtig wurden nach der operationellen Inbetriebnahme<br />

des HBV-96 Rhein-Modells im Jahr 2007 vorrangig Vorhersagelösungen für die<br />

Flussgebiete von Rhone und Ticino erarbeitet.<br />

918 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Das entwickelte Vorhersagemodell für die schweizerische Rhone deckt nicht dessen gesamtes<br />

Einzugsgebiet ab (bis zum Pegel Chancy), sondern zunächst nur den Bereich bis zum<br />

Genfersee (Fläche ca. 5‘500 km 2 ). Es basiert auf dem deterministischen, flächendifferenzierten<br />

Wasserhaushaltsmodell WaSiM (Schulla, 2015) und liefert seit 2012 operationelle Abflussvorhersagen<br />

für 13 Pegelstandorte. Das Modell berücksichtigt alle wesentlichen Einflussfaktoren,<br />

wie z.B. den Betrieb der zahlreichen Stauanlagen oder eine flächendetaillierte Schnee- und<br />

Gletscherschmelze. Neben dem am BAFU verwendeten Rhone-Modell existiert auch ein<br />

modellgestütztes regionales Vorhersagesystem, welches vom Kanton Wallis betrieben wird<br />

(Garcia Hernandez et al., 2014).<br />

Das für die Vorhersagen berücksichtigte Einzugsgebiet für den Ticino erstreckt sich bis zum<br />

Ausflussbereich des Lago Maggiore (Ticino bei Sesto Calende). Es umfasst eine Einzugsgebietsfläche<br />

von insgesamt 6‘600 km 2 und berücksichtigt auch die italienischen Zuflüsse zum<br />

Lago Maggiore, wie z.B. den Toce. Die hydrologischen Vorhersagen werden im Ticino-Gebiet<br />

durch eine kombinierte Anwendung zweier Modelle erhalten: Zunächst wird das hochauflösende,<br />

hydrotop-basierte Wasserhaushaltsmodell PREVAH (Viviroli et al., 2009) für die<br />

Berechnung der Abflussbildung verwendet. Anschliessend werden die von PREVAH simulierten<br />

Teilgebietsabflüsse an das Modell RS3.0 übergeben und mit diesem Gerinneabflüsse und<br />

Seewasserstände berechnet. RS3.0, dessen grundlegender Aufbau in García Hernández et al.<br />

(2007) beschrieben ist, berücksichtigt alle relevanten Daten und Strukturen zur Steuerung<br />

der Tessiner Speicheranlagen. Im Zusammenspiel mit Delft-FEWS bietet es darüber hinaus<br />

die Möglichkeit der Berechnung von Szenarien für die Seensteuerung im Hochwasserfall.<br />

Das gekoppelte Modellsystem wurde in enger Zusammenarbeit mit dem Kanton Tessin erstellt<br />

und löst das bisherige kantonal genutzte Modellsystem ab. Es wird in den operationellen<br />

Vorhersagebetrieb am BAFU überführt und dann regelmässig Wasserstands- und Abflussvorhersagen<br />

für mehr als 20 verschiedene Pegelstandorte liefern.<br />

EINSATZ VON DETAILLIERTEN FLUSSGEBIETSMODELLEN<br />

Parallel zur räumlichen Ausdehnung der hydrologischen Vorhersagen wird am BAFU<br />

fortlaufend in die Verbesserung der Vorhersagequalität investiert. Entsprechend wurde in<br />

den letzten Jahren die Abflussvorhersage zunehmend mit Modellen erweitert, welche das<br />

hydrologische Prozessgeschehen im Schweizer Alpenraum adäquat abbilden können.<br />

Die Anforderungen an die eingesetzten Modelle für den operationellen Vorhersagebetrieb<br />

sind hoch: Die Modelle müssen unterschiedlichste Gebietseigenschaften (z.B. mit und ohne<br />

Gletschereinfluss) und relevante Eingriffe auf den Abfluss- und Wasserhaushalt in geeigneter<br />

Weise berücksichtigen können (z.B. Seeregulierung, Speicherbetrieb durch Kraftwerke,<br />

Zu- oder Ableitungen). Im Weiteren müssen sie auch in der Lage sein, die aktuell verfügbaren<br />

Datengrundlagen optimal im Vorhersagebetrieb einzubinden. Die Modelle müssen für<br />

operationelle Anwendungen optimiert sein, aber dennoch die komplexen hydrologischen<br />

Prozesse in der Schweiz abbilden können.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 919


Vor diesem Hintergrund wurde am BAFU in 2010 damit begonnen, das bisher genutzte<br />

konzeptionelle Vorhersagemodell für den Rhein (HBV-96) schrittweise durch detailliertere<br />

Modelle zu ergänzen. Hierzu wurden einerseits bestehende operationelle Modellanwendungen<br />

in das BAFU-Vorhersagesystem integriert, wie z.B. das im Kanton Zürich betriebene<br />

Modellsystem PREVAH-Sihl (Zappa et al., 2010) oder das in der Hochwasservorhersagezentrale<br />

von Baden-Württemberg (LUBW) eingesetzte Modell LARSIM (Bremicker, 2010).<br />

Andererseits wurden auch neue regionale Vorhersagemodelle entwickelt, wie z.B. WaSiM-<br />

Alpenrhein (Schulla, 2013). Einen Überblick über die flächendetaillierten Regionalmodelle,<br />

welche derzeit im BAFU-Vorhersagesystem Verwendung finden, geben Tabelle 1 und<br />

Abbildung 1. Die Operationalisierung von weiteren prozessorientierten Flussgebietsmodellen<br />

ist vorgesehen, um vorhandene Lücken in der hydrologischen Vorhersagelandschaft zu<br />

schliessen und die Güte der Vorhersagen, insbesondere in kleineren und mittleren Flussgebieten,<br />

zu steigern.<br />

Abbildung 1: Aktuelle Abdeckung der Schweiz mit flächendetaillierten Vorhersagemodellen<br />

MODELLSTRATEGIE FÜR DIE HYDROLOGISCHE VORHERSAGE<br />

Die Vorhersagestrategie am BAFU sieht mittelfristig die Gesamtabdeckung der Schweiz mit<br />

regionalen WaSiM-Modellen vor. Damit läge praktisch ein Vorhersagemodell gleichen Typs<br />

flächendeckend in 500 x 500 m Auflösung für alle Flussgebiete der hydrologischen Schweiz<br />

vor. Zusätzlich werden im Sinne eines hydrologischen Multi-Modell-Ansatzes für mehrere<br />

Einzugsgebiete (insbesondere für Hot-Spot-Regionen) weitere Flussgebietsmodelle im<br />

920 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Tabelle 1: Aktuelle flächendetaillierte Modellanwendungen in der hydrologischen Vorhersage am BAFU<br />

Modell Pegeleinzugsgebiet (Fläche) Jahr der Inbetriebnahme<br />

PREVAH Sihl bis Sihlhölzli (336 km 2 ) 2010<br />

Linth bis Mollis (600 km 2 ) 2010<br />

WaSiM Emme bis Wiler (940 km 2 ) 2010<br />

Rhone bis Genfersee (5‘350 km 2 , geschätzt) 2012<br />

Alpenrhein bis Bodensee (6‘700 km 2 ,<br />

2014<br />

geschätzt)<br />

Aare bis Bern (2‘945 km 2 ) 2015<br />

Thur bis Andelfingen (1‘696 km 2 ) 2015<br />

Töss bis zum Rhein (425 km 2 , geschätzt) <strong>2016</strong><br />

Glatt bis Rheinsfelden (416 km 2 ) <strong>2016</strong><br />

PREVAH + RS3.0 Ticino bis Sesto Calende (6‘600 km 2 ) <strong>2016</strong><br />

LARSIM Rhein bis Basel (35‘897 km 2 ) <strong>2016</strong><br />

Vorhersagesystem am BAFU nutzbar sein. Die Abflussvorhersagen der verschiedenen Modelle<br />

helfen dem Prognostiker bei der Abschätzung der aktuellen hydrologischen Modellunsicherheit.<br />

Im Bedarfsfall kann für ausgewählte Einzugsgebiete von den Ergebnissen des Hauptmodells<br />

abgewichen und auf die Vorhersagen eines Alternativmodells zurückgegriffen werden.<br />

Das Vorhersagesystem Delft-FEWS wurde und wird im Auftrag des BAFU so weiterentwickelt,<br />

dass es den Prognostiker bei diesem Entscheidungsprozess sowie bei allfälligen<br />

Szenario-Rechnungen durch dafür massgeschneiderte Tools optimal unterstützt.<br />

Das beschriebene Vorgehen zur parallelen Anwendung von mehreren Modellen (hydrologisches<br />

Modell-Ensemble) steht im Einklang mit dem seit vielen Jahren verwendeten meteorologischen<br />

Multi-Modell-Ansatz. Seit dem Jahr 2007 bilden die Resultate von vier verschiedenen<br />

Wettervorhersagemodellen die Grundlage für die operationellen Abflussvorhersagen am<br />

BAFU. Die berücksichtigten numerischen Wettermodelle haben räumliche Auflösungen<br />

zwischen 2 und 16 km und Vorhersagelängen von 33 bis 240 Stunden. Sie liefern entweder<br />

deterministische Vorhersagen (COSMO-2, COSMO-7, ECMWF) oder stellen Ensemble-Vorhersagen<br />

bereit (COSMO-LEPS). Ab <strong>2016</strong> werden Daten von verfeinerten Wettermodellen<br />

für die Wasserstands- und Abflussvorhersagen verfügbar sein, und zwar von einem deterministischen<br />

1.1km-Modell (COSMO-1) und von einem 2.2km-Ensemble-Modell (COSMO-E).<br />

VERBESSERTE DATENLAGE<br />

In den letzten Jahren wurden grosse Fortschritte in der zeitnahen Bereitstellung von<br />

meteorologischen Daten der Bodenmessnetze gemacht. Die Automatisierung von Messstationen<br />

der MeteoSchweiz wie auch die zunehmende Nutzbarmachung von Daten anderer<br />

Messnetzbetreiber (kantonale Fachstellen, Institutionen, Private, ausländische Dienste und<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 921


Behörden, etc.) führte zu einer markanten Erhöhung der operationell verfügbaren Datendichte,<br />

insbesondere im Bereich der Niederschlagsmessungen. Insgesamt werden derzeit die<br />

Messdaten von mehr als 800 meteorologischen Stationen in das Vorhersagesystem am BAFU<br />

eingespeist, darunter von etwa 260 Stationen, welche von der MeteoSchweiz betrieben<br />

werden (automatische Stationen vom SwissMetNet sowie automatisierte Niederschlagsstationen).<br />

Im Vergleich zu 2007 vervielfachte sich damit die Anzahl der für die hydrologische<br />

Vorhersage nutzbaren Wetterstationen, und zwar über alle Höhenbänder. Eine erhöhte<br />

meteorologische Stationsdichte, insbesondere bei den Niederschlagsmessungen, ist aus Sicht<br />

der hydrologischen Vorhersage extrem wertvoll, da sie die Interpolationen der punktuellen<br />

Messwerte in die Fläche zu verbessern hilft. Werden die meteorologischen Messdaten<br />

realistischer interpoliert, dann sind auch genauere hydrologische Modellnachführungen<br />

möglich. Die Initialbedingungen für die anschliessenden Vorhersagesimulationen verbessern<br />

sich entsprechend (genauere Systemzustände).<br />

Aber nicht nur die Anzahl der verfügbaren Messstationen hat Einfluss auf die Interpolationsgüte<br />

und damit auf die Wertigkeit einer meteorologischen Station im Vorhersagesystem.<br />

Weitere wichtige Einflussfaktoren sind deren Datenqualität, deren geographische Lage, deren<br />

Intervall der Datenlieferung oder deren Parameterauswahl. Die Anforderungen der am BAFU<br />

verwendeten Vorhersagemodelle an die meteorologischen Eingangsdaten sind in Tabelle 2<br />

zusammengefasst.<br />

Tabelle 2: Benötigte meteorologische Eingangsgrössen für die am BAFU verwendeten Vorhersagemodelle; Niederschlag (N),<br />

Lufttemperatur (LT), Windgeschwindigkeit (W), relative Luftfeuchtigkeit (RF), Taupunkttemperatur (TD), Globalstrahlung (GS), relative<br />

Sonnenscheindauer (SSD), Luftdruck (LD)<br />

Modell P T W RF TD GS SSD LD<br />

HBV x x x - x - - -<br />

PREVAH x x x x - x x -<br />

WaSiM x x x x - x x -<br />

LARSIM x x x x - x - x<br />

In Anbetracht der Bedeutung des Niederschlages für die Abflussvorhersage werden im<br />

BAFU-Vorhersagesystem nicht nur stationsbezogene Niederschlagsmessungen verarbeitet,<br />

sondern auch vorprozessierte Kombinationsprodukte, welche aus Echtzeit-Messungen vom<br />

Niederschlagsradar und Bodenstationen bestehen (Sideris et al., 2013). Diese als CombiPrecip<br />

bezeichneten Flächenprodukte des Niederschlags stellen attraktive Ergänzungen zur<br />

klassischen stationsbezogenen Niederschlagsinterpolation dar. Aktuelle Untersuchungen<br />

zeigen, dass mit Hilfe von CombiPrecip die Simulation von Hochwassern in Einzelfällen<br />

deutlich verbessert werden kann. Die Verbesserung gegenüber der klassischen Interpolation<br />

von Punktmessungen ist bisher jedoch nicht systematisch, sondern offenbar von der<br />

922 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


etrachteten Region und vom Ereignistyp abhängig. Insofern kann CombiPrecip bis auf<br />

weiteres nur eine Ergänzungsrolle in der hydrologischen Vorhersage am BAFU einnehmen.<br />

Die Aufnahme von neuen flächendetaillierten Flussgebietsmodellen ging einher mit der<br />

Berücksichtigung einer erhöhten Anzahl an hydrologischen Messstationen, vor allem in den<br />

komplexen und oft schwierig zu modellierenden Zuflussgebieten. Allein für das Rhein-Gebiet<br />

werden heute die Abflüsse und Wasserstände von etwa 120 Stationen für die Nachführung<br />

der hydrologischen Vorhersagemodelle genutzt. Diese Stationsanzahl liegt deutlich über<br />

derjenigen von 2007 (HBV-Rhein mit 70 Stationen). Die verwendeten Stationen gehören<br />

überwiegend zum Messnetz des BAFU. Inzwischen werden aber auch zunehmend kantonale<br />

und ausländische Stationen sowie Stationen von Kraftwerksbetreibern in die Vorhersagen<br />

einbezogen. Ein dichteres Messnetz an Abfluss- und Wasserstandsmessungen bedeutet in<br />

erster Linie mehr Kontrollpunkte für die Modellrechnungen, was sich insbesondere im<br />

Hochwasserfall positiv auf die Güte der Abflusssimulation und damit der Vorhersage<br />

auswirkt.<br />

Neben modellrelevanten Verbesserungen bei den zeitbezogenen Daten gab es im Rahmen<br />

des Modellausbaus auch Fortschritte in der Nutzung von raumbezogenen Daten. Prozessorientierte<br />

Vorhersagemodelle haben hier naturgemäss grosse Vorteile gegenüber vereinfachten<br />

Modellen. Sie sind wesentlich besser in der Lage, die für die hydrologische Modellierung<br />

allgemein verfügbaren Datengrundlagen auszunutzen. Die neuen Flussgebietsmodelle<br />

am BAFU verwenden jeweils hochauflösende Flächendaten zur Orographie, zur Landnutzung,<br />

zum Boden und zur Hydrogeologie, um daraus modellrelevante Parameter, wie z.B.<br />

die Speicher- und Leitfähigkeiten im Untergrund, abzuleiten. Ausserdem berücksichtigen<br />

sie möglichst detailliert Gerinnedaten (Geometrie, Rauhigkeiten) sowie Betriebsregeln zur<br />

Seen- und Speichersteuerung.<br />

ERGEBNISSE<br />

Die Vorteile von detaillierten gegenüber einfachen Modellen zeigen sich oft bei Abflusssimulationen<br />

in sogenannten Kopfgebieten, d.h. in Gebieten ohne gemessene Zuflüsse.<br />

Im vorliegenden Beitrag ist dies beispielhaft für ein Hochwasserereignis im Einzugsgebiet<br />

der oberen Emme (124 km 2 ) illustriert, welches im Mai 2015 durch Starkregen ausgelöst<br />

wurde. Die im ersten Vorhersageabschnitt (bis +30h) weitgehend zutreffenden Niederschlagsvorhersagen<br />

der Wettermodelle COSMO-2 und COSMO-7 resultieren hier nur beim<br />

detaillierten Modell (WaSiM) in qualitativ hochstehende Abflussvorhersagen (vgl. Abb. 2<br />

und 3). Weniger gute Vorhersagen werden im aktuellen Beispiel durch die Daten des<br />

ECMWF-Wettermodells erzielt. Die Ergebnisse zeigen erwartungsgemäss, dass die Qualität<br />

einer Abflussvorhersage, insbesondere in kleineren Einzugsgebieten, entscheidend von<br />

der Güte der Niederschlagsvorhersage abhängt.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 923


Abbildung 2: Operationelle Hochwasservorhersagen mit dem Modell HBV-96 für den Pegel Emme-Eggiwil am 01.05.2015 (06 Uhr)<br />

Abbildung 3: Operationelle Hochwasservorhersagen mit dem Modell WaSiM für den Pegel Emme-Eggiwil am 01.05.2015 (06 Uhr)<br />

924 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


FAZIT<br />

In den letzten Jahren hat die Hochwasservorhersage am BAFU die Qualität und den Umfang<br />

ihrer bereitgestellten Abflussvorhersagen deutlich gesteigert. Dazu trugen neben einer verbesserten<br />

Daten- und Modellsituation auch Weiterentwicklungen im Bereich der Vorhersageplattform<br />

Delft-FEWS bei. Insgesamt ist das BAFU seinem Ziel der Gesamt abdeckung<br />

der Schweiz mit modellgestützten hydrologischen Vorhersagen einen grossen Schritt näher<br />

gekommen. Der zunehmende Einsatz von detaillierten Flussgebietsmodellen ermöglicht<br />

verbesserte Abflusssimulationen und trägt damit zu einer Erhöhung der Vorhersagegenauigkeit<br />

bei, insbesondere in komplexen Einzugsgebieten. Die Nutzung von meteo rologischen<br />

und hydrologischen Modell-Ensembles hilft, die Vorhersageunsicherheit besser abzuschätzen.<br />

LITERATUR<br />

- Amiguet C., Bürgi T., Murer D., Schmutz C., Volken D. (<strong>2016</strong>): Warnungen der Bundesfachstellen<br />

der Schweiz vor Unwetter und Hochwasser. Interpraevent <strong>2016</strong><br />

- Bremicker M. (2010): Das Wasserhaushaltsmodell LARSIM – Modellgrundlagen und<br />

Anwendungsbeispiele. Freiburger Schriften zur Hydrologie, Band 11, 119 S.<br />

Bürgi T. (2002): Operational flood forecasting in mountainous areas - an interdisciplinary<br />

challenge. In: Spreafico M. and Weingartner R. (eds.). International Conference in Flood<br />

Estimation. CHR Report II-17: 397–406. Bern<br />

- Bürgi T. (2008): Operationelle Hochwasservorhersagen für das Einzugsgebiet des Rheins<br />

in der Schweiz. Interpraevent 2008. Conference Proceedings, Vol. 1, 51-62<br />

- García Hernández J., Jordan F., Dubois J., Boillat J.-L. (2007). Routing System II:<br />

Flow modelling in hydraulic systems. In A. Schleiss (ed.), Communication 32 du Laboratoire<br />

de Constructions Hydrauliqes. Lausanne: EPFL<br />

- Garcia Hernández J., Claude A., Paredes Arquiola J., Roquier, B., Boillat J.-L. (2014):<br />

Integrated flood forecasting and management system in a complex catchment area in the<br />

Alps: Implementation of the MINERVE project in the Canton of Valais. In A. Schleiss, J.<br />

Speerli, R. Pfammatter (eds.), Swiss Competences in River Engineering and Restoration.<br />

London. ISBN 978-1-138-02676-6<br />

- Hess J. (2010): OWARNA Folgebericht. 53 S.<br />

- Lindström G., Johansson B., Persson M., Gardelin M., Bergström S. (1997): Development<br />

and test of the distributed HBV-96 hydrological Model. Journal of Hydrology 201: 272-288<br />

- Schulla J. (2013): Modellaufbau WaSiM-Alpenrhein. Interner Bericht. BAFU. 216 S.<br />

- Schulla J. (2015): Model Description WaSiM. 335 S. (verfügbar auf www.wasim.ch)<br />

- Sideris IV., Gabella M., Erdin R., Germann U. (2013): Real-time radar-rain-gauge merging<br />

using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland.<br />

O.J.R. Meteorol. Soc.. doi: 10.1002/qj.2188<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 925


- Viviroli D., Zappa M., Gurtz J., Weingartner R. (2009): An introduction to the hydrological<br />

modelling system PREVAH and its pre- and post-processing tools. Environmental Modelling<br />

& Software 24: 1209–1222<br />

- Werner M., Schellekens J., Gijbers P., van Dijk M., van den Akker O., Heynert K. (2013):<br />

The Delft-FEWS flow forecasting system. Environmental Modelling & Software 40: 65-77<br />

- Zappa M., Jaun S., Badoux A., Schwanbeck J. und weitere Autoren (2010): IFKIS-Hydro<br />

Sihl: Ein operationelles Hochwasservorhersagesystem für die Stadt Zürich und das Sihltal.<br />

Wasser Energie Luft, Heft 3: 238-248<br />

926 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Can Twitter catch precursory phenomena before<br />

sediment disasters?<br />

Masaru KUNITOMO, master 1 ; Joko KAMIYAMA, master 1 ; Kazuki MATSUSHITA, master 1 ; Yuzuru YAMAKAGE, doctor 2 ;<br />

Kunihiro TAKEDA, master 2 ; Cheng QIU, doctor 3 ; Akiko ITO, bachelor 3 ; Takeru ARAKI, master 3<br />

ABSTRACT<br />

In Japan, the Cabinet Office recommends that municipalities immediately judge issuance of<br />

evacuation instructions when they grasp the signs of sediment-related disasters. However,<br />

this early warning mechanism has not necessarily functioned effectively, because it is difficult<br />

for local governments to get such information from local residents. In such situation, "twitter"<br />

has been sharply growing in the number of users and is being incorporated into social system.<br />

Then, with focus on the real-time property of "twitter", the authors have started a research to<br />

identify information on the precursory phenomena of sediment-related disasters contained in<br />

users' "tweets". Then, we confirmed that tweets are fairly effective in detecting precursory<br />

phenomena etc. particularly in areas with a large population size. And that application to<br />

early warning systems can be expected.<br />

KEYWORDS<br />

Sediment Disaster; early warning; SNS; Twitter<br />

INTRODUCTION<br />

It has been said that signs of sediment-related disasters, such as "earth rumbling" and "earth<br />

smelling," are important early warning signal, and the Cabinet Office of Japan recommends<br />

on its guideline that municipalities immediately judge issuance of evacuation instructions and<br />

local residents quickly take actions to protect their safety when they grasp the signs. In fact,<br />

there are many cases reported where local residents found precursory phenomena of<br />

sediment-related disasters and evacuated together with family members and/or neighboring<br />

residents to avoid personal injuries. However, there are also reports that even if local residents<br />

find precursory phenomena of sediment-related disasters, such information is transferred<br />

only to family members and/or neighboring residents, and is rarely reported to local<br />

governments (Miyase et al., 2009). Thus, information on the precursory phenomena of<br />

sediment-related disasters is effective in judging evacuation, but there are some issues to be<br />

solved concerning quick collection and sharing of such information to use such phenomena<br />

information for early warning system.<br />

1 National Institute for Land and Infrastructure Management MLIT, Tsukuba, JAPAN, kamiyama-j253@nilim.go.jp<br />

2 Fujitsu Laboratories Ltd.<br />

3 Nippon Koei Co. Ltd.<br />

IP_<strong>2016</strong>_vc<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 927


In such situation, "twitter" has been sharply growing in the number of users with the<br />

advantages of real time and spreading properties and is being incorporated into social system.<br />

In disaster prevention as well, cases of using twitter as a risk communication tool has been<br />

increasing.<br />

Then, with focus on the real-time property of "twitter" information, the authors have started<br />

a research to identify information on the precursory phenomena or occurrences of sediment-related<br />

disasters contained in users' "tweets" stating uncertainties or fears about heavy<br />

rain etc. and incorporate them into early warning systems.<br />

In this study, we analyzed the tweets posted in the events of the July 2012 Northern Kyushu<br />

Heavy Rain and the August 2014 Hiroshima Heavy Rain and studied the possibility of<br />

detecting the situation of the site where a sediment-related disaster occurred using twitter<br />

information.<br />

CHARACTERISTICS OF TWITTER<br />

Twitter is a kind of social media called "mini blog" or "micro blog." As characteristics of<br />

twitter, Kazama (2012) states that twitter information quickly and widely spreads due to<br />

the high real-time property despite the limitation to a maximum of 140 characters per tweet,<br />

easier information exchange with or transfer to other users, and more casual and easier<br />

communication of information among twitter users than general SNS media.<br />

There are many cases reported where twitter was very effective due to its real time and<br />

spreading properties in risk communication immediately after the occurrence of disasters<br />

(e.g., Ishikawa et al, 2012). On the other hand, it is also fact that some are concerned about<br />

spread of false rumors.<br />

Thus, there seems to be pros and cons on using twitter as a risk communication tool.<br />

However, Taniguchi (2012) points out that twitter is effective as an information sharing tool<br />

in the initial phase of a disaster where it is difficult to grasp the overview even if negative<br />

effects such as spread of false rumors are disseminated.<br />

Furthermore, in recent years, studies to probe the possibility of using twitter as a social sensor<br />

have been also going on, including estimation of the epicenter of an earthquake by analyzing<br />

tweets and detection of the spread of influenza (e.g., Sakaki et al., 2010).<br />

As we reviewed the findings of such prior studies comprehensively, it is considered that use of<br />

twitter as a social sensor enables detection of natural phenomena that are hardly detected by<br />

physical sensor, although the reliability and stability of twitter are much lower than those of<br />

physical sensors, and that twitter can be a useful tool to visualize what cannot be detected by<br />

conventional means by supplementing physical sensor information.<br />

928 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EXAMINATION OF THE POSSIBILITY OF GRASPING THE CONDITION OF THE DISASTER SITE<br />

ANALYTICAL METHOD<br />

After screening the twitter information on the Web to identify the municipalities where the<br />

occurrence of a disaster is referred to in posted tweets ("municipality estimation"), we<br />

extracted tweets related to heavy rain and classified them into the situation categories such as<br />

sediment-related disasters and weather condition etc. in order to grasp the situation of the<br />

site with tweet content of such extracted information and set key words that represent each<br />

situation category.<br />

Then, we extracted tweets that include a key word we set up and estimated the situation<br />

based on changes in the number of tweets in each situation category. Further, we examined<br />

the effectiveness of grasping the situation from the tweets posted with critical content<br />

suggesting an emergent situation. To carry out municipality estimation, we adopted the<br />

procedure taken by Takeda et al (2014) through partial simplification.<br />

SUBJECT DISASTER AND OUTLINE OF TWITTER INFORMATION<br />

This study examined the sediment-related disasters caused by the Northern Kyushu Heavy<br />

Rain and the Hiroshima Heavy Rain, which hit Minami-Aso village, Aso city, Kumamoto<br />

prefecture ("Aso") and Hiroshima city, Hiroshima prefecture ("Hiroshima"), respectively, and<br />

in both of which it is known that local residents found precursory phenomena of sedimentrelated<br />

disasters (e.g., Sakai et al., 2013) (Figure 1). Time zones selected to analyze data were<br />

Figure 1: Locations and outline of subject disaster sites<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 929


from 16:00 on July 11 to 12:00 on July 12, 2012 for the Northern Kyushu Heavy Rain and<br />

from 1:00 to 5:30 on Aug. 20, 2014 for the Hiroshima Heavy Rain. In both events, rainfall<br />

rapidly increased at midnight and sediment-related disasters occurred at dawn and caused<br />

damage etc. to many people.<br />

Of the tweets posted during the duration for analysis above, 2,207 tweets were estimated<br />

to have been posted from Aso, and 5,813 tweets, from Hiroshima.<br />

EXTRACTION AND CLASSIFICATION OF TWEETS RELATED TO DISASTERS<br />

Of the tweets of which locations were estimated, we extracted 968 tweets related to the Aso<br />

and 1,617 tweets for the Hiroshima, based on the contents of tweets. Further, the extracted<br />

tweets were classified into the "situation categories" of Table 1.<br />

Table 1: Situation category.<br />

KEY WORD SETTING BY TEXT ANALYSIS ACCORDING TO SITUATION CATEGORIES<br />

Using "KH Coder," software for text analysis, we automatically extracted frequent words<br />

according to situation categories by analyzing the tweets after decomposing them into part of<br />

Table 2: Examples of key words (Category related to sediment-related disasters).<br />

930 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


speech. From among the words extracted, we adopted as key words representing the content<br />

of each situation category (e.g. "land slide", "disaster", etc. for "Sediment-related disasters"<br />

and "Dangerous", "Scary", etc. for "Feeling and state of mind."). Table 2 provides examples<br />

for the category of "Sediment-related disasters."<br />

Figure 2: Time series changes in the number of tweets in the category of sediment-related disasters (Hiroshima)<br />

Figure 2 shows in graph form time series changes in the number of tweets of which contents<br />

were classified and extracted after text analysis for the category of sediment-related disasters<br />

in the Hiroshima Heavy Rain (, which do not necessarily contain key word(s)) and the<br />

numbers of tweets extracted mechanically using the set key words, together with changes in<br />

intensity of rainfall. Since the trends of both types of numbers were generally consistent, it<br />

was verified that the key words set up can be used to capture changes in the number of<br />

tweets in each situation category.<br />

GRASP OF THE SITUATION USING KEY WORDS<br />

Figure 3 shows the timing of response actions etc. to the disaster in Aso and rainfall, changes<br />

in the number of tweets extracted using key words for each situation category, and the timing<br />

of appearance of tweets showing critical content.<br />

The number of tweets in the weather related category is increasing continuously, which<br />

suggests the situation where heavy rainfall is continuing. Meanwhile, tweets in the categories<br />

of flood and sediment-related disasters begin to increase about 7:00, which is far behind the<br />

time of the first reporting of the disaster. However, when we checked the contents of tweets<br />

individually, we found that the occurrence of a sediment-related disaster could be detected a<br />

little earlier (6:22). Additionally, when tweets are not limited to those for which the location<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 931


Figure 3: Grasped disaster situation by analyzing tweets (Aso)<br />

is estimated, relevant tweets appeared in a range of heavy rain areas including Aso in much<br />

earlier time zones, e.g., "Landslide, now" at the time between 2:00 and 3:00.<br />

Figure 4 provides the results of analysis conducted on the Hiroshima Heavy Rain. For<br />

Hiroshima, changes in the number of tweets and contents of tweets also suggest the situation<br />

where heavy rainfall is continuing. This is similar to Aso, but the number of tweets in the<br />

category of sediment-related disasters increased in time zones much earlier than the<br />

occurrence of the sediment-related disaster, which is different from the situation in Aso.<br />

Further, in Hiroshima, when tweets are not limited to those for which the location is<br />

estimated, tweets stating the detection of precursory phenomena appeared at 2:50, earlier<br />

than the time zone during which debris flow is said to have occurred intensively, such as<br />

"I've been hearing a sound like the one heard when stones are rolling down the river" (this<br />

was estimated since heavy rain was falling only in Hiroshima throughout the Japan when<br />

the tweet was posted). Difference of the size of population (the number of twitter users) is<br />

932 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Figure 4: Grasped disaster situation by analyzing tweets (Hiroshima)<br />

clearly the main factor of the early increase in the number of tweets in Hiroshima compared<br />

to Aso. Therefore, in order to detect precursory phenomena etc. at an earlier phase, it is<br />

important to extract tweets including critical content individually, as well as changes in the<br />

number of tweets. At present, when using twitter as an early warning system, it is necessary<br />

to provide measures to prevent omission of critical tweets, such as joint use of tweets of<br />

which locations are limited to prefectural level.<br />

CONCLUSIONS<br />

This study examined the possibility of grasping precursory phenomena from changes in the<br />

number of tweets extracted using key words and from the timing of appearance of tweets<br />

including critical content by setting key words after classifying tweets related to the heavy<br />

rain into situation categories. As a result, we confirmed that tweets are fairly effective in<br />

detecting precursory phenomena etc. in areas with a large population size, such as Hiroshima.<br />

It was also found that information on the feelings, state of mind, etc. of local residents, which<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 933


can be of any help in determining directions for evacuation, can be fairly grasped and that<br />

application to warning / evacuation systems can be expected.<br />

On the other hand, in areas with a small population, it is difficult to detect precursory<br />

phenomena etc. only with the increase in the appearance of tweets since the number of<br />

tweets is very small. Therefore, in order to grasp the precursory phenomena of sedimentrelated<br />

disasters, etc. using twitter information, including areas with a small population, we<br />

intend to grasp situation changes sensitively by introducing the technology for evaluating the<br />

value of each tweets according to areas and to reduce omissions of tweets that include critical<br />

content by improving the accuracy of location estimation.<br />

We also intend to develop application software to improve the reliability as disaster prevention<br />

information, e.g. by overlapping display of the heavy rainfall areas obtained from the<br />

precipitation radar.<br />

REFERENCES<br />

- Masayuki M., Toshihiro K., Shota K. (2010) Residents' Attitude Survey in the July 2009<br />

Yamaguchi Heavy Rain Disaster, FY 2010 Japan Society of Erosion Control Engineering<br />

Presentation Summary<br />

- Kazuhiro K. (2012) Information Dissemination in Twitter, Journal of the Japanese Society<br />

for Artificial Intelligence, Vol. 27, No. 1: 35-42.<br />

- Ikki O., Yutaka M. (2012) Twitter and social media, Journal of the Japanese Society for<br />

Artificial Intelligence, Vol. 27, No. 1: 34.<br />

- Tetsuya I., Akiyuki K., Kimiro M. (2012) Investigation of information sharing by Twitter<br />

users during the 2011 heavy snow disaster in San-in region of western Japan, A Collection of<br />

Papers of the Institute of Social Safety Science No. 17. http://isss.jp.net/isss-site/wp-content/<br />

uploads/2013/08/2012-014_cd.pdf<br />

- Shinichiro T. (2012) Effectiveness of twitter at disasters --- Taking as an example the heavy<br />

rain disaster by Typhoon No. 12 in September 2011, Disaster Information No. 10: 56-67.<br />

Sakaki, T., Okazaki, M., Matsuo, Y. (2010) Earthquake shakes twitter users: Real-time event<br />

detection by social sensors, Proc. 19th Conf. on World Wide Web, 851-860.<br />

- Kunitaka T., Tadanobu F., Shigetaka T., Yuzuru Y., Ken A., Akiko I., Ken M., Junichi K.,<br />

(2014) Estimation of Occurrence of Disaster Using Twitter Data --- Report on the cases<br />

investigated concerning sediment-related disasters in the 2012 Northern Kyushu Heavy Rain,<br />

FY2014 Japan Society of Erosion Control Engineering Research Presentation Summary B:<br />

172-173.<br />

- Nobuaki S., Ryoichi M., and Toshihiro K. (2013) Behaviors of residents in case of sediment-related<br />

disaster caused by the July 2012 Northern Kyushu Heavy Rain, Journal of the<br />

Japan Society of Erosion Control Engineering (Shin-Sabo), vol. 66, No. 2: 57-63.<br />

934 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

The flood warning service of the Austrian Federal<br />

Railways<br />

Günther Kundela, DI 1 ; Ines Fordinal, DI 2 ; Florian Mühlböck, DI 2 ; Christian Rachoy, DI 1<br />

ABSTRACT<br />

According to Austrian legislation, the Austrian Federal Railway Infrastructure Company<br />

(OEBB Infra) is responsible, on one hand, for the safety and on the other hand for the high<br />

availability of the national and transnational railway tracks in Austria. To fulfil these high<br />

demands different countermeasures against natural hazards are necessary. Beside a high<br />

range of technical protection measures also organisational measures such as flood warning<br />

services are very important. On the basis of experiences a 3-phase warning service was<br />

developed. With the incoming weather forecasts the Early Warning Phase of the OEBB Flood<br />

Warning service starts and preliminary analyses of the expected development of the flood<br />

event are initiated. The most important step during the event phase is to initiate the required<br />

emergency measures. The end of a flood event is the beginning of the next event. An<br />

accurate event documentation is very helpful to improve the warning processes and to plan<br />

optimal countermeasures.<br />

KEYWORDS<br />

Railway infrastructure; flood warning service<br />

INTRODUCTION<br />

Since natural hazards have impact on the safety, availability and economy of railway<br />

infrastructures, therefore the protection of transported people, the railway staff and goods<br />

must be the top priority of natural hazard management. Regarding the fact that damage on<br />

railway infrastructure can be substantial and hindering, the Austrian Federal Railway<br />

Infrastructure company (OEBB Infra) is continuously improving its services and fully liable<br />

for safety issues.<br />

Floods, especially those with a large spatial extent, cause enormous costs for recovery of the<br />

railway infrastructure such as train stations, tracks, bridges or catenaries. The flood events on<br />

the Arlberg in 2005 and the flood event on the March River in 2006, as examples, generated<br />

total costs of 80 Million Euro for infrastructure recovery. Following the risk circle (Figure 1)<br />

there are different possibilities to reduce the risk of natural hazards. Risk maps, as a valuable<br />

support for planning preventive measures, help to identify flood-prone areas. Technical<br />

countermeasures such as flood protection dams in Austria are designed by using flood events<br />

with a 100-year return period and neglecting larger events. Warning services, contingency<br />

1 ÖBB-Infrastruktur AG, Vienna, AUSTRIA, Christian.Rachoy@oebb.at<br />

2 Riocom Ingenieurbüro A. Schwingshandl Handelskai 92 1200 Wien<br />

IP_<strong>2016</strong>_FP047<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 935


planning and –training as organisational measures support the handling of disasters. As<br />

pointed out by Rudolf-Miklau (2009), measures, if applied in optimal chronology and<br />

functional order, are likely to achieve their intended effect.<br />

However, the hazard itself cannot be avoided, thus the main objective of organisational<br />

counter measures is to protect lives. The early observation of natural hazard events through<br />

the use of warning systems is crucial, especially in the case of failure of technical countermeasures.<br />

Therefore, OEBB Infra is intensively working on the development of comprehensible<br />

and robust systems to predict meteorological and hydraulic events.<br />

Figure 1: OEBB Infra - Risk Cycle<br />

STRATEGIES AND TOOLS<br />

Natural Hazard Management aims at reducing risk specifically by following the phases of the<br />

Risk Cycle. When it comes to floods, infrastructure operators have various means for the<br />

protection of technical facilities as well as for the absolute safety of their customers and<br />

employees. Primarily, there are technical safety measures such as flood protection dams or<br />

mobile flood protection walls alongside the endangered track. By creating flood risk maps,<br />

endangered hot spots of the railway can easily be identified and thus contribute to preventive<br />

measures as best as possible. In the phases of provision and preparation, organisational<br />

measures are included, such as emergency trainings which are executed on a regular basis to<br />

ensure a well prepared and skilled staff. Furthermore, alarm plans are elaborated for specific<br />

railway sections and warning levels. The OEBB Infra operates its own weather informationand<br />

warning system called “infra:wetter”. This includes Austrian-wide weather forecasts,<br />

real time weather radar data as well as customised warning levels for defined rail sections.<br />

Additionally, the web page supplies all users with specific information about fire- and<br />

936 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


avalanche risk and gale warnings. It provides those responsible for the affected area standardised<br />

and replicable weather warnings for the assigned parts of the railway network via text<br />

message and e-mail. These customised warnings are crucial to the preparation of organisational<br />

countermeasures against extreme weather conditions. Nevertheless, it does not offer<br />

hydrological and hydraulic information about rivers relevant to the railway network.<br />

Due to gathered experiences at the last events it became clear that the earlier one knows<br />

about possible flood events the better organisational countermeasures can be taken, such as:<br />

– Constant observation of the flood-prone hot spots<br />

– Closing of the affected tracks in advance<br />

– Evacuation of flooded areas<br />

METHODS AND IMPROVEMENTS<br />

In extension to the former approach, which was exclusively based on weather and precipitation<br />

forecasts, the flood risk warnings also incorporate the analysis of historic flood event data<br />

as well as flood forecasts and the expertise of hydrological warning services. The utilised flood<br />

risk maps also include three-dimensional spatial analyses which take into account railway<br />

structures such as bridges and culverts instead of the flooded areas along the track only.<br />

A fundamental value of information lies in the height of the railway facilities referred to the<br />

considered water level (so called ‘warning sections’). The inclusion of as much existing data<br />

and information as possible (for example administrative hydrological warning systems and<br />

the expertise of Federal Hydrographic Services) is just one crucial improvement of the flood<br />

warning service. –. Through well-established hydrological models of the Hydrographic<br />

Services, flood level forecasts (depending on the size of the observed river catchment) can be<br />

provided several hours in advance. In addition, the Natural Hazard Management of the OEBB<br />

Infra together with the hydrologists of the federal services determine on certain water gauges<br />

which are of particular interest for the flood warnings for the railway tracks. In case of an<br />

announced flood event, the water levels of the selected water gauges will be included in the<br />

flood report of the Federal Hydrographic Services and thus help to further improve the local<br />

flood warnings.<br />

ASSESSMENT OF FLOOD POTENTIAL FOR RAILWAY INFRASTRUCTURE IN AUSTRIA<br />

The Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management<br />

(BMFLUW) holds a complete dataset of flood-prone areas, water depths and flow velocities<br />

in Austria. This dataset is a collection of all available data from the technical departments of<br />

Austria’s nine provinces, the Austrian service for torrent- and avalanche control as well as<br />

the Federal Ministry. It covers three scenarios in form of the return periods of 30, 100 and<br />

300 years and serves as a valuable, nationwide overview of the flood situation and offers a<br />

good basis for the assessment of the flood potential for the railway infrastructure in Austria.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 937


FLOOD WARNING LEVELS<br />

A first step for the detection of flood affected areas was a spatial intersection between the<br />

railway network and the available flood scenarios. To emphasise the relevance of the data<br />

basis, a distinction between the various classes of data origin was displayed as separate maps.<br />

In a later stage, the accomplishment of a delineation of relevant areas for the warning process<br />

which would take into account three-dimensional flood height information from a digital<br />

elevation model was a top priority. The combination of distance to the rails and the height<br />

difference between the water level and the top of the railway embankment is classified in<br />

three warning levels:<br />

– Orange warning section: marks flooded areas close to the railway track with significant<br />

height differences and thus rails are unlikely to be affected by a flood.<br />

– Red warning section: identifies flooded areas close to the railway track with little height<br />

differences and thus rails are likely to be affected by a flood.<br />

– Purple warning section: reveals intersections between flood areas and railway tracks.<br />

A detailed explanation is given in Figure 2. The warning sections visualise the potential<br />

extent of flood scenarios for three different return periods. This information represents<br />

different cases in a static way, whereas the dynamic part is included by incorporating<br />

incoming (hydrographic) warnings. Depending on the forecasted warning, the most appropriate<br />

case is used to identify areas where measures have to be taken. The spatial classification<br />

Figure 2: Classification of Warning Sections<br />

938 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


of warning sections for flood events is designed in a way that is consistent with the warning<br />

levels of the weather warning system already in use. This enables an implementation into the<br />

existing internal web GIS and provides the users with an already familiar classification<br />

scheme.<br />

PROCEDURE OF THE FLOOD WARNING SERVICE<br />

The Flood Warning Service is divided into three different phases, using the available data<br />

basis to achieve the best possible result (Figure 3). Furthermore, the on-call availability of a<br />

service operator providing this service, as well as the involvement of several key figures<br />

guarantee a successful, smooth and especially continuous performance of the Flood Warning<br />

Service.<br />

Figure 3: Procedure of the Flood Warning Service of the OEBB Infra<br />

PHASE 1: EARLY WARNING<br />

With the incoming weather warning from the above mentioned internal weather warning<br />

system(usually 3 to 5 days prior to the forecasted event), the ‘Early Warning Phase’ starts<br />

together with the initiated preliminary analyses of the expected development of the flood<br />

event. These analyses use characteristic values and summarised flood profiles of known<br />

historic flood events in the affected regions and river basins. The flood event profile aims at<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 939


giving a clear overview of each individual historic flood event. It contains detailed information<br />

about the hydro-meteorological system state, the precipitation, the runoff and a textual<br />

description of the event.<br />

By comparing weather forecasts to historic flood events, a rough estimation of the scale of the<br />

expected flood (return period) is attempted. The responsible federal Hydrographic Services<br />

are consulted in this early phase of the warning system for the characteristics of the catchment.<br />

The next step is to approximately identify the affected railway sectors according to the<br />

warning level classification. The periodic flood situation report summarises all crucial<br />

information, which was collected, analysed and prepared by the Flood Warning Service<br />

during the Early Warning Phase. It supports the Natural Hazard Management of OEBB Infra<br />

in taking decisions and initiating measures in the emergency planning.<br />

PHASE 2: WARNING<br />

The Warning Phase is initiated as soon as specific flood forecasts are provided by the Provincial<br />

Hydrographic Services. The flood forecasts are the result of hydrological models and are interpreted<br />

by experts with comprehensive regional knowledge. Thus, the preliminary analysis<br />

can be updated due to this additional data. On the basis of hydrological modelling, the estimation<br />

of the expected flood (return period) ensures a rather accurate identification of<br />

affected railway sectors.<br />

Furthermore current water gauge levels are published by the Hydrographic Central Office.<br />

Subsequently, predefined threshold values are monitored for each identified railway sector.<br />

As before, all crucial information for the support of the emergency planning is summarised in<br />

the flood situation report. The warning phase lasts from when flood forecasts are available<br />

until certain water level thresholds are exceeded.<br />

PHASE 3: EVENT<br />

With the observation of the water gauges, once again, the expected event scale can be updated<br />

and the identification of affected railway sectors can be derived. The most important<br />

measure during the event phase is the initiation of the required emergency measures, which<br />

means that an incident command is installed and the general management decides about<br />

temporary mitigation measures such as constant observation, mobile flood protection or<br />

railway closures. Additionally, constant communication between the involved authorities<br />

(OEBB, the Flood Warning Service and the Hydrographic Services) is highly important.<br />

The flood situation reports are generated in shorter intervals and focus on the temporal<br />

course of the event. As soon as the water gauges show a decreasing in water level, the<br />

general management decides on the end of the alarm.<br />

Shortly after the flood event, analysis is carried out and the possibility for reflection among<br />

the involved experts to gain fundamental experience and to improve the Flood Warning<br />

Service with every event is given.<br />

940 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


FLOOD SITUATION REPORT<br />

The Flood Situation Report (Figure 4) is the core element of communication between the<br />

Flood Warning Service and the OEBB. It summarises current information on potential flood<br />

risk in a catchment. It supports the Natural Hazard Management of the OEBB Infra by providing<br />

important professional advice for the decision making and initiate mitigation measures<br />

during the emergency planning. More specifically, it contains the following parts:<br />

– River catchment<br />

– Description of meteorological and the hydrological situation<br />

– Characterisation of the system’s state (soil moisture, snow fall, snowmelt, zero degree line)<br />

– Estimation of expected runoff (scale of flood event as return periods)<br />

– Identification of affected railway sections<br />

– Summarised experts’ opinion<br />

Figure 4: Structure of the Flood Situation Report<br />

Including the expertise of Provincial Hydrographic Services, the system’s state is characterised<br />

by a qualitative assessment on whether soil moisture or snowmelt are likely to influence the<br />

flood development. The approach to estimate the expected runoff depends on the warning<br />

phase and available data. The pre-assessment is based on historic flood events, later on<br />

specific flood forecasts which are published by the Hydrographic Services and can be used to<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 941


update the estimation. To supply those responsible for the emergency planning with crucial<br />

information, the identification and display of the affected railway sections for the return<br />

periods of 30, 100 and 300 years (orange, red and purple sections in Figure 2) are highly<br />

important and count as final steps.<br />

CONCLUSIONS<br />

According to Austrian legislation, the Austrian Federal Railway Infrastructure Company<br />

(OEBB Infra) is, on one hand, responsible for the safety and, on the other hand, for the high<br />

availability of national and transnational railway tracks in Austria.<br />

To fulfil these high demands, different countermeasures against natural hazards are necessary.<br />

Beside a high range of technical protection measures like dams, barriers or fences, organisational<br />

measures such as warning systems, training, and contingency plans are equally<br />

important.<br />

There are three major reasons for the utilisation of organisational measures. First of all,<br />

technical countermeasures are not always possible due to natural, technical and legal reasons.<br />

Secondly, the planning, approval and construction of technical measures take very long – often<br />

years. Thirdly, technical countermeasures are planned by using design events: if a natural<br />

hazard event exceeds the design event, organisational measures help to protect human life.<br />

Warning systems are inexpensive and can be well adapted to resist influences from climate<br />

change.<br />

The accurate discharge models of the different catchment areas build the basis for planning<br />

countermeasures against flood events. In Austria, these discharge models are calculated by<br />

nine different federal countries. For a nationwide infrastructure operator, it is challenging to<br />

combine and interpret the different data.<br />

The quality of weather forecasts is very high, since the prognosis of the amount and the<br />

spatial position of precipitation concerning larger catchment areas, for example, are very<br />

accurate three days prior to an expected event. Because of the limited local resolution of<br />

prognosis models, it is very difficult to make forecasts for small catchment areas.<br />

Before, during and after a flood event, information and communication are crucial for a<br />

well-functioning warning system. The major principle of the flood warning system of the<br />

OEBB is the utilisation of existing information. The delivery of expert knowledge by the<br />

warning centres of the federal countries in Austria and the punctual contact with the<br />

Hydrographic Services serve as a fundament for taking decisions. Large infrastructure<br />

operators (18.000 employees at the OEBB Infra) need a well-functioning communication<br />

system, which includes an early conveyance of information to boot up the emergency<br />

organisation. Also, it is very important to communicate the timely all-clear.<br />

942 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The end of a flood event is the beginning of the next event, thus, an accurate event documentation<br />

is very helpful to improve the warning processes and to optimally plan countermeasures.<br />

Even though warning systems, as organisational countermeasures, help to protect human<br />

life and to optimise the disposability of traffic, they are not able to reduce damage on infra-<br />

structure.<br />

REFERENCES<br />

- Rudolf-Miklau F., (2009). Naturgefahren-Management in Österreich<br />

Vorsorge-Bewältigung – Information, Wien.<br />

- BMLFUW, (2009). Flood Risk II, Vertiefung und Vernetzung zukunftsweisender<br />

Umsetzungsstrategien zum integrierten Hochwassermanagement, Wien.<br />

- TUNSTALL, S. (2006): Damage reducing effects of flood warnings. In: FLOODsite (Hrsg.):<br />

Guidelines for Socio-economics flood damage evaluation. Wallingford, UK.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 943


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Early Flood Warning for the City of Zurich: Evaluation<br />

of real-time Operations since 2010<br />

Katharina Liechti, Dr. 1 ; Matthias Oplatka, Dr. 2 ; Natascha Eisenhut, M. Sc. 2 ; Massimiliano Zappa, Dr. 1<br />

ABSTRACT<br />

The flood forecast system for the river Sihl in Zurich (Switzerland) is operated by the Federal<br />

Research Institute WSL on behalf of the Canton of Zurich since 2007. The close collaboration<br />

between forecasters and decision makers fosters continuous development of the system.<br />

A management tool was implemented in the system that allows computing scenarios for<br />

predicted critical events. The forecast system comprises three forecast chains differing in lead<br />

time, spatial resolution and update cycle amongst others. These are the two deterministic<br />

chains driven by the numerical weather predictions COSMO-2 and COSMO-7 and the<br />

ensemble forecast chain driven by the COSMO-LEPS ensemble. The hydrological forecasts<br />

resulting from the three model chains and additional helpful information about the conditions<br />

in the catchment are made available on an online platform. The statistical evaluation<br />

of the three forecast chains showed that the ensemble forecasts clearly outperform the<br />

deterministic forecasts and are more reliable especially for taking decisions that need a lead<br />

time of more than just a few hours.<br />

KEYWORDS<br />

flood forecasting; early warning; hydro-meteorological forecast system<br />

INTRODUCTION<br />

This contribution presents the flood forecasting system for the river Sihl for the City of Zurich<br />

and its evaluation over more than five years of operational use.<br />

In summer 2005 big parts of Switzerland were flooded after 3 days of heavy rain. The event<br />

caused damages of more than three billion Swiss Francs. While many places experienced the<br />

worst flood damages recorded, Zurich City stayed relatively dry. However, the city centre of<br />

Zurich has a high damage potential, which is estimated to about five billion Swiss Francs.<br />

A lot of infrastructure had been constructed on the alluvial fan of the river Sihl during the<br />

last century. A closer look at the event of 2005 showed that if the centre of precipitation<br />

would have been over the Sihl catchment, the city centre, including Zurich central railway<br />

station would have been flooded. One of the main problems in Zurich is that the river Sihl<br />

crosses the central railway station. The riverbed of the Sihl is embraced by the underground<br />

tracks and the ground level tracks of the railway station, limiting its capacity to estimated<br />

350m 3 /s, corresponding roughly to a hundred year flood (FOEN, 2014). So a forecast system<br />

for the river Sihl is needed to be able to take prevention measures in case of expected flood<br />

1 Eidg. Forschungsanstalt WSL, Birmensdorf, SWITZERLAND, kaethi.liechti@wsl.ch<br />

2 Kanton Zürich Baudirektion Amt für Abfall, Wasser, Energie und Luft<br />

944 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP032


events. The most important measure that could be taken to prevent a flood event in Zurich is<br />

to drawdown the Sihl lake, which is a reservoir lake for hydropower production and can act<br />

as a retention basin for about 46% of the catchment area (Figure 1). This action needs a lead<br />

time of about 1 to 3 days.<br />

The forecasting system developed for this purpose is run operationally since 2007 by the<br />

Swiss Federal Institute for Forest, Snow and Landscape Research WSL on behalf of the<br />

Canton of Zurich (Office for Waste, Water, Energy and Air) (Addor et al. 2011; Zappa et al.<br />

2010). In this contribution the system set up, a statistical evaluation and experiences with<br />

the system in operational use are presented.<br />

Figure 1: Sihl catchment. The upper part of the catchment coloured in orange (46 %) belong to the accumulation area of the reservoir<br />

lake Sihlsee. The remaining catchment area consists of the two tributaries Alp and Biber and the narrow Sihl valley between the lake<br />

and Zurich City (source Addor et al. 2011).<br />

METHODS<br />

The presented flood forecasting system consists of a meteorological and a hydrological part<br />

(Zappa et al. 2010). Three different meteorological model forecasts are used to drive the<br />

discharge forecasts. They differ in their spatial resolution, lead time and update cycle (Table<br />

1). The models COSMO-2 and COSMO-7 are deterministic models, which forecast for each<br />

time step one single forecast value. COSMO-LEPS on the other hand is a probabilistic model,<br />

which consists of 16 ensemble members. So for each time step COSMO-LEPS forecasts 16<br />

equally likely forecast values (Montani et al. 2011).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 945


Table 1: Numerical weather prediction models used for driving the hydrological model PREVAH. (* After computation and dissemination<br />

of COSMO-LEPS 120 h lead time are left in the hydrological forecast).<br />

Model Horizontal resolution Initialisation Lead time Member<br />

COSMO-2 2.2 km 00, 03, 06, ... UTC 24h 1<br />

COSMO-7 6.6 km 00, 06, 12 UTC 72h 1<br />

COSMO-LEPS 7 km 12 UTC 132h* 16<br />

These meteorological forecasts are fed into the semi-distributed hydrological model PREVAH<br />

(Viviroli et al. 2009) and result together with the current state of the catchment in discharge<br />

forecasts for the river Sihl. The discharge forecasts have a temporal resolution of one hour<br />

and a lead time and update cycle according to the driving meteorological models.<br />

These forecasts are made available on an online platform to the decision makers of the<br />

Canton of Zurich (Badoux et al. 2010). The platform includes not only the discharge forecasts<br />

for the river Sihl (Figure 2), but also forecasts of the level of the Sihl lake and other meteorological<br />

and hydrological parameters that help judging the current and expected situation.<br />

Furthermore a management tool allows the realization of discharge scenarios in a pre-event<br />

phase. The most valuable element of this flood forecasting system is however the good and<br />

close collaboration between researchers and decision makers. Only good communication<br />

Figure 2: Screenshot of the online platform showing the COSMO-LEPS forecast for the river Sihl in Zurich for the period of May 31st to<br />

June 4th 2013. The coloured background of the available forecast locations correspond to the highest warning level reached in the<br />

forecast period. The gray panel on the left hand side offers the opportunity to easily switch between the different forecast products and<br />

other additional information like measurements, radar data, meteograms amongst others.<br />

946 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


makes it possible to operate and further develop a system that meets the user need and can<br />

unfold its full potential.<br />

Statistical Evaluation<br />

Since the last model update in late 2009, forced by the increase of horizontal resolution of the<br />

meteorological models, more than five years of continuous forecasts from the three different<br />

forecast chains are available for the evaluation of the hydrological forecast system.<br />

The evaluations include data from the months March to October of the years 2010 to 2014.<br />

The reason for this restriction is, that most flood events in the river Sihl occur during these<br />

months due to snowmelt, thunderstorms and long lasting precipitation events. Also during<br />

these months forecasters and end users are on standby duty.<br />

The performance of the three model chains were compared to each other by means of several<br />

statistical scores. Here the evaluation with the coefficient of determination (R 2 ) and the Brier<br />

Skill Score (BSS) is presented. These scores are a mix of easy understandable measures of<br />

agreement (R 2 ) and well-tailored advanced metrics able to provide hints on the quality of<br />

both deterministic and probabilistic forecast systems (Addor et al. 2011; Liechti et al. 2013).<br />

The coefficient of determination R 2 is calculated using the observed and forecast daily mean<br />

runoff values. It is the squared Pearson correlation coefficient, which for its part is a measure<br />

for the linear correlation between forecast and observation. R 2 is a deterministic measure,<br />

therefore for the ensemble forecasts the daily mean value of the ensemble mean is used. R 2<br />

indicates the percentage of observed variance that can be explained by the forecast. So the<br />

closer R 2 is to one, the better the forecast explains the observation. In the presented case the<br />

evaluation is done by lead time, days 1 to 5 for COSMO-LEPS mean, day 1 to 3 for COSMO-7<br />

and day 1 for COSMO-2.<br />

The Brier Skill Score (BSS) is a measure which allows direct comparison of deterministic and<br />

probabilistic forecasts without the previous reduction of the ensemble to its median or mean.<br />

The BSS is based on the Brier Score (BS) which is the mean squared error of the probability<br />

forecast to exceed a predefined threshold given the observed outcome (exceeding/not exceeding<br />

the threshold). The BSS then describes, for the predefined threshold, how much better or<br />

worse the BS of the forecast is compared to the BS of the climatological forecast. This makes it<br />

a good measure to show the added value of the forecast system compared to the climatological<br />

‘guess’. For the evaluation with the BSS the hourly time series of forecasts and observations<br />

were aggregated with a centred running maxima of 13 hours. This gives the forecast<br />

system a tolerance of plus/minus 6 hours. Equations and closer descriptions of the presented<br />

scores can be found in Wilks (2006).<br />

Management tool<br />

During the operational use of the presented forecast system it came clear that for the management<br />

of individual events a tool was desirable that allows to simulate scenarios. Therefore a<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 947


management tool was built, which allows computing scenarios by varying the inflow into the<br />

Sihl lake, draw down of the Sihl lake, used turbine capacity of the hydro power plant and the<br />

contribution from the tributaries not flowing into the reservoir lake first. The time steps over<br />

which these parameters should be applied in the calculation of the scenario can be freely<br />

chosen by the user of the tool. The tool is accessible online to all eligible users.<br />

RESULTS<br />

Coefficient of determination R 2<br />

As to be expected the coefficient of determination R 2 between forecast and observation<br />

decrease with increasing lead time. Table 2 lists the R 2 values for the three forecast chains by<br />

lead time for the individual years and the entire period. For the first forecast day both<br />

deterministic forecast chains reach mainly higher R 2 than the ensemble forecast. On forecast<br />

days two and three the ensemble forecast driven by COSMO-LEPS reach higher R 2 than the<br />

deterministic COSMO-7 (except day two 2012). Even the fourth forecast day of the ensemble<br />

forecast still reaches higher R 2 than the third forecast day of the deterministic COSMO-7.<br />

Table 2: R 2 of forecast observation pairs of daily mean runoff, listed by lead time for each year from 2010 to 2014 and for all years<br />

together. Only data from the months March to October are used.<br />

2010 2011 2012 2013 2014 2010-2014<br />

COSMO-LEPS Day 1 0.79 0.87 0.81 0.86 0.84 0.83<br />

Day 2 0.65 0.49 0.58 0.75 0.52 0.62<br />

Day 3 0.38 0.43 0.54 0.70 0.52 0.52<br />

Day 4 0.28 0.41 0.49 0.64 0.40 0.44<br />

Day 5 0.22 0.15 0.23 0.53 0.30 0.29<br />

COSMO -7 Day 1 0.85 0.87 0.86 0.88 0.83 0.86<br />

Day 2 0.62 0.39 0.66 0.69 0.45 0.58<br />

Day 3 0.48 0.25 0.46 0.58 0.25 0.42<br />

COSMO -2 Day 1 0.83 0.83 0.87 0.91 0.81 0.86<br />

Brier Skill Score<br />

The BSS was calculated for several thresholds. Shown here are the results for the thresholds<br />

corresponding to the 90-% and 95-% quantile of the discharge climatology (March to<br />

October 2007 to 2014, centred running maxima over 13 hours). In addition to the three<br />

forecast chains also the ensemble median is evaluated and treated as a deterministic forecast.<br />

948 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Generally it can be seen that the BSS decreases with increasing threshold and with increasing<br />

lead time (Figure 3). COSMO-2 is better or equally good as COSMO-7 over its entire runtime.<br />

For the lower threshold tested COSMO-LEPS median and COSMO-7 are in the same range.<br />

For the higher threshold tested COSMO-LEPS median is performing a bit better than<br />

COSMO-7. The COSMO-LEPS ensemble forecast is clearly the best performing forecast chain<br />

and reaches positive BSS values over its entire forecast period of five days.<br />

Figure 3: Brier Skill Score. Thresholds 19.5 m 3 /s and 34.75 m 3 /s correspond to the 90% and 95% quantiles of the discharge climatology<br />

(centerd 13h running maxima, March to October 2007 to 2014).<br />

Management tool<br />

The Management tool is illustrated using an event from 2013. The COSMO-LEPS forecast of<br />

May 31st predicted high discharge, i.e. four ensemble members exceeding the third warning<br />

level of 200 m 3 /s, for June 1st and 2nd which would fill the reservoir lake (Figure 4).<br />

The end-users then informed the forecasters that they plan to draw down the reservoir lake<br />

by 80 m 3 /s over the next 36 hours.<br />

According to the available forecasts at that time this drawdown would have overlapped with<br />

discharge peaks from the tributaries Alp and Biber. The forecasters therefore used the<br />

management tool to calculate the expected scenario according to the end-user’s plan and<br />

according to a counter proposal from the forecasters (Figure 4). The resulting scenarios made<br />

clear that with the planned drawdown of 80 m 3 /s over the next 36 hours the probability to<br />

exceed the third warning level of 200 m 3 /s was quite high (Figure 4, scenario 1). Thus, after a<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 949


short teleconference with the forecasters to discuss the scenarios and their implications, the<br />

end-users decided to shorten the drawdown to a few hours only reducing the probability of<br />

exceeding 200 m 3 /s in Zurich significantly (Figure 4, scenario 2).<br />

The observed event then consisted of four peaks distributed over three days. A first artificial<br />

peak from the ordered draw down reached 130 m 3 /s, the second peak originating from the<br />

tributaries reached 190 m 3 /s, more intensive rain lead to a peak of 140 m 3 /s, and the last peak<br />

originated from the combination of a rule based draw down and more intensive precipitation<br />

reached 160 m 3 /s.<br />

Sisee ee init 21 21<br />

Si ric init 21 21<br />

Forecast<br />

WL3<br />

WL2<br />

WL1<br />

discharge [m 3/s]<br />

WL3<br />

WL2<br />

WL1<br />

Fr 31. May Sat 1. Jun Sun 2. Jun Mon 3. Jun Tue 4. Jun<br />

Fr 31. May Sat 1. Jun Sun 2. Jun Mon 3. Jun Tue 4. Jun<br />

hours<br />

hours<br />

Sisee otet<br />

discharge [m 3/s] lake level [m a.s.l.]<br />

Si ric<br />

Scenario 1<br />

WL2<br />

WL1<br />

an eers<br />

ecee 2 s<br />

WL3<br />

WL2<br />

WL1<br />

Fr 31. May Sat 1. Jun Sun 2. Jun Mon 3. Jun Tue 4. Jun<br />

Fr 31. May Sat 1. Jun Sun 2. Jun Mon 3. Jun Tue 4. Jun<br />

hours<br />

hours<br />

Sisee otet<br />

discharge [m 3/s] discharge [m 3/s]<br />

Si ric<br />

Scenario 2<br />

discharge [m 3/s]<br />

WL3<br />

WL2<br />

WL1<br />

n to eers<br />

ecee 2 s<br />

WL3<br />

WL2<br />

WL1<br />

Fr 31. May Sat 1. Jun Sun 2. Jun Mon 3. Jun Tue 4. Jun<br />

hours<br />

Fr 31. May Sat 1. Jun Sun 2. Jun Mon 3. Jun Tue 4. Jun<br />

Figure 4: Example of management tool application. Top row: COSMO-LEPS forecasts for the lake level (left) and the Sihl in Zurich (right).<br />

Middle row: Scenario 1 releasing 80 m 3 /s over 36 hours from the lake and corresponding expected peak flow in Zurich. Bottom row:<br />

Scenario 2 releasing 80 m 3 /s over 9 hours and corresponding expected peak flow in Zurich.<br />

hours<br />

CONCLUSIONS<br />

The statistical evaluation shows that for a system like the river Sihl upstream of Zurich, which<br />

needs a lead time of one to three days to take preventive measures in case of a coming event,<br />

the ensemble forecasts are more reliable than the deterministic forecasts.<br />

950 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


The management tool proved to be useful to handle individual critical events. For the event<br />

presented here, the tool helped to plan the drawdown of the reservoir lake such that a<br />

coincidence of peak flows from tributaries and from the lake outlet were avoided. The tool<br />

is not perfect yet and needs further improvement to ease its handling.<br />

The near future will bring significant changes to the system. MeteoSwiss will produce new<br />

numerical weather predictions and replace the three forecast products with only one<br />

deterministic forecast product called COSMO-1, and the ensemble forecast product<br />

COSMO-E. The spatial resolution of these products will be 1.1 km and 2.2 km and the<br />

number of ensemble members will increase to 21. Furthermore it is planned to implement<br />

post processing into the operational forecast system. Both developments are expected to<br />

further improve the discharge forecasts for the river Sihl.<br />

REFERENCES<br />

- Addor N., Jaun S., Zappa M. (2011). An operational hydrological ensemble prediction<br />

system for the city of Zurich (Switzerland): skill, case studies and scenarios. Hydrology and<br />

Earth System Sciences 15(7): 2327-2347.<br />

- Badoux A., Zappa M., Oplatka M., Bösch M., Jaun S., Steiner P., Hegg C., Rhyner J. (2010).<br />

IFKIS-Hydro Sihl: Beratung und Alarmorganisation während des Baus der Durchmesserlinie<br />

beim Hauptbahnhof Zürich. Wasser Energ. Luft 102(4): 309-320.<br />

- FOEN, Federal Office for the Environment. (2014). http://www.hydrodaten.admin.ch/lhg/<br />

sdi/hq _studien/hq_statistics/2176hq.pdf. Access: 06.01.<strong>2016</strong>.<br />

- Liechti K., Zappa M., Fundel F., Germann U. (2013). Probabilistic evaluation of ensemble<br />

discharge nowcasts in two nested Alpine basins prone to flash floods. Hydrological Processes<br />

27(1): 5-17.<br />

- Montani A., Cesari D., Marsigli C., Paccagnella T. (2011). Seven years of activity in the field<br />

of mesoscale ensemble forecasting by the COSMO-LEPS system: main achievements and open<br />

challenges. Tellus Series a-Dynamic Meteorology and Oceanography 63(3): 605-624.<br />

- Viviroli D., Zappa M., Gurtz J., Weingartner R. (2009). An introduction to the hydrological<br />

modelling system PREVAH and its pre- and post-processing-tools. Environmental Modelling &<br />

Software 24(10): 1209-1222.<br />

- Wilks D. S. (2006). Statistical methods in the atmospheric sciences. Amsterdam, Elsevier.<br />

- Zappa M., Jaun S., Badoux A., Schwanbeck J., Addor N., Liechti K., Roeser I., Walser A.,<br />

Viviroli D., Vogt S., Gerber M., Trösch J., Weingartner R., Oplatka M., Bezzola G.R., Rhyner<br />

J.(2010). IFKIS-Hydro Sihl: Ein operationelles Hochwasservorhersagesystem für die Stadt<br />

Zürich und das Sihltal." Wasser Energ. Luft 102(3): 238-248.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 951


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

A new data management infrastructure for improved<br />

analysis and real-time publication of flood events in<br />

the Canton of Aargau<br />

Christophe Lienert 1<br />

ABSTRACT<br />

In order to take appropriate countermeasures before and during flood events, decision<br />

makers, crisis committees, and the public need fast, secure and easy access to real-time hydrological<br />

data. In order to meet the increased needs and expectations of internal and external<br />

parties, new Desktop and Web-tools for real-time data analysis, data collation, interoperability,<br />

and interactive visualization have been introduced, and further developed by the Swiss<br />

Canton of Aargau. Customizable tools for hydrological data analysis and cartographic<br />

publication are now available, tailored to early warning and flood management. Various<br />

features of the newly launched data infrastructure, and the real-time map HydroWeb, are<br />

highlighted.<br />

KEYWORDS<br />

early warning; flood management; hydrology; real-time cartography; data interoperability<br />

INTRODUCTION<br />

In the Swiss Canton of Aargau, flood hydrology, emergency management and early warning<br />

is a high priority as four of the five largest rivers of Switzerland join on its territory. Superficial<br />

waters of about two thirds of Switzerland's area, plus some parts of Germany and Austria,<br />

flow through the Canton and are discharged by the Rhine. Floods of different severity have<br />

occurred in the past, and will occur in the future. Timely and precise information about the<br />

state of the waters, as well as forecasts and runoff predictions provided by Swiss Federal<br />

agencies, and coordination with upstream Cantons are vital to prepare for, counteract and<br />

coping with floods.<br />

In 2012, the Swiss Canton of Aargau has launched the two-years project "Introduction<br />

WISKI", during which a commercial water information system software was evaluated,<br />

tested, purchased, and implemented. The goal was to replace the previous software for better<br />

management of large archive and real-time hydrological datasets, for enhanced hydrological<br />

and GIS-based analysis, and for better interface management with Web-based visualization<br />

and publication products. The project contained the introduction of a WISKI-Desktop<br />

component and a WISKI-Web component (called HydroWeb). The overall project consisted of<br />

the following working packages and deliverables:<br />

1 Canton of Aargau, Aarau, SWITZERLAND, christophe.lienert@ag.ch<br />

952 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP073


– Securing current, parallel data management operations<br />

– Development of a comprehensive, extendable data model to grant role-based access.<br />

– Conversion of telephone-based and FTP-based data retrieval.<br />

– Processing and migration of legacy data, stage-discharge relationships, authoring of new<br />

quality concepts and time series models.<br />

– Realization of new manual and automated publications routines, particularly the generation<br />

of approved and provisional hydrological yearbook sheets and special reports<br />

– Linking to desktop and Web-based geo-information systems (GIS) for spatio-temporal<br />

analysis and cartographic visualization.<br />

– Adjustable interface management for cloud-based data exchange by means of standardized<br />

data interoperability tools.<br />

– Complete re-design and implementation of the Web-based hydrological map publication<br />

(browser and mobile enabled) within the existing Cantonal IT-environment.<br />

– Internal training of staff after rollout.<br />

– Provision of a location-independent Intranet-based access to real-time data and analysis<br />

tools for cantonal flood management staff (flood on-call service).<br />

The decision of the Canton of Aargau fell on the software WISKI which is marketed by the<br />

German company Kisters Inc., Aachen, Germany. One of the world's market leaders in the<br />

domain of information systems for water resources management, the company now also<br />

specializes in Web-based services and application programmable interfaces (API), reflected by<br />

the entrance of the product Kisters Web Interoperability Solution (KiWIS) in the company's<br />

portfolio. The company also actively participates in the development of Open Geospatial<br />

Consortium's WaterML and TimeSeriesML standard, ensuring that hydrological data comply<br />

with international standards (Horsburgh et al. 2009, Yu et al. 2015).<br />

KiWIS allows the Canton of Aargau to tap the full potential of their newly set-up large,<br />

hydrological database WISKI. It offers tailored data in real-time to either end-users (e.g., flood<br />

committees, public users), or third party applications (e.g., HydroWeb). WISKI acts as a<br />

comprehensive (thick) internal Desktop application for complex hydrological data analysis.<br />

Products based on KiWIS are Web-based (thin) and therefore rather trimmed to the relevant<br />

information, ideal for public users or experts who need to monitor hydrological situations at a<br />

glance, before initiating more detailed analysis.<br />

METHODS<br />

Linking real-time measurement data with GIS-data<br />

WISKI-Desktop is equipped with GIS interfaces and an additional extension ensures that<br />

WISKI may be used in GIS or GIS may be used in WISKI. The goal of the project component<br />

HydroWeb, however, was to leverage KiWIS for (carto)graphic visualization of hydrological<br />

real-time data on the Web. The main question was how to handle, and combine huge<br />

amounts of real-time data with the cantonal spatial data infrastructure and its Web-based<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 953


publication utility AGISviewer (Lienert & Meier 2014, Vitolo et al. 2015), since this was one<br />

of the main requirements of HydroWeb. The AGISviewer framework had, for the first time, to<br />

meet the requirement of handling real-time data. So far, predominantly static, pre-processed<br />

Cantonal geo-information products are published in this framework. The choice to realize<br />

HydroWeb in the AGISviewer framework, as opposed to an entirely external framework, was<br />

based on the arguments that measurement data stay in-house and many existing functionalities<br />

and services are reusable.<br />

Integrating various data sources<br />

In HydroWeb, two main distinctions are made as to data sources and measurement network:<br />

1) data sources owned by Canton of Aargau 2) third-party data from other public authorities,<br />

such as several Federal Offices, other neighboring Cantons, German State Baden-Wuertemberg<br />

(neighboring the Canton of Aargau across the river Rhine), research institutes, and<br />

private measurement network operators. Further distinctions are made between a) real-time<br />

versus archive, b) enduring versus temporary time series, c) original (non-editable) versus<br />

productive (editable) time series, d) persistent versus on-the-fly calculated time series.<br />

The following measuring parameters are stored in the Cantonal WISKI database: precipitation,<br />

soil moisture, soil temperature, water temperature, air temperature, groundwater<br />

height, pumping volumes, river discharge, various drinking water quality parameters, and<br />

various bathwater quality parameters. Further environmental parameters will be integrated<br />

in the near future (Lienert & Meier, 2014).<br />

Basic data model<br />

On top of the vendor data model, a cascade of several steps describes and determines the<br />

basics of the overall WISKI data model operated by the Canton of Aargau:<br />

– data owner (e.g., Canton of Aargau = AG)<br />

– organization (e.g. Division Landscape and Waters = ALG)<br />

– gauging site (e.g., City of Rheinfelden, and gauge number 0374)<br />

– gauge type (e.g. flowing waters = FG, or meteorology = METEO, etc.)<br />

– measuring parameter (e.g., water discharge = Q)<br />

– time series (e.g., original series with raw data = Cmd.O)<br />

– agents (e.g., agents to import raw, unverified data from some source)<br />

Each of the above mentioned steps has up to a dozen further attributes attached to them, and<br />

further interrelations. For example, on each gauging site level, information is stored regarding<br />

identification, location (geo-coordinates), and flood statistics.<br />

The Web-Service interface KiWIS<br />

Technically speaking, KiWIS is Web-based application programming interface (API) of WISKI,<br />

based on the Representational State Transfer (REST). Using KiWIS, the Canton of Aargau has<br />

established a basis to considerably facilitate online collation and publication of hydrological<br />

data in real time, to support flood management and other activities. In summary, KiWIS:<br />

954 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– allows for the publication of large amounts of time series data<br />

– supports authorities to perform their legal data publication tasks<br />

– helps foster cooperation with third-parties<br />

– distributes specific data and information to assigned user groups<br />

– enables customers build customized Web-applications and data-hubs, in order to use data<br />

across applications<br />

Data requests from external customers may now be conveniently answered by URLs contain<br />

all desired information. Other data services were deployed to deliver real-time data to other<br />

program components. One component is the real-time list; another component is the<br />

real-time map (HydroWeb). Both components are discussed in the next chapter.<br />

RESULTS<br />

Data analysis and publication using real-time lists<br />

The most current data are accessible through either maps or list. The list shown in Fig. 1<br />

is optimized for mobile devices and complies with cantonal corporate design guidelines.<br />

As maps are not yet accessible via mobile devices, mobile users are automatically redirected<br />

to the list.<br />

Figure 1: Real-time data list optimized for mobile devices. River discharge, water levels, water temperatures or precipitation are<br />

available. Colored data rows indicate the exceedance of pre-defined warning levels.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 955


The list is derived from a tailored KiWIS service and is further processed on the server for<br />

better readability. The user may choose one of the measured parameters (river discharge,<br />

water level, water temperatures, precipitation) using drop down functionality. The list is<br />

immediately reloaded when the parameter is changed, or when the browser is refreshed.<br />

For river discharge, the current values are related to different warning levels. Depending on<br />

whether and what warning levels are reached, data rows are automatically colored. Warning<br />

levels and its coloring comply with Swiss national flood management standards and ensure<br />

quick looks. The real-time data list is accessible at www.ag.ch/hydrometrie/liste.<br />

Figure 2: Real-time map HydroWeb on the national scale. Real-time data from neighboring areas and upstream Cantons are also<br />

integrated. Base map: Topographic landscape model TLM by Swiss Federal Office of Topography, swisstopo (provided as Webmap-service).<br />

Data analysis and publication using real-time maps<br />

In Fig. 2, the real-time hydrological map with the territory of the Canton of Aargau (dashed<br />

border) is shown. Tripartite circle map symbols depict the measured parameters river<br />

discharge (dark blue), water levels (green), water temperature (red), and full blue circle<br />

symbols represent precipitation gauges.<br />

Depending on the chosen map scale, specific interactivity and responses are provided on<br />

HydroWeb. Clicking on the map symbols in the legend window on the right either activates<br />

or deactivates onMouseOver-functionality. Depending on the scale, gauge information is<br />

either provided when the mouse is moved over the symbol, or attached to the symbol and<br />

therefore visible as a flag.<br />

As shown in the map in Fig. 2, several other gauges are visualized outside the cantonal<br />

territory. Joint measuring networks (e.g., the precipitation network operations between<br />

956 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Cantons Aargau and Lucerne), as well as real-time data exchange agreements with partner<br />

networks allow to publish more than just cantonal data. Key gauges of upstream Cantons are<br />

therefore visualized jointly on HydroWeb, helping to get the bigger picture when assessing<br />

and analyzing floods.<br />

Space conflicts and cluttering of map symbols on larger overview map scales have been<br />

addressed by a scale-dependent filter, giving one gauge location priority over the other. The<br />

priority of a gauge was determined expert-based, depending on its overall significance for<br />

flood management, measuring network affiliation, measuring quality, and representativity.<br />

The prioritization is controllable using a configuration file.<br />

Data widgets, as well as interactive search, and filter functionality are an integral part of<br />

HydroWeb. The functionalities are shown in Fig. 3 on the right side. Users may search for<br />

gauge locations or numbers, and names of municipalities. Likewise, there are filter options<br />

that automatically remove gauges on the map. The following filter criteria are available:<br />

– data ownership<br />

– catchment area<br />

– measuring parameter<br />

– date of measurement<br />

Figure 3: Real-time map HydroWeb on the catchment scale. The data widget contains hourly precipitation data. Time series may be<br />

viewed on different temporal aggregation levels (10min, 1h, 1d), and different retrospect (2d, 7d, and 31d).<br />

The map in Fig. 4 contains small flags next to the gauge, some of which with a yellow color,<br />

as these have reached a specific warning level. When clicking on such a gauge, the widget<br />

shows the time series graph, plus the yellow warning level. The widgets are movable and<br />

resizable, and each displays uniform metadata on their left side, and time series information<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 957


on the right side. On the right side, information is organized by tabs and contains the<br />

following items:<br />

– discharge with time series graphs<br />

– water level with time series graph<br />

– water temperature with time series graph<br />

– precipitation with bar graphs, cumulative curves<br />

– statistics with extreme values (river discharge)<br />

– statistics with intensity, sum and event analysis (for precipitation)<br />

– annuals with verified, authorized data of the past year(s)<br />

– gauge images<br />

As shown in Fig. 1, the entire list of available gauges may also be retrieved in HydroWeb,<br />

displayed in Fig. 4 on the right side. The list may be sorted as to station name, parameter<br />

name, measuring value, or time of last measurement. Clicking on a list item releases an<br />

automatic zoom to the chosen gauge. HydroWeb is accessible at www.ag.ch/hydrometrie/<br />

karte.<br />

Figure 4: Real-time map HydroWeb on a regional scale. Yellow value flags next gauge symbols indicate moderate danger. In the widget,<br />

the graph is visualized jointly with the warning threshold.<br />

FURTHER DELIVERABLES<br />

HydroWeb is supposed to be an "anytime-anywhere" tool for flood management and early<br />

warning. It is available in all major browsers and does not require any plug-ins. comprehensive<br />

load tests were carried out before rollout and findings showed that the system is capable<br />

of handling 5000+ concurrent visitors without noticeable compromises. In order to calculate<br />

and analyze visitor statistics, especially during flood events, the well-known Google Analytics<br />

tool has been integrated.<br />

958 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Each system component (servers, services, databases, middleware) of the entire WISKI-<br />

Architecture is regularly checked by another server for its availability and functionality.<br />

A dash board specifically built for this purpose allows for quick views and performance checks.<br />

In case some component is (repeatedly) underperforming, emails are dispatched to cantonal<br />

IT-staff.<br />

CONCLUSION AND OUTLOOK<br />

Due to extended technical and organizational requirements, the Swiss Canton of Aargau<br />

has introduced new measurement data software, in order to meet the increased needs and<br />

expectations of internal and external parties during floods. In order to take appropriate<br />

countermeasures before and during flood events, decision makers, crisis committees, and<br />

specialists need rapid, secure and easy access to real-time discharge and precipitation data.<br />

In September 2014, the Canton of Aargau has introduced the new Desktop-Software WISKI<br />

and its Web-based module KiWIS, facilitating data exchange in standardized format, and<br />

timely processing and publication of hydrological data, relevant to flood management and<br />

early warning. The discussed hydrological real-time map HydroWeb constitutes a "front-end"<br />

of these real-time data workflows. It allows for cartographic access to multi-source, multiparameter,<br />

and multi-format data in a harmonized, interactive, and attractive way.<br />

It may be assumed that WISKI will be established at several Cantons and Federal agencies in<br />

Switzerland as a tool for hydrological (and other environmental) data management. With this<br />

present contribution, experiences and deliverables of the successful introductory project<br />

WISKI are shared. Further developments comprise the integration of real-time raster data<br />

sets. Presently, a project is carried out that deals with the integration and visualization of<br />

raster-based precipitation distribution data in WISKI, and its interface through KiWIS for<br />

interactive visualization in HydroWeb.<br />

LITERATURE<br />

- Horsburgh J., Tarboton D., Piasecki M., Maidment D., Zaslavsky I. (2009). An integrated<br />

system for publishing environmental data. Environmental Modelling & Software 24(8):<br />

879-888.<br />

- Lienert C., Meier S. (2014). Environmental Data Visualization EnVIS – Linking real-time<br />

sensor data with spatial data Infrastructures for Web-based visualization. In: Bandarova T.,<br />

Konecny M., Zlatanova S. (Eds.). Thematic Cartography for the Society. Berlin: Springer,<br />

293-304.<br />

- Vitolo C., Elkhatib Y., Reusser D., Macleod C., Buytaert, W. (2015). Web Technologies for<br />

Environmental Big Data. Environmental Modelling & Software 63: 185–198.<br />

- Yu J., Taylor P., Cox S., Walker G. (2015). Validating observation data in WaterML 2.0.<br />

Computers & Geosciences 82: 98-110.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 959


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Radar-based Warning and Alarm Systems for Alpine<br />

Mass Movements<br />

Lorenz Meier, Dr. 1 ; Mylène Jacquemart 1 ; Bernhard Blattmann 1 ; Sam Wyssen 2 ; Bernhard Arnold 3 ; Martin Funk, Prof. Dr. 4<br />

ABSTRACT<br />

We present two applications of Doppler radar and Ground-Based Interferometric Synthetic<br />

Aperture Radar (GBInSAR) in warning and alarm systems for alpine mass movements.<br />

Near Zermatt, two long-range Doppler radars are used to detect snow avalanches and close<br />

the road below in real time. Local authorities have access to the data at all times, and can<br />

reopen the road from any computer or mobile device.<br />

In the Saas Valley, ice avalanches from the glaciated northwest face of Weissmies Mountain<br />

pose a threat to infrastructure and people below. We use GBInSAR to continuously monitor<br />

ice surface velocities on this face to detect and warn of potential ice fall.<br />

Radar technologies have proven reliable and versatile in warning and alarm systems because<br />

they can monitor large areas without the need for in-situ installations and are largely<br />

unaffected by weather.<br />

KEYWORDS<br />

radar; mass movements; early warning; alarm system; road safety<br />

INTRODUCTION<br />

Alpine mass movements like snow and ice avalanches, rockfall and landslides pose an inherent<br />

threat to villages, roads or ski resorts. In many cases, structural measures can provide<br />

long-term safety. In some cases, however, these measures are too costly, negatively impact<br />

scenery or cannot be constructed where needed. In these situations, an electronic warning or<br />

alarm system, paired with organizational measures, can significantly reduce risk of injury,<br />

fatality and damage to property. Electronic alarm systems measure an event in real-time<br />

(e.g. the avalanche velocity or flow height) and trigger an automatic response like closing a<br />

road or stopping a train before the event reaches the threatened area. Warning systems<br />

measure precursory events (e.g. the acceleration of surface movements of a rock wall that<br />

announces possible rockfall) and provide the data to local authorities and experts as a basis<br />

for decision-making (Sättele & Bründl, 2015).<br />

Where roads, railways or ski resorts are threatened by avalanches, preventive avalanche<br />

release using explosives is a common mitigation method (Gubler & Wyssen, 2002). However,<br />

the result of blastings must be verified before reopening the threatened area. Since this can<br />

1 GEOPRAEVENT AG, Zürich, SWITZERLAND, lorenz.meier@geopraevent.ch<br />

2 Wyssen Avalanche Control AG<br />

3 Gemeinde Zermatt<br />

4 ETH Zürich<br />

960 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP117


e difficult under darkness, fog or heavy snow fall, sensors without visibility requirement are<br />

a strong asset (Meier et al. 2010, Scott et al. 2006).<br />

Contrary to snow avalanches, ice avalanches are predictable in some circumstances. A sharp<br />

increase in surface velocities at the unstable margin of a glacier is a clear sign of an impending<br />

icefall. The rupture time can be predicted based on a time series of surface velocity data.<br />

(Faillettaz et al., 2015). The most recent glacier catastrophe in Switzerland occurred in 1965,<br />

when two million m³ of ice broke off from the tongue of Allalingletscher and buried the<br />

construction site of the Mattmark dam, killing 88 people (Vivian, 1966).<br />

Doppler radars, while best known as speed traps used by the police, have been applied to<br />

measure fast processes like avalanches (Lussi et al., 2012), and are widely used to monitor<br />

eruption dynamics in volcanology (e.g. Seyfried & Hort, 1999). Ground Based Interferometric<br />

Synthetic Aperture Radar (GBInSAR) has been used to study a variety of slower processes,<br />

from landslides, (rock) glacier motion, and tidewater glacier dynamics to displacements in<br />

man-made structures (Luzi et al., 2007; Monserrat et al., 2014; Nolesini et al., 2013;<br />

Rödelsperger 2011).<br />

We report on two radar applications where these technologies have been integrated into<br />

operational alarm and warning systems: The first detects avalanches within an area of<br />

roughly two square kilometer using Doppler radars. We show that they can significantly<br />

improve avalanche release verification and be used in an automated way to close and reopen<br />

roads to traffic in real time. The second uses GBInSAR to continuously monitor the surface<br />

flow field of a glacier, data that can be analyzed to forecast icefall events.<br />

METHOD<br />

Radar provides several advantages over other surveying techniques. First, it does not require<br />

sensors to be installed within the observed area, keeping both people and instrumentation<br />

out of harm's way. Second, a single radar is sufficient to monitor areas spanning several<br />

square kilometers. Third, in contrast to optical methods, radar measurements are largely<br />

unaffected by low visibility. The atmosphere is mostly transparent to radar radiation and<br />

measurements are even possible during rain, snowfall or fog.<br />

For both types of radar systems described here, data quality is crucial for reliable operation.<br />

If an alarm system is not sufficiently reliable or accurate, it may miss an event. Requirements<br />

for warning systems are slightly less strict, depending on the expected delay between<br />

precursor and event.<br />

DOPPLER RADAR<br />

Radar transmits electromagnetic radiation, usually in the range of a few to a few tens of GHz.<br />

This radiation is reflected by objects in the target area. If such an object is moving towards<br />

or away from the radar, the frequency of the reflected radiation is offset from the original<br />

radar frequency. Known as the Doppler Effect, objects moving toward the radar reflect a<br />

higher frequency, while objects moving away from the radar reflect a lower frequency.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 961


This phenomenon is commonly experienced in daily life: the sound of an approaching<br />

ambulance changes its pitch abruptly when it passes the observer. An object’s velocity and<br />

direction relative to the radar can thus be calculated by comparing the transmitted and<br />

reflected signal frequencies (Figure 1A).<br />

Gravitational mass movements like avalanches, rockfall and debris flows all move with<br />

velocities of a few meters to a few tens of meters per second and can easily be measured using<br />

Doppler radars. However, Doppler radars are sensitive to all movements within their target<br />

area. Thus, additional criteria are needed to distinguish dangerous movements from “harmless”<br />

objects in motion, like helicopters or wildlife. We have conducted an extensive field<br />

study at 8 locations in Switzerland with several Doppler radars that measure velocity, range<br />

and direction to moving targets within a field of view of 90° (horizontal) × 10° (vertical) and<br />

a range of up to 2’000 m. We have acquired more than 10 terabytes (TB) of radar raw data<br />

that contain radar signals of approximately 200 avalanches, 100 rockfall events and 1 debris<br />

flow. These data were used to develop an algorithm that reliably detects snow avalanches and<br />

rockfall events in real time. The algorithm determines avalanche location and speed, and<br />

estimates its size. It can be configured to meet local needs. For example, if there are several<br />

gullies in the radar field of view, the software can be configured to only trigger an alarm if an<br />

avalanche of a certain minimum size is detected in one or more specific gullies.<br />

So far, four Doppler radars of this kind have been deployed in operational projects: two in<br />

Zermatt (see below), one for avalanche safety of a mountain railway, and one mounted on<br />

a Wyssen avalanche tower for the verification of artificially released avalanches.<br />

Figure 1A: Doppler radars calculate velocity and direction based on the shift in received frequency. 1B: GBInSAR systems measure<br />

deformation based on the phase shift of the received signal.<br />

962 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


GBInSAR<br />

Ground-based SAR interferometry is widely used to monitor slope movements (e.g. Monserrat<br />

et al., 2014; Nolesini et al., 2013), but its application to glacier motion in an operational<br />

warning system is a novelty. Similar to Doppler radar, it transmits radar radiation and<br />

analyzes the signal reflected by the target area. In contrast however, GBInSAR systems<br />

analyze changes in the phase of the reflected radiation instead of changes to the frequency.<br />

Therefore, they can measure displacements as small as 0.1 mm between two acquisitions.<br />

The IBIS-FL radar system used in the present study works with a wavelength of 17 mm. The<br />

distance to a target is an arbitrary number of full wavelengths, plus a remaining fraction of a<br />

wavelength of at most 17 mm. If a target moves between one measurement and the next, this<br />

fraction will change, recorded as the phase shift between two measurements (Figure 1B).<br />

An important limitation of this principle is that displacements larger than a quarter of the<br />

system’s wavelength, i.e. ± 4 mm, cannot be resolved unambiguously. Furthermore, only the<br />

line-of-sight component of the displacement can be measured, and the atmosphere can cause<br />

delays that need to be corrected later. For an acquisition interval of 1 minute, the maximum<br />

velocity that can be detected is about 6 m per day. Mathematical methods (spatial phase<br />

unwrapping) can extend this limit further.<br />

The area of coverage depends on the local terrain and the type of antenna used. The field<br />

of view of the IBIS-FL radar is roughly 60° (horizontal) × 30° (vertical) with a range up to<br />

4’000 m. The resolution, or ‘pixel size’, is 0.75 m in the along-range direction and 4.4 mrad<br />

in the cross-range direction (i.e. 4.4 m at a range of 1’000 m). Details regarding the GBInSAR<br />

measurements can be found in Rödelsperger 2011.<br />

STUDY SITES<br />

Both study sites are situated in the southern Swiss Alps in the Canton of Valais, and were<br />

established upon request of the local authorities.<br />

SITE 1: ZERMATT<br />

Zermatt is one of the most famous mountaineering and skiing destinations in Switzerland,<br />

with a year-round population of roughly 6’000 and a yearly overnight stay count of about<br />

2 million. The cantonal road between Täsch and Zermatt is the only access road to Zermatt.<br />

While most tourists travel to and from Zermatt by train, residents and commercial vehicles<br />

rely heavily on the avalanche-threatened road. Avalanches are released artificially by<br />

helicopter blasting when conditions permit. As an additional safety measure, we installed<br />

Doppler radar alarm systems on the opposite side of the valley to monitor three avalanche<br />

channels from a distance of 800-1800 m (Figure 2A). A first Doppler radar was installed in<br />

January 2015, while a second was added in December 2015 along with five traffic lights<br />

and four road barriers<br />

The data from the Doppler radars are analyzed in real time. If our algorithm determines an<br />

avalanche is occurring, the traffic lights are immediately turned to red and the barriers are<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 963


lowered to block access to the threatened sections of the road. In addition, the alarm system<br />

turns a traffic light 3 km north in Täsch to red to prevent any additional traffic from traveling<br />

up the road.<br />

The road lies at approximately 1’600 m altitude (relative to sea level). Radar 1 watches for<br />

avalanches at altitudes of 2’100 to 2’400 m. Depending on the altitude of the release zone,<br />

and the size and velocity of the avalanches, it takes them 30-75 s to reach the road (or<br />

100-150 s for wet snow avalanches). However, when initially detected by Radar 1, it is not<br />

yet known whether or not an avalanche will actually reach the road. This depends on a<br />

number of factors, amongst them the distribution of snow in the lower part of the avalanche<br />

channel. Because of the limited warning time, the road has to be closed temporarily. To help<br />

the local authorities reopen the road more quickly, three webcams with infrared lights were<br />

installed for night and daytime observation. After receiving an alarm as automated texts and<br />

calls to their mobile phones, authorized users can access an online platform to check the<br />

cameras and, if no debris is present on the road, remotely reopen the road. Since an on-site<br />

visit was previously required, the webcams and the remotely controlled traffic lights and<br />

Figure 2A: Doppler radar installation near Zermatt. Radars 1 and 2 detect avalanches across the valley. Yellow/orange areas roughly<br />

indicate the radar target area. Radar 2 permits an automatic reopening of the main road. 2B: The IDS IBIS-FL ground based radar<br />

interferometer is mounted on top of the cable-car station, measuring surface flow velocities of Triftglacier at Weissmies roughly 1.5 km<br />

away.<br />

964 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


arriers significantly shorten the time needed to reopen the road from about 45 minutes to<br />

10 minutes.<br />

Radar 2 was installed with the aim to simplify the reopening process even further: this radar<br />

targets an area below the field of view of Radar 1, at an altitude of 1’800 to 1’900 m.<br />

This data can be used to automatically reopen the road, since it can verify whether or not<br />

an avalanche detected by Radar 1 reached lower altitudes.<br />

A short documentary about the system by the Swiss National TV in English can be found<br />

here: http://gpr.vn/swi<br />

SITE 2: WEISSMIES<br />

A large part of the glaciated northwest face of Weissmies Mountain in the Saas Valley of<br />

Switzerland recently became unstable. The likely causes of this instability are climate-induced<br />

glacier thinning of the supporting Triftgletscher and a progressive warming from freezing to<br />

melting at the ice-bed interface. Consequently, in summer 2014, a portion of the glaciated<br />

face with roughly 800‘000 m 3 of ice switched into an “active phase” with high flow velocities<br />

(Preiswerk et al., in press). Such fast flow increases the likelihood of a major icefall, which<br />

could endanger human populations and infrastructure in the Saas Valley. A monitoring<br />

campaign was initiated to detect any early warnings of dangerous break-off events to allow<br />

a timely evacuation of threatened areas. In October 2014, a GBInSAR system and a webcam<br />

were installed on the roof of the cable-car station at 3’142 m.a.s.l. (Figure 2B). The distance<br />

from the radar to the target area is roughly 1.5 km, resulting in a mean pixel width of about<br />

6 m. The radar system operates continuously, scanning at intervals of 2 minutes. The focused<br />

raw data is uploaded to an offsite server for further analysis. While GBInSAR is not impacted<br />

by darkness or low visibility, the measurements are influenced by air temperature, pressure<br />

and humidity. Other influences include surface ablation and snow accumulation, both of<br />

which can be misinterpreted as glacier movement. Solar radiation and rain change the way<br />

the radar signal is reflected within the snowpack due to the different refractive indices of ice<br />

and water. These effects are corrected using different mathematical algorithms that consider<br />

stable reference areas. The final velocity solutions are then uploaded to a password-protected<br />

website once every hour, where they are available to glaciologists for interpretation. In addition,<br />

photogrammetric, seismic and GPS measurements have also been performed (Preiswerk<br />

et al., in press).<br />

RESULTS AND DISCUSSION<br />

During the winter of 2014-2015, Doppler Radar 1 recorded 32 avalanches in Zermatt, all<br />

of which were confirmed by the local authorities. Avalanches could be localized with an<br />

accuracy of 2-3° in azimuth and within a few ten meters in range (Figure 3, top left, example<br />

from Weissmies). The road was only buried twice by avalanche debris, as most avalanches<br />

stopped above the road. We have no indications or reports that the alarm system missed any<br />

avalanches. Although the system has not yet experienced extreme weather such as sleet or<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 965


Figure 3: Top left: Ice avalanche recorded on camera and measured with Doppler radar. Top right: Example of a surface flow field on the<br />

main arm of the glacier and the unstable section. Bottom: Time series of surface velocities (averaged over the surface area) from<br />

October 2014 to January <strong>2016</strong>.<br />

heavy rain, it is designed to notify users once the absorption or reflection of the atmosphere<br />

rises such that the radar pulses no longer reach across the valley and back.<br />

In <strong>2016</strong>, between January 3 and February 15, Radar 1 detected 7 avalanches. Two of these<br />

reached the detection area of Radar 2 and triggered the alarm. All detected avalanches were<br />

confirmed by the local authorities (four of which were released artificially by blasting). At the<br />

time of writing, no false alarms have yet occurred. Avalanche sizes are detected by the radar<br />

system and can be used as an alarm criterion: during the winter, algorithms were slightly<br />

modified to avoid closing the road when only small avalanches were detected by Radar 1.<br />

At Weissmies, glacier surface velocities were reliably estimated from the GBInSAR surface<br />

displacements over a period of over 15 months (Figure 3) and are consistent with GPS<br />

measurements (Preiswerk et al.,). The system has operated continuously since October 11,<br />

2014, and the resulting velocity data were uploaded at least once per day on 434 of the<br />

452 days. On the other 18 days (4% of the days), no reliable measurements were possible<br />

due to snowfall, snow drift or other difficult meteorological conditions. During the warm<br />

summer months, measurements were most reliable in the early morning, while wet snow<br />

inhibited measurements in the afternoon. The reflected radar signal remained strong enough<br />

at all times, but often decorrelated quickly under these wet-snow conditions.<br />

The main glacier velocity showed some seasonal changes, and the unstable area slowed down<br />

from roughly 20 cm/day in October 2014 to 5 cm/day by early spring 2015. Small ice fall<br />

events of a few 1’000 m 3 occurred about once per month. Except for a few very small failures,<br />

they were preceded by a 50-200% increase in local surface velocity. The five largest events<br />

966 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


had volumes of around 10’000 m 3 . We could successfully predict their time of failure one to<br />

a few days in advance by manually analyzing the velocity time series. We did not observe<br />

locally increasing surface velocities that did not lead to ice avalanches.<br />

SUMMARY<br />

Radar is a very versatile and robust technology for monitoring mass movements and early<br />

warnings of rupture phenomena like landslides and rock or ice avalanches. It can precisely<br />

locate the moving areas within a large field of view and measure velocities that are orders<br />

of magnitudes apart: from millimeters to meters a day with GBInSAR to many meters per<br />

second with Doppler radar. The measurements can be performed remotely, without accessing<br />

the area under observation, and are largely unaffected by weather conditions.<br />

REFERENCES<br />

Gubler H., and Wyssen S. (2002). Artificial release of avalanches using the remote controlled<br />

Wyssen Avalanche Tower. International Snow Science Workshop, Pentiction, B.C.<br />

Faillettaz J., Funk M., Vincent C. (2015). Avalanching glacier instabilities: Review on<br />

processes and early warning perspectives. Rev. Geophys., 53.<br />

Lussi D., Schoch M., Meier L., Ruesch M. (2012). Projekt Lawinendetektion Schlussbericht.<br />

WSL Institut für Schnee und Lawinenforschung SLF, 43p.<br />

Luzi G., Pieraccini M., Mecatti D., Noferini L., Macaluso G., Tamburini, A., Atzeni C. (2007),<br />

Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry, IEEE<br />

Geoscience and Remote Sensing Letters, vol. 4, no. 3, pp. 495-499.<br />

Meier L., and Lussi D. (2010). Remote detection of snow avalanches in Switzerland using<br />

infrasound, doppler radars and geophones. International Snow Science Workshop, Squaw<br />

Valley, CA.<br />

Monserrat O., Corsetto M., Luzzi G. (2014). A review of ground-based SAR interferometry<br />

for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing,<br />

Vol. 93, pp. 40-48.<br />

Nolesini T., Di Traglia F., Del Ventisette C., Morett S., Casagli N. (2013). Deformations and<br />

slope instability on Stromboli volcano: Integration of GBInSAR data and analog modeling,<br />

Geomorphology, Vol. 180–181, pp. 242-254.<br />

Preiswerk L.E., Walter F., Anandakrishnan S., Barfucci G., Beutel J., Burkett P.G., Dalban<br />

Canassy P., Funk M., Limpach P., Marchetti E., Meier L., Neyer F., in press. Monitoring<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 967


unstable parts in the ice-covered Weissmies northwest face. Interpaevent <strong>2016</strong> - Conference<br />

Proceedings.<br />

Rödelsperger S. (2011). Real-time Processing of Ground Based Synthetic Aperture Radar<br />

(GB-SAR) Measurements. Verlag der Bayerischen Akademie der Wissenschaften in Kommission<br />

beim Verlag C.H. Beck, Münschen.<br />

Sättele M. and Bründl M. (2015). Praxishilfe für den Einsatz von Frühwarnsystemen für<br />

gravitative Naturgefahren, WSL- Institut für Schnee- und Lawinenforschung SLF, Bundesamt<br />

für Bevölkerungsschutz/BABS, Bern.<br />

Scott E.D., Hayward C.T., Colgan T. J., Hamann J.C., Kubichek R.F., Pierre J.W., and Yount J.<br />

(2006). Practical implementation of avalanche infrasound monitoring technology for<br />

operational utilization near Teton Pass Wyoming. In Proceedings ISSW, pp. 714 - 723.<br />

Seyfried R. and Hort M. (1999). Continuous monitoring of volcanic eruptions dynamics:<br />

a review of various techniques and new results from a frequency-modulated radar Doppler<br />

system. Bulletin of Volcanology, Vol. 60, Issue 8, pp. 627 – 639.<br />

Vivian R. (1966). La catastrophe du glacier d'Allalin. Revue de Géographie Alpine, Vol. 54,<br />

Issue 1, pp. 97 - 112.<br />

968 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Practical experience with the Flood scenario<br />

catalogue Carinthia, a handbook for flood forecast<br />

and warning.<br />

Praktische Erfahrungen mit dem Hochwasserszenarienkatalog<br />

Kärnten, ein Handbuch zur<br />

Hoch wasser prognose und –warnung<br />

Johannes Moser, DI 1 ; Christian Kopeinig, DI 1 ; Kurt Rohner, DI 1<br />

ABSTRACT<br />

The flood scenario catalogue Carinthia is an expert system that helps to improve the quality<br />

and stability of flood forecasts during a flood event achieved by profound analyzes and<br />

numerous calculations beforehand. Results of thousands of simulations are collected in a<br />

database and displayed in a handbook by diagrams in a user friendly way. Thus, for experts<br />

it is possible to make well-founded statements about the future development of floods for<br />

a variety of forecasting problems. This is possible even without a computer and online model<br />

calculations, for example, when computational models are not available.<br />

Typical questions during flood warning situations as: "What is the maximum discharge we<br />

have to expect? When and where is the peak of the flood? Where do we have to expect<br />

dangers due to the flood?" can be answered in good quality with support of this system.<br />

KEYWORDS<br />

Flood, flood warning, flood forecast, scenario catalogue, civil protection<br />

ZUSAMMENFASSUNG<br />

Der Hydrografische Dienst Kärnten betreibt für die Warnung der Bevölkerung, die Information<br />

von Behörden, Einsatzkräften und Mitarbeitern im Hochwassermanagement ein Hochwasserwarnservice<br />

mit Internetdienst und SMS Versand. Während eines Hochwassers müssen<br />

Entscheidungen dabei rasch und oft auch unter stressigen Bedingungen getroffen werden.<br />

Die Zuverlässigkeit der Einschätzung des weiteren Verlaufs des Hochwassers ist deshalb von<br />

großer Bedeutung.<br />

Es wurde deshalb in Zusammenarbeit mit der Technischen Universität Wien, zusätzlich zum<br />

kontinuierlich betriebenen Niederschlags-Abflussmodell, ein Expertensystem entwickelt, das<br />

den Hydrologen im Hochwasserfall dabei unterstützt Prognosen in hoher Qualität und<br />

Stabilität zu erstellen (Moser, Kopeinig, 2006).<br />

1 Regional Government of Carinthia, Klagenfurt, AUSTRIA, johannes.moser@ktn.gv.at<br />

IP_<strong>2016</strong>_FP034<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 969


Modellgestaltung, Kalibrierung, Auseinandersetzung mit beobachteten Hochwasserereignissen,<br />

Ermittlung von wesentlichen Hochwasserereignistypen und Szenarien nahmen zwar<br />

etliche Jahre in Anspruch, die dabei gewonnenen Erfahrungen und Kenntnisse sind für den<br />

Hydrologen aber von immensem Nutzen.<br />

DATENGRUNDLAGE<br />

Die Entwicklung des Hochwasserszenarienkataloges erforderte als ersten Schritt eine eingehende<br />

Analyse historischer Hochwasserereignisse. Dazu wurden ca. 10 Ereignisse pro<br />

Pegel, Großteils im Zeitraum 1980 – 2010 (einzelne große Ereignisse auch davor) ausgewählt,<br />

um typische Muster zu erkennen und mit den vorbereiteten Szenarien möglichst viele real<br />

ablaufende Hochwasserereignisse einschätzen zu können. Die Größe der Einzugsgebiete<br />

beträgt 75 bis ca. 5000 km².<br />

In einem ersten Schritt wurden dafür aus den vorhandenen Daten von ca. 120 Nieder -<br />

schlags- und Temperaturmessstationen flächig interpolierte Niederschlags- und Temperaturverteilungen<br />

für ein Raster von 90 mal 228 km und einer Zellgröße von 1 km² berechnet.<br />

Die Interpolation erfolgte mittels Kriging Verfahren. Dies erfolgte von den 50er-Jahren des<br />

vorigen Jahrhunderts bis 1990 mit einer zeitlichen Auflösung von einem Tag, ab 1990 mit<br />

einem Zeitschritt von einer Stunde. Die Höhenabhängigkeit des Niederschlages wurde mit<br />

einem räumlich variablen, aber zeitlich fixen Höhengradienten berücksichtigt. Der Höhengradient<br />

der Temperatur wurde für jeden Zeitschritt aus den aktuell gemessenen Stationsdaten<br />

berechnet.<br />

Aus den Gebietsverteilungen wurden für alle im Katalog erfassten Pegelstellen Ganglinien<br />

des mittleren Gebietsniederschlages, der Gebietstemperatur und des Gebietsregens berechnet.<br />

Für die Ermittlung des Gebietsregens wurde für jede Rasterzelle aufgrund der Temperatur<br />

eine Unterscheidung in Regen oder Schnee durchgeführt.<br />

ANALYSE HISTORISCHER HOCHWÄSSER<br />

Auf der Basis der berechneten Gebietsganglinien wurden für die wichtigsten Pegelmessstellen<br />

der Vorregen während der 10 Tage vor dem Hochwasserereignis, der Ereignisregen sowie das<br />

Volumen der Hochwasserwelle ausgewertet. Daraus konnte ein fiktiver Abflussbeiwert des<br />

Direktabflusses berechnet werden. Die Hochwasserereignisse wurden in einem „flow ratio“<br />

– „Wasserdargebot“ Diagramm aufgetragen. Dabei ergab sich eine Clusterung in Abhängigkeit<br />

von der Vorfeuchte (Vorregen). Auf der Basis dieser Auswertungen und zusätzlicher<br />

Plausibilitätsüberlegungen wurden in den Diagrammen dann auch die für die Katalogsimulationen<br />

verwendeten „flow ratio“ Werte des Direktabflusses festgelegt. (siehe Abb. 1 auf<br />

Folgeseite)<br />

970 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 1: Pegel Oberdrauburg, Drau: Aus Eichereignissen rückgerechnete und für die Katalogsimulationen festgelegte flow-ratio<br />

Werte für den Direktabfluss und für den trockenen, mittleren und feuchten Ausgangszustand.<br />

Abbildung 2: Gewählte zeitliche Muster der Niederschlagsverteilungen.<br />

Abbildung 3: Festgelegte räumliche Muster der Niederschlagsverteilungen für das Flussgebiet obere Drau.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 971


Zusätzliche Betrachtungen ergaben, dass die Niederschlagsintensität (Regendauer), sowie die<br />

zeitliche und räumliche Niederschlagsverteilung Einfluss auf die Hochwasserspitze ausüben,<br />

wobei bei der zeitlichen Verteilung des Niederschlags häufig folgende Muster beobachtet<br />

wurden: (siehe Abb. 2 auf Folgeseite)<br />

Bei der räumlichen Verteilung der Niederschläge zeigte sich, dass kleinere Einzugsgebiete<br />

nicht unterteilt werden müssen, beim Haupteinzugsgebiet der Drau wurden folgende Muster<br />

beobachtet: (siehe Abb. 3 auf Folgeseite)<br />

MODELLKONZEPT UND MODELLWAHL<br />

Für die Simulation der Katalogszenarien wurde das Modell HEC-HMS des U.S.A.C.E<br />

verwendet. Die Berechnung erfolgte Ereignisbasiert mit einem 3-Speicher Ansatz (surfaceflow/schnell,<br />

interflow/mittel, baseflow/langsam). Die Berechnung der Abflusskonzentration<br />

geschah mittels Clark – Verfahrens (Clark, 1943). Die Modellparameter wurden an die bei der<br />

Analyse historischer Hochwässer gewonnenen Werte angeeicht (Schindler, 2006).<br />

Der Wellenablauf im Gerinne wurde mit den Methoden der kinematischen Welle und des<br />

Muskingum – Cunge Verfahrens (Dyck, 1995) berechnet.<br />

Abbildung 4: Pegel Oberdrauburg, Drau: Für die Katalogsimulationen festgelegte flow-ratio Werte für den schnellen und mittleren<br />

Abflussanteil und den trockenen, mittleren und feuchten Vorfeuchtezustand.<br />

MODELLKALIBRIERUNG<br />

Bei der Modellkalibrierung wurden, für eine begrenzte Zahl von Niederschlagsmustern<br />

(siehe Abb. 2 und Abb. 3), die in der Analyse der historischen Ereignisse gewonnenen<br />

flow-ratio Werte des Direktabflusses auf die Modellspeicher „schnell“ und „mittel“ aufgeteilt.<br />

Es wurden dabei für jeden Pegel, und für jede Abflusskomponente, Diagramme erzeugt,<br />

972 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


aus denen der jeweilige „speicherspezifische flow ratio - Wert“, in Abhängigkeit von der<br />

Niederschlagsmenge und der Vorfeuchte im Einzugsgebiet, ablesbar ist.<br />

HOCHWASSERSZENARIENKATALOG<br />

Der Hochwasserszenarienkatalog Kärnten stellt auf Basis der zuvor beschriebenen Modellierungen<br />

eine umfangreiche Zusammenschau der Hochwasserscheitel von möglichen Hochwasserszenarien<br />

für Kärnten dar.<br />

Dabei wurden die Darstellungen in Diagrammen so gewählt, dass durch den Benutzer auch<br />

eine „visuelle“ Interpolation bzw. Extrapolation zwischen den Werten möglich ist.<br />

Bei der grundlegenden Annahme einer räumlich gleichmäßigen Niederschlagsverteilung<br />

wurden 336 Szenarien pro Pegelmessstelle (7 Stufen der Niederschlagssumme, 4 Dauer stufen,<br />

4 unterschiedliche zeitliche Verteilungen, 3 Zustände der Vorfeuchte) berechnet. Bei den<br />

Pegelstellen mit großem Einzugsgebiet wurden zusätzlich drei räumlich variierende Regenverteilungen<br />

untersucht (siehe Abb. 3), dadurch ergaben sich dann 1.344 Szenarien pro<br />

Messstelle. Insgesamt ergaben sich für 41 Pegel ca. 20.000 Simulationen bzw. Ergebnisse.<br />

Sämtliche Modellergebnisse wurden in einer Datenbank gespeichert und in Ergebnis- bzw.<br />

Katalogblättern dargestellt.<br />

Bei dieser großen Anzahl an vorliegenden Berechnungen liegt es auf der Hand, dass für die<br />

erfolgreiche Anwendung des Szenarienkataloges die praxisgerechte Aufbereitung der Daten<br />

von entscheidender Bedeutung ist.<br />

Die Katalogszenarien wurden deshalb in den für den praktischen Einsatz vorgesehenen<br />

Diagrammen nach folgenden Merkmalen gegliedert:<br />

– Niederschlagshöhe: Die Summe aus Niederschlag und Schneeschmelze im Laufe eines<br />

Ereignisses [mm] in Stufen von 25 bzw. 50 mm. Die Schneeschmelze wird dem parallel<br />

betriebenen Niederschlag-Abflussmodell entnommen oder vereinfacht abgeschätzt.<br />

– Niederschlagsdauer: Dauer des Ereignisniederschlags in Stunden [h]. Für alle Einzugsgebiete<br />

wurden folgende Dauerstufen gewählt: 12 h, 24 h, 48 h und 72 h<br />

– Vorbefeuchtung: Beschreibung des Ausgangszustandes bei Beginn eines Ereignisses<br />

bezogen auf die Bodenfeuchte.<br />

– Zeitliches Muster der Niederschlagsverteilung (Blockregen, Anfangsbetont, Doppelwelle,<br />

Endbetont), jeweils ein eigenes Blatt.<br />

– Räumliche Muster der Niederschlagsverteilung (bei großen Einzugsgebieten), jeweils ein<br />

eigenes Blatt.<br />

ANWENDUNG DES SZENARIENKATALOGES<br />

Wie in den Beispieldiagramm für den Pegel Krottendorf/Lavant zu sehen ist (Abbildung 5),<br />

sind die Abflussspitzen QMax der Hochwasserszenarien als kleine Rechtecke für bestimmte<br />

Niederschlagsmengen, Niederschlagsdauern und Bodenfeuchtezustände dargestellt. Sie sind<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 973


Abbildung 5: Katalogdiagram für den Pegel Krottendorf / Lavant für das Szenario Doppelwelle.<br />

entsprechend der Modellsimulation als Scheitelwerte von zu erwartenden Hochwasserabflüssen<br />

zu verstehen.<br />

Wichtigste Eingangsgröße ist die prognostizierte Niederschlagsmenge. Diese wird in der Regel<br />

vom Wetterdienst als Gebietsniederschlagshöhe für die einzelnen Regionen bekanntgegeben.<br />

Für jede Niederschlagsmenge wird im Diagramm horizontal nach der Vorbefeuchtung (von<br />

links nach rechts: trocken, mittel, feucht) und vertikal nach der Niederschlagsdauer (von<br />

oben nach unten: 12, 24, 48, 72 Stunden) unterschieden. Für die verschiedenen zeitlichen<br />

Niederschlagsverteilungen (Blockregen, Anfangsbetont, Endbetont, Doppelwelle) gibt es<br />

jeweils ein eigenes Blatt, bei Stationen mit räumlicher Unterteilung gibt es zusätzlich eigene<br />

Blätter pro Verteilung. Das Diagramm lässt auch eine visuelle Interpolation zwischen den<br />

Katalogwerten zu. Unterschiedliche Szenarien mit veränderten Eingangsgrößen können<br />

rasch abgeschätzt werden (Moser, Kopeinig, 2009).<br />

Zur Einordnung der Hochwasserscheitel nach der Auftrittswahrscheinlichkeit bzw. Jährlichkeit<br />

wurde der Diagrammhintergrund entsprechend den Hochwasserkennwerten eingefärbt.<br />

Wie man dem Diagramm entnehmen kann, kann ein und dieselbe Niederschlagsmenge durch<br />

unterschiedliche Kombinationen von Niederschlagsdauer, zeitlichen Verlauf und Bodenfeuchte<br />

stark variierende Spitzenabflüsse bewirken. Allgemein ist erkennbar, dass mit zunehmender<br />

Niederschlagssumme der Einfluss der Vorfeuchte abnimmt.<br />

Zusätzlich zur analogen Form des Kataloges wurde ein Softwareprogramm entwickelt<br />

welches es erlaubt anhand von Filterkriterien wie Niederschlagssumme, Vorfeuchte, Dauer,<br />

räumliche und zeitliche Verteilung für eine Station schnell die passenden Katalogszenarien zu<br />

974 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Tabelle 1: Ausschnitt aus der generellen Gefährdungsliste für die Lavant.<br />

finden. Innerhalb dieses „Digitalen Szenarienkataloges“ können gemessene und simulierte<br />

Ganglinien des Gebietsniederschlages und des Abflusses auch visualisiert werden, was eine<br />

gute Einschätzung des Weiteren zeitlichen Verlaufes eines Hochwasserereignisses erlaubt.<br />

GEFÄHRDUNGSLISTEN<br />

Um auch Auskunft über Auswirkungen und mögliche Gefährdungsbereiche geben zu<br />

können, ergänzen sogenannte Gefährdungslisten den Szenarienkatalog (siehe Tab. 1 auf<br />

Folgeseite). Darin sind, geordnet nach der Jährlichkeit des gefährdenden Abflusses, tabella-<br />

Abbildung 6: Verlauf von Abfluss und Wasserdargebot für den Pegel Krottendorf / Lavant für das Hochwasserereignis am 20.6.2004.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 975


Tabelle 2: Kennwerte des Hochwasserereignisses am Pegel Krottendorf / Lavant am 20.6.2004.<br />

risch kritische Bereiche aufgelistet. Sind also die Spitzenabflüsse mit Hilfe des Szenarienkataloges<br />

abgeschätzt, können die damit verbundenen Gefährdungsbereiche schnell genannt<br />

werden.<br />

EREIGNISANALYSE UND DOKUMENTATION<br />

Der Katalog wurde in den Jahren 2003 bis 2010 erstellt und kommt seither im Rahmen des<br />

Hochwasserwarnservices mehrmals pro Jahr zum Einsatz. Die fortlaufende Analyse und<br />

Dokumentation von aktuellen Hochwasserereignissen ist dabei ein wesentlicher Bestandteil<br />

zur Validierung des Kataloges. Auswirkungen von Unsicherheiten in der Datenlage und die<br />

Qualität der Simulationsberechnungen sollen durch die Ereignisanalysen aufgezeigt werden.<br />

Ziel ist eine laufende Verbesserung der Abschätzgenauigkeit der Hochwasserwelle. Zur<br />

Erlangung von Routine und Erfahrung im Umgang mit dem System ist die Ereignisanalyse<br />

ebenfalls hervorragend geeignet.<br />

Allgemein kann nach mehr als 5 Jahren Anwendungserfahrung gesagt werden, dass die Güte<br />

der Prognosen mit jenen des parallel betriebenen numerischen Modells vergleichbar ist.<br />

BEISPIEL: HOCHWASSER AN DER LAVANT IM JUNI 2004<br />

– Zeitliches Niederschlagsmuster: schwach ausgeprägte Doppelwelle (auch Blockszenario<br />

möglich), Niederschlagsfront mit eingelagerten Gewittern.<br />

– Wasserdargebot gleich Niederschlag (kein Schneeinfluss): ca. 80 mm.<br />

– Niederschlagsdauer: ca. 24 Stunden.<br />

– Ausgangszustand / Bodenfeuchte: feucht (180 mm Regen im Vormonat, Abfluss ~ 2 x MQ)<br />

Katalogabschätzung laut Hochwasserkatalogblatt für den Pegel Krottendorf (siehe Abbildung<br />

5) ergibt eine Abflussspitze von ca. 220 m³/s oder ca. HQ 40<br />

.<br />

Die gemessenen Abflüsse waren mit 235 m³/s etwas höher als im Katalogszenario „feucht“,<br />

wahrscheinlich aufgrund eingelagerter Gewitterzellen und ungleichmäßiger Regenverteilung.<br />

976 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ZUSAMMENFASSUNG:<br />

Die Anwendung des Hochwasserszenarienkataloges ist für den Hydrographischen Dienst<br />

Kärnten mittlerweile zur Routine geworden. Der Katalog ist eine äußert wertvolle Expertise,<br />

die viele Informationen und Ergebnisse auf Basis von Modellrechnungen beinhaltet und den<br />

Experten in „bedrängten“ Zeiten fachlich in seiner Bewertung und Entscheidung unterstützten<br />

kann. Der Katalog schafft einen raschen und vielfältigen Überblick über mögliche<br />

Hochwasserszenarien auf Basis von Gebietsniederschlagsprognosen und ist in seiner<br />

Anwendung doch einfach gehalten.<br />

Eine fortlaufende Evaluierung von Hochwasserereignissen und Katalogergebnissen ist<br />

gefordert um den Umgang mit dem Katalog und den damit verbundenen Unsicherheiten zu<br />

lernen, und falls erforderlich den Katalog zu adaptieren bzw. zu ergänzen.<br />

REFERENZEN<br />

- Moser, Kopeinig (2006): Hochwasserwarnung in Kärnten, Wiener Mitteilungen, Band 199,<br />

S 23-38.<br />

- Moser, Kopeinig (2009): Hochwasserwarnung in Kärnten – ein Praxisbeispiel, Wiener<br />

Mitteilungen, Band 216, S213-230.<br />

- Clark (1943): Storage and the unit hydrograph, Proc. ASCE Vol. 9.<br />

- Dyck (1995): Grundlagen der Hydrologie.<br />

- Schindler (2006): Modifikation des HEC-HMS Modells im Rahmen der Entwicklung eines<br />

Hochwasserprognosemodells. Diplomarbeit, TU Wien.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 977


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Avalanche detection systems: A state-of-the art<br />

overview on selected operational radar and infrasound<br />

systems<br />

Walter Steinkogler, Ph.D. 1 ; Lorenz Meier, Ph.D. 2 ; Stian Langeland 1 ; Sam Wyssen 1<br />

ABSTRACT<br />

The application of detection systems allow a reduction of closure time of roads in combination<br />

with a reduction of residual risk. Over the last years, the developments and advances of<br />

radar (LARA) and infrasound (IDA) avalanche detection systems and especially the integrated<br />

visualization (PIA) significantly improved the operational applicability and showed their<br />

capability to support the avalanche control work. In this work, we present results from<br />

operational experience and recent developments of these systems. The results from verification<br />

campaigns, such as minimum detectable size, longest distance of detection and detection<br />

of wet snow avalanches are discussed. Furthermore, we indicate current shortcomings and<br />

future development directions.<br />

KEYWORDS<br />

Avalanche Detection; Radar LARA/SARA/PETRA; Infrasound IDA; Integrated Visualisation<br />

PIA<br />

INTRODUCTION<br />

Snow avalanches pose a direct threat for people and infrastructure during winter time.<br />

Governmental agencies protect settlements and traffic routes using permanent measures<br />

(tunnels, steel structures, etc.) and/or active and passive temporary measures (e.g. road<br />

closures, evacuations, preventive avalanche release, avalanche forecasting, etc.). The<br />

preventive release of snow avalanches along traffic routes has been applied since many<br />

years as permanent measures are too expensive or not feasible to construct for certain areas.<br />

Furthermore, due to the increased mobility of people, long-lasting closures of roads and<br />

railway lines are less and less accepted. The preventive release methods are much more<br />

effective when the success of preventive releases can be verified reliably. The application of<br />

detection systems allows a reduction of closure time of roads in combination with a reduction<br />

of residual risk and aid the avalanche control team in their decision making. Site-specific<br />

alarm thresholds can be set for automatic closure of traffic lines. In addition, the knowledge<br />

of the occurrence, frequency and size of avalanche events can assist regional or local authorities<br />

who are responsible for the control and forecasting of avalanche hazard.<br />

1 Wyssen Avalanche Control, Reichenbach, SWITZERLAND, walter@wyssen.com<br />

2 GEOPRAEVENT AG<br />

978 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP036


A variety of systems for the detection of avalanches was tested in recent years and partly<br />

transferred into operational use at traffic route operations and ski resorts. Depending on the<br />

aim of the operation and the object to protect, the most suitable system should be selected<br />

(Table 1).<br />

Table 1: Overview of different avalanche detection systems and their suitability for different operations.<br />

In this study we focus on gathered operational experiences and recent developments of radar<br />

(LARA, SARA, PETRA) and infrasound systems (IDA) (Figure 1). Furthermore, the inevitable<br />

incorporation of these systems in a practitioner-friendly and easy to operate platform (PIA)<br />

is described. Other methods for the detection of avalanches exist, such as geophones in the<br />

release area or along the path, or trigger lines in the path, but are not discussed in this paper<br />

as here we focus on remote detection methods.<br />

Figure 1: Schematic overview of operational radar (LARA, SARA) and infrasound (IDA) detection systems.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 979


RADAR SYSTEMS LARA AND SARA:<br />

Technical description:<br />

Radars have been applied for the detection of avalanches for many years. In most cases<br />

(pulsed or frequency modulated) Doppler radars are used (Gubler and Hiller, 1984, Gauer et<br />

al. 2007, Fischer et al., 2014), emitting electromagnetic waves at a certain frequency, which<br />

are then reflected and travelling back to the radar. To detect an avalanche by radar, the<br />

avalanche movement must at least partly be directed towards the radar, as the line-of-sight<br />

component of the velocity is measured. The avalanche velocity leads to a Doppler-shifted<br />

signal in frequency space, allowing the radar to discriminate between moving and static<br />

targets. Hence, avalanches can only be detected by radar once they are in motion.<br />

Experience with LARA/SARA:<br />

In 2011 Wyssen Avalanche Control AG installed the first version of the Long range Avalanche<br />

Radar, LARA, in Ischgl, Austria (Figure 2, left). The purpose of the radar installation was i)<br />

Verification of the controlled release and ii) Gathering information about spontaneous<br />

avalanche activity. Over the last years, the radar has been working very reliably and<br />

satisfactorily and it became a standard operational tool of the safety staff. Consequently, three<br />

more radars of the same type were installed in Austria and Switzerland. The big advantage of<br />

the radar is the accurate detection of even small avalanche events, e.g. preventively released<br />

ones. The shorter the distance to the radar antenna and the better the weather conditions<br />

(i.e. no rain, no snowfall), the smaller the detectable avalanches are (events of a few 100 m³<br />

in a distance of 1.5 km were detected with radars of the newest generation). On the contrary,<br />

the monitored area is limited to one single avalanche path. Multiplexing with multiple<br />

antennas is possible and applied in some locations. However, it has some limitations as<br />

multiplexing more than two or three antennas can become difficult. Typically, measurements<br />

are taken once per second per antenna, i.e. with three antennas each antenna would be<br />

‘blind’ during 2 seconds. Still, even three 5 degrees antennas only cover a limited area<br />

compared with the new 90°x10° radars.<br />

Figure 2: A LARA (left) and a SARA (right) installation used for avalanche detection for operational road protection.<br />

980 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


To account for the limited size of the monitoring area, a new radar system with a much wider<br />

opening angle (up to 90°) was tested to account for this shortcoming. The newest avalanche<br />

radar version is a Range-Doppler Radar operating at the X band, with the ability to measure<br />

azimuth angle, range and velocity. It has an opening angle of 90° horizontally and 10°<br />

vertically and captures all movements within this area (Figure 3). It can detect a large<br />

avalanche up to a range of 2000 m (LARA) or 500 m (SARA), covering an area of up to 1 km 2<br />

(LARA). Power can be provided by fuel cells or by permanent power supply if available.<br />

To ensure the system reliability of the radars they are constantly monitored remotely and<br />

maintained on-site every year.<br />

Since radar systems provide data in real-time, alarm thresholds can be defined which allows<br />

to also use the system for the automatic closure of traffic lines. Up to five independent<br />

algorithms look for patterns in the radar data that are typical for avalanches. Depending on<br />

the local requirements for detection probability and the tolerance for false alarms, between<br />

one and five algorithms are necessary to trigger an alarm.<br />

Figure 3: Example of LARA of newest generation monitoring an ice avalanche. Camera view of moving avalanche (left) and<br />

corresponding radar image (right, colors showing signal strength).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 981


Based on the success of the avalanche radar, the Short distance Avalanche Radar SARA with<br />

less energy consumption was developed. It was mounted directly on the Wyssen avalanche<br />

towers (Figure 2, right) to get immediate information about the success of the avalanche<br />

release within the effective range of the system. This is a much needed feature for verification<br />

of preventively released avalanches. Furthermore, other uses of SARA, such as the detection<br />

of persons moving in the area endangered by avalanches, were successfully tested (Video:<br />

http://gpr.vn/PETRA ).<br />

Between November 2014 and now, SARA/LARA systems of the newest version have been<br />

installed at six different locations. Three SARAs were mounted on Wyssen Avalanche Towers,<br />

and three LARAs were installed at locations where frequent spontaneous and blasted<br />

avalanche events occur. One of these locations is the Triftglacier at Weissmies (Figure 3),<br />

where a variety of other detection systems are deployed (see L. Preiswerk et al, INTER-<br />

PRAEVENT paper). In total, about 10 terabytes of data were gathered and more than<br />

200 avalanches identified (Video: http://gpr.vn/LARA ).<br />

INFRASOUND SYSTEM IDA<br />

Technical description:<br />

Infrasound waves are low frequency (


could be even enhanced. Based on this success additional systems were installed and<br />

currently four systems are used in Switzerland and two in Norway.<br />

In Switzerland an extensive verification campaign was conducted in Winter 2014/15. IDA<br />

was used to monitor certain avalanche paths which endanger a local road and to define the<br />

smallest avalanche size which can be detected by the system. Although the system detected<br />

many of the smaller slides (size 1 – 2), they were not automatically visualized and identified<br />

as avalanches as they were below the defined thresholds. Mid-sized and large dry slab<br />

avalanches were correctly detected. In azimut direction the detected avalanches fit the<br />

observations with an accuracy of ± 3°. Additionally, large dry avalanches could be detected<br />

up to 14 km away from the IDA system.<br />

In the case of wet snow avalanches some of the larger events were not detected by IDA<br />

automatically. Yet, post-processing of the data revealed that the system recorded the<br />

avalanches but the signal did not fulfill the detection criteria, which were defined for dry slab<br />

avalanches. Even though the main source of infrasound from avalanches is produced by the<br />

powder cloud, these results indicate that larger wet snow avalanches do produce enough<br />

infrasound to be detected by IDA. Strong ambient noise, such as wind, has shown to<br />

complicate the identification of the avalanche signal.<br />

Furthermore, the IDA system was also tested if it is also suitable for use in climatic conditions<br />

of high alpine areas in Norway. Multiple avalanches were automatically detected and several<br />

others by post-processing of the data after the season. At one of the locations, more than two<br />

metres of dense (250-300 m 3 ) snow with several ice layers covered the sensors which<br />

influenced the quality of the signals. Therefore, the overall impact on the system due to large<br />

snow depths will be further investigated in the next winter season.<br />

IDA proved to be a very valuable tool for gathering information about avalanche activity of<br />

multiple avalanche paths in a larger area. Since IDA is continuously monitoring it also<br />

provides data on spontaneous avalanche activity, which can be very useful information for<br />

the local avalanche control team (Figure 4, green arrows).<br />

PLATFORM OF INTEGRATED AVALANCHE INFORMATION PIA:<br />

For road authorities operating several avalanche release and detection systems, simplicity is<br />

one of the key demands. In order to satisfy this need, an interdisciplinary project was<br />

launched in 2013 to develop an online information platform, PIA, Platform of Integrated<br />

Avalanche information. The goal was to gather relevant information from avalanche release<br />

systems (e.g. avalanche towers) and detection systems (e.g. geophones, LARA, IDA) and to<br />

visualize the results in a clear and simple way, making it possible to get a good overview at a<br />

glance using a mobile phone or laptop. PIA has been successfully applied in operational use<br />

for road protection in Gonda, Switzerland since winter 2013/14 (Figure 5).<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 983


Figure 4: Online map visualization of the IDA system showing preventively released avalanches (red arrows), explosions (orange arrows)<br />

and natural avalanche activity (green arrows). Blue circles indicate positions of preventive avalanche release systems.<br />

Figure 5: PIA platform showing an operational example of artificial avalanche release and verification for the Gonda avalanche<br />

(Switzerland). Black circles indicate the positions of preventive avalanche release systems along the ridge with the red circle and text,<br />

e.g. GONDAC, showing the last detonated avalanche tower in the current list of events (left). Yellow circles are geophone locations and<br />

red and blue filled areas indicate areas where geophones detected motion. Black rectangles along the path indicate the area monitored<br />

by the two radar antennas with detected avalanches in red ellipsoids<br />

984 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


RESULTS AND OPERATIONAL EXPERIENCE<br />

From an operational point of view both systems have proven to have reached a technological<br />

level at which they work reliable, both in terms of system stability and avalanche detection<br />

performance, and can significantly assist local avalanche control teams (Table 2). Both<br />

systems need a calibration period (a few avalanches of typical size for the avalanche path) to<br />

optimize the alarm parameters and fine-tune to the local conditions and thus minimize false<br />

alarms. Generally, an intensive and well-prepared planning phase is essential to achieve the<br />

desired functionality and accuracy of the systems.<br />

Systems as LARA are very suitable to monitor a single avalanche path, such as the Gonda<br />

avalanche path in Figure 5. Large avalanches were reliably detected and smaller avalanches,<br />

i.e. a few 100 m³, were detected up to a distance of 1.5 km in good weather conditions.<br />

Depending on the terrain, the new LARA generation with a horizontal opening angle of 90°<br />

allows to monitor multiple avalanche paths (Figure 3). Additionally, the automatic alarm<br />

messages reliably inform the local authorities about spontaneous avalanche activity in the<br />

corresponding path.<br />

The infrasound system IDA proved to be able to successfully monitor the avalanche activity<br />

of medium-sized to large avalanches in an area up to 5 km radius. IDA is also able to detect<br />

smaller avalanches although they are often not automatically displayed as they do not fulfill<br />

all the criteria by the processing algorithms. Furthermore, the accuracy of the system<br />

decreases for small avalanches. Small wet avalanches were not detected but larger ones are<br />

recorded by the IDA system.<br />

Table 2: Summary and technical details of radar and infrasound systems.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 985


CONCLUSIONS AND OUTLOOK<br />

Over the last years, the developments and advances of (radar and infrasound) avalanche<br />

detection systems and especially the integrated visualization (PIA) worked very reliably and<br />

showed their capability to support the avalanche control work.<br />

Recent verification campaigns and an increasing number of installations in different climatic<br />

regions have allowed to better define the technical capabilities of the systems. For the<br />

radar-based detection systems (LARA, SARA, PETRA), future data needs to be gathered on its<br />

operation during varying meteorological conditions (e.g. during wet snowfall and heavy<br />

rain).<br />

For the infrasound system (IDA), the influence of wind is challenging. A new sensor<br />

generation in combination with optical fiber cables will allow for a much better signal-tonoise<br />

ratio and looks promising to improve the system performance. As large wet snow<br />

avalanches were recorded by the system but not automatically classified them as avalanches,<br />

an adaptation of the processing algorithms should allow to also detect these avalanches.<br />

A further improvement of the IDA system will be an index for the general avalanche activity<br />

in the area with much less strict filters in the algorithms. Even though this will possibly result<br />

in a higher false alarm rate, this should allow measuring a general increase in avalanche<br />

activity in the observation area (also of smaller avalanches).<br />

REFERENCES<br />

Bedard, A., (1994). An evaluation of atmospheric infrasound for monitoring avalanches.<br />

Proceedings, 7th International Symposium on Acoustic Remote Sensing and Associated<br />

Techniques of the Atmosphere and Oceans, 3–5 October, Boulder, CO.<br />

Fischer J. T., Fromm R., Gauer P., Sovilla B (2014) Evaluation of probabilistic snow avalanche<br />

simulation ensembles with Doppler radar observations. Cold Regions Science and Technology,<br />

Volume 97, 151 - 158<br />

Gauer, P., Kern, M., Kristensen, K., Lied, K., Rammer, L.,Schreiber, H. (2007). On pulsed<br />

Doppler radar measurements of avalanches and their implication to avalanche dynamics,<br />

Cold Regions Science and Technology, 50, 55–71<br />

Gubler H., Hiller M. (1984). The use of microwave FMCW radar in snow and avalanche<br />

research. Cold Regions Science and Technology, Volume 9, Issue 2, 109-119<br />

Kogelnig, A., Suriñach, E., Vilajosana, I., Hübl, J., Sovilla, B., Hiller, M. and Dufour, F. (2011)<br />

On the complementariness of infrasound and seismic sensors for monitoring snow avalanches,<br />

Natural Hazards and Earth System Sciences, 11(8), 2355-2370<br />

986 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Marchetti E., Ripepe M., Ulivieri G., Kogelnig A. (2015) Infrasound array criteria for<br />

auto matic detection and front velocity estimation of snow avalanches: towards a real-time<br />

early-warning system. Natural Hazards and Earth System Sciences 3(4): 2709-2737<br />

Ulivieri, G., Marchetti, E., Ripepe, M., Chiambretti, I., De Rosa, G. and Segor, V. (2011)<br />

Monitoring snow avalanches in Northwestern Italian Alps using an infrasound array, Cold<br />

Regions Science and Technology, Volume 69, Issues 2–3, December 2011, Pages 177–183P<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 987


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Integrated risk management of natural hazards by the<br />

railway Company BLS Netz AG<br />

Hans-Heini Utelli, dipl. Natw. ETH 1 , Geologe; Christian Pfammatter, dipl. Forst. Ing. ETH 2 ; Franz Kuster, dipl. Geograph 3<br />

ABSTRACT<br />

The routes of the BLS railway cross the alps and are exposed to gravitational natural hazards.<br />

In order not to injure the protection goal for travelers, the railway company BLS Netz AG has<br />

implemented numerous structural, silvicultural and organizational measures. Thanks to a risk<br />

analysis and the subsequent integral planning of measures those sections are protected where<br />

the risk and the cost-benefit difference of measures or combination thereof are high.<br />

The so reached security level is as long as possible held with a long-term conservation plan<br />

for all protective structures, the maintenance of protective forests and the monitoring of rock<br />

instability. The security level should be periodically checked with a renewed risk analysis.<br />

KEYWORDS<br />

railway; gravitational hazards; risk analysis; integrated planning of measures; long-term<br />

conservation plan<br />

EINFÜHRUNG<br />

Die Bahnlinie der BLS Netz AG in den Berner Alpen zwischen Frutigen und Kandersteg<br />

(Schweiz) ist eine für den nationalen und internationalen Verkehr wichtige Eisenbahnverbindung.<br />

Sie ist - wie andere Bahnlinien in den Alpen auch - auf verschiedenen Abschnitten<br />

durch gravitative Naturgefahren betroffen. In der Vergangenheit wurden bereits umfangreiche<br />

Massnahmen zum Schutz gegen Naturgefahren ergriffen. Dennoch bleibt die Strecke vor<br />

allem durch Stein- und Blockschlag, Felssturz, Überschwemmung oder Übersarung, Lawinen<br />

und Übermurung gefährdet. (siehe Abb. 1 auf Folgeseite)<br />

Die BLS Netz AG beabsichtigt eine ausreichende Sicherheit auf dieser Strecke dauerhaft zu<br />

gewährleisten. Die Strategie dazu basiert auf den folgenden Elementen, die in den nächsten<br />

Kapiteln näher erläutert werden:<br />

– Periodische Analyse und Bewertung des IST-Zustandes hinsichtlich Gefährdung und<br />

Risiken.<br />

– Konsequente Umsetzung der integralen Massnahmenplanung mit:<br />

– a) Evaluation und Planung von zusätzlichen baulichen , waldbaulichen und / oder<br />

organisatorischen Schutzmassnahmen auf der Basis von Nutzen-Kosten-Überlegungen,<br />

– b) Erhalt der bestehenden wie auch der in Zukunft zu erstellenden Schutzbauten sowie<br />

Pflege der Schutzwälder.<br />

1 IMPULS AG Wald Landschaft Naturgefahren, Thun, SWITZERLAND, hans-heini.utelli@impulsthun.ch<br />

2 Amt für Wald Kanton Bern, Abteilung Naturgefahren<br />

3 BLS Netz AG<br />

988 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings<br />

IP_<strong>2016</strong>_FP074


Abbildung 1: Übersicht über die Bahnlinie der BLS Netz AG zwischen Frutigen und Kandersteg im Berner Oberland, Schweiz.<br />

PROBLEMATIK<br />

Risikoentwicklung ohne Massnahmen<br />

Auf der BLS -Linie Frutigen – Kandersteg wird das durch gravitative Naturgefahren ausgelöste<br />

kollektive Personen- und Sachrisiko unabhängig von den Veränderungen in den Gefahrenprozessen<br />

zunehmen<br />

– a) weil Zugsfrequenzen und Passagierzahlen sowie die Ansprüche an die Verfügbarkeit<br />

auch im öffentlichen Verkehr in den nächsten Jahren zunehmen und<br />

– b) weil sich der Zustand der bestehenden Schutzbauten ohne gezieltes Unterhaltsmanagement<br />

verschlechtern wird und somit deren Zuverlässigkeit abnimmt. Wenn dadurch<br />

Ereignisse nicht mehr von den Schutzbauten aufgehalten werden, werden Schäden durch<br />

Naturereignisse an Personen und Infrastruktur wieder wahrscheinlicher<br />

(siehe Abbildung 2).<br />

Verletztes Schutzziel?<br />

Die BLS Netz AG will sicherstellen, dass die Passagiere auf der Bahnstrecke Frutigen-Kandersteg<br />

keinem zu hohen Risiko ausgesetzt sind: das vom Kanton Bern definierte und von der<br />

BLS mitgetragene Schutzziel für einen typischer Pendler, welcher diese Bahnstrecke zwei Mal<br />

pro Tag benützt, soll nicht verletzt werden. Deshalb will die Bahn diese Risiken kennen und<br />

falls das Schutzziel verletzt ist, wissen wo Massnahmen am effizientesten umzusetzen sind.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 989


Abbildung 2: Schematische Darstellung der Risikoentwicklung entlang einer Verkehrsachse aufgrund unterschiedlicher Handlungsoptionen.<br />

METHODEN<br />

Risikoanalyse und -bewertung<br />

Um feststellen zu können, ob die Sicherheit auf dem Schienennetz der BLS Netz AG ausreichend<br />

ist, müssen zuerst die Gefährdung und das daraus resultierende Risiko im IST-Zustand<br />

wie auch der Soll-Zustand bekannt sein. Um den IST-Zustand zu erfassen liess die BLS<br />

Netz AG eine Vorstudie ausarbeiten, um eine Übersicht über die bestehende Gefährdung<br />

und die daraus resultierenden Risiken für Menschen und Sachwerte zu erlangen. Für die<br />

Gefahrenbeurteilung wurden sämtliche Einzugs- oder Liefergebiete von Naturgefahrenprozessen<br />

berücksichtigt, welche die Bahnlinie betreffen können. Die Ausarbeitung der<br />

Gefahren- und Risikoanalyse erfolgte nach dem Risikokonzept der nationalen Plattform<br />

Naturgefahren (PLANAT) (Bründl, 2009) und lässt sich wie folgt zusammenfassen:<br />

– Bestimmung der Liefergebiete und Definition der Szenarien für die Prozesse Sturz, Wasser,<br />

Lawinen und Rutschungen<br />

– Bestimmung der massgebenden Einwirkung entlang des Gleises in Form von Intensitätskarten<br />

für die spezifischen Szenarien<br />

– Erfassung von Details des Schadenpotenzials durch BLS Netz AG (Zugsfrequenz, Fahrgeschwindigkeit,<br />

Besetzungsgrad, Fahrgeschwindigkeit, usw.)<br />

990 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– Bestimmung des Risikos streckenbezogen und für jede Prozessquelle<br />

Die Wirkung der bestehenden Schutzbauten, der bestehenden organisatorischen Überwachungsmassnahmen<br />

und des Schutzwaldes sind in die Beurteilung der Gefährdung und der<br />

Risiken eingeflossen. In der Risikoanalyse wurden folgende Schadenbilder berücksichtigt:<br />

– Schäden an Personen (Passagiere und Zugspersonal) Personenrisiken<br />

– Schäden infolge Räumung und Wiederherstellung der Gleisanlagen und dazugehörender<br />

Infrastruktur Sachrisiko Räumung und Wiederherstellung<br />

– Schäden am Rollmaterial Sachrisiko Rollmaterial<br />

– Kosten für Ersatzbusbetrieb Risiko Verfügbarkeit<br />

Mögliche Kollisionen mit einem Gegenzug nach einer Entgleisung wurden zwar evaluiert,<br />

aber in der Risikoanalyse nicht berücksichtigt. Zur Aufsummierung von Personen- und<br />

Sachrisiken wurde das kollektive Personenrisiko mit dem Grenzkostenansatz von 5 Mio. CHF<br />

pro statistischen Todesfall monetarisiert (Bründl, 2009).<br />

Mit der Risiko- und Massnahmenbewertung wird der SOLL-Zustand definiert. Die Risikostrategie<br />

der BLS Netz AG sieht - gestützt auf die Vorgaben des Kantons Bern - vor, dass das<br />

durch Naturgefahren verursachte zusätzliche individuelle Todesfallrisiko für Bahnreisende<br />

nicht mehr als 1 x 10-5 / Jahr betragen soll (=Schutzziel).<br />

Integrale Massnahmenplanung<br />

Massnahmen sollen nur dann geplant werden, wenn das Schutzziel verletzt ist. Im Rahmen<br />

der oben erwähnten Vorstudie wurden deswegen Massnahmenkonzepte gestützt auf die<br />

obigen Vorgaben für diejenigen Stellen ausgearbeitet, wo das Risiko am grössten ist. Gibt es<br />

für eine Gefahrenstelle mehrere Handlungsoptionen, so soll diejenige Massnahme oder<br />

Massnahmenkombination gewählt werden, die die grösste Nutzen-Kosten-Differenz aufweist<br />

und die auch mit den weiteren Kriterien im Sinne der Nachhaltigkeit im Einklang steht. Die<br />

Berechnung des Nutzens wie auch die Aufrechnung der jährlichen Kosten erfolgt nach dem<br />

Ansatz des Risikokonzeptes der PLANAT (Bründl, 2009). Für die Wahl der richtigen Schutzmassnahme<br />

sind vertiefte Prozesskenntnisse wie auch Kenntnis der lokalen Gegebenheiten<br />

vor Ort einerseits und Kenntnisse über die Wirkungsweise und Kosten der Massnahmentypen<br />

andererseits notwendig.<br />

ERGEBNISSE<br />

Risikoanalyse und -bewertung<br />

Der im Detail untersuchte Streckenabschnitt (siehe Abbildung 1) verläuft zwischen Frutigen<br />

und Kandersteg (km 13.5 bis km 33.7). Auf der rund 20 km langen untersuchten Strecke<br />

sind 15 km von Naturgefahren aus total 77 verschiedenen Prozessquellen betroffen.<br />

Die mit dem Grenzkostenansatz monetarisierten, kollektiven Personenrisiken machen rund<br />

2/3 und die Sachrisiken rund 1/3 des Gesamtrisikos aus. Die Aufteilung der Risiken auf die<br />

verschiedenen Schadenarten zeigt, dass die Personenrisiken, im Zusammenhang mit<br />

Sturzereignissen dominieren (rund 55% des Gesamtrisikos). Demgegenüber verursachen die<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 991


Wasser- und Lawinenprozesse in erster Linie Sachrisiken infolge Räumung und Wiederherstellung<br />

der Infrastruktur. Die Schäden am Rollmaterial sind über alles gesehen untergeordnet<br />

(rund 15%); sie entstehen vor allem bei der Kollision mit abgelagertem Sturzmaterial.<br />

Die Risiken infolge Verfügbarkeit machen insgesamt nur rund 6% aus; sie entstehen in erster<br />

Linie nach Sperrungen infolge eines Ereignisses. Die Ergebnisse der Risikoanalyse zeigten<br />

hinsichtlich Schadenhäufigkeit eine gute Übereinstimmung mit dem Unfallgeschehen infolge<br />

Naturgefahren auf dieser Strecke. Die Zahlen zum Schadenausmass liessen sich nicht<br />

vergleichen, da die entsprechenden Zahlen aus der Vergangenheit fehlten. Aufgrund der<br />

bisherigen Unfallbilder wird das Schadenausmass in der Risikoanalyse vermutlich eher<br />

überschätzt. Das Schutzziel des individuellen Todesfallrisikos wird im IST-Zustand nicht<br />

erreicht, der Wert ist um einen Faktor 6 zu hoch.<br />

Dank der Analyse konnten besonders risikoreiche Streckenabschnitte und Liefergebiete<br />

identifiziert und für die Massnahmenplanung priorisiert werden.<br />

ERREICHEN DES ANGESTREBTEN SICHERHEITSNIVEAU MIT INTEGRALER KOMBINATION NEUER<br />

SCHUTZMASSNAHMEN<br />

Da das angestrebte Schutzniveau im IST-Zustand nicht erreicht wird, muss das Risiko<br />

reduziert werden. Dies kann durch neue Schutzmassnahmen geschehen. In der Planung<br />

stellte sich an verschiedenen Stellen heraus, dass bauliche Systeme in diesem steilen Gelände<br />

entweder nicht realisierbar (z. B. Steinschlagschutzdämme), in ihrer Wirkung begrenzt<br />

(z. B. Steinschlagschutznetze) oder finanziell sehr aufwändig (z. B. verstärkte Galerien,<br />

Tunnels) sind und deswegen nicht zur Umsetzung empfohlen werden können. An diesen<br />

Stellen sind Überwachungsmassnahmen, z. T in Kombination mit den bestehenden baulichen<br />

Massnahmen die kostenwirksamste Lösung. Das angestrebte Schutzziel kann nur erreicht<br />

werden, wenn alle möglichen Massnahmentypen sowie deren Kombination berücksichtig<br />

werden (siehe auch Abbildung 5):<br />

– Bauliche Massnahmen: Neubau von Schutzbauwerken im Umfang von 3 Mio CHF für den<br />

Zeitraum 2013 - 2017<br />

– Organisatorische Massnahmen: Messtechnische wie auch manuelle Überwachung von<br />

Felsinstabilitäten (vgl. Gruner & Utelli <strong>2016</strong>) und Reinigung von gleisnahen Felswänden<br />

– Organisatorische Massnahmen: Elektrische Überwachung der linearen Schutzbauwerke<br />

entlang des Trassees<br />

Im Folgenden soll der letzte Massnahmentyp erläutert werden, da damit das Personenrisiko,<br />

welches den grössten Anteil des Risikos ausmacht, sehr effizient reduziert werden kann.<br />

Elektrische Reissdraht-Überwachung<br />

Auf vielen Streckenabschnitten ist beim Personenrisiko das Schadenbild "Kollision mit<br />

abgelagertem Sturzmaterial" dominierend. Deswegen erwies sich dort die Überwachung von<br />

bestehenden oder neuen Schutzbauwerken als sehr effiziente und auch effektive Massnahme.<br />

Die Überwachung detektiert Ereignisse, die die Kapazität der Schutzmassnahme überschrit-<br />

992 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


ten, diese durchschlagen und sich auf dem Gleis abgelagert haben (siehe Abbildung 3).<br />

Der nächste heranfahrende Zug wird gestoppt und mit Fahrt auf Sicht durch den betroffenen<br />

Streckenabschnitt geleitet, so dass jederzeit einen Bremsung möglich ist und somit eine<br />

Kollision verhindert werden kann. Das Risiko für Zugspendler wird damit signifikant gesenkt.<br />

Parallel dazu kontrolliert eine Equipe der BLS Netz AG die Schadenstelle und kann gegebenenfalls<br />

weitere Massnahmen einleiten.<br />

Abbildung 3: Elektrische Überwachung von Schutzbauwerken. Die in den Bremsen oder im Bauwerk eingebauten Drähte reissen im<br />

Überlastfall und leiten ein Signal an die Zugsleitzentrale.<br />

FAZIT INTEGRALE KOMBINATION NEUER SCHUTZMASSNAHMEN<br />

Mit den aktuell sich in der Realisierung befindenden zusätzlichen baulichen und organisatorischen<br />

Schutzmassnahmen wird das kollektive Risiko um einen Faktor 2, das individuelle<br />

Todesfallrisiko um mehr als einen Faktor 4 gesenkt. Rechnerisch wird das individuelle<br />

Todesfallrisiko noch bei rund 1.5 x 10-5 / Jahr liegen. Aufgrund verschiedener Unsicherheiten<br />

(Gefahren-Szenarien, Wiederkehrperioden von Ereignissen, Unfall-Szenarien, Berücksichtigung<br />

organisatorischer Massnahmen etc.) darf die Genauigkeit dieser Berechnung nicht<br />

überbewertet werden. Die rechnerisch präzise, abschliessende Antwort auf die Frage nach der<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 993


ausreichenden Sicherheit ist darum nicht immer sinnvoll. Weitere bauliche Massnahmen sind<br />

hier nicht mehr kostenwirksam. Die Sicherheit wird aber auf alle Fälle erhöht und es darf<br />

trotz aller rechnerischen Unsicherheiten angenommen werden, dass die BLS Netz AG auf<br />

dieser Strecke heute das angestrebte Sicherheitsniveau wirksam erreicht.<br />

Halten des angestrebten Sicherheitsniveaus mit dem Erhalt von Schutzbauwerken<br />

Um das mit den bisherigen Massnahmen erreichte Schutzniveau dauerhaft sichern zu<br />

können, bedarf es eines gezielten Schutzbautenmanagements, bestehend aus einem vollständigen<br />

Schutzbautenkataster und der fortwährenden Erhaltungsplanung.<br />

Die BLS hat in ihren beiden Forst- und Felssicherungsequipen seit Jahrzehnten erfahrene<br />

Mitarbeitende für die Bauwerksüberwachung und die Unterhaltsarbeiten. In den letzten<br />

Jahren konnte mit der einheitlichen Ersterfassung der bestehenden Schutzbauwerke im<br />

Gelände und der Ablage in einem Schutzbautenmanagementsystem (geobasierte Datenbank)<br />

das Wissen über Lage und Zustand der Bauwerke dauerhaft gesichert und für andere<br />

Involvierte zugänglich gemacht werden (siehe Abbildung 4 links): die BLS Netz AG ist auf<br />

dem Streckennetz im Kanton Bern für aktuell 750 Schutzbauwerke zuständig.<br />

Die einheitliche Beurteilung des Zustands und des Handlungsbedarfs vor Ort sowie die<br />

Abschätzung der geeigneten Unterhaltsmassnahmen ermöglichten es erstmals, ein mehrjähriges<br />

integrales Erhaltungsprojekt (vgl. Pfammatter <strong>2016</strong>) für das gesamte Berner Streckennetz<br />

der BLS Netz AG fundiert auszuarbeiten: im laufenden Erhaltungsprojekt 2012-<strong>2016</strong> sind für<br />

Instandhaltungen und Instandsetzungen gut CHF 450‘000.- budgetiert. Pro Jahr ist die<br />

BLS-Forstequipe mehrere Wochen mit Unterhaltsarbeiten in verschiedenen Verbauungsgebieten<br />

entlang des Streckennetzes tätig. Aktuell handelt es sich um Instandsetzungen oder<br />

Rückbauten von älteren Trockensteinmauern, Ertüchtigungen von Stahl- und Holzbarragen,<br />

Instandhaltungen von Netzabdeckungen und Instandsetzungen aller Werktypen nach<br />

Ereignissen (siehe Abbildung 4 rechts). Die ausgeführten Arbeiten und die neue Zustandsbeurteilung<br />

werden im Schutzbautenmanagementsystem nachgeführt. Nach Abschluss des oben<br />

erwähnten Instandsetzungsprojektes sollten sich darin keine Schutzbauwerke mehr in<br />

alarmierendem oder in mittelfristig nicht tolerierbarem Zustand befinden. Die Zuverlässigkeit<br />

der Verbauungen ist dann bis zum jeweiligen Dimensionierungsszenario hoch. So können die<br />

Schutzbauwerke in der Gefahren- und Risikobeurteilung angemessen berücksichtigt werden.<br />

Mit dieser umfassenden, bei der BLS institutionalisierten und von Bund und Kanton mit<br />

Beiträgen unterstützen Erhaltungsplanung wird sichergestellt, dass die Schutzbauten<br />

möglichst lange eine hohe Zuverlässigkeit behalten. (siehe Abbildung 4)<br />

HALTEN DES ANGESTREBTEN SICHERHEITSNIVEAUS MIT DER PFLEGE DER SCHUTZWÄLDER<br />

Ein stabiler Schutzwald ist für den Schutz vor Naturgefahren eine wichtige und oft auch<br />

effizienteste Massnahme. Dem war und ist sich die BLS seit dem Bau der Lötschberg-Bergstrecke<br />

vor mehr als 100 Jahren bewusst. Deshalb hat sie schon sehr früh grossflächig<br />

das Land oberhalb der Gleise erworben und aktiv unbewaldete Gebiete aufgeforstet<br />

994 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 4: Die Lage der bestehenden Schutzbauten wird im Gelände mittels GPS erfasst, der Zustand des Bauwerks wird mittels<br />

visueller Kontrolle durch Fachleute beurteilt. Das Fundament dieser Betonmauer muss gesichert werden. (links). Diese Blocksteinmauer<br />

wurde mit armiertem Ortsbetonfundament und Drahtsteinkorb aufgrund der Zustandsbeurteilung instand gestellt(rechts).<br />

(Schwarz, 1996). Hier wird bis heute konsequent flächig Schutzwaldpflege betrieben. Diese<br />

Pflege wird nach der Methode Nachhaltige Pflege im Schutzwald NaiS (Frehner et al, 2005)<br />

in Waldbauprojekten geplant und mit jährlicher Festlegung des Arbeitsprogramms durch die<br />

eigene Forstequipe ausgeführt.<br />

FAZIT<br />

Dank der Gefahren- und Risikoanalyse beantwortet die BLS Netz AG periodisch die Frage,<br />

ob ein ausreichendes Sicherheitsniveau bezüglich Naturgefahren erreicht ist. Die Risikoanalyse<br />

liefert die Grundlage, um Abschnitte und Prozessquellen mit grossen Risiken zu identifizieren,<br />

für die integrale Massnahmenplanung zu priorisieren und um Massnahmen hinsichtlich<br />

Nutzen-Kosten-Verhältnis zu beurteilen. Die Einhaltung des Schutzziels muss periodisch<br />

überprüft werden. Die Überprüfung soll möglichst auf das ganze Streckennetz ausgedehnt<br />

werden.<br />

Erst dank der Kombination von baulichen, waldbaulichen und organisatorischen Massnahmen<br />

wird das angestrebte Schutzziel erreicht sowie die Verfügbarkeit der Strecke erhöht<br />

(siehe Abbildung 5). Um das erreichte Sicherheitsniveau langfristig zu erhalten, müssen der<br />

Unterhalt der Schutzbauwerke und die Pflege des Schutzwaldes sichergestellt sein.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 995


Abbildung 5: Das integrale Naturgefahrenmanagement der BLS Netz AG beinhaltet (von oben links im Uhrzeigersinn): Instandhaltung<br />

und Instandsetzung von bestehenden Bauwerken,Überwachung von instabilen Felspartien, Überwachung von bestehenden<br />

Schutzbauwerken, waldbauliche Massnahmen sowie die punktuelle Ergänzung mit neuen Schutzmassnahmen.<br />

Dank des integralen Lösungsansatzes waren für Bund und Kanton die Voraussetzungen<br />

gegeben, um all diese Massnahmen auch finanziell unterstützen zu können.<br />

LITERATUR<br />

- Bründl, M. (Ed.) (2009): Risikokonzept für Naturgefahren (Leitfaden). Nationale Plattform<br />

Naturgefahren PLANAT: 420 S.<br />

- Frehner, M.; Wasser, B.; Schwitter, R. (2005): Nachhaltigkeit und Erfolgskontrolle im<br />

Schutzwald. BAFU, Bern: 564 S.<br />

- Gruner, U., Utelli, H.-H. (<strong>2016</strong>) (in Review): Multiples Früherkennungssystem an Felswänden<br />

oberhalb einer Eisenbahnstrecke im Berner Oberland (Schweiz)<br />

- Pfammatter, Chr. (<strong>2016</strong>): Successful management of protective structures in long-term<br />

conservation projects. Interpraevent <strong>2016</strong> Extended Abstract: 3 S.<br />

- Schwarz, W. (1996): Schutz vor Naturgefahren auf der Nordrampe. BLS Lötschbergbahn,<br />

Bern: 126 S.<br />

996 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Storm and Flood Warnings issued by Switzerland's<br />

Specialist Federal Agencies<br />

David Volken, PhD 1 , Coralie Amiguet 1 ; Therese Buergi 1 ; Daniel Murer 2 ; Christoph Schmutz, PhD 2 ;<br />

ABSTRACT<br />

Protecting the population against natural hazards is a key task of the state. To improve storm,<br />

flood and avalanche warnings and alerts, the NBCN Intervention Ordinance came into force<br />

at the federal level in 2011, the Alarm Ordinance (AlarmO) was amended and the Radio and<br />

Television Ordinance (RTVO) was expanded. These ordinances introduced comprehensive<br />

provisions governing the responsibilities for natural hazard warnings and their communication<br />

to the authorities and the population. As a result, MeteoSwiss is responsible for weather<br />

hazards, the FOEN is responsible for floods and forest fires, and the WSL is responsible for<br />

avalanches. When hazardous events occur, these specialist federal agencies work closely<br />

together and distribute their warning products to cantonal authorities. The federal Special<br />

Natural Hazards Committee may become active in the event of large-scale level 4 or 5 natural<br />

hazards. This committee was first created when the flooding occurred in early June 2013.<br />

KEYWORDS<br />

Warning; Storm; flood; natural hazard<br />

EINFÜHRUNG<br />

Der Schutz der Bevölkerung und ihrer Lebensgrundlagen vor Naturgefahren ist eine zentrale<br />

Aufgabe des Staates. Mit dem integralen Risikomanagement, welches alle Handlungsoptionen<br />

zur Verbesserung der Sicherheit nutzt, soll den Naturgefahren mit ihren grossen Unsicherheiten<br />

begegnet werden. Öffentlichkeit und Politik fordern einen besseren Schutz vor Naturgefahren<br />

und insbesondere eine frühzeitige Warnung und Alarmierung (Hess et al., 2012).<br />

Durch eine gesamtheitliche und vernetzte Beurteilung der aktuellen Gefahrensituation und<br />

einer optimierten zeitlich-räumlichen Auflösung der Meteo- und Abflussvorhersagen und<br />

deren Beurteilung lassen sich die Qualität der Warnungen und Orientierungen der Behörden<br />

und der Bevölkerung verbessern (Hess et al., 2012).<br />

METHODEN<br />

Die Inkraftsetzung der ABCN-Einsatzverordnung und der Alarmierungsverordnung (AV)<br />

sowie die Ergänzung der Radio- und Fernsehverordnung (RTVV) am 1. Januar 2011 hat<br />

die Zuständigkeit für die Warnungen vor Naturgefahren sowie deren Vermittlung an die<br />

Behörden und die Bevölkerung umfassend geregelt (Wernli-Schärer et al., submitted).<br />

Die Fachstellen des Bundes für Naturgefahren wurden für alle relevanten Gefahrenarten<br />

1 Bundesamt für Umwelt, Ittigen, SWITZERLAND, david.volken@bafu.admin.ch<br />

2 Bundesamt für Meteorologie und Klimatologie, MeteoSchweiz<br />

IP_<strong>2016</strong>_FP006<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 997


estimmt, die Warnskala wurde für alle Stellen auf fünf Gefahrenstufen (keine oder geringe<br />

(grün), mässige (gelb), erhebliche (orange), grosse (rot), sehr grosse Gefahr (dunkel rot))<br />

festgelegt und die Zusammenarbeit zwischen Bund und Kantonen wurde optimiert.<br />

Im Falle von grosser und sehr grosser Gefahr können zudem alle konzessionierten Radio- und<br />

Fernsehanbieter zur Verbreitung der Warnungen verpflichtet werden. Die Lehren aus<br />

früheren Ereignissen (z.B. Lawinenwinter und Frühjahrs-Hochwasser 1999 (BWG, 2000),<br />

extreme Hochwasserereignisse 2005 (Bezzola et al., 2007 und 2008) und 2007 (Bezzola et al.,<br />

2009)) führten im Rahmen des Lenkungsausschusses Naturgefahren (LAINAT) zum Ausbau<br />

und zur Institutionalisierung einer verbesserten und engeren Zusammenarbeit zwischen den<br />

Fachstellen des Bundesamts für Umwelt (BAFU), MeteoSchweiz, WSL-Institut für Schneeund<br />

Lawinenforschung SLF, dem Schweizerischen Erdbebendienst sowie dem Bundesamt für<br />

Bevölkerungsschutz (BABS) (Wernli-Schärer et al., submitted).<br />

WETTERWARNUNGEN<br />

Warnungen vor den Gefahren des Wetters haben in der Schweiz Tradition. Die Ausgabe von<br />

Sturmwarnungen für die ersten Schweizer Seen wird bereits seit etwa 80 Jahren praktiziert.<br />

Im Jahr 2000 wurde mit dem Bundesgesetz über die Meteorologie und Klimatologie (MetG)<br />

der Warnauftrag umfassender definiert und dem Bundesamt für Meteorologie und Klimatologie<br />

MeteoSchweiz zugewiesen. In den Folgejahren wurden die Wetterwarnungen inhaltlich,<br />

räumlich und zeitlich weiterentwickelt und verfeinert. Darin eingeschlossen ist die Absprache<br />

mit den Empfängern, insbesondere den Kantonsbehörden. Heute gibt es Warnungen vor<br />

Wind, Gewitter, Regen, Schnee, Strassenglätte, Hitze und Frost. Die Warnungen werden in<br />

einer hohen Auflösung für 159 Warnregionen (vgl. Abb. 1) und 51 Warnobjekte (Seen und<br />

Flughäfen) erstellt. Die Behörden erhalten in Fällen, wo ein signifikantes Ereignis ab der<br />

Stufe 3 mit genügend Sicherheit (40%-70% Wahrscheinlichkeit) und einem Vorlauf von bis<br />

zu drei Tagen erwartet wird, eine sogenannte Vorwarnung. Für die Bevölkerung gibt es ein<br />

ähnliches Produkt: Der Warnausblick ist eine Vorschau auf die erwarteten Unwetterwarnungen<br />

der nächsten Tage. Er wird auf den Warnseiten des Internetauftritts und der mobilen App<br />

von MeteoSchweiz schraffiert dargestellt, um ihn von den effektiv ausgegebenen Warnungen<br />

zu unterscheiden (vgl. Abb. 1).<br />

HOCHWASSERWARNUNGEN<br />

Das Bundesamt für Umwelt (BAFU) hatte vor 2011 keinen gesetzlichen Auftrag, vor<br />

Hochwasser zu warnen. Statt offizieller Warnungen wurden im Bedarfsfall Hochwasserinfos<br />

für genau definierte Abflussmessstellen an nationale, kantonale und private Kunden, wie<br />

zum Beispiel die Behörden des Kantons Aargau oder die Rheinschifffahrt in Basel, übermittelt.<br />

Mit der Revision der Alarmierungsverordnung wurde das BAFU verpflichtet, für<br />

sämtliche grössere Gewässer in der Schweiz hydrologische Vorhersagen zu erstellen und im<br />

Hochwasserfall die Behörden zu warnen. In Absprache mit den Kantonen wurden die<br />

Gewässer (Flüsse und Seen) definiert, für welche der Bund Warnungen ausgibt (vgl. Abb. 2).<br />

Es handelt sich dabei um nationale Gewässer, entlang welchen ein grosses Schadenpotential<br />

998 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 1: Darstellung des Warnausblickes (schraffierte Flächen) und der Warnungen (ausgefüllte Flächen) in der mobilen App von<br />

MeteoSchweiz. Die feinen, weissen Linien trennen die einzelnen Warnregionen. Hier eine Gewittersituation.<br />

Abbildung 2: Karte mit den Gewässern von gesamtschweizerischem Interesse.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 999


vorhanden ist. Es sind auch Flüsse, die durch mehrere Kantone fliessen oder internationale<br />

Fliessgewässer sowie Seen, an welche mehrere Kantone grenzen oder welche die Grenze zu<br />

Nachbarländern bilden.<br />

Ein regionales Hochwasserereignis im Kander- und Lötschental hat am 11. Oktober 2011<br />

Millionenschäden verursacht. Da diese Regionen keine Flüsse von nationaler Bedeutung<br />

aufweisen, konnte beim Hochwasser vom 11. Oktober 2011 keine Warnung herausgegeben<br />

werden. Als Reaktion auf dieses Ereignis dehnte das BAFU das Konzept der Warnungen für<br />

nationale Gewässer auf kleinere und mittlere Fliessgewässer (regionale Hochwasserwarnungen)<br />

aus. Seit dem erstellt das BAFU regionale Hochwasser-Warnungen für 26 Regionen.<br />

Die Gefahrenstufen geben Auskunft über die Intensität des Ereignisses, die möglichen<br />

Auswirkungen und Verhaltensempfehlungen. Die Schwellenwerte, die die Gefahrenstufen<br />

abgrenzen, werden ausgehend vom vorhandenen Wissen über das Verhalten des jeweiligen<br />

Fliessgewässers festgelegt (Pegel ab dem das Gewässer über die Ufer tritt, ab den ersten<br />

Schäden eintreten usw.). Diese Schwellenwerte entsprechen in etwa der Jährlichkeit von<br />

Hochwasserereignissen, also einer Wiederkehrperiode von durchschnittlich 2, 10, 30 oder<br />

100 Jahren.<br />

Bei den regionalen Hochwasserwarnungen, die für kleine und mittlere Flüsse mit Einzugsgebieten<br />

bis 300 km 2 ausgegeben werden, gibt es zurzeit 2 Stufen (grün = keine oder geringe<br />

Gefahr, gelb = Hochwasserdisposition an kleinen und mittleren Gewässern). Diese werden<br />

voraussichtlich ab Sommer <strong>2016</strong> auf 4 Stufen ausgedehnt.<br />

ZUSAMMENARBEIT DER FACHSTELLEN<br />

Zeichnet sich heute beispielsweise ein markantes Niederschlags-Hochwasser-Ereignis ab,<br />

finden zwischen den Prognostikern des BAFU und der MeteoSchweiz regelmässige Telefonkonferenzen<br />

zur Abstimmung der Lage und der Warntätigkeit statt. Während MeteoSchweiz<br />

ohnehin einen 24-Stundenservice pflegt, intensiviert das BAFU in diesen Fällen den<br />

Vorhersagedienst. Spielt beim Ereignis auch die Schneeschmelze eine wichtige Rolle, wird der<br />

schneehydrologische Dienst des SLF zugeschaltet. Darüber hinaus kommen bei grossen<br />

Ereignissen die Führungsorganisationen der jeweiligen Bundesämter zum Einsatz. Bei Bedarf<br />

werden diese ämterübergreifend im Fachstab Naturgefahren zusammengeschlossen.<br />

Warnungen werden verfasst und via die Nationale Alarmzentrale (NAZ) über gesicherte<br />

Vermittlungskanäle an die Einsatzzentralen der betroffenen Kantone verschickt. Zudem wird<br />

seit 2014 ein gemeinsames Naturgefahrbulletin des Bundes erstellt, welches die gesamte<br />

Naturgefahrensituation aller Fachstellen beschreibt.<br />

Die Naturgefahrenfachstellen des Bundes stellen Messungen, Beobachtungen sowie Vorhersagen<br />

und Warnprodukte auf der Gemeinsamen Informationsplattform Naturgefahren (GIN)<br />

primär den kantonalen Behörden zur Verfügung. Das Naturgefahrenportal (www.naturgefah-<br />

1000 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


en.ch) fasst seit 2014 die aktuellen Warnungen des Bundes, Medienmitteilungen und die<br />

Naturgefahrenbulletins für jedermann öffentlich zugänglich zusammen (Neversil et al.,<br />

submitted). Das Naturgefahren-Portal bietet zudem mobile Seiten an. Damit können die<br />

wichtigen Informationen auch unterwegs abgerufen werden.<br />

MeteoSchweiz publiziert seit dem Herbst 2015 sämtliche Naturgefahrenwarnungen des<br />

Bundes auf der mobilen App. Die Benutzer können sich mit der App nicht nur die aktuellen<br />

Unwetterwarnungen sondern sämtliche Naturgefahrenwarnungen als Push-Nachricht<br />

schicken lassen. Damit sind sie laufend über die aktuelle Naturgefahrensituation im Bild.<br />

Die App von MeteoSchweiz wurde 3.6 Mio. Mal heruntergeladen (Stand August 2015)<br />

(Neversil et al., submitted). Damit ist die Reichweite der Naturgefahrenwarnungen gross.<br />

Muss die Bevölkerung rasch vor einer sehr grossen Gefahr gewarnt werden, so steht den<br />

Fachstellen seit dem Jahr 2011 das Mittel der verbreitungspflichtigen Bevölkerungswarnung<br />

zur Verfügung (AV und RTVV). Diese Warnungen müssen dann von den verpflichteten<br />

Rundfunksendern über Fernsehen und/oder Radio rasch verbreitet werden. Dieses Instrument<br />

gilt es verantwortungsvoll einzusetzen. Bisher wurde erst einmal im August 2011 eine<br />

verbeitungspflichtige Warnung ausgegeben (Gewitter).<br />

Grosse Naturgefahrenereignisse werden heute von den Fachstellen des Bundes eng geführt<br />

begleitet. In den Naturgefahrenfachstellen des Bundes bestehen Führungs- oder Einsatzorganisationen,<br />

welche zeitnah ein konsistentes Handeln der Fachstellen gewährleisten.<br />

Bei MeteoSchweiz ist die EO Met (Einsatzorganisation MeteoSchweiz) und beim BAFU die<br />

FO BAFU (Führungsorganisation) erreichbar und wird seit 2012 bei Warnungen der Stufen<br />

4 und 5 beigezogen, resp. hochgefahren. Bei sehr grossen und/oder kombinierten Naturgefahrenereignissen<br />

übernimmt der übergeordnete Fachstab Naturgefahren die Führung in<br />

der Ereignisbewältigung. Die Prozesse des Fachstabs Naturgefahren sind sowohl mit den<br />

Prozessen der Fachstellen als auch mit dem übergeordneten Bundesstab ABCN abgestimmt.<br />

Der Bundesstab ABCN kommt unter anderem bei grossen Naturkatastrophen zum Einsatz<br />

und erhält die Fachinformation von den Naturgefahrenfachstellen koordiniert durch den<br />

Fachstab Naturgefahren.<br />

ZUSAMMENARBEIT MIT DEN KANTONEN<br />

Die Grundlagen der Hochwasser-Warnungen wurden beim Bundesamt für Umwelt vor<br />

Inkraftsetzung der revidierten Alarmierungsverordnung erarbeitet. Dabei wurden das<br />

Gewässernetz und die jeweiligen Gefahrenstufen definiert. In regelmässig stattfindenden<br />

Absprachen zwischen BAFU und den Kantonen werden die Gefahrenstufen und das<br />

Gewässernetz überprüft und punktuell angepasst. Im Hochwasserfall finden regelmässig<br />

telefonische Absprachen zwischen der Hochwasser-Vorhersagezentrale des BAFU und der<br />

Kantone statt. Zusätzlich zu den Warnungen und Naturgefahrenbulletins des BAFU, ist es für<br />

die Kantone wichtig, dass sie mit den Prognostikern des BAFU im telefonischen Kontakt die<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 1001


kurzfristige Entwicklung der Gewässer diskutieren können, um eine fundierte Einschätzung<br />

der Lage in ihrem Kanton zu erhalten. Gerade mit den Kantonen Bern, Luzern und Zürich,<br />

die für die Seeregulierungen an Bieler-, Vierwaldstätter- und Zürichsee zuständig sind, ist der<br />

gegenseitige Infofluss betreffend Seeregulierung und Steuerung der Schleusen sehr zentral.<br />

Weiter stellen das BAFU und die Kantone während eines Ereignisses mit gegenseitigen<br />

Absprachen eine widerspruchsfreie Kommunikation zur Bevölkerung und den Medien sicher.<br />

Für den gegenseitigen Austausch, finden zwischen den Bundesämtern MeteoSchweiz, BAFU<br />

und dem SLF sowie den Kantonen jährlich im Herbst eine Warnkonferenz statt. Die Warnkonferenz<br />

richtet sich vornehmlich an die Naturgefahrenfachstellen und die Führungsorganisationen<br />

der Kantone. Das Ziel dieser Warnkonferenzen ist der Rückblick auf das vergangene<br />

Warnjahr, die Beurteilung der Warnungen der Bundesfachstellen sowie der Gedankenaustausch<br />

zwischen Bund und Kantonen.<br />

HOCHWASSEREREIGNIS VOM JUNI 2013<br />

Das Hochwasserereignis von anfangs Juni 2013 lässt sich hydrologisch und meteorologisch<br />

mit demjenigen von 1999 vergleichen, auch was die Vorgeschichte betrifft: Zwischen dem<br />

31. Mai und dem 2. Juni 2013 fielen im Mittelland in 48 Stunden zwischen 80 und 150 mm<br />

Niederschlag. In einem Streifen von den Schwyzer Alpen bis ins Appenzell wurden 150 bis<br />

200 mm gemessen, rund um den Säntis sogar bis 250 mm. Lokal wurden Wiederkehrperioden<br />

von 100 bis 200 Jahren beobachtet. Die Fliessgewässer und Seen sind in den betroffenen<br />

Regionen markant angestiegen. Verbreitet wurden Abflüsse mit Wiederkehrperioden von<br />

2 bis 10 Jahren, lokal bis 50 Jahren beobachtet. An der Reuss, der Thur sowie am Hochrhein<br />

wurde die Gefahrenstufe 3 (HQ 10<br />

bis HQ 30<br />

) erreicht. In der Ostschweiz traten einige Gewässer<br />

über die Ufer und überschwemmten Agrarland und teilweise Siedlungsgebiete.<br />

Auf dem Hochrhein und der Aare musste die Schifffahrt eingestellt werden.<br />

Die Beurteilung der Wetter- und Hochwasserentwicklung durch die Fachstellen des Bundes<br />

(MeteoSchweiz, BAFU und SLF) fand ab dem 29. Mai jeden Morgen in Form einer Telefonkonferenz<br />

statt. MeteoSchweiz warnte ab dem 30. Mai vor Starkregen der Gefahrenstufe 4,<br />

das BAFU ab dem 31. Mai vor Hochwasser der Gefahrenstufe 2 bzw. 3. Die Warnstufen<br />

wurden während des Ereignisses laufend den neusten Entwicklungen angepasst (vgl. Abb. 3)<br />

Die Warnprodukte wurden von MeteoSchweiz und dem BAFU via dem offiziellen Verbreitungsweg<br />

über die Nationale Alarmzentrale NAZ und den Kantonspolizeien direkt an die<br />

Behörden der Kantone verbreitet. Das Naturgefahrenbulletin mit den umfassenden Informationen<br />

zum Ereignis wurde vom 31.5 bis 2.6. täglich oder sogar 2-mal täglich aktualisiert.<br />

Am 31. Mai wurde zwischen BAFU und MeteoSchweiz entschieden, dass der Fachstab für<br />

Naturgefahren des Bundes aufgeboten werden soll. Gleichentags fand noch der erste<br />

gemeinsame Rapport statt. Es wurde entschieden, ein Pressecommuniqué auf die Abendnachrichten<br />

zu publizieren und auf eine verbreitungspflichtige Bevölkerungswarnung zu<br />

1002 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Abbildung 3: Übersicht über die Produkte der Fachstellen für Naturgefahren bzw. des Fachstabs Naturgefahren während des<br />

Hochwassers vom 31.5-3.6.13.<br />

verzichten. Zur laufenden Beobachtung und Beurteilung der Hochwassersituation fanden in<br />

der Folge die Telefonkonferenzen jeweils zweimal täglich statt. Parallel zu den Mess-,<br />

Überwachungs-, Beurteilungs- und Warntätigkeiten setzten die Naturgefahrenfachstellen des<br />

Bundes auf eine kontinuierliche, aktive und transparente Medienkommunikation. Mit diesen<br />

Massnahmen konnten nachweislich Schäden verhindert oder vermindert werden (Buser et<br />

al., 2013).<br />

ZUSAMMENFASSUNG<br />

Mit der Revision der Alarmierungsverordnung wurden die rechtlichen Grundlagen für den<br />

Warnprozess vor Naturgefahren geschaffen. Die Bundesämter BAFU, MeteoSchweiz und SLF<br />

arbeiten seit dem Jahr 2011 in Unwetterlagen intensiv zusammen und setzten ihre Warnprodukte<br />

an die Kantonsbehörden ab. Beim Hochwasserereignis im Jahr 2013 konnte die<br />

Zusammenarbeit unter den verschiedenen Bundesämtern in Echtzeit erfolgreich überprüft<br />

werden. Dabei konnten die erarbeiteten Konzepte und organisatorischen Massnahmen<br />

erfolgreich in der Praxis getestet werden.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 1003


LITERATUR<br />

- Bezzola G.R., Hegg Ch. (Ed.) (2007): Ereignisanalyse Hochwasser 2005, Teil 1 – Prozesse,<br />

Schäden und erste Einordnung. Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt<br />

WSL. Umwelt-Wissen Nr. 0707.<br />

- Bezzola G.R., Hegg Ch. (Ed.) (2008): Ereignisanalyse Hochwasser 2005, Teil 2 – Analyse von<br />

Prozessen, Massnahmen und Gefahrengrundlagen. Bundesamt für Umwelt BAFU, Eidgenössische<br />

Forschungsanstalt WSL. Umwelt-Wissen Nr. 0825.<br />

- Bezzola G.R., Ruf W., Jakob A. (Ed.) (2009): Ereignisanalyse Hochwasser August 2007 –<br />

Analyse der Meteo- und Abflussvorhersagen; vertiefte Analyse der Hochwasserregulierung<br />

der Jurarandgewässer. Bundesamt für Umwelt. Umwelt-Wissen Nr. 0927.<br />

- Buser M. et al. (2013): Hochwasserereignis an der Alpennordseite vom 31. Mai bis 3. Juni<br />

2013.<br />

- BWG (Bundesamt für Wasser und Geologie), (2000): Hochwasser 1999, Analyse der<br />

Ereignisse. Studienbericht Nr. 10/2000. Bundesamt für Wasser und Geologie, Bern.<br />

- Hess J., Schmid F. (2012): Towards optimised early warning. Developments in Switzerland.<br />

12th Congress Interpraevent 2012, Grenoble France.<br />

- Neversil B. et al. (submitted): A better informed public through the Swiss Confederation’s<br />

joint natural hazards portal. Interpraevent <strong>2016</strong> (Poster)<br />

- Wernli-Schärer L., Bialek R., Buser M., Flury Ch., Gerber B., Haslinger F., Hegg Ch., Ottmer<br />

B., Overney O., Romang H., Schmutz Christoph, Schweizer J. (submitted): Strategien zur<br />

Reduktion der Naturgefahrenschäden durch optimierte Warnung, Alarmierung und Intervention<br />

in der Schweiz. Interpraevent <strong>2016</strong><br />

- SR 520.12, Alarmierungsverordnung (AV)<br />

- SR 784.401 Radio- und Fernsehverordnung (RTVV)<br />

- SR 429.1 Bundesgesetz über die Meteorologie und Klimatologie (MetG)<br />

1004 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


EMERGENCY MANAGEMENT (EMERGENCY PLANNING, EARLY WARNING, INTERVENTION, RECOVERY)<br />

Strategies for the reduction of natural hazards<br />

damages by optimized warning, alarming and<br />

intervention in Switzerland<br />

Lilith Wernli-Schärer, MSc 1 ; Roland Bialek 2 ; Martin Buser 1 ; Christoph Flury 2 ; Bruno Gerber 3 ; Florian Haslinger 4 ; Christoph<br />

Hegg 5 ; Birgit Ottmer 7 ; Olivier Overney 1 ; Hans Romang 1 ; Christoph Schmutz 6 ; Jürg Schweizer 7<br />

ABSTRACT<br />

With the goal of protecting the population more effectively against natural hazards, the<br />

Federal Council initiated a project to optimise warnings and alerts in the event of natural<br />

hazards, known as the OWARNA project (Optimierung von Warnung und Alarmierung bei<br />

Naturgefahren). OWARNA has made it possible to implement measures to improve flood<br />

forecasts, such as their quality and availability, strengthen and standardise cooperation at the<br />

federal level, provide better information to local authorities and the public, and train local<br />

natural hazard advisors. The significant progress achieved through this project contributes<br />

to a functioning warning system. Future challenges are to establish crisis-proof forecast and<br />

warning systems as well as increase the readiness of the population to handle warnings<br />

properly. To meet these challenges, the authorities and the population will essentially need<br />

to better understand the potential impacts of natural hazards. In addition, there is a need for<br />

standardisation among suppliers of storm warnings.<br />

KEYWORDS<br />

early warnings and alerting, preparedness, response, national coordination<br />

AUSGANGSLAGE<br />

Der Schutz der Bevölkerung und ihrer Lebensgrundlagen vor Naturgefahren ist eine zentrale<br />

Aufgabe des Staates. Zum Schutz vor Naturgefahren werden in der Schweiz pro Jahr<br />

insgesamt rund 2.9 Milliarden Franken aufgewendet, was rund 0.6 Prozent des Bruttoinlandproduktes<br />

entspricht (BAFU, 2015). Die Hochwasserereignisse vom Sommer 2005 führten in<br />

der Schweiz zu Schäden von rund 3 Milliarden Franken und forderten sechs Todesopfer<br />

(Bezzola & Hegg, 2008). Mit diesem Ereignis wurden Probleme und Grenzen der Vorhersage<br />

von seltenen Naturereignissen offengelegt (Bezzola & Hegg, 2007). Die Erkenntnisse aus dem<br />

Jahr 2005 wurden durch die Hochwasserereignisse vom Sommer 2007 bestätigt.<br />

1 Geschäftsstelle LAINAT, Ittigen, SWITZERLAND, lilith.wernli-schaerer@bafu.admin.ch<br />

2 BABS<br />

3 Kanton Bern<br />

4 SED<br />

5 WSL<br />

6 MeteoSchweiz<br />

7 SLF<br />

IP_<strong>2016</strong>_FP007<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 1005


Diese Ereignisse führten zu Unwetterschäden von insgesamt 710 Millionen Franken und<br />

forderten vier Todesopfer (Bezzola & Ruf, 2009). Die Schäden wurden nicht alleine vom<br />

Ausmass des Ereignisses beeinflusst. Eine effiziente Prävention, Intervention sowie Schadenbewältigung<br />

wirken sich ebenso erheblich auf das Schadensausmass aus (Bezzola & Hegg,<br />

2008). Organisatorische Massnahmen wie Sperrungen gefährdeter Gebiete, der Einsatz<br />

mobiler Hochwasserschutzelemente oder die Evakuation gefährdeter Personen können im<br />

Vergleich zu baulichen Massnahmen schneller umgesetzt werden. Sie sind bei selten<br />

auftretenden Gefahrenprozessen oft auch kostengünstiger, da ein grosser Teil der Kosten nur<br />

dann anfällt, wenn sie zum Einsatz kommen (Baumgartner, 2015). Darin besteht aber auch<br />

ihr grösster Nachteil: Sie erfordern eine Intervention vor dem Ereignis, um ihre Wirkung zu<br />

entfalten. Voraussetzung ist deshalb eine rechtzeitig vorliegende, zuverlässige und verständliche<br />

Information über die zukünftige Entwicklung der Naturgefahrenprozesse, damit die<br />

lokalen Interventionskräfte einen Einsatz verhältnismässig führen können. Es stellte sich<br />

deshalb die Frage, mit welchen Massnahmen die Warnungen vor Naturgefahren optimiert<br />

werden können, um durch vermehrte vorsorgliche Intervention Personen zu schützen und<br />

Sachschäden zu vermeiden.<br />

ORGANISATIONALER RAHMEN<br />

Naturgefahren werden in der Schweiz mittels einer zwischen den drei Staatsebenen (Bund,<br />

Kantone und Gemeinden) geteilten Verantwortung angegangen. Die Naturgefahrenfachstellen<br />

des Bundes informieren und warnen Bevölkerung, Medien sowie kantonale und<br />

kommunale Behörden vor drohenden Naturgefahren. Die Fachstellen des Bundes behandeln<br />

dabei folgende Gefahrenbereiche (Alarmierungsverordnung, SR 520.12, Art. 9):<br />

– Gefährliche Wetterereignisse: das Bundesamt für Meteorologie und Klimatologie<br />

– Hochwasser und damit verbundene Rutschungen sowie Waldbrände: das Bundesamt für<br />

Umwelt<br />

– Lawinengefahren: das Institut für Schnee- und Lawinenforschung der Eidgenössischen<br />

Forschungsanstalt für Wald, Schnee und Landschaft<br />

– Erdbeben: der Schweizerische Erdbebendienst<br />

Das Bundesamt für Bevölkerungsschutz unterstützt jene Stellen, die in der Vorbeugung<br />

kollektiver Risiken und in der Ereignisbewältigung tätig sind, insbesondere betroffene<br />

Bundesstellen, die Kantone und die Partnerorganisationen des Verbundsystems Bevölkerungsschutz.<br />

Die zuständigen Bundesbehörden haben fünf einheitliche Warnstufen eingeführt. Diese sind<br />

in der Alarmierungsverordnung verankert und basieren auf der fünfteiligen europäischen<br />

Lawinengefahrenskala, auf welche sich die Lawinenwarndienste der Alpenländer 1993<br />

geeinigt haben (SLF, 2015). Sind in einer Gefahrensituation mehrere Fachstellen zuständig,<br />

erlassen sie gemeinsame Warnungen. Die Federführung wird dabei von der Fachstelle am<br />

Ende der Prozesskette übernommen. Die zuständige Fachstelle übermittelt Warnungen der<br />

1006 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Nationalen Alarmzentrale, welche diese an die kantonalen Behörden weiter leitet (Alarmierungsverordnung,<br />

SR 520.12, Art. 9). Die Kantone verantworten die Notfallplanung und die<br />

Gemeinden planen und implementieren präventive Massnahmen.<br />

ZIELSETZUNGEN DES PROJEKTES OWARNA UND DIE STRATEGIE DES BUNDES<br />

Wie die Ereignisanalyse der Hochwasser 2005 gezeigt hat, kann das Schadensausmass von<br />

Naturgefahren mit einer optimierten Warnung, Alarmierung und Intervention um 20 Prozent<br />

reduziert wer-den, wenn Warnung, Alarmierung und Information rechtzeitig erfolgen und<br />

damit Menschen und Sachwerte rechtzeitig in Sicherheit gebracht werden können (Hess &<br />

Schmid, 2012). Zudem hat die Analyse der Hochwasser 2005 und 2007 aufgezeigt, dass<br />

personelle Defizite zur Aufrechterhaltung der kritischen Geschäftsprozesse in Notfallsituationen<br />

behoben werden müssen. So hat der Bundesrat in Folge der Ereignisse 2005 das Projekt<br />

OWARNA initiiert. Konkret hat der Bundesrat im Jahr 2007 Massnahmen zur Verbesserung<br />

der Hochwasservorhersage sowie zur besseren Information der kantonalen und kommunalen<br />

Behörden und Bevölkerung beschlossen. Ebenso wurde die Notwendigkeit einer umfassenden<br />

Notfallplanung bzw. eines Business Continuity Management (BCM) bei allen am<br />

Warnprozess beteiligten Fachstellen des Bundes erkannt. Ziel ist es, im Ereignisfall einen<br />

24-Stunden Vorhersagebetrieb sowie die fachliche Vernetzung – und damit die fachliche<br />

Beratung im Ereignisfall – sicherzustellen. In umfangreichen Analysen und Workshops<br />

zwischen den zuständigen Bundesfachstellen und den Fachstellen und Führungsorganisationen<br />

der Kantone wurde die Aufgabenteilung zwischen Bund und Kantonen geklärt. Es zeigte<br />

sich, dass bei zahlreichen Fragestellungen die Verantwortung auf Stufe Bund auf mehrere<br />

Organisationen verteilt ist. Um die nötige Koordination zwischen den Bundesstellen<br />

durchführen zu können, haben sich die Bundesfachstellen für Naturgefahren 2008 zum<br />

Lenkungsausschuss Intervention Naturgefahren (LAINAT) zusammengeschlossen. Der<br />

LAINAT ist seit dem 1. April 2009 operativ und ermöglicht es, politische, strategische und<br />

fachliche Fragestellungen innerhalb institutionalisierter Abläufe nachhaltig zu klären sowie<br />

die Vorhersage- und Warntätigkeit der Bundesstellen zu koordinieren und kontinuierlich<br />

weiterzuentwickeln.<br />

Kurz zusammengefasst verfolgt der Bund damit die Strategie, einen effektiv funktionierenden<br />

Warnprozess zu etablieren und zu erhalten. Im Folgenden wird der aktuelle Stand der<br />

Umsetzung der wichtigsten OWARNA-Massnahmen beschrieben.<br />

OPTIMIERTE WARNUNG, ALARMIERUNG UND INTERVENTION<br />

Um die Ziele von OWARNA zu erreichen, braucht es einen funktionierenden Warnprozess.<br />

Jedes einzelne Element trägt wesentlich zum Funktionieren des Gesamtsystems bei (Hess &<br />

Schmid, 2012). Im Folgenden werden die entsprechenden Elemente sowie der aktuelle Stand<br />

der Umsetzung der OWARNA-Massnahmen beschrieben:<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 1007


Verbesserung der Vorhersagesysteme: Eine verbesserte räumliche und zeitliche Auflösung<br />

der Vorhersagemodelle ermöglicht einerseits die Qualität und Aussagekraft der<br />

Wetter- und Abflussvorhersagen zu verbessern und andererseits Warnungen räumlich und<br />

zeitlich präziser zu verfassen. MeteoSchweiz hat das gesamte Netzwerk der Niederschlagsradars<br />

erneuert und arbeitet gegenwärtig daran, die radartechnisch bisher schlecht abgedeckten<br />

inneralpinen Gebiete (Wallis und Graubünden) mit zwei zusätzlichen, hochalpinen Radarstationen<br />

zu versorgen. Eine dieser Radarstationen (Pointe de la Plaine Morte) konnte bereits im<br />

Frühjahr 2014 dem Betrieb übergeben werden. Die fünfte Radarstation auf dem Weissfluhgipfel<br />

steht seit Oktober 2015 im Testbetrieb. Gleichzeitig wird das Niederschlags-Bodenmessnetz<br />

von MeteoSchweiz ausgebaut und automatisiert. Bei der Verbesserung der Vorhersagesysteme<br />

wurden massgebende Fortschritte erzielt. So können nun für nationale<br />

Fliessgewässer von gesamtschweizerischem Interesse sowie auch für kleine und mittlere<br />

Gewässer hydrologische Vorhersagen gerechnet werden (vgl. Amiguet et al. <strong>2016</strong>). Eine<br />

verbesserte räumliche und zeitliche Auflösung der Vorhersagemodelle ermöglicht eine<br />

Optimierung der Qualität und Aussagekraft der Wetter- und Abflussvorhersagen sowie<br />

räumlich und zeitlich präzisere Warnungen. Im Projekt COSMO-NeXt erhöht MeteoSchweiz<br />

die Auflösung des Wettervorhersagemodells auf 1 Kilometer Maschenweite (COSMO-1) und<br />

stellt Ensemble-Rechnungen mit 2 Kilometer Maschenweite mit 21 Membern zur Verfügung<br />

(COSMO-E). Für die aktuelle Gefahreneinschätzung und zeitnahe Warnungen ist das<br />

sogenannte Nowcasting wichtig. Neue Systeme auf der Basis der Messinfrastruktur (insbesondere<br />

Niederschlagsradar) erlauben die rasche und räumlich hochaufgelöste Erstellung und<br />

Verbreitung von Gewitterwarnungen (vgl. Gaia et al.). Damit werden die erfolgreichen<br />

Entwicklungen fortgesetzt, welche 2003 im Thunderstrom Radar Tracking (TRT) ihren<br />

Ursprung haben.<br />

Intensivierung und Standardisierung der Zusammenarbeit auf Bundesebene: Oft<br />

handelt es sich um kombinierte Ereignisse, beispielsweise wenn langanhaltende Niederschläge<br />

mit einer intensiven Schneeschmelze zu Hochwasser führen. Um solche Ereignisse in ihrer<br />

Gesamtheit zu erfassen, wurde die Zusammenarbeit zwischen den Naturgefahrenfachstellen<br />

des Bundes intensiviert und standardisiert. So wurden 2014 auf technischer Ebene gemeinsame<br />

Standards zum Austausch von Warnungen zwischen den Fachstellen und Dritten<br />

vereinbart. Auf inhaltlicher Ebene vermittelt das sogenannte Naturgefahrenbulletin seit 2014<br />

bei besonders kritischen Lagen weiterführende Informationen wie eine gemeinsame<br />

Lagedarstellung. Es wird entweder einzeln durch die betroffene Fachstelle oder im Falle eines<br />

kombinierten Ereignisses gemeinsam durch die Fachstellen bzw. den Fachstab Naturgefahren<br />

erstellt. Die fachlichen Absprachen zwischen den Naturgefahren-Fachstellen des Bundes<br />

finden im „Fachstab Naturgefahren“ statt. So kann sichergestellt werden, dass die vorhandene<br />

Expertise und Erfahrung in die Lagebeurteilung einfliesst und widersprüchliche Aussagen<br />

vermieden werden. Der Fachstab Naturgefahren wurde 2010 geschaffen, ist rechtlich<br />

verankert (ABCN-Einsatzverordnung) und nimmt folgende Aufgaben wahr:<br />

1008 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


– Er sammelt und interpretiert die Erkenntnisse der Partner und fasst sie zu einer Gesamtbeurteilung<br />

zusammen, die unter allen Fachstellen abgestimmt ist.<br />

– Er verfasst zuhanden der kantonalen Behörden und der Bevölkerung gemeinsame<br />

Bulletins, Warnungen und Verhaltensempfehlungen, welche sich auf eine Gesamtbeurteilung<br />

der Gefahrensituation abstützen (Prinzip der „Single Official Voice“).<br />

– Bei einem Ereignis des Bundesstabs ist der Fachstab Naturgefahren für das Erstellen und<br />

Nachführen der Fachlage Naturgefahren verantwortlich.<br />

Der Fachstab Naturgefahren kam beim Hochwasser vom Mai/Juni 2013 erfolgreich zum<br />

Einsatz. So hatte der Fachstab Naturgefahren des Bundes während der gesamten Zeit des<br />

Hochwassers den Kommunikationslead. Der Informationsfluss funktionierte reibungslos und<br />

die Organisationen des Bundes arbeiteten effizient zusammen. Die Informationen gelangten<br />

schnell und präzise zu den Kantonen, die sie wiederum den Einsatzstäben weiterleiteten.<br />

Im Vergleich zu den Hochwasserereignissen von 2005 und 2007 wurde damit eine klare<br />

Verbesserung erzielt.<br />

Verbesserung der Kommunikation und Informationsprodukte: Damit die erarbeiteten<br />

Informationsprodukte einen Beitrag zur Bewältigung des Ereignisses leisten können, müssen<br />

diese den Empfängern bekannt sein. Sie müssen zudem verfügbar und verständlich formuliert<br />

sein. Es wurde deshalb sowohl für die kantonalen Behörden als auch für die Öffentlichkeit<br />

je ein hochverfügbarer Informationskanal aufgebaut:<br />

– Als Kanal für die kantonalen Behörden wurde 2010 die Gemeinsame Informationsplattform<br />

Naturgefahren (GIN) in Betrieb genommen (Heil et al., 2014). Auf dieser Plattform<br />

stellen die Fachstellen des Bundes den Naturgefahren-Fachleuten in Bund, Kantonen und<br />

Gemeinden gemeinsam ihre Produkte zu den verschiedenen Naturgefahren zur Verfügung.<br />

Diese umfassen Mess- und Beobachtungsdaten, Vorhersagen, Warnungen, Modelle und<br />

Bulletins. Damit verfügen die Sicherheitsverantwortlichen rasch und in übersichtlicher<br />

Form über wichtige Informationen. Im Speziellen wurden 2014 erweiterte Informationen<br />

für Lawinenfachleute integriert. Heute nutzen rund 1‘500 Personen GIN. Während des<br />

Hochwasser-Ereignisses von Anfang Mai 2015 haben sich insgesamt 430 Naturgefahrenfachleute<br />

mindestens einmal bei GIN eingeloggt. GIN wurde durchschnittlich von<br />

160 Naturgefahrenfachleuten pro Tag besucht.<br />

– Als Kanal für die Öffentlichkeit haben die Naturgefahrenfachstellen des Bundes gemeinsam<br />

ein Internetportal entwickelt, auf welchem die aktuelle Naturgefahrenlage in der Schweiz<br />

seit 2014 auf einen Blick erfasst wird (www.naturgefahren.ch). Die Naturgefahrenfachstellen<br />

des Bundes haben das Portal gemeinsam im Auftrag des Bundesrates entwickelt und<br />

damit ein weiteres Element zur Verbesserung der Warnung bei Naturgefahren realisiert.<br />

Es beinhaltet Verhaltensempfehlungen und Hintergrundinformationen zu Naturgefahrenprozessen<br />

und den dafür zuständigen Bundesfachstellen. Damit wurde ein gemeinsamer<br />

Verbreitungskanal für Warnungen der Fachstellen des Bundes geschaffen. Die Besucherzahlen<br />

des Naturgefahrenportals korrelieren jeweils mit der Ereignislage. So verzeichnete<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 1009


das Portal im Juli 2014 (intensiver Dauerregen sowie Hochwassergefahr an Flüssen und<br />

Seen) bis zu 18‘000 Besucher/-innen pro Tag bzw. im Mai 2015 (Starkniederschläge und<br />

Hochwasser auf der Alpennordseite) bis über 8‘000 Besucher/-innen pro Tag.<br />

– Für die Information und Warnung der Öffentlichkeit kann neben Medienmitteilungen und<br />

Naturgefahrenbulletin auch auf das Instrument der verbreitungspflichtigen Warnung<br />

zurückgegriffen werden. Konkret können bei grosser und sehr grosser Gefahr gemäss Art. 2<br />

in Verbindung mit<br />

– Art. 9 der Alarmierungsverordnung (AV) bestimmte Medien zu einer Verbreitung der<br />

Warnungen an die Bevölkerung verpflichtet werden.<br />

Ergänzend zu den oben beschriebenen Kanälen bieten die Webseiten der einzelnen Fachstellen<br />

weiterhin umfassende Informationen.<br />

Die bisherigen Naturgefahrenereignisse zeigten, dass die Erstellung gemeinsamer Informationsprodukte<br />

und deren Verbreitung gut funktionieren. Der Zeitplan dazu ist sehr eng und<br />

die Erstellung bindet viele Personalressourcen. Die Rückmeldungen aus den Kantonen zeigen<br />

jedoch, dass die von den Fachstellen gemeinsam erstellten Naturgefahrenbulletins als<br />

qualitativ hochwertig und vertrauenswürdig wahrgenommen werden.<br />

Im Falle eines Ereignisses ist eine begleitende Kommunikation zentral. So hat sich beim<br />

Hochwasser Mai/Juni 2013 das schon früh einsetzende mediale Begleiten des Warnprozesses<br />

sehr gut bewährt. In diesem Fall hat es dazu geführt, dass auf eine verbreitungspflichtige<br />

Bevölkerungswarnung verzichtet werden konnte. Indem laufend über die neuesten Entwicklungen<br />

informiert wurde, konnte ein Erwartungsmanagement betrieben werden. Zudem<br />

wurde mittels Sprachregelungen für Medienanfragen eine zwischen den Bundesfachstellen<br />

gut abgestimmte Kommunikation erwirkt.<br />

Ausbildung von lokalen Naturgefahrenberatern: Am Schluss der Warnkette muss<br />

sichergestellt sein, dass die erhaltenen Informationen lokal richtig interpretiert und angemessene<br />

Massnahmen ergriffen werden. Die Ereignisanalyse der Hochwasser 2005 zeigte<br />

deutlich, dass vor allem auf lokaler Ebene bei der Bewältigung von Naturgefahren in<br />

fachlicher Hinsicht Lücken bestehen. Im Ernstfall müssen sich die Führungsgremien und<br />

Interventionskräfte auf Fachwissen vor Ort abstützen können, um die Lage umfassend zu<br />

beurteilen und die richtigen Entscheidungen zu treffen. Es braucht lokale Naturgefahrenberaterinnen<br />

und -berater (LNGB), die sowohl über das nötige Fachwissen zu Gefahrenprozessen<br />

als auch über Kenntnisse der örtlichen Besonderheiten verfügen, analog zu den bei<br />

Lawinendiensten bewährten Strukturen (Bründl et al., 2014). Dies geschieht durch Ausbildung<br />

von lokalen Naturgefahrenberatern und die Erarbeitung einer Notfallplanung.<br />

Die lokalen Naturgefahrenberater beraten den Einsatzleiter vor Ort zu möglichen Entwicklungen<br />

der Situation. Die Notfallplanung bietet ihm bereits vorbereitete Massnahmen, die bei<br />

1010 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


Bedarf in kurzer Zeit umgesetzt werden können. Das Prinzip des LNGB wurde bereits von der<br />

Mehrzahl der Kantone übernommen. Damit wird das lokale Wissen gestärkt.<br />

Ferner wurde im Zuge der OWARNA-Massnahmen für bevölkerungsschutzrelevante Lagen<br />

ein Melde- und Lagezentrum an der Nationalen Alarmzentrale (NAZ) beim Bundesamt für<br />

Bevölkerungsschutz aufgebaut. Das Melde- und Lagezentrum gewährleistet im Ereignisfall<br />

eine schweizweite Lageübersicht sowie eine sichere und zeitgerechte Verbreitung von<br />

Warnungen. Gleichzeitig werden die betroffenen Kantone durch das Bereitstellen von<br />

Informationen in der Beurteilung der Lage und damit in der Ereignisbewältigung unterstützt.<br />

ZUKÜNFTIGE HERAUSFORDERUNGEN<br />

Auch in Zukunft ist mit Ereignissen, welche mit den Jahren 2005 und 2007 vergleichbar sind,<br />

zu rechnen (Beniston, 2007). Gemäss der Zusammenfassung des Berichts CH2011 sind<br />

„Projektionen der Häufigkeit und Intensität von Niederschlagsereignissen mit grösseren<br />

Unsicherheiten behaftet, markante Änderungen können jedoch nicht ausgeschlossen werden.<br />

Zusätzlich wird eine Verschiebung von festem Niederschlag (Schnee) hin zu flüssigem<br />

Niederschlag (Regen) erwartet, was das Überschwemmungsrisiko speziell in niedrigen Lagen<br />

vergrössern würde“ (CH2011). Bisher wurden bereits bedeutende Massnahmen zur Reduktion<br />

der Naturgefahrenschäden verwirklicht, welche sich in den letzten Jahren bewährt haben.<br />

Die grösste zukünftige Herausforderung liegt in der Aufrechterhaltung und Weiterentwicklung<br />

dieser Errungenschaften. Gleichzeitig gibt es verschiedene Handlungsfelder, welche<br />

angegangen werden müssen:<br />

– Krisensichere Vorhersage und Warnsysteme sowie Krisenkommunikation:<br />

Die Qualität der Information konnte insgesamt durch verbesserte und neu geschaffene<br />

Mess- und Prognosesysteme gesteigert werden. Ebenso sind der Aufbau und die Aufrechterhaltung<br />

des BCM durch die einzelnen Fachstellen gewährleistet. Die Verfügbarkeit der<br />

für Prognosen, Warnungen und Alarmierungen benötigten Systeme und Kommunikationswege<br />

müssen jedoch auch bei einem Ausfall der Stromversorgung, der Telefonie und des<br />

Internets sichergestellt sein. Bei schwerwiegenden Störungen wie einer anhaltenden<br />

Unterversorgung mit Strom kann dies derzeit auf nationaler Ebene noch nicht vorausgesetzt<br />

werden. Der Aufbau und Betrieb eines redundanten, stromsicheren Kommunikationsnetzes<br />

kann nur im Verbund mit den anderen Partnern im Bereich Sicherheit sinnvoll<br />

umgesetzt werden. Entsprechende Projekte werden derzeit ausgearbeitet.<br />

– Vereinheitlichung bei den Anbietern von Unwetterwarnungen: Private Warnungsanbieter<br />

operieren zurzeit vor allem im meteorologischen Bereich, wobei auch Aussagen<br />

zu wetterbedingten Gefahren wie Hochwasser und Waldbrand gemacht werden. Problematisch<br />

ist zurzeit, dass private Anbieter mit unterschiedlichen Gefahrenstufen, Schwellenwerten,<br />

Gefahrenstufenbezeichnungen, Warnregionen und Farbkodierung operieren. Dies<br />

führt zu Verwirrung bei den Interventionskräften und der Bevölkerung und schadet<br />

letztlich der Glaubwürdigkeit und dem Ziel der Warnungen insgesamt, Sicherheit zu<br />

schaffen. Deshalb wurde Ende 2014 ein parlamentarischer Vorstoss (Postulat Vogler, 2014)<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 1011


an den Bundesrat überwiesen, der eine Vereinheitlichung bei den Anbietern von Unwetterwarnungen<br />

fordert.<br />

– Bereitschaft der Bevölkerung, bei Naturgefahrenereignissen adäquat zu handeln:<br />

Diverse Beispiele gelungener Interventionen und das grosse Interesse an Notfallplanungen<br />

zeigen, dass bei den kantonalen und kommunalen Interventionskräften ein Umdenken<br />

stattgefunden hat. Bei der Bevölkerung eigenverantwortliches Handeln auszulösen ist<br />

ungleich schwieriger. Das Wissen, in einem Gefahrengebiet zu leben, alleine reicht nicht<br />

aus. Notwendig ist ein individuelles Verantwortungsbewusstsein, kombiniert mit der<br />

Kenntnis um sinnvolle Verhaltensweisen. Gerade angesichts der zunehmenden Mobilität<br />

der Bevölkerung ist die Erhöhung der Bereitschaft der Bevölkerung zum adäquaten<br />

Umgang mit Warnungen durch eigenverantwortliches Handeln zentral. Um dies zu<br />

erreichen ist der gezielte Einbezug externer Stellen notwendig: Volksschulen, Bildungsinstitute<br />

für Architekten, Planer und Ingenieure, Medien, private Warnanbieter und Gebäudeversicherungen<br />

sind einige von ihnen. Im Rahmen des LAINAT sollen weitere Anstrengungen<br />

unternommen werden, um das bestehende Ausbildungs- und Bildungsangebot optimal<br />

einzusetzen und bei Bedarf zielgruppengerecht zu erweitern. Dabei sollen bestehende<br />

Synergien genutzt und Doppelspurigkeiten vermieden werden.<br />

SCHLUSSFOLGERUNGEN<br />

Zehn Jahre nach dem Hochwasser 2005 konnten mit dem Projekt OWARNA in den letzten<br />

Jahren verschiedene Optimierungsmassnahmen, welche zu einem funktionierenden<br />

Warnprozess und damit zur Reduktion der Naturgefahrenschäden beitragen, umgesetzt<br />

werden.<br />

Mit der Schaffung des LAINAT konnte die Zusammenarbeit der Fachstellen des Bundes<br />

konsolidiert werden. Die Koordination der Vorhersage- und Warntätigkeit der Bundesstellen<br />

durch diese Organisation hat sich gut etabliert und ist für die Weiterentwicklung und<br />

Aufrechterhaltung des Bestehenden sowie zur Abdeckung des zukünftigen Handlungsbedarfs<br />

weiterhin erforderlich.<br />

LITERATUR<br />

- Amiguet, C.; Bürgi, T.; Murer, D.; Schmutz, Ch.; Volken, D. (submitted): Warnungen<br />

der Bundes-Fachstellen der Schweiz vor Unwetter und Hochwasser. Interpraevent <strong>2016</strong>.<br />

BAFU (2014): Zustandsbericht Naturgefahren, 5. Gefahrengrundlagen und Prävention<br />

(Massnahmen). http://www.bafu.admin.ch/umwelt/status/03995/index.html?lang=de.<br />

Zugriff: August 2015.<br />

- Baumgartner, C. (2015): Mobiler Hochwasserschutz in urbanen Gebieten: Ein Überblick<br />

und Anwendungsmöglichkeiten einzelner mobiler Hochwasserschutzsysteme. disserta Verlag.<br />

- Beniston, M.; Stephenson, D.; Christensen, O.; et.al (2007): Future extreme events in<br />

European climate: an exploration of regional climate model projections. Climate change,<br />

81:71–95. Springer Science+Business Media B.V.<br />

1012 | <strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings


- Bezzola, Gian Reto; Hegg, Christoph (Ed.) 2007: Ereignisanalyse Hochwasser 2005, Teil 1<br />

– Prozesse, Schäden und erste Einordnung. Bundesamt für Umwelt BAFU, Eidgenössische -<br />

Forschungsanstalt WSL. Umwelt-Wissen Nr. 0707.<br />

- Bezzola, Gian Reto; Hegg, Christoph (Ed.) 2008: Ereignisanalyse Hochwasser 2005, Teil 2<br />

– Analyse von Prozessen, Massnahmen und Gefahrengrundlagen. Bundesamt für Umwelt<br />

BAFU, Eidgenössische Forschungsanstalt WSL. Umwelt-Wissen Nr. 0825.<br />

Bezzola, Gian Reto; Ruf, Wolfgang; Jakob, Adrian (Ed.) 2009: Ereignisanalyse Hochwasser<br />

August 2007 – Analyse der Meteo- und Abflussvorhersagen; vertiefte Analyse der Hochwasserregulierung<br />

der Jurarandgewässer. Bundesamt für Umwelt. Umwelt-Wissen Nr. 0927.<br />

- Bründl, M.; Etter, H. J.; Steiniger, M.; Klingler, C.; Rhyner, J.; Ammann, W. (2004): IFKIS -<br />

a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards<br />

Earth Syst. Sci., 4(2), 257-262.<br />

- CH2011: Zusammenfassung Szenarien zur Klimaänderung in der Schweiz CH2011.<br />

Published by C2SM, MeteoSwiss, ETH Zurich, NCCR Climate and OcCC. http://www.ch2011.<br />

ch/pdf/CH2011summaryDE.pdf. Zugriff: November 2015.<br />

- Hess, Josef; Schmid, Franziska (2012): Towards optimised early warning. Developments<br />

in Switzerland. 12th Kongress Intrepraevent 2012, Grenoble France.<br />

- Heil, B.; Petzold, I.; Romang, H.; Hess, J. (2014): The common information platform<br />

for natural hazards in Switzerland, Nat. Hazards, 70(3), 1673-1687.<br />

- Gaia et al. (submitted): Thunderstorm warnings: design and development of a realtime<br />

automatic warning system for the authorities and the population. Interpraevent <strong>2016</strong>.<br />

- Postulat Vogler 2014 (14.3694): Notwendige Vereinheitlichungen bei den Anbietern<br />

von Unwetter-warnungen.<br />

- SLF (2015): Die Europäische Lawinengefahrenskala. http://www.slf.ch/schneeinfo/<br />

zusatzinfos/interpretationshilfe/lawinengefahrenbegriffe/europaeische_skala/index_DE.<br />

Zugriff: September 2015.<br />

- SR 520.12, Alarmierungsverordnung (AV)<br />

- SR 520.17, ABCN-Einsatzverordnung.<br />

<strong>INTERPRAEVENT</strong> <strong>2016</strong> – Conference Proceedings | 1013


ISBN 978-3-901164-24-8<br />

WWW.<strong>INTERPRAEVENT</strong>.AT

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!