Homework Set 1: Solutions
1. Find the operator norm of the linear transformations L : R?> — R? with matrices
4 0 11
(O _4) and (1 0) |

Solution: Let L be the linear transformation corresponding to the first matrix and v = (x,y) be
a vector. Then

1L = [|(42, —4y)ll = V/(42)? + (~4y)? = 4v/22 + y* = 4]||v]].

Hence ||L(v)|| / |lv]| = 4 regardless of v. It follows that || L| = 4.
Now let L be the linear transformation corresponding to the other matrix. Note that

L@/ 1ev ] = (LI / vl

for any t € R. Hence
sup [|L(tv)| / [|tv]]

veR?2

sup{[[L(V)[[ /vl : v = (z,1),z € R}

(x+1)2 + 22
= sup\/— 55—
zeR x*+1
(OK, so I'm missing a multiple of the vector (1,0), but you can check that one yourself, and anyhow
I actually do take care of it implicitly below when I let x — +o0.). Call the function inside the
square root f(x). Then lim, .1 f(x) = 2. Moreover, after differentiating, we see that f has
critical points when
??—z=0=z=1,0.

Since f(1) =5/2 and f(0) = 1, we conclude that ||L|| = 1/5/2.

2. Let V be a vector space over the field R (or C). A norm on V is a function ||-|| : V' — R such
that for all A € R and v,w € V|

e ||v|| > 0 with equality if and only if v = 0.
o [[Av] = [Al][v]]
o [[vwl < v +[w].
Given a norm ||-|| on V, show that
d(v,w) = [[v —w||
defines a metric on V. A set U is said to be open with respect to ||| if it is open with respect to

the associated metric d.

Solution: We first check that d is a metric. Clearly d(v,w) = |[v —w|| > 0, and
|lv-w||=0ev-w=0&v=w.
Symmetry of d follows from ||v — w| = | — 1|||w — v||. Finally,

d(v,w) = [[v—w[| = [|(v —u) = (w —u)|| < [lv —ul| +[w —uf| = d(v,u) + d(u, w),
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so the triangle inequality holds. Thus d is a metric.

3. Different norms ||-|| and ||-||" on the same vector space are called comparable if there are constants
C1,Cy > 0 such that

Crivl < [IvII" < Ca |Ivll
forall veV.
Supposing that |-|| , ||| are comparable, show that a set U C V is open with respect to |-|| if

and only if it is open with respect to ||-||". Does the same conclusion hold if you replace ‘open’ with
‘closed’? ‘compact’? ‘connected’? Explain.

Solution: Let U C V be open with respect to ||-|| and v € U. Then there exists r > 0 such that
N,(v)={w eV :|w—v]| <r}CU. But since

Iw =l <r/Co= w—v] <,

we have N;/CQ (v) C N.(v) C U (where the prime denotes ‘neighborhood with respect to ||-||". That

is, any v € U admits a |||’ neighborhood also contained in U, so U is open with respect to ||-||'.

The same argument shows that if U is open with respect to HH/, then U is also open with respect
to ||| O

The conclusion also works for closed sets, compact sets, and connected sets, because all of these
can be characterized in terms of open sets (e.g. a set is closed iff it’s the complement of an open
set, ete, etc.)

4. Let n,m € Z™ be given and V = L(R", R™) be the vector space of linear transformations from
R" to R™. Let T' = (a;j) € V be an arbitrary element. Show that the following norms on V' are
all comparable to the operator norm on V.

* ||T]| = maxi; [ai;]
o |7, = Zzg |ag;]
o [T, = Z” |ai;|?

In fact, it can be shown that pretty much any two norms on a finite dimensional vector space are
comparable (Prove this and you take care of all the above items at once. And T’ll give you five
extra credit points).

Solution: Let a = max|a;;|. Then

a=Va*< |3 af <
Z'7j

where nm is just the number of entries in T'. Since all these inequalities hold regardless of T', this
shows that ||-|| ., ||-||, and ||-||; are all comparable. To finish the proof it’s enough to show that |-||
is comparable to any one of these—say |||

If v = e, is one of the usual basis vectors, then

1T = (@, a2, amg) | = \/Zagj < \/z _ e,

2

> lal | = laij| < nma,

1] 1,]




and if v =vje; + ...v,e, is an arbitrary unit vector, then
1T = || S 0yTen)| < 3 il [1T(e)| < - vma
J J

because |vj| <1 for all j. Hence

IT(V) = sup [[T(V)| <nvm|T] -

vi=1

By the way,
Theorem. Any two norms on a finite dimensional real (or complex) vector space V are compa-
rable.

Proof. Let {ei,...,e,} be a basis for V and ||-|| . be the norm on V given by

IVl = max Ics
where the numbers ¢; come from writing v = cie; ... c,e, as a linear combination of basis vectors.
It is enough to show that any other norm ||-|| on V' is comparable to ||-||,,. Now on the one hand,
we have

vl < lerlllenl] + - + llen]l < n(max|le;|]) Iv]
which gives comparability in one direction.

To get comparability in the other direction, I suppose for the sake of obtaining a contradiction
that for any C' > 0 there exists v € V such that ||v||., > C||v||. Then in particular, by choosing
a sequence of C’s tending to oo, we can find a sequence of vectors {v;} C V such that ||v;|| . =1
whereas lim;_. ||v;]| = 0.

Given this, I claim that after passing to a subsequence, we can further assume that {v;} converges
to some vector v € V. And I never claim anything that I can’t prove. Never. If we write

Vvj =cije1+...cCnj€n,

then the ‘coordinate vectors’ (cij, ..., cn;) € R™ all lie in the compact (because closed and bounded)
set {(z1,...,2n) € R™ : max|z,| = 1}, so after passing to a subsequence, we can assume that
c1j — €1, ...Cpj — ¢ where max|cgy| = 1. But, from the definition of ||-||_, this is the same as

saying that
li P — =
Jim v —v]| =0
where v = ¢je1 + - - - + ¢cpe,. So the claim is true.
We get our contradiction as follows. By the triangle inequality

sl = VI I = vl < flvg = vl
That is,
Vil = lIvI T < llvi = vil < Cllvi = vl =0
as j — 0o. So [[v|]| = 0. On the other hand v is certainly non-zero, because the basis vectors e;

are linearly independent and at least one of the coefficients ¢; used to define v has magnitude 1.
Since non-zero vectors must have non-zero norm, we have found our impasse and conclude that
there really does exist C' > 0 such that

Vllee < Clivl

for every v € V. O



5. Give an example of two incomparable norms on the (infinite dimensional) vector space C([0,1],R)
of continuous functions from [0, 1] to R.

Solution: The norms

1
1]l == max | f(z)] and [If]], = /0 f(@)|da

z€]0,1]

are incomparable. Consider for instance the functions f,(x) = z™. We have

[l = 1fn(1)] =1
for every n € N, but
ally = =0
= — — (.
"l

Hence, there is no constant C' > 0 such that

1flle < C £l
for all f € C([0,1],R).



