Homework Set 1: Solutions

1. Find the operator norm of the linear transformations $L: \mathbf{R}^2 \to \mathbf{R}^2$ with matrices

$$\begin{pmatrix} 4 & 0 \\ 0 & -4 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Solution: Let L be the linear transformation corresponding to the first matrix and $\mathbf{v} = (x, y)$ be a vector. Then

$$||L(\mathbf{v})|| = ||(4x, -4y)|| = \sqrt{(4x)^2 + (-4y)^2} = 4\sqrt{x^2 + y^2} = 4||\mathbf{v}||.$$

Hence $||L(\mathbf{v})|| / ||\mathbf{v}|| = 4$ regardless of \mathbf{v} . It follows that ||L|| = 4.

Now let L be the linear transformation corresponding to the other matrix. Note that

$$\left\|L(t\mathbf{v})\right\| / \left\|t\mathbf{v}\right\| = \left\|L(\mathbf{v})\right\| / \left\|\mathbf{v}\right\|$$

for any $t \in \mathbf{R}$. Hence

$$\sup_{\mathbf{v}\in\mathbf{R}^{2}} \|L(t\mathbf{v})\| / \|t\mathbf{v}\| = \sup\{\|L(\mathbf{v})\| / \|\mathbf{v}\| : \mathbf{v} = (x,1), x \in \mathbf{R}\}$$
$$= \sup_{x\in\mathbf{R}} \sqrt{\frac{(x+1)^{2} + x^{2}}{x^{2} + 1}}$$

(OK, so I'm missing a multiple of the vector (1,0), but you can check that one yourself, and anyhowI actually do take care of it implicitly below when I let $x \to \pm \infty$.). Call the function inside the square root f(x). Then $\lim_{x\to\pm\infty} f(x) = 2$. Moreover, after differentiating, we see that f has critical points when

$$x^2 - x = 0 \Rightarrow x = 1, 0.$$

Since f(1) = 5/2 and f(0) = 1, we conclude that $||L|| = \sqrt{5/2}$.

2. Let V be a vector space over the field **R** (or **C**). A norm on V is a function $\|\cdot\| : V \to \mathbf{R}$ such that for all $\lambda \in \mathbf{R}$ and $\mathbf{v}, \mathbf{w} \in V$,

- $\|\mathbf{v}\| \ge 0$ with equality if and only if $\mathbf{v} = 0$.
- $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$
 - $\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|.$

Given a norm $\|\cdot\|$ on V, show that

$$d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$$

defines a metric on V. A set U is said to be open with respect to $\|\cdot\|$ if it is open with respect to the associated metric d.

Solution: We first check that d is a metric. Clearly $d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\| \ge 0$, and

$$\|\mathbf{v} - \mathbf{w}\| = 0 \Leftrightarrow \mathbf{v} - \mathbf{w} = 0 \Leftrightarrow \mathbf{v} = \mathbf{w}.$$

Symmetry of d follows from $\|\mathbf{v} - \mathbf{w}\| = |-1| \|\mathbf{w} - \mathbf{v}\|$. Finally,

$$d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\| = \|(\mathbf{v} - \mathbf{u}) - (\mathbf{w} - \mathbf{u})\| \le \|\mathbf{v} - \mathbf{u}\| + \|\mathbf{w} - \mathbf{u}\| = d(\mathbf{v}, \mathbf{u}) + d(\mathbf{u}, \mathbf{w}),$$

so the triangle inequality holds. Thus d is a metric.

3. Different norms $\|\cdot\|$ and $\|\cdot\|'$ on the same vector space are called *comparable* if there are constants $C_1, C_2 > 0$ such that

$$C_1 \|\mathbf{v}\| \le \|\mathbf{v}\|' \le C_2 \|\mathbf{v}\|$$

for all $\mathbf{v} \in V$.

Supposing that $\|\cdot\|$, $\|\cdot\|'$ are comparable, show that a set $U \subset V$ is open with respect to $\|\cdot\|$ if and only if it is open with respect to $\|\cdot\|'$. Does the same conclusion hold if you replace 'open' with 'closed'? 'compact'? Explain.

Solution: Let $U \subset V$ be open with respect to $\|\cdot\|$ and $\mathbf{v} \in U$. Then there exists r > 0 such that $N_r(\mathbf{v}) = \{\mathbf{w} \in V : \|\mathbf{w} - \mathbf{v}\| < r\} \subset U$. But since

$$\|\mathbf{w} - \mathbf{v}\|' \le r/C_2 \Rightarrow \|\mathbf{w} - \mathbf{v}\| \le r,$$

we have $N'_{r/C_2}(\mathbf{v}) \subset N_r(\mathbf{v}) \subset U$ (where the prime denotes 'neighborhood with respect to $\|\cdot\|'$. That is, any $\mathbf{v} \in U$ admits a $\|\cdot\|'$ neighborhood also contained in U, so U is open with respect to $\|\cdot\|'$.

The same argument shows that if U is open with respect to $\|\cdot\|'$, then U is also open with respect to $\|\cdot\|$.

The conclusion also works for closed sets, compact sets, and connected sets, because all of these can be characterized in terms of open sets (e.g. a set is closed iff it's the complement of an open set, etc, etc.)

4. Let $n, m \in \mathbf{Z}^+$ be given and $V = L(\mathbf{R}^n, \mathbf{R}^m)$ be the vector space of linear transformations from \mathbf{R}^n to \mathbf{R}^m . Let $T = (a_{ij}) \in V$ be an arbitrary element. Show that the following norms on V are all comparable to the operator norm on V.

• $||T||_{\infty} = \max_{i,j} |a_{ij}|$ • $||T||_1 = \sum_{i,j} |a_{ij}|$ • $||T||_2 = \sqrt{\sum_{i,j} |a_{ij}|^2}$

In fact, it can be shown that pretty much any two norms on a finite dimensional vector space are comparable (Prove this and you take care of all the above items at once. And I'll give you five extra credit points).

Solution: Let $a = \max |a_{ij}|$. Then

$$a = \sqrt{a^2} \le \sqrt{\sum_{i,j} a_{ij}^2} \le \sqrt{\left(\sum_{i,j} |a_{ij}|\right)^2} = \sum_{i,j} |a_{ij}| \le nma,$$

where nm is just the number of entries in T. Since all these inequalities hold regardless of T, this shows that $\|\cdot\|_{\infty}$, $\|\cdot\|_2$ and $\|\cdot\|_1$ are all comparable. To finish the proof it's enough to show that $\|\cdot\|$ is comparable to any one of these—say $\|\cdot\|_{\infty}$.

If $\mathbf{v} = \mathbf{e}_j$ is one of the usual basis vectors, then

$$||T(\mathbf{v})|| = ||(a_{1j}, a_{2j}, \dots, a_{mj})|| = \sqrt{\sum_{i} a_{ij}^2} \le \sqrt{\sum_{i} a^2} = \sqrt{m}a,$$

and if $\mathbf{v} = v_1 \mathbf{e}_1 + \dots + v_n \mathbf{e}_n$ is an arbitrary unit vector, then

$$\|T(\mathbf{v})\| = \left\|\sum_{j} v_j T(\mathbf{e}_j)\right\| \le \sum_{j} |v_j| \|T(\mathbf{e}_j)\| \le n \cdot \sqrt{ma}$$

because $|v_j| \leq 1$ for all j. Hence

$$||T(\mathbf{v})|| = \sup_{\|\mathbf{v}\|=1} ||T(\mathbf{v})|| \le n\sqrt{m} ||T||_{\infty}.$$

By the way,

Theorem. Any two norms on a finite dimensional real (or complex) vector space V are comparable.

Proof. Let $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$ be a basis for V and $\|\cdot\|_{\infty}$ be the norm on V given by

$$\left\|\mathbf{v}\right\|_{\infty} = \max_{1 \le j \le n} |c_j|$$

where the numbers c_j come from writing $\mathbf{v} = c_1 \mathbf{e}_1 \dots c_n \mathbf{e}_n$ as a linear combination of basis vectors. It is enough to show that any other norm $\|\cdot\|$ on V is comparable to $\|\cdot\|_{\infty}$. Now on the one hand, we have

$$\|\mathbf{v}\| \le |c_1| \|\mathbf{e}_1\| + \dots + \|\mathbf{e}_n\| \le n(\max \|\mathbf{e}_j\|) \|\mathbf{v}\|_{\infty}$$

which gives comparability in one direction.

To get comparability in the other direction, I suppose for the sake of obtaining a contradiction that for any C > 0 there exists $\mathbf{v} \in V$ such that $\|\mathbf{v}\|_{\infty} > C \|\mathbf{v}\|$. Then in particular, by choosing a sequence of C's tending to ∞ , we can find a sequence of vectors $\{\mathbf{v}_j\} \subset V$ such that $\|\mathbf{v}_j\|_{\infty} = 1$ whereas $\lim_{j\to\infty} \|\mathbf{v}_j\| = 0$.

Given this, I claim that after passing to a subsequence, we can further assume that $\{\mathbf{v}_j\}$ converges to some vector $\mathbf{v} \in V$. And I never claim anything that I can't prove. Never. If we write

$$\mathbf{v}_j = c_{1j}\mathbf{e}_1 + \dots c_{nj}\mathbf{e}_n,$$

then the 'coordinate vectors' $(c_{1j}, \ldots, c_{nj}) \in \mathbf{R}^n$ all lie in the compact (because closed and bounded) set $\{(x_1, \ldots, x_n) \in \mathbf{R}^n : \max |x_k| = 1\}$, so after passing to a subsequence, we can assume that $c_{1j} \to c_1, \ldots, c_{nj} \to c_n$ where $\max |c_k| = 1$. But, from the definition of $\|\cdot\|_{\infty}$, this is the same as saying that

$$\lim_{n \to \infty} \left\| \mathbf{v}_j - \mathbf{v} \right\|_{\infty} = 0$$

where $\mathbf{v} = c_1 \mathbf{e}_1 + \cdots + c_n \mathbf{e}_n$. So the claim is true.

We get our contradiction as follows. By the triangle inequality

$$\|\mathbf{v}_j\| - \|\mathbf{v}\|, \|\mathbf{v}\| - \|\mathbf{v}_j\| \le \|\mathbf{v}_j - \mathbf{v}\|$$

That is,

$$|\|\mathbf{v}_{j}\| - \|\mathbf{v}\|| \le \|\mathbf{v}_{j} - \mathbf{v}\| \le C \|\mathbf{v}_{j} - \mathbf{v}\|_{\infty} \to 0$$

as $j \to \infty$. So $\|\mathbf{v}\| = 0$. On the other hand \mathbf{v} is certainly non-zero, because the basis vectors \mathbf{e}_j are linearly independent and at least one of the coefficients c_j used to define \mathbf{v} has magnitude 1. Since non-zero vectors must have non-zero norm, we have found our impasse and conclude that there really does exist C > 0 such that

$$\|\mathbf{v}\|_{\infty} \le C \|\mathbf{v}\|$$

for every $v \in V$.

5. Give an example of two *incomparable* norms on the (infinite dimensional) vector space $C([0, 1], \mathbf{R})$ of continuous functions from [0, 1] to \mathbf{R} .

Solution: The norms

$$||f||_{\infty} := \max_{x \in [0,1]} |f(x)|$$
 and $||f||_1 := \int_0^1 |f(x)| dx$

are incomparable. Consider for instance the functions $f_n(x) = x^n$. We have

$$||f_n||_{\infty} = |f_n(1)| = 1$$

for every $n \in \mathbf{N}$, but

$$||f_n||_1 = \frac{1}{n+1} \to 0.$$

Hence, there is no constant C > 0 such that

$$\|f\|_{\infty} \le C \, \|f\|_1$$

for all $f \in C([0, 1], \mathbf{R})$.