
6/29/21

1

Uncertainty Quantification in 
Deep Learning

Murat Şensoy
Senior Research Scientist

Blue Prism AI Labs
London, UK

1

Outline

• Motivation
• Methods for Uncertainty Quantification in Deep Learning
• Evidential Deep Learning
• Real-World Applications
• Conclusions

2

2



6/29/21

2

Overconfident Mistakes of Classifiers

3

Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proc. ICML, 
36th Int. Conference on Machine Learning, Long Beach, California

Courtesy of: Hüllermeier, Eyke, and Willem Waegeman. "Aleatoric and epistemic uncertainty in 
machine learning: A tutorial introduction." arXiv preprint arXiv:1910.09457 (2019).
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Overconfident Mistakes of Classifiers
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Courtesy of: Hüllermeier, Eyke, and Willem Waegeman. "Aleatoric and epistemic uncertainty in 
machine learning: A tutorial introduction." arXiv preprint arXiv:1910.09457 (2019).
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“Being able to assess the 
reliability of a probability score 
for each instance is much more 
powerful than assigning an 
aggregate reliability score [...] 
independent of the instance to 
be classified.”

Kull and Flach (2014). Reliability maps: A 
tool to enhance probability estimates and 
improve classification accuracy. In: Proc. 
of ECML’14.
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Not all mistakes are equals!

6

On 7th May 2016, a car operating with automated vehicle control systems 
crashed with a truck near Williston, Florida, USA. Unfortunately, the car driver 
died due to the severe injury. The car manufacturer reported that the car’s vision 
system classified the white side of the truck as the sky.

6
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Uncertainty Quantification in DL

• Two types of uncertainties: Aleatoric and Epistemic
• Wisdom of ignorance: knowing 

what you do not know
• Sampling-based methods: 
• Bayesian Networks

• Multiplicative Normalizing Flow
• Bayes by Backprop

• Monte-Carlo Dropout
• Variational dropout

• Deep Ensembles

• Evidential Deep Learning
7

*** Abdar, Moloud, et al. "A review of uncertainty quantification in deep learning: 
Techniques, applications and challenges." Information Fusion (2021).

7

Bayesian Neural Networks

8Source: Weight Uncertainty in Neural Networks, Blundell et al., ICML 2015
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Monte-Carlo Dropout (Bernoulli Approx. VI)

9

Gal, Y., and Z. Ghahramani. 2016. "Dropout as a Bayesian Approximation: Representing Model Uncertainty in 
Deep Learning." 33rd International Conference on Machine Learning (ICML 
2016). https://arxiv.org/abs/1506.02142.
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Deep Ensembles

10

Source: https://www.gatsby.ucl.ac.uk/~balaji/deep-ensembles-poster.pdf

Lakshminarayanan, B., A. Pritzel, and C. Blundell. 2017. "Simple and Scalable Predictive Uncertainty 
Estimation using Deep Ensembles." Advances in Neural Information Processing Systems. 
https://arxiv.org/abs/1612.01474.
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Evidential Deep Learning

11

Murat Sensoy, Lance Kaplan, and Melih Kandemir, "Evidential deep learning to quantify classification 
uncertainty." Advances in Neural Information Processing Systems (NuerIPS). pp. 3179-3189 , 2018.

Murat Sensoy, Lance Kaplan, Federico Cerutti, “Uncertainty-Aware Deep Classifiers using Generative 
Models”, The 34rd Conference on Artificial Intelligence (AAAI), 2020.

Murat Sensoy, Maryam Saleki, Simon Julier, John Reid. "Not all Mistakes are Equal." Proceedings of the 
19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS). 2020.

Murat Sensoy, Maryam Saleki, Simon Julier, John Reid. "Misclassification Risk and Uncertainty
Quantification in Deep Classifiers." Proceedings of the IEEE/CVF Winter Conference on Applications 
of Computer Vision (WACV). 2021.
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Standard Approach for Classification

12

Usually SoftMax function is used to estimate class probabilities based on the 
output of a Deep Neural Network.

SoftMax leads to neural networks that are 
over-confident when they encounter samples 
which are highly different from examples in 
the training set. 

Lets check the example in the following slide

SoftMax Function

12
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Predicting Class Labels with Softmax and 
Cross-Entropy

13

Consider the following image of digit 1 
from the well-known MNIST dataset.

A neural network trained on the MNIST dataset 
can easily classify this image as the digit 1. 

What happens if the image is rotated counter-clockwise?
For some angles, it looks different from the images of digits

digit

Misclassified as 2 and 5
with high probability

13

𝜔!" = 𝑏, 𝑑, 𝑢 = 𝐵𝑒𝑡𝑎(
2𝑏
𝑢 + 1,

2𝑑
𝑢 + 1)

Subjective Logic

14

Subjective logic is a calculus for subjective opinions, which in turn 
represent probabilities affected by degrees of uncertainty.

belief + disbelief + uncertainty = 1 evidence for 𝒙 evidence for ¬𝒙
opinion 
owner

binary state 
variable

(0.1, 0.8,0.1)

(0.0, 0.0,1.0)

Beta(3, 17)

Beta(1, 1)

Is the following true?

opinion

opinion

I do NOT know

Most likely NOT

14
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Dirichlet Distribution

15

Not all Mistakes are Equal AAMAS’20, May 2020, Auckland, New Zealand

(a) � = [1, 1, 1] (b) � = [2, 5, 15] (c) � = [10, 10, 10] (d) � = [0.1, 0.9, 2]
Figure 2: At the top, density plots (blue = low, red = high) for the Dirichlet distributions over the probability simplex in R3 for various
values of the � parameters and, at the bottom, 500 categorical distributions sampled from each of these Dirichlet distributions.

the Dirichlet distribution for �k , i.e., the probability of the category
k, are computed as follows:

�̂k =
�kÕK
i=1 �i

and Var (�k ) =
�k (�0 � �k )
�20 (�0 + 1)

, where �0 =
K’
i=1

�i .

The mean of the posterior Dirichlet distribution for a sample can
be used as the predictive categorical distribution for classification
tasks and its variance can be used to quantify the uncertainty of
the prediction. For example, the predictive categorical distribution
for the Dirichlet distributions with parameters � = [1, 1, 1] and
� = [10, 10, 10] are both [1/3, 1/3, 1/3], which is the uniform cate-
gorical distribution and has the maximum entropy. On the other hand,
the variance of the latter is much smaller than that of the former. The
uniform Dirichlet distribution with parameters � = [1, 1, 1] repre-
sents the case that we are totally uncertain about the classification of
the input while the predictive uncertainty decreases as the sum of
the pseudocounts increases.

In Subjective Logic [10], given a Dirichlet distribution over pos-
sible categories, the uncertainty of predictive distribution over these
categories are calculated as u = K/ÕK

i=1 �i . Similar to the variance
of a Dirichlet distribution, this uncertainty metric for a Dirichlet
distribution is inversely proportional to the sum of Dirichlet parame-
ters, i.e., �i . On the other hand, one nice property of this uncertainty
metric is its ease of interpretation, since it takes values between
zero and one. For � = [1, 1, 1], the uncertainty is calculated as 1.0;
however, it decreases to 0.1 for � = [10, 10, 10]. Hence, while the
corresponding Dirichlet distributions have the same mean (i.e., the
uniform categorical distribution), they have significantly different
level of uncertainty, which is also evident in Figure 2 (a) and (c).

Having Dirichlet distributions as an output of a classifier instead
of a single softmax output, we can exploit uncertainty of the predic-
tive categorical distribution to avoid making possibly wrong deci-
sions based on vague predictions. In the next section, we describe
how to predict parameters of Dirichlet distributions for classification.

3.2 Learning to Predict Pseudocounts
In this paper, we consider classification tasks with fixed K categories
and predict a Dirichlet distribution for each sample. The predicted
Dirichlet distribution represents both the predictive categorical dis-
tribution and its uncertainty in a principled way.

We formally describe our approach using a generative model,
which is demonstrated as a plate diagram in Figure 3. This model
indicates that each sample is generated by drawing c from a latent
prior distribution parametrized by � . We call c as an evidence vector,
where each element 0 < ci < 1 represents evidence for the corre-
sponding category i. Let us consider a binary classification task with
two categories: cat and dog. Then, the evidence for the cat and dog
correspond to how much the sample will look like a cat and dog,
respectively. If the evidence is much higher for the cat category, the
sample would look like a cat rather than a dog. On the other hand, if
the total evidence is zero, the generated sample looks like neither a
cat nor a dog. The label of the generated sample, i.e., � 2 {1, . . . ,K},
is drawn from a latent categorical distribution � = [�1, . . . , �K ],
which is defined by a Dirichlet distribution parametrized by � and
c, where � represents the prior counts and is updated with c to have
parameters of the Dirichlet distribution for � . Let us note that, �k
represents the probability that the sample has label k.

�

� c

� �

x

N

Figure 3: A graphical representation of a model for generative
evidential networks using plate notation.

The prior distribution of the evidence can be formalized as the
following unnormalized exponential distribution ([14]):

p(c |� ) / exp
⇣
�
’
i
�ici

⌘
, where 8i �i > 0. (2)

At the top, density plots (blue = low, yellow = high) for the 
Dirichlet distributions over the probability simplex in ℝ!for 
various values of the α parameters and, at the bottom, 500 
categorical distributions sampled from each of these Dirichlet 
distributions. 

𝑏" =
𝛼" − 1
∑#$%& 𝛼#

𝑢 =
𝐾

∑#$%& 𝛼#

𝜋" =
𝛼"

∑#$%& 𝛼#

Subjective Logic
Interpretation

15

Why is this useful?

Assume you have trained a classifier to distinguish Cat, Fossa, and Fox images

16

Not all Mistakes are Equal AAMAS’20, May 2020, Auckland, New Zealand

(a) � = [1, 1, 1] (b) � = [2, 5, 15] (c) � = [10, 10, 10] (d) � = [0.1, 0.9, 2]
Figure 2: At the top, density plots (blue = low, red = high) for the Dirichlet distributions over the probability simplex in R3 for various
values of the � parameters and, at the bottom, 500 categorical distributions sampled from each of these Dirichlet distributions.
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Evidential Deep Classifiers

17

Evidence, i.e., 
pseudo-counts or 

observations.

Parameters of the uniform 
Dirichlet distribution: [1..1]

Class Label.Sample

Categorical 
Distribution.

Model predicts:𝒄

17

EDL loss functions

• For each input 𝒙!, we define a base loss function parametrized by  the 
latent categorical distribution 𝝅𝑖 and compute its expectation using 
the predicted Dirichlet distribution: 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝝅𝒊|𝒇𝜽 𝒙! + 𝟏). 
• Expected cross-entropy loss:

18

𝜓 is the digamma function, i.e., the derivative of the log gamma function.
𝒚𝒊 is the one-hot label vector for the sample 𝒙𝒊.

18
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EDL loss functions

Type II maximum likelihood:
We can treat 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝝅𝒊|𝒇𝜽 𝒙! + 𝟏) as a prior on the likelihood
𝑀𝑢𝑙𝑡 (𝒚𝒊|𝝅𝒊) and obtain the negated logarithm of the marginal 
likelihood by integrating out the class probabilities.

19

19

EDL loss functions

The expected sum square error loss (Brier score): 

20

20
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21

Overall loss function

22

𝜆(is	the	annealing	coefficient;	initially	0	and	increased	gradually	to	and	1	during	training.	
P𝜶 refers to the predicted Dirichlet parameters after removing the evidence for the true category.

Minimize evidence on errors.Maximize model fit

Evidence for the 
correct class is 

removed.

22
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Revisiting MNIST

23

LeNet5 with cross-entropy loss LeNet5 with EDL loss

The demo is available at https://muratsensoy.github.io/uncertainty.html

23

Evaluations

Recent research on uncertainty quantification is centred 
around Bayesian Neural Networks using
• LeNet5* architecture with ReLU nonlinearities 
•MNIST and CIFAR10 datasets

and evaluated on tasks
•Out of distribution detection
• Adversarial Robustness

24

*LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document 
recognition. Proceedings of the IEEE, 86(11), 2278-2324.

24

https://muratsensoy.github.io/uncertainty.html
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Evaluations
We use the following approaches in our evaluations:
• Vanilla Neural Nets with weight decay (L2)
•Multiplicative Normalizing Flow (MNFG). Louizos and Welling, 

ICML, 2017.
• Deep Ensembles.  Lakshminarayanan et al., NIPS, 2017.
•Monte Carlo Dropout. Gal and Ghahramani, ICML, 2016.
• Variational dropout and the local reparameterization trick 

(FFLU). Kingma et al. NIPS, 2015
• Bayes by Backprop (FFG). Blundell, ICML, 2015. 
• Evidential Deep Learning (EDL). Sensoy et al., NIPS, 2018.

25

25
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Accuracy vs Uncertainty

27

First 5 categories 
of CIFAR10

27

Out-of-Distribution Samples

28

notMNIST
dataset

Last 5 categories from CIFAR10

28
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Adversarial Robustness (against FGSM)

29

29

Adversarial Robustness (against FGSM)

30
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Some Real-World Examples
using 

Evidential Deep Learning

31

31

32

D. Bauer, L. Kuhnert and L. Eckstein, "Deep, spatially coherent Inverse Sensor Models with Uncertainty
Incorporation using the evidential Framework," 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 
2019, pp. 2490-2495, doi: 10.1109/IVS.2019.8813826.

U-Net architecture is 
used in this study.

32
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33
In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 
2019. Lecture Notes in Computer Science, vol 11769. Springer, Cham

DenseNet121 is used in this study.

33

34
In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 
2019. Lecture Notes in Computer Science, vol 11769. Springer, Cham

Labels in ChestX-Ray8 dataset are automatically generated by an NLP system from radiographic reports. A committee of 4 
board certified experts analysed randomly selected test set of 689 cases; relabelled 120 samples are called critical set. 

34
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35
In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 
2019. Lecture Notes in Computer Science, vol 11769. Springer, Cham

35

MedSpecSearch: Medical Specialty Search

36

Using a confidence threshold like 90%, significantly reduces the amount of misclassifications 
of the system and increases the general prediction accuracy from 74% to 90.4%.

Şahin, M. U., Balatkan, E., Eran, C., Zeydan, E., & Yeniterzi, R. (2019, April). MedSpecSearch: Medical 
Specialty Search. In European Conference on Information Retrieval (pp. 225-229). Springer, Cham.

36
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Campaign Participation Prediction 
for GSM Users

• Campaign offers are sent 
to users as short text 
messages.
• Binary classification is 

used to predict  user 
participation based on 
Google’s Wide&Deep
model.

37

accuracy is 97% when 
25% of the predictions 

are rejected.

“Get 500 minutes and 500MB only for 21$/month. You can 
join this campaign by texting ‘MONTHLY500MIN’ to 1111.”. 

An example offer sent by the GSM operator:

Prediction accuracy on the balanced test set.
(unseen future campaign offers)

Ayvaz, D., Aydoğan, R., Akçura, M. 
T., & Şensoy, M. (2021). Campaign 
participation prediction with deep 
learning. Electronic Commerce 
Research and Applications, 48, 
101058.

37

38

EDL is extended by 
researchers in MIT for 
regression tasks.

38
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Deep 
Evidential 
Regression

39

Source: Alexander Amini, Wilko 
Schwarting, Ava Soleimany, Daniela Rus: 
Deep Evidential Regression. NeurIPS 2020

normal-inverse-gamma

39

Conclusions

• Overconfidence of deep learning models stands as an important problem and 
require intensive research for the applicability of these models to real-world 
problems.
• Existing research focus on Bayesian approaches and sampling-based methods, while 

some promising work, such as EDL, can achieve calibrated uncertainties without 
using costly sampling methods.

40
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Thank you!

41
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