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Overconfident Mistakes of Classifiers

Classified as:
Typewriter keyboard

83.14%

Figure 1: Predictions by EfficientNet GTan and LeL ‘2019D on test images from ImageNet:
For the left image, the neural network predicts “typewriter keyboard” with certainty

87.63%

Classified as:
Stone wall

83.14 %, for the right image “stone wall” with certainty 87.63 %.

Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proc. ICML,

36th Int. Conference on Machine Learning, Long Beach, California

Overconfident Mistakes of Classifiers

There is really but one thing to say about
this sorry movie It should never have been
made The first one one of my favourites An
American Werewolf in London is a great
movie with a good plot good actors and
good FX But this one It stinks to heaven
with a cry of helplessness

There is really but one thing to say about
that sorry movie It should never have been
made The first one one of my favourites An
American Werewolf in London is a great
movie with a good plot good actors and
good FX But this one It stinks to heaven
with a cry of helplessness

Figure 2: Adversarial example (right) misclassified by a machine learning model trained
on textual data: Changing only a single—and apparently not very important — word
(highlighted in bold font) is enough to turn the correct prediction “negative sentiment”

into the incorrect prediction “positive sentiment” (Sato et al.|[2018).
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Do not worry!
The success rate of
this operation is 95%

“Being able to assess the
reliability of a probability score
for each instance is much more
powerful than assigning an U» &L
aggregate reliability score [...] - B
independent of the instance to
be classified.”

Kull and Flach (2014). Reliability maps: A
tool to enhance probability estimates and

improve classification accuracy. In: Proc.
of ECML'14.

mariascrivan.com

Mario.

adapted from R
0/3 ©2015 Maria Scrivan Dist. by Tribune Content Agency, LLC. SWM
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Not all mistakes are equals!

On 7th May 2016, a car operating with automated vehicle control systems
crashed with a truck near Williston, Florida, USA. Unfortunately, the car driver
died due to the severe injury. The car manufacturer reported that the car’s vision
system classified the white side of the truck as the sky.
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Uncertainty Quantification in DL

* Two types of uncertainties: Aleatoric and Epistemic

* Wisdom of ignorance: knowing *

what you do not know

* Sampling-based methods:

* Bayesian Networks
* Multiplicative Normalizing Flow
* Bayes by Backprop

* Monte-Carlo Dropout
* Variational dropout

* Deep Ensembles

* Evidential Deep Learning

10

Aleatoric
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*** Abdar, Moloud, et al. "A review of uncertainty quantification in deep learning:
Techniques, applications and challenges." Information Fusion (2021). 7

7
Bayesian Neural Networks
Predictive distribution p(y*|x™,X,Y) = /p(y*Ix*. w)p(w|X,Y)dw
Source: Weight Uncertainty in Neural Networks, Blundell et al., ICML 2015 8
8
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pI(x,0) " T\

A

Gal, Y., and Z. Ghahramani. 2016. "Dropout as a Bayesian Approximation: Representing Model Uncertainty in
Deep Learning." 33rd International Conference on Machine Learning (ICML
2016). https://arxiv.org/abs/1506.02142.

Monte-Carlo Dropout (Bernoulli Approx. VI)

Deep Ensembles

1. Let each neural network parametrize a distribution over 2. Augment with adversarial training
the outputs, i.e. pg(y|x). Use a proper scoring rule as
training criterion
» Classification: cross entropy loss
» Heteroscedastic Regression: net outputs mean p(x)

and variance o2(x)

random initialization
4. Combine predictions at test time

(v — o(x))

1
e(eyxny}’n) = _IOg Ug(x) + zo_g(x)

+ const.
2

Source: https://www.gatsby.ucl.ac.uk/~balaji/deep-ensembles-poster.pdf

Lakshminarayanan, B., A. Pritzel, and C. Blundell. 2017. "Simple and Scalable Predictive Uncertainty
Estimation using Deep Ensembles." Advances in Neural Information Processing Systems.
https://arxiv.org/abs/1612.01474.

3. Train an ensemble of M networks in parallel with

1 M
PYIX) = > Pa, (yIx,Om)

10


https://arxiv.org/abs/1506.02142
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Evidential Deep Learning

Murat Sensoy, Lance Kaplan, and Melih Kandemir, "Evidential deep learning to quantify classification
uncertainty." Advances in Neural Information Processing Systems (NuerlPS). pp. 3179-3189, 2018.

Murat Sensoy, Lance Kaplan, Federico Cerutti, “Uncertainty-Aware Deep Classifiers using Generative
Models”, The 34rd Conference on Artificial Intelligence (AAAL), 2020.

Murat Sensoy, Maryam Saleki, Simon Julier, John Reid. "Not all Mistakes are Equal." Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS). 2020.

Murat Sensoy, Maryam Saleki, Simon Julier, John Reid. "Misclassification Risk and Uncertainty
Quantification in Deep Classifiers." Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV). 2021.
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Standard Approach for Classification

Usually SoftMax function is used to estimate class probabilities based on the
output of a Deep Neural Network.
SoftMax Function

Multi-Class Classification with NN and SoftMax Function 0( x-) _ e’
1T e
13

probabilities

SoftMax leads to neural networks that are

| : i blue over-confident when they encounter samples
a=|z|=[ws ||z which are highly different from examples in
g purple] the training set.

Lets check the example in the following slide

F-
€
12

12
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Predicting Class Labels with Softmax and
Cross-Entropy

Consider the following image of digit 1
from the well-known MNIST dataset.

A neural network trained on the MNIST dataset
can easily classify this image as the digit 1.

e
o

Classification Probability

0.0+
0 20 40 60 80 100 120 140 160 180

What happens if the image is rotated counter-clockwise?
For some angles, it looks different from the images of digits
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Misclassified as 2 and 5
with high probability
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Subjective Logic
Subjective logic is a calculus for subjective opinions, which in turn
represent probabilities affected by degrees of uncertainty.
belief + disbelief + uncertainty=1  evidence for x evidence for =x
opinion {_A_\ {_A_\
owner 2 Zd
wy = (b,d,u) = Beta(—+ 1,—+ 1)
binary state u
variable N P
opinion y
” (0.1?0.8,0.1) ——————————— »ff \ H Betald, 17)
Is the following true? . u Most likely NOT :
dlglt(a 9) opinion
* g (0.0,0.0,1.0)—» Beta(1, 1)
| do NOT know
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ 14
14
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Dirichlet Distribution

The Dirichlet distribution is the conjugate prior of the categorical
and multinomial distributions. It is a probability density function
(pdf) for possible values of the probability mass function (pmf) z =

[71, ..., mk] over K categories. It is characterized by parameters
a = [a1,- -+ ,ax] and is given by
1 K a;—-1
_1_77# i £
Dirichlet(z|a) = { B(e) iz m; or 7z ?SK’ )
0 otherwise,

where Sk is the K-dimensional unit simplex and B(e) is the K-
dimensional multinomial beta function

@a=[111] (b) @ = [2,5,15] (c) @ = [10,10,10]
a; — 1 a;

. . by = sg— =K
At the top, density plots (blue = low, yellow = high) for the Yk=1%k D=1k
Dirichlet distributions over the probability simplex in R3for
various yalue_s o_f thg o parameters and, at the bottom,.5_00 u= KK Subjective Logic
categorical distributions sampled from each of these Dirichlet D=1 Ak Interpretation
distributions.

15

15
Why is this useful?
Assume you have trained a classifier to distinguish Cat, Fossa, and Fox images
S
) ‘6\"\ c"‘o
N
>
c =1[9,99] . . ) . . 0,0,0
a = [10,10,10] Aleatoric Uncertainty Epistemic Uncertainty 1,1,1]
111 111
=(=,=,=) <« Uniform Categorical Distribution | = (==, =
"=G33 gorical Db "=G33 .

16
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Evidential Deep Classifiers

Parameters of the uniform
Dirichlet distribution: [1..1]

ﬂ@—'@—'@—'@ Class Label.

A
Evidence, i.e., Categorical

pseudo-counts or Distribution.
observations.

Model predicts: C

go(|x) = Dirichlet(x|fp (x) + 1)

17
17

EDL loss functions

* For each input x;, we define a base loss function parametrized by the
latent categorical distribution 7r; and compute its expectation using
the predicted Dirichlet distribution: Dirichlet(m;|fq(x;) + 1).

* Expected cross-entropy loss:

K
L;(0) :/ [Z—yij log(7;)

'

cross-entropy

. K K K
Bla. 11 W?jj_l dmi = yi; <¢(Z Qi) — W%’j))
(al) j=1 j=1 k=1

J/

Dirichlet(7r; | fo (@;)+1)

1 is the digamma function, i.e., the derivative of the log gamma function.
y; is the one-hot label vector for the sample x;.

18

18
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L;(0) =—log (/ [lijrzy]]]

EDL loss functions

Type Il maximum likelihood:

We can treat Dirichlet(m;|fo(x;) + 1) as a prior on the likelihood
Mult (y;|m;) and obtain the negated logarithm of the marginal
likelihood by integrating out the class probabilities.

- N
o ) o)

Mult(y;|w;) Dirichlet(7; | fo (2;)+1)

19
EDL loss functions
The expected sum square error loss (Brier score):
K
0= [ Moo=l g5 T w5
SSEloss =1 i
Dirichlet(7v; | fo (:)+1)
K K
:Z]E[y?j — 2yi;mi5 + W?j] = Z <y2] 2y B[mi;] + E[W?j])
j=1 j=1
20

10
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» Proposition 1. For any a;; > 1, the inequality

An advantage of this loss is that using the identity
]E[WZZJ] = ]E[m-j]z + Var(m;;),

we get the following easily interpretable form

K _ _
7ij (1 — i)
vij — E[mij ) + Var(m;;) Yij — Tij) g P b N
ng 3 J 3 ; 3 J CESTS)

LET‘T‘
var
Vsl

» Proposition 3. For a given sample ¢ with the
correct class label j, L™ decreases when some
evidence is removed from the biggest Dirichlet
parameter a;; such that [ # j.

Proposition 2. For a given sample i with the i.e. The loss performs learned loss attenuation.

correct label j, L$"" decreases when new evidence

is added to a;; and increases when evidence is

removed from ay;.

i.e. The loss has a tendency to fit to the data.

Ef;” < [,f]" is satisfied.
i.e. The loss prioritizes data fit over variance
estimation.

21

21

Overall loss function Evidence for the

correct class is

removed.

N
= Li(9) + A Y _KL[Dirichlet(r;|é; )| Dirichlet(w;|1)]
] i=1
Maximize model fit Minimize evidence on errors.

KL[Dirichlet(7r;&;)||Dirichlet(7r;|1)]

F(Zf:l Qik) - = =
=lo o — 1) (o h @
TN T ) 250 o0 —H(35)

A¢is the annealing coefficient; initially 0 and increased gradually to and 1 during training.
« refers to the predicted Dirichlet parameters after removing the evidence for the true category. 22

22

11
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Revisiting MINIST

LeNet5 with cross-entropy loss LeNet5 with EDL loss
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The demo is available at https://muratsensoy.github.io/uncertainty.html

23

23

Evaluations

Recent research on uncertainty quantification is centred
around Bayesian Neural Networks using

* LeNet5* architecture with ReLU nonlinearities
* MINIST and CIFAR10 datasets
and evaluated on tasks
* Out of distribution detection
» Adversarial Robustness

*LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.

24

24
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Evaluations

We use the following approaches in our evaluations:

* Vanilla Neural Nets with weight decay (L2)
* Multiplicative Normalizing Flow (MNFG). Louizos and Welling,

ICML, 2017.

* Deep Ensembles. Lakshminarayanan et al., NIPS, 2017.
* Monte Carlo Dropout. Gal and Ghahramani, ICML, 2016.

* Variational dropout and the local reparameterization trick
(FFLU). Kingma et al. NIPS, 2015

* Bayes by Backprop (FFG). Blundell, ICML, 2015.
* Evidential Deep Learning (EDL). Sensoy et al., NIPS, 2018.

25

25
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Accuracy vs Uncertainty

First 5 categories
of CIFAR10

1.00
0.99
%1 Method MNIST CIFARS
L2 99.4 76
5094 Dropout 99.5 84
£ Deep Ensemble 99.3 79
< FFG 99.1 78
0.90 FFLU 99.1 17
—m— MNIST dataset MNFG 903 84
—&— CIFAR5 dataset I EDL 993 83 I
0.86

0.2 0.4 0.6 0.8 1.0
Uncertainty Threshold

Figure 2: The change of accuracy with respect to  Table 1: Test accuracies (%) for MNIST and
the uncertainty threshold for EDL. CIFARS datasets.

27

27
notMNIST q A .
Last 5 categories from CIFAR10
dataset LQ] d _ﬁ"a’ an g f
1.0 1.0
0.8 0.8
== EDL e
> 0.6 —_— 2 > 0.6
% == DeepEnsemble ;;
§ — FFLU §
< 04 =— EF'Z”“ = 0.4
w— MNFG P
..... s —— DeepEnsemble
0.2 = 0.2 o — FFLU
=T /,/ = Dropout
et e — FFG
’’’’’’’’ B — MNFG
0.0 T == T T T 0.0 T =" T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Entropy Entropy
Figure 3: Empirical CDF for the entropy of the predictive distributions on the notMNIST dataset
(left) and samples from the last five categories of CIFAR10 dataset (right).
28
28
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Adversarial Robustness (against FGSM)

1.0 1.0
—_ 12 e T et et e it
—e— Dropout ./. R e S B
0.8 —— FFLU 0.8 o+
—— MNFG I'{'/
—— EDL > 4 e
g iF e
2 0.6 g061 ="
g = J T . e
o - K ppes -
< 0.4 = 0414 - == |2
® /i & —- Dropout
i i //’ —- FFLU
0.2 022 —- MNFG
= | —+- EDL
- - - - ...//
0.0 ; ; ; | 0.0 fmemem e e T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Epsilon Epsilon
Figure 4: Accuracy and entropy as a function of the adversarial perturbation e on the MNIST dataset.
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—= FFLU
0.3 0.27 —= MNFG
0.2 % 0.1 —+- EDL
e B T S P B T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Epsilon Epsilon
Figure 5: Accuracy and entropy as a function of the adversarial perturbation e on CIFARS dataset.
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Some Real-World Examples
using
Evidential Deep Learning

31

31

Deep, spatially coherent Inverse Sensor Models with Uncertainty
Incorporation using the evidential Framework

'Daniel Bauer and Lars Kuhnert are with the Ford Werke GmbH,
Cologne, dbauer31@ford.de, lkuhnert@ford.de

3Lutz Eckstein is with the Institute for Automotive Engineering, RWTH
Aachen University, of fice@Rika.rwth—-aachen.de

Abstract—To perform high speed tasks, sensors of au-
tonomous cars have to provide as much information in as
few time steps as possible. However, radars, one of the sensor
modalities autonomous cars heavily rely on, often only provide
sparse, noisy detections. These have to be accumulated over
time to reach a high enough confidence about the static parts
of the environment. For radars, the state is typically estimated
by accumulating inverse detecti dels (IDMs).|We employ
the recently proposed evidential convolutional neural networks
which, in contrast to IDMs, compute dense, spatially coherent
inference of the environment state. Moreover, these networks
are able to incorporate sensor noise in a principled way which
we further extend to also incorporate model uncertainty. We
present experimental results that show This makes it possible
to obtain a denser environment perception in fewer time steps.

U-Net architecture is
used in this study.

D. Bauer, L. Kuhnert and L. Eckstein, "Deep, spatially coherent Inverse Sensor Models with Uncertainty

2019, pp. 2490-2495, doi: 10.1109/1VS.2019.8813826.

Incorporation using the evidential Framework," 2019 IEEE Intelligent Vehicles Symposium (1V), Paris, France,

32
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Table 1: Comparison between the reference method [4] and several versions of
our method calibrated at sample rejection rates of 0%, 10%, 25% and 50% (based
on the PLCO dataset [2]). Lesion refers to lesions of the bones or soft tissue.

ROC-AUC
Finding Guendel et al. [4] Ours [0%] Ours [10%] Owurs [25%] Ours [50%)]
Granuloma 0.83 0.85 0.87 0.90 0.92
Fibrosis 0.87 0.88 0.90 0.92 0.94
Scaring 0.82 0.81 0.84 0.89 0.93
Lesion 0.82 0.83 0.86 0.88 0.90
Cardiac Ab. 0.93 0.94 0.95 0.96 0.97
Average 0.85 0.86 0.89 0.91 0.93

DenseNet121 is used in this study.

Quantifying and Leveraging Classification
Uncertainty for Chest Radiograph Assessment

Florin C. Ghesu!, Bogdan Georgescu', Eli Gibson!, Sebastian Guendel®,
Mannudeep K. Kalra??, Ramandeep Singh?, Subba R. Digumarthy??3,
Sasa Grbic!, and Dorin Comaniciu'

! Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ, USA
2 Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
3 Harvard Medical School, Boston, MA, USA
florin.ghesu@siemens-healthineers.com

Granuloma Fibrosis

10 —+— [+] Fl-score ours

- [+] Fl-score ours [ens]
---- [+] Fl-score baseline
—+— [-] F1-score ours

-+ [-] Fl-score ours [ens]
---- [-] Fl-score baseline

0.9
008
H
§o.7
-
0.6
0.5

04

0.4
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Rejected data fraction [%] Rejected data fraction [%]

Fig. 2: Evolution of the Fl-scores for the positive (+) and negative (=) classes
relative to the sample rejection threshold - determined using the estimated un-
certainty. We show the performance for granuloma and fibrosis based on the
PLCO dataset [2]. The baseline (horizontal dashed lines) is determined using
the method from [4] (working point at max. average of per-class F1 scores).
Decision threshold for our method is fixed at 0.5.

In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. MICCAI
2019. Lecture Notes in Computer Science, vol 11769. Springer, Cham 33
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Quantifying and Leveraging Classification
Uncertainty for Chest Radiograph Assessment

Florin C. Ghesu!, Bogdan Georgescu', Eli Gibson!, Sebastian Guendel®,
Mannudeep K. Kalra??, Ramandeep Singh?, Subba R. Digumarthy??3,
Sasa Grbic!, and Dorin Comaniciu'

! Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ, USA
2 Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
3 Harvard Medical School, Boston, MA, USA
florin.ghesu@siemens-healthineers.com

Labels in ChestX-Ray8 dataset are automatically generated by an NLP system from radiographic reports. A committee of 4

3 Label unchanged from original g 100

£10 Label flipped (expert consensus) | 2 80

£8 g e

s g 6072

26 £ A

a4 o 40 =

& 1 £ 221

g2 ‘ g 20

* g I\mu [ $333330100
0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 50 60 70 80 90

Predicted uncertainty Rejected data fraction [%]

Fig. 3: Left: Predictive uncertainty distribution on 689 ChestX-Ray test images;
a higher uncertainty is associated with cases of the critical set, which required a
label correction according to expert committee. Right: Plot showing the capac-
ity of the algorithm to eliminate cases from the critical set via sample rejection.
Bars indicate the percentage of critical cases for each batch of 5% rejected cases.

board certified experts analysed randomly selected test set of 689 cases; relabelled 120 samples are called critical set.

PO

(a) @,p = 0.90,0.45 (b) @,p=0.93,048 (c) &,p=0.54,0.65 (d)@,p=0.11,0.05

Fig. 4: ChestX-Ray8 test images assessed for pleural effusion (4: est. uncertainty,
p: output probability; with affected regions circled in red). Figures 4a, 4b and 4c
show positive cases of the critical set with high predictive uncertainty — possibly
explained by the atypical appearance of accumulated fluid in 4a, and poor quality
of image 4b. Figure 4d shows a high confidence case with no pleural effusion.

In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. MICCAI
2019. Lecture Notes in Computer Science, vol 11769. Springer, Cham 34
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Quantifying and Leveraging Classification
Uncertainty for Chest Radiograph Assessment

Florin C. Ghesu!, Bogdan Georgescu', Eli Gibson!, Sebastian Guendel®,
Mannudeep K. Kalra??, Ramandeep Singh?, Subba R. Digumarthy??3,
Sasa Grbic!, and Dorin Comaniciu'

! Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ, USA
2 Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
3 Harvard Medical School, Boston, MA, USA
florin.ghesu@siemens-healthineers.com

Uncertainty-driven Bootstrapping: We also investigated the benefit of
using bootstrapping based on the uncertainty measure on the example of plural
effusion (ChestX-Ray8). We report performance as [AUC; F1-score (pos. class);
F1-score (neg. class)].|After training our method, the baseline performance was
measured at [0.89;0.60;0.92] on testing. We then eliminated 5%, 10% and 15%
of training samples with highest uncertainty, and retrained in each case on the
remaining data. The metrics improved to [0.90;0.68;0.92]59, [0.91;0.67;0.94] 109
and [0.93;0.69;0.94];59 on the test set. This is a significant increase, demon-
strating the potential of this strategy to improve the robustness of the model to
the label noise.|We are currently focused on further exploring this method.

In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. MICCAI

2019. Lecture Notes in Computer Science, vol 11769. Springer, Cham 3
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MedSpecSearch: Medical Specialty Search

W\

AAMC

.. @ Interface §

Word
Embeddings

Medical Speciality Search

Hi doctor, | am a 22 year old female. | am getting lumps in my

Confidence: 20.10%

Medical Speciality Search

Hi doctor, I am a 22 year old female.  am getting lumps in my
rmpit and they are painful. | sweat a lot. [IIEReCIS

a
TR NSRS Are these lumps something

Health ® armpit and they are painful. | sweat a lot. Are these lumps
- - ealthTap something serious? Should | consult a doctor? =
serious? Should | consult a dactor?
Training Data Google
r \ ’ Pubmed Internal Medicine Dermatology
v | -
MGEEEEY Internal Dermatology Surgery- Dermatology Surgery- Radiology-
> Web Medicine General General Diagnostic
2005% oo o0 was o %

Confidence: 98.48 %

Fig. 2. MedSpecSearch Front End with Two Example Queries

Using a confidence threshold like 90%, significantly reduces the amount of misclassifications
of the system and increases the general prediction accuracy from 74% to 90.4%.

$ahin, M. U., Balatkan, E., Eran, C., Zeydan, E., & Yeniterzi, R. (2019, April). MedSpecSearch: Medical
Specialty Search. In European Conference on Information Retrieval (pp. 225-229). Springer, Cham.

36
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* Campaign offers are sent
to users as short text
messages.

* Binary classification is
used to predict user 0.98
participation based on
Google’s Wide&Deep _ooe
model.

£0.94

Ayvaz, D., Aydogan, R., Akgura, M. 0.92
T., & Sensoy, M. (2021). Campaign
participation prediction with deep
learning. Electronic Commerce
Research and Applications, 48,
101058. OI5S

0.9

Campaign Participation Prediction

for GSM Users

An example offer sent by the GSM operator:

“Get 500 minutes and 500MB only for 21$/month. You can
join this campaign by texting ‘MONTHLY500MIN’ to 1111.”.

_— accuracy is 97% when
S 0.64 25% of the predictions
) are rejected.

0.81

Prediction accuracy on the balanced test set. e ;
(unseen future campaign offers) ~a "

37

EDL is extended by
researchers in MIT for
regression tasks.

18,072 views * Premiered Mar 19, 2021 402 1

Evidential Deep Learning

Alexander Amini
MIT 65191
January 26,2021
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Deep
Evidential
Regression

Source: Alexander Amini, Wilko
Schwarting, Ava Soleimany, Daniela Rus:
Deep Evidential Regression. NeurlPS 2020

normal-inverse-gamma

(11,0°) ~ Evidential Prior
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Figure 1: Evidential regression simultaneously
learns a continuous target along with aleatoric
(data) and epistemic (model) uncertainty. Given an
input, the network is trained to predict the parame-
ters of an evidential distribution, which models a
higher-order probability distribution over the indi-

vidual likelihood parameters, (u, o2).
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Conclusions
* Overconfidence of deep learning models stands as an important problem and
require intensive research for the applicability of these models to real-world
problems.
* Existing research focus on Bayesian approaches and sampling-based methods, while
some promising work, such as EDL, can achieve calibrated uncertainties without
using costly sampling methods.
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Thank you!
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