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What is the primary magma®

 Basalt




Origin of Basaltic Magma
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Origin of basalt

What is basalt?

Where does it come from?

How do we know the Earth
mantle? What state is it in?2 - .-

-

"« Why does the mantle melt? ="
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Where does it come from?

* Melting in the upper mantle




How do we know the Earth's
mantle?




Sources of mantle material

Fragments of oceanic crust and upper
mantle docked onto continents

— Ophiolites
Dredge samples from oceanic fracture zones
Nodules and xenoliths in some basalts

Kimberlite xenoliths

— Diamond-bearing pipes blasted-up from the
mantle carrying numerous xenoliths from depth




Ultramafic Rocks:
> 90% mafic minerals.
Ultramafic rocks have
<10% plag.

Olivine
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hy does the mantle melt?




Heat Sources in the
Earth

1. Heat from the early accretion and
differentiation of the Earth

« still slowly reaching surface

2. Heat released by the radioactive
breakdown of unstable nuclides




The Geothermal Gradient

Asthenosphere

Temperature

Figure 1-11(new). Estimates of oceanic (blue
curves) and continental shield (red curves)
geotherms to a depth of 300 km. The
thickness -of mature (> 100Ma) oceanic

- '-lithﬁgphefe 1s hatched and that of continental
--wshielddittiosphiere is yellow. Data from Green

. and Falloon ((1998), Green & Ringwood
(1963), Jaupart and Mareschal (1999),
McKenzie et al. (2005 and personal
communication), Ringwood (1966), Rudnick
and Nyblade (1999), Turcotte and Schubert

. (2002), ‘ .
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Phase diagram for aluminous

4-phase |herzolite:
Al-phase = IR

e Plagioclase
+ shallow (< 50 km)
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: Flgun 10-2 Phase diagram of aluminous lherzolite with melting interval (gray), sub-solidus
w7 reactions, and geothermal gradient. After Wyllie, P. J. (1981). Geol. Rundsch. 70, 128-153.



How does the mantle melt??
1) Increase the temperature
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2) Lower the pressure

— Adiabatic rise of mantle with little conductive heat loss
— Decompression melting could melt at least 30%

- Figure 10-4. Melting by (ad'iabatic) pressure reduction. Melting begins when the adiabat crosses the
solidus and traverses the shaded melting interval. Dashed lines represent approximate % melting.
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3) Add volatiles (especially H,0O)

Mysen, 1973
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, ‘ ﬁlﬁutggﬁm"bvé'rid_dti'fé solidus compared to several experiments on H20-saturated peridotites.



Melts in the mantle can be created
under 2 main circumstances

 Decompression melting = Adiabatic rise
of the mantle

— Divergent margins — Large upwelling (convectlon
cells)

— Hot spots ;j.,tg.llocallzed plumes of melt

o -
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— Subduction zone$' il




Two styles of mantle melting

Figure 2.—0blique view of the principal Hawaiian lslands and (the still submarine) La'thi Volcano, Inset gives a closer view of three
of the five volcanoes that form the Island of Hawai'i (historical lava flows are shown in red). The longest duration historical
eruption on Kilauea's east-rift zone at Pu'u “0'6 (inset), which began in January 1983, continues unabated (as of spring 2006).
View prepared by Joel E. Robinson (USGS).
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Schematic cross section through the upper part of the earth showing
major magmatic environments

Y 4 =«
[ ] Continental Crust \
[ ] Oceanic Crust ‘ Source of Melts

[ Lithospheric Mantle
[ ] Sub-Lithospheric Mantle

1.

Fuca Rldge East Pamfrc Ris _-."Mld -Atlantic ridge
2. Intraplate volcanlc/plutonlc rift system, e.g. East African rift, RTG‘Grande rift”
| 3. Island arc (convergent margin): built Iargely on oceanlc crust—composed Iargely
e - of: rs13nd -arc basalt and andesite '
'4‘ Contlnental arc (convergent margin): formatlon of ﬂéw crust volcanism/plutonism,

mountain building, regional metamorphism- . . — ol

5. Back arc basin: basaltic volcanlsm—S|m|Ipr to MORB _ :
6. Ocean islands: basaltic volcanism, e.g., Hawaii, Canaries, and many others
7. Scattered intracontinental activity: may be continental hotspots, e.g., Yellowstone




