Bound of set

Upper bound of a set

Let *S* be a nonempty set of real numbers. Suppose there is a real number *B* such that $B \ge x \forall x \in S$. Then *B* is an **upper bound** for *S*. *S* is said to be **bounded above** by *B*. A set which has no upper bound is said to be **unbounded above**.

Observation 1: There can be many upper bounds for a set.

Observation 2: B need not be a member of S

Maximum of a set

If an upper bound B for set S (set of real numbers) is also a member of S, then B is the **maximum** of S. Thus $B = \max S$ if $B \in S$ and $x \leq B \forall x \in S$.

Observation 1: A set may not have maximum (Formally: There exists at least one set which does not have maximum).

Observation 2: Can there be multiple maximum? NO

Observation 3: If $B = \max S$ then B is the smallest upper bound of S.

 $\mathsf{Qn}{:}$ Is there a smallest upper bound for sets without maximum? Let us first define our intended object formally.

Least upper bound or Supremum of a set

A real number B is called a **least upper bound** (or **supremum**) of a nonempty set S, if B has the following two properties:

(i) B is an upper bound for S. (ii) No number less than B is an upper bound for S. We denote supremum by $B = \sup S$.

Observation 1: Can there be multiple supremums? NO

Supremum and Infimum

Completeness Axiom

Every **nonempty** set *S* of real numbers which is **bounded above** has a supremum; that is, there is a real number *B* such that $B = \sup S$.

Observation 1: sup S need not be in S. Observation 2: sup $S \in S \Leftrightarrow \sup S = \max S$

We can define lower bound, minimum and greatest lower bound (or infimum) in a similar fashion.

A real number L is called a **greatest lower bound** (or **infimum**) of a nonempty set S, if L has the following two properties:

(i) L is a lower bound for S, that is $L \le x \forall x \in S$. (ii) No number greater than L is a lower bound for S. We denote infimum by $L = \inf S$. If $\inf S \in S$ then $\inf S = \min S$.

Useful results (i) (Reflection) Let S be a non-empty set. Define $-S = \{-x \mid x \in S\}$. $B = \sup S \Leftrightarrow -B = \inf -S$. (ii) Every nonempty set S of real numbers which is bounded below has an infimum. (iii) (How to find a supremum?) Suppose that $z \in R$ is an upper bound of S. Moreover for every choice of $\epsilon > 0$, there exists an element $a \in S$ such that $a > z - \epsilon$. $\Leftrightarrow z = \sup S$. Does this result hold for finite set?

Write a similar result for infimum and prove.

Properties of Sup and Inf

More results

Let A and B are non-empty and bounded sets (that is bounded above and below) of \mathcal{R} .

(*iv*) (Addition) Suppose $C = \{a + b \mid a \in A, b \in B\}$. Then sup $C = \sup A + \sup B$.

(v) (multiplication) Suppose $\alpha > 0$ and $C = \{\alpha a \mid a \in A\}$. Then sup $C = \alpha \sup A$.

(vi) (Order) Suppose A and B are such that for every pair $(a, b) \in A \times B$, $a \leq b$, then sup $A \leq \inf B$.

Write similar properties for infimum and prove.

Result: Nested Interval Theorem

Assume we are given a closed interval $I_n = [a_n, b_n] = \{x \mid a_n \le x \le b_n\}$ for each positive integer *n*. Assume further that each I_n contains I_{n+1} . That is we have a nested sequence of closed intervals $I_1 \supseteq I_2 \supseteq I_3 \ldots$. Then their intersection is nonempty, $\bigcap_{n=1}^{\infty} I_n \ne \emptyset$.

(Sketch of a Proof): Define $A = \{a_1, a_2, ...\}$ and $B = \{b_1, b_2, ...\}$.

Step 1: A is bounded above (by b_1) and bounded below (by a_1). Similarly B is bounded.

Step 2: For any pair a_n, b_m , show that $a_n \leq b_m$.

Step 3: Invoke Result (vi). We have $\sup A \leq \inf B$. Let $a = \sup A$ and $b = \sup B$. Take the interval [a, b].

Step 4: Show that $[a, b] \subseteq \bigcap_{n=1}^{\infty} I_n$: Take $x \in [a, b] \Rightarrow x \ge a$. Since sup A = a, we have $a \ge a_n \forall n$. Thus $x \ge a_n$. Similarly, $x \le b_n$. Hence $x \in I_n$ for all n, implying $x \in \bigcap_{n=1}^{\infty} I_n$.

Proof of some results

(Proof of Result (*iii*)):

⇒: *z* is an upper bound for *S*. We want to show that there is no other upper bound for *S* which is smaller than *z*. We prove **by contradiction**. That is we start with the negation that a smaller upper bound for *S* exists and reach a logical contradiction. Suppose z' < z and z' is a upper bound for *S*. Choose $\epsilon = \frac{z-z'}{2}$, which is > 0. There is no $a \in S$ such that $a > z - \epsilon$. Because for all $a \in S$, $a \le z'$ (z' is an upper bound for *S*) and $z' < z - \epsilon$. This contradicts LHS; hence done. $\Leftarrow:$ Let $z = \sup S$. By definition *z* is an upper bound for *S*. We want to show that for each $\epsilon > 0$, there exists $a \in S$ such that $a > z - \epsilon$. Again we prove by contradiction. We start with the negation. There exists $\epsilon > 0$ such that for all $a \in S$, $a \le z - \epsilon$. That would mean $(z - \epsilon)$ is an upper bound for *S*. This contradicts with the fact that *z* is the supremum.

(Proof of Result (iv)):

We prove the result in two steps - (1) $(\sup A + \sup B) \ge \sup C$ and (2) for every $\epsilon > 0$, there exists $c \in C$ such that $c > (\sup A + \sup B) - \epsilon$. (this is sufficient by Result (*iii*)) Step 1: Take $\sup A + \sup B$. $(\sup A + \sup B) \ge a + b \ \forall a \in A, b \in B$. Equivalently $(\sup A + \sup B) \ge c \ \forall c \in C$. Thus $(\sup A + \sup B)$ an upper bound for C. By completeness axiom C has supremum. By definition of supremum, $(\sup A + \sup B) \ge \sup C$. Step 2: Take any $\epsilon > 0$. $(\sup A + \sup B) - \epsilon = (\sup A - \frac{\epsilon}{2}) + (\sup B - \frac{\epsilon}{2})$. From Result (*iii*), we know that there exists $\tilde{a} \in A$ such that $\tilde{a} > (\sup A - \frac{\epsilon}{2})$ and there exists $\tilde{b} \in B$ such that $\tilde{b} > (\sup B - \frac{\epsilon}{2})$. Note $\tilde{c} = \tilde{a} + \tilde{b}$ is in C and $\tilde{c} > (\sup A + \sup B) - \epsilon$.

Sequence

Definition: Sequence A sequence is a function $f : \mathcal{N} \to \mathcal{R}$. f(n) is the *n*-th term on the list. We shall denote a sequence by $\{a_n\}_1^\infty$. So $f(n) = a_n$. We are interested about the 'tail' of a sequence, that is how it behaves for large *n*, or as $n \to \infty$.

Different ways of writing a sequence

$$(i) \ 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots; (ii) \ \left\{\frac{1}{2^{n-1}}\right\}_{n=1}^{\infty}; (iii) \ a_1 = 1, \ a_{n+1} = \frac{1}{2}a_n$$

Before we proceed, we need one more definition.

Definition: Neighbourhood

For any $a \in \mathcal{R}$ and $\epsilon > 0$, the ϵ -neighbourhood of a is the set of all points whose distance from a is strictly less than ϵ . Formally, $B_{\epsilon}(a) = \{x \mid |x - a| < \epsilon\}$.

Convergence of a sequence

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to *a*: If for every $\epsilon > 0$, there exists $N \in \mathcal{N}$ such that $\forall n \geq N$, $a_n \in B_{\epsilon}(a)$.

Observation 1: Choice of N is dependent on ϵ .

A sequence which does not converge to any $a \in \mathcal{R}$ is said to **diverge**.

Important Results

<u>Results</u>: Let $\lim a_n = a$ and $\lim b_n = b$

- 1. Take the sequence $\{ca_n\}_{n=1}^{\infty}$, where $c \in \mathcal{R}$. $\lim(ca_n) = ca$.
- 2. Take the sequence $\{a_n + b_n\}_{n=1}^{\infty}$. $\lim(a_n + b_n) = a + b$.
- 3. If $a_n \leq c$ for all n, then $a \leq c$. Similarly, if $a_n \geq c$ then $a \geq c$.
- 4. If $a_n \leq b_n$ for all n, then $a \leq b$.

(**Proof of Result** 1.): If c = 0 then it is trivial. Take $c \neq 0$. We want to show that for $\epsilon > 0$, we can find N such that for all $n \ge N$, $ca_n \in B_{\epsilon}(ca)$.

Lets choose that N for which $a_n \in B_{\frac{\epsilon}{|c|}}(a)$ for all $n \ge N$. Lets check that this N will indeed work. $|ca_n - ca| = |c||a_n - a| < |c| \cdot \frac{\epsilon}{|c|} = \epsilon$.

(**Proof of Result** 2.): We want to show that for $\epsilon > 0$, we can find N such that for all $n \ge N$, $a_n + b_n \in B_{\epsilon}(a + b)$. Rest of the proof is about construction of such N. Pick N_1 such that $a_n \in B_{\frac{\epsilon}{2}}(a)$ for all $n \ge N_1$ (this is possible because $\lim a_n = a$). Pick N_2 such that $b_n \in B_{\frac{\epsilon}{2}}(b)$ for all $n \ge N_2$ (this is possible because $\lim b_n = b$). Take $N = \max\{N_1, N_2\}$. Lets check that this N will work $|(a_n + b_n) - (a + b)| \le |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

(**Proof of Result** 3.): We shall prove this by contradiction. Suppose $a_n \le c$ for all n but a > c. Let us choose $\epsilon = a - c/2$. By convergence, there must exist N such that for all $n \ge N$ such that $a_n \in B_{\epsilon}(a)$. But then for all such n, $a_n > (a - \frac{a-c}{2}) = \frac{a+c}{2} > c$ (the last equality follows from a > c). We reach a contradiction.

(**Proof of Result** 4.): Construct a sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n = (b_n - a_n)$ for all n. Using Result 1 and 2, $\lim x_n = (\lim b_n - \lim a_n) = b - a$. Since $x_n \ge 0$ for all n, by Result 3, $b - a \ge 0$.

Bounded and Monotone Sequence

Definition: Bounded Sequence

A sequence $\{a_n\}_{n=1}^{\infty}$ is **bounded** by $M \in \mathcal{R}$, if for all n, $|a_n| \leq M$.

Definition: Monotone Sequence

A sequence $\{a_n\}_{n=1}^{\infty}$ is **monotone** if it is increasing or decreasing. A sequence is increasing if $a_{n+1} \ge a_n$ for all *n*. Similarly a sequence is decreasing if $a_{n+1} \le a_n \forall n$.

Results

5. Every convergent sequence is bounded. However the converse (every bounded sequence is convergent) is not true.

(**Proof**): Take any sequence $\{a_n\}_{n=1}^{\infty}$ which converges to a. We can find N such that for all $n \geq N$, $|a_n - a| < 1$. Hence $|a_n| < |a| + 1$ (Triangle inequality). Now choose $M = \max\{|a_1|, |a_2|, \ldots, |a_{N-1}|, (|a|+1)\}$. Thus for all n, $|a_n| \leq M$. Here is a bounded sequence which does not converge $1, -1, 1, -1, \ldots$

6. If a sequence is monotone and bounded then it converges (to its supremum). (Sketch of a proof): Suppose $\{a_n\}_{n=1}^{\infty}$ is increasing and bounded (do the other case yourself).

Define $S = \{a_1, a_2, \ldots\}$. S is non-empty and bounded and hence has a supremum (completeness axiom). Let $s = \sup S$. We shall show that $\lim a_n = s$. That is for every $\epsilon > 0$, we can find N such that for all $n \ge N$, $a_n \in B_{\epsilon}(s)$.

Take any $\epsilon > 0$. Since $s = \sup S$, there exist a_m such that $s > a_m > s - \epsilon$. As $\{a_n\}_{n=1}^{\infty}$ is an increasing sequence, for all n > m, $s > a_n \ge a_m > s - \epsilon$. Hence we are done.

Subsequence

Definition: Subequence A subsequence $\{b_n\}_{n=1}^{\infty}$ of a sequence $\{a_n\}_{n=1}^{\infty}$ is a selection from the original sequence. That is $b_1 = a_{n_1}, b_2 = a_{n_2}, b_3 = a_{n_3}, \ldots$, where $n_1 < n_2 < n_3 < \ldots$ (*i*) Order of the terms in subsequence same as original sequence, (*ii*) repetitions are not allowed.

Results

7. Subsequence of a convergent sequence converges to the same limit. (Sketch of a proof): Suppose $\{b_n\}_{n=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$ and $\lim a_n = a$. We want to show that $\lim b_n = a$. For every $\epsilon > 0$, we want to find N such that for all $n \ge N$, $b_n \in B_{\epsilon}(a)$. Choose the N such that $n \ge N$, $a_n \in B_{\epsilon}(a)$. This N will do the job for b_n as well.

Observation: In a sequence if we can find two subsequences which converge to different limits, then the original sequence diverges.

8. (Bolzano-Weierstrass Theorem) Every bounded sequence (convergent or not) of real numbers has a convergent subsequence.

(Sketch of a proof): Let $\{a_n\}_{n=1}^{\infty}$ be bounded by M. That is all $-M \leq a_n \leq M \forall n$. Step 1: Divide the interval [-M, M] into two equal parts [-M, 0] and [0, M]. At least one of these two interval has infinite number of elements from $\{a_n\}_{n=1}^{\infty}$. Call that interval I_1 and pick one element of $\{a_n\}_{n=1}^{\infty}$, say a_{n_1} such that $a_{n_1} \in I_1$. Step 2: Divide I_1 in two equal intervals. Once again at least one of these two intervals has infinite number of elements from $\{a_n\}_{n=1}^{\infty}$. Call that interval I_2 and pick one element of $\{a_n\}_{n=1}^{\infty}$, say a_{n_2} such that $a_{n_2} \in I_2$ and $n_2 > n_1$. This is possible because I_2 has infinite element from $\{a_n\}_{n=1}^{\infty}$. Repeat step 2 of this algorithm to obtain a subsequence a_{n_1}, a_{n_2}, \ldots of $\{a_n\}_{n=1}^{\infty}$. We want to show that this sequence converges. We now need a candidate for limit. Note that the sets $I_1 \supseteq I_2 \supseteq \ldots$ by construction. By the 'Nested Interval Theorem', $\cap_k I_k$ is non-empty. Pick any $x^* \in \cap_k I_k$. We shall show that $\lim a_{n_k} = x^*$. Take any $\epsilon > 0$. Choose N such that the length of I_N is less than ϵ . This is possible

Take any $\epsilon > 0$. Choose N such that the length of I_N is less than ϵ . This is possible because the length of I_N is $M.2^{-N}$, which converges to 0. Thus for all $k \ge N$, $|a_{n_k} - x^*| \le M.2^{-k} \le \epsilon$. Hence proved.

Functional Limit

Reading: Simon and Blume Ch. 14

We shall restrict our attention to functions from \mathcal{R}^{l} to \mathcal{R} . From now on, we shall use Eucledian distance.

Definition: Functional limit

If for all nontrivial sequence $\{x_n\}_{n=1}^{\infty}$ in A which converge to c, the sequence of functional values $\{f(x_n)\}_{n=1}^{\infty}$ converges to M then **functional limit** of f at c is M. This is denoted by $\lim_{x\to c} f(x) = M$.

Observation: Note that the value of f at c is not relevant for the limit.

$$\begin{split} & \frac{\text{Examples}}{1. \ A = [0, 2); \ f(x) = 2x. \ \text{What is } \lim_{x \to 2} f(x)? \ \text{Ans: } 4 \\ & 2. \ A = \mathcal{R}, \ f(x) = |x|. \ \text{What is } \lim_{x \to 0} f(x)? \ \text{Ans: } 0 \\ & 3. \ A = \mathcal{R}^2, \ f(x) = x_1 x_2. \ \text{What is } \lim_{x \to 0} f(x)? \ \text{Ans: } 0 \\ & 4. \ A = \mathcal{R}, \ f(x) = \sin\left(\frac{1}{x}\right). \ \text{What is } \lim_{x \to 0} f(x)? \ \text{Ans: } 0 \\ & 4. \ \text{A = } \mathcal{R}, \ f(x) = \sin\left(\frac{1}{x}\right). \ \text{What is } \lim_{x \to 0} f(x)? \ \text{Take two sequence: } a_n = \frac{1}{2n\pi} \ \text{and } b_n = \frac{1}{(2n\pi + \frac{\pi}{2})}. \ \{f(a_n)\}_{n=1}^{\infty} \ \text{converges to } 0 \ \text{but} \\ & \{f(b_n)\}_{n=1}^{\infty} \ \text{converges to } 1. \ \text{Hence } \lim_{x \to 0} \sin\left(\frac{1}{x}\right) \ \text{does not exist.} \end{split}$$

Alternative definition: Functional limit

If for every $\epsilon > 0$, there exists $\delta > 0$ such that $x \in V_{\delta}(c)$ and $x \neq c$ implies $f(\overline{x}) \in V_{\epsilon}(M)$ then functional limit of f at c is M.

Observation Two definitions of functional limit are equivalent.

Sketch of a proof: First defn. \Rightarrow Second defn.: Let $\lim_{x\to c} f(x) = M$ by first definition. We shall prove by contradiction. Suppose there exists an ϵ , for which we can not find a δ . That is for for all δ , there exist a point x, which is in δ -neighbourhood of c but f(x) is not in ϵ -neighbourhood of M. We can choose $\delta = \frac{1}{k}$ for $k = 1, 2, \ldots$. For each we shall get x_k ($x_k \neq c$) such that $d(x_k, c) < \frac{1}{k}$ but $d(f(x_k), M) \geq \epsilon$. This $\{x_k\}_{k=1}^{\infty}$ is a non-trivial sequence which converges to c but $\{f(x_k)\}_{k=1}^{\infty}$ does not converge to M. We have reached a contradiction. Second defn. \Rightarrow First defn.: Let $\lim_{x\to c} f(x) = M$ by second definition. Take a non-trivial sequence $\{x_k\}_{k=1}^{\infty}$ which converges to c. We want to show that $\{f(x_k)\}_{k=1}^{\infty}$ converges to M. Take any $\epsilon > 0$. By second definition, we can find a $\delta > 0$ such that for all $x \in B_{\delta}(x)$ implies $f(x) \in B_{\epsilon}(M)$. Since $\lim_{x \to c} x_k = c$, given δ . I can find N such that $x_k \in B_{\delta}(x)$ for all $k \geq N$. Hence $f(x_k) \in B_{\epsilon}(M)$ for all $k \geq N$. Therefore $\{f(x_k)\}_{k=1}^{\infty}$ converges to M.

Continuity

Definition: Continuity

Let $f : A \to \mathcal{R}$, where $A \subseteq \mathcal{R}^{I}$. f is **continuous** at $c \in A$, if for every $\epsilon > 0$, there exists $\delta > 0$ such that $x \in V_{\delta}(c)$ implies $f(x) \in V_{\epsilon}(f(\overline{c}))$.

Observation 1: This is the same definition as functional limit with $\lim_{x\to c} = f(c)$, except that we have removed the restriction on $x \neq c$. Equivalently it removes the restriction on non-trivial sequence in first definition.

Observation 2: If f is continuous at every point in the domain A, then we say that f is continuous on A.

Examples

- 1. $A = \mathcal{R}$, f(x) = |x| is continuous at 0. In fact f is continuous on A.
- 2. $A = \mathcal{R}^2$, $f(x) = x_1 x_2$ is continuous function on A.

3. $A = \mathcal{R}^2$, $f(x) = \max\{x_1, x_2\}$ is continuous function on A.

4. $A = \mathcal{R}$, $f(x) = \lceil x \rceil$ = smallest integer $\geq x$. f is not continuous at integers.

4. Any function defined on finite domain is continuous.

Useful Results

Let $f : A \to \mathcal{R}$ and $g : A \to \mathcal{R}$ are continuous at $c \in A$. Then

1. For $\alpha \in \mathcal{R}$, $\alpha f(x)$ is continuous at *c*.

- 2. f(x) + g(x) is continuous at c.
- 3. f(x)g(x) is continuous at c.
- 4. f(x)/g(x) is continuous at c.

5. $f : A \to \mathcal{R}$ is continuous at $c \in A$. $g : f(A) \to \mathcal{R}$ is continuous at f(c). Then $f \circ g$ is continuous at c.

Intermediate Value Theorem: $f : [a, b] \rightarrow \mathcal{R}$ is continuous function such that $f(a) \ge 0$ and $f(b) \leq 0$ (or the opposite). Then there exists $c \in [a, b]$ such that f(c) = 0. **Sketch of a proof**: Lets take the case f(a) > 0 and f(b) < 0. Define $S = \{x \in [a, b] \mid f(x) > 0\}.$ S is non-empty because $a \in S$. Thus S has a supremum, denote it by c. c must be smaller than b because $b \notin S$. We want to show that f(c) = 0. Suppose that f(c) > 0. Lets show that there is an interval $(c, c + \delta_1)$ where f(x) > 0. This will contradict the fact that c is supremum of S. By continuity, for an $\epsilon \in (0, f(c))$, we can find $\delta_1 > 0$ such that $x \in V_{\delta_1}(c)$ implies $f(x) \in V_{\epsilon}(f(c))$. Thus for all x in $c < x < c + \delta_1$, $f(x) > f(c) - \epsilon > 0$. Now suppose that f(c) < 0. Lets show that there is an interval $(c - \delta_2, c)$ such that f(x) < 0. Then c can not be the supremum (second definition of supremum). Once again by continuity, for an $\epsilon \in (-f(c), 0)$, we can find $\delta_2 > 0$ such that $x \in V_{\delta_2}(c)$ implies $f(x) \in V_{\epsilon}(f(c))$. Thus for all x in $c - \delta_2 < x < c$, $f(x) < f(c) + \epsilon < 0.$ Hence f(x) = 0.

Derivative of function from R to R

This section will deal with functions $f : \mathcal{R} \to \mathcal{R}$. Derivative of f at c is the slope of graph of f at c. The difference quotient (f(x) - f(c))/(x - c) represents the line through two points (x, f(x) and (c, f(c)). We take the functional limit of this quotient as x approaches c to get the slope of tangent at c.

Definition: Derivative Derivative of f at c is $f'(c) = \lim_{x \to c} \frac{(f(x) - f(c))}{(x - c)}$ provided this limit exists. Otherwise f is not differentiable at c.

Examples:

1. $f(x) = x^2$. $f'(c) = \lim_{x \to c} \frac{(x^2 - c^2)}{(x - c)} = \lim_{x \to c} (x + c) = 2c$ 2. f(x) = |x|. $f'(0) = \lim_{x \to 0} \frac{(|x| - |c|)}{(x - c)}$ does not exist because the limit depends on whether we take positive or negative sequence.

Derivative of function from R to R

Observation 1: If f is differentiable at c then f is continuous at c. The converse is not true.

Proof: $\lim_{x \to c} f(x) - f(c) = \lim_{x \to c} \left[\frac{(f(x) - f(c))}{(x - c)} (x - c) \right] = \left[\lim_{x \to c} \frac{(f(x) - f(c))}{(x - c)} \right] [\lim_{x \to c} (x - c)] = f'(c) \cdot 0 = 0.$ Hence, $\lim_{x \to c} f(x) = f(c)$

Observation 2: Let f be differentiable at c. If h is small then f(c + h) is approximated by [f(c) + f'(c)h]. This follows from the definition of derivative.

Result 3: Let f and g have derivative at c. Then
(i)
$$(f + g)'(c) = f'(c) + g'(c)$$

(ii) $(fg)'(c) = f'(c)g(c) + g'(c)f(c)$
(iii) $\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - g'(c)f(c)}{(g(c))^2}$
(iv) If f is differentiable at c and g is differentiable at $f(c)$ then
 $(g \circ f)'(c) = g'(f(c))f'(c)$

Proof of (*iv*): Define $d(y) = \frac{g(y) - g(f(c))}{y - f(c)} - g'(f(c))$. Note that d(y) is defined for all $y \neq f(c)$ and $\lim_{y \to f(c)} d(y) = 0$. To complete the definition, choose d(f(c)) = 0 so that d is continuous at f(c). we can rewrite the above equation as g(y) - g(f(c)) = [g'(f(c)) + d(y)](y - f(c)). For all $t \neq c$, (using the above) we have $\frac{g(f(t)) - g(f(c))}{t - c} = [g'(f(c)) + d(f(t))] \frac{f(t) - f(c)}{t - c}$. Taking $\lim_{t \to c} w$ obtain $(g \circ f)'(c) = (\lim_{t \to c} [g'(f(c)) + d(f(t))]) \left(\lim_{t \to c} \frac{f(t) - f(c)}{t - c}\right) = g'(f(c))f'(c)$

Visualizing multivariable functions

(a) $f(x,y) = x^2 + y^2$

(b) cross section along x = c

Figure: Level curves

Derivative of function from \mathcal{R}^{\prime} to \mathcal{R}

Take $f : A \to \mathcal{R}$, where $A \subseteq \mathcal{R}^{l}$. First we shall study partial derivative of f.

Partial Derivative Partial derivative of $f(x_1, x_2, ..., x_l)$ at $\bar{x} = (\bar{x}_1, \bar{x}_2, ..., \bar{x}_l)$, with respect to x_i is defined as

In effect while calculating partial derivative, we treat f as a function of one variable at a time.

Example: $f(x_1, x_2) = x_1 x_2$. Partial of f at \bar{x} is $\frac{\partial f}{\partial x_1} = \bar{x}_2$, $\frac{\partial f}{\partial x_2} = \bar{x}_1$

Derivative of function from \mathcal{R}^{\prime} to \mathcal{R}

Notation:

1. $Df(\bar{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_l}\right)$ calculated at \bar{x} .

2. If the partial derivative of f exists for all i = 1, 2..., I for all $x \in A$ and these partial derivatives are continuous functions in A then we say that $f \in C^1(A)$ (called f is continuously differentiable on A).

Derivative

f is differentiable at $ar{x} \in A$ if there is a 1 imes I vector γ such that

$$\lim_{y \to \bar{x}} \frac{[f(y) - f(\bar{x}) - \gamma \cdot (y - \bar{x})]}{||y - \bar{x}||} = 0$$

Observations

1. Partial derivatives of f exists at \bar{x} and $\gamma = Df(\bar{x})$. Proof: Since the limit of $\frac{|f(y) - f(\bar{x}) - \gamma \cdot (y - \bar{x})|}{||y - \bar{x}||}$ exists, all sequences have the same limit. We take the sequence $\bar{x} + te_i$ where $t \to 0$. Hence $\lim_{t\to 0} \frac{|f(\bar{x}+te_i) - f(\bar{x}) - \gamma \cdot (te_i)|}{||te_i||} = 0$ $\Rightarrow \lim_{t\to 0} \frac{f(\bar{x}+te_i) - f(\bar{x})}{t} = \gamma \cdot (e_i) \Rightarrow \frac{\partial f}{\partial x_i}(\bar{x}) = \gamma_i$ 2, If h is small then $f(\bar{x} + h)$ is approximated by $[f(\bar{x}) + Df(\bar{x}) \cdot h]$. Equivalently $[f(\bar{x} + h) - f(\bar{x})]$ is approximated by $Df(\bar{x}) \cdot h$, which is called **Total derivative**. 3 f is continuous at \bar{x} . Proof: For all $y \neq \bar{x}$, we can write $[f(y) - f(\bar{x})] = \frac{[f(y) - f(\bar{x}) - \gamma \cdot (y - \bar{x})]}{||y - \bar{x}||} ||y - \bar{x}|| + Df(x) \cdot (y - \bar{x})$. Taking limit as $y \to \bar{x}$, we get our result.

Derivative of function from \mathcal{R}' to \mathcal{R}

Result (without proof): Take $f : A \to \mathcal{R}$, where $A \subseteq \mathcal{R}^{l}$. If partial derivatives of f exists and are continuous in some neighbourhood $V_{\epsilon}(\bar{x})$ around \bar{x} , then f is differentiable at \bar{x} .

Diagram of Tangent plane:

Derivative of function from \mathcal{R}^{\prime} to \mathcal{R}

Chain rule:

Sometime we shall deal with situations where x_1, x_2, \ldots, x_l are functions of a parameter $t \in \mathcal{R}$. Then we can write a composite function $g(t) = f(x_1(t), \ldots, x_l(t))$, where $g: \mathcal{R} \to \mathcal{R}$. We may want to know how g changes with t. When f and x_k are continuously differentiable for all k, This is given by $g'(t_0) = Df(x(t_0)) \cdot x'(t_0)$, where $x'(t_0) = (x'_1(t_0), x'_2(t_0), \ldots, x'_l(t_0))$ (We omit the proof, which is similar to chain rule in $\mathcal{R} \to \mathcal{R}$)

Second order partial derivative of f with respect to x_i and x_j at \bar{x} is defined as $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)(\bar{x}) = \left(\frac{\partial}{\partial x_i}\left(\frac{\partial f}{\partial x_j}\right)\right)(\bar{x})$ for all i = 1, 2, ..., I and j = 1, 2, ..., IIf first and second order partial derivative of f exists for all for all $x \in A$ and these partial derivatives are continuous functions in A then we say that $f \in C^2(A)$.

If
$$f \in C^2(A)$$
 then $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)(\bar{x}) = \left(\frac{\partial^2 f}{\partial x_j \partial x_i}\right)(\bar{x})$ for all i, j .

Second order partial derivative matrix is also called Hessian matrix

$$D^{2}f = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{1}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} \\ \vdots & \vdots & \vdots \\ \frac{\partial^{2}f}{\partial x_{1}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{1}} \end{bmatrix}$$