Bound of set

Upper bound of a set
Let S be a nonempty set of real numbers. Suppose there is a real number B such that $B \geq x \forall x \in S$. Then B is an upper bound for S. S is said to be bounded above by B. A set which has no upper bound is said to be unbounded above.
Observation 1: There can be many upper bounds for a set.
Observation 2: B need not be a member of S
Maximum of a set
If an upper bound B for set S (set of real numbers) is also a member of S, then B is the maximum of S. Thus $B=\max S$ if $B \in S$ and $x \leq B \forall x \in S$.
Observation 1: A set may not have maximum (Formally: There exists at least one set which does not have maximum).
Observation 2: Can there be multiple maximum? NO
Observation 3: If $B=\max S$ then B is the smallest upper bound of S.
Qn: Is there a smallest upper bound for sets without maximum? Let us first define our intended object formally.

Least upper bound or Supremum of a set
A real number B is called a least upper bound (or supremum) of a nonempty set S, if B has the following two properties:
(i) B is an upper bound for S. (ii) No number less than B is an upper bound for S.

We denote supremum by $B=\sup S$.
Observation 1: Can there be multiple supremums? NO

Supremum and Infimum

Completeness Axiom
Every nonempty set S of real numbers which is bounded above has a supremum; that is, there is a real number B such that $B=\sup S$.

Observation 1: $\sup S$ need not be in S.
Observation 2: $\sup S \in S \Leftrightarrow \sup S=\max S$
We can define lower bound, minimum and greatest lower bound (or infimum) in a similar fashion.
A real number L is called a greatest lower bound (or infimum) of a nonempty set S, if L has the following two properties:
(i) L is a lower bound for S, that is $L \leq x \forall x \in S$. (ii) No number greater than L is a lower bound for S. We denote infimum by $L=\inf S$.
If $\inf S \in S$ then $\inf S=\min S$.
Useful results
(i) (Reflection) Let S be a non-empty set. Define $-S=\{-x \mid x \in S\}$.
$B=\sup S \Leftrightarrow-B=\inf -S$.
(ii) Every nonempty set S of real numbers which is bounded below has an infimum.
(iii) (How to find a supremum?) Suppose that $z \in R$ is an upper bound of S.

Moreover for every choice of $\epsilon>0$, there exists an element $a \in S$ such that $a>z-\epsilon$.
$\Leftrightarrow z=\sup S$.
Does this result hold for finite set?
Write a similar result for infimum and prove.

Properties of Sup and Inf

More results

Let A and B are non-empty and bounded sets (that is bounded above and below) of \mathcal{R}.
(iv) (Addition) Suppose $C=\{a+b \mid a \in A, b \in B\}$. Then $\sup C=\sup A+\sup B$.
(v) (multiplication) Suppose $\alpha>0$ and $C=\{\alpha a \mid a \in A\}$. Then $\sup C=\alpha \sup A$.
(vi) (Order) Suppose A and B are such that for every pair $(a, b) \in A \times B, a \leq b$, then $\sup A \leq \inf B$.
Write similar properties for infimum and prove.
Result: Nested Interval Theorem
Assume we are given a closed interval $I_{n}=\left[a_{n}, b_{n}\right]=\left\{x \mid a_{n} \leq x \leq b_{n}\right\}$ for each positive integer n. Assume further that each I_{n} contains I_{n+1}. That is we have a nested sequence of closed intervals $I_{1} \supseteq I_{2} \supseteq I_{3} \ldots$. Then their intersection is nonempty, $\cap_{n=1}^{\infty} I_{n} \neq \emptyset$.
(Sketch of a Proof): Define $A=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots\right\}$.
Step 1: A is bounded above (by b_{1}) and bounded below (by a_{1}). Similarly B is bounded.
Step 2: For any pair a_{n}, b_{m}, show that $a_{n} \leq b_{m}$.
Step 3: Invoke Result (vi). We have $\sup A \leq \inf B$. Let $a=\sup A$ and $b=\sup B$.
Take the interval $[a, b]$.
Step 4: Show that $[a, b] \subseteq \cap_{n=1}^{\infty} I_{n}$: Take $x \in[a, b] \Rightarrow x \geq a$. Since sup $A=a$, we have $a \geq a_{n} \forall n$. Thus $x \geq a_{n}$. Similarly, $x \leq b_{n}$. Hence $x \in I_{n}$ for all n, implying $x \in \cap_{n=1}^{\infty} I_{n}$.

Proof of some results

(Proof of Result (iii)):
$\Rightarrow: z$ is an upper bound for S. We want to show that there is no other upper bound for S which is smaller than z. We prove by contradiction. That is we start with the negation that a smaller upper bound for S exists and reach a logical contradiction. Suppose $z^{\prime}<z$ and z^{\prime} is a upper bound for S. Choose $\epsilon=\frac{z-z^{\prime}}{2}$, which is >0. There is no $a \in S$ such that $a>z-\epsilon$. Because for all $a \in S, a \leq{z^{\prime}}^{2}\left(z^{\prime}\right.$ is an upper bound for S) and $z^{\prime}<z-\epsilon$. This contradicts LHS; hence done.
$\Leftarrow:$ Let $z=\sup S$. By definition z is an upper bound for S. We want to show that for each $\epsilon>0$, there exists $a \in S$ such that $a>z-\epsilon$. Again we prove by contradiction. We start with the negation. There exists $\epsilon>0$ such that for all $a \in S, a \leq z-\epsilon$. That would mean $(z-\epsilon)$ is an upper bound for S. This contradicts with the fact that z is the supremum.
(Proof of Result (iv)):
We prove the result in two steps - (1) $(\sup A+\sup B) \geq \sup C$ and (2) for every $\epsilon>0$, there exists $c \in C$ such that $c>(\sup A+\sup B)-\epsilon$. (this is sufficient by Result (iii)) Step 1: Take $\sup A+\sup B .(\sup A+\sup B) \geq a+b \forall a \in A, b \in B$. Equivalently $(\sup A+\sup B) \geq c \forall c \in C$. Thus $(\sup A+\sup B)$ an upper bound for C. By completeness axiom C has supremum. By definition of supremum, $(\sup A+\sup B) \geq \sup C$.
Step 2: Take any $\epsilon>0$. $(\sup A+\sup B)-\epsilon=\left(\sup A-\frac{\epsilon}{2}\right)+\left(\sup B-\frac{\epsilon}{2}\right)$. From Result (iii), we know that there exists $\tilde{a} \in A$ such that $\tilde{a}>\left(\sup A-\frac{\epsilon}{2}\right)$ and there exists $\tilde{b} \in B$ such that $\tilde{b}>\left(\sup B-\frac{\epsilon}{2}\right)$. Note $\tilde{c}=\tilde{a}+\tilde{b}$ is in C and $\tilde{c}>(\sup A+\sup B)-\epsilon$.

Sequence

Definition: Sequence
A sequence is a function $f: \mathcal{N} \rightarrow \mathcal{R} . f(n)$ is the n-th term on the list. We shall denote a sequence by $\left\{a_{n}\right\}_{1}^{\infty}$. So $f(n)=a_{n}$.
We are interested about the 'tail' of a sequence, that is how it behaves for large n, or as $n \rightarrow \infty$.

Different ways of writing a sequence
(i) $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$; (ii) $\left\{\frac{1}{2^{n-1}}\right\}_{n=1}^{\infty}$; (iii) $a_{1}=1, a_{n+1}=\frac{1}{2} a_{n}$

Before we proceed, we need one more definition.
Definition: Neighbourhood
For any $a \in \mathcal{R}$ and $\epsilon>0$, the ϵ-neighbourhood of a is the set of all points whose distance from a is strictly less than ϵ. Formally, $B_{\epsilon}(a)=\{x| | x-a \mid<\epsilon\}$.
Convergence of a sequence
A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to a: If for every $\epsilon>0$, there exists $N \in \mathcal{N}$ such that $\forall n \geq N, a_{n} \in B_{\epsilon}(a)$.
Observation 1: Choice of N is dependent on ϵ.
A sequence which does not converge to any $a \in \mathcal{R}$ is said to diverge.

Important Results

Results: Let $\lim a_{n}=a$ and $\lim b_{n}=b$

1. Take the sequence $\left\{c a_{n}\right\}_{n=1}^{\infty}$, where $c \in \mathcal{R} . \lim \left(c a_{n}\right)=c a$.
2. Take the sequence $\left\{a_{n}+b_{n}\right\}_{n=1}^{\infty} \cdot \lim \left(a_{n}+b_{n}\right)=a+b$.
3. If $a_{n} \leq c$ for all n, then $a \leq c$. Similarly, if $a_{n} \geq c$ then $a \geq c$.
4. If $a_{n} \leq b_{n}$ for all n, then $a \leq b$.
(Proof of Result 1.): If $c=0$ then it is trivial. Take $c \neq 0$. We want to show that for $\epsilon>0$, we can find N such that for all $n \geq N, c a_{n} \in B_{\epsilon}(c a)$.
Lets choose that N for which $a_{n} \in B_{\frac{\epsilon}{|c|}}(a)$ for all $n \geq N$. Lets check that this N will indeed work. $\left|c a_{n}-c a\right|=|c|\left|a_{n}-a\right|<|c| \cdot \frac{\epsilon}{|c|}=\epsilon$.
(Proof of Result 2.): We want to show that for $\epsilon>0$, we can find N such that for all $n \geq N, a_{n}+b_{n} \in B_{\epsilon}(a+b)$. Rest of the proof is about construction of such N.
Pick N_{1} such that $a_{n} \in B_{\frac{\epsilon}{2}}(a)$ for all $n \geq N_{1}$ (this is possible because $\lim a_{n}=a$).
Pick N_{2} such that $b_{n} \in B_{\frac{\epsilon}{2}}^{2}(b)$ for all $n \geq N_{2}$ (this is possible because $\lim b_{n}=b$).
Take $N=\max \left\{N_{1}, N_{2}\right\}$. Lets check that this N will work
$\left|\left(a_{n}+b_{n}\right)-(a+b)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$
(Proof of Result 3.): We shall prove this by contradiction. Suppose $a_{n} \leq c$ for all n but $a>c$. Let us choose $\epsilon=a-c / 2$. By convergence, there must exist N such that for all $n \geq N$ such that $a_{n} \in B_{\epsilon}(a)$. But then for all such $n, a_{n}>\left(a-\frac{a-c}{2}\right)=\frac{a+c}{2}>c$ (the last equality follows from $a>c$). We reach a contradiction.
(Proof of Result 4.): Construct a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ such that $x_{n}=\left(b_{n}-a_{n}\right)$ for all n. Using Result 1 and $2, \lim x_{n}=\left(\lim b_{n}-\lim a_{n}\right)=b-a$. Since $x_{n} \geq 0$ for all n, by Result $3, b-a \geq 0$.

Bounded and Monotone Sequence

Definition: Bounded Sequence
A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded by $M \in \mathcal{R}$, if for all $n,\left|a_{n}\right| \leq M$.
Definition: Monotone Sequence
A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is monotone if it is increasing or decreasing. A sequence is increasing if $a_{n+1} \geq a_{n}$ for all n. Similarly a sequence is decreasing if $a_{n+1} \leq a_{n} \forall n$.

Results

5. Every convergent sequence is bounded. However the converse (every bounded sequence is convergent) is not true.
(Proof): Take any sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ which converges to a. We can find N such that for all $n \geq N,\left|a_{n}-a\right|<1$. Hence $\left|a_{n}\right|<|a|+1$ (Triangle inequality).
Now choose $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N-1}\right|,(|a|+1)\right\}$. Thus for all $n,\left|a_{n}\right| \leq M$.
Here is a bounded sequence which does not converge $1,-1,1,-1, \ldots$
6. If a sequence is monotone and bounded then it converges (to its supremum). (Sketch of a proof): Suppose $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing and bounded (do the other case yourself).
Define $S=\left\{a_{1}, a_{2}, \ldots\right\} . S$ is non-empty and bounded and hence has a supremum (completeness axiom). Let $s=\sup S$. We shall show that $\lim a_{n}=s$. That is for every $\epsilon>0$, we can find N such that for all $n \geq N, a_{n} \in B_{\epsilon}(s)$.
Take any $\epsilon>0$. Since $s=\sup S$, there exist a_{m} such that $s>a_{m}>s-\epsilon$. As $\left\{a_{n}\right\}_{n=1}^{\infty}$ is an increasing sequence, for all $n>m, s>a_{n} \geq a_{m}>s-\epsilon$. Hence we are done.

Subsequence

Definition: Subequence
A subsequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ of a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a selection from the original sequence. That is $b_{1}=a_{n_{1}}, b_{2}=a_{n_{2}}, b_{3}=a_{n_{3}}, \ldots$, where $n_{1}<n_{2}<n_{3}<\ldots$
(i) Order of the terms in subsequence same as original sequence, (ii) repetitions are not allowed.

Results
7. Subsequence of a convergent sequence converges to the same limit. (Sketch of a proof): Suppose $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\lim a_{n}=a$. We want to show that $\lim b_{n}=a$. For every $\epsilon>0$, we want to find N such that for all $n \geq N, b_{n} \in B_{\epsilon}(a)$. Choose the N such that $n \geq N, a_{n} \in B_{\epsilon}(a)$. This N will do the job for b_{n} as well.
Observation: In a sequence if we can find two subsequences which converge to different limits, then the original sequence diverges.

Bolzano-Weierstrass Theorem

8. (Bolzano-Weierstrass Theorem) Every bounded sequence (convergent or not) of real numbers has a convergent subsequence.
(Sketch of a proof): Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be bounded by M. That is all $-M \leq a_{n} \leq M \forall n$. Step 1: Divide the interval $[-M, M$] into two equal parts $[-M, 0]$ and $[0, M]$. At least one of these two interval has infinite number of elements from $\left\{a_{n}\right\}_{n=1}^{\infty}$. Call that interval I_{1} and pick one element of $\left\{a_{n}\right\}_{n=1}^{\infty}$, say $a_{n_{1}}$ such that $a_{n_{1}} \in I_{1}$.
Step 2: Divide I_{1} in two equal intervals. Once again at least one of these two intervals has infinite number of elements from $\left\{a_{n}\right\}_{n=1}^{\infty}$. Call that interval I_{2} and pick one element of $\left\{a_{n}\right\}_{n=1}^{\infty}$, say $a_{n_{2}}$ such that $a_{n_{2}} \in I_{2}$ and $n_{2}>n_{1}$. This is possible because I_{2} has infinite element from $\left\{a_{n}\right\}_{n=1}^{\infty}$.
Repeat step 2 of this algorithm to obtain a subsequence $a_{n_{1}}, a_{n_{2}}, \ldots$ of $\left\{a_{n}\right\}_{n=1}^{\infty}$. We want to show that this sequence converges. We now need a candidate for limit. Note that the sets $I_{1} \supseteq I_{2} \supseteq \ldots$ by construction. By the 'Nested Interval Theorem', $\cap_{k} I_{k}$ is non-empty. Pick any $x^{*} \in \cap_{k} I_{k}$. We shall show that $\lim a_{n_{k}}=x^{*}$.
Take any $\epsilon>0$. Choose N such that the length of I_{N} is less than ϵ. This is possible because the length of I_{N} is $M .2^{-N}$, which converges to 0 . Thus for all $k \geq N$, $\left|a_{n_{k}}-x^{*}\right| \leq M .2^{-k} \leq \epsilon$. Hence proved.

Functional Limit

Reading: Simon and Blume Ch. 14
We shall restrict our attention to functions from \mathcal{R}^{\prime} to \mathcal{R}. From now on, we shall use Eucledian distance.
Definition: Functional limit
If for all nontrivial sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in A which converge to c, the sequence of functional values $\left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty}$ converges to M then functional limit of f at c is M. This is denoted by $\lim _{x \rightarrow c} f(x)=M$.
Observation: Note that the value of f at c is not relevant for the limit.

Examples

1. $A=[0,2) ; f(x)=2 x$. What is $\lim _{x \rightarrow 2} f(x)$? Ans: 4
2. $A=\mathcal{R}, f(x)=|x|$. What is $\lim _{x \rightarrow 0} f(x)$? Ans: 0
3. $A=\mathcal{R}^{2}, f(x)=x_{1} x_{2}$. What is $\lim _{x \rightarrow 0} f(x)$? Ans: 0
4. $A=\mathcal{R}, f(x)=\sin \left(\frac{1}{x}\right)$. What is $\lim _{x \rightarrow 0} f(x)$?

Take two sequence: $a_{n}=\frac{1}{2 n \pi}$ and $b_{n}=\frac{1}{\left(2 n \pi+\frac{\pi}{2}\right)} \cdot\left\{f\left(a_{n}\right)\right\}_{n=1}^{\infty}$ converges to 0 but
$\left\{f\left(b_{n}\right)\right\}_{n=1}^{\infty}$ converges to 1 . Hence $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.
Alternative definition: Functional limit
If for every $\epsilon>0$, there exists $\delta>0$ such that $x \in V_{\delta}(c)$ and $x \neq c$ implies
$f(\bar{x}) \in V_{\epsilon}(M)$ then functional limit of f at c is M.

Functional Limit

Observation Two definitions of functional limit are equivalent.
Sketch of a proof: First defn. \Rightarrow Second defn.: Let $\lim _{x \rightarrow c} f(x)=M$ by first definition. We shall prove by contradiction. Suppose there exists an ϵ, for which we can not find a δ. That is for for all δ, there exist a point x, which is in δ-neighbourhood of c but $f(x)$ is not in ϵ-neighbourhood of M. We can choose $\delta=\frac{1}{k}$ for $k=1,2, \ldots$. For each we shall get $x_{k}\left(x_{k} \neq c\right)$ such that $d\left(x_{k}, c\right)<\frac{1}{k}$ but $d\left(f\left(x_{k}\right), M\right) \geq \epsilon$. This $\left\{x_{k}\right\}_{k=1}^{\infty}$ is a non-trivial sequence which converges to c but $\left\{f\left(x_{k}\right)\right\}_{k=1}^{\infty}$ does not converge to M. We have reached a contradiction.
Second defn. \Rightarrow First defn.: Let $\lim _{x \rightarrow c} f(x)=M$ by second definition. Take a non-trivial sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ which converges to c. We want to show that $\left\{f\left(x_{k}\right)\right\}_{k=1}^{\infty}$ converges to M. Take any $\epsilon>0$. By second definition, we can find a $\delta>0$ such that for all $x \in B_{\delta}(x)$ implies $f(x) \in B_{\epsilon}(M)$. Since $\lim x_{k}=c$, given δ, I can find N such that $x_{k} \in B_{\delta}(x)$ for all $k \geq N$. Hence $f\left(x_{k}\right) \in B_{\epsilon}(M)$ for all $k \geq N$. Therefore $\left\{f\left(x_{k}\right)\right\}_{k=1}^{\infty}$ converges to M.

Continuity

Definition: Continuity
Let $f: A \rightarrow \mathcal{R}$, where $A \subseteq \mathcal{R}^{\prime} . f$ is continuous at $c \in A$, if for every $\epsilon>0$, there exists $\delta>0$ such that $x \in V_{\delta}(c)$ implies $f(x) \in V_{\epsilon}(f(c))$.
Observation 1: This is the same definition as functional limit with $\lim _{x \rightarrow c}=f(c)$, except that we have removed the restriction on $x \neq c$. Equivalently it removes the restriction on non-trivial sequence in first definition.
Observation 2: If f is continuous at every point in the domain A, then we say that f is continuous on A.

Examples

1. $A=\mathcal{R}, f(x)=|x|$ is continuous at 0 . In fact f is continuous on A.
2. $A=\mathcal{R}^{2}, f(x)=x_{1} x_{2}$ is continuous function on A.
3. $A=\mathcal{R}^{2}, f(x)=\max \left\{x_{1}, x_{2}\right\}$ is continuous function on A.
4. $A=\mathcal{R}, f(x)=\lceil x\rceil=$ smallest integer $\geq x . f$ is not continuous at integers.
5. Any function defined on finite domain is continuous.

Useful Results

Let $f: A \rightarrow \mathcal{R}$ and $g: A \rightarrow \mathcal{R}$ are continuous at $c \in A$. Then

1. For $\alpha \in \mathcal{R}, \alpha f(x)$ is continuous at c.
2. $f(x)+g(x)$ is continuous at c.
3. $f(x) g(x)$ is continuous at c.
4. $f(x) / g(x)$ is continuous at c.
5. $f: A \rightarrow \mathcal{R}$ is continuous at $c \in A . g: f(A) \rightarrow \mathcal{R}$ is continuous at $f(c)$. Then $f \circ g$ is continuous at c.

Intermediate Value Theorem

Intermediate Value Theorem: $f:[a, b] \rightarrow \mathcal{R}$ is continuous function such that $f(a) \geq 0$ and $f(b) \leq 0$ (or the opposite). Then there exists $c \in[a, b]$ such that $f(c)=0$.
Sketch of a proof: Lets take the case $f(a)>0$ and $f(b)<0$. Define $S=\{x \in[a, b] \mid f(x)>0\}$.
S is non-empty because $a \in S$. Thus S has a supremum, denote it by c. c must be smaller than b because $b \notin S$. We want to show that $f(c)=0$.
Suppose that $f(c)>0$. Lets show that there is an interval $\left(c, c+\delta_{1}\right)$ where $f(x)>0$. This will contradict the fact that c is supremum of S.
By continuity, for an $\epsilon \in(0, f(c))$, we can find $\delta_{1}>0$ such that $x \in V_{\delta_{1}}(c)$ implies $f(x) \in V_{\epsilon}(f(c))$. Thus for all x in $c<x<c+\delta_{1}, f(x)>f(c)-\epsilon>0$.
Now suppose that $f(c)<0$. Lets show that there is an interval $\left(c-\delta_{2}, c\right)$ such that $f(x)<0$. Then c can not be the supremum (second definition of supremum). Once again by continuity, for an $\epsilon \in(-f(c), 0)$, we can find $\delta_{2}>0$ such that $x \in V_{\delta_{2}}(c)$ implies $f(x) \in V_{\epsilon}(f(c))$. Thus for all x in $c-\delta_{2}<x<c$, $f(x)<f(c)+\epsilon<0$.
Hence $f(x)=0$.

Derivative of function from R to R

This section will deal with functions $f: \mathcal{R} \rightarrow \mathcal{R}$. Derivative of f at c is the slope of graph of f at c. The difference quotient $(f(x)-f(c)) /(x-c)$ represents the line through two points $(x, f(x)$ and ($c, f(c)$. We take the functional limit of this quotient as x approaches c to get the slope of tangent at c.

Definition: Derivative
Derivative of f at c is $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{(f(x)-f(c))}{(x-c)}$ provided this limit exists. Otherwise f is not differentiable at c.
Examples:

1. $f(x)=x^{2} . f^{\prime}(c)=\lim _{x \rightarrow c} \frac{\left(x^{2}-c^{2}\right)}{(x-c)}=\lim _{x \rightarrow c}(x+c)=2 c$
2. $f(x)=|x| . f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{(|x|-|c|)}{(x-c)}$ does not exist because the limit depends on whether we take positive or negative sequence.

Derivative of function from R to R

Observation 1: If f is differentiable at c then f is continuous at c. The converse is not true.
Proof: $\lim _{x \rightarrow c} f(x)-f(c)=\lim _{x \rightarrow c}\left[\frac{(f(x)-f(c))}{(x-c)}(x-c)\right]=$
$\left[\lim _{x \rightarrow c} \frac{(f(x)-f(c))}{(x-c)}\right]\left[\lim _{x \rightarrow c}(x-c)\right]=f^{\prime}(c) \cdot 0=0$. Hence, $\lim _{x \rightarrow c} f(x)=f(c)$
Observation 2: Let f be differentiable at c. If h is small then $f(c+h)$ is approximated by $\left[f(c)+f^{\prime}(c) h\right]$. This follows from the definition of derivative.
Result 3: Let f and g have derivative at c. Then
(i) $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$
(ii) $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+g^{\prime}(c) f(c)$
(iii) $\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-g^{\prime}(c) f(c)}{(g(c))^{2}}$
(iv) If f is differentiable at c and g is differentiable at $f(c)$ then
$(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) f^{\prime}(c)$
Proof of (iv): Define $d(y)=\frac{g(y)-g(f(c))}{y-f(c)}-g^{\prime}(f(c))$. Note that $d(y)$ is defined for all $y \neq f(c)$ and $\lim _{y \rightarrow f(c)} d(y)=0$. To complete the definition, choose $d(f(c))=0$ so that d is continuous at $f(c)$. we can rewrite the above equation as $g(y)-g(f(c))=\left[g^{\prime}(f(c))+d(y)\right](y-f(c))$.
For all $t \neq c$, (using the above) we have $\frac{g(f(t))-g(f(c))}{t-c}=\left[g^{\prime}(f(c))+d(f(t))\right] \frac{f(t)-f(c)}{t-c}$.
Taking $\lim _{t \rightarrow c}$, we obtain
$(g \circ f)^{\prime}(c)=\left(\lim _{t \rightarrow c}\left[g^{\prime}(f(c))+d(f(t))\right]\right)\left(\lim _{t \rightarrow c} \frac{f(t)-f(c)}{t-c}\right)=g^{\prime}(f(c)) f^{\prime}(c)$

Visualizing multivariable functions

(a) $f(x, y)=x^{2}+y^{2}$
(b) cross section along $x=c$

Level curves of $z=x^{2}+y^{2}$.
Figure: Level curves

Derivative of function from \mathcal{R}^{\prime} to \mathcal{R}

Take $f: A \rightarrow \mathcal{R}$, where $A \subseteq \mathcal{R}^{\prime}$. First we shall study partial derivative of f.
Partial Derivative
Partial derivative of $f\left(x_{1}, x_{2}, \ldots, x_{l}\right)$ at $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{l}\right)$, with respect to x_{i} is defined as

$$
\frac{\partial f}{\partial x_{i}}=\lim _{t \rightarrow 0} \frac{f\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{i}+t, \ldots, \bar{x}_{l}\right)-f\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{i}, \ldots, \bar{x}_{l}\right)}{t}=\lim _{t \rightarrow 0} \frac{f\left(\bar{x}+t e_{i}\right)-f(\bar{x})}{t}
$$

The graph of $x \mapsto f(x, b)$ on the slice $\{y=b\}$.

The graph of $y \mapsto f(a, y)$ on the slice $\{x=a\}$.

In effect while calculating partial derivative, we treat f as a function of one variable at a time.
Example: $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$. Partial of f at \bar{x} is $\frac{\partial f}{\partial x_{1}}=\bar{x}_{2}, \frac{\partial f}{\partial x_{2}}=\bar{x}_{1}$

Derivative of function from \mathcal{R}^{\prime} to \mathcal{R}

Notation:

1. $D f(\bar{x})=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{l}}\right)$ calculated at \bar{x}.
2. If the partial derivative of f exists for all $i=1,2 \ldots, I$ for all $x \in A$ and these partial derivatives are continuous functions in A then we say that $f \in \mathcal{C}^{1}(A)$ (called f is continuously differentiable on A).

Derivative

\bar{f} is differentiable at $\bar{x} \in A$ if there is a $1 \times /$ vector γ such that

$$
\lim _{y \rightarrow \bar{x}} \frac{[f(y)-f(\bar{x})-\gamma \cdot(y-\bar{x})]}{\|y-\bar{x}\|}=0
$$

Observations

1. Partial derivatives of f exists at \bar{x} and $\gamma=\operatorname{Df}(\bar{x})$.

Proof: Since the limit of $\frac{[f(y)-f(\bar{x})-\gamma \cdot(y-\bar{x})]}{\|y-\bar{x}\|}$ exists, all sequences have the same limit.
We take the sequence $\bar{x}+t e_{i}$ where $t \rightarrow 0$. Hence $\lim _{t \rightarrow 0} \frac{\left[f\left(\bar{x}+t e_{i}\right)-f(\bar{x})-\gamma \cdot\left(t e_{i}\right)\right]}{\left\|t e_{i}\right\|}=0$
$\Rightarrow \lim _{t \rightarrow 0} \frac{f\left(\bar{x}+t e_{i}\right)-f(\bar{x})}{t}=\gamma \cdot\left(e_{i}\right) \Rightarrow \frac{\partial f}{\partial x_{i}}(\bar{x})=\gamma_{i}$
2, If h is small then $f(\bar{x}+h)$ is approximated by $[f(\bar{x})+D f(\bar{x}) \cdot h]$. Equivalently [$f(\bar{x}+h)-f(\bar{x})$] is approximated by $D f(\bar{x}) \cdot h$, which is called Total derivative.
$3 f$ is continuous at \bar{x}.
Proof: For all $y \neq \bar{x}$, we can write $[f(y)-f(\bar{x})]=\frac{[f(y)-f(\bar{x})-\gamma \cdot(y-\bar{x})]}{\|y-\bar{x}\|}\|y-\bar{x}\|+D f(x) \cdot(y-\bar{x})$. Taking limit as $y \rightarrow \bar{x}$, we get our result.

Derivative of function from \mathcal{R}^{\prime} to \mathcal{R}

Result (without proof): Take $f: A \rightarrow \mathcal{R}$, where $A \subseteq \mathcal{R}^{\prime}$. If partial derivatives of f exists and are continuous in some neighbourhood $V_{\epsilon}(\bar{x})$ around \bar{x}, then f is differentiable at \bar{x}.

Diagram of Tangent plane:

Derivative of function from \mathcal{R}^{\prime} to \mathcal{R}

Chain rule:

Sometime we shall deal with situations where $x_{1}, x_{2}, \ldots, x_{1}$ are functions of a parameter $t \in \mathcal{R}$. Then we can write a composite function $g(t)=f\left(x_{1}(t), \ldots, x_{l}(t)\right)$, where $g: \mathcal{R} \rightarrow \mathcal{R}$. We may want to know how g changes with t. When f and x_{k} are continuously differentiable for all k, This is given by
$g^{\prime}\left(t_{0}\right)=D f\left(x\left(t_{0}\right)\right) \cdot x^{\prime}\left(t_{0}\right)$, where $x^{\prime}\left(t_{0}\right)=\left(x_{1}^{\prime}\left(t_{0}\right), x_{2}^{\prime}\left(t_{0}\right), \ldots, x_{l}^{\prime}\left(t_{0}\right)\right)$
(We omit the proof, which is similar to chain rule in $\mathcal{R} \rightarrow \mathcal{R}$)
Second order partial derivative of f with respect to x_{i} and x_{j} at \bar{x} is defined as $\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)(\bar{x})=\left(\frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right)\right)(\bar{x})$ for all $i=1,2, \ldots l$ and $j=1,2, \ldots$, l
If first and second order partial derivative of f exists for all for all $x \in A$ and these partial derivatives are continuous functions in A then we say that $f \in \mathcal{C}^{2}(A)$.
If $f \in \mathcal{C}^{2}(A)$ then $\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)(\bar{x})=\left(\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}\right)(\bar{x})$ for all i, j.
Second order partial derivative matrix is also called Hessian matrix

