
Bound of set

Upper bound of a set
Let S be a nonempty set of real numbers. Suppose there is a real number B such that
B ≥ x ∀x ∈ S . Then B is an upper bound for S . S is said to be bounded above by B.
A set which has no upper bound is said to be unbounded above.
Observation 1: There can be many upper bounds for a set.
Observation 2: B need not be a member of S

Maximum of a set
If an upper bound B for set S (set of real numbers) is also a member of S , then B is
the maximum of S. Thus B = max S if B ∈ S and x ≤ B ∀x ∈ S.
Observation 1: A set may not have maximum (Formally: There exists at least one set
which does not have maximum).
Observation 2: Can there be multiple maximum? NO
Observation 3: If B = max S then B is the smallest upper bound of S .

Qn: Is there a smallest upper bound for sets without maximum? Let us first define our
intended object formally.

Least upper bound or Supremum of a set
A real number B is called a least upper bound (or supremum) of a nonempty set S , if
B has the following two properties:
(i) B is an upper bound for S . (ii) No number less than B is an upper bound for S .
We denote supremum by B = sup S.
Observation 1: Can there be multiple supremums? NO



Supremum and Infimum

Completeness Axiom
Every nonempty set S of real numbers which is bounded above has a supremum; that
is, there is a real number B such that B = sup S .

Observation 1: sup S need not be in S .
Observation 2: sup S ∈ S ⇔ supS = max S

We can define lower bound, minimum and greatest lower bound (or infimum) in a
similar fashion.
A real number L is called a greatest lower bound (or infimum) of a nonempty set S ,
if L has the following two properties:
(i) L is a lower bound for S , that is L ≤ x ∀x ∈ S . (ii) No number greater than L is a
lower bound for S . We denote infimum by L = inf S .
If inf S ∈ S then inf S = min S .

Useful results
(i) (Reflection) Let S be a non-empty set. Define −S = {−x | x ∈ S}.
B = sup S ⇔ −B = inf −S .
(ii) Every nonempty set S of real numbers which is bounded below has an infimum.
(iii) (How to find a supremum?) Suppose that z ∈ R is an upper bound of S.
Moreover for every choice of ε > 0, there exists an element a ∈ S such that a > z − ε.
⇔ z = sup S .
Does this result hold for finite set?
Write a similar result for infimum and prove.



Properties of Sup and Inf

More results
Let A and B are non-empty and bounded sets (that is bounded above and below) of
R.
(iv) (Addition) Suppose C = {a + b | a ∈ A, b ∈ B}. Then supC = supA + supB.
(v) (multiplication) Suppose α > 0 and C = {αa | a ∈ A}. Then supC = α supA.
(vi) (Order) Suppose A and B are such that for every pair (a, b) ∈ A× B, a ≤ b, then
supA ≤ inf B.
Write similar properties for infimum and prove.

Result: Nested Interval Theorem
Assume we are given a closed interval In = [an, bn] = {x | an ≤ x ≤ bn} for each
positive integer n. Assume further that each In contains In+1. That is we have a
nested sequence of closed intervals I1 ⊇ I2 ⊇ I3 . . .. Then their intersection is
nonempty, ∩∞n=1In 6= ∅.
(Sketch of a Proof): Define A = {a1, a2, . . .} and B = {b1, b2, . . .}.
Step 1: A is bounded above (by b1) and bounded below (by a1). Similarly B is
bounded.
Step 2: For any pair an, bm, show that an ≤ bm.
Step 3: Invoke Result (vi). We have supA ≤ inf B. Let a = supA and b = supB.
Take the interval [a, b].
Step 4: Show that [a, b] ⊆ ∩∞n=1In: Take x ∈ [a, b]⇒ x ≥ a. Since supA = a, we
have a ≥ an∀n. Thus x ≥ an. Similarly, x ≤ bn. Hence x ∈ In for all n, implying
x ∈ ∩∞n=1In.



Proof of some results

(Proof of Result (iii)):
⇒: z is an upper bound for S . We want to show that there is no other upper bound
for S which is smaller than z. We prove by contradiction. That is we start with the
negation that a smaller upper bound for S exists and reach a logical contradiction.

Suppose z ′ < z and z ′ is a upper bound for S . Choose ε = z−z′

2
, which is > 0. There

is no a ∈ S such that a > z − ε. Because for all a ∈ S , a ≤ z ′ (z ′ is an upper bound
for S) and z ′ < z − ε. This contradicts LHS; hence done.
⇐: Let z = sup S. By definition z is an upper bound for S . We want to show that for
each ε > 0, there exists a ∈ S such that a > z − ε. Again we prove by contradiction.
We start with the negation. There exists ε > 0 such that for all a ∈ S, a ≤ z − ε.
That would mean (z − ε) is an upper bound for S . This contradicts with the fact that
z is the supremum.

(Proof of Result (iv)):
We prove the result in two steps - (1) (supA+ supB) ≥ supC and (2) for every ε > 0,
there exists c ∈ C such that c > (supA + supB)− ε. (this is sufficient by Result (iii))
Step 1: Take supA + supB. (supA + supB) ≥ a + b ∀a ∈ A, b ∈ B. Equivalently
(supA + supB) ≥ c ∀c ∈ C . Thus (supA + supB) an upper bound for C . By
completeness axiom C has supremum. By definition of supremum,
(supA + supB) ≥ supC .
Step 2: Take any ε > 0. (supA + supB)− ε =

(
supA− ε

2

)
+
(
supB − ε

2

)
. From

Result (iii), we know that there exists ã ∈ A such that ã >
(
supA− ε

2

)
and there

exists b̃ ∈ B such that b̃ >
(
supB − ε

2

)
. Note c̃ = ã + b̃ is in C and

c̃ > (supA + supB)− ε.



Sequence

Definition: Sequence
A sequence is a function f : N → R. f (n) is the n-th term on the list. We shall
denote a sequence by {an}∞1 . So f (n) = an.
We are interested about the ‘tail’ of a sequence, that is how it behaves for large n, or
as n→∞.

Different ways of writing a sequence

(i) 1,
1

2
,

1

4
,

1

8
, . . .; (ii)

{
1

2n−1

}∞
n=1

; (iii) a1 = 1, an+1 =
1

2
an

Before we proceed, we need one more definition.
Definition: Neighbourhood
For any a ∈ R and ε > 0, the ε-neighbourhood of a is the set of all points whose
distance from a is strictly less than ε. Formally, Bε(a) = {x | |x − a| < ε}.

Convergence of a sequence
A sequence {an}∞n=1 converges to a: If for every ε > 0, there exists N ∈ N such that
∀n ≥ N, an ∈ Bε(a).
Observation 1: Choice of N is dependent on ε.
A sequence which does not converge to any a ∈ R is said to diverge.



Important Results

Results: Let lim an = a and lim bn = b
1. Take the sequence {can}∞n=1, where c ∈ R. lim(can) = ca.
2. Take the sequence {an + bn}∞n=1. lim(an + bn) = a + b.
3. If an ≤ c for all n, then a ≤ c. Similarly, if an ≥ c then a ≥ c.
4. If an ≤ bn for all n, then a ≤ b.

(Proof of Result 1.): If c = 0 then it is trivial. Take c 6= 0. We want to show that for
ε > 0, we can find N such that for all n ≥ N, can ∈ Bε(ca).
Lets choose that N for which an ∈ B ε

|c|
(a) for all n ≥ N. Lets check that this N will

indeed work. |can − ca| = |c||an − a| < |c|. ε|c| = ε.

(Proof of Result 2.): We want to show that for ε > 0, we can find N such that for all
n ≥ N, an + bn ∈ Bε(a + b). Rest of the proof is about construction of such N.
Pick N1 such that an ∈ B ε

2
(a) for all n ≥ N1 (this is possible because lim an = a).

Pick N2 such that bn ∈ B ε
2

(b) for all n ≥ N2 (this is possible because lim bn = b).

Take N = max{N1,N2}. Lets check that this N will work
|(an + bn)− (a + b)| ≤ |an − a|+ |bn − b| < ε

2
+ ε

2
= ε

(Proof of Result 3.): We shall prove this by contradiction. Suppose an ≤ c for all n
but a > c. Let us choose ε = a− c/2 . By convergence, there must exist N such that
for all n ≥ N such that an ∈ Bε(a). But then for all such n, an > (a− a−c

2
) = a+c

2
> c

(the last equality follows from a > c). We reach a contradiction.

(Proof of Result 4.): Construct a sequence {xn}∞n=1 such that xn = (bn − an) for all n.
Using Result 1 and 2, lim xn = (lim bn − lim an) = b − a. Since xn ≥ 0 for all n, by
Result 3, b − a ≥ 0.



Bounded and Monotone Sequence

Definition: Bounded Sequence
A sequence {an}∞n=1 is bounded by M ∈ R, if for all n, |an| ≤ M.

Definition: Monotone Sequence
A sequence {an}∞n=1 is monotone if it is increasing or decreasing. A sequence is
increasing if an+1 ≥ an for all n. Similarly a sequence is decreasing if an+1 ≤ an ∀n.

Results
5. Every convergent sequence is bounded. However the converse (every bounded
sequence is convergent) is not true.
(Proof): Take any sequence {an}∞n=1 which converges to a. We can find N such that
for all n ≥ N, |an − a| < 1. Hence |an| < |a|+ 1 (Triangle inequality).
Now choose M = max{|a1|, |a2|, . . . , |aN−1|, (|a|+ 1)}. Thus for all n, |an| ≤ M.
Here is a bounded sequence which does not converge 1,−1, 1,−1, . . .

6. If a sequence is monotone and bounded then it converges (to its supremum).
(Sketch of a proof): Suppose {an}∞n=1 is increasing and bounded (do the other case
yourself).
Define S = {a1, a2, . . .}. S is non-empty and bounded and hence has a supremum
(completeness axiom). Let s = sup S . We shall show that lim an = s. That is for every
ε > 0, we can find N such that for all n ≥ N, an ∈ Bε(s).
Take any ε > 0. Since s = sup S, there exist am such that s > am > s − ε. As {an}∞n=1
is an increasing sequence, for all n > m, s > an ≥ am > s − ε. Hence we are done.



Subsequence

Definition: Subequence
A subsequence {bn}∞n=1 of a sequence {an}∞n=1 is a selection from the original
sequence. That is b1 = an1 , b2 = an2 , b3 = an3 , . . ., where n1 < n2 < n3 < . . .
(i) Order of the terms in subsequence same as original sequence, (ii) repetitions are
not allowed.

Results
7. Subsequence of a convergent sequence converges to the same limit.
(Sketch of a proof): Suppose {bn}∞n=1 is a subsequence of {an}∞n=1 and lim an = a.
We want to show that lim bn = a. For every ε > 0, we want to find N such that for all
n ≥ N, bn ∈ Bε(a). Choose the N such that n ≥ N, an ∈ Bε(a). This N will do the
job for bn as well.
Observation: In a sequence if we can find two subsequences which converge to
different limits, then the original sequence diverges.



Bolzano-Weierstrass Theorem

8. (Bolzano-Weierstrass Theorem) Every bounded sequence (convergent or not) of
real numbers has a convergent subsequence.
(Sketch of a proof): Let {an}∞n=1 be bounded by M. That is all −M ≤ an ≤ M ∀n.
Step 1: Divide the interval [−M,M] into two equal parts [−M, 0] and [0,M]. At least
one of these two interval has infinite number of elements from {an}∞n=1. Call that
interval I1 and pick one element of {an}∞n=1, say an1 such that an1 ∈ I1.
Step 2: Divide I1 in two equal intervals. Once again at least one of these two intervals
has infinite number of elements from {an}∞n=1. Call that interval I2 and pick one
element of {an}∞n=1, say an2 such that an2 ∈ I2 and n2 > n1. This is possible because
I2 has infinite element from {an}∞n=1.
Repeat step 2 of this algorithm to obtain a subsequence an1 , an2 , . . . of {an}∞n=1. We
want to show that this sequence converges. We now need a candidate for limit. Note
that the sets I1 ⊇ I2 ⊇ . . . by construction. By the ‘Nested Interval Theorem’, ∩k Ik is
non-empty. Pick any x∗ ∈ ∩k Ik . We shall show that lim ank = x∗.
Take any ε > 0. Choose N such that the length of IN is less than ε. This is possible
because the length of IN is M.2−N , which converges to 0. Thus for all k ≥ N,
|ank − x∗| ≤ M.2−k ≤ ε. Hence proved.



Functional Limit

Reading: Simon and Blume Ch. 14

We shall restrict our attention to functions from Rl to R. From now on, we shall use
Eucledian distance.

Definition: Functional limit
If for all nontrivial sequence {xn}∞n=1 in A which converge to c, the sequence of
functional values {f (xn)}∞n=1 converges to M then functional limit of f at c is M.
This is denoted by limx→c f (x) = M.

Observation: Note that the value of f at c is not relevant for the limit.

Examples
1. A = [0, 2); f (x) = 2x . What is limx→2 f (x)? Ans: 4
2. A = R, f (x) = |x |. What is limx→0 f (x)? Ans: 0
3. A = R2, f (x) = x1x2. What is limx→0 f (x)? Ans: 0
4. A = R, f (x) = sin

(
1
x

)
. What is limx→0 f (x)?

Take two sequence: an = 1
2nπ

and bn = 1

(2nπ+ π
2 )

. {f (an)}∞n=1 converges to 0 but

{f (bn)}∞n=1 converges to 1. Hence limx→0 sin
(

1
x

)
does not exist.

Alternative definition: Functional limit
If for every ε > 0, there exists δ > 0 such that x ∈ Vδ(c) and x 6= c implies
f (x) ∈ Vε(M) then functional limit of f at c is M.



Functional Limit

Observation Two definitions of functional limit are equivalent.

Sketch of a proof: First defn. ⇒ Second defn.: Let limx→c f (x) = M by first
definition. We shall prove by contradiction. Suppose there exists an ε, for which we
can not find a δ. That is for for all δ, there exist a point x , which is in
δ-neighbourhood of c but f (x) is not in ε-neighbourhood of M. We can choose δ = 1

k

for k = 1, 2, . . .. For each we shall get xk (xk 6= c) such that d(xk , c) < 1
k

but
d(f (xk ),M) ≥ ε. This {xk}∞k=1 is a non-trivial sequence which converges to c but
{f (xk )}∞k=1 does not converge to M. We have reached a contradiction.
Second defn. ⇒ First defn.: Let limx→c f (x) = M by second definition. Take a
non-trivial sequence {xk}∞k=1 which converges to c. We want to show that {f (xk )}∞k=1
converges to M. Take any ε > 0. By second definition, we can find a δ > 0 such that
for all x ∈ Bδ(x) implies f (x) ∈ Bε(M). Since lim xk = c, given δ, I can find N such
that xk ∈ Bδ(x) for all k ≥ N. Hence f (xk ) ∈ Bε(M) for all k ≥ N. Therefore
{f (xk )}∞k=1 converges to M.



Continuity

Definition: Continuity

Let f : A→R, where A ⊆ Rl . f is continuous at c ∈ A, if for every ε > 0,
there exists δ > 0 such that x ∈ Vδ(c) implies f (x) ∈ Vε(f (c)).

Observation 1: This is the same definition as functional limit with limx→c = f (c),
except that we have removed the restriction on x 6= c. Equivalently it removes the
restriction on non-trivial sequence in first definition.
Observation 2: If f is continuous at every point in the domain A, then we say that f
is continuous on A.

Examples
1. A = R, f (x) = |x | is continuous at 0. In fact f is continuous on A.
2. A = R2, f (x) = x1x2 is continuous function on A.
3. A = R2, f (x) = max{x1, x2} is continuous function on A.
4. A = R, f (x) = dxe = smallest integer ≥ x . f is not continuous at integers.
4. Any function defined on finite domain is continuous.

Useful Results
Let f : A→R and g : A→R are continuous at c ∈ A. Then
1. For α ∈ R, αf (x) is continuous at c.
2. f (x) + g(x) is continuous at c.
3. f (x)g(x) is continuous at c.
4. f (x)/g(x) is continuous at c.
5. f : A→R is continuous at c ∈ A. g : f (A)→R is continuous at f (c). Then f ◦ g
is continuous at c.



Intermediate Value Theorem

Intermediate Value Theorem: f : [a, b]→R is continuous function such that f (a) ≥ 0
and f (b) ≤ 0 (or the opposite). Then there exists c ∈ [a, b] such that f (c) = 0.

Sketch of a proof: Lets take the case f (a) > 0 and f (b) < 0. Define
S = {x ∈ [a, b] | f (x) > 0}.
S is non-empty because a ∈ S . Thus S has a supremum, denote it by c. c must be
smaller than b because b 6∈ S . We want to show that f (c) = 0.
Suppose that f (c) > 0. Lets show that there is an interval (c, c + δ1) where f (x) > 0.
This will contradict the fact that c is supremum of S .
By continuity, for an ε ∈ (0, f (c)), we can find δ1 > 0 such that x ∈ Vδ1

(c) implies
f (x) ∈ Vε(f (c)). Thus for all x in c < x < c + δ1, f (x) > f (c)− ε > 0.
Now suppose that f (c) < 0. Lets show that there is an interval (c − δ2, c) such that
f (x) < 0. Then c can not be the supremum (second definition of supremum).
Once again by continuity, for an ε ∈ (−f (c), 0), we can find δ2 > 0 such that
x ∈ Vδ2

(c) implies f (x) ∈ Vε(f (c)). Thus for all x in c − δ2 < x < c,
f (x) < f (c) + ε < 0.
Hence f (x) = 0.



Derivative of function from R to R

This section will deal with functions f : R→ R. Derivative of f at c is the slope of
graph of f at c. The difference quotient (f (x)− f (c))/(x − c) represents the line
through two points (x , f (x) and (c, f (c). We take the functional limit of this quotient
as x approaches c to get the slope of tangent at c.

Definition: Derivative

Derivative of f at c is f ′(c) = limx→c
(f (x)−f (c))

(x−c)
provided this limit exists. Otherwise

f is not differentiable at c.

Examples:

1. f (x) = x2. f ′(c) = limx→c
(x2−c2)

(x−c)
= limx→c (x + c) = 2c

2. f (x) = |x |. f ′(0) = limx→0
(|x|−|c|)

(x−c)
does not exist because the limit depends on

whether we take positive or negative sequence.



Derivative of function from R to R

Observation 1: If f is differentiable at c then f is continuous at c. The converse is
not true.
Proof: limx→c f (x)− f (c) = limx→c

[
(f (x)−f (c))

(x−c)
(x − c)

]
=[

limx→c
(f (x)−f (c))

(x−c)

]
[limx→c (x − c)] = f ′(c) · 0 = 0. Hence, limx→c f (x) = f (c)

Observation 2: Let f be differentiable at c. If h is small then f (c + h) is
approximated by [f (c) + f ′(c)h]. This follows from the definition of derivative.

Result 3: Let f and g have derivative at c. Then
(i) (f + g)′(c) = f ′(c) + g ′(c)
(ii) (fg)′(c) = f ′(c)g(c) + g ′(c)f (c)

(iii)
(

f
g

)′
(c) = f ′(c)g(c)−g′(c)f (c)

(g(c))2

(iv) If f is differentiable at c and g is differentiable at f (c) then
(g ◦ f )′(c) = g ′(f (c))f ′(c)

Proof of (iv): Define d(y) = g(y)−g(f (c))
y−f (c)

− g ′(f (c)). Note that d(y) is defined for all

y 6= f (c) and limy→f (c) d(y) = 0. To complete the definition, choose d(f (c)) = 0 so
that d is continuous at f (c). we can rewrite the above equation as
g(y)− g(f (c)) = [g ′(f (c)) + d(y)](y − f (c)).

For all t 6= c, (using the above) we have g(f (t))−g(f (c))
t−c

= [g ′(f (c)) +d(f (t))] f (t)−f (c)
t−c

.

Taking limt→c , we obtain

(g ◦ f )′(c) = (limt→c [g ′(f (c)) + d(f (t))])
(

limt→c
f (t)−f (c)

t−c

)
= g ′(f (c))f ′(c)



Visualizing multivariable functions

(a) f (x , y) = x2 + y2 (b) cross section along x = c

Figure: Level curves



Derivative of function from Rl to R
Take f : A→R, where A ⊆ Rl . First we shall study partial derivative of f .

Partial Derivative
Partial derivative of f (x1, x2, . . . , xl ) at x̄ = (x̄1, x̄2, . . . , x̄l ), with respect to xi is
defined as

∂f

∂xi
= lim

t→0

f (x̄1, x̄2, . . . , x̄i + t, . . . , x̄l )− f (x̄1, x̄2, . . . , x̄i , . . . , x̄l )

t
= lim

t→0

f (x̄ + tei )− f (x̄)

t

In effect while calculating partial derivative, we treat f as a function of one variable at
a time.
Example: f (x1, x2) = x1x2. Partial of f at x̄ is ∂f

∂x1
= x̄2, ∂f

∂x2
= x̄1



Derivative of function from Rl to R
Notation:
1. Df (x̄)=

(
∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xl

)
calculated at x̄ .

2. If the partial derivative of f exists for all i = 1, 2 . . . , l for all x ∈ A and these
partial derivatives are continuous functions in A then we say that f ∈ C1(A) (called f
is continuously differentiable on A).

Derivative
f is differentiable at x̄ ∈ A if there is a 1× l vector γ such that

lim
y→x̄

[f (y)− f (x̄)− γ · (y − x̄)]

||y − x̄ ||
= 0

Observations
1. Partial derivatives of f exists at x̄ and γ = Df (x̄).

Proof: Since the limit of [f (y)−f (x̄)−γ·(y−x̄)]
||y−x̄|| exists, all sequences have the same limit.

We take the sequence x̄ + tei where t → 0. Hence limt→0
[f (x̄+tei )−f (x̄)−γ·(tei )]

||tei ||
= 0

⇒ limt→0
f (x̄+tei )−f (x̄)

t
= γ · (ei ) ⇒ ∂f

∂xi
(x̄) = γi

2, If h is small then f (x̄ + h) is approximated by [f (x̄) + Df (x̄) · h]. Equivalently
[f (x̄ + h)− f (x̄)] is approximated by Df (x̄) · h, which is called Total derivative.

3 f is continuous at x̄ .
Proof: For all y 6= x̄ , we can write

[f (y)− f (x̄)] = [f (y)−f (x̄)−γ·(y−x̄)]
||y−x̄|| ||y − x̄ ||+ Df (x) · (y − x̄). Taking limit as y → x̄ ,

we get our result.



Derivative of function from Rl to R

Result (without proof): Take f : A→R, where A ⊆ Rl . If partial derivatives of f
exists and are continuous in some neighbourhood Vε(x̄) around x̄ , then f is
differentiable at x̄ .

Diagram of Tangent plane:



Derivative of function from Rl to R

Chain rule:
Sometime we shall deal with situations where x1, x2, . . . , xl are functions of a
parameter t ∈ R. Then we can write a composite function g(t) = f (x1(t), . . . , xl (t)),
where g : R→ R. We may want to know how g changes with t. When f and xk are
continuously differentiable for all k, This is given by
g ′(t0) = Df (x(t0)) · x ′(t0), where x ′(t0) = (x ′1(t0), x ′2(t0), . . . , x ′l (t0))
(We omit the proof, which is similar to chain rule in R→ R)

Second order partial derivative of f with respect to xi and xj at x̄ is defined as(
∂2f
∂xi∂xj

)
(x̄) =

(
∂
∂xi

(
∂f
∂xj

))
(x̄) for all i = 1, 2, . . . l and j = 1, 2, . . . , l

If first and second order partial derivative of f exists for all for all x ∈ A and these
partial derivatives are continuous functions in A then we say that f ∈ C2(A).

If f ∈ C2(A) then
(

∂2f
∂xi∂xj

)
(x̄) =

(
∂2f
∂xj∂xi

)
(x̄) for all i , j .

Second order partial derivative matrix is also called Hessian matrix

D2f =


∂2f

∂x1∂x1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xl

∂2f
∂x2∂x1

∂2f
∂x2∂x2

. . . ∂2f
∂x2∂xl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂2f
∂xl∂x1

∂2f
∂xl∂x2

. . . ∂2f
∂xl∂xl
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