

Aerodynamical characterization and optimization of a Velomobile

Candidate: Francesco Pretagostini Supervisor: Roberto Verzicco

What is a Velomobile?

The Velomobile is **closed** vehicle powered by an abundant, **sustainable** energy source: **human power**, usually, they are derived from **recumbent** bicycles or **tricycles**.

Over this structure an **aerodynamic lightweight shell** is often present to enhance the aerodynamic performances of the vehicle, to provide weather and crash **protection** and an overall practicality on a different level from a bicycle.

Why is it so special? Why not a normal bicycle?

- They are environmentally friendy and cheap to run
- Driving a velomobile requires three to four times less energy in comparison to a normal bicycle.
- Velomobiles are far more confortable than a normal bycicle
- Allow for storage space
- Velomobiles are also safer than normal bikes
- The aerodynamic shell provides water proofing

Let's look at some data!

Speed (km/h)	Flat road (250 W)	Flat road (100 W)	5% uphill (150 W)	2% downhill (100 W)	Strong wind ahead (150 W)
Neglected bicycle	23,5	15	6,5	25	3,9
Regular bicycle	29	20,5	9,7	29,5	5,5
Racing bicycle	37,5	27	11,6	38,5	9,3
Standard velomobile	41	28	8,6	50	12,1
Streamlined velomobile	50	34	9	63	17,4

Our Experience

After buying the vehicle in a **kit**, a group of students from the engineering sciences Bachelor degree assembles the vehicle to its present state.

Time to make it better...

The first step of every optimization is to make the **vehicle** available **in** a **virtual enviroment**.

For this reason the velomobile has been modelled using Solidworks, a **CAD** tool

The 3D model of the velomobile was envigased after **measuring** and analysing the real **dimensions** of the vehicle.

Given the peculiar geometric characteristics of the vehicle and their **importance** concerning the **accuracy** of the CFD results, it was decided to realise the **model** in a **number** of **distinct parts** to be assembled in a subsequent step.

Bottom-up

Once the parts were designed they have been brought together in an assembly.

Particular care has been given to replicating the **wheel-assembly geometry** so as to finely replicate the ride height and level of the vehicle.

In the end there were **3 versions** of the velomobile:

- The original one

- The closed underside

- The completely optimizied vehicle

Understanding the phenomenon...

A body immersed in a moving fluid experiences a **resultant force** due to the interaction between the body and the fluid surrounding it

This effect can be described in terms of **forces** at the **fluid boundary interface**

Ľ

 \mathcal{G}

$$\mathscr{L} = \int dF_y = -\int p \sin \theta \, dA + \int \tau_w \cos \theta \, dA \qquad \text{LIFT FORCE}$$
$$\mathscr{D} = \int dF_x = \int p \cos \theta \, dA + \int \tau_w \sin \theta \, dA \qquad \text{DRAG FORCE}$$

Define dimensionless lift and drag coefficients

$$C_L = rac{\mathscr{L}}{rac{1}{2}
ho U^2 A}$$
 and $C_D = rac{\mathfrak{D}}{rac{1}{2}
ho U^2 A}$

Let us focus on the drag...

There are 3 causes of drag:

- 1. Pressure drag \rightarrow drag that is due directly to the pressure on an object.
- 2. Friction drag \rightarrow part of the drag that is due directly to the shear stress, on the object.
- 3. Vortex Induced Drag \rightarrow is a by-product of lift or downforce.

How do we find all the quantities we need? CFD

Computational fluid dynamics (CFD) involves replacing the partial differential equations (in particular the Navier-Stokes equation) with discretized algebraic equations that approximate them.

- The CFD simulation solves for the relevant flow variables only at the discrete points, which make up the grid or mesh of the solution.
- Interpolation schemes are used to obtain values at non-grid point locations.

The CFD software used for this work is

In order to analyse the vehicle with the help of CFD, the CADs need to be converted to Stl files (STereo Lithography interface format).

In this format the geometry of every surface of the model is **discretized by means of triangles**.

Every ".stl" file contains all the **information** regarding the Cartesian **coordinates of the triangle's vertices** and those of the **normal vector** to the surface.

The succesive step is to define the **dimensions** of the virtual **wind tunnel**.

It is of pamamount importance to have dimensions **large enough** so as to **avoid** any **interaction** of the model with the top and side walls.

This can seriously alter the results!

For example these 2 wind tunnels give the following results for the drag:

19,1 N

		0	,7	Ν	
--	--	---	----	---	--

L

How fine the grid is is also very important

- **Too few** cells and we **don't see** whats happening over a certain dimension
- **Too many** and the computational **time rises** too much

The location of the fluid cells is also very important/

Having too many cells were is not needed or where we dont want to investigate is a waste

How do we set the mesh?-

Dimension		Calla		Coid an			
Midth	2	V Cells			ng		
		A 64		v 0.5			
Depth 8		Y 16		~ 0.5	_		7
Height 8		Z 16		~ 0.5		Fit	
Arrange	~	<u> </u>					
Position	upstream	⊖ downstream					
Distance	•	length	~				
Symmetry			Perio	odicity			
Option	symmetry y-p	ane		periodicity periodicity			
ocation	at the center	of STL bounding	box ~	periodicity			
Y+ 74.326	2						
Resolutions							
Name		Normal	Tangential	Normal layer	Tange	Normal	
Assieme	contubichiuso3	0.005	0.005	0.01	0.01	Tangential	
						Normal Javor	
						normanayer	
						Tangential la	aver
						Tangential la	ayer
<			. [>	Tangential la	Set
< Wall size 6		▲ Lay	er size 6		>	Tangential la	ayer Set
≪ Wall size 6 <i>Box windows</i>		Lay	er size 6	Sphere window	>	Tangential la	Set
Kall size 6 Box windows Assiemecont	ubichiuso3	Lay	er size 6	Sphere window	>	Tangential la	ayer Set
Kall size 6 Box windows Assiemecont min z (groun	ubichiuso3 d)1	Lay	er size 6	Sphere window	>	Tangential la	Set
Nall size 6 Box windows Assiemecont min z (groun	ubichiuso3 d)1	Lay	er size 6	Sphere window	>	Tangential la	Set
Wall size 6 Box windows Assiemecont min z (groun	ubichiuso3 d)1	Lay	er size 6	Sphere window	>	Tangential la	ayer Set
Nall size 6 Box windows Assiemecont min z (groun +	ubichiuso3 d)1	Lay	er size 6	Sphere window	>	Tangential la	Set
Wall size 6 Box windows Assiemecont min z (groun + Ekid points	ubichiuso 3 d) 1	Lay	er size 6	Sphere window	>	-	Edit
Nall size 6 Box windows Assiemecont min z (groun + Fluid points	ubichiuso3 d)1	Lay	er size 6	Sphere window	>	-	Edit
Wall size 6 Sox windows Assiemecont min z (groun + Fluid points 4 31075	ubichiuso3 d)1 	Edit	er size 6	Sphere window	>		Edit

The grid

Results				
Geometry	Vx	Fx	Fz	Cd
Original	10 m/s	10.1 N	-4.7 N	0.35
	15 m/s	23.1 N	-10.8 N	
Streamlined	10 m/s	4.8 N	-3.6 N	0.16
	15 m/s	10.7 N	-7,1 N	

Improvement:56%

Critical areas:

- 1) The recirculation zone inside the vehicle
- 2) The open cockpit that expose the cyclist to the flow
- 3) The flow detachment with consequent generation of vortices in the back section of the velomobile
- 4) Turbulent zone in the wheel area

Wake comparison

Thank you for your attention!