Proportional Variance Explained by QLT and Statistical Power

Proportional Variance Explained by QTL and Statistical Power

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Partitioning the Genetic Variance

- We previously focused on obtaining variance components of a quantitative trait to determine the proportion of the variance of the trait that can be attributed to both genetic (additive and dominance) and environment (shared and unique) factors
- We demonstrated that resemblance of trait values among relatives we can be used to obtain estimates of the variance components of a quantitative trait without using genotype data.
- For quantitative traits, there generally is no (apparent) simple Mendelian basis for variation in the trait

Partitioning the Genetic Variance

- May be a single gene strongly influenced by environmental factors
- May be the result of a number of genes of equal (or differing) effect
- Most likely, a combination of both multiple genes and environmental factors
- Examples: Blood pressure, cholesterol levels, IQ, height, etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

GWAS and Linear Regression

- Genome-wide association studies (GWAS) are commonly used for the identification of QTL
- Single SNP association testing with linear regression models are often used

Unrelated Samples

 $\hat{\mathbf{y}}_i = \boldsymbol{\mu} + \hat{\boldsymbol{\beta}} \mathbf{x}_i$

Partition of Phenotypic Values

- Today we will focus on
 - Contribution of a QTL to the variance of a quantitative trait
 - Statistical power for detecting QTL in GWAS
- Consider once again the classical quantitative genetics model of Y = G + E where Y is the phenotype value, G is the genotypic value, and E is the environmental deviation that is assumed to have a mean of 0 such that E(Y) = E(G)

Representation of Genotypic Values

▶ For a single locus with alleles A₁ and A₂, the genotypic values for the three genotypes can be represented as follows

Genotype Value =
$$\begin{cases} -a & \text{if genotype is } A_2A_2 \\ d & \text{if genotype is } A_1A_2 \\ a & \text{if genotype is } A_1A_1 \end{cases}$$

► If p and q are the allele frequencies of the A₁ and A₂ alleles, respectively in the population, we previously showed that

$$\mu_{G} = a(p-q) + d(2pq)$$

and that the genotypic value at a locus can be decomposed into additive effects and dominance deviations:

$$G_{ij} = G_{ij}^{A} + \delta_{ij} = \mu_{G} + \alpha_{i} + \alpha_{j} + \delta_{ij}$$

Linear Regression Figure for Genetic Values

Falconer model for single biallelic QTL

Var (X) = Regression Variance + Residual Variance = Additive Variance + Dominance Variance

15

Decomposition of Genotypic Values

The model can be given in terms of a linear regression of genotypic values on the number of copies of the A₁ allele such that:

$$G_{ij} = \beta_0 + \beta_1 X_1^{ij} + \delta_{ij}$$

(日) (同) (三) (三) (三) (○) (○)

where X_1^{ij} is the number of copies of the type A_1 allele in genotype G_{ij} , and with $\beta_0 = \mu_G + 2\alpha_2$ and $\beta_1 = \alpha_1 - \alpha_2 = \alpha$, the average effect of allele substitution.

• Recall that $\alpha = a + d(q - p)$ and that $\alpha_1 = q\alpha$ and $\alpha_2 = -p\alpha$

Additive Genetic Model

 The following additive model is commonly used association studies with quantitative traits

$$Y = \beta_0 + \beta_1 X + \epsilon$$

where X is the number of copies of the reference allele (A_1) and individual has

► For this a single locus trait, how would you interpret *ϵ* for this particular model?

Statistical Power for Detectng QTL

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- Assume, without loss of generality, that Y is a standardized trait with σ²_Y = 1
- Test statistics for $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$

$$T = \hat{\beta}_1 / \sigma(\hat{\beta}) \sim \mathbf{t}_{N-2} \approx N(0, 1) \text{ for large } N$$
$$T^2 = \hat{\beta}_1^2 / var(\hat{\beta}) \sim \mathbf{F}_{1,N-2} \approx \chi_1^2 \text{ for large } N$$

And we have that

$$var(\hat{eta}) = rac{\sigma_{\epsilon}^2}{S_{XX}} pprox rac{\sigma_{\epsilon}^2}{N\sigma_X^2} = rac{\sigma_{\epsilon}^2}{2Np(1-p)}$$

where S_{XX} is the corrected sum of squares for the X_i 's

Statistical Power for Detecting QTL

Interpret h²_s (note that we assume that trait is standardized such that σ²_Y = 1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Statistical Power for Detecting QTL

Also note that σ_e² = 1 − h_s², so we can write Var(β₁) as the following:

$$\operatorname{var}(\hat{eta}_1) = rac{\sigma_\epsilon^2}{2N
ho(1-
ho)} = rac{1-h_s^2}{2N
ho(1-
ho)}$$

To calculate power of the test statistic T² for a given sample size N, we need to first obtain the expected value of the non-centrality parameter λ of the chi-squared distribution which is the expected value of the test statistic T squared:

$$\lambda = [E(T)]^2 \approx \frac{\beta_1^2}{var(\hat{\beta}_1)} = \frac{2Np(1-p)[a+d(q-p)]^2}{1-h_s^2} = \frac{Nh_s^2}{1-h_s^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Power

Can also obtain the required sample size given type-I error α and power 1 − β, where the type-II error is β:

$$N = \frac{1 - h_s^2}{h_s^2} \left(z_{(1 - \alpha/2)} + z_{(1 - \beta)} \right)^2$$

where $z_{(1-\alpha/2)}$ and $z_{(1-\beta)}$ are the $(1-\alpha/2)$ th and $(1-\beta)$ th quantiles, respectively, for the standard normal distribution.

Statistical Power for Detecting QTL

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Genetic Power Calculator (PGC) http://pngu.mgh.harvard.edu/~purcell/gpc/

Genetic Power Calculator

Genetic Power Calculator

S. Purcell & P. Sham, 2001-2009

This site provides automated power analysis for variance components (VC) quantitative trait locus (QTL) linkage and association tests in sibships, and other common tests. Suggestions, comments, etc to <u>Shaun Purcell</u>.

If you use this site, please reference the following Bioinformatics article:

Purcell S, Cherny SS, Sham PC. (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics, 19(1):149-150.

Modules

Case-control for discrete traits	Notes
Case-control for threshold-selected quantitative traits	Notes
QTL association for sibships and singletons	Notes
TDT for discrete traits	Notes
TDT and parenTDT with ascertainment	Notes
TDT for threshold-selected quantitative traits	Notes
Epistasis power calculator	Notes
QTL linkage for sibships	Notes
De la l'élée Des vies de la trans	
Probability Function Calculator	Notes

Genetic Power Calculator

QTL Association for Sibships

Genetic Power Calculator (Shaun Purcell) http://pngu.mgh.harvard.edu/~purcell/gpc/

Figure 1 Statistical power of detection in GWAS for variants that explain 0.1–0.5% of the variation at a type I error rate of 5×10^{-7} (calculated using the Genetic Power Calculator¹⁵). Shown is the power to detect a variant with a given effect size, assuming this type I error rate, which is typical for a GWAS with a sample size of n = 5,000-40,000.

< 注▶ < 注▶ 注 のへ()

Missing Heritability

Disease	Number of loci	Percent of Heritability Measure Explained	Heritability Measure
Age-related macular degeneration	5	50%	Sibling recurrence risk
Crohn's disease	32	20%	Genetic risk (liability)
Systemic lupus ervthematosus	6	15%	Sibling recurrence risk
Type 2 diabetes	18	6%	Sibling recurrence risk
HDL cholesterol	7	5.2%	Phenotypic variance
Height	40	5%	Phenotypic
Early onset myocardial	9	2.8%	Phenotypic
Fasting glucose	4	1.5%	Phenotypic variance

NEWS FEATURE PERSONAL GENOMES

NATURE (ALL \$54) & November 2008

- GWAS works
- · Effect sizes are typically small
 - Disease: OR ~1.1 to ~1.3
 - Quantitative traits: % var explained <<1%

LD Mapping of QTL

 For GWAS, the QTL will generally not be genotyped in a study

Proportional Variance Explained by QLT and Statistical Power

LD

Linkage disequilibrium around an ancestral mutation

Sac

LD Mapping of QTL

- $r^2 = LD$ correlation between QTL and genotyped SNP
- Proportion of variance of the trait explained at a SNP $\approx r^2 h_s^2$
- Required sample size for detection is

$$N \approx \frac{1 - r^2 h_s^2}{r^2 h_s^2} \left(z_{(1 - \alpha/2)} + z_{(1 - \gamma)} \right)^2$$

 Power of LD mapping depends on the experimental sample size, variance explained by the causal variant and LD with a genotyped SNP