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Partitioning the Genetic Variance

I We previously focused on obtaining variance components of a
quantitative trait to determine the proportion of the variance
of the trait that can be attributed to both genetic (additive
and dominance) and environment (shared and unique) factors

I We demonstrated that resemblance of trait values among
relatives we can be used to obtain estimates of the variance
components of a quantitative trait without using genotype
data.

I For quantitative traits, there generally is no (apparent) simple
Mendelian basis for variation in the trait



Proportional Variance Explained by QLT and Statistical Power

Partitioning the Genetic Variance

I May be a single gene strongly influenced by environmental
factors

I May be the result of a number of genes of equal (or differing)
effect

I Most likely, a combination of both multiple genes and
environmental factors

I Examples: Blood pressure, cholesterol levels, IQ, height, etc.
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GWAS and Linear Regression

I Genome-wide association studies (GWAS) are commonly used
for the identification of QTL

I Single SNP association testing with linear regression models
are often used
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Partition of Phenotypic Values

I Today we will focus on
I Contribution of a QTL to the variance of a quantitative trait
I Statistical power for detecting QTL in GWAS

I Consider once again the classical quantitative genetics model
of Y = G + E where Y is the phenotype value, G is the
genotypic value, and E is the environmental deviation that is
assumed to have a mean of 0 such that E (Y ) = E (G )
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Representation of Genotypic Values

I For a single locus with alleles A1 and A2, the genotypic values
for the three genotypes can be represented as follows

Genotype Value =


−a if genotype is A2A2

d if genotype is A1A2

a if genotype is A1A1

I If p and q are the allele frequencies of the A1 and A2 alleles,
respectively in the population, we previously showed that

µG = a(p − q) + d(2pq)

and that the genotypic value at a locus can be decomposed
into additive effects and dominance deviations:

Gij = GA
ij + δij = µG + αi + αj + δij
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Linear Regression Figure for Genetic Values

Falconer model for single biallelic QTL 

Var (X) = Regression Variance + Residual Variance 
 = Additive Variance + Dominance Variance 
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Decomposition of Genotypic Values

I The model can be given in terms of a linear regression of
genotypic values on the number of copies of the A1 allele such
that:

Gij = β0 + β1X
ij
1 + δij

where X ij
1 is the number of copies of the type A1 allele in

genotype Gij , and with β0 = µG + 2α2 and
β1 = α1 − α2 = α, the average effect of allele substitution.

I Recall that α = a + d(q − p) and that α1 = qα and
α2 = −pα
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Additive Genetic Model

I The following additive model is commonly used association
studies with quantitative traits

Y = β0 + β1X + ε

where X is the number of copies of the reference allele (A1)
and individual has

I For this a single locus trait, how would you interpret ε for this
particular model?



Proportional Variance Explained by QLT and Statistical Power

Statistical Power for Detectng QTL

Y = β0 + β1X + ε

I Assume, without loss of generality, that Y is a standardized
trait with σ2Y = 1

I Test statistics for H0 : β1 = 0 versus Ha : β1 6= 0

T = β̂1/σ(β̂) ∼ tN−2 ≈ N(0, 1) for large N

T 2 = β̂21/var(β̂) ∼ F1,N−2 ≈ χ2
1 for large N

I And we have that

var(β̂) =
σ2ε
SXX

≈ σ2ε
Nσ2X

=
σ2ε

2Np(1− p)

where SXX is the corrected sum of squares for the Xi ’s



Proportional Variance Explained by QLT and Statistical Power

Statistical Power for Detecting QTL

I Y = β0 + β1X + ε, so we have that

σ2Y = β21σ
2
X + σ2ε = β212p(1− p) + σ2ε

I Recall that β21 = α2 = [a + d(q − p)]2, so

σ2Y = 2p(1− p)[a + d(q − p)]2 + σ2ε = h2s + σ2ε

where h2s = 2p(1− p)[a + d(q − p)]2.

I Interpret h2s (note that we assume that trait is standardized
such that σ2Y = 1)
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Statistical Power for Detecting QTL

I Also note that σ2ε = 1− h2s , so we can write Var(β̂1) as the
following:

var(β̂1) =
σ2ε

2Np(1− p)
=

1− h2s
2Np(1− p)

I To calculate power of the test statistic T 2 for a given sample
size N, we need to first obtain the expected value of the
non-centrality parameter λ of the chi-squared distribution
which is the expected value of the test statistic T squared:

λ = [E (T )]2 ≈ β21
var(β̂1)

=
2Np(1− p)[a + d(q − p)]2

1− h2s
=

Nh2s
1− h2s
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Power

I Can also obtain the required sample size given type-I error α
and power 1− β, where the type–II error is β :

N =
1− h2s
h2s

(
z(1−α/2) + z(1−β)

)2
where z(1−α/2) and z(1−β) are the (1− α/2)th and (1− β)th
quantiles, respectively, for the standard normal distribution.
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Statistical Power for Detecting QTL
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Genetic Power Calculator (PGC) 
http://pngu.mgh.harvard.edu/~purcell/gpc/ 
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Missing Heritability
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Disease Number 
of loci 

Percent of Heritability 
Measure Explained 

Heritability  
Measure 

Age-related macular 
degeneration 

5 50% Sibling recurrence 
risk 

Crohn’s disease 32 20% Genetic risk 
(liability) 

Systemic lupus 
erythematosus 

6 15% Sibling recurrence 
risk 

Type 2 diabetes 18 6% Sibling recurrence 
risk 

HDL cholesterol 7 5.2%  Phenotypic 
variance 

Height 40 5% Phenotypic 
variance 

Early onset myocardial 
infarction 

9 2.8% Phenotypic 
variance 

Fasting glucose 4 1.5% Phenotypic 
variance 
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LD Mapping of QTL
I For GWAS, the QTL will generally not be genotyped in a

study
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LD Mapping of QTL
Linkage disequilibrium around an 

ancestral mutation 

[Ardlie et al. 2002] 
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LD Mapping of QTL

I r2 = LD correlation between QTL and genotyped SNP

I Proportion of variance of the trait explained at a SNP ≈ r2h2s
I Required sample size for detection is

N ≈ 1− r2h2s
r2h2s

(
z(1−α/2) + z(1−γ)

)2
I Power of LD mapping depends on the experimental sample

size, variance explained by the causal variant and LD with a
genotyped SNP


