
1	



3D Viewing	



COMP 770	



Fall 2011	





2	



Viewing, backward and forward	



•  So far have used the backward approach to viewing	


–  start from pixel	


–  ask what part of scene projects to pixel	


–  explicitly construct the ray corresponding to the pixel	



•  Next will look at the forward approach	


–  start from a point in 3D	


–  compute its projection into the image	



•  Central tool is matrix transformations	


–  combines seamlessly with coordinate transformations used to position 

camera and model	


–  ultimate goal: single matrix operation to map any 3D point to its correct 

screen location.	





3	



Forward viewing	



•  Would like to just invert the ray generation process	



•  Problem 1: ray generation produces rays, not points in scene	



•  Inverting the ray tracing process requires division for the 
perspective case	





4	



Mathematics of projection	



•  Always work in eye coords	


–  assume eye point at 0 and plane perpendicular to z	



•  Orthographic case	


–  a simple projection: just toss out z	



•  Perspective case: scale diminishes with z	


–  and increases with d	





5	



Pipeline of transformations	



•  Standard sequence of transforms	





6	



Parallel projection: orthographic	



to implement orthographic, just toss out z:	





7	



Parallel projection: oblique	



to implement oblique, shear then toss out z:	





8	



View volume: orthographic	





9	



Viewing a cube of size 2 	



•  Start by looking at a restricted case: the canonical view volume	



•  It is the cube [0,1]3, viewed from the z direction	



•  Matrix to project it into a square image in [0,1]2 is trivial:	





10	



Viewing a cube of size 2	



•  To draw in image, need coordinates in pixel units, though	



•  Exactly the opposite of mapping (i,j) to (u,v) in ray generation	



–1	


–1	



1	



1	

 –.5	


–.5	



ny – .5	



nx – .5	





11	



Windowing transforms	



•  This transformation is worth generalizing: take one axis-aligned 
rectangle or box to another	


–  a useful, if mundane, piece of a transformation chain	



[Shirley3e f. 6-16; eq. 6-6] 	





12	



Viewport transformation	



–1	


–1	



1	



1	

 –.5	


–.5	



ny – .5	



nx – .5	





13	



Viewport transformation	



•  In 3D, carry along z for the ride	


–  one extra row and column	





14	



Orthographic projection	



•  First generalization: different view rectangle	


–  retain the minus-z view direction	



–  specify view by left, right, top, bottom (as in RT)	


–  also near, far	





15	



Clipping planes	



•  In object-order systems we always use at least two���
clipping planes that further constrain the view volume	


–  near plane: parallel to view plane; things between it and the���

viewpoint will not be rendered	


–  far plane: also parallel; things behind it will not be rendered	



•  These planes are:	


–  partly to remove unnecessary stuff (e.g. behind the camera)	


–  but really to constrain the range of depths	



(we’ll see why later)	





16	



Orthographic projection	



•  We can implement this by mapping the view volume���
to the canonical view volume.	



•  This is just a 3D windowing transformation!	





17	



Camera and modeling matrices	



•  We worked out all the preceding transforms starting from eye 
coordinates	


–  before we do any of this stuff we need to transform into that space	



•  Transform from world (canonical) to eye space is traditionally 
called the viewing matrix	


–  it is the canonical-to-frame matrix for the camera frame	


–  that is, Fc

–1	



•  Remember that geometry would originally have been in the 
object’s local coordinates; transform into world coordinates is 
called the modeling matrix, Mm	



•  Note some systems (e.g. OpenGL) combine the two into a 
modelview matrix and just skip world coordinates	





18	



Viewing transformation	



the camera matrix rewrites all coordinates in eye space	





19	



Orthographic transformation chain	



•  Start with coordinates in object’s local coordinates	


•  Transform into world coords (modeling transform, Mm)	


•  Transform into eye coords (camera xf., Mcam = Fc

–1)	


•  Orthographic projection, Morth	


•  Viewport transform, Mvp	





20	



Perspective projection	



similar triangles:	





21	



Homogeneous coordinates revisited	



•  Perspective requires division	


–  that is not part of affine transformations	


–  in affine, parallel lines stay parallel	



•  therefore not vanishing point	


•  therefore no rays converging on viewpoint	



•  “True” purpose of homogeneous coords: projection	





22	



Homogeneous coordinates revisited	



•  Introduced w = 1 coordinate as a placeholder	



–  used as a convenience for unifying translation with linear	



•  Can also allow arbitrary w	





23	



Implications of w	



•  All scalar multiples of a 4-vector are equivalent	



•  When w is not zero, can divide by w	


–  therefore these points represent “normal” affine points	



•  When w is zero, it’s a point at infinity, a.k.a. a direction	


–  this is the point where parallel lines intersect	


–  can also think of it as the vanishing point	



•  Digression on projective space	





24	



Perspective projection	



to implement perspective, just move z to w:	





25	



View volume: perspective	





26	



View volume: perspective (clipped)	





27	



Carrying depth through perspective	



•  Perspective has a varying denominator—can’t preserve depth!	



•  Compromise: preserve depth on near and far planes	



–  that is, choose a and b so that z’(n) = n and z’(f) = f.	





28	



Official perspective matrix	



•  Use near plane distance as the projection distance	


–  i.e., d = –n	



•  Scale by –1 to have fewer minus signs	


–  scaling the matrix does not change the projective transformation	





29	



Perspective projection matrix	



•  Product of perspective matrix with orth. projection matrix	





30	



Perspective transformation chain	



•  Transform into world coords (modeling transform, Mm)	


•  Transform into eye coords (camera xf., Mcam = Fc

–1)	


•  Perspective matrix, P	


•  Orthographic projection, Morth	


•  Viewport transform, Mvp	





31	



OpenGL view frustum: orthographic	



Note OpenGL puts the near and far planes at –n and –f���
so that the user can give positive numbers	





32	



OpenGL view frustum: perspective	



Note OpenGL puts the near and far planes at –n and –f���
so that the user can give positive numbers	





33	



Pipeline of transformations	



•  Standard sequence of transforms	




