
1	


3D Viewing	


COMP 770	


Fall 2011	




2	


Viewing, backward and forward	


•  So far have used the backward approach to viewing	

–  start from pixel	

–  ask what part of scene projects to pixel	

–  explicitly construct the ray corresponding to the pixel	


•  Next will look at the forward approach	

–  start from a point in 3D	

–  compute its projection into the image	


•  Central tool is matrix transformations	

–  combines seamlessly with coordinate transformations used to position 

camera and model	

–  ultimate goal: single matrix operation to map any 3D point to its correct 

screen location.	




3	


Forward viewing	


•  Would like to just invert the ray generation process	


•  Problem 1: ray generation produces rays, not points in scene	


•  Inverting the ray tracing process requires division for the 
perspective case	




4	


Mathematics of projection	


•  Always work in eye coords	

–  assume eye point at 0 and plane perpendicular to z	


•  Orthographic case	

–  a simple projection: just toss out z	


•  Perspective case: scale diminishes with z	

–  and increases with d	




5	


Pipeline of transformations	


•  Standard sequence of transforms	




6	


Parallel projection: orthographic	


to implement orthographic, just toss out z:	




7	


Parallel projection: oblique	


to implement oblique, shear then toss out z:	




8	


View volume: orthographic	




9	


Viewing a cube of size 2 	


•  Start by looking at a restricted case: the canonical view volume	


•  It is the cube [0,1]3, viewed from the z direction	


•  Matrix to project it into a square image in [0,1]2 is trivial:	




10	


Viewing a cube of size 2	


•  To draw in image, need coordinates in pixel units, though	


•  Exactly the opposite of mapping (i,j) to (u,v) in ray generation	


–1	

–1	


1	


1	
 –.5	

–.5	


ny – .5	


nx – .5	




11	


Windowing transforms	


•  This transformation is worth generalizing: take one axis-aligned 
rectangle or box to another	

–  a useful, if mundane, piece of a transformation chain	


[Shirley3e f. 6-16; eq. 6-6] 	




12	


Viewport transformation	


–1	

–1	


1	


1	
 –.5	

–.5	


ny – .5	


nx – .5	




13	


Viewport transformation	


•  In 3D, carry along z for the ride	

–  one extra row and column	




14	


Orthographic projection	


•  First generalization: different view rectangle	

–  retain the minus-z view direction	


–  specify view by left, right, top, bottom (as in RT)	

–  also near, far	




15	


Clipping planes	


•  In object-order systems we always use at least two���
clipping planes that further constrain the view volume	

–  near plane: parallel to view plane; things between it and the���

viewpoint will not be rendered	

–  far plane: also parallel; things behind it will not be rendered	


•  These planes are:	

–  partly to remove unnecessary stuff (e.g. behind the camera)	

–  but really to constrain the range of depths	


(we’ll see why later)	




16	


Orthographic projection	


•  We can implement this by mapping the view volume���
to the canonical view volume.	


•  This is just a 3D windowing transformation!	




17	


Camera and modeling matrices	


•  We worked out all the preceding transforms starting from eye 
coordinates	

–  before we do any of this stuff we need to transform into that space	


•  Transform from world (canonical) to eye space is traditionally 
called the viewing matrix	

–  it is the canonical-to-frame matrix for the camera frame	

–  that is, Fc

–1	


•  Remember that geometry would originally have been in the 
object’s local coordinates; transform into world coordinates is 
called the modeling matrix, Mm	


•  Note some systems (e.g. OpenGL) combine the two into a 
modelview matrix and just skip world coordinates	




18	


Viewing transformation	


the camera matrix rewrites all coordinates in eye space	




19	


Orthographic transformation chain	


•  Start with coordinates in object’s local coordinates	

•  Transform into world coords (modeling transform, Mm)	

•  Transform into eye coords (camera xf., Mcam = Fc

–1)	

•  Orthographic projection, Morth	

•  Viewport transform, Mvp	




20	


Perspective projection	


similar triangles:	




21	


Homogeneous coordinates revisited	


•  Perspective requires division	

–  that is not part of affine transformations	

–  in affine, parallel lines stay parallel	


•  therefore not vanishing point	

•  therefore no rays converging on viewpoint	


•  “True” purpose of homogeneous coords: projection	




22	


Homogeneous coordinates revisited	


•  Introduced w = 1 coordinate as a placeholder	


–  used as a convenience for unifying translation with linear	


•  Can also allow arbitrary w	




23	


Implications of w	


•  All scalar multiples of a 4-vector are equivalent	


•  When w is not zero, can divide by w	

–  therefore these points represent “normal” affine points	


•  When w is zero, it’s a point at infinity, a.k.a. a direction	

–  this is the point where parallel lines intersect	

–  can also think of it as the vanishing point	


•  Digression on projective space	




24	


Perspective projection	


to implement perspective, just move z to w:	




25	


View volume: perspective	




26	


View volume: perspective (clipped)	




27	


Carrying depth through perspective	


•  Perspective has a varying denominator—can’t preserve depth!	


•  Compromise: preserve depth on near and far planes	


–  that is, choose a and b so that z’(n) = n and z’(f) = f.	




28	


Official perspective matrix	


•  Use near plane distance as the projection distance	

–  i.e., d = –n	


•  Scale by –1 to have fewer minus signs	

–  scaling the matrix does not change the projective transformation	




29	


Perspective projection matrix	


•  Product of perspective matrix with orth. projection matrix	




30	


Perspective transformation chain	


•  Transform into world coords (modeling transform, Mm)	

•  Transform into eye coords (camera xf., Mcam = Fc

–1)	

•  Perspective matrix, P	

•  Orthographic projection, Morth	

•  Viewport transform, Mvp	




31	


OpenGL view frustum: orthographic	


Note OpenGL puts the near and far planes at –n and –f���
so that the user can give positive numbers	




32	


OpenGL view frustum: perspective	


Note OpenGL puts the near and far planes at –n and –f���
so that the user can give positive numbers	




33	


Pipeline of transformations	


•  Standard sequence of transforms	



