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Viewing, backward and forward

* So far have used the backward approach to viewing

start from pixel
ask what part of scene projects to pixel
explicitly construct the ray corresponding to the pixel

* Next will look at the forward approach

start from a point in 3D
compute its projection into the image

e Central tool is matrix transformations

combines seamlessly with coordinate transformations used to position
camera and model

ultimate goal: single matrix operation to map any 3D point to its correct
screen location.



Forward viewing

* Would like to just invert the ray generation process
* Problem I: ray generation produces rays, not points in scene

* Inverting the ray tracing process requires division for the
perspective case



Mathematics of projection

* Always work in eye coords
— assume eye point at 0 and plane perpendicular to z

* Orthographic case
— a simple projection: just toss out z

* Perspective case: scale diminishes with z
— and increases with d



Pipeline of transformations

* Standard sequence of transforms

object space | camera space

camera projection viewport
transformation transformation transformation
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screen space

modeling
transformation

canonical

world space .
view volume



Parallel projection: orthographic

projection
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to implement orthographic, just toss out z:
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Parallel projection: oblique
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View volume: orthographic




Viewing a cube of size 2

* Start by looking at a restricted case: the canonical view volume
* lItis the cube [0,1]3 viewed from the z direction

 Matrix to project it into a square image in [0,1]? is trivial:
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Viewing a cube of size 2

* To draw in image, need coordinates in pixel units, though

* Exactly the opposite of mapping (i,j) to (u,v) in ray generation




Windowing transforms

* This transformation is worth generalizing: take one axis-aligned
rectangle or box to another

— a useful, if mundane, piece of a transformation chain

[Shirley3e f. 6-16; eq. 6-6]
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Viewport transformation

1 ny— 5
—1 -5
—1 1 -5 nx— .5
-xscreen- I %‘“ 0 2‘2—_1- E; canonical-
_ Ny ny—1
Yscreen | = 0 ) 5 Ycanonical
1] 0 0 1 | L 1 |




Viewport transformation

* In 3D, carry along z for the ride
— one extra row and column
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Orthographic projection

* First generalization: different view rectangle
— retain the minus-z view direction
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— specify view by left, right, top, bottom (as in RT)
— also near, far



Clipping planes

* In object-order systems we always use at least two
clipping planes that further constrain the view volume

— near plane: parallel to view plane; things between it and the
viewpoint will not be rendered

— far plane: also parallel; things behind it will not be rendered

* These planes are:
— partly to remove unnecessary stuff (e.g. behind the camera)

— but really to constrain the range of depths
(we'll see why later)



Orthographic projection

* We can implement this by mapping the view volume
to the canonical view volume.

* This is just a 3D windowing transformation!
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Camera and modeling matrices

We worked out all the preceding transforms starting from eye
coordinates

— before we do any of this stuff we need to transform into that space

Transform from world (canonical) to eye space is traditionally
called the viewing matrix

— it is the canonical-to-frame matrix for the camera frame

— thatis, F!

Remember that geometry would originally have been in the
object’s local coordinates; transform into world coordinates is
called the modeling matrix, M_,

Note some systems (e.g. OpenGL) combine the two into a
modelview matrix and just skip world coordinates



Viewing transformation

the camera matrix rewrites all coordinates in eye space




Orthographic transformation chain

e Start with coordinates in object’s local coordinates

* Transform into world coords (modeling transform, M_)

° I = F -
Transform into eye coords (camera xf., M_,, = F')

* Orthographic projection, M,

* Viewport transform, MVP

Ps = Mvp MorthMcamMmpo
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Perspective projection

projection
plane

(v, 2)

similar triangles:
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Homogeneous coordinates revisited

* Perspective requires division
— that is not part of affine transformations

— in affine, parallel lines stay parallel
* therefore not vanishing point
* therefore no rays converging on viewpoint

« “True” purpose of homogeneous coords: projection
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Homogeneous coordinates revisited

* Introduced w = | coordinate as a placeholder
- - x
’ Y
H
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— used as a convenience for unifying translation with linear

* Can also allow arbitrary w
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Implications of w
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All scalar multiples of a 4-vector are equivalent

When w is not zero, can divide by w
— therefore these points represent ‘normal” affine points

When w is zero, it's a point at infinity, a.k.a. a direction
— this is the point where parallel lines intersect
— can also think of it as the vanishing point

Digression on projective space
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Perspective projection

projection
plane
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View volume: perspective
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View volume: perspective (clipped)
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Carrying depth through perspective

* Perspective has a varying denominator—can't preserve depth!

 Compromise: preserve depth on near and far planes
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— that is, choose a and b so that z'(n) = nand z'(f) = f.

Z(z)=az+b

result: a = —(n+ f) and b =nf (try it)
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Official perspective matrix

* Use near plane distance as the projection distance
— i.e,d=-n

* Scale by —| to have fewer minus signs
— scaling the matrix does not change the projective transformation
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Perspective projection matrix

* Product of perspective matrix with orth. projection matrix

1\'/-[per - MorthP

- 9 l -
= 0 0 =m0 o 0
10 ZFH 0 —Eljon 0 0
2 -+ —
0 0 an—;’:—_Jff 0 0 n+f —fn
0 0 0 1 | loo 1 0
-9 1+ -
- 0 = 0
2 b
I = ==
o f+ 2f
0 o [t 2z
0 0 1 0

29



Perspective transformation chain

Transform into world coords (modeling transform, M_))
: — F -

Transform into eye coords (camera xf, M_,, = F')

Perspective matrix, P

Orthographic projection, M_ .,

Viewport transform, MVP
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OpenGL view frustum: orthographic

(xp, yt, 1)

(X1 Yo y//

Note OpenGL puts the near and far planes at —n and —f
so that the user can give positive numbers
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OpenGL view frustum: perspective

(X, yt, —n)
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(X1, Y, —h)

Note OpenGL puts the near and far planes at —n and —f
so that the user can give positive numbers
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Pipeline of transformations

* Standard sequence of transforms

screen space

object space | camera space

camera projection viewport
transformation transformation transformation

o\

modeling
transformation

canonical

world space .
view volume
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