3D Viewing

COMP 770
Fall 201 |

Viewing, backward and forward

* So far have used the backward approach to viewing

start from pixel
ask what part of scene projects to pixel
explicitly construct the ray corresponding to the pixel

* Next will look at the forward approach

start from a point in 3D
compute its projection into the image

e Central tool is matrix transformations

combines seamlessly with coordinate transformations used to position
camera and model

ultimate goal: single matrix operation to map any 3D point to its correct
screen location.

Forward viewing

* Would like to just invert the ray generation process
* Problem I: ray generation produces rays, not points in scene

* Inverting the ray tracing process requires division for the
perspective case

Mathematics of projection

* Always work in eye coords
— assume eye point at 0 and plane perpendicular to z

* Orthographic case
— a simple projection: just toss out z

* Perspective case: scale diminishes with z
— and increases with d

Pipeline of transformations

* Standard sequence of transforms

object space | camera space

camera projection viewport
transformation transformation transformation

o\

screen space

modeling
transformation

canonical

world space .
view volume

Parallel projection: orthographic

projection

lane
P Q2

(v', 0)

to implement orthographic, just toss out z:

x’ T 1 0 0 o]
Y1 =1yl =10 1 0 O Z
1) [oo o0 1]

Parallel projection: oblique

projection O, 2)

! x4+ az | 1 0 o« 0] |F
5 N T T Y

View volume: orthographic

Viewing a cube of size 2

* Start by looking at a restricted case: the canonical view volume
* lItis the cube [0,1]3 viewed from the z direction

 Matrix to project it into a square image in [0,1]? is trivial:

oo -
o = O
o OO
0 O

Viewing a cube of size 2

* To draw in image, need coordinates in pixel units, though

* Exactly the opposite of mapping (i,j) to (u,v) in ray generation

Windowing transforms

* This transformation is worth generalizing: take one axis-aligned
rectangle or box to another

— a useful, if mundane, piece of a transformation chain

[Shirley3e f. 6-16; eq. 6-6]

3 -z
y] 1 0 z [’—_—~ 0 o]t o —a:..]
(xps ¥ o '
1 /] 0 l y; D Yy —i D 0 1 —y!'J
‘ \ Yn—
G v 0 0 1 0 1 0 0 1
translate (X =Xt ¥ = YO
™ ’ ’ ’ ! - ,1) ’ -, ” 7
x; X: -EE —I, O ‘EL“L“_.L}L'E"
) —I jp—IL)
r 3 y / p / f' / y
| y 0 yh_y.'. yiy"l_yhy!
scale Yh—Yi Yh—Yl
W L O 0 1
(o = X Yi = ¥D)
translate (X7 ¥
X . X

Viewport transformation

1 ny— 5
—1 -5
—1 1 -5 nx— .5
-xscreen- I %‘“ 0 2‘2—_1- E; canonical-
_ Ny ny—1
Yscreen | = 0) 5 Ycanonical
1] 0 0 1 | L 1 |

Viewport transformation

* In 3D, carry along z for the ride
— one extra row and column

oo onf
o onlf o
o~ o o
3
"

p— owr‘

Orthographic projection

* First generalization: different view rectangle
— retain the minus-z view direction

y (r.t,f)
(1.b,n) ‘————-CB\
<=
Z X

— specify view by left, right, top, bottom (as in RT)
— also near, far

Clipping planes

* In object-order systems we always use at least two
clipping planes that further constrain the view volume

— near plane: parallel to view plane; things between it and the
viewpoint will not be rendered

— far plane: also parallel; things behind it will not be rendered

* These planes are:
— partly to remove unnecessary stuff (e.g. behind the camera)

— but really to constrain the range of depths
(we'll see why later)

Orthographic projection

* We can implement this by mapping the view volume
to the canonical view volume.

* This is just a 3D windowing transformation!

— —

! ! / /
£y — &Iy 0 0 .L.IJ.»}‘—'.EL.E!’

Lh—&L] Lh—Ij

Yy — Y] YiYn—Yy Yl
0 e 0
Yh—Ul YUh—Yi

0 0 zy —27 Z)Zp— 2} 2

Zh — 21 Zh—Z]

0 0 0 1

- —

1
o
o~

Morth —

OOI’MO
o-l

oo O |

Camera and modeling matrices

We worked out all the preceding transforms starting from eye
coordinates

— before we do any of this stuff we need to transform into that space

Transform from world (canonical) to eye space is traditionally
called the viewing matrix

— it is the canonical-to-frame matrix for the camera frame

— thatis, F!

Remember that geometry would originally have been in the
object’s local coordinates; transform into world coordinates is
called the modeling matrix, M_,

Note some systems (e.g. OpenGL) combine the two into a
modelview matrix and just skip world coordinates

Viewing transformation

the camera matrix rewrites all coordinates in eye space

Orthographic transformation chain

e Start with coordinates in object’s local coordinates

* Transform into world coords (modeling transform, M_)

° I = F -
Transform into eye coords (camera xf., M_,, = F')

* Orthographic projection, M,

* Viewport transform, MVP

Ps = Mvp MorthMcamMmpo

'7_75.. O 0 'n,,r2—i- -T%Z [2) 0 _t:_-i—_é- ,
|0 B0 || 0 & EZJ —i [u v w e]
n
0 0 1 0 0 0 2 2010 0 0 1
0 0 0o 1 fLo o0 o 1

Perspective projection

projection
plane

(v, 2)

similar triangles:

y/
d - =2
y' = —dy/z

20

Homogeneous coordinates revisited

* Perspective requires division
— that is not part of affine transformations

— in affine, parallel lines stay parallel
* therefore not vanishing point
* therefore no rays converging on viewpoint

« “True” purpose of homogeneous coords: projection

21

Homogeneous coordinates revisited

* Introduced w = | coordinate as a placeholder
- - x
’ Y
H
’ 2
- - 1

— used as a convenience for unifying translation with linear

* Can also allow arbitrary w

€T WL
gyl WYy
V7 wz
1 w

Implications of w

wx

wy

wz
w

—_ N e 8

All scalar multiples of a 4-vector are equivalent

When w is not zero, can divide by w
— therefore these points represent ‘normal” affine points

When w is zero, it's a point at infinity, a.k.a. a direction
— this is the point where parallel lines intersect
— can also think of it as the vanishing point

Digression on projective space

23

Perspective projection

projection
plane

(v, 2)

' —dz/z dx
vl = | —dy/z| ~ dy | =
1 L |—Z

d 0
0 d

0 0

0
0
—1

24

View volume: perspective

25

View volume: perspective (clipped)

26

Carrying depth through perspective

* Perspective has a varying denominator—can't preserve depth!

 Compromise: preserve depth on near and far planes

T’ 7% d 0 0 O0f |z
Yy’ g1 [0 4 0 0f |y
171z "o 0 a b |z
|1 |—Z] 0 0 —1 0f |1

— that is, choose a and b so that z'(n) = nand z'(f) = f.

Z(z)=az+b

result: a = —(n+ f) and b =nf (try it)

27

Official perspective matrix

* Use near plane distance as the projection distance
— i.e,d=-n

* Scale by —| to have fewer minus signs
— scaling the matrix does not change the projective transformation

0 0 0 7
p_ 0 n 0 0
0 0 n+f —fn
0 0 1 0 _

28

Perspective projection matrix

* Product of perspective matrix with orth. projection matrix

1\'/-[per - MorthP

- 9 l -
= 0 0 =m0 o 0
10 ZFH 0 —Eljon 0 0
2 -+ —
0 0 an—;’:—_Jff 0 0 n+f —fn
0 0 0 1 | loo 1 0
-9 1+ -
- 0 = 0
2 b
I = ==
o f+ 2f
0 o [t 2z
0 0 1 0

29

Perspective transformation chain

Transform into world coords (modeling transform, M_))
: — F -

Transform into eye coords (camera xf, M_,, = F')

Perspective matrix, P

Orthographic projection, M_ .,

Viewport transform, MVP

Ps = Mvp MorthPMcam Mn Po

e 00 “m,;i‘ = (2) 0 —g' m 0 0 0 EN
n Ny, —

_ 0 = 0 —=u— 0 5 0 — b 0 n 0 0 M., M.. Yo

0 0 1 0 0 0 2 2|0 0 n+f —fn Zo

0 0 0 1]J[lo o o0 1 /0 0 1 0 | | 1]

30

OpenGL view frustum: orthographic

(xp, yt, 1)

(X1 Yo y//

Note OpenGL puts the near and far planes at —n and —f
so that the user can give positive numbers

31

OpenGL view frustum: perspective

(X, yt, —n)

\L

z=-f

(X1, Y, —h)

Note OpenGL puts the near and far planes at —n and —f
so that the user can give positive numbers

32

Pipeline of transformations

* Standard sequence of transforms

screen space

object space | camera space

camera projection viewport
transformation transformation transformation

o\

modeling
transformation

canonical

world space .
view volume

33

